
UNIVERSITÉ DU QUÉBEC À MONTRÉAL

CMMN MODELS HAND-DRA WN SKETCHES RECOGNITION SYSTEM

MASTER THESIS

PRESENTED

AS A PARTIAL REQUIREMENT

FOR THE MASTER IN COMPUTER SCIENCE

BY

SARA AMIRSARDARI

OCTOBER 2017

UNIVERSITÉ DU QUÉBEC À MONTRÉAL
Service des bibliothèques

Avertissement

La diffusion de ce mémoire se fait dans le respect des droits de son auteur, qui a signé
le formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles
supérieurs (SDU-522 - Rév.07-2011). Cette autorisation stipule que «conformément à
l'article 11 du Règlement no 8 des études de cycles supérieurs, (l 'auteur] concède à
l'Université du Québec à Montréal une licence non exclusive d'utilisation et de
publication de la totalité ou d'une partie importante de [son] travail de recherche pour
des fins pédagogiques et non commerciales. Plus précisément, [l 'auteur] autorise
l'Université du Québec à Montréal à reproduire , diffuser, prêter, distribuer ou vendre des
copies de [son] travail de recherche à des fins non commerciales sur quelque support
que ce soit, y compris l'Internet. Cette licence et cette autorisation n'entraînent pas une
renonciation de [la] part [de l'auteur] à [ses] droits moraux ni à [ses] droits de propriété
intellectuelle. Sauf entente contraire, (l 'auteur] conserve la liberté de diffuser et de
commercialiser ou non ce travail dont [il] possède un exemplaire.»

UNIVERSITÉ DU QUÉBEC À MONTRÉAL

UN SYSTÈME DE RECONNAISSANCE DES ESQUISSES DE MODÈLES

CMMN DESSINÉS À LA MAIN

MÉMOIRE

PRÉSENTÉ

COMME EXIGENCE PARTIELLE

DE LA MAÎTRISE EN INFORMATIQUE

PAR

SARA AMIRSARDARI

OCTOBRE 2017

ACKNOWLEDGMENTS

lt gives me great pleasure in expressing my gratitude to all those people who have

supported me and had their contributions in making this thesis possible.

First and foremost, I wou ld like to thank my advisor, Professor Hafedh Mil i, for hi s

constant guidance, support, motivation, inspiration, enthusiasm, and immense

knowledge.

1 would also like to acknowledge Renata Carvalho, as the second reader of this thesis,

and I am gratefu lly indebted to her for her very valuable comments on this thesis.

l am indebted to my friends and co lleagues for providing a stimulating environment

in which I cou ld learn and grow, especially I thank my fr iends, Imen, Anis, Amani

and Golrokh .

l would like to thank a il the staff members of the Computer Science department at

UQAM for their direct and indirect helps during my studies at UQAM.

Last but not least, I would like to express my very profound gratitude to my parents,

Mohammad and Akram, and to Marco for providing me with unfailing support for

their love, encouragement, advice throughout my years of study and through the

process of researching and writing this thesis. This accomplishment would not have

been possible without them. Thank you.

TABLE OF CONTENTS

LIST OF FIGURES ix

LIST OF TABLES x iii

RÉSUMÉ XV

ABSTRACT xvii

INTRODUCTION 1

0.1 Problem Statement 2

0.2 Objective 4

0.3 Methodology 4

0.4 Thesis Plan 5

CHAPTERl
STATE OF THE ART ON SKETCH RECOGNCTlON SYSTEMS 7

1.1 Vector Graph ies and Raster Graphi es 8

1.2 Optical Character Recogn ition 9

1.2.l Offline Recognition 10

1.2.2 On li ne Recognition 13

1.3 Sketch Recognition Systems 23

1.3.1 Sketch-Based Tools for UML Class Diagrams 25

1.3.2 Sketch-Based Tools in Other Domains 28

1.4 Conc lusion 31

CHAPITRE Il
CASE MANAGEMENT MODEL AND NOTATION (CMMN) 33

2 .1 Notat ions 34

2.1.1 Case 34

2. 1.2 Case Plan Madel. 34

2.1.3 Task 35

VI

2.1.4 Stage 37

2.1.5 Event 38

2.1.6 Case File 38

2.1.7 Mi lestone Item 39

2.1.8 Sentry 39

2. 1.9 Connector 40

2.2 Example of Case Plan Model43

2.3 Conc lusion 44

CHAPITRE lII
EXPERJMENTAL RESULTS45

3.1 Case Study 45

3.2 Technology Used 47

3.3 Sketch Recognition Des ign and lmplementation48

3.4 Primitive Shape Recognition49

3.4. 1 Reading Hand-Drawn Sketch49

3.4.2 Pre-Processing 50

3.4.3 Contour Finding 54

3.4.4 Feature Extraction 59

3.4.5 Contour Resiz ing 60

3.4.6 Te1nplate Matching 61

3.4.7 Contour Distance 68

3.4.8 Line Detection 68

3.4.9 L ine Distance 72

3.5 Compos ite Graphi e Object Recognition 72

3.5 .1 Intersection Area 73

3.5.2 Connector Detection 74

3.6 Semantic Connection Recognition and Understanding 76

3.6. 1 Case 77

3.6.2 CMMN or 82

3.7 Conclusion 84

VII

CHAPITRE IV
TEST SETTING AND RESULTS 85

4.1 Test Setting Overview 86

4.2 Recognition Accuracy 87

4.3 Limitations 90

CONCLUSION 93

APPEND[CEA
PRIMITIVE SHAPE RECOGNITION JAVA CLASSES 97

APPENDICE B
COMPOSITE SHAPE RECOGNITION JAVA CLASSES 123

APPENDICE C
SEMANTIC CONNECTION RECOGNITION JAVA CLASSES 139

BIBLIOGRAPHY 163

LIST OF FIGURES

Figure Page

Figure 1.1 Represents vector and raster graphies 8

Figure 1.2 Class ification of optical character recognition 10

Figure 1.3 Offline recognition 11

Figure 1.4 Pre-processing steps of offli ne recognition 12

Figure 1.5 Online recognition 14

Figure 1.6 Primitive shape recognition steps 14

Figure 1.7 Subprocesses of online graphies recognition 15

Figure 1.8 Illustrations of the polygonal approximation process 16

Figure 1.9 Agglomerate po ints 17

Figure 1.10 Agglomerate points filtering 17

Figure 1.11 Shapes w ith improper endpoints 18

Figure 1.12 Examples of end point refinement 18

Figure 1.13 Inner shape regularization 22

Figure 1.14 Inter-shape regularization 23

Figure 1.15 LAD DER Framework 27

Figure 2.1 Represents Case Plan Mode! shape 35

Figure 2.2 Ordinary Task shape and Discretionary Task shape 35

Figure 2.3 Non-Blocking Human Task shapes 36

Figure 2.4 Blocking H uman Task shapes 36

Figure 2.5 Process Task shapes 36

Figure 2.6 Decision Task shape 37

X

Figure 2. 7 Case Task shapes 3 7

Figure 2.8 Expanded Stage shape and Co llapsed Stage shape 38

Figu re 2.9 Event shapes 38

F igure 2.10 Case F il e shape ... 39

Figure 2.1 1 Mi lestone shape 39

Figure 2. 12 Entry Criterion shape and Exit Criter ion shape40

Figure 2.13 Connector Shape .. 40

F igure 2.14 Sentry based dependency between two tasks40

F igure 2.15 Using sentry-based connectors to visualize "AND"41

F igure 2.1 6 Usi ng sentry-based connectors to visualize "OR"41

Figure 2.17 Yisualize dependency between stages 42

Figure 2.18 visual ize dependency between a task and a milestone 42

F igure 2. 19 Yisualize dependency between a Task and a Ti mer Event Listener 42

F igure 2.20 Yisualize dependency between a task and a case file item 43

F igure 2.21 combinations of various elements in CMMN 44

Figure 3. 1 Formalizes case mode! from a CMMN hand-drawn sketch 46

Figure 3.2 OpenCV library on the Eclipse IDE 47

Figure 3.3 Represents the data structure in OpenCV48

Figure 3.4 Design mode! compatibl e w ith the case study 49

Figure 3.5 Templates images 50

Figure 3.6 Pre-processing steps of the recognition system 51

F igure 3.7 Gaussian blur on 10 pixel array 52

Figure 3.8 1 D Gaussian kernel 53

Figure 3.9 Threshold operat ion 54

Figure 3. 10 Show graphicall y a pixe l image and the corresponding contour 55

Figure 3. 11 Represents a sentry mode! 55

XI

Figure 3.12 A test image presents the contours 58

Figure 3.13 Different types of Retrieval Modes 58

Figure 3.14 Bounding box around the contour ... 59

Figure 3.15 Represents MatchTemplate function 62

Figure 3.16 Represents the input image and template image as matrix 63

Figure 3. 17 Represents match resu lts 65

Figure 3.18 Represents doub les of contour 68

Figure 3.19 Represents detected edges of line 69

Figure 3.20 Different styles for drawing line 70

Figure 3.21 Represents point in the image 71

Figure 3.22 XML file structure in CMMN 77

F igure 3.23 CMMN case file meta-mode l (OMG) 78

Figure 3.24 Case file structure in XML format.. 78

Figure 3.25 Case Plan structure in XML format 79

Figure 3.26 Plan Item Definition (OMG) 80

Figure 3.27 Sentry structure in XML format 81

Figure 3 .28 Connector structure in XML format.. 81

Figure 3.29 CMMNDI class diagram (OMG) 82

Figure 3.30 CMMNDI structure in XML format.. 83

Figure 3.31 CMMNShape structure in XML format 83

Figure 3.32 CMMNEdge structure in XML format.. 84

Figure 4.1 Sentry based dependency between two tasks 86

Figure 4.2 Recognize Tasks Band Diamonds as inner contours 89

Figure 4.3 Samples e lements not recognized by the system 90

F igure 4.4 Recognizes file instead of task in composite shape 94

LIST OF TABLES

Table Page

Table 1.1 Comparison of software fidelity UI prototyping tools 25

Table 4.1 Results of primitive shapes recognition 87

Table 4.2 Results of model fragments recognition ... 87

RÉSUMÉ

La nature des premières activités de spécification des exigences nécessite une
approche de modélisation plus flexible par rapport à celle fournie par des outils de
modélisation traditionnels. li existe une variété d' outils de modélisation pour capturer
les processus métier sous une forme structurée. En dépit de leurs avantages, de tels
outils ne sont pas naturels pour l' utilisateur humain et ne sont pas utilisés dans les
premières étapes de modélisation et de développement. En comparaison avec d' autres
approches flexibles, telles que les outils Office et le tableau blanc qui sont
fréquemment utilisés dans les premières étapes de modélisation des systèmes à cause
de leur utilisation plus naturelle pour l' humain. Néanmoins, ces outils infcxmels
offrent plus de flexibilité et de liberté au détriment de la gestion de la consistance, la
gestion des changements et l'interchangeabilité des modèles.

Étant donné que ni les approches flexibles ni les outils de modélisation traditionnels
sont idéals, nous proposons dans ce mémoire une nouvelle approche intermédiaire
dans le but de réduire l'écart entre ces deux approches. Nous proposons un outil qui
reconnaît des esquisses des modèles CMMN faits à la main et les transforme en un
format qui peut être importé par un outil formel. Dans cette approche, nous utilisons
la reconnaissance des formes et la correspondance des patrons pour reconnaître les
modèles CMMN faits à la main et les traduire en des modèles CMMN formels. Par la
suite, ces modèles formels sont sérialisés dans un fichier XML conforme au format
d'échange des modèles CMMN. Ce fichier peut être importé dans un outil CMMN
conforme. L 'efficacité de notre approche a été testée sur plus de 500 dessins faits à la
main. Les résultats confirment l'efficacité de notre approche.

Mots clés : pré-analyse des exigences, modélisation formelle , approches de formes
libres, esquisses faites à la main, traitement d' images, vision par ordinateur, modèlent
CMMN, outils de modélisation CMMN.

ABSTRACT

The nature of early requirements act1v1t1es requires a more flexible approach to
modeling than is provided with traditional modeling tools. A variety of modeling
tools exist to capture of business process models in a structured form . Despite their
advantages, such tools are unnatural for the human user, and are not used in early
stages of modeling and development. ln comparison, more flexible approaches such
as office tools or whiteboards are more common in the early stage of system
modeling, as well as more natural for the human user. However, these informai tools
give the user flexibility and freedom, at the expense of consistency management,
change management and model interchange.

Because neither flexible approaches nor traditional modeling tools are ideal , in this
thesis we propose a new intermediate approach in order to reduce the gap between
these two approaches. We propose a tool that can recognize early hand sketches of
CMMN models and transform them into a format that can be imported into a formai
tool. In our approach, we use shape recognition and pattern matching to recognize
freehand drawings of CMMN models and translate them into formai CMMN models.
Next, these formai models are serialized into an XML file that is compliant with the
CMMN mode! interchange format and can then be imported into CMMN-compliant
tools. The effectiveness of our approach has been tested on more than 500 drawings.
The results confirmed the effectiveness of our approach.

Keywords: pre-requirement analysis, formai modeling, free-form approaches, hand­
drawn sketch, image processing, computer vision, CMMN models, CMMN modeler.

INTRODUCTION

Prior to the invention of computers, paper and pencil were considered the tools that

provided the primary support of different activities. Simple sheets of paper or

whiteboards were among early means of documenting ideas. These days, with vast

technological improvements in the field of computer science, there is more of a

tendency to use digital devices instead of the traditional paper or white boards. The

invention of computers and their accessories, such as the mouse, keyboard, and

monitor, has introduced a very suitable alternative for primary tools. Paper and

pencil-based tools were, and stil l are, used in the pre-requirements step of the

software development life cycle.

Most activities during the software development life cycle involve a process that

ensures that good software is built. Requirements engineering is referred to as an

essential phase in this process (Chakraborty et al., 2012). Before getting into this

critical phase, some form of business analysis that is ca ll ed pre-requirements is

executed in order to determine whether new development is required (Ossher et al. ,

2010). «In this phase, before requirements are formulated , a business analyst needs to

co llect information, organizing it to achieve insight, envisioning alternative futures

and presenting insights and recommendations to stakeholders» (Ossher et al., 2010).

Hence, business analysts in this stage need to use a simple way to interact with the

stakeholders in order to explain the structure, policies, problems, needs, and

opportunities for improvement at ail levels of a project, while stakeholders are

interviewed in order to discover their needs and requirements.

2

However, currently, with the increasing popularity of "touchscreen technology", al 1

kinds of users, including business analysts, are usually provided with the option of

entering the information directly through the screen using their fingers or a pen rather

than using a mouse. They can also do things like move things on the screen and scroll

them, and make them bigger or smaller. Therefore, by having a tablet, and using

office tools such as word processors, and drawing or presentation tools, analysts

during the early stages of requirements engineering could interact with stakeholders

much more easily. ln regards to this interaction, it is not static, because the needs and

requests are changeable, and so analysts and stakeholders might edit or delete

unnecessary parts, as wel I as create or extend necessary items.

0.1 Problem Statement

The more flexible approaches such as paper and pencil , whiteboards, or office tools

known as "free-form" approaches (Ossher et al. , 2011) are used in the early stage of

system mode ling, in order to have freehand drawings or writings (sketches).

According to (Coyette et al. , 2007) free-form approaches have a variety of

advantages, such as:

• The sketcher is free to use as an approach at any stage of design , without the
need to fol low a certain chain of steps or framework (Newman et al. , 2003);

• The sketcher does not need a training cour e in order to draw or write
sketches, and the resu lt can be produced quickly (Duyne et al. , 2002);

• This approach all ows the sketcher to concentrate on basic structural issues,
rather than trivial details (e.g., exact alignment, typography and colors)
(Lan da y et Myers, 2001);

• This approach encourages creativity, and lets the sketcher to bring their ideas
on the paper without any limitation (Landay et Myers, 2001), and

3

• The collaborative execution of sketches between business analyst and
stakeholders, allow them to evolve designs while discussing and taking turns
between sketching and annotating designs (Plimmer et Apperley, 2003b).

Despite these strengths, free -form approaches have weaknesses as well. Using these

approaches, the structured form of the documented information would not be

available and the opportunity for changes and post-processing could be limited. Thus,

time wasting and overpriced remodeling of early sketches is necessary to make

further modifications possible (Wüest et al. , 2012).

Opposing free-form approaches, it is the "formai modeling tool" which uses

business process mode! in a structured form (Ossher et al. , 2011). Formai modeling is

more unnatural for humans and more understandable for devices. They have a variety

of advantages, such as:

• «Support multiple view on the same mode! for visualization and convenience
of manipulation» (Ossher et al. , 201 O) ;

• «Facilitate consistency management of the mode!» (Ossher et al. , 2010);

• «Provide domain-specific assistance (e.g. , "content assist'') based on mode!
structure» (Ossher et al., 201 O) ;

• Pre pare documentation of the mode! ing decisions (e.g. , rational es) (Ossher et
al. , 2011);

• «Provide syntax, semantic mode! and semantic mappmg» (Ossher et al. ,
2010), and

• «Integration with other formai tools and processes, such as model-driven
engineering (MDE) and mode! checking» (Ossher et al. , 2010).

Despite these advantages, formai modeling tools are not efficient at early stages of

modeling and development. In comparison, it is more common to use informai

mechanisms such as free-form approaches (Ossher et al. , 2011).

4

(Ossher et al. , 2010) argued that the input they received from man y practitioners

clearly indicated that neither informai modeling nor formai modeling is ideal. In this

context, we believe that a new class of tools is required to reduce the gap between the

two approaches. Such intermediate approaches should be able to handle sketches that

are produced at early stages of modeling, and transfer such informai sketches into

formai models. This would allow business analysts to migrate easily to a later stage

with a formai tool.

0.2 Objective

The purpose of this thesis is to develop a tool that migrates hand-drawn sketches of

CMMN (OMG) models to formai models that can be imported into a CMMN

modeling tool. CMMN is an OMG standard for representing case models , i.e., models

of business processes that involve a lot of knowledge intensive tasks, such as a

medical diagnosis, or a law case. For this project, we will generate models for

Trisotech ' s CMMN Modeler (Trisotech).

To this end, we will need to:

• Defïne a method for accepting the totally unstructured and unclear input,
inc luding freehand drawing of CMMN models;

• Develop a technique for matching the inputs with the default patterns of
CMMN models;

• Build the recognized mode(fragments into a CMMN model that can be
serialized into the XML interchange format for CMMN, to support the
exchange of the mode 1, and its importation into CMMN-compliant tools .

0.3 Methodo logy

The research methodology relies on the literature on image processing, pattern

recognition, template matching, and a semantic description of hand-drawn shapes.

5

After evaluating several arch itectures, we decided to base this study on the freehand

sketches that can be recognized and converted into the user' s regu lar intended shapes.

Hence, the approach evaluates the raw sequence of points as an input according to

default patterns of CMMN models and determines whether the points s ign ify some

more organized input. Moreover, sketch recognition as part of the image processing

and computer vision is covering a lot of detail calculations. Thus, extending,

deve loping and proposing a general approach based on OpenCV library and Template

Matching rules for converting user ' s input to CMMN models into a CMMN modeling

tool is defined . At the end, simulation tests to assess the maximum usability of the

appl ication are done.

0.4 Thesis Plan

The second chapter of this thesis introduces the essential concepts of online and

offline shape recognition, and the methods that each approach should follow for

investigating the data input. ln addition, the advantages and disadvantages of the low

fidelity prototyping tools and high fidelity prototyping too ls are compared. The third

chapter describes the CMMN models and their structures. The approach which

comprises the foundation of this study is recognizing and converting hand-drawn

sketches into CMMN modeling tool that is described in the fourth chapter. The fifth

chapter evaluates the application and finalizes the thesis with the conclusions and the

implications for the future research.

CHAPTER I

STATE OF THE ART ON SKETCH RECOGNITION SYSTEMS

Pattern recognition is a branch of machine learning (Michalski et al. , 2013) that

emphasizes the recognition of data patterns and data regularities in order to classify

them into a number of categories or classes (Kpalma et Ronsin, 2007). It is composed

of a collection of mathematical , statistical, heuristic, and inductive techniques of the

fundamental role in order to find the actual problems through mathematical methods

(Liu et al., 2006). The development of pattern recognition is increasing very fast.

Nowadays, pattern recognition is a wide research area that can impact a wide range of

disciplines such as engineering, mathematics, art, and medicine. Optical character

recognition systems represent one of the most successful applications of technology

in the field of pattern recognition and artificial intelligence. The main purpose of

these applications is classifying the input pattern in a specific class (Kpalma et

Ronsin, 2007). Hence, this chapter focuses on the essential concepts of representing

image data that is composed of vector graphies and raster graphies. In the following,

the pattern recognition approaches that can be separated into two sections, online

recognition and offline recognition, are explained. To complete the discussion, the

methods and similarities and differences between the two are described.

8

1.1 Vector Graphies and Raste r Graphies

Computer graph ies are pictu res and mov ies created using com puters . ln thi s fie ld ,

there a re two substantia l ways of representing image data (see figure 1. 1): raster

(bitmap) graphies and vector graphies (U mbaugh, 1997). Raste r graphies (Umbaugh,

1997) are defin ed by pi xels. T hese pixels are non-scalable, and each of these t in y

square dots represents a co lor. Thus, to make an image, these dots comb ine into

pattern and raster graphies programs define wh ich pixe l w ill be w hich co lor, and what

the d imens ions of the image should be. ln raster graphies, the defi ni t ion of reso lut ion

is the number of p ixels contained w ithi n a file that is often referred to as DPI (dots

per inch). T herefore, raster graphies are dependent on reso luti on. By contrast, vector

graphies (U mbaugh, 1997) are defi ned by a series of mathematical equatio ns fo r

spec ify in g lines, curves, and shapes, as well as the edi table attribu tes such as line ' s

d irection, thickness, and co lor. Vector files do not need to account for each p ixe l.

I--Ience vectors can be scalab le to any arbitrary s ize and they are independent of the

reso lu tion. A lso, they require much less memory compared to raster graph ies.

Consequent ly, the vector graphies are mo re advantageous than raster graphies. T he

attem pt is to vectorize input data for more efficient storage and easier hand ling to

analyse and process geometric shapes.

Vector-b ed Image Bitmap Image

Text Text

Text
Figure 1.1 Represents vecto r and raster graphies (Vector vs. Raste r Graph ies)

9

1.2 Optical Character Recognition

With the development of digital computers, a wide range of applications such as

banking, security, postal processing, and language identification with the

methodologies of OCR (Optical Character Recognition) systems are exposed.

OCR methodology is based on the recognition of printed documents or handwritten

by using computers (RS et Afseena, 2015). Hence, this technology uses a digital

camera or a scanner to record and store different types of documents such as paper

documents or character images, and then translates a il of these documents into

machine editab le formats like ASCII code (RS et Afseena, 2015) . T herefore, the

storage space required for documents is reduced, and the speed of data recovery is

increased. For instance, OCR can be used in various fields like banking, where they

must deal with vast amounts of paper. With OCR, it cou ld be processed without

human intervention.

«OCR can be classified into two categories based on text type and acquisition of

documents» (RS et Afseena, 2015) (see figure 1.2). OCR is composed of two types

on the basis of text type: HCR (Handwritten Character Recognition) and PCR

(Printed Character Recognition) (RS et Afseena, 2015) . HCR recognizes handwritten

input such as paper documents, and PCR recognizes printed documents (RS et

Afseena, 2015). In the second layer, HCR as a subd iv ision of OCR is divided into

offline and on line recognition systems based on acquisition of documents, which can

include overall stages such as pre-processing, segmentation, feature extraction, and

classification (RS et Afseena, 2015).

10

/

Optical Character
Recognition

/~
,,.

Handwritten
Character

Recognition

,,. ~-

Printed Character
Recognition

Off- li ne Character
Recognition

On-li ne Charac:ter
Recognition

Figure 1.2 Class ification of optical character recogni tion (RS et Afseena, 201 5)

1.2. 1 Oftl ine Recogn ition

There has been a lot of research in the fi e ld of oftl ine character recogni tion (Arica et

Yarman-Yural , 2001 ; Mori et al. , 1984; Plamondon et Srihari , 2000; RS et Afseena,

2015 ; Suen et al. , 1980; Yinc iare lli , 2002). ln thi s approach, a dig ita l image that is

usually obta ined by scanning or by photographing is taken as an input fo r recognition

(figure 1.3). Hence, in oftl ine recogniti on, before gett ing into the character

recogn ition phase, several imperfect and costly pre-process ing steps have to be

executed. The purpose of pre-process ing steps is to exclude irre levant info rmation,

and include re levant info rmati on in the input (RS et Afseena, 2015).

The first step of pre-process ing is thresho lding, which is composed of several

techniques (Sezgin , 2004) . Thresholding is used to d ist ingui sh objects from the

background of the image, and to convert a grayscale image into a binary bl ack and

white image (RS et Afseena, 2015 ; Sezgin , 2004) .

In the second step, in order to improve the recognition performance, some sort of

no ise remova l must be used to extract the foregro und textua l matter from, fo r

instance, textured background by removing interferin g strokes, im pul se no ise,

11

Gaussian noise, speckle noise, and photon noise (Cheriet et Suen, 1993 ; Plarnondon

et Srihari, 2000; RS et Afseena, 2015). Image denoising has various other

applications and has been discussed in these papers (Motwani et al. , 2004; Rao et

Panduranga, 2006).

Figure 1.3 Offline recognition.The image of the word is converted into gray-level

pixels using a scanner (Plarnondon et Srihari , 2000).

ln the second step, in order to irnprove the recognition performance, sorne sort of

noise rernoval must be used to extract the foreground textual rnatter frorn , for

instance, textured background by rernoving interfering strokes, impulse noise,

Gaussian noise, speckle noise, and photon noise (Cheriet et Suen, 1993; Plarnondon

et Srihari , 2000; RS et Afseena, 2015). Image denoising has various other

applications and has been discussed in these papers (Motwani et al. , 2004; Rao et

Panduranga, 2006).

The last step of pre-processing is using the black and white image as the input in

order to utilize the thinning process on it. This process reduces patterns to thin-line

representations. The airn of the thin-line technique is keeping the geornetrical and

topological properties of the image intact, and this rnakes it appropriate for analysis in

the next phases (Lam et al. , 1992). As shown in figure 1.4, the steps involved in

preprocessing are displayed.

12

recognition
(a) (b)

recognition recognition
(c) (d)

Figure 1.4 Pre-processing steps of offline recognition.: (a) Scanned raw input image;

(b) Thresholded black and wh ite with noise; (c) Denoised image; (d) Thinned image

(Soisalon-Soininen, 20 l l)

The preprocessmg steps exp lai ned above are common to ail offline recognition

problems, and can be used in characters or graphies issues . The second phase of

offline recognition , which includes segmentation, is the process of converting input

images into text. It does so in three steps: line segmentation, word segmentation, and

character segmentation (RS et Afseena, 2015). Hence, th is step separates sentences

from text and then divides words and letters of sentences subseq uentl y (S uen et al. ,

1980).

The last phase, the feature extraction, which extracts most relevant features , mainly

depends on the application (RS et Afseena, 2015). Different feature extraction

methods are explained in the literature (Chenet Kégl , 2010; George et Gafoor, 2014;

Majumdar, 2007; Mamatha etal. , 2013 ; Nemmour et Chibani , 2011). These methods

describe how the features of the segmented character are extracted and, accord ing to

these features , each character is assigned to one of the specified classes such as the

upper and lower case letters, the ten digits , and special symbols (Plamondon et

Srihari , 2000).

13

Because there is a strong relation between character and shape recognition (Arica et

Yarman-Vural , 2001 ; Llad6s et al. , 2001), it is useful to study the basic approaches,

methods, and applications related to offline recognition. For example, the recognition

task of mathematical formula involves two tasks: symbol recognition , and two­

dimensional structure interpretation (Garain et Chaudhuri , 2004). Although the

approaches in online and offline recognition methods are different, understanding the

challenges in offline recognition leads us to discover and use the benefits of onl ine

methodologies (Arica et Yarman-Vural , 2001).

1.2.2 Online Recognition

In online systems, the character or shape recognition process is executed while the

user is writing or drawing (Plamondon et Srihari , 2000). Hence, a freehand stroke is

captured by computer mouse, or a finger on a touchscreen device, based on the mouse

or finger ' s movement (figure 1.5). Furthermore, a freehand stroke drawn by human

user is usually very cursive, inaccurate, and contains imperfections. For example,

supposedly straight lines will be drawn as arcs, and circles will be drawn as ellipses

with irregular shapes and significant noise.

(Liu, 2003) proposed an approach for online recognition that presents a general

overview to the user in order to specify the general problems of online graphies

recognitions, and find the solutions for converting the sequence of coordinate points

into the user intended input. This approach (see figure 1. 7) consists of three steps:

primitive shape recognition, composite graphie object recognition and document

recognition and understanding. To describe the primitive shape recognition (see

figure 1.6), four sub steps were defined that include (a) stroke curve pre-processing,

(b) shape classification (c) shape fitting and (d) shape regularization.

14

3.S -- ,

Q5 '----~--__,_ ___ ..__ ___ ._ __ __.. ___ .,_ __J

2 3 4 5 6 7 8 9

x(t) (cm)

Figure 1.5 Online recogni tion. Similar data as (fi gure 1.3) presents as point traj ectory

data. The x, y coordinate is recorded as a fu nction of time with a dig itizer

(P lamondon et Srihari , 2000).

Stroke Preproce ing

Shape Clas:ification

Shape Fitting

Shape Regu larization

Figure 1.6 Primit ive shape recogni tion steps (X iangyu et al., 2002)

15

While the user is drawing a freehand stroke, the concern of primitive shape

recognition is to determine the type and parameters of the primitive shape, wh ich can

be a line, a triangle, a rectangle, an ellipse, etc. (Liu, 2003). After recognizing and

converting the current stroke, it is possible to combine the current stroke (recognized

primitive shape) together with previously recognized primitive shapes, based on their

spatial relationships. Thi s is the composite graphie object recognition step (Liu,

2003). Document recognition and understanding is the last step of on line recognition.

After recognizing and converting the graphical elements (primitive shapes and

composite graphie objects), we need to understand the connections and relationship

among the elements, as we ll as their semantics (Li u, 2003) . In the following section

we exp Iain more about the subset of primitive shape recognition.

(a) (b)

Q

(c) (d)

Figure 1.7 Subprocesses of onl ine graphies recognition: (a) Raw input strokes; (b)

Strokes recognized as primitive shapes; (c) Primitive shapes combined into a

composite object according to their spatial relationship; (d) The semantic of the

composite object interpreted using context information (Soisalon-Soininen, 2011) .

16

1.2.2 .1 Pre-Process ing

Pre-processing in online recognition has the same role as in oftline recognition. It

aims to remove the noise and minor mistakes in order to make the strokes more

s imilar to the user ' s intention. Preprocessing can be divided into four steps: polygonal

approximation, agglomerate points filtering, end points refinement, and convex hull

calculation (Liu , 2003 ; Wenyin et al. , 2001). The convex hull calculation is used

individually for recognizing closed shapes and thus will not be discussed here.

(Xiangyu et al. , 2002) explain that, generally, the input hardware produces a lot more

points than are necessary to define the shape of the stroke. By removing these points

from the chain, the sketchy line will be approximately di splayed by a polyline with

much fewer critica l vertices. Therefore, by determining the extent to which thi s is

controlled by parameter 1::, the polyline can maintain the origina l shape (figure 1.8).

«If the di stance of a point to the straight-line segment formed by connecting its

neighbors is smaller than 1::, thi s point is non-critical and shou ld be removed from the

polyline» (Xiangyu et al. , 2002). Hence, on the one hand more vertices are left by

getting smaller the 1:: value, on the other hand the edge accuracy is improved. This

process is referred to as polygonal approximation.

Polyg nal

approximation

with E = 1.0

Pol gonal

approximation

with € = 5.0

Figure 1.8 Illustrations of the polygonal approximation process(X iangyu et al. , 2002).

17

Us ing a pen or digitizer might produce a hooklet or circlet (see figure 1.9) at the end

of the stroke which usually has much higher point agglomerations than the average

value of the whole polyline.

Figure 1.9 Agglomerate pointsas a hooklet and a circlet (Xiangyu et al. , 2002).

The task of agglomerate points filtering (see figure 1.10) examines the point

agglomerations of the input polyline. By finding these segments, it starts removing

these noises and uses fewer points to represent the segment.

(a) (b)

Figure 1.10 Agglomerate points filtering: (a) the sketchy line before processing; (b)

the sketchy line after processing (Xiangyu et al., 2002).

Another "noise" introduced by hand drawing is the case where the stroke that 1s

painted by the user is intended to be a polygon, but ends up as a non-closed form , or a

form with a cross near its end points (see figure 1.11).

18

(a) (b)

Figure 1.11 Shapes with improper endpoints(a) A pentagon with a cross ; (b) an un­

closed triangle (Xiangyu et al. , 2002) .

Hence, these improper endpoints bring enough barriers for both shape classification

and regularization. As a result, end point refinement can be used to close an open

stroke by extending its endpoints a long its end directions (see figure 1.12).

(a) (b) (c)

Figure 1.12 Examples of endpoint refinement: (a) The sketchy line before process ing;

(b) After pulling the end points ; (c) After deleting extra points (Xiangyu et al. , 2002).

1.2 .2.2 Shape Classification

After pre-processing, shape classification is the most essential part of shape

recognition. It is used to decide whether an unclear stroke drawn by a user can

represent a predefined shape such as a square, a circle, and arrow, etc. Moreover, in

19

the field of shape recognition, the ma in focus of the academ ic papers 1s shape

classification (Liu, 2003).

In general , the purpose of shape classification is to extract beneficial information

from the input data to facilitate the class ification . The extent of classification methods

due to the amount of detail in the process and the abi lity of combining different parts

from different approaches is abundant.

(Llad6s et al. , 2001) proposed the traditional categorization of pattern recognition in

the context of symbol recognition methods. Such methods can be divided into

statistical and structural methods . «In statistical pattern recognition, each pattern is

represented as an n-dimensional feature vector extracted from the image» (Llad6s et

al., 2001). Therefore, this classification is conducted by partitioning the feature space

into different classes . Thus, we need to foc us on the se lection of the features , as well

as the se lection of the method in order to partition the feature space.

The properties of the patterns that need to be classified can affect the selection of the

features space. «The main criteria must be to minimize the distance among patterns

belonging to the same class and to maximize the distance among patterns belonging

to different classes» (Llad6s et al., 200 1). Once a set of features has been chosen, we

use classification to partition the feature space and ass ign each feature vector to one

of the predefined classes . Three of the most common selection methods are: k-nearest

neighbours, decision tree and neural networks (Llad6s et al. , 2001).

The k-nearest neighbors method (Larose, 2005; Llad6s et al. , 2001) is based on a

simi larity measure. We need to define a distance fonction among feature vectors in

order to assign each input image to the class with the closest representative (Llad6s et

al. , 200 1). Once ail representatives are defined for each input pattern and each class,

the set of the k-closest representatives is built, and the pattern w ill be assigned to the

class that has the most representatives in this set (Llad6s et al. , 200 l).

20

The decision tree (Freund et Masan , 1999; Llad6s et al. , 2001) method constructs

using simple decision rules. ln this method, specific conditions about the value of a

particular feature are tested in each node (Freund et Masan, 1999; Llad6s et al. ,

2001). Classification will be executed by tracing the branches in the tree based on the

result of condition testing (Freund et Masan , 1999; Llad6s et al. , 2001). As a result,

one of the tree leaves corresponds to the recognized symbols is reached.

The neural networks (Bishop, 1995 ; Llad6s et al. , 2001) salves problems in the same

function of the human brain. Hence, the learning ability is one of the advantages of

this approach. Based on this ability, neural networks have obtained good

classification rates in many different domains. This advantage enables them to adapt

themselves according to the properties of the training set (Bishop, 1995 ; Llad6s et al. ,

2001). By learning automatically, the neural network optimizes its parameters in

order to recognize the symbols in the training set (Bishop, 1995; Llad6s et al. , 2001).

In the structural approach (Llad6s et al. , 200 l), a description of the shapes is used as

a reference. Hence, this method uses a set of geometric primitives, and their

relationships to represent symbols (Llad6s et al. , 2001). Straight lines and arcs are the

primitives used to describe the shape of the symbols, as well other geornetric

primitives such as loops, contours, or simple shapes (circles, rectangles, etc.) (Llad6s

et al. , 2001). For example, a diamond can be represented as a set of four lines with

certain constraints (Llad6s et al. , 2001). Therefore, a mode! of an ideal shape is built

for each symbol by using these primitives (Llad6s et al. , 2001). As a result, an input

image is classified based on the best match between the representation of the image

and the mode! of the symbol (Llad6s etal. , 2001).

1.2.2.3 Shape Fitting and Regularization

Shape fitting and regularization is less cornplicated than shape classification. After

classifying the sketch , the fitting process is employed to investigate whether a shape

from a class is similar to the sketch. Hence, the airn is to use different methods to find

21

the parameters of the fitted shape that has the lowest average distance to the sketch

(Xiangyu et al. , 2002). Severa) approaches have been proposed to do this, are

explained below.

Chen and Xie, proposed an approach which finds the fittin g shape based on an

analysis of the drawn curve with reference models (Chen et Xie, 1996). Their

technique uses fuzzy filtering rules in order to recognize the correct model and to

elirninate the undesirable points. There are different fitting methods fo r lines, circles,

circular arcs, ellipses and elliptical arcs.
'

For generating a straight line frorn a sequence of points, they atternpt to find a line

with the best approxirnates of the scattered data. Thus, the method of least-squares

(Marquardt, 1963) is used to generate it. Furthermore, three non-collinear points can

be used to determine whether an arc is a circle or a circular arc. Thus, for representing

the circle, fuzzy information is needed to obtain a weighted average of centers and

radius by choosing ail possible triplets of points in the freehand drawing. For ellipse

fitting, the liming multiplier technique is proposed. More methods for ellipse and

polygonal fitting are suggested by Liu (Liu , 2003; Wenyin et al. , 2001; Xiangyu et

al. , 2002).

Liu discussed a set of shape regularization rules that are described in more detail in

hi s work (Xiangyu et al. , 2002). These rules attempt to correct the defects of the

drawing of a sketcher. They suggest a process that includes of two sub-processes:

inner-shape regularization and inter-shape regularization.

The inner-shape regularization (figure 1.13) consists of making modifications to the

fitted shapes according to several rectifications (Xiangyu et al. , 2002). The first

rectification adjusts the edges or the A-axis and B-axis of polygons in order to

equalize their lengths. The second rectification adjusts the edges of polygons to make

thern parallel. The third rectification connects the inner angles of polygo ns to lean

22

towards regular figures such as rectang les. Furthermore, horizontal/vertical

rectification as the last rectification in inner shape regul ar ization is able to recti fy the

edges of a polygon, or the axes of an e llipses or diagonals of a diamond to horizontal

or vertical.

IJ

(a) (b)

Figure 1.13 lnner shape regul arization (a) recti fy ing a tri angle into an isosce les

triangle; (b) rectify ing two rectangles in to the same s ize (X iangyu et al., 2002) .

The inter-shape regularization (figure 1.14) introduces a group of rectifi cati ons

inc luding size, pos iti on, and criti cal points (X iangyu et al., 2002). Size rectification

adj usts a group of adjacent primitive shapes that have the same type or approx imate ly

of the same s ize. The edges of two adj acent po lygons that are nearl y on the same

horizonta l/vert ical line are adjusted by position rectificat ion. At the end, the cri tical

po ints rect ificati on is applied to recti fy the centers of ellipses, the vertexes of

po lygons, and the mid po ints of edges.

23

DCJ · D D -·DO
(a)

(b)

(c)

Figure 1.14 lnter-shape regularization: (a) Scale the two adjacent squares to have the

sarne size; (b) Shift the two adjacent circles to have the sarne position; (c) Shift the

triangle and the square, the leftrnost vertex of the triangle is at the center of the

rightrnost edge of the square (Xiangyu et al. , 2002).

1.3 Sketch Recognition Systems

Coyette and Vanderdonckt proposed three categories for UI prototypes that were

defined according to their degree of fidelity, which refers the accuracy that allows

thern to present the reality of the UI (Coyette et Vanderdonckt, 2005). The first UI

prototype tool is the high-fidelity (Hi-Fi) that shows the final result inapplicable. lt

can be cons idered as a high fidelity tool which supports building a Ul that alrnost

cornplete and usable (Coyette et Vanderdonckt, 2005). Hence, this kind of UI

prototype includes editing fonctions such as undo, erase, and rnove can build a

cornplete GUI (Graphical User Interface) for designers (Coyette et Vanderdonckt,

2005).

24

The medium-fidelity (Me-Fi) approach fa ll s between high-fidelity and low-fidelity

prototypes in order to present the major functions and details (Coyette et

Vanderdonckt, 2005) . This approach maintains the information relevant to co lor

schemes, typography or other minor details (Coyette et Vanderdonckt, 2005). The

low-fidelity (Lo-Fi) approach is used to keep the general information to obtain a

general understanding of what is desired (Coyette et Vanderdonckt, 2005). Hand

sketch on paper is we ll known as one of the most effective ways to represent the first

drafts of a future Ul (Bailey et Konstan , 2003 ; Coyette et Vanderdonckt, 2005;

Landay et Myers, 2001 ; Newman et al. , 2003) . Th is unlimited approach known as a

low-fidelity Ul prototype has many advantages. For example, during any design step,

sketches can be drawn without any prerequisites (Newman et al., 2003) . This method

is fast and quick to produce (Duyne et al. , 2002). Hence, instead of confusing the user

with unessential details, it lets the sketcher focus on essential structural issues

(Landay et Myers, 2001). As another advantage, not only can it encourage creativity

(Lan da y et Myers, 2001) but it also increases the level of collaboration between

designers and end-users (P limmer et Apperley, 2003a). Furthermore, «creating a low­

fidelity Ul prototype (such as Ul sketches) is at least 10 to 20 times easier and faster

than its equivalent with a high-fidelity prototype such as produced in UI builders»

(Coyette et Vanderdonckt, 2005 ; Duyne et al. , 2002).

By comparing these Ul prototypes, a Lo-Fi prototype has a set of advantages to

compare the other prototypes (see a summary of these advantages in table 1.1). By

having several screens that have a lot in common, using copy and paste in stead of

rewriting the whole screen is more profitable. despite , lack of assistance in this

approach is palpable (Coyette et Vanderdonckt, 2005). Consequently, by considering

the Lo-Fi advantages and combin ing these approaches, two fami lies of software tools

which contain UI sketching with or without code generation will be developed

(Coyette et Vanderdonckt, 2005) .

25

This current section is div ided in two subsections. Sect ion 1.3 .1 describes about

sketch-based tools fo r UML class diagrams, and section 1.3 .2 expla ins the sketch

based too ls in other domains.

Table 1.l Compari son of software fidelity U I prototyping too ls (Coyette et

Vanderdonckt, 2005)

FideJity Appearance Advantages Shortcomings
- ls facilitator-driven

- Low development cost - Limiled for usability tests
• Sk:etehy • Limited support of

Low Uttlevisual • Short production time
navigatiooaJ aspects

detail • Easy communication - Low atira.ctiveness for end • Basic drawing skills needed users
• No code generation

- Medium developmenl c-OS!
-Simple - Average production time ls facilita or-driven
- medium level - May involve some basic graphi- - Limlted for usability tests

Medium of detail, close cal aspects as specified in slyfe • Medium support of naviga-
to appearance guide: labels, icons, ... tional aspects
of final UI • Umi1ed drawing skills • No code genera1ion

- Understandable for end user
- Fully interactive - High development cost • Serves for usability testing • Definitive,
- Supports user-tentered design • High production lime

refïned • Advanced drawing and High • Look and Feel
- Serves for prototype validation

specification skills needed and contract of final UI
• Attractive for end users • Very inflexible with respect to

-Code generation changing requirements

1.3. 1 Sketch-Based Too ls for UML Class Diagrams

Hammond and Davis proposed Tahuti as a sketch-based too l for UML class

di agrams (Hammond et Dav is, 2006b). Tahuti uses a multi- layer recognition

framework to recogn ize sketches by the ir geometrical propert ies (Hammond

et Davis, 2006b). lt allows users to sketch a bject free ly in many different

ways, instead of requiring the user to draw the a bject in a pre-defined

manner (Hammond et Dav is, 2006b). Moreover, Tahut i uses two diffe rent

26

v1ews, draw v1ew and interpreted v1ew, 111 order to display user sketches and

the result of the recognition process. Furthermore, the user can switch

between the two views.

The mu lti-layer recognition framework of Tahuti uses a formai language

called LADDER, which was created by Hammond and Davis (Hammond et

Davis, 2006a; Hammond, 2007). «LADDER is the first sketch description

language for user interface developers to describe how sketched diagrams in

a domain are drawn, displayed and edited» (Hammond et Davis, 2006a).

Hence, the language employed 111 this framework implements the first

prototype system that has the ability to automatically generate a sketch

interface for a domain only by considering domain description (Hammond et

Davis, 2006a).

This framework 1s divided into three parts: Domain Description, Translation,

and Domain lndependent Sketch Recognition System (Hammond, 2007).

Figure 1.15 shows an overview of such a framework.

According to the figure 1.15 , a number of predefined shapes, constraints, display

methods, and editing behaviors are supplied in domain description. Moreover thi s

domain consists of a disp lay section and an editing section. «A display section

specifies what should be displayed on the screen when the shape is recognized.

Editing section specifies how the shape can be edited. Common editing commands

involve movement and deletion of the shape» (Hammond et Davis, 2006a).

Following the domain description , the translation process is started to parse the

shape's definitions and generate code that is needed to recognize shapes, edit triggers,

and display the shapes once they are recognized (Hammond et Davis, 2006a). As the

last part of this framework, the domain independent sketch recognition System is

used. When the stroke is drawn, first of ail , the system searches the drawn shapes

database in order to check whether the gesture drawn is an editing trigger for any

27

shape or not (Hammond et Davis, 2006a). If the stroke is found, not to be an editing

gesture, it must be a drawing gesture.

ranslati on Domain Description T
Shape Deflnltton of Arrr:m

(d efine shope Arro.•,
(com~nt 'An .:irrow w,th an open head .")
(components

(Une shah)
(Une head1)
(Lino he.:id2))

(constmints
(coincident shoft.p1 head1 .p1)
(coincident shoft.p1 heod2.p 1)
(equollength headl head2) -
(acuteMeet heod1 shol t)
(acuteMeet shah head2))

(lli • •
(Poin t head .>ha ft P2)
(Point tal shofl.p1))

(editing
((trigii er (holdDrog heod))
(action (rubber-bond this !ci l head))

((trigger (hcldDrag b ill)
(ac tion (rubber-band tl11S he.:id lllil))

((trigiier (hctdDr011 lhis))
(action (move thos)))

(disploy
(O<iQinol·s tookes shah)
(cleaned-s trokes he.:id 1 head2) _ _
(color red))

genaraUng
shapa
recogn!,e~

"" -
generatlng
edltlng
recognlzers

1- - - -

- - - -
1 generattng

shapa
1,a exhlbltors

Input Stroke
Sketch - 7 Recognition
Svstem

Recognition
• 1

Editing
• P1lmltlve Shapes .. 1 • Primitive Actions
• Prfmlttve Constralnts • Primitive Trlggers
• Dom ain Shapes • Prim ltlve Behavi ors

he dl p2 • 1 -~·""?F o < 90~}head1 .p1
s hah.p2 - ~ shoft.p1

0 < head.p1
he""<1.D2

., i,

Â Drawn Shapes 1 - Database
1

l 1 _, - - - - - - - -
4 Display

• Prlmlttva Exlllbltors

""" - - - - -• • Domain Exhlbltors

ori<,iin;,.I sroke_'-..etroight lino

~ a)Qhtline

~ "
Output Screen 1

Figure 1.15 LADDER Framework (Hammond, 2007)

Thus, the system preprocesses the stroke into a co llection of primitives m order to

add them to the drawn shapes database (Hammond et Davis, 2006a) . The recognition

module tries to bui ld a higher order shape by exam ining the drawn shapes database

(Hammond et Davis, 2006a). At the end, the disp lay modu le disp lays the viewable

shapes which are defined by the domain description.

Qiu presents SketchUML as a sketch based tool that allows users to sketch UML

class diagrams on a computer with editing capabilities (Q iu, 2007) . Therefore, it can

28

recognize sketches immediately, and the user does not need to switch to different

view to see the recognition results. The tool also supports text recognition and

enables users to write text directly inside class abjects (Qiu , 2007). SketchUML

needs to define sketching flexibility and recognition accuracy. Hence, a geometry­

based approach is used to recognize common element in the diagram (Qiu, 2007).

Furthermore, it uses a graffiti-based approach to identify special gestures (Qiu, 2007).

Chen and Grundy present SUMLOW as a unified modeling language (UML) diagram

tool that uses an E-whiteboard and sketching-based user interface (Chen et al. , 2008).

This experimental tool proposes sketching-based techniques for early-phase

requirements and design modeling. Thus, it al lows designers to sketch UML

constructs mixing different UML diagram elements, diagram annotations and hand­

drawn text (Chen et al. , 2008) . Their approach has a number of advantages, including

keeping a copy of the hand sketches, whereas other sketching based UML design

tools convert hand sketches to formai models, and lose the originals. Further, users

can use various pen strokes to manipulate sketched diagrammatic elements. Finally,

SUMLOW can recognize various UML constructs in sketch view that are hand­

drawn, and formalized elements in diagram view.

1.3.2 Sketch-Based Tools in Other Demains

DENIM (Lin et al. , 2002; Newman et al. , 2003) is one example of a Lo-Fi

prototyping tool that allows designers to quickly sketch web pages and present them

in different levels of details including a site map, a storyboard, and an individual

page. DENIM unified these levels through zooming views . DEMAIS (Bai ley et al.,

2001) is another Lo-Fi prototyping that bridges the gap in multimedia design and

enables a designer to quickly sketch temporal and interactive design ideas. Hence, it

is made up of an interactive multimedia storyboard tool that is able to capture about

90 percent of a designer ' s behavioral design ideas (Bai ley et Konstan, 2003) . Neither

DENIM nor DEMAIS produces any final code or other output. By contrast, the Hi-Fi

29

prototyping tools which are discussed next, support code generation (Coyette et

Vanderdonckt, 2005).

Jin et a l. propose an approach for pen-based user interfaces that fo llow a novel and

fast shape c lassification and regularization algorithm for on line sketchy graph ies

recognition (Xiangyu et al. , 2002). This recognition process is divided into

four stages, including preprocessing, shape class ification, shape fitting, and

regularization, which explained the previous chapter. The attraction force mode! is

used to combine the vertices on the input sketch stroke based on certain threshold

(Xiangyu et al., 2002). Thus, the total number of vertices is reduced before the type

of shape can be determined. Fol lowing this process, the shape is c lassified as a

primitive shape accordi ng to a rule-based approach (Xiangyu et al. , 2002). Finally,

us ing shape fitting and regularization gradually rectifies the primitive shape into a

regular one that fits the user-intended shape (Xiangyu et al. , 2002).

Yu and Cai focus on low-level geometric features, instead of working on domain­

specific knowledge in order to achieve a domain-independent system for sketch

recognition (Yu et Cai, 2003). Their approach follows two steps. First, the stroke is

approximated accordi ng to one primitive shape or a combination of primitive shapes

that can be further used in domain-specific applications. Accordingly, a recursive

algorithm segments the stroke using direction and curvature information.

Furthermore, the algorithm uses geometrical features and stroke direction data to

distinguish between graphical primitives (line, arc, circle, and helix).

The second step takes ail the recognized primitive shapes as input and analyzes

connectivity between them according to fo llowing these segmentations (Yu et Cai,

2003): 1) remove false and redundant e lements, 2) adjust the size and position of the

elements, and 3) adjust their layout to make a match predefined domain independent

abjects.

30

Their hierarchical output is presented in three steps, including (a) the lowest Level,

which maintains the original information of stroke (b) the mid-level, which stores the

vertexes and primitive shapes and (c) the highest Level , the semantic level composed

of the relation tables which consist of recognized primitive shapes and basic objects

(Yu et Cai , 2003).

Landay and Myers proposed a system called SILK (Sketching Interfaces Like Krazy)

(Lan da y et Myers, 2001). SILK tries to recognize primitive components that are basic

shapes such as rectangles, squiggly lines (representing text), straight lines and

ellipses. This approach looks for spatial relationships between new components and

other components in the sketch in order to combine the primitive components to

make up a UI component such as a button, text field , menu bar, or scrollbar. In

addition, SILK recognizes editing gestures such as delete, and grouping or

ungrouping objects.

The under lying recognition engine of SILK uses Rubine's gesture recognition

algorithm to identify the primitive components (Rubine, 1991). According to this

algorithm, each of the primitive components is trained with 15 to 20 examples, and

they vary in size, and drawing direction (Landay et Myers, 2001). However, this

algorithm has some limitations. For example, the gestures used in Rubine ' s algorithm

are ail single strokes, to avoid the segmentation problem of multi-stroke character

recognition. Furthermore, it does not handle variations in size and rotation (Landay et

Myers, 2001).

Calhoun et al. proposed a recognition system that can recognize symbols composed

of multiple strokes (Calhoun et al., 2002). Their approach applies a trainable

recognizer in order to describe the definition of the geometric primitives, as well as

the geometric relationships between them. Geometric primitives are characterized by

intrinsic properties such as line or arc, length, relative length, slope (for lines only),

and radius (for arcs only) (Calhoun et al. , 2002). Geometric relationships between

31

primitives are built based on certain parameters such as the existence of intersections

between primitives, the relative location of intersections, the ang le between

intersecting lines, and the existence of parallel lines (Calhoun et al. , 2002). The

approach supports two types of recognition methods. ln the first method, each

primitive symbol needs to follow the specified definition, which is learned by

examining a few examples of the symbo l and its geometric relationships. However,

this method requires some attention from the drawer (Calhoun et al., 2002). The

second method uses a form of best-first search based on a specu lative quality metric

and pruning (Calhoun et al., 2002).

1.4 Conclusion

We investigated sketch-based tools in different domains, as well as their approaches

to recognize hand-drawn sketches. However, these approaches were inspirational fo r

understanding the concept of sketch recognition, despite, the context of this thesis is

based on recognizing CMMN hand-drawn sketches as primitive shapes and

composite shapes. Hence, we need to implement a new approach to recogn1ze a

freehand drawing of CMMN models. Moreover, we verify an approach to transfer

these recognized elements into a format that can be imported into a forma i modeling

tool. Thus, the second issue is to serialize these forma i models in to an XML file that

is compliant with the CMMN mode! interchange format and can then be imported

into CMMN compliant tools. ln the next chapters, the meaning of CMMN, as well as

the definition of each CMMN mode! was explained.

CHAPITRE II

CASE MANAGEMENT MO DEL AND NOTATION (CMMN)

In regards to case management systems, in order to define, create, and manage

business processes, it' s necessary to provide a case folder as the primary building,

which holds a collection of business documents and other information (Marin et al. ,

2012) . Case management was developed to manage social work and related

application areas such as insurance claim processes, healthcare processes, lawsuit

services processes, social services process, etc. (Marin et al. , 2012).

Case Management Mode! and Notation (CMMN) is an industry-wide standard by the

Object Management Group (OMG) to represent and manage cases within the context

of case management. CMMN supports the representation of a wide range of

knowledge worker activities, including planning (e.g. , business strategic planning

initiatives), follow-up (e.g. , maintenance and repairs), collaboration (e.g. ,

specification development), record-keeping (e.g. , audits) , decision-making (e.g. , court

cases), and problem resolution (e.g. , customer service) (Trisotech). Hence, CMMN is

used to « document case-oriented business processes to drive process improvement

efforts for knowledge work » (Trisotech).

34

2.1 Notations

In this section, we provide an overview of the CMMN notation in order to model the

core constructs of a case.

2.1. l Case

Knowledge workers, who are experts in their specific field , are able to execute

different instances of the model , which is called a case in the case management

domain (de Carvalho et al. , 2016). For instance, a doctor in the healthcare domain can

specify a case that involves caring for a patient, in terms of a medical history and

current medical problems (de Carvalho et al. , 2016; OMG). In another example, a

judge, for the law domain, can define a case involving the application of the law to a

subject in a particular situation (de Carvalho et al. , 2016; OMG). Generally speaking

a case is a top-level concept that combines ail the elements that constitute a case

model. Hence, « A case is a proceeding that involves actions taken regarding a

subject in a particular situation to achieve a desired outcome» (OMG). In the

following subsections, we will describe the components of the case modeling.

2.1.2 Case Plan Mode!

The case plan model (OMG) contains ail of the activities for the case. lt is composed

of al I of the elements that represent the initial plan of the case, as wel I as al I elements

that support the further evolution of the plan (OMG). A "Folder" shape, as shown in

figure 2.1 , is considered to display a case plan model. Therefore, the name of the case

can be enclosed in the upper left rectangle.

35

/ <CaseName> \

Figure 2.1 Represents Case Plan Model shape

2.1.3 Task

A task, as shown m figure 2.2, is a unit of work, as well as a base class for

representing ail the work that is done in a case (OMG). Task as a central element in

CMMN composed of five different types of task that include: the non-blocking

human task, the blocking human task, the process task, the decision task and the case

task. In addition, there is a discretionary task that is executed depending on the case

manager discretion.

Task

F -l
1 t
1 1
1 Discretionary Ta.sk t
t f
1 f
t f ~---------!'

Figure 2.2 Ordinary Task shape and Discretionary Task shape (left to right)

The non-blocking human task (OMG), as shown in figure 2.3 , is completed at the

same moment that it is started. Hence, in the case mode!, when a non-blocking human

task starts, we do not wait for it to complete: the sequence flow continues with the

next task in the sequence. By contrast, the blocking human task (OMG), as shown in

figure 2.4, stops the sequence flow until it is completed. Ali other tasks are by default

"blocking".

36

: Ch . "":
1 1
l 1
1 •
• 1
.1 1 , ________ _,.

F igure 2 .3 Non-Blocki ng Human Task shapes

le, - .
,~ 1
1 1
.1 1
1 1
1 1

1 ' "--------·'

Figure 2.4 Blocking Human Task shapes

The process task (O MG), as shown in figure 2.5, is used in order to links to a BPMN

di agram. Hence, by c licking the symbol in the upper left corner of the e lement, a link

to a BPMN di agram w ill be created (S ignav io).

:D -:
J l
1 1
l t
1 1
1. ' , _____ ___ ...

Figure 2.5 Process Task shapes

A decision task (OMG), as shown in fi gure 2.6, is used to repeat a task that consists

of a dec is ion represented by a DMN diagram. Hence, by c licking the symbo l in the

upper left corner of the e lement, a link to a DMN diagram w ill be created (S ignav io) .

37

'i:.:::1------,
l tt::t l
.1 1
1 1
.1 1
1 t
J f
'-----·--·- -"

Figure 2.6 Decision Task shape

Finally, the case Task (OMG), as shown in figure 2.7, is used to embed an existing

case model in another. Therefore, by clicking the symbol in the upper left corner of

the case task element, a link to a CMMN diagram will be created (Signavio).

l,c..., -------t
tl......J 1
t. .1
1 1
t 1
1 f
1 f , ________ ..,

Figure 2.7 Case Task shapes

2.1.4 Stage

A stage (OMG) is defined as a container to visually organize tasks and other CMMN

elements. Hence, a certain number of sequence flows , tasks, and sub-stages can be

represented by a stage (Signav io). As shown in fi gure 2.8, stages can be expanded or

collapsed and have a - or+ on the bottom center. ln an expanded stage, the elements

that constitute it become visible and a collapsed stage is linked to another CMMN

diagram (Signavio).

38

D
(a) (b)

Figure 2.8 Expanded Stage shape and Collapsed Stage shape (left to right)

2.1.5 Event

An event (OMG) waits for specific things to happen in the case. Events typically

mark the enabling, activation, and termination of stages and tasks, or the achievement

of milestones (OMG). CMMN supports the representation of event listeners, which

wait for a particular event to occur. Different types of listener exist (OMG), as shown

in figure 2.9. There are timer event listeners that wait for a certain amount of time to

elapse for a certain predefined point in time. There are also generic event listeners

that wait for an event to occur. Finally there are user event listeners that wait for user

input.

Figure 2.9 Event shapes: "Event Listener" , "Timer Event Listener" and "User Event

Listener" elements (left to right).

2.1.6 Case File

A case file (OMG), as shown in figure 2.10, represents documents that conta in

information that is used, or produced , by the case. Such documents could include

pieces of unstructured or structured information that can be tended from simple to

39

complex sources. The contents of a case file can be defined using any information

mode! ing language (de Carvalho et al., 2016). Case files can be attached to another

element using a connector (Signavio).

LJ
Figure 2.10 Case Fi le shape

2.1.7 Milestone Item

A milestone (OMG), as shown in figure 2.11, represents the state of the case.

Therefore, milestones as sub-goals within the case process indicate whether a certain

point or stage has been reached or completed (Signavio) . A milestone is depicted by a

rectangle shape with half-rounded ends. Furthermore, a milestone may have zero or

more entry criteria when it is reached.

c_: _)

Figure 2.11 Milestone shape

2.1.8 Sentry

The diamond shaped Entry Criterion (OMG) and Exit Criterion (OMG) called

"sentries," as shown in figure 2.12, specify the main conditions that need to occur to

influence the further proceedings of a case (OMG) .These sentries can be attached to

tasks, stages, milestones, and case files. Additionally, they don ' t even need to be

attached to other elements; sentries can stand alone within a sequence flow

(Signavio).

40

A sentry used as an entry criterion is depicted by a shallow "diamond ." this indicates

that the incoming sequence flow directly attached to the sentry has to be finished

before the sequence tlow can continue (Signavio). A sentry used as an exit criterion is

depicted by a solid "diamond" that presents when a plan item is complete. lt implies

that the sequence can continue in what direction.

o+
Figure 2.12 Entry Criterion shape and Exit Criterion shape (left to right)

2.1 .9 Connector

Connectors (OMG) define relations between CMMN elements, as shown in figure

2.13. A connector object is represented by a dotted line that does not have

arrowheads. However, the direction of the flow or association is determined by the

presence of a sentry (entry criterion or exit criterion) (OMG).

Figure 2.13 Connector Shape

For example, the diagram shown in figure 2.14 illustrates a situation where the entry

criterion of Task B depends on the completion of Task A (OMG).

Task P.. - -" -· ~- Task B

Figure 2.14 Sentry based dependency between two tasks

41

2. l.9.1 Connector usage

Connectors can be used to visualize dependencies between plan items. For example,

the fo llowing figure 2.15 shows a situation where Task C can be activated on ly if

Task A and Task B complete (OMG).

-··-···-· ·
TaskA 1

.._ ___ _
Task C

'

Task B i--··-··-· ·

Figure 2.15 Using sentry-based connectors to v isualize "AND"

Figure 2. 16 il I ustrates a situation where Task C can be activated if Task A or Task B

completes (OMG).

Task A -··-··-·,.

Task G

,··-··-··

TaskB - ·· -· ·-··

Figure 2.16 Using sentry-based connectors to visualize "OR"

42

F igure 2. 17 shows a situation where Stage B depends on the exit criterion of Stage A

(OMG).

Stage A Stag.e B

1±1 1±1

Figure 2. 17 Visualize dependency between stages us ing sentry-based connector

Figure 2. 18 shows a s ituation where Task A depends on the achievement of

Mil estone A (OMG).

~ .. -.. _ .. _ .. Task A

Figure 2 .18 visua lize dependency between a task and a milestone using the sentry­

based co nnector

F igure 2.19 shows a s ituation where Task A depends on a timer event listener

receiving a Limer event (OMG).

~ -· -··-··- ··- ·· -··-· Task A

F igure 2. 19 V isua lize dependency between a Task and a Timer Event Listenerusing

the Sentry-based connector

F igure 2.20 shows a situation where Task A depends on a Case F ile Item (OMG).

43

D-··-· ·-··-··-··-· ·-·· Task.A

Figure 2.20 Visualize dependency between a task and a case file itemusing the sentry­

based connector

2.2 Example of Case Plan Mode)

In this section, as shown in figure 2.21 , we illustrate the use of the various elements

by representing a claim processing example used in the standard.

The case plan mode! below contains ail the activities for representing the case of a

CMMN training certificate. This case is organized with two separate stages that

include Secretary and CMMN-Trainer. At the beginning, the task of the user event

listener waits for the new employees who want to start the training. On the one hand,

the sequence flow is stopped until the list employees without training will be ready.

On the other hand, according to the case manager discretion, the discretionary task

checks when potential trainees are free. These two tasks should be complete in order

to inform potential trainees and trainer what course is planned. In the following,

milestone defines the state of the stage of Secretary represented that indicates CMMN

training is planned.

In the CMMN-Trainer stage, before starting the training, the timer event listener

defines a certain amount of time for the duration of the course. In the following, the

trainer explains the topics of the training to employees. At the end of the training, the

case file element that is produced by the case contains a CMMN training certificate.

A sentry used as an exit criterion presents when a plan item is complete.

44

GetCMMN
tra lnin certlficate

@-.. --·-··-··-··-··-··-··-··-.

Secretary

lnform potential
trainees & -

, ··"'··' trainer
5 new

employees
started --------- -, '

----..... .. ,··"'·· ___ ___,

' ' ' ' 1 Chec}c when •
: potemlal :-
• trainee 5. are free 1

' ' '... ___ _______)

Set upCMMN
training date

CMMN·Trainer

0-··-··-··-··-··-··-··-··-··- ·-··-· E~w~~ike~~e .. _.. Explain Sentries -·

CMMN tr"'lnlng
beg1ns

Exf?la in other
MMN efements

CMMN training ls
planned

CMMN
··- ··-··-··-· ·- .. - Tra ining

Certi cate

Figure 2.21 combinations of various elements in CMMN (Signavio)

2.3 Conclusion

In this chapter, the concept of CMMN was described. Moreover, the CMMN

notations and their meaning in the context of CMMN in order to mode! the core

constructs of a case were exp lained. In the fo llowing, we employed an example of

claim processing to illustrate the use of the various CMMN elements. In the next

chapter, hand-drawn sketches of CMMN models are recognized using feature

extractions and heuristics. We will describe our approach in detail and explain the

certain issues in each step of the implementation.

CHAPITRE II1

EXPERIMENTAL RESUL TS

Sketch recognition domain is an approach that automatically recognizes hand-drawn

diagrams with the use of a computer. Hence, research in this domain during recent

years has expanded due to the advancements in artificial intelligence and human­

computer interaction. Similarly, hand-drawn recognition can be introduced as a

subset of the sketch recognition domain. Thus, it can be part of the ability of a

computer to receive and interpret handwritten input from sources which can include a

paper document, touch-screens, picture, and several other devices. Moreover,

different types of recognition algorithms are used , such as gesture-based, appearance­

based, geometry-based, or a combination thereof.

ln this chapter, we explain the implementation of the tool that investigates different

stages of the CMMN elements hand-drawn sketch recognition, and analyzes a set of

issues at each stage and describing their solutions in details.

3. 1 Case Study

This thesis is planning to deal with recognizing the CMMN elements hand-drawn

sketches. Therefore, we need to address two issues: 1) recognizing elementary

CMMN constructs within user hand-drawn sketches, and 2) recognizing semantic

relationships between them in a way that is consistent with the semantics of CMMN.

Figure 3.1 shows on the left hand side what an input might look like. On the right

46

hand side, we show the corresponding CMMN mode! , as visualized by a CMMN

modeling tool.

In other words, we need to create a prototype of a case mode! from a hand-drawn

sketch in order to export it into a business process management or case management

system for case automation.

o ··--o
LJ 0

0--0
0

D
D
'

D 00 0

Figure 3. 1 Formalizes case mode! from a CMMN hand-drawn sketch

Indeed, in order to recognize CMMN elements from hand-drawn sketches, we

specified three steps that include:

• Primitive shape recognition;

• Composite graph ie object recognition, and

• Semantic connections recognition and understanding.

ln the beginning, the user draws a sketch that includes CMMN elements. Therefore,

the first step consists of reading a raw input image and recognizing the contours as

primitive shapes. The second step, consisting of recogniz ing composite shapes that

correspond to CMMN elements, combines the primitive shapes based on their spatial

re lationships. The third step of recognition consists of understanding the semantic

connections between the primitive shapes, according to the CMMN elements spatial

relationships. Once this is done, we can export the result mode! into an XML file

using CMMN' s mode! interchange format.

47

In the next part of this chapter, each step is explained in detail. In particular, we will

discover the problems inherent in each step, and describe algorithms that will attempt

to solve them.

3.2 Technology Used

Our prototype was produced in Java on the eclipse IDE, as well as using the OpenCV

library (OpenCV). This library is an open source C++ library, as shown in Figure 3.2,

which is optimized for real-time image processing and computer vision applications.

OpenCV has a modular structure, meaning it has several hundreds of image

processing and computer vision algorithms which make developing advanced

computer vision applications easy and efficient (OpenCV) ..

JRE System Library [JavaSE-1.8]
v OpenCV-2.4.6

V [~ opencv-2413.jar

org.opencv.calib3d

org. open cv. contri b

org .opencv.core

org .opencv.features2d

org.opencv .. gpu

org .opencv.higlhgui

org .opencv.imgproc
org,.opencv.ml

org .. open cv, obj d etect

org.opencv.photo

org . open cv. uti I s
org .opencv.v ideo

META-INF

Figure 3.2 OpenCV library on the Eclipse IDE

In OpenCV, digital images are represented using numerical variables for each point.

Thus, images are represented using matrices as well as metadata about the image. To

give an illustration (see figure 3.3), the mirror of the caris nothing more than a matrix

containing ail the intensity values of the pixel points (Open CV documentation, 2013).

48

But the camera sees this:
194 210 201 212 199 213 215 195 178 158 182 209
180 189 190 22 1 209 205 191 167 147 11 5 129 163
11 4 126 140 188 176 165 152 140 170 106 78 88
87 103 115 154 143 142 149 153 173 101 57 57

102 112 106 131 122 138 152 147 128 84 58 6
94 95 79 104 105 124 129 113 107 87 69 67
68 71 69 98 89 92 98 95 89 88 76 67
41 56 68 99 63 45 60 82 58 76 74 65
20 41 69 75 56 4 1 5 1 73 55 70 63 44
50 50 57 69 75 75 73 74 53 68 59 37
72 59 53 66 84 92 84 74 57 72 63 42
67 61 58 65 75 78 76 73 59 75 69 50

F igure 3 .3 Represents the data structure in Open CV (Szeli ski, 20 10)

3.3 Sketch Recognition Design and Im plementat ion

Our example, despite its si mpl icity, offers an overview of the recogn ition system and

the connection of c lasses in order to implement the three recognition steps mentioned

earlier. In the fo llowing, each step is described in detail. Figure 3.4 gives an overv iew

of the des ign mode l of the prototype. Subsequent sections w ill give more details

about the re levant parts of the design mode 1.

«Jtva(ku,->

,--------------------·--------------->1 0 C111tulattDlltanctB11tweenUM1

<cJt.vaOus>>

0 DlttctLlnl
Cl&fl~l.td>R~,i....

CW-.a--.ltteH't~7uwn

8 Coordlna1tson.Jne1
o · ~:~"°"~"''" o.·

•I UUIOflhu O '

<cJlvaOlus:u
0 Cc:wvwctor

CJ,U.o.m-.,.w1t-s,,iticnS11·-

,.
<<..lava Clau»>

1------
0

....i, (:) COOfa1N11esorcon1our1 ---------,

c~va Ous»
(3 C1k:ule1e 1nter11ctlonAraa

Cl,ld',Ell!Mra\e!dtc<ÇllldonSymm

-.11.·11 0ui»

0 Sh1chRtcognîtion
CI.U'.~œcHt..........,,. ,1..,.

<"9.va Olus»
(3, Rlladfoldua

<cJ.,,aQus»

0 RncNltching

<',lavaOuP>

0 Templl,teM1tchlnQD1mo

<cJava Ous»
0 Seomen1ed1mtoe

C~wult«OfOll.~tt..n ~--~~ c_ccc...==---c~~

Figure 3.4 Design mode! compatible with the case study

3.4 Primitive Shape Recognition

49

The definition of primitive shape includes recognition of elementary CMMN

constructs within user hand sketches. In this section, we investigate how to extract the

contours from inside the sketch and recognize them as the primitive shapes that

compose the CMMN notation.

3.4.1 Reading Hand-Drawn Sketch

In order to recognize the primitive shapes within a hand sketch, the program needs to

find and read the hand-drawn sketch as an input. Figure 3.5 shows a sample of

CMMN primitive shapes . The definition of each shape was explained in Chapter II.

Thus, we need to find the paths that both input and predefined templates are stored.

Hence, "ReadFolders" Java class was defined, as shown in Appendix A, in order to

read the path of the main directory and also listing ail files from the directory and its

50

subdirectories. In add ition, we defined a condition for reading on ly the files with the

suffix of JPG or PNG to avoid reading the files with difference suffix and format.

0 D 0
Event File Sentry Task

Figure 3.5 Temp lates images

3.4.2 Pre-Processing

In order to perform any object detection, as we mentioned in chapter II , pre­

processing steps are necessary. Hence, we used the OpenCV library to implement

some pre-processing functions on the input image to improve the fina l result (Figure

3.6). These functions are used to accomplish various linear or non-linear filtering

operations on 2D images that were represented by a two-dimensional matrix

(Open CV).

The first step of the pre-processing process converts an image from RGB to

grayscale. lt means that an input image wi ll be converted from one color space to

another (OpenCV documentation, 2013) . The default color format in OpenCV is

BGR, in other words, the bytes are reversed. Thus, a standard (24-bit) color image is

composed of an 8-bit Blue, 8-bit Green and 8-bit Red. This sequence is repeated for

each pixel (Blue, Green, Red) , and so on (Open CV documentation, 2013). «When

grayscale images are converted to co lor images, ail components of the resulting

image are taken to be equal; but for the reverse transformation, the gray value is

computed using the perceptually weighted equation » (Bradski et Kaehler, 2008):

RGB TO GRAY: Y +- 0.299 R + 0.587 G + 0.114 B (3.1)

51

o-n
D 00 0

(a) Original input image (colorful) (b) Convert RGB to grayscale image

(c) Smoothing grayscale image (d) Convert grayscale to binary image

Figure 3 .6 Pre-processing steps of the recognition system: (a)""? (b) Grayscale

operation converts RGB image to grayscale image; (b) ""?(c) Blur operation reduces

noise and smoothing the grayscale image; (c)""?(d) Threshold operation assigns one

value (black) to the pixel value greater than the threshold value, else assign another

value (white).

The second step of the pre-processing process is called image smoothing, as well as

image blurring, which reduces noise and smoothies the image. In order to perform a

smoothing operation, we apply a filter. The overall performance of the filter is that

«an output pixel ' s value (i.e. g (i, j)) is determined as a weighted sum of input

neighborly pixel values (i.e. f (i+k, j +l)) » (OpenCV documentation, 2013), typically

-1 .::S k :S I and -1 .::S l :S I (figure 3.7). ln addition, the coefficient of the filter that is

called the kernel is defined by h (k, l) (OpenCV documentation, 2013). The equation

below shows the smoothing operation (OpenCV documentation, 2013):

52

g(i,j) = L. f(i+ k,j + l)h(k, l)
k,I (3.2)

The OpenCV library cornes with several filters. We used the Gaussian filter

(Open CV documentation, 2013 ; Szeliski, 2010) , which is done by «convolving each

point in the input array with a Gaussian kernel and then summing all the points

contribute to produce the output array» (OpenCV documentation, 2013 ; Szeliski,

2010). In order to make the context clearer, a 1 D Gaussian kernel is presented (figure

3 .8). Hence, the pixel located in the middle contains the biggest weight. Therefore, «

the weight of its neighbors decreases as the spatial distance between them and the

center pixel increases » (OpenCV documentation, 2013 ; Szeliski, 2010).

Figure 3.7 Gaussian blur on 10 pixel array (Szeliski, 2010)

53

0 .4

0 .3

io.

0 . 1

0
- 4 - 2 0 2 4

X

Figure 3.8 lD Gaussian kernel (OpenCV documentation, 2013)

As a result, a 2D Gaussian can be represented using the following equation (OpenCV

documentation, 2013 ; Szeliski, 2010):

-(x - ~)2 - (-y - ~)2
2 2 + 2 2

Go(x, -y) = Ae crx cr~ (3 .3)

Where µ is the peak and cr represents the variance (for each of the variables x and y)

(OpenCV documentation, 2013 ; Szeliski, 2010).

Thresholding (OpenCV documentation, 2013), as the last step of the image pre­

processing, is a non-linear operation that segments grayscale images in order to

convert them into binary images. Thresholding gives threshold values, pixels that

have a value above the threshold are kept white, and the others are changed to black.

There are several threshold operations in OpenCV, but we chose the binary inverted

function (Figure 3 .9) (OpenCV documentation, 2013), to perform a threshold

operation. Hence, if the pixel value is greater than a threshold value, it is assigned one

value (black), otherwise, it is assigned to another value (white). The threshold

operation can be expressed as the following equation (OpenCV documentation,

2013):

54

dst (x, 'Y) = { O V
1 max a

if src (x, 'Y) > thresh
otberwi e

- • Il 1

(3.4)

Figure 3.9 Threshold operation: If the intensity of the pixel src(x,y) is higher than

thresh, then the new pixel intensity is set to a O. Otherwise, it is set to Max Val .The

horizontal blue line represents the threshold thresh (Open CV documentation, 2013)

The "preprocesslmage" java method, as shown in Appendix A, shows the details of

pre-processing image operations.

For our purposes, we need to compare each primitive shape contained in the hand­

drawn sketch to the predefined template's images. Hence, a table will be specified to

classify the template's images according to their name, and storing their features

based on their name. Note that the same preprocessing is applied to the predefined

CMMN shapes to allow for a fair comparison. Appendix A shows the methods

preprocess ail templates with details.

3.4.3 Contour Finding

Before we compare hand sketches to CMMN templates, we need to convert both the

input image and the templates to contours. A contour is a list of points that represent

a binary image (Bradski et Kaehler, 2008), A hand-drawn sketch is composed of the

sequence of points, which represent the shapes. Thus, the first step of finding shapes

in the hand-drawn sketch and identifies their features is to detect contours.

The function "findcontours" (Bradski et Kaehler, 2008) in OpenCV library, finds

contours within a binary image. Hence, each contour is a sequence of points, each

55

represented by four values that consist of four important elements as pointers to other

points in the sequence. OpenCV represents contour as an array of quadruples

(Bradski et Kaehler, 2008):

(h_prev, h_next, v_prev, and v_next)

As shown in figure 3.10, where h_prev is the horizontal coordinate (x) of the

previous point in the contour, h_next is the horizontal coordinate of the next point in

the sequence, and v _prev and v _next are the vertical (y) coordinates of the previous

and next point in the sequence, respectively.

0

1

2

3

4

0 1 2 3 4

7 (0,2,0.2)

7 (1,3,1,3)

7 (2,4,2,4)

Figure 3 .10 Show graphically a pixel image and the corresponding contour

Note however that, in some cases, some contours are inside other contours, like the

sentry in CMMN, which as a diamond that is part of a task (see figure 3.11). The first

problem that can occur is trying to figure out how to extract the inner contours from

outer contours.

Figure 3 .11 Represents a sentry mode!

56

ln this case, we can call outer contour as a parent and inner contour as a child. By

defining this structure (Bradski et Kaehler, 2008), we can specify how the contours

are connected to each other. ln other words, the contour can be specified as a child of

some other contour or it can be defined as a parent. This type of relationship is called

the hierarchy (Bradski et Kaehler, 2008).

ln order to retrieve the hierarchy, the contour retrieval mode that is an argument of

function "findcontours" is used . There are four different types of Retrieval Mode that

include (Bradski et Kaehler, 2008):

RETR _ EXTERNAL, RETR _ LIST, RETR _ TREE and RETR CCOMP

RETR_EXTERNAL (Bradski et Kaehler, 2008) returns only extreme outer contours.

As shown in figure 3.12, there is only one outer contour. Therefore, figure 3.13-(a),

represents the first contour points as an outermost sequence and there are no inner

contours.

RETR_LIST (Bradski et Kaehler, 2008) is the simplest retrieval mode that retrieves

ail the contours without creating any parent-child relationship and puts them on the

list. ln other words, ail contours are on the same level. Figure 3.13-(c), illustrates the

list from the image in figure 3.12. Therefore, ail contours are connected to one

another by h_prev and h_next.

RETR_TREE (Bradski et Kaehler, 2008) retrieves ail the contours in order to create a

full hierarchy list. As shown in figures 3 .12 and figures 3 .13-(d), the root node of the

tree is the outermost contour. Below the root node, each hole is connected to the other

hole at the same level. ln addition, «each of those holes, in turn, has children,

which are connected to their parents by vertical links. This continues down to the

most interior contours in the image, which become the leaf nodes in the tree. »

(Bradski et Kaehler, 2008).

57

Finally, RETR _ CCOMP (Bradski et Kaehler, 2008) retrieves ail the contours and

arranges them into a two-level hierarchy. Hence, the top-level boundaries are placed

in hierarchy-1 which is the first level ; the boundaries of the holes are placed in

hierarchy-2 which is second level (Bradski et Kaehler, 2008). As shown in figure

3.13-(b), « the boundaries of the holes are connected to their corresponding exterior

boundaries by v _ next and v _prev » (Bradski et Kaehler, 2008). In addition, ail of the

holes are connected to one another by the h_prev and h_next pointers (Bradski et

Kaehler, 2008).

Recall that the RETR_CCOMP mode retrieves a two level hierarchy where the first

level represents outer contours which act as parents, and the second level contains

inner contours which actas children. Hence, we need to write an algorithm that only

retrieves the children of parents. In the algorithm below, according to the figure

3.12, we represent how to retrieve ail the hierarchy levels as a child and parent and

only extract the hierarchy level relevant to the inner contours.

Algorit hm 1: Finding Second L ,vel Of fü erarchy(h)

I n put : li t of contour C = C1 .. . k

O utput: retr i ve aJl the inner contom ·
1 for ' = C1 to 'k do
2 l find th . first level of hiernr 'hy a parents c = c0 c000 eo10

3 find th ·econd 1 vel of h ierarchy a hildr n h = hoo, hot hoooo
4 r move c = CO, cooo corn

5 r turn h = hoo, ho1, hoooo h o100

holOO

58

A

,---------------~----------: 1·····~··--·1 . :---- ------~

1 ! ·1 1
1

ë ! . ! :
li. j t,. ____ J ; i

..... :···--:~::---·-_J_J

C

D E

-------------------------·-'-"!· • • • • • • • :
• • • • • • • • • :
• • • • • ---........ -______ ..__...., __ """- ---------""""- ..,.,.. --.----- ---------·----- .

Figure 3.12 A test image presents the contours that could be exterior contours

(dashed lines) or interior contours (dotted lines) (Bradski et Kaehler, 2008)

(a) ('. RL1lt L"<lll~NAL

'"'' dl (c') e su rR ncH'

f, 1

(b) ri RrrR ('("O\ll'

lJ'\I ,Ol ••, 1 l-cll!0 .. <()00 .. ,il . l .
IJOI JO lilÎ

<Ol ~IC 1

(c) v R1 rR W.î

•• 1001~MJ100-

Figure 3.13 Different types of Retrieval Modes in order to find contours in Open CV

(Bradski et Kaehler, 2008)

59

The "segmentlmage" Java class, shown in Appendix A, is responsib le for finding

contou rs inside the hand-drawn sketch.

3 .4.4 Feature Extraction

ln this stage, after finding ail children contours, we need to extract the features of

each contour. By finding the contour features such as length, area, and bounding box,

we spec ify the contours as independent shapes. By extracting these features, we can

start looking for matches between the independent shapes and CMMN's temp late

images.

Using the "boundingRect" fonction in OpenCV, we can find the bounding box around

each contour (see figure 3.14) and extract its features such as the top-left coordinate

of the rectangle as the starting point of the contour, as well as its width and height as

the width and height of the contour (Bradski et Kaehler, 2008). Thus, each contour

will be presented based on these features.

(x, y)

height

width

Figure 3.14 Bounding box around the contour (Bradski et Kaehler, 2008)

The "getShapeSubBitMap" Java C lass, as shown in Appendix A, is responsib le for

specifying the bounding box arou nd each contour. The fo llowing algorithm shows the

main fonction.

60

Algorithm 2: Feature Extraction

Input : A lit of contours C = C 1 , .. . Ck
Output : A list of contom features

1 w: the width of rectangle box
2 h: the height of rectangl box
3 x: the start coordinate x of rectangle box
4 y : the start coordinate y of rectangle box
5 Cw: the width of contour
6 Ch: th height of contour
7 for C = C 1 to C1;; do

s I Cw +-(y, y+h)
9 h +- (x, x+w)

10 ret urn (w, Ch)

3.4.5 Contour Resizing

When drawing hand sketches, people rarely worry about the size of their sketches on

the proportionality of their figures, i.e. , the re lative size of height versus width for

example. In order to compare the contours recognized in hand drawing to those in

CMMN's templates, we need to resize the hand drawn contours to the same

dimension as the template we are trying to match it to. In other words, we need to

rescale each contour according to the area of each template image by keeping aspect

ratio. The following code, shown in Appendix A as the "getResizeSize" Java class

shows the way that we rescaled the contour by keeping its aspect ratio.

Algorithrn 3: Re iz Contour(C)

Input: A list of contours C = C1

T = T1, ... ,Tn
Output: A fü;t of re-size contom s

1 Cw: the width of contour
2 Ch: the height of contour
3 T w: the width of templa .e
4 R w: the re-siz width of template
5 R h: the re-size h ight of template
6 R-w rO
1 Rh r O

for C = C1 to Ck do

9 l scal r Cw / 'h

10 Rw r Tw
11 Rh r Rw / . cale

12 r eturn (Rw Rh)

61

By rescaling the contours, we can enter into the next step, which is finding the match

between each contour and each template image.

3.4.6 Template Matching

Now that ail closed contours in the input image were retrieved and resized according

to each template 's image area, we can start focusing on the main part of sketch

recognition, which is finding a match between each contour extracted and a collection

of template's images. Template Matching is a method for searching and finding the

location of a template image in a contour. Therefore, OpenCV provides a fonction

"matchTemplate" (Bradski et Kaehler, 2008) for this purpose. This method (figure

3 .15, figure 3.17) starts to slide the template image over the contour in two

dimensions, and compares the template and contour under the template image,

looking for a strong match (Bradski et Kaehler, 2008).

62

Figure 3.15 Represents MatchTemplate function: starts to slide the template image

over the input image in order to find matches (Mup).

The template matching function can implement one of three matching methods that

include:

(a) Square dif.ference matching method (method = TM_SQDIFF)

(b) Correlation matching methods (method = TM_ CCORR)

(c) Correlation coefficient matching methods (method = TM_ CCOEFF)

In the fo llowing, we will explain each method along with its mathematical formula .

(a) Square dif.ference matching method (method = TM_ SQDIFF)

«The results of these methods (figure 3.17) match the squared difference, so a perfect

match will be O and bad matches will be large » (Bradski et Kaehler, 2008).

Rsq_diff (x, y) = 2,[T(x',y') - I (x + x;)y+ y ')]2

x',y'
(3.5)

In order to clarify the meaning of the method, as shown in figure 3 .16, we defined

two matrices that have the same dimensions. When the two matrices have the same

size, we will have a single value to compute. So, normally, the point with the highest

score is always going to be (0, 0).

63

(a) Input image by 3-by-3 matrix (b) Template image by 3-by-3 matrix

Figure 3 .16 Represents the input image and template image as matrix

(b) Correlation matching methods (method = TM_ CCORR)

« The result of these methods (Figure 3 .17) multiplicatively match the template

against the image, so a perfect match will be large and bad matches will be smalt or 0

» (Bradski et Kaehler, 2008).

R ccorr (x ,y)= L [T(x',y'). I(x + x',y + y')J2

x' ,j
(3 .6)

(c) Correlation coefficient matching methods (method = TM_ CCOEFF)

« The result of these methods (figure 3 .17) match a template relative to its mean

against the image relative to its mean, so a perfect match will be 1 and a perfect

mismatch will be -1 ; a value of O simply means that there is no correlation (random

alignments) » (Bradski et Kaehler, 2008).

+ J ')]12
(3.7)

T'(' ') T(' ') l
x ·Y = x ,y - (w .h)L T(x" y"')

X~,
(3.8)

64

1
I'(x+x' ,y+ y') =I(x +x',y+ i) - (w . h)L I(x +x"' y + y")

x- , • (3 .9)

a) Input image b) Template image

Figure 3.17 Represents match results of six matching methods according to the

illustrations a) input image and b) template image (Mup)

65

The best match for square difference is O and for the other methods it is the maximum

point; thus, matches are indicated by dark areas in the left column and by bright spots

in the other two columns » (Bradski et Kaehler, 2008).

By implementing these three matching methods, based on the highest experimental

matching result, we se lected the TM_ CCORR _ NORMED method that represents the

fo llowing form ula:

L.x\y'(T(x' ,y') · I(x + x1,-y +1:1 '))
R(x, y) = ------;::===============

L x' y' T(x \ y 1)2 · L x',Y' I(x + x' 'Y + y')2
(3. 10)

The result of this comparison returns a grayscale image, where each pixel defines

how much the neighborhood of that pixel matches with each template image

(Open CV).

An empty matrix needs to be defined in order to store the result. On one hand, by

default in OpenCV, the input area image is bigger than template area. On the other

hand, the area of each contour that is already extracted and resized by keep ing aspect

ratio can be bigger than the size of the template. Hence, before defining the empty

matrix for storing the match result, we need to specify wh ich area (contour area or

template area) is bigger. ln the following, the size of the bigger matrix is defined as

(WxH) and the size of the smal Ier matrix is defined as (wxh) . The size of the resu lt that

contains the output image will be (W-w + 1, H-h+ 1). The following algorithm displays

the fonction.

66

Algorit hm 4: Result Matrix(R)

Input : A list of r ize contour '1.;, a list of template '·
images T = T1, ... , Tn

0 ut put : An empty matrix for storing r · ·ul of matching
1 (W, H): the ize of bigger matrix:
2 (w, h) : the size of ·maller matrbc
3 R w: t he width of re-size contour
4 R.h: the height of re-size contour
5 Tw: the width of templa.t
6 T 1t : t he height of template
7 if (Rw > Tw) or (R1i > Th) t hon

o el ·
8 l (l,V, H) t---(Rw, Rh) and (w, h) t---(Tw, T1i)

10 (H.t; H) t---(Tw . Th) and (w, h) t- (Rw, R1i)

11 r eturn (W- w+ l , H -h+l)

By having the results comparison of each contour and each template image, we need

to fi nd the best match for each contour. Therefore, the "minMaxLoc" method in

OpenCV returns fo ur outputs that include minimum value, maximum value,

minimum point location (in two dimensions) , and maximum point location (in two

dimensions). Hence, for each contour, an array li st of results is obtained by

comparing each contour with a il template images is retrieved. Consequently, the best

match is composed of the resu lt with the maximum value. The "MaximumYalue"

java c lass, implements this function , whose a lgorithm is shown next.

Algorit hm 5: Best Matching Result{R)

In p ut: A. list of matching re ult R = R1 . . . , R,n
Out put : find the b · t match for each contour C

1 find a list of maximum valu of matching results
2 find a list of th · location of maximum value
3 1vl ax,, +-R i
4 for Ri = Rz to R,,t do
s l if ~ > ~J a.z;v then
6 L M a:1; u +-Ri

7 return Maxv

67

As shown in Appendix A, the "FindMatching" Java class shows the details of the

template matching process.

We should note that even though the matching method compares contours that are

one pixel wide (see below the issue with thick drawings) , the algorithm performed

well , for the following reasons:

• The preprocessing steps that we perform prior to computing the contours
clean the image and remove the "noise" that can result from wobbly drawings,
by smoothing lines prior to detecting contours;

• By reducing both contours to the same bounding box, we eliminate errors due
to differences in dimension ratios (e.g. ratio of height to width in hand sketch
versus in template);

• The matching algorithm that we chose (TM_CCORR_NORMED), which was
validated with experimental results, looks at means as opposed to individual
points, and finally

• The matching algorithm returns the best match among the available templates.

This is what enabled us to get good results, despite the fact that we are matching

predefined templates against one-pixel wide hand-drawn shapes.

68

3.4.7 Contour Distance

When the user draws a hand sketch using a thick pen or brush, the contour

recognition step can return manifold contours (see figure 3.18). We have no easy way

of detecting manifold contours. Thus, we simply rely on the proximity of contours to

di sregard some of them.

(a) (b)

Figure 3.18 Represents doubles of contour: (a) hand-drawn contour; (b) recognized

primitive shapes

Hence, for solving this issue, we need to calculate the distance from the starting point

of each contour with the rest of the recognized contours inside the hand-drawn sketch

and define the threshold for comparing the distance between them. Therefore, if the

di stance of the considered contour from the rest of the detected contours in the I ist is

less than the threshold, we dismiss the contour. We will repeat the same calculation

for the remaining contours on the list. The "CalculateDistanceBetweenContour" Java

class, as shown in Appendix A, shows the details.

3.4.8 Line Detection

The template matching method explained earlier on ly works for contours, which are

closed geometric figures that only used to recognize the closed contours. Then, how

do we recognize lines? Given a hand-drawn sketch, if we remove ail of the closed

contours, as shown in the algorithm below, we should be left with lines. However, we

69

shou ld point out that in case the lines are drawn with a thick pen or brush , as shown

on the left hand-side of figure 3.19, then the OpenCV function for determining

contours will return a closed contour that corresponds to the outer edges of the thick

lines (see right hand side of figure 3.19). To this end, we used a threshold for the ratio

between the dimensions of the contours to fil ter out contours that correspond to edges

of thick lines.

Figure 3.19 Represents detected edges of line

lnpu : A list of contours C = C1 ... , Ck and the input image ùng

Output: A li 't of lin · L = L i , ... ,Ln
1 11 : the width of rectangle box
2 h: th b igbt of r ctangl "' box
3 x: th · tar coordinate x of rectang1 box
4 y: th -tart coordinate y of re tangle box
5 W f- Ü, h f- Ü, X f- Ü y f- Ü

6 for = C1 to Ck do
7 d fin a r ctangle box around each '
s initialize Th as a threshold to increase th "' area of rectangle box
g P1 f--(:1: - Th y -Th)

10 P2 f-- (.1: + w Th , y - Th)
11 p3 f- (X + W +Th y h Th)
12 p ,1 +- (x-Th , y+h+Th)
13 av, th point (P1, pz , p3, p4) in a li t
1 paint the li t of point· witb black olor in img

15 r etw·n i mg

There are two reasons for specifying a threshold:

1. To avoid recognizing the edges of each closed contour as a line;

2. A hand drawn line can be in a different position against the closed contour, as

shown in figure 3 .20. Thus, a proper line for the rest of the process is created.

70

To detect lines, we first appl y edge detection to the lines. ln the fo ll owing, using

"Hough Line Transfo rm " method in OpenCV that search a binary image fo r

straight lines is required. Thi s method investigates that whether any po int in a

binary image could be part of some set of poss ible lines (Bradski et Kaehl er,

2008) .

[i f J
[l f J
DO

Figure 3.20 Di fferent styles fo r draw ing line

T his method (see figure 3.21) expresses the line in the polar coordinate system.

Hence, the equati on fo r a line can be written as (Bradski et Kaehler, 2008; OpenCV

documentati on, 201 3):

P = x cos8 + y sin8 (3. 11)

ln genera l, fo r each point (x0, y0) , we can define a family of lines that goes through

that point as (Bradski et Kaehl er, 2008; Open CV documentation, 20 13):

Po= Xo cos8 + Yo sin8 (3.12)

In other words, each pa ir (Po, 8) represents each line that passes by (xo, yo) (see

figure 3.21-a) (Bradski et Kaehler, 2008; OpenCV documentation, 201 3). For each

point (x0, y0), the family of lines that go through it is defi ned (see fi gure 3.2 1-b)

71

(Bradski et Kaehler, 2008; OpenCV documentation, 2013). Thus, this operation will

be done for ail the points in an image. Hence, if the curves of two different points

intersect, it means that both points belong to the same line (see figure 3.21-c)

(Bradski et Kaehler, 2008; Open CV documentation, 2013).

ln order to detect line, a threshold as the minimum number of intersections is defined.

Thus, if the number of intersection between curves of every point in the image is

above the threshold, then a line with the parameters (8, p) of the intersection point is

recognized (OpenCV documentation, 2013) .

Open CV implements two kind of Hough Line Transforms that include "HoughLines"

(Bradski et Kaehler, 2008) and "HoughLinesP" (Bradski et Kaehler, 2008) .The first

function returns a vector of couples (8, Po) as a result and the second fonction , rather

than collecting every possible point, it collects only a fraction of them. Hence, if the

peak is going to be high enough, then it returns the start point and end point of the

detected lines (xO,yO,xl ,yl) (Bradski et Kaehler, 2008; OpenCV documentation,

2013).

y y 2

Yo_ ,_ ____ _..,

-------.---x
a)

X"
b)

3
'. 4

<):

p

3 2
4 .e---0.-- ... 1

• o.

--+-------e
c)

Figure 3.21 Represents point in the image (a) Represent a point (xo, y0) in the image:

(b) represents lin es that parameterized by a different p and 8; (c) Any of these lin es

represents points in the parameters (p, 8), consider together form a curve of

characteristic shape (Bradski et Kaehler, 2008).

72

By recognizing lines, the system is able to discover the spatial relationships between

each line and contours as a connector in the next section. The java class detects line,

as shown in Appendix B; "DetectLine" shows the details for recognizing line.

3.4.9 Line Distance

Because hand drawn sketches can have thick lines, multiple lines may end up being

recognized. For solving this issue, we use the same solution that is used for primitive

shapes: we merge lines whose mutual distance is below a certain threshold . By

finding the nearest lines, we calculate the minimum coordinate of the start point, as

well as calculate the maximum coordinate of the end point for ail lines whose

distance is less than the threshold. Thus, the system avoids recognizing one line

several times. Further, we want the system to recognize the longest line. The

following algorithm displays some part of the function.

Input : A list of lir1e-· L = L1, ... Ln
O utput : find the co rdinate of longe t lîne b r merging the neare t li.ne ·

1 initializ Th as a threshold to find the nearest lines
2 distance +--0
3 for L = L1 to L 11 do
-1 l ~1:-iti~lize di tance hy calctùating the distance of lines
5 1f d1. . tance< Th th n
6 l (~min, Ymin) calculate the mini~1mm start po_int of l_ine ·
7 (Lmax, Ymax) +--calculat · the m.aXImum end pomt of lme

r eturn ((:z:min, Ym in.) , (:cmax Ym ax))

"CalculateDistanceBetweenLines" Java class, as shown in Appendix B shows the

details.

3.5 Composite Graphie Object Recognition

Composite shapes are composed of primitive shapes. Thus, we need to combine the

primitive shapes that were recognized in the previous step, using their spatial

73

relationships. There are two main composite shapes, sentry and connector, that we

will focus on them in this section. Hence, the first issue is:

How do we define the diamond in the square (defined as a task element in CMMN)

and recognize the sentry image as an element in CMMN?

3.5.1 Intersection Area

In order to recognize sentries, we need to discover whether the diamond is inside the

task or not. Hence, we define a function that receives the coordinates of ail tasks and

diamonds and then starts calculating the di stance of each vertex of diamond with the

task area. Therefore, whenever one of the coordinates of the vertices of the diamond

is part of the task, the diamond, which is called sentry in CMMN, is considered to be

part of the composite shape. The following code displays some part of the function.

A lgoritlun 8 : Intersection \ rca
Input : A li::;t of sentries ' = S1 Sn , A list of ta~ks T = T1 'I'n
Output: find inter.·cction arca

1 initializc t he coordinat'" of <'lltry Xs f- 0, Ys O. w_, f- 0, hs +- 0
2 initializC' the coordinates of ta.sk ::l't +- Cl , Yt +- 0, 'I.Ut +- 0, lt,t +- 0
3 white S -f. <!> cmd T ::j:. (j) do
4 if (:rs > '.et) and (:1: 5 .1;t + wt) and (Ys > fi t) and (Ys Yt + ht) t h en
5 L return tnœ

6 else

7

8

9

10

11

1 2

13

14

if (:rs + (ws / 2) > .rt) and (::i·s + (w .. / 2) < '.l:t + :i;w) and
(Ys - (hs/2) > Yt) rmd (Ys - (hs/ 2) > Yt + ht) then
L r et urn tnLe

else

if (:1:s + Ws) > .l't) and (:i:s + Ws < :C't + ·wt) and (Ys > Yt) and
(:ys · Yt. + ht) then
L r eturn true

else

if (Ts + (us/2) > Tt) a.nd (Xs + (tus/ 2) < 3't + 'Wt) and
(JI., (h.,/2) > yt) and (?Js + (hs / 2) < Yt + ht) t hen
L r eturn tn.t

15 r e turn f alse

74

As shown in Appendix B, "CalculatelntersectionArea" Java class shows the Details

calculation.

3.5.2 Connector Detection

The second issue in composite graphie object recognition is:

How do we recognize the connection between fines and other contours?

To so lve this issue, we need to find the contours that are connected to lines, by

discovering spatial relationships, if necessary. We would need to calculate the

distance between each shape and the start point and end point of each line.

Regarding the bounding box around each contour, by assuming that the start point of

the I ine or end point of the I ine can be connected to the vertical edge of a contour or

horizontal edge of the contour, we can start calculating the distance of each start point

and end point of line with one of two selected edges.

To calculate the distance, first of ail , the system needs to detect whether the line at

hand-drawn sketch is vertical or horizontal. Because the CMMN modeler recognizes

only vertical or horizontal lines, our algorithm is based on recognizing straight line.

By clarifying this part, we are able to define whether the coordinate of one of the two

points of line is in the range of the horizontal edge or vertical edge.

Finally, the distance between the start and end point of the line and the edges 1s

calculated and the minimum distance will be selected.

The following algorithm shows how a connection is established. The threshold is

specified for calculating the distance of each point of the line and each primitive

shape to compare the minimum gained distance. If it is Jess than the threshold, the

shape is connected to the line.

Input: A Ji;,,t of 011t mr C = C1 C'n. Line L
Output: tind the minimum cliEtancc h tw ,en contour. and lin

1 initialize the start point or end point< .f li ue (.1.·L· YL)
2 initialize t h start point and end point uf edg s of contour

(:rsc· Ysc) ,(J·ec· Yec)
3 initializc Th as a, thr '.'l1old to find the rniliinmrn li. tance hctw •c1 t!dgc

anù ·tart point or •ud point of line
4 iui tinli~c (Psx . JJsy) to hol l t l te co rdi natcs of Jiu' stmt
5 in.i iaJizc (Pex. Pey) to hold the coordinat s of linc 'nd
6 initializc di . tan.r· to hold the li. tance of r-ontour an J linc

7 if './Jsc = Yec then
B / / It is a horiiontnJ linc, l\ fr:ilrn sn re t l.rn.t liue st.art ha. smaller x
9 if 1;sc > J'ec then

10 (T>sx,Jisy) +- (Xec, Yec)
11 (Pex, P y) +- (Xsc· Ysc)
12 e lse

13

14

15

16

17

1

19

20

21

(Psx,P·y) +- (Xsc,Ysc)
(Pex·P y)+- (x c,Y c)

//If the point is not hctwccn the liu' start and liuu cu<l thcn rcturn
inf111itc value
if :i:z, < (P.sx - Th) or :J.:L > (Pex + Th) then

distance+-
el e

/ /If th, 1 oint i::; bctw en lin start an<l hue ud thcu :al ulatc the
distan · '
di ·tmic +- distance f cdgc ·mù on' of th tart point or •nù
_point of linc

return di . tance

75

76

22 else

23 if (Ysc > Ye.J then
24 / /It i. a vcrticnl linc, !\Jake . ure that lin , .. tart ha. smallcr y

25 (JJs x · 7Jsy) ~ (Xec, Yec)
26 (Pex · Pey) ~ (x c, Y c)
27 eL e

28

29

(Ps3; · Psy) ~ (Xsc, Ys,J
(Pex, Pey) ~ (Xec· Yec)

30 //If the poiut is uot hctweon the line start and linc end thon rctnrn
infinitc value

31 if y1., < (Psy -Th) or YL > (Pey+ Th) t h e n
32 distanr;e ~ex
33 e lse

34 / /If tlic point i bctwccn the line start an<l line ond thm1 calculato the
distance

35 di.<; ta:nc ·. ~ distance of ,clgc a.nq; onc of the Btart point or end point of
_linc

3 6 return distan ce

As shown in Appendix B, the "Connector" Java class shows the details of detect

connector.

3.6 Semantic Connection Recognition and Understanding

By recognizing the primitive shapes as well as the spatial relationships between them,

the next and final issue is:

How do we display these detected CMlvfN elements and semantic connections

between them in CMlvfN modeler?

To do this, we create an XMI file that stores details of ail the detected CMMN

element specifications as well as their spatial relationships. This XML file should be

in a format that can be imported in CMMN modeler. Thus, we need to understand the

XMI schema for CMMN to generate the appropriate tags. In this section, we wi ll

regularly refer to aspects of CMMN execution semantics.

77

XML fil e structure in CMMN, as shown in fi gure 3.22, consists of two major parts

that includes the case (OMG) and CMMN DI (OMG). Case is a top-level concept that

combines ail the elements that constitute a case mode!, and that defi nes the semantic

relationships between the elements (OMG). Each mode! element has attributes such

as coordinates, width, height, label and so on. The CMMN DI secti on is used to

specify the v isual attributes of elements that include a collect ion of shapes and edges.

< ?xml version•"l. 0" encod!ng•"UTF-8" standalone•"yes" ?>
« .. n:defin!tions author•"" exporter•"CflMi Modeler" id•"_6Sd4l4e4-7906-40l4-b2aa -45959d0a8996" nane•"Drawing 1" targetllamespace•"http://-,·.w.
tr!sotech. coa/ cm,/ de finitions/_ 65d4l4e4-7906-43l4-b2aa -45959d0a8996" ,allns• "http: / 1-. trisotech. cOII/ ca,/ defini tions/_ 65d4l4e4-7906-43l4-
b2aa-45959d0a8996" xalns: trisob•"http://..,,,. , t risotech. coa/2014/triso/bpc,n" xmlns: caidi•"http: //_,. 0/lg. org/spec/Cl+'H/20151109/ClffiDI" xalns: rss•"
http ://purl.org/rss/2 .0/" xalns: cinn•"http: // 011g . org/spec/a+W/20151109/l'OOEL • Xlll.ns:di•"http :/ /""". ong .org/spec/Cf/Mi/20151109/DI" xalns:
trisofeed•"http : //trisotech . con/feed" xal ns: trisocinn•"http: //.,,,. . trisotech. coao/2014/triso/cinn" xalns : triso•"http : //""". trisotech. coao/2015/triso/
llodeling" xolns: xsi•"http://.,....w3.org/2001/XMLScheoa-instance" xalns: dc•"http: //-. oaog . org/spec/Cf/Mi/20151109/DC">

« .. n: caseFileite.Oefini tion id•"DEF _ 547c" />
<cMn:case nane•"Page 1" id•"CaseCPH_00b" >

<ci,an: caseFileModel >
<c1nn: casef ilelteo defini tionRef•"DEf _ 547c" oultiplicity•"Unspecified" id•" _547c"/>

</cm,: casefileModel>
<cMn:casePlar/o\odel autoCoaoplete•"fa l se· nane•"Page 1" id•"CPH_00b5">

<cllffln :planltem defi nitionRef•"Pl0_8ab9" id•"_8ab9" />
<c1111n:task isBlocking•"true" id• "P!D_8ab9" />

</c-: casePlanModel>
</c-,:case>
<cMndi: ONIID!>

<cMndi :Ci'l'llD!agrao name•"Page 1" id•" _00b54" shared5tyle•"_75ca">
« .. ndi: S!ze height•"1050.0" width•"1545 . s· />
« .. ndi: Cl+lllShape c110nElementRef•" _1036" id•" _e8e5">

<dc: Bounds height•"76 .0" width•"97.0" x•"191.5" y-"52 .0"/>
« .. ndi: Ci'l'lllabel />

</cnndi:Cl+II/Shape>
<c110nd! :CM/Shape cianElementRef•"_0503" id•" _bebd" >

<dc:Bounds he!ght•"28.0" width•"20.0" x•"279 .0" y• "76 .0"/>
<c""ndi: CM/label/>

</ca111di :Cl+lllShape>
</cmondi : CJ,\'A/,/Di agram>
<cllNldi: Cl'MllStyle fontfa•ily•"Arial,Helvetica, sans -serif" id•" _75ca" />

</cmondi:O'/>VID!>
</c,m:definitions>

F igure 3.22 XML file structure in CMMN

3.6. 1 Case

To understand the structure of a case mode!, we prov ide a parti al CMMN meta-model

in figure 4.23. In the fo llowing, in order to expla in the semantic relationships between

CMMN elements, we will focus on the association caseFileModel and

casePlanModel and explain them in detail.

78

packago CMMN [li Casef ile 0

l•id . Str g
1

1

CastFilt

«enurneratiC>flo

MultipticityEnum

ZeroOrOno
ZeroOrMore
Ellactt,one
OneO fllo•e
Ur-soecflCd
Urkoown

0 .. 1

Cltlli/NBtlmMI

a

1 1

Caseflleltam -+caseFilelterns -+defiiitlosRef CaseFllelamDefinltlon
1. .' •narnc- .--,: S:-tr-irg------------1--~_-. -----, -il-+-oaine : Strng

•mu tiplicity : Wu tiplic ityEnum +<lefirvtionTypa : RI
•c t ikren +targetRefs +structureRef : ONGmc

o.: il . .'
·soorœRef 0 .. 1

+parent o .. 1

Figure 3.23 CMMN case file meta-model (OMG)

10.:
•im1»nRetlo .. 1

lmpon

•import YPE : Sm g
•localJOO : Stmç
+oamespac• : LRI

3.6.1.1 CaseFi le

Every case is associated with exactly one CaseFile (see figure 3.24). The case

information is represented by the CaseFile. In addition, every CaseFile must contain

at least one CaseFileltem. ln the following, every CaseFileltem must be associated

with exactly one CaseFi leltemDefinition. Thus, in order to specify the association

between each FileltemDefinition and each CaseFileTtem, the definitionRef for each

FileltemDefinition must be the id of each CaseFileltem. The XML file below

disp lays some part of the XML file in CMMN, which describes CaseFile.

<cmmn:caseFileltemDefinition id="DEF_ 93" />
<cmmn:case name="Page l" id="CaseCPM_00b5" >

<cmmn :caseFileModel>
<cmmn:caseFileltem definitionRef="DEF_ 93" multiplicity="Unspecified" id="_93" />

</cmmn:caseFileModel>

Figure 3 .24 Case file structure in XML format

As shown in Appendix C, the "writeFileltemDefinition" and "writeFileltem" java

methods show how to serialize a case file on an XML file.

79

3 .6.1.2 Case Plan

CasePlan is constructed from the building blocks that are composed of

PlanltemDefinition elements (figure 3.25). Each PlanltemDefinition can represent

one CMMN element, which can include PlanFragment (and Stage), Task,

EventListener or Milestone. Thus, in order to specify the association between each

PlanltemDefinition, and each certain CMMN element, the de.finitionRef for each

PlanltemDefinition must be the id of each CMMN element.

The XML file below displays some part of the XML file in CMMN, which describes

a CasePlanModel (see figure 3.25).

<cmmn:casePlanModel autoComplete="false" name="Page 1" id="CPM_00b5" >
<cmmn:planltem definitionRef="PID_1036" id="_1036" / >
<cmmn:task isBlocking="true" id="PID_1036" />

</cmmn:casePlanModel>

Figure 3.25 Case Plan structure in XML format

80

package CMMN [00 Plan Item D0f1nitior1 J

+id . Str1119

Pl1nlt.a,Dt1flnltlon

+name : String

CMMNE/emtmt

0 .. 1

+defauJtControl PlanltomControl

0 .. 1

Task Eventllstonor Milestono

Figure 3 .26 Plan Item Definition (OMG)

Sentri es, which are used as entry criteria, are a CMMN element that not prov ided as

an independent CMMN element, but need to be present as part of other CMMN

elements, such as stage or task (figure 3 .27). Hence, the relations between a

PlanltemDefinition and sentry are represented with the associati on "entryCriterion" .

Therefore, in order to specify the connecti on between mentioned CMMN elements

and each Sentry, sentryRef fo r each entryCriterion that must be the id of each sentry.

The XML fil e below displays some part of the xml file in CMMN, which shows a

sentry as part of a task.

<cmmn:planltem definitionRef="PID_1036" id="_1036">
<cmmn:entryCriterio111 sent ryRef="_76fd" id="_0503"/ >

</cmmn:planltem>
<cmmn:sentry id="_76fd" >

<cmmn: if Part id="_1392" / >
</cmmn:sentry>
<cmmn:task isBlocking="true" id="PID_1036"/ >

Figure 3.27 Sentry structure in XML format

81

Because a connector in CMMN is used to visualize dependencies between CMMN

elements (see figure 3.28), it is necessary to show which CMMN elements a

connecter belongs to. The sequence flow direction or association is defined by

an entry criterion or exit criterion (OMG).Thus, one side of a connecter will be

associated with a sentry and present as planltemOnPart, while the other side belongs

to the other planltemDefinition that is connected to sentry. Therefore, in order to

specify this association, we define the sourceRef for each planltemünPart that must

be the id of specific planltemDefinition that is connected to planitemünPart. The

XML file below displays some part of the XML file in CMMN, which describes the

connection between two tasks.

<cmmn:casePlanModel autoComplete="false" name="Page l" id="CPM_00b5" >
<cmmn:planltem definitionRef="PID_1036" id= "_1036" >

<cmmn:entryCriterion sentryRef="_76fd" id="_0503"/ >
</cmmn:planltem>
<cmmn:planltem definitionRef="PID_8ab9" id= "_8ab9"/ >
<cmmn:sentry id="_76fd" >

<cmmn:planltemOnPart sou rceRef="_8ab9" id= "_8704" >
<cmmn:standardEvent>complete</ cmmn:standardEvent>

</cmmn:planltemOnPart>
<cmmn: i fPa rt id="_l392"/ >

</cmmn:sentry>
<cmmn:task isBlocking="true" id="PID_1036"/ >
<cmmn:task isBlocking="true" id="PI0_8ab9"/ >

</cmmn:casePlanModel>

Figure 3 .28 Connector structure in XML format

82

As shown in Appendix C, "writeplanltem", "writeEvent", "writeTask" and

"writeSentry" java methods show how to serialize a PlanltemDefinition.

3.6.2 CMMN DI

CMMN DI (OMG) is used to specify the visual properties of elements that include a

collection of shapes and edges. Figure 3.29 shows the partial Meta model for the

CMMNDI component. It shows that CMMNDI is a container for the shared

CMMNStyle and ail the CMMNDiagrams defined in De-finitions (OMG).

packago Dam (

CMMNO/agn,mEl.,,,•nr •diagr omElomonts

------- - . o .. ·

CMMNStyle

o.:
•locolStylc

.. 1 0 .. 1

01:: Dlagram

•nome Sung
ocumentallon Str"'9

'1'0SOIUIJOll Real

CMMNOlagram
•<:mmnEJcmcn1Rel

o .. · 0 .. 1

..,.IZC

0 . 1

Figure 3.29 CMMNDI class diagram (OMG)

The class CMMNDiagram (OMG) is a kind of Diagram that represents a depiction of

ail or part of a CMMN mode) (OMG). In other words, it is the container of

CMMNDiagramElement that is composed of CMMNShape and CMMNEdge (figure

3.30). The XML file below displays some part of the XML file in CMMN that

describes a CMMNDiagram.

<cmmndi: CMMNDI>
<cmmndi : CMMNDiagram name= "Page l" id= "_00b54" s haredStyle= "_75ca" >

<cmmndi :5ize height="1050 . 0" width="1545 . 5" />
<cmmndi : Cl'fo\NShape cmmnElementRef= "_0503" id= "_bebd" >

<dc : Bounds height="28 . 0" width="20.0" x= "279.0" y= "76 . 0" / >
<cmmndi :CMMN Label/>

</ cmmndi : CMMNShape>

83

< cmmndi: Cw-\NEdge cmmnElementRef= 11_8704 11 isStanda rdEventVi sible= "true" targetCMMN ElementRef: "_0503" id= 11

_dfba5921 - 5e71- 4e86- b3c5 - 1768277dfee8" >
<di: waypoint x= "297 . 99999996125814" y= "89 . 99972164102996" / >
<di :waypoint x="411 . 5391946702358" y= "B9 . 9681169865079" / >
<cmmndi : CMMNLabel/>

</ cmmndi : CMMNEdge>
</ cmmndi : CMMNDiagram>
<cmmndi : CMMNStyle fontFamily= "Arial,Hel vetica, sans - ser i f" id= "_75ca " / >

</ cmmndi : CMMNDI>

Figure 3.30 CMMNDI structure in XML format

As shown in Appendix C, the methods "writeFileValues", "writeLineValus"

"writeEntryCriterionValus", "writeEventValues" and "writetaskValues" are used to

serialize the entities CMMNDiagramElement, CMMNShape and CMMNEdge.

3.6.2.1 CMMNShape

The CMMNShape is a kind of Shape that depicts a CMMNElement from the CMMN

mode! (figure 3.31). Hence, in order to associate it with a CMMN element, there is a

cmmnElementRef attribute contains the id of each planltemDefinition. The XML file

below displays some part of the XML file in CMMN, which describes CMMNshape.

<cmmndi:CMMNShape cmmnElementRef= "_0503" id= "_bebd" >
<dc:Bounds height= "28 .0" width= "20.0" x= "279.0" y= "76.0"/>
<cmmndi:CMMNLabel/>

</cmmndi:CMMNShape>

Figure 3.31 CMMNShape structure in XML format

3.6.2.2 CMMNEdge

The CMMNEdge class represents relationships between two CMMN mode! elements.

Hence, CMMNEdge are used to depict links in the CMMN mode! (OMG). ln order to

use CMMNEdge to show a PlanltemünPart, we define cmmnElementRef for each

84

CMMNEdge that must be the id of PlanltemünPart. Further, we need to define the

targetCMMNElementRef for each CMMNEdge that must be the id of one of the

criterion (either an EntryCriterion or an ExitCriterion) that is linked to the Sentry

holding the PlanltemünPart. The XML file below displays some part of the XML file

in CMMN, which describes CMMNEdge (Figure 3.32).

<cmmndi:Cl-'MNEdge cmmnElementRef="_8704" isStandardEventVisible="true"' targetGY-1NElementRef="'_0503"
id="_dfba5921 -5e71-4e86 - b3c5 -1768277dfee8" >
<di:waypoint x="'297.99999996125814" y="89.99972164102996"/>
<di:waypoint x="'411.5391946702358" y="89.9681169865079" />
<cmmndi:CMMNLabel/>

</cmmndi: C,..,_INEdge>

Figure 3.32 CMMNEdge structure in XML format

3.7 Conclusion

ln this chapter, we described the implementation of our approach that recognizes both

primitive shapes and composite shapes. We explained a set of issues at each stage of

recognition and found the heuristic solutions, as well as an employed OpenCV

library. ln the following, using XML file according to the CMMN models ' structures

makes it possible to interpret each CMMN element and their semantic relationships.

Therefore, the hand-drawn sketches will be recognized and formalized by importing

the XML file in CMMN modeling tools. In the next chapter, we will evaluate our

program by investigating various samples are collected and. specifying the

performance of the tool.

CHAPITRE rv

TEST SETTING AND RESULTS

To evaluate the accuracy of the recognition system, we need to test it on various

samples. We collected 20 drawings made by experimental subjects. These subjects

were aged between 24 -33 and are regular computer users.

The subjects received the following information and instructions:

1. They were introduced to CMMN syntax and its different elements;

2. They were introduced to the CMMN modeler and were told about what our

system can do (recognize hand-drawings and put them into a format that is

appropriate for a formai modeling tool) ;

3. They were told to make sure that their drawings had closed shapes;

4. They were told that they cou Id use any painting software and painting device;

5. They were told not to worry about scale or paint brush thickness. However,

they could not use the air brush, which leaves gaps between paint points;

6. Finally, they were told to "draw normally," without trying to be particularly

prec1se.

86

4.1 Test Setting Overview

After expla ining the requirements, the subj ects were asked to draw 5 of each CMMN

model primitives (lines, events, tasks, fil es, entry criteria (diamond)) as well as

composite shapes, as shown in figure 4.1, to prepare fo r the experiment. For example,

one task and one entry criterion connected to a line that is call ed model fragments.

Ta.sk A -- ··-·~-··- Task B

Figure 4.1 Sentry based dependency between two tasks

We began by measuring the recognition performance for primitive shapes. Recall that

the way matching works is by comparing each CMMN input shape to the category of

predefi ned shapes, and measuring the similarity between the input shape and the

predefined CMMN shapes. The predefined shape that achieves the hi ghest similar ity

value is assum ed to be the intended shape. The next table shows a square matrix

where each row corresponds to an input shape, each column represents a predefined

shape, and cel 1 (x, y) represents the percentage of times that predefined shape y was

fo und to be the best match for input shape x . Thus, shape (x, x) represents the

percentage of accurate recognitions.

With regards to composite shapes, the recognition performance depends on a

combination of:

1. The recognition of the primitive shapes

87

2. The accuracy of the calculations of the spatial relationships between the

primitive shapes, and the strength of the inferences drawn from such

relationship

Table 4.1 Results of primitive shapes recognition :The drawn (expected) shape is

shown on the left and the recognized shape at the top

Event
1

Task File Eut:ty Criterion Line

Event 98 0 2%

Task _% 92o/o 6%

File _% 68% 30%

Entry Criterion 8% 92%

Line 100%

Table 4.2 Results of mode! fragments recognition: The drawn (expected) shape is

shown on the left and the recognized shape as part of mode! fragments at the top

Task Line Entry Criterion Event File

îaskA 92% 2% 6%

Line 100%

Entry Criterio:n 80% 20%

TaskB 86% 14%

4.2 Recognition Accuracy

The recognition rate for a test set of 500 drawings, composed of both primitive

shapes and composite shapes, is presented in tables 4.1 and 4.2. table 4.1 shows

significant differences between recognition rates for the d ifferent primitive shapes,

ranging from 30% for a file , to a 98% for an event. The difference is due, in good

88

part, to the distinctiveness of the shapes. For example, there is a a big similarity

between files and tasks, which are both rectangular, but with a file having a clipped

angle (Figure 4.3c, Figure 4.3d). Hence, the recognition rate of the file was the lowest

of ail shapes (30%). lndeed, many files (68%) were actually recognized as tasks. The

opposite is not true. This may be due to the prevalence of files in the 500

handrawings. However, generally speaking, the average performance is acceptable.

Note also that lines are the easiest shapes to recognize, with a 100% rate. Indeed, the

sequence of points that can fonn a line is specified by three parameters that include

threshold, minLinLength and maxLineGap. These parameters were adjusted in order

to accept the shortest line with the minimum number of intersections to constitute a

line.

Events also had a high recognition rate. The cases where the sketch was not

recognized (figure 4.3a) were mostly due to the event being drawn similar to a

square.

The recognition rate for entry criteria (diamond) was also high the cases that were not

recognized (Figure 4.3b) were often due to the fact that the entry criterion resembled

an event that was rotated 45 degrees.

Sentry based dependency between two tasks, as shown in figure 4.1 , represents as

model fragments that consist of primitive shapes and one composite shape, itself

consisting of an entry criterion (diamond) that is part of a task.

The recognition rate for entry criteria (diamond) as primitive shapes (see table 4.1) is

92%, while its recognition rate in the second table (see table 4.2) as part of a

composite shape, is noticeably reduced (80%).

According to the definition structure of algorithm 8 in chapter Ill, recognition entry

criterion (diamond) as pait of the composite shape is completely dependent on the

89

recognition rate of Task B. Hence, we need to recognize a task as Task B and then go

into the second level that is recognized entry criterion (diamond) as part of Task B.

As shown in table 4.2, recognition rate of Task B as a task is 86% and as a file is

14%. Due to the fact that the Task B, As shown in figure 3.6, was recognized as an

inner contour (see figure 4.2), the similarity of the Task B drawing to the Task

template was decreased. By extens ion, the recognition rate of Task B affects the

recognition rate of the entry criterion (diamond) .

a) Exterior contour (parent) b) Interior contours (chi ldren)

Figure 4.2 Recognize Tasks B and Diamonds as inner contours based on figure 3.6

There are other reasons for the low recognition rate of entry criteria (diamond). First,

there is the way that humans draw sketches by hand. Because drawing the diamond as

part of the composite shape is more difficult than drawing it as a primitive shape, the

simi larity of a diamond to the event template, as shown in table 4.2, is increased and

90

many diamonds will end up being recognized as events. The second reason why entry

criteria do not have good recogni tion rate is re lated to the bounding box around each

diamond . As shown in fi gure 4 .2, the diamond verti ces are smoothed by bounding

box edges. Hence, the s imi larity of the di amond to the event w ill be increased.

Wh ile the recogn ition rate of the indi vidual primi tive shapes is hi gh (on average), the

recogni tion rate fo r the aggregates is in the [72% - 80%] range. Thi s is to be

expected, considering the way our algorithm works .

•••
(a) Events. net recogn.ized (b) Entry criterions net recogn.ized

(c) Files not recogn.ize<l (d) Tas.ks not recogn.ize.d

Figure 4.3 Samples elements not recognized by the system

4.3 Limitations

The cu rrent implementati on has a number of limitati ons. F irst, it is sensitive to

rotati on. There are ways to change the algo rithms to make them rotati on proof.

However, thi s would complicate the recogn ition of sentries (diamonds) w hich relies

on the ir 45 degree tilting. We would then need to take into account the re lative size

91

and position of the shapes we need to distinguish, for example between tasks and

entry/exit criteria, which lead us to the next possible improvement.

The second limitation involves recognizing the text. In chapter ll, we talked about

optical character recognition and offl ine character recognition as one of

its subcategories, which includes overall stages such as pre-processing, segmentation,

feature extraction, and classification.

Recognizing text within the context of geometric figure drawings, as is the case with

CMMN (or other types) of models, is more complicated than recognizing text within

purely textual documents. We envision a multi-step process, as explained next. The

first step would be common with shape recognition, and would consist of pre­

processing and object detection. A second step would consist of separating contours

that contain text from other shapes. A third step would extract the text from shapes. A

fourth step would classify the text based on the simplest category (the digits [0-9] and

letters of the English alphabet [a-z]). The fifth step would reconstruct the text by

putting together ail the letters and numbers to construct strings in the right positions

that can be within or outside the shapes. The last step would attach those strings as

labels to the shapes within which they appear. We would need to implement and

experiment with such a system to see how well it works.

Finally, note that we gave the experimental subjects some directives about how to do

their handsketches. For example, we asked them to make sure they "close their

shapes", to ease contour computation and shape recognition, although we used

various thresholds to make sure that our algorithms can complete or "close"

imperfectly closed shapes. Also, the experiemental subjects were instructed not to use

"paint brush" or thick pens when drawing. These are not serious limitations , but we

cannot say that we performed the experiments on totally natural drawings.

CONCLUSION

Knowledge worker in order to hold a collection of business documents and other

information relevant to their business processes; need to use case management

systems as the primary building. Within the context of case management, Case

Management Mode! and Notation (CMMN) support the representation of a wide

range of knowledge worker activities to manage social work and related application

areas such as insurance claim processes, healthcare processes, lawsuit services

processes, social services process, etc. (Marin et al. , 2012).

Using CMMN as a formai mode ling too l at early requirements activities 1n the

software development life cycle is not efficient as well as flexible approaches such as

office tools or whiteboards composed of some restrictions that include lack of

consistency management, published changes, or information migration. Hence a new

intermediate approach in order to reduce the gap between these two approaches is

required.

The purpose of our research is to develop a new intermediate approach in order to

reduce the gap between these two approaches. Our approach reads early hand

sketches of CMMN models and transforms them into a format that can be imported

into a formai CMMN modeling tool. In this thesis, we presented in detail a set of

algorithms to extract and recognize the contours of CMMN models hand-drawn

sketches of primitive shapes and composite shapes. Different pre-processing

algorithms were applied to the input sketches to prepare them for recognition. We can

present the I ist of steps as below:

94

• Retrieve contours from a hand-drawn sketch ;

• Clari fy contours us ing pattern mode ling algorithms;

• ldenti fy a spatial re lationship between primitive shapes;

• And use the ir relati onships to recognize compos ite shapes.

To implement our system, we used the OpenCV library, which provides a rich set of

image process ing foncti ons. Wh il e our system was geared fo r recogn ition of CMMN

hand sketches, it could easil y be parameterized to recogn ize hand sketch es in any

graphical model in g language, provided that the graphica l icons used fo r the various

elements are reasonabl y di stingui shable.

At present, the algorithm first recogn izes primitive shapes and then compos ite shapes.

The better algorithm could use a two-way recogn it ion algorithm that refines the

recogniti on of the indi vidual primitive shapes based on fo ll owing of the compos ite

shape.

A B

Figure 4.4 Recogn izes fil e in stead of task in compos ite shape

As shown in fi gure 4 .1, even if our system finds that a fil e is the best match fo r B,

because sentri es are onl y used to link tasks, we can rev ise the class ification of B as a

task. Of course, the human cou Id be making a modeling mistake, but we believe that

the interpl ay between the two w ill enhance the recognition rate fo r compos ite shapes.

95

On the other hand, the human user has a main rote in implementing the hand-drawn

sketch. Hence, different ways that a user chooses to draw the shapes, or even write

the text, can be identified. Investigation on human user mannerisms can affect the

performance of recognition algorithms. Consequently, assessing these aspects would

require interviewing the subjects and monitoring their behavior, as well as utilizing a

more realistic test setting.

APPENDICE A

PRIMITIVE SHAPE RECOGNITION JAVA CLASSES

98

package CMMNElementsketchRecognitionSystem ;

/**

* This class composed of the main method , start listing all
files

6 * from the main directory and its sub directories and then
calling the class <code>TemplateMatchingDemo</code>

* in order to use the template matching method in the
OpenCV library and comparing each shape

R * of the original image to the template images that is
specified in the main directory
* and its sub directories . in the following the class of
WriteXmlFile start writhing the XML file

1c * according to the structure of CMMN modeler which is able
to import the XML file inside the CMMN Modeler software
* @author SaraAmirsardari

12 *
l' * /

public class SketchRecognition {
lo

t& public static final int LINE_DETECTION_ TRESHOLD =1 O;
public static final int MIN_LINE_LENGTH=7 ;

1s public stati c final int MAX_LINE_GAP=30 ;
19

o public static void main (String [] args) {

24

25

L&

2'

30

L

System . loadlibrary (Core . NATIVE_ LIBRARY_ NAME) ;

// reading the folders and sub folders
ReadFolders te = new ReadFolders () ;
File MainDirectory = new
File ("C: /Users/SARA/Desktop/opencv/sample 'te:nplatelOO ");
Arraylist<String> pathslist = new Arraylist<> () ;
pathslist = te . readDir (MainDirectory) ;
TemplateMatchingDemo md = new TemplateMatchingDemo () ;
// define for loop in order to read the files with the
suffix of JPG or PNG
Arraylist<String> listOfTemplates=new Arraylist<> () ;

for (int i =) ; i < pathslist.size (); i++) {
if (pathslist.get (i) . contains (" png ") 11
pathslist. get (i) . contains (" "pg")) {

listOITemplates . add (pathslist . get (i)) ;

md . preprocessAIITemplates (listOIT emplates) ;
String sketchFileName =
"C : /Users/SARA/Desklop opencv sample/s.png " ;

md . runMatchingDemo (sketchFileName) ;
41 Detectline dl = new Detectline () ;
4 dl . setlnitiallmage (md . getCleanedUplmage ()) ;
4 dl. setShapesToRemove (md . getParentContrours ()) ;

dl . detectline () ;

WriteXmlFile writeXmlShapes = new WriteXmlFile () ;
4 writeXmlShapes . setResultOflines (dl . getResultOflines ()) ;

writeXmlShapes . WriteXml (md);
48

99

100

package CMMNElementsketchRecognitionSystem ;

import java . io . File ;
import java . util . Arraylist ;

/**Contains some methods to list files and folders from a

directory
* @author SaraAmirsardari
*/

public class ReadFolders {

12 /**
* get the path of main directory

14 * @param f main directory path to be listed

[S * /
1 n

public void readFile (File f) {

18 System . out . println (f . getPath ()) ;

19

20

2 /**
* List all files from a directory and its sub directories

2> * @param f sub directory paths to be listed
24 * @return pathList of all directory and its sub directories

l5 * /
'" public Arraylist<String> readDir (File f) {

28

2)

30

3•

12

l3

l4

16

31

38

File subdir [] =f . listFiles () ;
Arraylist<String> pathslist= new Arraylist<> () ;

//verify the sub directory is file or is directory
for (File L. arr: subdir) {

if <L. arr . isFile ()) {

//if the sub directory is file so read the file path
pathslist. add <L. arr . getPath ()) ;
this . readFile <L. arr) ;

if (f_ arr . isDirectory ()) {

//if the sub directory is a directory , so list all
files path inside the directory
Arraylist<String> dirFiles = this . readDir (f_ arr) ;
pathslist . addAII (dirFiles) ;

return pathslist

101

102

package CMMNElementsketchRecognitionSystem ;

import java . io . File ;
import java . util . Arraylist ;
import java. util . HashMap ;
import java . util. lterator ;

s import java . util . List ;
9 import java . util . Set ;

10 import java . util . Vector ;

1 ~ import org . opencv . core . Core ;
1 , import org . opencv . core. Core. MinMaxlocResult ;

1 4 import org . opencv . core . Cvîype ;
1 s import org . opencv . core . Mat ;
t 6 import org . opencv . core. MatOfPoint ;

import org . opencv . core . Point ;
import org . opencv . core . Range ;

1 9 import org . opencv . core . Reet ;
;o import org . opencv . core . Scalar ;
2_ import org . opencv . core . Size ;
2, import org . opencv. highgui . Highgui ;
2 import org . opencv . imgproc. lmgproc ;
24 import org . opencv . utils . Converters ;
2, import org. w3c . dom . css . RGBColor ;

26

/**
.e * This class does the matching process between input image

a nd t e mplate ' s images that include the following steps :

z9 * 1) First of a ll , start doing pre-processing on the input

image and the template ' s images
o * 2) extract features of each contour in the input image

3. * 3) re s ize the size of each contour according to the width

of template image as well as keeping the aspect ratio

32 * 4) At the end start finding the best match between each

contour and template ' s images

,3 * The OpenCV library is used in orde r to do the

Pre- processi ng process as well as doing the template matching

34 * @author SaraAmirsardari

35

36

37

38

*

*/

class TemplateMatchingDemo

39 priva te List<MatOfPoint> parentContrours = new Arraylist<MatOfPoint> () ;
40 private Mat cleanedUplmage ;

4"

42 public Mat getCleanedUplmage ()
43 return cleanedUplmage ;
44

45

46 public List<MatOfPoint> getParentContrours ()
41 return parentContrours ;
48 }

49

50 public void setParentContrours (List<MatOfPoint> parentContrours)
5 this . parentContrours = parentContrours ;
52

53

54 private int ~ = - 1 ;

55 public int nextld ()
56 id = id + 1 ;
57 return id ;
58 }

59

60 priva te int sh = - 1 ;

61

62 public int nextShape ()
63 sh = sh + l ;

64 return sh ;
65 }

66

67

68

69

70

71

/**

* this variable will hold the list of templates , organized

by shape type/name

*

*/

priva te HashMap<String , Mat> templateTable = new HashMap<String ,
Mat>() ;

103

104

72

73

14

75

76

JJ

/**
* This variable will contain arrays of coordinates of the

various shapes
* recognized in the input figure , organized by shape

type/name

*
*/

pri vate HashMap<String , Arraylist<CoordinatesOfContours>>

shapeCoordinates = null ;

,o public Arraylist<CoordinatesOfContours>

33

getlistOfCoordinatesOfShapesOffype (String shapeName)

return shapeCoordinates . get (shapeName) ;

o, / **

3, * This class represents a bitmap that was already

segmented. The actual

'" * bitmap is in <code>segmentedBitMap</code> and the

contours are

37

99

90

9,

* represented in the instance variable

<code>contours</code> .

*
* @author SaraAmirsardari

*
*/

93 class Segmentedlmage {

9-, public Mat segmentedBitMap ;

35

96

97

98

qq

'CI

public Arraylist<MatOfPoint> contours ;

public Segmentedlmage (Mat bitmap , Arraylist<MatOfPoint>

listOfContours) {

segmentedBitMap = bitmap ;

contours = listOfContours ;

!03

10~ I * *
105 * This function does pre - processing process(gaussian

blurring , thresholding)

106 * in a picture file (JPEG or PNG) to prepare them for

matching .

• 01 * the file name is contained in the string inFile . It

first loads

10a * the "bitmap " from the fi l e <code>inFile<lcode> that

applies filters toit.

·09 * @param

·10 * @return the processed image matrix

111 * I
12 public Mat preprocesslmage (String inFile) {

ll3

115

116

118

:19

. 20

121

122

123

:24 I**

Il load the image and convertit to gray

Mat img = Highgui . imread (in File ,
Highgui. CV_ LOAD _ IMAGE_ GRAYS CALE) ;
Mat destination = new Mat (img . rows () , img . cols () , img . type ()) ;
llblur operation reduces noise and smoothing the

grayscale image

lmgproc . GaussianBlur (img , destination , new Size (3 , 3) , 0) ;

Il Threshold operation which converts a grayscale image

into a binary image

lmgproc . threshold (destination , destination , - 1 , 2 5 5 ,
lmgproc . THRESI-!_ BINARY_ INV + lmgproc . THRESH_ OTSU) ;
this . cleanedUplmage = destination . clone () ;
return destination ;

125 * This function gets the list of

templates<code>listOfTemplates<lcode> as a

126 * string and convert them to matrix and then store them

in the ArrayList

121 * <Mat> of <code>template<I code> .

128 * @param listOfTemplates is list of template ' s images

129 * @return the processed template matrix to the template

table

'.30 * I

105

106

_31

· 32 public void preprocessAIITemplates (Arraylist<String> listOITemplates)
_33

35

38

40

.43

'46

48

4 '

' 0

: 2

~53

50 I**

for (int i = 0 ; i < listOITemplates . size (); i++) {
String nextTemplateFileName = listOITemplates . get (il ;
Il find the name of the file , without the .jpg or
.png extension . That file name will represent the

name of the
Il CMMN construct (file, sentry, event, etc. Here is
an example of what it looks like

Il
C: \Users\SARA\Desktop\opencv\sample\templatelOO\task\ta
sk . png. first, separate file name based on\, and
remove extension

String splitter = File . separator . replace (" \ \ " , " \ \ \ \ ") ;
String [] pathElements = nextTemplateFileName . split (splitter) ;
String fileName = pathElements [pathElements. length - 1] ;
String templateName = (fileName . split (" \ \ . ")) [o] ;

Il load the template and convertit to gray
Mat img = Highgui . imread (nextTemplateFileName ,
Highgui . CV_ LOAD _ IMAGE_ GRA YSCALE) ;
Mat destination = new Mat (img . rows () , img . cols () , img . type ()) ;

llblur operation reduces noise and smoothing the
grayscale template image
lmgproc . GaussianBlur (img , destination , new Size (3 , 3) , 'J) ;

Il Threshold operation which converts a grayscale
template image into a binary template image
lmgproc . threshold (destination , destination , - 1 , 2 5 5 ,
lmgproc . THRESH_BINARY_INV + lmgproc . THRESH_OTSU);
Il add the processed template matrix to the template
table
templateTable . put (templateName , destination) ;

~oB * this funct i on t a kes as input the name of a graphica l

fi l e (PNG or JPEG)

.59 * and retu r ns a r ecord (an i n stance of

<code>Segmentedimage</code>)

1&0 * consist i ng of , 1) the bitma p o f the segmented image ,

and 2) the list of

161 * contour s (each contour bei ng a vector of points) .

162

63

161

166

167

168

:70

171

• 72

171

174

175

!76

!77

178

i79

180

:s1

_92

83

184

!85

'86

187

*

* @param inFile is image matrix

* @return
*/

p ublic Segmentedlmage segmentlmage (String inFile)
Mat segmentedBitMap = preprocesslmage (inFile) ;

// find the contours inside input image

Mat hierarchy = new Mat () ;
Arraylist<MatOfPoint> contours = new Arraylist<MatOfPoint> () ;
lmgproc . findContours (segmentedBitMap ,
contours , hierarchy , lmgproc . RET~ CCOMP ,
lmgproc . CHAIN_ APPROX_ NONE) ;
Arraylist<MatOfPoint> contoursToRemove = new
Arraylist<MatOfPoint> () ;
for (int idx=O; idx<contours . size () ; idx++) {

double [] contourHierarchy = hierarchy . get (o, idx) ;
if (contourHierarchy [3] ! =- 1) {

lmgproc . drawContours (segmentedBitMap , contours , idx , new

Scalar (255 , 255 , 255) , 2) ;
this . parentContrours . add (contours . get (idx)) ;
else {

contours ToRemove . add (contours . get (idx)) ;

for (MatOfPoint i : contoursToRemove) {
contours . remove (i) ;

· as return new Segmentedlmage (segmentedBitMap , contours) ;
"89 }

190

107

108

_91 /**
,,. * in this function , the feature of each contour inside

the i mage e x t r acted

~J * @param enc l os i ngB i tmap is the input i mage

9, * @param shap e i s the con t o u r i nside i nput i mage

~9, * @return the new contou r matri x that include the contour

featu r e such as star t coordinate (x , y) , width and he i ght .

% */
_g public Mat getShapeSubBitMap (Mat enclosingBitmap, MatOfPoint shape)

98

99 int w = lmgproc . boundingRect (shape) . width ;
no int h = lmgproc. boundingRect (shape) . height ;
2a1 int x = lmgproc . boundingRect (shape) . x ;

2"1 int y = lmgproc. boundingRect (shape) . y ;
ni System. out. println (x + " " + y + " " + w + " " + h + " ") ;
2J4· Range rowRange = new Range (y , y + h) ;
2 Range col Range = new Range (x , x + w) ;
2°6 return new Mat (enclosingBitmap , rowRange , colRange) ;

ni }

08

209 / * *
210 * This f unct i on res i ze t he contour s (sub ShapeB i t Ma p)

accordi ng to t he

Lll * template size by preservi ng the sca l e of the contours .

212 * @param subShapeBitMap is contour matrix

21• * @param templateWidth is width of template i mage

21 * @r eturn the new size of contour matrix

215 * /
216

21 public Size getResizeSize (Mat subShapeBitMap , double templateWidth

) {

18

219

220

221

222

223

double scale = (double) subShapeBitMap. width () / (double)

subShapeBitMap . height () ;
double newW = templateWidth ;
double newH = newW / scale ;
return new Size (newW , newH) ;

225

226

227

228

229

230

2 31

/**

* This function finds the matching between the contour

that was defined in

* <code>currentShapeSubBitMap</code> and the template

that was defined in

* <code>templates</code>

*
*/

232 public Arraylist<FindMatching> findMatching (Mat
currentShapeSubBitMap , Mat segmentedlnputBitMap , i nt shapeld)

213

23, Arraylist<FindMatching> returnValue = new Arraylist<> () ;
2.is Set<String> templateNames = templateTable . keySet () ;
236 lterator<String> templateNamelterator = templateNames . iterator () ;
237 Arraylist<MinMaxlocResult> results = new

Arraylist<MinMaxlocResult> () ;
238

2 39 while (templateNamelterator . hasNext ())
240 String templateName = templateNamelterator . next () ;
241

242

24'

245

24 fi

247

248

24 9

250

251

252

253

25,

255

256

257

258

Mat segmentedTemplateBitMap = templateTable . gel (templateName) ;
// resize the contour according to the template size

Size newSize = getResizeSize (currentShapeSubBitMap ,
segmentedTemplateBitMap . width ()) ;
Mat resizedlmage = new Mat () ;
lmgproc . resize (currentShapeSubBitMap , resizedlmage , newSize) ;
Mat resizedlmage1 = new Mat () ;
resizedlmage1 = resizedlmage ;

Mat biggerlmage , smallerlmage ;
if (resizedlmage1 . rows () > segmentedTemplateBitMap . rows () 1 1

resizedlmage1 . cols () > segmentedTemplateBitMap . cols ())
// the image is bigger

biggerlmage = resizedlmage1 ;
smallerlmage = segmentedTemplateBitMap ;

else {

// the template is bigger

109

110

2o0

261

2&2

263

2 64

2 65

206

268

2bY

27û

, 72

• 1 j

21,

276

271

218

279

230

;,g 1

232

283

2~~

28,

286

287

288

biggerlmage = segmentedîemplateBitMap ;
smallerlmage = resizedlmage1 ;

in t resulL cols = biggerlmage . cols () - smallerlmage . cols () + 1 ;
i nt resulL rows = biggerlmage . rows () - smallerlmage . rows () + 1 ;
Mat result = new Mat (resulL rows , resulL cols ,

Cvîype . CV_ 32FC1) ;
// these two method (Imgproc.TM_SQDIFF and

Imgproc . TM_SQDIFF_NORMED)give the minimum value

lmgproc . matchîemplate (biggerlmage , smallerlmage , result ,

lmgproc . TM_ CCORR_ NORMED) ;

Arraylist<Double> listOfMaxVal = new Arraylist<> () ;
//The functions minMaxLoc find the minimum and

maximum element values and their positions

MinMaxlocResult mmr = Core . minMaxloc (result) ;

results . add (mmr) ;
Point match Loc = mmr . max Loc ;
double maxValue = mmr . maxVal ;
listOfMaxVal . add (maxValue);
double globalMaximimum = MaximumValue (listOfMaxVal) ;

if (maxValue > O) {

FindMatching findM = new
FindMatching (segmentedîemplateBitMap , result , matchloc ,

maxValue ,
templateName) ;

returnValue . add (findM) ;

return returnValue ;

239 priva te double Maximum Value (Arraylist<Double> listOfMaxVal)

290

291 double maxValue = listOfMaxVal . get (0) ;

292

293

294

295

296

297

298

for (int s = O; s < listOfMaxVal . size (); s++) {
if (listOfMaxVal . get (s) > maxValue)

maxValue = listOfMaxVal . get (s) ;

return maxValue ;

299 / * *
300 * runMtchingDemo finds the template in original image
301 * @param inFile is original image

302 * @param templateFile is the template image
303 * @param outFile

304 * @param match_method

305 * /
306

307 public void runMatchingDemo (String inFile)

308

309

310

ll 1

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

System .out.println (" \nRunning Template Matching ");
System . loadlibrary (Core . NATIVE_ LIBRARY_ NAME) ;

// find the contours in the input image

Segmentedlmage segmentedlnputlmage = segmentlmage (inFile) ;
Mat segmentedlnputBitMap = segmentedlnputlmage . segmentedBitMap ;
Arraylist<MatOfPoint> contours = segmentedlnputlmage . contours ;

// let us now iterate over the different shapes/contours
in the input image , trying to find a match in each case

shapeCoordinates = new HashMap<String ,

Arraylist<CoordinatesOfContours>> () ;

for (int i = 0 ; i < contours . size (); i++) {
MatOfPoint currentShape = contours . get (i) ;
Mat currentShapeSubBitMap =

getShapeSubBitMap (segmentedlnputBitMap , currentShape) ;
int x = lmgproc . boundingRect (currentShape) . x ;
int y = lmgproc . boundingRect (currentShape) . y ;

111

11 2

328

330

3 31

332

335

36

137

338

339

340

341

34l

343

34l

34 6

31 7

34 8

349

350

]'j]

3'i2

Il Doing the template matching and returning an array

list of Mat with two values :

Ill .The template that was compared to

<code>currentShapeSubBitMap<lcode>

Il 2 . The result comparison of

<code>currentShapeSubBitMap<lcode> and

<code>segmentedTemplateBitMap<lcode>

Arraylist<FindMatching> results =
findMatching (currentShapeSubBitMap , segmentedlnputBitMap , i) ;
FindMatching bestResult = computeBestResult (results) ;

Il get the shape name

String shapeName = bestResult . getTemplateName () ;
Il add the current match to the appropriate list of

shapes
Arraylist<CoordinatesOfContours> sameShapeCoordinateArray =
shapeCoordinates . get (shapeName) ;

Il if array is empty (this is the first shape of this

type encountered in the figure) then initialize it

if (sameShapeCoordinateArray = null)

sameShapeCoordinateArray = new

Arraylist<CoordinatesOfContours> () ;
shapeCoordinates . put (shapeName , sameShapeCoordinateArray) ;

CoordinatesOfContours recognizedShapeCoordinates = new

CoordinatesOfContours (bestResult. getMatchloc () . x + x,
bestResult . getMatchloc () . y + y ,
bestResult . getSegmentedîemplateBitMap () . cols () ,
bestResult . getSegmentedîemplateBitMap () . rows () ,

nextld ()) ;

Il Just add the recognized square to the list if it

does not overlap any other

CalculateDistanceBetweenContours t = new

CalculateDistanceBetweenContours () ;
if (! t . isüverlapping (recognizedShapeCoordinates ,

6

6

< •

<6(

sameShapeCoordinateArray)) {

recognizedShapeCoordinates . setType (shapeName) ;
sameShapeCoordinateArray . add (recognizedShapeCoordinates) ;

Set<String> tmpKeySet = shapeCoordinates . keySet {) ;
for (String key : tmpKeySet) {

Arraylist<CoordinatesOfContours> tmpCordinates =
shapeCoordinates . get (key) ;
for (CoordinatesOfContours coordinate : tmpCordinates) {

System . err . println (coordinate) ;

,6R FindMatching computeBestResult (Arraylist<FindMatching> results) {

< 4

FindMatching bestResult = null ;
for (FindMatching currentResult : results) {

if (bestResult= null 11
currentResult . getMaxValue () >bestResult . getMaxValue ()) {

bestResult = currentResult ;

return bestResult ;

113

114

package CMMNElementsketchRecognitionSystem ;

import org . opencv . core . Mat ;
import org . opencv . core . Point ;

6 /** This class represents :

* 1 . The templates that were already converted from string

to Mat and stored in <code>segmentedTemplateBitMap</code>

* 2. The result that was already received from template

matching method in order to compare the template and contour

together

9 * 3 . The match location and maximum value for each result

that were already defined by the <code>matchLoc</code> and

<code>maxValue</code>

10 * 4 . The <code>idTemplate</code> is specified for

identifying each template

* @author SaraAmirsardari

12 *
lJ */

1"

1, public class FindMatching {

16

1" Mat segmentedTemplateBitMap ;

1A Mat result ;

, , Point match Loc ;

20 double maxValue ;

String templateName ;

public FindMatching (Mat segmentedTemplateBitMap , Mat result , Point

match Loc , double maxValue , String templateName) {

2, this . segmentedTemplateBitMap = segmentedTemplateBitMap ;

2, this . result = result ;

26 this . matchloc=matchloc ;

r this . maxValue=maxValue ;

2a this . templateName=templateName ;

29

30

public void setSegmentedTemplateBitMap (Mat

segmentedTemplateBitMap) {

this . segmentedTemplateBitMap = segmentedTemplateBitMap ;

public Mat getSegmentedTemplateBitMap ()
return segmentedTemplateBitMap ;

public void setResult (Mat result)
this . result = result ;

public Mat getResult () {
return result ;

public void setMatchloc (Point matchloc)
this . matchloc = match Loc ;

public Point getMatchloc ()
return match Loc ;

publ ic void setMaxValue (Double maxValue)
this . maxValue = maxValue ;

}

public Double getMaxValue () {
return maxValue ;

public void setTemplateName (String templateName)

this . templateName=templateName ;
}

public String getTemplateName ()
return templateName ;

11 5

116

package CMMNElementsketchRecognitionSystem ;
import java . util . Arraylist ;

/**

* This class calculates the distance between each shape and
the rest of the shapes in input image
* @author SaraAmirsardari
*/

public class CalculateDistanceBetweenContours

/**

1. * This method calculate the distance belween two shapes
12 * @param sl is the first shape to calculate .

* @param s2 is the second shape to calculate .
11 * @return the distance between shapes .
1, * /
16

18

1~

zo

23

2

public double calculateDistance (CoordinatesOfContours s1 ,
CoordinatesOfContours s2) {

double distance = O;

double dx = s1 . getX () - s2 . getX () ;
double dy = s1 . getY () - s2 . getY () ;
distance = Math . sqrt (dx*dx + dy• dy) ;
return distance ;

26 / * *
* This me~hod Verifies if the shape is over l apping with
any other shape in the list

28 * @param sis the shape to compare if it is over l apping .
* @param list is the list of all other shape that will
compare to shape .

30 * @return True if the shape overlaps any other shapes ,
false otherwise .

J. * /
32

Ji public boolean isOverlapping (CoordinatesOfContours s ,
Arraylist<CoordinatesOfContours> lis!) {

<6

41

4

boolean overlap = false ;
for (int i = ; i < list.size (); i++) (

// define a threshold for specifying the overlap
distance between to shapes
double threshold = 7 ;

if (calculateDistance (s , list. get (i)) <= threshold) {
overlap = true ;
return overlap ;

return overlap ;

Figure a.4 Represent ' coordinate ' java class

package CMMNElementsketchRecognitionSystem ;

/**

4 * Interface for all the coordinates .
* @author SaraAmirsardari
*/

public interface Coordinates

public double getX () ;
public double getY () ;
public double getWidth () ;
public double ge!Height () ;

11 7

118

package CMMNElementsketchRecognitionSystem ;

import org . opencv . core . Point ;

/**

~ This method gets and sets the start poi nt and end po i nt of

each contour edge

* @author SaraAmirsardari

*
*/

public class CoordinatesOfContourEdge
private Point startline ;
private Point endline ;

public Point getStartline ()
return startline ;

public void setStartline (Point startline)
this . startline = startline ;

public Point getEndline ()
return endline ;

public void setEndline (Point endline)
this . end li ne = endline ;

package CMMNElementsketchRecognitionSystem ;
2

3 import org . opencv . core . Point ;
~

5 public class CoordinatesOfContours implements Coordinates {
6

7 private double X ;

a private double y ;
9 private double width ;

10 private double height ;
11

12

13

private int id ;
private String type =

Jq /**

"" . '

1s * This class defines the coordinate of shapes inside the

input image

16 * /
17 public CoordinatesOfContours (double x , double y , double width ,

double height , int id) {
18 this . X = X ;

19 this . y = y ;
20 this . width = width ;
21 thi s . height = height ;
22 this . id = id ;
23

2q

25 p ublic double getX ()
26 return X;

27

28

29 p ublic double getY () {
30 return y ;
3!

32

33 public double getWidth ()
3q return width ;
35

36

37 public double getHeight () {

119

120

38 return height ;
39 }

~o public int getid ()
return id ;

42 }

41

44 public String getType ()
45 return type ;
,6

48 public void setType (String type)
qq this . type = type ;
50

2 public String toString () {
53 return " Coordinate : (" +this .x+","+this . y+ ") ,

Width : "+this . width+ ", Height: " +this . height ;

,6 public CoordinatesOfContourEdge getTopline () {
, 1 CoordinatesOfContourEdge result = new CoordinatesOfContourEdge () ;
s0 result . setStartline (new Point (x , y)) ;
59 result . setEndline (new Point (x+width , y)) ;
60 return result ;

6.

62

51 public CoordinatesOfContourEdge getBottomline () {
64 CoordinatesOfContourEdge result = new CoordinatesOfContourEdge () ;
65 result . setStartline (new Point (x , y+height)) ;
6(; result . setEndline (new Point (x+width , y+height)) ;
6' return result ;
68

69

10 public CoordinatesOfContourEdge getleftline () {

CoordinatesOfContourEdge result = new CoordinatesOfContourEdge () ;
12 result . setStartline (new Point (x , y)) ;
n result . setEndline (new Point (X, y+height)) ;
74 return result ;
7'

public CoordinatesOfContourEdge getRightline () {
CoordinatesOfContourEdge result = new CoordinatesOfContourEdge () ;
result . setStartline (new Point (x+width , y)) ;

H }

result . setEndline (new Point (x+width , y+height)) ;
return result ;

121

APPENDICE B

COMPOSITE SHAPE RECOGNITION JAVA CLASSES

124

package CMMNElementsketchRecognitionSystem ;

/**

* This class gets and sets the coordinates of lines

* @author SaraAmirsardari

6 */
public class Coordinatesüflines {

10 private double x1 ;
private double y1 ;

12 private double x2 ;
13 private double y2 ;
14 private int id ;

15

16 /* *
t" * This class defines the coordinate of each line inside

the input image

18 * /
1,

20 public Coordinatesüflines (double x1 , double y1 , double x2 , double

y2 , int id) {

2

22 this . x1 = x1 ;

23 this . y1 = y1 ;
,, this . x2 = x2 ;

2 this . y2 = y2 ;

26 this . id = id ;
27 }

28

29 public double getX1 ()

30 return x1 ;

3.

32

33 public double getY1 ()

31, return y1 ;

35

36

3' public double getX2 () {

return x2 ;

public double getY2 ()
return y2 ;

public int getid ()

return id ;

public String toString () {
return " , r p, : ("+this .x1 +", "+this . y1 +") , erd

n : ("+this . x2+"," +this . y2+") ";

125

126

package CMMNElementsketchRecognitionSystem ;
/**

* This class get the input image and delete all closed
contour
* and start recognizing the contours which include lines .

, * the OpenCV library is used in order to detect lines
6 * @author SaraAmirsardari

*
* /

9

public class Detectline {

12 priva te Arraylist<CoordinatesOflines> ResultOflines=new Arraylist<> () ;
1 J

public Arraylist<CoordinatesOflines> getResultOflines () {
15

1 b return ResultOflines ;
j1 }

18

1y private Mat initiallmage ;
20 priva te List<MatOfPoint> shapesToRemove ;
2

22

21 public Mat getlnitiallmage ()
24 return initiallmage ;
25

lF,

r public void setlnitiallmage (Mat initiallmage)
a this . initial Image = initiallmage ;

29

30

n public List<MatOfPoint> getShapesToRemove ()
32 return shapesToRemove ;
33 }

34

3~ public void setShapesToRemove (List<MatOfPoint> shapesToRemove)
l6 this . shapesToRemove = shapesToRemove ;
J1

38 / * *

39 * This method start defining the bounding box around each

closed shape

40 * and then using threshold in order to increase the area
of each closed shape

41 * @param shape

42 * I
43 priva te void removeShape (MatOfPoint shape) {
44

45

46

47

48

49

50

5:

52

53

54

55

56

51

58

59

60

int x = lmgproc . boundingRect (shape) . x;
int y = lmgproc . boundingRect (shape J . y ;
int width = lmgproc . boundingRect (shape) . width ;
int height = lmgproc . boundingRect (shape) . height ;
MatOfPoint mpoints = new MatüfPoint (J ;
double threshold = 8 ;

List<Point> points = new Arraylist<Point> (J ;
points . add (new Point (x- threshold , y- threshold)) ;
points . add (new Point (x+width+threshold , y- threshold)) ;
points . add (new Point (x+width+threshold , y+height+threshold)) ;
points . add (new Point (x- threshold , y+height+threshold)) ;

mpoints . fromlist (points) ;
llpaint al! closed contours by black color

Core . fillConvexPoly (this . initiallmage , mpoints , new Scalar (o, o , o)) ;

61 publi c void detectline () {
62

63

64

65

66

68

69

70

71

this . Resultüflines = new Arraylist<> () ;
for (MatüfPoint shape : this . shapesîoRemove) {

removeShape (shape) ;

Il image - 8 - bit , single-channel binary source

image . The image may be modi f ied by the function .

Il lines - Output vector of lines. Each line is

represented by a 4-element vector (x_ l, y_ l , x_ 2 , y_ 2) ,

Il where (x_l,y_ l) and (x_ 2 , y_ 2) are the ending

points of each detected l i ne segment .

Il rho : The resolution of the parameter r in pixels .

We use 1 pixel .

127

128

72

73

7,

15

76

g_

97

38

39

90

9

93

94

95

96

97

98

99

.. JC

Il theta : The resolution of the parameter theta in

radians. We use 1 degree (CV_PI/180)

// threshold : The minimum number of intersections to

"detect" a line

Il minLinLength : The minimum number of points that

can forma line. Lines with less than this number of

points are disregarded.

// maxLineGap : The maximum gap between two points to

be considered in the same line .

Mat line = new Mat () ;

i nt threshold = SketchRecognition . LIN~ DETECTION_ TRESHOLD ;
int minlinelength =SketchRecognition . MIN_ LINE_ LENGTH ;
int maxlineGap =Sketch Recognition . MAX_ LI NE_ GAP ;
int id=O;
lmgproc . Canny (this . initiallmage , this . initiallmage , 50 , 200) ;

lmgproc . HoughlinesP (this . initial Image , line , 1 , Math . Pl / RL ,

threshold , minlinelength , maxlineGap) ;

for (int i = O; i < line.cols () ; i++)
double [] val = line.get (O, i) ;
double x1 = val [OJ,

y1 = val [l J,
x2 = val [2],
y2 = val [3] ;

CoordinatesOflines recognizeline = new CoordinatesOflines (x1 ,
y1 , x2 , y2 , id) ;
CalculateDistanceBetweenlines linedistance = new

CalculateDistanceBetweenlines () ;
linedistance . merginglines (recognizeline , ResultOflines) ;

package CMMNElementsketchRecognitionSystem ;

2 import java . util . Arraylist ;

3 import java . util . Collections ;

5 /**

G * This c l ass calculates the d i stance between each line and

the rest of the lines in input image

7 * @author SaraAmirsardari

8 */

9

10 public class CalculateDistanceBetweenlines {

12 / * *
13 * This method ca l culate the distance between two lines .

14 * @param linel is the first line to calculate .

15 * @param line2 is the second line to calculate .

16 * @return
17 */

18 public double calculateDistance (Coordinatesüflines line1 ,

Coordinatesüflines line2) {

19

20

21

22

23

14

26

27 / * *

double distance = 0 ;

double dx = line1 . getX1 () - line2 . getX1 () ;

double dy = line1 . getY1 () - line2 . getY1 () ;

distance = Math . sqrt (dx* dx + dy* dy) ;

return distance ;

28 * This method merges the lines according to their distance

29 * @param line is the first line to compare its distance

with the rest of line in list

30 * @param list is the list of all lines in input image

31 * this method verifies:

32 * first : the distance of the two lines that is less that

threshold or not ,

33 * second : if it is less than the threshold , it starts

merging two lines based on

34 * the minimum start point of lines and maximum end point

129

130

of lines

35 * this method returns the longest line

36 * /
J, public void merginglines (CoordinatesOflines line ,

Arraylist<CoordinatesOflines> list) {
18

39 Arraylist<CoordinatesOflines> linesToRemove=new Arraylist<> () ;
40 for (int i = 0 ; i < list. size () ; i++) {

42

t, 1

44

16

47

t, 8

49

,o

,2

53

)0

,,
,a

bO

62

63

64

65

66

67

08

69

// define a threshold for specifying the standard

distance between independent lines

double threshold = 12 ;
i nt id=O;

if (calculateDistance (line , list. get (i)) <= threshold) {

id++;
Arraylist<Double> coordinateX=new Arraylist<> () ;
coordinateX . add (line . getX1 ()) ;
coordinateX . add (list . get (i) . getX1 ()) ;
coordinateX . add (line . getX2 ()) ;
coordinateX . add (list . get (i) . getX2 ()) ;
Double linex1 = Collections . min (coordinateX) ;
Double linex2 = Collections . max (coordinateX) ;

Arraylist<Double> coordinateY=new Arraylist<> () ;
coordinateY . add (line . getY1 ()) ;
coordinate Y . add (list . get (i) . getY 1 ()) ;
coordinateY . add (line . getY2 ()) ;
coordinateY . add (list . get (i) . getY2 ()) ;
Double liney1 = Collections . min (coordinateY) ;
Double liney2 = Collections . max (coordinateY) ;

CoordinatesOflines newline = new CoordinatesOflines (linex1 ,
liney1 , linex2 , liney2 , id) ;

line = newline ;
linesToRemove . add (list. get (i)) ;

list. add (line) ;
for (CoordinatesOflines lineToRemove linesToRemove) {

list . remove (lineToRemove) ;

package CMMNElementsketchRecognitionSystem ;

import org . opencv . core . Point ;

/**

* This class gets and sets the coordinate of shape and

coordinate of line as well as the distance between them

* @author SaraAmirsardari

*

*/

public class DistanceFromContourToline
CoordinatesOfContours shape ;
Point linePoint ;
double distance ;

public double getDistance ()
return distance ;

}

public void setDistance (double distance) {
this . distance = distance ;

public CoordinatesOfContours getShape () {
return shape ;

4 public void setShape (CoordinatesOfContours shape)
this . shape = shape ;

public Point getlinePoint ()
return linePoint ;

o public void setlinePoint (Point linePoint)
this . linePoint = linePoint ;

131

132

package CMMNElementsketchRecognitionSystem ;
/**

* This class calculates the distance of start point and end
point of each line with two specified shapes(task and
sentry) .
* Hence , we need to get the coordinates of lines from
<code>detectLine</code> classas well as

s * the coordinates of tasks and sentries from
<code>WriteXmlFile</code> class

6 * @author SaraAmirsardari

*
*/

public class Connecter {

1, priva te Arraylist<CoordinatesOflines> resultOflines= new Arraylist<> () ;
12 private Arraylist<CoordinatesOfContours > resultOfTasks= new

Arraylist<> () ;
11 priva te Arraylist<CoordinatesOfContours > resultOfSentries= new

Arraylist<> () ;
14

15

16 public void setResultOflines (Arraylist<CoordinatesOflines>
resultOflines) {

this . resultOflines = resultOflines ;
18

19 public Arraylist<CoordinatesOflines> getResultOflines () {
2 return resultOflines ;

22

21 public void setResultOfTasks (Arraylist<CoordinatesOfContours>
resultOfT asks) {

,4 this . resultOfTasks = resultOfTasks ;

26 public Arraylist<CoordinatesOfContours> getResultOfTasks () {

20 return resultOfTasks ;
,g }

30

L publ ic void setResultOfSentries (Arraylist<CoordinatesOfContours>

32

33

34

resultOfSentries) {
this . resultOfSentries = resultOfSentries ;

35 public Arraylist<CoordinatesOfContours> getResultOfSentries () {
36

37

38

39

return resultOfSentries ;

40 /**
4' * This method calls the

<code>findConnexionForPoint</code> method in order to

calcula te

42 * the distance of start point and end point of line with

the s pecified sha pes

43 * @param line is the coordinate of each line

44 * @return the result which includes the list of shapes

connected to the line

45 * /
46

4-1 public List<CoordinatesOfContours>

getCloserShapeForline (CoordinatesOflines line) {

48

49

50

51

52

53

54

55

56

57

58

59

60

/**

*

List<CoordinatesOfContours> result= new Arraylist<> () ;
result . add (findConnexionForPoint (new Point (l ine . ge!X1 () ,
line . getY1 ()))) ;
result . add (findConnexionForPoint (new Point (line . ge!X2 () ,
line . getY2 ()))) ;
return result ;

* @param pis one of the start point or end point of line

* this method calculate the distance of start point or

end point of line with the specified shapes

* @return the minimum distance of each start point or end

point of line wi t h the specified shapes

*/

133

134

6, public CoordinatesOfContours findConnexionForPoint (Point p) {
6 List<DistanceFromContourToline> distances = new Arraylist<> () ;
63 for (CoordinatesOfContours task : this . resultOffasks) {
o~ DistanceFromContourToline distance = new

DistanceFromContourToline () ;
os distance . setShape (task) ;
66 distance . setDistance (computeDistance (task , p)) ;
61 distances . add (distance) ;
58

69

70

73

7~

76

77

78

90

3~

92

93

B5 / * *

for (CoordinatesOfContours sentry : this . resultOfSentries) {
DistanceFromContourToline distance = new

DistanceFromContourToline () ;
distance . setShape (sentry) ;
distance . setDistance (computeDistance (sentry , p)) ;
distances . add (distance) ;

DistanceFromContourToline minimalDistance = null ;

for (DistanceFromContourToline distance : distances) {

if (minimalDistance = null 1 1
distance . getDistance () <minimal Distance . getDistance ()) {

minimalDistance = distance ;

return minimalDistance . getShape () ;

96 * This class computes the distance of start point and end

point of line with two

s~ * edges of closed counter that can be vertical or

horizontal

98 * /
39 priva te double computeDistanceToline (Point pointToCompute ,

CoordinatesOfContourEdge contourEdge) {
90

n
93

double threshold = 5 ;

Point lineStart = contourEdge . getStartline () ;
Point li ne End = contourEdge . getEndline () ;

94

95

96

97

98

99

100

101

102

101

04

105

06

:o /
.08

09

:11

.12

113

• 14

:1,

'16

'17

.18

119

.20

'21

122

123

.24

bool ean isHorizontal = (lineStart . y == lineEnd . y) ;
if (isHorizontal) {

//It is a horizontal line , Make sure that lineStart

has smaller x

if (lineStart . x>lineEnd . x) {
Point p = lineStart ;
lirieStart = lineEnd ;
lineEnd = p ;

//If the point is not between the start point of line

and end point of line then return infinite value

if (pointîoCompute . x<lineStart . x- threshold 1 1
pointî oCompute . x>lineEnd . x+threshold) {

return Double . MAX_ VALUE ;
}else {

//If the point is between the start point of line

and end point of line then calculate the distance

return Math . abs (lineStart . y- pointîoCompute . y) ;

else {

//It is a vertical line , Make sure that lineStart has

smaller y

if (lineStart . y>lineEnd . y) {
Point p = lineStart ;
lineStart = lineEnd ;
lineEnd = p ;

//If the point is not between the start point of line

and end point of line then return infinite value

if (pointîoCompute . y<lineStart . y- threshold 1 1
pointîoCompute . y>lineEnd . y+threshold) {

return Double . MAX_ VALUE ;
}else {

//If the point is between the start point of line

and end point of line then calculate the distance

return Math . abs (lineStart . x- pointîoCompute . x) ;

135

136

public double computeDistance (CoordinatesOfContours shape , Point p) {

double result = Double . MAX_ VALUE ;
List<Double> distances = new Arraylist<> () ;

distances . add (new Double (computeDistanceToline (p ,
shape . getTopline ()))) ;
distances . add (new Double (computeDistanceToline (p ,
shape . getBottomline ()))) ;
distances . add (new Double (computeDistanceToline (p ,
shape . getleftline ()))) ;
distances . add (new Double (computeDistanceToline (p ,
shape . getRightline ()))) ;

for (Double distance : distances) {
if (distance . double Value () < result)

result = distance . double Value () ;

return result ;

package CMMNElementsketchRecognitionSystem ;

import org . opencv . core . Point ;

/**

* This class gets and sets the coordi nate of lines and the
shapes that are connected to lines
* @author SaraAmirsardari

*
*/

public class ConnectorResult

CoordinatesOfContours shape ;
Point linePoint ;

public ConnectorResult (CoordinatesOfContours shape , Point linePoint) {
this . shape=shape ;
this . linePoint=linePoint ;

o public CoordinatesOfContours getShape ()

.4

return shape ;
}

public void setShape (CoordinatesOfContours shape)
this . shape = shape ;

public Point getlinePoint ()
return linePoint ;

}

public void setlinePoint (Point linePoint)
this . linePoint = linePoint ;

137

APPENDICEC

SEMANTIC CONNECTION RECOGNITION JAVA CLASSES

140

package CMMNElementsketchRecognitionSystem ;
/**

* This class start writhing the XML file according to the
structure of CMMN modeler
* wh ich is able to i mport the XML file inside the CMMN
Modeler software

~ * @author SaraAmirsardari

6 *
* /

public class WriteXmlFile
y

1 o priva te Map<CoordinatesOfContours , CoordinatesOfContours>
connectionsMap = new HashMap<> () ;
priva te Map<CoordinatesOfContours , CoordinatesOflines> shapesîolines
= new HashMap<> () ;

• i priva te Arraylist<CoordinatesOfContours> resultOfîasks= new

Arraylist<> () ;
•• public Arraylist<CoordinatesOfContours> getResultOfîasks () {

return resultOfîasks ;
16

17

1 a priva te Arraylist<CoordinatesOfContours> resultOfSentries= new

Arraylist<> () ;
19 public Arraylist<CoordinatesOfContours> getResultOfSentries () {

return resultOfSentries ;

21 private Arraylist<CoordinatesOflines> resultOflines= new Arraylist<>() ;
public Arraylist<CoordinatesOflines> getResultOflines () {

return resultOflines ;

9 public void setResultOflines (Arraylist<CoordinatesOflines>
resultOflines) {

1r this . resultOflines = resultOflines ;

3

12

33 public void WriteXml (TemplateMatchingDemo md)
34

35

36

37

38

39

40

41

42

41

44

45

46

47

48

49

50

52

53

54

55

56

57

58

59

60

6.

62

63

64

65

66

6"

68

69

try {

DocumentBuilderFactory docFactory =
DocumentBuilderFactory . newlnstance () ;
DocumentBuilder docBuilder = docFactory . newDocumentBuilder () ;

// root elements
Document doc = docBuilder . newDocument () ;
doc . setXmlStandalone (true) ;

Element rootElement = doc . createElement(" cmmn : de finitions ") ;
doc . appendChild (rootElement) ;

// staff elements

Element staff1 =
doc. createElement (" cmmn : caseFileitemDefini tion ") ;
rootElement . appendChild (staff1) ;

Element staff = doc . createElement (" cmmn : case ") ;
rootElement . appendChild (staff) ;

Element staff2 = doc . createElement (" cnunndi : CMMNDI ") ;
rootElement . appendChild (staff2) ;

//set attribute for root element

Attr defv1 = doc . createAttribute (" author ") ;
defv1 . setValue (" ") ;
rootElement . setAttributeNode (defv1) ;

Attr defv2 = doc . createAttribute (" exporter ");
defv2 . setValue (" CMMN Modeler ") ;
rootElement . setAttributeNode (defv2) ;

Attr defv3 = doc . createAttribute (" id ") ;
defv3 . setValue (" _ bcc573eb-adf3-4 fb4-abb5-434ae50ac5ce ") ;
rootElement . setAttributeNode (defv3) ;

141

142

70

?l

7'

76

r

7&

98

)0

9.!

36

97

98

Attr defv4 = doc . createAttribute (" name ") ;

defv4 . setValue (" Drawing l ") ;

rootElement . setAttributeNode (defv4) ;

Attr defv5 = doc . createAttribute (" targetNanespace ") ;

defv5 . setValue (" http : //www . trisotech . com/cmmn/def ini tians

/ bcc573eb-adf3-4fb4-abb5-434ae50ac5ce ") ;

rootElement . setAttributeNode (defv5) ;

Attr defv6 = doc . createAttribute (" xmins ") ;

defv6 . setValue (" h t tp : / /www . Lr isotech. corn/ cmmn/def in.1 t.1ons

/ bcc573eb- adf3 - 4fb4-abb5 - 434ae50ac5ce ");

rootElement . setAttributeNode (defv6) ;

Attr defv7 = doc . createAttribute (" xmlns : de ") ;

defv7 . setValue ("http : //www . omg . org / spec/CMMN/ 2015 l l 09/DC "

) ;

rootElement . setAttributeNode (defv7) ;

Attr defv8 = doc . createAttribute ("xrnlns : tr_sofeed ") ;

defv8 . setValue (" ht tp : / /trisotech . corn/ feed ") ;

rootElement. setAttributeNode (defv8) ;

Attr defv9 = doc . createAttribute (" xrnlns : triso ") ;

defv9 . setValue (" ht tp : / /www . trisotech . corn/2015/triso/rnodel

~ng ") ;

rootElement . setAttributeNode (defv9) ;

Attr defv10 = doc . createAttribute (" xrnl n s : di ") ;

defv10 . setValue (" http : //www . orng . org/ spec/CMMN/20151109/DI

rootElement . setAttributeNode (defv10) ;

99

100

101

,02

"03

105

,06

·o,
:os

109

110

111

112

_1 J

114

• 15

-16

111

118

119

120

:21

122

123

12'i

125

:26

Attr defv11 = doc .createAttribute (" xmlns : rss ");

defv11 . setValue ("http : //purl . org/rss/2.0/ ") ;
rootElement . setAttributeNode (defv11) ;

Attr defv12 = doc . createAttribute (" xmlns : cmmndi ") ;

143

defv12 . setValue (" http://www. omg. org/ spec/CMMN/20151109/CM
MNDI ") ;
rootElement. setAttributeNode (defv12) ;

Attr defv13 = doc . createAttribute (" xmln s : tris ob ") ;

defv13 . setValue (" http : //www. trisotech . com/2014 /triso/bpmn
");

rootElement . setAttributeNode (defv13) ;

Attr defv14 = doc . createAttribute (" xmlns : cmmn") ;

defv14 . setValue (" http : //www. omg. org/ spec/CMMN/20151109/MO
DEL ") ;

rootElement. setAttributeNode (defv14) ;

Attr defv15 = doc . createAttribute (" xmlns : xsi ") ;

defv15 . setValue (" http://www. w3 . org/2001/XMLSchema- instanc
e ") ;

rootElement. setAttributeNode (defv15) ;

Attr defv16 = doc . createAttribute (" xmlns : trisocmmn");

defv16 . setValue (" http : //www . trisotech. com/2014 /triso/ cmmn
Il) ;

rootElement. setAttributeNode (defv16) ;

//finish set attribute for root element

// get the coordinate of contours which are matched
with the template ' s images

144

.2"

.z

10

JI

l'

33

35

.1h

: 38

J9

:42

45

46

• 1

.,a

.4 9

Sv

• 1

. 52

, =;3

Arraylist<CoordinatesOfContours> Filelist =
md . getlistOfCoordinatesOfShapesOfType (" fi _e ") ;

if (Filelist= null) Filelist = new

Arraylist<CoordinatesOfContours> () ;

Arraylist<CoordinatesOfContours> squarelist =
md . getlistOfCoordinatesOfShapesOfType (" tas k") ;

if (squarelist= null) squarelist = new

Arraylist<CoordinatesOfContours> () ;

this . resultOfTasks=squarelist ;

Arraylist<CoordinatesOfContours> Sentrieslist =
md . getlistOfCoordinatesOfShapesOfType ("sentry ") ;

if (Sentrieslist= null) Sentrieslist = new

Arraylist<CoordinatesOfContours> () ;

Arraylist<CoordinatesOfContours> Eventlist =
md . getlistOfCoordinatesOfShapesOfType ("even t ") ;

if (Eventlist==null) Eventlist = new

Arraylist<CoordinatesOfContours> () ;

// set attribute to staffl
element(caseFileitemDefinition)
for (CoordinatesOfContours recognizefile : Filelist) {

writeFileltemDefinition (doc , staff1 , recognizefile) ;

// set attribute to staff element(case)
Attr attr = doc . createAttribute (" id ") ;

attr . setValue ("Case 3b0a4c03-c2 71-4 7 c3-9e8 7-30c5 7c034 fdb ")

staff . setAttributeNode (attr) ;

Attr attr1 = doc . createAttribute (" r, ame ") ;

attr1 . setValue (" Page 1 ") ;
staff . setAttributeNode (attr1) ;

155

156

157

'58

159

160

l 51

l 62

163

164

l 65

l 66

167

168

169

170

171

172

173

: 7<1

175

176

177

178

179

180

è81

.82

183

• 84

18S

Il set attribute to casefilemodel
Element casefilemodel =

doc . createElement (" cmmn : caseFileModel ") ;
staff . appendChild (casefilemodel) ;

for (CoordinatesOfContours recognizefile : Filelist) {

writeFileltem (doc , casefilemodel , recognizefile) ;

Element caseplanmodel =

doc . createElement (" cmmn : caseP lanModel ") ;
staff . appendChild (caseplanmodel) ;

Il set attribute to caseplanmodel element
Attr caseplan = doc . createAttribute (" id ") ;

145

caseplan . setValue (" _3b0a4c03-c271-4 7c3-9e87-30c57c034 fdb ")

caseplanmodel . setAttributeNode (caseplan) ;

Attr caseplan1 = doc . createAttribute (" au toComplete ") ;
caseplan1 . setValue (" false ") ;
caseplanmodel . setAttributeNode (caseplan1) ;

Attr caseplan2 = doc. createAttribute (" name ") ;
caseplan2 . setValue (" Page 1 ") ;
caseplanmodel . setAttributeNode (caseplan2) ;

Il calculate if there is an intersection between
square and diamond or not

Arraylist <CoordinatesOfContours> intersectionSentries= new

Arraylist<> () ;

for (CoordinatesOfContours coordinatesOfSquare : squarelist)
Il define the list of sentries that have
intersection with squares

for (CoordinatesOfContours coordinatesOfSentries
Sentrieslist) {

146

;1

98

- ~o
91

92

93

99

200

•• 1

201

ZJ',

206

2 ~

2?9

210

.11

212

13

21 s

21'>

216

; 1 7

if (CalculatelntersectionArea . recognizelntersection (coordinates
OfSentries , coordinatesOfSquare)) {

intersectionSentries. add (coordinatesOfSentries) ;

this . resultOfSentries=intersectionSentries ;
writeplanltem (doc , caseplanmodel , coordinatesOfSquare ,

intersectionSentries , null) ;

//def i ne the connecter and the shapes connected to i t

Connector connector=new Connector () ;
connector . setResultOflines (this . resultOflines) ;
connector . setResultOfSentries (this . getResultOfSentries ()) ;
connector. setResultOffasks (this . getResultOffasks ()) ;

for (CoordinatesOflines line : this . resultOflines) {

List<CoordinatesOfContours> shapes =
connector. getCloserShapeForline (line) ;

connectionsMap . put (shapes . get (o) , shapes . get (1)) ;

connectionsMap . put (shapes . get (1) , shapes . get (o)) ;

shapesTolines . put (shapes . get (0), line) ;
shapesTolines . put (shapes . get (1) , line) ;

//writhing planitem element
for (CoordinatesOfContours coordinationEvent : Eventlist)

writeplanltem (doc , caseplanmodel , null , null ,

coordinationEvent) ;

//writhing Sentry element
for (CoordinatesOfContours coordinationSentries
this . resultOfSentries) {

writeSentry (doc , caseplanmodel ,
coordinationSentries , connectionsMap . get (coordinationSentries) , sh

218

219

220

221

222

223

224

225

226

227

228

229

230

231

732

233

234

735

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

apesTolines . get (coordinationSentries)) ;

//writhing Event element

for (CoordinatesOfContours coordinationEvent : Eventlist)
writeEvent (doc , caseplanmodel , coordinationEvent) ;

//writhing Task element

for (CoordinatesOfContours coordinationSquare : squarelist)
writeTask (doc , caseplanmodel , coord inationSquare) ;

//writhing CMMN Diagram

Element CMMNDiagram =
doc . createElement (" cmmndi : CMMNDiagram ") ;

staff2 . appendChild (CMMNDiagram) ;

// set attribute

Attr Diagramv1 = doc . createAttribute (" id ") ;

147

Diagramv1 . setValue (" 180025a0- fl 2 6- 4 8 05 - 8 68 9- 7ee0a0f3cl 90
") ;

CMMNDiagram . setAttributeNode (Diagramv1) ;

Attr Diagramv2 = doc . createAttribute (" name ") ;

Diagramv2 . setValue (" Page 1") ;
CMMNDiagram . setAttributeNode (Diagramv2) ;

Attr Diagramv3 = doc . createAttribute (" sharedStyle ") ;

Diagramv3 . setValue ("cbla4 6a0-82e9 - 4cl4-84 95 - 8d3f5006le96 "
) ;

CMMNDiagram . setAttributeNode (Diagramv3) ;

//writhing the size as child of CMMN Diagram

Element cmmndiSize = doc . createElement (" cmmndi : Size ") ;

CMMNDiagram . appendChild (cmmndiSize) ;

148

251

252

2 3

255

2 56

2'.P

,8

2 ,9

260

261

52

263

&4

265

20b

269

270

271

274

216

27"

278

279

230

731

282

291

28',

// set attribute
Attr Sizev1 = doc . createAttribute (" height ") ;

Sizev1 . setValue (" lOSO . O") ;
cmmndiSize . setAttributeNode (Sizev1) ;

Attr Sizev2 = doc . createAttribute (" width ") ;

Sizev2 . setValue (" 14 8 5 . o ") ;

cmmndiSize . setAttributeNode (Sizev2) ;

//writhing the shape as child of CMMN Diagram

Element CMMNShape = doc . createElement (" cmmndi : CMMNShape ") ;

CMMNDiagram . appendChild (CMMNShape) ;

// set attribute
Attr Shapev1 = doc . createAttribute (" cmmnElementRef ") ;

Shapev1 . setValue (" _ 3b0a4c03 - c271 - 4 7c3 - 9e87 - 30c57c034fdb ")

CMMNShape . setAttributeNode (Shapev1) ;

Attr Shapev2 = doc . createAttribute (" id ") ;

Shapev2 . setValue (" d8d8le5a- d2 65 - 4bal - 9f 94 - 4b0d4 70 374 51 ")

CMMNShape . setAttributeNode (Shapev2) ;

Element dcBounds = doc . createElement (" de : Bounds ") ;

CMMNShape . appendChild (dcBounds) ;

Attr boundv1 = doc. createAttribute (" he igh t ") ;

boundv1 . setValue (" 600 . o ") ;

dcBounds . setAttributeNode (boundv1) ;

Attr boundv2 = doc . createAttribute (" width ");

boundv2 . setValue (" 800 . O") ;
dcBounds . setAttributeNode (boundv2) ;

Attr boundv3 = doc . createAttribute (" x ") ;

286

287

288

289

290

291

292

293

29l

295

296

297

298

299

300

301

302

303

304

305

306

307

108

309

310

311

312

313

3H

315

)16

311

318

319

320

boundv3 . setValue (" 3 4 . o ") ;

dcBounds . setAttributeNode (boundv3) ;

Attr boundv4 = doc . createAttribute (" y ") ;

boundv4 . setValue (" 34 . o") ;
dcBounds . setAttributeNode (boundv4) ;

Element cmmndiCMMNLabe =
doc . createElement (" cmmndi : CMMNLabel ") ;

CMMNShape . appendChild (cmmndiCMMNLabe) ;

for (CoordinatesOfContours coordinateOfSentry
this . resultOfSentries) {

CoordinatesOflines line =
shapes Tolines . get (coordinateOfSentry) ;

writelineValus (doc , CMMNDiagram , line , coordinateOfSentry) ;

for (CoordinatesOfContours coordinatesOfSquare : squarelist) {
writetaskValues (doc , CMMNDiagram , coordinatesOfSquare) ;

for (CoordinatesOfContours coordinatesOfSentries : Sentrieslist)
writeEntryCriterionValus (doc , CMMNDiagram ,
coordinatesOfSentries) ;

for (CoordinatesOfContours coordinationOfEvent : Eventlist) {
writeEventValues (doc , CMMNDiagram , coordinationOfEvent) ;

for (CoordinatesOfContours coordinatesOfFile : Filelist) {
writeFileValues (doc , CMMNDiagram , coordinatesOfFile) ;

//writhing the style as child of CMMN Diagram

Element cmmndiStyle = doc . createElement (" cmmndi : CMMNStyle ") ;

staff2 . appendChild (cmmndiStyle) ;

// set attribute

Attr Stylev1 = doc . createAttribute (" fontFamily ");

149

150

321

3 l

,_ 1

126

327

Jl8

129

330

111

332

j jj

334

315

1lb

lJS

339

340

141

3 1

Stylev1 . setValue (" Aria.:. , Helvetica , sans-serif ") ;
cmmndiStyle . setAttributeNode (Stylev1) ;

Attr Stylev2 = doc . createAttribute (" id") ;
Stylev2 . setValue (" cbla 4 6a0-82e9-4 cl 4-84 95-Bd3 f 500 6le96 ") ;

cmmndiStyle . setAttributeNode (Stylev2) ;

// write the content into xml file
TransformerFactory transformerFactory =

TransformerFactory . newlnstance () ;
Transformer transformer = transformerFactory . newTransformer () ;
transformer . setOutputProperty (OutputKeys . STANDALONE , " yes ") ;

DOMSource source = new DOMSource (doc) ;

StreamResult result = new StreamResult (new
File (" C : /Users/SARA/Desktop/opencv / resul t . cmmn ")) ;

transformer . transform (source , result) ;
System. out . println (" File saved ! ") ;

catch (ParserConfigurationException pce)

pce . printStackTrace () ;
catch (TransformerException tfe)

tfe . printStackTrace () ;

34, public void writeFileltemDefinition (Document doc , Element staff1 ,

34 5

346

311

348

34Y

CoordinatesOfContours recognizefile) {

Attr planitemv1 = doc . createAttribute (" id ") ;
planitemv1 . setValue (" fr " + recognizefile . getid ()) ;

staff1 . setAttributeNode (planitemv1) ;

, a }

351

~l public void writeFileltem (Document doc , Element casefilemodel ,

CoordinatesOfContours recognizefile) {

J,4 Element cmmncaseFileltem =
doc . createElement (" cmmn : caseFileitem") ;

355

356

357

358

359

360

361

casefilemodel . appendChild (cmmncaseFileltem) ;

//set attribute
Attr fileitemv1 = doc . createAttribute (" definitionRef ");
fileitemv1 . setValue (" fr " + recognizefile . getid ()) ;
cmmncaseFileltem . setAttributeNode (fileitemv1) ;

362 Attr fileitemv2 = doc . createAttribute ("multiplicity ");
363 fileitemv2 . setValue (" Unspecified");
36, cmmncaseFileltem . setAttributeNode (fileitemv2) ;
365

366 Attr fileitemv3 = doc . createAttribute (" id ") ;
367 fileitemv3 . setValue (" fv " + recognizefile . getid ()) ;
368 cmmncaseFileltem . setAttributeNode (fileitemv3) ;
369

370

371

312 public void writeplanltem (Document doc , Element caseplanmodel ,
CoordinatesOfContours

373

374

375

376

377

378

coordinatesOfSquare , Arraylist<CoordinatesOfContours>
intersectionSentries , CoordinatesOfContours coordinationEvent) {

Element cmmnplanltem = doc . createElement (" cmmn: planitem");
caseplanmodel . appendChild (cmmnplanltem) ;

// set attribute

379 Attr planitemv1 = doc . createAttribute (" definitionRef ") ;
380

381

382

383

384

385

386

387

if (coordinatesOfSquare ! = nul!) {

planitemv1 . setValue (" t " + coordinatesOfSquare . getid ()) ;
} else if (coordination Event ! = null) {

planitemv1 . setValue (" e " + coordinationEvent . getid ()) ;

cmmnplanltem . setAttributeNode (planitemv1) ;

300 Attr planitemv2 = doc . createAttribute (" id") ;
389 if (coordinatesOfSquare ! = null) {

390 planitemv2 . setValue ("pi " + coordinatesOfSquare . getid ()) ;

151

152

Bl

193

!'l

!96

397

3,8

l))

400

411

4 l

4 ',

4 ,;b

4 9

410

411

41

41 l

414

11"

416 /**

else if (coordination Event ! = null) {
planitemv2 . setValue ("pi " + coordination Event. getid ()) ;

cmmnplanltem. setAttributeNode (planitemv2) ;

if (intersectionSentries ! =null) {

if (! intersectionSentries . isEmpty ()) {
for (CoordinatesOfContours coordinationSentries
intersectionSentries) {

Element entryCriterion =
doc . createElement (" cmmn : e!'ltryCri tenon ") ;
cmmnplanltem . appendChild (entryCriterion) ;

Attr entryCriterionv1 = doc . createAttribute (" sentryRef ") ;
entryCriterionv1 . setValue (" senR " +
coordinationSentries . getid ()) ;
entryCriterion . setAttributeNode (entryCriterionv1) ;

Attr entryCriterionv2 = doc . createAttribute (" id ") ;

entryCriterionv2 . setValue (" Rsen " +coordinationSentries . getid ()
) ;

entryCriterion . setAttributeNode (entryCriterionv2) ;

11• * This method write the eventListener
110 * @param doc
419 * @param caseplanmodel
420 * @param coordina tionEven t

421 * /
422 public void writeEvent (Document doc , Element caseplanmodel ,

CoordinatesOfContours coordination Event) {
123 Element eventlistener = doc . createElement (" cmmn : eventL.:.stener ") ;

4 21,

425

426

427

428

429

430

431

caseplanmodel . appendChild (eventlistener) ;

// set attribute
Attr cmmneventlistenerv1 = doc . createAttribute (" id ") ;

cmmneventlistenerv1 . setValue (" e " + coordination Event . getid ()) ;
eventlistener . setAttributeNode (cmmneventlistenerv1) ;

432 / * *
433 * This method write the Task
43, * @param doc

os * @param caseplanmodel

436 * @param recognizesquare
437 * /

4 38

439 public void writeTask (Document doc , Element caseplanmodel ,
CoordinatesOfContours recognizesquare) {

440 Element cmmntask = doc . createElement (" cmmn : task ") ;
441 caseplanmodel . appendChild (cmmntask) ;

44, / / set attribute

443 Attr cmmntaskv1 = doc . createAttribute (" isBlocking ") ;
441, cmmntaskv1 . setValue (" true ") ;
445 cmmntask . setAttributeNode (cmmntaskv1) ;

446

447

448

449

450

451

452 / * *

Attr cmmntaskv2 = doc . createAttribute (" id") ;
cmmntaskv2 . setValue (" t " + recognizesquare . getid ()) ;
cmmntask . setAttributeNode (cmmntaskv2) ;

453 * Thi s method wr i t e the Sentry as wel l as t he connection
to connector

451, * @param doc

455 * @param caseplanmodel

456 * @param coordinat i onSentries
457 * @param coordinatesOfSquare
458 * @param line

459 * /
460 public void writeSentry (Document doc , Element caseplanmodel ,

153

154

46L

463

4 65

466

46

4 6R

469

470

471

4 l

41~

475

4,b

4 77

4 8

4°9

482

436

49

4 88

4 ;9

4 'jQ

4 91

492

4 9~

4 95

CoordinatesOfContours coordinationSentries , CoordinatesOfContours

coordinatesOfSquare , CoordinatesOflines line) {

System . err . println (" taskkkkkk " + coordinatesOfSquare) ;
System . err . println (" sentryyyyyyy " +coordinationSentries) ;

System . err. println (" 1 ineeeeeeee " + line) ;
Element cmmnsentry = doc . createElement (" cmmn : sentry ") ;

caseplanmodel . appendChild (cmmnsentry) ;

if (coordinationSentries ! =null) {

Attr sentryva 1 = doc . createAttribute (" id ") ;
sentryva1 . setValue (" senR" + coordinationSentries . getid ()) ;

cmmnsentry . setAttributeNode (sentryva1) ;

Element cmmnplanltemOnPart =
doc . createElement (" cmmn : planitemOnPart ") ;
cmmnsentry . appendChild (cmmnplanltemOnPart) ;

if (coordinatesOfSquare != null) {
Attr planltemOnPart = doc . createAttribute (" sourceReF ") ;
planltemOnPart . setValue ("pi " +coordinatesOfSquare . getid ()) ;
cmmnplanltemOnPart . setAttributeNode (planltemOnPart) ;

if (line != null) {
Attr planltem0nPart1 = doc . createAttribute (" id ") ;
planltem0nPart1 . setValue (" line " +line . getid ()) ;
cmmnplanltemOnPart . setAttributeNode (planltem0nPart1) ;

Element cmmnstandardEvent =
doc . createElement (" cmmn : s tandardEvent ") ;
cmmnplanltemOnPart . appendChild (cmmnstandardEvent) ;

Il set attribute
Attr standardEvent= doc. createAttribute (" complete ") ;
cmmnstandardEvent . setAttributeNode (standardEvent) ;

496

4 97

498

499

500

501

502

503

'i04

Element cmmnifpart = doc . createElement(" cmrnn : if Pan. ") ;
cmmnsentry . appendChild (cmmnifpart) ;

Il set attribute
Attr ifpartv1 = doc . createAttribute (" id ") ;
ifpartv1 . setValue (" i fpa " +coordinationSentries . getid ()) ;
cmmnifpart . setAttributeNode (ifpartv1) ;

505 I * *
506 * This method writes Task specifications
,01 * @param doc
508 * @param CMMNDiagram
SOY * @param coordina tesOfSquare

510 * I
s11 public void writetaskValues (Document doc , Element CMMNDiagram ,

CoordinatesOfContours coordinatesOfSquare) {
s12 Element CMMNShape2 = doc . createElement (" cmmndi : CMMNShape ") ;
s13 CMMNDiagram . appendChild (CMMNShape2) ;

Il set attribute
Attr Shape2v1 = doc . createAttribute (" cmrnnElementRef ") ;
Shape2v1 . setValue ("pi " +coordinatesOfSquare . getid ()) ;
CMMNShape2 . setAttributeNode (Shape2v1) ;

Attr Shape2v2 = doc . createAttribute (" id") ;
Shape2v2 . setValue (" sh " + coordinatesOfSquare . getid ()) ;
CMMNShape2 . setAttributeNode (Shape2v2) ;

Element dcBounds 1 = doc . createElement (" de : Bounds ") ;
CMMNShape2 . appendChild (dcBounds1) ;

Attr bound2v1 = doc . createAttribute (" heigh t ") ;

155

51~

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

bound2v1 . setValue (Double . toString (coordinatesOfSquare . getHeight ())) ;
dcBounds1 . setAttributeNode (bound2v1) ;

Attr bound2v2 = doc . createAttribute (" width ") ;
bound2v2 . setValue (Double. toString (coordinatesOfSquare . getWidth ())) ;
dc8ounds1 . setAttributeNode (bound2v2) ;

156

53(

5.l5

536

5JI

5 9

540

46

Attr bound2v3 = doc . createAttribute (" x ") ;
bound2v3 . setValue (Double . toString (coord inatesOfSquare . getX ())) ;
dcBounds1 . setAttributeNode (bound2v3) ;

Attr bound2v4 = doc . createAttribute (" y ") ;
bound2v4 . setValue (Double . toString (coordinatesOfSquare . getY ())) ;

dcBounds1 . setAttributeNode (bound2v4) ;

Element cmmndiCMMNLabel2 =
doc . createElement (" cmmndi : CMMNLabel ") ;

CMMNShape2 . appendChild (cmmndiCMMNLabel2) ;

54 / * *
54q * This method writes Event specifications

sso * @param doc

,,1 * @param CMMNDiagram

* @param coordinationOfEvent

*/

55< public void writeEventValues (Document doc , Element CMMNDiagram ,
CoordinatesOfContours coordinationOfEvent) {

s Element CMMNShape2 = doc . createElement (" cmmndi : CMMNShape ") ;

s 6 CMMNDiagram . appendChild (CMMNShape2) ;
< 7

c..59

561

562

563

565

Gl

569

70

// set attribute

Attr Shape2v1 = doc . createAttribute (" cmmnElementRet ") ;

Shape2v1 . setValue ("pi " +coordinationOfEvent . getid ()) ;
CMMNShape2 . setAttributeNode (Shape2v1) ;

Attr Shape2v2 = doc . createAttribute (" _d ") ;
Shape2v2 . setValue (" sh " + coordinationOfEvent . getid ()) ;
CMMNShape2 . setAttributeNode (Shape2v2) ;

Element dcBounds1 = doc . createElement (" de : Bounds ") ;

CMMNShape2 . appendChild (dcBounds1) ;

Attr bound2v1 = doc . createAttribute (" he igh t ") ;

157

511 bound2v1 . setValue {Double . toString {coordinationOfEvent . getHeight {))) ;
512 dcBounds1 . setAttributeNode {bound2v1) ;
573

rn Attr bound2v2 = doc . createAttribute (" width ") ;

515 bound2v2 . setValue (Double . toString (coordinationOfEvent . getWidth {))) ;
576 dcBounds1 . setAttributeNode (bound2v2) ;
577

510 Attr bound2v3 = doc . createAttribute (" x ") ;
s19 bound2v3 . setValue {Double . toString (coordinationOfEvent . getX {))) ;
500 dcBounds1 . setAttributeNode (bound2v3) ;
581

,;a2 Attr bound2v4 = doc . createAttribute { " y ") ;
583 bound2v4 . setValue (Double . toString (coordinationOfEvent . getY {))) ;
58(dcBounds 1 . setAttributeNode {bound2v4) ;
585

586 Element cmmndiCMMNLabel2 =

doc . createElement { " cmmndi : CMMNLabel ") ;

587 CMMNShape2 . appendChild (cmmndiCMMNLabel2) ;
588

$89

590

591 / * *
592 * This method writes sentry specifications

~93 * @param doc

594 * @param CMMNDiagram

595 * @param coordinatesOfSentries

5% * /
59" public void writeEntryCriterionValus (Document doc , Element

CMMNDiagram , CoordinatesOfContours coordinatesOfSentries) {
598 Element CMMNShape2 = doc . createElement (" cmmndi : CMMNShape ") ;

599 CMMNDiagram . appendChild {CMMNShape2) ;
600

601 // set attribute

602 Attr Shape2v1 = doc . createAttribute (" cmmnElementRef ") ;

603 Shape2v1 . setValue { " Rsen " +coordinatesOfSentries . getid {)) ;
604 CMMNShape2 . setAttributeNode (Shape2v1) ;
605

606 Attr Shape2v2 = doc . createAttribute (" id") ;

601 Shape2v2 . setValue (" sh " + coordinatesOfSentries . getid {)) ;

158

6'8

6 q

610

611

12

613

61'

F'

6.8

6JY

20

f,))

621

62'

626

8

62,

6JC

6H

632 }

633

CMMNShape2 . setAttributeNode (Shape2v2) ;

Element dcBounds1 = doc . createElement ("de : Bounds ") ;

CMMNShape2 . appendChild (dcBounds1) ;

Attr bound2v1 = doc . createAttribute ("height ") ;

bound2v1 . setValue (Double . toString (coordinatesOfSentries . getHeight ()))

dcBounds1 . setAttributeNode (bound2v1) ;

Attr bound2v2 = doc . createAttribute (" w 1. d tri ") ;

bound2v2 . setValue (Double . toString (coord inatesOfSentries . getWidth ())) ;

dcBounds1 . setAttributeNode (bound2v2) ;

Attr bound2v3 = doc . createAttribute (" x ") ;
bound2v3 . setValue (Double . toString (coordinatesOfSentries . getX ())) ;

dcBounds1 . setAttributeNode (bound2v3) ;

Attr bound2v4 = doc . createAttribute (" y ") ;
bound2v4 . setValue (Double . toString (coordinatesOfSentries . getY ())) ;

dcBounds1 . setAttributeNode (bound2v4) ;

Element cmmndiCMMNLabel2 =
doc . createElement (" cmmndi : CMMN~abel ") ;
CMMNShape2 . appendChild (cmmndiCMMNLabel2) ;

61 /**
635 * This method writes Line specifications

6 16 * @param doc
61 * @param CMMNDiagram

638 * @param line
639 * @param coordinatesOfSentries

610 * /
w public void writelineValus (Document doc , Element CMMNDiagram ,

CoordinatesOflines line , CoordinatesOfContours coordinatesOfSentries) {

€42

643 System . out.println (" show me lines : " + line);
644 Element CMMNShape2 = doc . createElement (" cmmndi : CMMNEdge ") ;
64s CMMNDiagram . appendChild (CMMNShape2) ;
64 b

647 / / set attribute
648 Attr Shape2v1 = doc . createAttribute (" cmmnElementRef ") ;
649 if (line !=null) {
650 Shape2v1 . setValue (" line "+line . getid ()) ;
651 CMMNShape2 . setAttributeNode (Shape2v1) ;

Attr Shape2v2 = doc . createAttribute (" id") ;
Shape2v2 . setValue (" li " + line . getid ()) ;
CMMNShape2 . setAttributeNode (Shape2v2) ;

Attr Shape2v3 = doc . createAttribute (" targetCMMNElementRef ");
Shape2v3 . setValue (" Rsen " +coordinatesOfSentries . getid ()) ;
CMMNShape2 . setAttributeNode (Shape2v3) ;

159

652

653

654

655

&56

657

658

659

660

661

662

663

664

665

656

657

668

669

670

671

672

673

674

67';

676

677

678

679

680

681

Attr Shape2v4 = doc . createAttribute (" isStandardEventVis ible ") ;
Shape2v4 . setValue (" true ") ;
CMMNShape2 . setAttributeNode (Shape2v4) ;

Element diwaypoint = doc . createElement (" di : waypoin t ") ;
CMMNShape2 . appendChild (diwaypoint) ;

Attr bound2v1 = doc . createAttribute (" x ") ;
bound2v1 . setValue (Double . toString (line . getX1 () +8));
diwaypoint . setAttributeNode (bound2v1) ;

Attr bound2v2 = doc . createAttribute (" y ") ;
bound2v2 . setValue (Double . toString (line . getY1 ())) ;
diwaypoint . setAttributeNode (bound2v2) ;

Element diwaypoint2 = doc . createElement (" di : waypoint ") ;
CMMNShape2 . appendChild (diwaypoint2) ;

Attr bound2v3 = doc . createAttribute (" x ") ;

bound2v3 . setValue (Double . toString (line . getX2 () +8)) ;
diwaypoint2 . setAttributeNode (bound2v3) ;

160

b J Attr bound2v4 = doc . createAttribute (" y ") ;

bound2v4 . setValue (Double . toString (line . getY2 ())) ;

diwaypoint2 . setAttributeNode (bound2v4) ;

698 Element cmmndiCMMNLabel2 =
doc . createElement (" cmmndi : CMMNLabel ") ;

m CMMNShape2 . appendChild (cmmndiCMMNLabel2) ;

6~'

F, 2 /**
6H * This method writes File specifications

694 * @param doc
69 * @param CMMNDiagram
6:16 * @param coordinatesOfFile

69 * /
698 public void writeFileValues (Document doc , Element CMMNDiagram ,

CoordinatesOfContours coordinatesOfFile) {
H9 Element CMMNShape2 = doc .createElement (" c-nmndi : CMMNShape ");

, o CMMNDiagram . appendChild (CMMNShape2) ;

// set attribute
Attr Shape2v1 = doc . createAttribute (" cmmnElementRef ") ;

4 Shape2v1 . setValue (" fv "+coordinatesOfFile . getid ()) ;
, s CMMNShape2 . setAttributeNode {Shape2v1) ;

1J, Attr Shape2v2 = doc. createAttribute (" id ") ;
Shape2v2 . setValue (" s f " + coordinatesOfFile . getid ()) ;

o CMMNShape2 . setAttributeNode (Shape2v2) ;

10

11 Element dcBounds 1 = doc . createElement (" de : Bounds ") ;

12 CMMNShape2 . appendChild (dcBounds1) ;

713

,,~ Attr bound2v1 = doc . createAttribute (" height ") ;
15 bound2v1 . setValue (Double . toString (coordinatesOfFile . getHeight ())) ;

11" dcBounds1 . setAttributeNode (bound2v1) ;

,17

1 10 Attr bound2v2 = doc . createAttribute (" width ");

161

719 bound2v2 . setValue (Double . toString (coordinatesOfFile . getWidth ())) ;
no dcBounds1 . setAttributeNode (bound2v2) ;
721

722 Attr bound2v3 = doc . createAttribute (" x 11
) ;

123 bound2v3 . setValue (Double . toString (coordinatesOfFile . getx ())) ;
m dcBounds1 .setAttributeNode (bound2v3) ;
725

72& Attr bound2v4 = doc . createAttribute (" y ") ;
727 bound2v4 . setValue (Double . toString (coordinatesOfFile . getY ())) ;
728 dcBounds1 . setAttributeNode (bound2v4) ;

110 Element cmmndiCMMNLabel2 =
doc . createElement (11 cmmndi : CMMNLabel 11

) ;

731 CMMNShape2 . appendChild (cmmndiCMMNLabel2) ;
'32

733

73•

735

'36

737

BIBLIOGRAPHY

Arica, N. et Yarman-Vural, F.T. (2001). An overview of character recogn1t1on
focused on off-line handwriting. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 31(2), 216-233.

Bailey, B.P. et Konstan, J.A. (2003). Are informai tools better?: comparing DEMAIS,
pencil and paper, and authorware for early multimedia design. Proceedings of
the SJGCHI conference on human factors in computing systems (p. 313-320).
:ACM

Bailey, B.P. , Konstan, J.A. et Carlis, J.V. (2001). DEMAIS: designing multimedia
applications with interactive storyboards. Proceedings of the ninth ACM
international conference on Multimedia (p. 241-250). : ACM

Bishop, C.M. (1995). Neural networks for pattern recognition. : Oxford university
press .

Bradski, G. et Kaehler, A. (2008). Learning OpenCV: Computer vision with the
OpenCV library. : "O'Reilly Media, Inc." .

Calhoun, C. , Stahovich, T.F. , Kurtoglu , T. et Kara, L.B. (2002). Recognizing multi­
stroke symbols. AAAI Spring Symposium on Sketch Understanding (p. 15-
23).

Chakraborty, A. , Baowaly, M.K., Arefin, A. et Bahar, A.N. (2012). The rote of
requirement engineering in software development life cycle. Journal of
emerging trends in computing and information sciences, 3(5), 723-729.

Chen, C.P. et Xie, S. (1996). Freehand drawing system using a fuzzy logic concept.
Computer-Aided Design, 28(2), 77-89.

Chen, G. et Kégl , B. (2010). Invariant pattern recogn1t1on using contourlets and
AdaBoost. pattern recognition, 43(3), 579-583.

Chen, Q. , Grundy, J. et Hosking, J. (2008). SUMLOW: early design-stage sketching
ofUML diagrams on an E-whiteboard. Softw., Pract. Exper. , 38(9), 961-994.

164

Cheriet, M. et Suen, C. Y. (1993). Extraction of key letters for cursive script
recognition. Pattern Recognition Letters, 14(12), 1009- l O 17.

Coyette, A. , Schimke, S. , Vanderdonckt, J. et Vielhauer, C. (2007). Trainab le sketch
recognizer for graph ical user interface design. Proceedings of the 11 th !FIP
TC 13 international conference on H uman-computer interaction (p. 124-135).
Rio de Janeiro, Brazil : Springer-Verlag

Coyette, A. et Vanderdonckt, J. (2005). A sketching tool for designing anyuser,
anyp latform, anywhere user interfaces. Human-Computer lnteraction­
INTERACT 2005, 550-564.

de Carvalho, R.M., Mili , H., Boubaker, A. , Gonzalez-Huerta, J. et Ringuette, S.
(2016). On the analysis of CMMN expressiveness: revisiting workflow
patterns. Enterprise Distributed Object Computing Workshop (EDOCW),
2016 IEEE 20th International (p. 1-8). : IEEE

Duyne, D.K.V. , Landay, J. et Hong, J.l. (2002). The design of sites: patterns,
principle , and processes for crafting a customer-centered Web experience.
Addison-Wes ley Longman Publishing Co., lnc.

Freund, Y. et Masan, L. (1999). The alternating decision tree learning a lgorithm . icml
(p. 124-133).

Garain , U. et Chaudhuri , B.B. (2004). Recognition of online handwritten
mathematical expressions. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics) , 34(6) , 2366-2376.

George, A. et Gafoor, F. (20 14). Contou rlet Transform Based Feature Extraction For
Handwritten Malayalam Character Recognition Using Neural Network.
International Journal of lndustrial Electronics and Electrical Engineering,
2(4).

Hammond, T. et Davis, R. (2006a). LADDER: A language to describe drawing,
display, and editing in sketch recognition. ACM SIGGRAPH 2006 Courses
(p. 27). : ACM

Hammond, T. et Davis, R. (2006b). Tahuti : A geometrical sketch recognition system
for uml c lass diagrams. ACM SIGGRAPH 2006 Courses (p. 25). : ACM

Hammond, T.A. (2007). Ladder: A perceptually-based language to simplify sketch
recognition user interface development. Massachusetts Institute of
Technology.

165

Kpalma, K. et Ronsin , J. (2007). An overview of advances of pattern recognition
systems in computer vision : Advanced Robotic Systems.

Lam, L., Lee, S.-W. et Suen, C.Y. (1992). Thinning methodologies-a comprehensive
survey. IEEE Transactions on pattern analysis and machine intelligence,
14(9), 869-885.

Landay, J.A. et Myers, B.A. (2001). Sketching interfaces: Toward more human
interface design . Computer, 34(3), 56-64.

Larose, D.T. (2005). k-Nearest Ne ighbor Algorithm. Discovering Knowledge in
Data: An Introduction to Data Mining, 90-106.

L in, J. , Newman, M.W., Hong, J.I. et Landay, J.A. (2002) . Denim: An informai
sketch-based tool for early stage web design. Proceedings of the 2002 AAAJ
Spring Symposium-Sketch Understanding (p . 148-149).

Liu, W . (2003). On-line graphies recognition: State-of-the-art. International
Workshop on Graphies Recognition (p. 291-304). : Springer

Llad6s, J. , Valveny, E., Sanchez, G. et Marti, E. (2001). Symbol recogn it ion: Current
advances and perspectives. International Workshop on Graphies Recognition
(p. 104-128). : Springer

Majumdar, A. (2007). Bangla basic character recogmt1on using digital curvelet
transform. Journal of Pattern Recognition Research, 2(1), 17-26.

Mamatha, H ., Sucharitha, S. et Murthy, K.S. (2013) . Handwritten Kannada Numeral
Recognition based on the Curvelets and Standard Deviation. International
Journal of Signal Processing Systems, 1 (1), 7 4-78.

Marin , M., Hu ll , R. et Vaculfn, R. (2012). Data centric bpm and the emerging case
management standard: A short survey. International Conference on Business
Process Management (p. 24-30) . : Springer

Marquardt, D.W. (1963). An algorithm for least-squares estimation of nonlinear
parameters. Journal of the society for Industrial and Applied Mathematics,
11(2), 431 -441.

M ichalski, R.S ., Carbonel l, J.G. et Mitchell , T.M. (2013). Machine learning: An
artificial intelligence approach . : Springer Science & Business Med ia.

166

Mori , S. , Yamamoto, K. et Yasuda, M. (1984). Research on machine recognition of
handprinted characters. IEEE Transactions on Pattern Analysis and Machine
Intelligence(4), 386-405.

Motwani , M.C. , Gadiya, M.C. , Motwani, R.C. et Harris, F.C. (2004). Survey of
image denoising techniques. Proceedings of GSPX (p. 27-30).

Mup. Récupéré le April 22,2017 de http ://www.mup.co.il/OpenCV /

Nemmour, H. et Chibani , Y. (2011). Handwritten Arabie word recognition based on
Ridgelet transform and support vector machines. High Performance
Computing and Simulation (HPCS), 2011 International Conference on (p .
357-361). : IEEE

Newman, M .W. , Lin, J., Hong, J.l. et Landay, J .A. (2003). DENIM: An informai web
site design tool inspired by observations of practice. Human-Computer
Interaction, 18(3), 259-324.

OMG . Case Management Mode! and Notation, version J.O. May 2014 de
http://www.omg.org/spec/CMMN/l .O/PDF

OpenCV. Récupéré le Apri l 22, 2017 de http://opencv.org

OpenCV documentation. (2013). Récupéré le April 22, 2017 de
http :// docs.opencv .org/2. 4/ doc/tutoria l s/tutori a I s. h trn 1

Ossher, H. , Andr, #233 , Hoek, v.d., Storey, M. -A., Grundy, J., Bel lamy, R. et Petre,
M. (2011). Workshop on flexible modeling tools (FlexiTools 2011).
Proceedings of the 33rd lnternational Conference on Software Engineering (p.
1192-1193). Waikiki , Hono lulu, HI, USA : ACM

Ossher, H. , Bellamy, R. , Simmonds, I. , Amid, D. , Anaby-Tavor, A., Callery, M.,
Desmond, M. , de Vries, J. , F isher, A. et Krasikov, S. (2010). Flexible
modeling too ls for pre-requirements analysis: conceptual architecture and
research challenges. ACM Sigplan Notices, 45(10), 848-864.

Plamondon, R. et Srihari, S.N. (2000). Online and off-line handwriting recognition: a
comprehensive survey. IEEE Transactions on pattern analysis and machine
intelligence, 22(1), 63-84.

Plimmer, B. et Apperley, M. (2003a). Software to sketch interface designs . Ninth
International Conference on Human-Computer Interaction (p. 73-80).

167

Plimmer, B. et Apperley, M. (2003b). Software to sketch interface designs. (Ninth
International Conference on Human-Computer Interaction).

Qiu, L. (2007) . Sketchuml: The design of a sketch-based tool for uml class diagrams .
Proceedings of World Conference on Educational Multimedia, Hypermedia
and Telecommunications, 986-994.

Rao, D. et Panduranga, P.P. (2006). A survey on image enhancement techniques:
classical spatial filter, neural network, cellular neural network, and fuzzy
filter. Industrial Technology, 2006. ICJT 2006. IEEE International Conference
on (p. 2821-2826) . : IEEE

RS , S.N. et Afseena, S. (2015). Handwritten Character Recognition-A Review.
International Journal of Scientific and Research Publications.

Ru bine, D. (1991). Specifying gestures by example. (Vol. 25) : ACM.

Sezgin, M. (2004). Survey over image thresholding techniques and quantitative
performance evaluation. Journal of Electronic imaging, 13(1), 146-168.

Signavio. Récupéré le 4/17/2017 de
https ://editor.signavio.com/userguide/en/mode ling_and_ notations/cmmn/editi
ng_ cmmn.html

Soisalon-Soininen, E. (2011). Online Sketch Recognition: Geometric Shapes. Aalto
University.

Suen, C.Y., Berthod, M. et Mori , S. (1980). Automatic recognition of handprinted
characters-the state of the art. Proceedings of the IEEE, 68(4), 469-487.

Szeliski, R. (2010). Computer vision: algorithms and applications. : Springer
Sc ience & Business Media.

Trisotech. Récupéré le 11/7/2016 2016 de http://www.trisotech .com/digital­
enterprise-suite

Umbaugh, S.E. (1997). Computer vision and image processing: A practical approach
using CViptools with Cdrom. : Prentice Hall PTR.

Vector vs. Raster Graphies. de http://www.abetdisc.com/answers/cd-cover-
design/vector-vs-bitmap-or-raster-graphics/

Yinciare lli , A. (2002). A survey on off-line cursive word recognition. Pattern
recognition, 35(7), 1433-1446.

168

Wenyin, L. , Ji n, X. et Sun, Z. (200 1). Sketch-based user interface fo r inputting
graphie a bjects on smalt screen dev ices. Internationa l Workshop on Graphies
Recogni tion (p. 67-80). : Springer

Wüest, D., Seyff, N. et Glinz , M. (201 2). Flex ible, li ghtwe ight requi rements
modeling with Flex isketch. Requirements Engineering Conference (RE), 201 2
20th IEEE Internationa l (p. 323-324). : IEEE

Xiangyu, J ., Wenyin, L. , J ianyong, S. et Sun , Z. (2002). On-li ne graphies recogni t ion.
Computer Graphies and App lications, 2002. Proceed ings. 10th Pac ifie
Co nfe rence on (p. 256-264). : IEEE

Yu , B. et Cai, S. (2003). A doma in-independent system fo r sketch recognit1on.
Proceedings of the 1 st in te rnationa l confe rence on Computer graph ies and
interacti ve techniques in Austra las ia and So uth East As ia (p. 14 1-1 46).
ACM

	Page vierge

