UNIVERSITE DU QUEBEC A MONTREAL

CMMN MODELS HAND-DRAWN SKETCHES RECOGNITION SYSTEM

MASTER THESIS
PRESENTED
AS A PARTIAL REQUIREMENT

FOR THE MASTER IN COMPUTER SCIENCE

BY

SARA AMIRSARDARI

OCTOBER 2017

UNIVERSITE DU QUEBEC A MONTREAL
Service des bibliothéques

Avertissement

La diffusion de ce mémoire se fait dans le respect des droits de son auteur, qui a signé
le formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles
supérieurs (SDU-522 — Rév.07-2011). Cette autorisation stipule que «conformément a
l'article 11 du Réglement no 8 des études de cycles supérieurs, ['auteur] concéde a
PUniversité du Québec a Montréal une licence non exclusive d'utilisation et de
publication de la totalité ou d’'une partie importante de [son] travail de recherche pour
des fins pédagogiques et non commerciales. Plus précisément, [Fauteur] autorise
I'Université du Québec a Montréal a reproduire, diffuser, préter, distribuer ou vendre des
copies de [son)] travail de recherche a des fins non commerciales sur quelque support
que ce soit, y compris PInternet. Cette licence et cette autorisation n’entrainent pas une
renonciation de [la] part [de Pauteur] & [ses] droits moraux ni a [ses] droits de propriété
intellectuelle. Sauf entente contraire, [I'auteur] conserve la liberté de diffuser et de
commercialiser ou non ce travail dont [il] possede un exemplaire.»

UNIVERSITE DU QUEBEC A MONTREAL

UN SYSTEME DE RECONNAISSANCE DES ESQUISSES DE MODELES
CMMN DESSINES A LA MAIN

MEMOIRE
PRESENTE
COMME EXIGENCE PARTIELLE

DE LA MAITRISE EN INFORMATIQUE

PAR

SARA AMIRSARDARI

OCTOBRE 2017

ACKNOWLEDGMENTS

It gives me great pleasure in expressing my gratitude to all those people who have

supported me and had their contributions in making this thesis possible.

First and foremost, I would like to thank my advisor, Professor Hafedh Mili, for his
constant guidance, support, motivation, inspiration, enthusiasm, and immense

knowledge.

[would also like to acknowledge Renata Carvalho, as the second reader of this thesis,

and [am gratefully indebted to her for her very valuable comments on this thesis.

[am indebted to my friends and colleagues for providing a stimulating environment
in which I could learn and grow, especially I thank my friends, Imen, Anis, Amani
and Golrokh.

[would like to thank all the staff members of the Computer Science department at
UQAM for their direct and indirect helps during my studies at UQAM.

Last but not least, I would like to express my very profound gratitude to my parents,
Mohammad and Akram, and to Marco for providing me with unfailing support for
their love, encouragement, advice throughout my years of study and through the
process of researching and writing this thesis. This accomplishment would not have

been possible without them. Thank you.

TABLE OF CONTENTS

LIST OF FIGURES ...ttt st sae e en e s sne e ix
LIST OF TABLES ...ttt e sre et s e eve e aaesae s s a s saa e s e ena e enna s Xiii
RESUME ..ottt et e s s s s et esses s ses s s aeeene XV
ABSTRACT ..ttt sttt e e e an e sas Xvii
INTRODUCTION L.coiiiiiiieriiiitesiesease et et ee s st saasaete e e sse e neenesnessnassennenns 1
0.1 Problem Statement...........cceerieuereeerriieiieiiieteteesesse et ere s sse e ene e e e e ssessesneens 2
L0 0 1) 17 1 USRS 4
0.3 MethOdOIOZY . .cveiuiiriiieiiieeeeieeict sttt sttt e ss ettt sa e eas 4
0.4 Thesis Plan......ccieiiiieiiiiiciiscecine et eee e essssa s ssa e e s e ne e nnen 5
CHAPTER 1
STATE OF THE ART ON SKETCH RECOGNITION SYSTEMS....ccccevevvvrcnvrreanens 7
1.1 Vector Graphics and Raster Graphics.........c.ouceuriiininniiciiennenssssisnisssnnseiesenaeens 8
1.2 Optical Character RECOZNILION ...co.oveviiiuiiiiiirieiiie it 9
1.2.1 Offline RECOZNILIONieeveiiiieiiceeeierete ettt e e ene s 10
1.2.2 Onlinge RECOZNITION ..ecuviueivueerieieiienirecseitecresseeneessseeceesssesss s esanesssessaens 13
1.3 Sketch RecoOgnition SYSIEMS.....ccceviriiiieiniiesiiresresessssssessessissssesssssssssssssssessessens 23
1.3.1 Sketch-Based Tools for UML Class Diagramsceceeerverreruesseesnenens 25
1.3.2 Sketch-Based Tools in Other DOmainsccceovveveeneeieenieriennenieessnnnnns 28
1.4 CONCIUSION .ttt b st e n e e e s 31
CHAPITRE II
CASE MANAGEMENT MODEL AND NOTATION (CMMN)....ccoevererirerrerennn. 33
2.1 NOTALIONS...cuuiiiriietriirisise s sesnsssss s estsss st e sas s sas s ens e s s s asnsnsseassenssresansanassesnessanse 34
2,11 CASC it s sa e s st e e s r e s a e e na s e e senes 34
2.1.2 Case Plan MOdel.......c.coueereremereeneiennsssinsessssessssssssssssssssesssesnssssssessessasssens 34

vi

2,14 SHAGE «coeeeceiirecciecnnssnosniosissssssossssssssssessiassissssssssatessssesssnssstsssessssessesseenssssess 37
2.1.5 EVENLaaeiiiiirirccircnenennnsesesanennsssessnssunssssssssssssssssssssssasessnssssssasssasssssssssssssnsss 38
2.1.6 CaSe File u.cruiricrricnnisancnnsnsacsnicsissessnsississsssnsssssssssssesssssessssssossossosses 38
2.1.7 MileStone IteMmccceeeceereereecrrssancneennescnscanensanssnsasssnsasassnases 39
2.1.8 SENITY cccvurrurevursvnsrosassnsseesisarssasssasersscsaessessassssesssesesassssessassassssassssssas 39
2.1.9 CONNECLOT...uuierarerrererssessussneaarasassssasssassssssosassons 40
2.2 Example of Case Plan Model........ccccccceeereurences 43
2.3 ConCluSIONcceeerruecenonsrscsanscnsasssnssanssncans cresassenssessnnssastsentssnssensens 44
CHAPITRE III
EXPERIMENTAL RESULTS. S, 45
3.1 Case Study...cceeeceecrerircensanccnccnnsnesssessasssssssssns reeeesnraetaesanesrnesnnenanene 45
3.2 Technology USEdccceereeeneeiersecsnssnssssesssesinsiesissussesssssessessessnesssssssnsasessessessases 47
3.3 Sketch Recognition Design and Implementation............cccceeueueee. .48
3.4 Primitive Shape Recognition . rereestentesntsare s sensnesasas 49
3.4.1 Reading Hand-Drawn SKetchcccccceivininininnirnirncisinensnnnscennisnsonens 49
3.4.2 Pre-Processingcceeeeerececceccnsrncensonsrane 50
3.4.3 Contour FINdiNg.......ccooueeeerereercenceneeennncnsssseseocsnssssssosssssssosnsssssssssssssassasass 54
3.4.4 Feature EXtraction.....cccccvreecnunicsencisstsnissencsncinsssnsisnsseseescssnsssasesncssesans 59
3.4.5 Contour RESIZINGccoeevuruiciineisnsininisinsicsenisssisaisissnssssssassosnensosnssssssnens 60
3.4.6 Template Matching......ccccecerviriicciiiisiiinininiiininincsnssninisssennns 61
3.4.7 CoNtoUr DISTANCE ..vecreerrererreceeccnesessensessasnsssssssosasssssssosssssasosasosssssssssasssssnns 68
3.4.8 LiNe DELECLIONceuieiiniriiinicininceniestcsnsinssssisssssssssssssssssissesssessosssssssssassns 68
3.4.9 Line DISLANCE ...covvrvvriernrerereenreererciestesiasstsenessseseesteseasssessasesessssesseseessessennne 72
3.5 Composite Graphic Object Recognitionc.cccccevveecervievevnneniicinennsicniieennens 72
3.5.1 INtErSECHION ATCA....ccccrerreerorerussccennersssssessumsseesessacsassssssnsssasessssesssssssossessesss 73
3.5.2 Connector DEtectionccc.ceererienieeseenseeseeseensessecnsonsisssessesseesesssesnesanssnees 74
3.6 Semantic Connection Recognition and Understanding.........ccoccevevveciecsvcsirucnce 76
361 CASC..cueienreenraerccnrsarsssaressasnssessanssssssasssessssnsssssssssssssesssssssssarssesssassnesns 77
3.6.2 CMMN Dl ..ccouiurniiccircnrarssssmsacscscsnsscsssasscssssssesesssssss 82
3.7 ConClUSION .covvurerirnnsnsncsnsnensensesacscsacsncsnsensencesens .84

vii

CHAPITRE IV
TEST SETTING AND RESULTS ..ottt ennsnens 85
4.1 Test Setting OVEIVIEW ...cc.eeriviiriieieieieietectete et ae s ese e esseasssessans 86
4.2 RecOGNItION ACCUTACY ..ccveuvirieuireerieirrerientireteiesteiessesaesesaeaeseesessesssseseessesesssesenas 87
4.3 LIMIALIONS ceutteriuietiecreaceieie ettt sttt se e ese st e et e eesaese s seesesaeseeseseessessessesenns 90
CONCLUSION L.ttt ea st eesen e e enenes 93
APPENDICE A
PRIMITIVE SHAPE RECOGNITION JAVA CLASSES ..ot 97
APPENDICE B
COMPOSITE SHAPE RECOGNITION JAVA CLASSES....oooioeeeeveceeeiirenns 123
APPENDICE C
SEMANTIC CONNECTION RECOGNITION JAVA CLASSES.......cccceovevueruenne 139

BIBLIOGRAPHY ..ottt ettt 163

LIST OF FIGURES

Figure Page
Figure 1.1 Represents vector and raster graphics.........cceuuerereereerereresseressssereressesesens 8
Figure 1.2 Classification of optical character recognitioneceeveeveveereerecreerennens 10
Figure 1.3 Offline reCOgNItion.........ccueerieeeerirereerireicreesrescsesessesesesesessessesessssseseseses 11
Figure 1.4 Pre-processing steps of offline recognition.ccceceeeeceevereceecnrcveennnee. 12
Figure 1.5 Online réCOZNItION c..oviviuiiuiiiiecete ettt 14
Figure 1.6 Primitive shape recognition StEPScccoevveieieeenieneriinrerreseseesesae e 14
Figure 1.7 Subprocesses of online graphics recognition...........cceeeeueceeceeeecrecreevenns 15
Figure 1.8 Illustrations of the polygonal approximation process............ceceveueruereerenns 16
Figure 1.9 Agglomerate POINtS.......cceiueueererimiiiriiiiinicteecceiee et ssea e aesens 17
Figure 1.10 Agglomerate points filtering........cccoevieveivenereirerieienisiceeeiee e 17
Figure 1.11 Shapes with improper endpoints..........cceeeverreeereriererreeeerereereseeeeeeseesenes 18
Figure 1.12 Examples of endpoint refinement............ccccevvvueeiiicievennenennerereereeeenne 18
Figure 1.13 Inner shape regularization...........cccecceveenieeeeeneericenesenneseeeceeseese e ceeseenas 22
Figure 1.14 Inter-shape regularizationcccceeeerreeeeisresineneeseseeeeeee e 23
Figure 1.15 LADDER Framework.........c.cccceueumieeurrenieinesienieereseeseese s ceesessesenens 27
Figure 2.1 Represents Case Plan Model shapecccocvceivivniiiinniesicecceeeeees 35
Figure 2.2 Ordinary Task shape and Discretionary Task shape..........cccoceeceevrrecuenninnes 35
Figure 2.3 Non-Blocking Human Task shapescccccceveeiiniiinncnninnrcccree 36
Figure 2.4 Blocking Human Task Shapesccocceveviiviniiieiieneeiieiieese e 36
Figure 2.5 Process Task Shapes.........cccuiriemrmieiieiniineieceeccvsiseeee e ene e 36

Figure 2.6 Decision Task Shapecccceeuevieriiiiieienenecieeeeetee et sanns 37

Figure 2.7 Case Task shapes.......cccccerveunenee N 37
Figure 2.8 Expanded Stage shape and Collapsed Stage shape .. crreseaneanas 38
Figure 2.9 Event shapes... cereseesietestesn it bs s e ssassssassssasnens 38
Figure 2.10 Case File Shape......cccciinininnnciinnciinincnniecnienniscssnssennesniesniissisess 39
Figure 2.11 MilesStone Shape........c.cceeniirnnrecennecsnncceniscssesassesssesssonsssssnssnsssssssssassssssnes 39
Figure 2.12 Entry Criterion shape and Exit Criterion shapeccococevvsucvrcerseescrnnncnes 40
Figure 2.13 Connector Shape eetestessesstennesntate st s a s e st sne b aeRssassanennanaes 40
Figure 2.14 Sentry based dependency between two tasks.......coceeeeeeecennsinnrsecccnrsnncans 40
Figure 2.15 Using sentry-based connectors to visualize "AND"cccvvvvisnriirenenns 41
Figure 2.16 Using sentry-based connectors to visualize "OR"ccccesuvvirsunveirnanenns 41
Figure 2.17 Visualize dependency between Stagescceveerrcereesarsaeiniiscsissassnssesanens 42
Figure 2.18 visualize dependency between a task and a milestone..........ccoeueeueeucrncens 42
Figure 2.19 Visualize dependency between a Task and a Timer Event Listener 42
Figure 2.20 Visualize dependency between a task and a case file itemcccceeueuens 43
Figure 2.21 combinations of various elements in CMMN.........ccccoveiiiinnnniencnsecnenns 44
Figure 3.1 Formalizes case model from a CMMN hand-drawn sketch....................... 46
Figure 3.2 OpenCV library on the Eclipse IDE...........cccceceeenvininiiinincinsenrcnsencnnnnnes 47
Figure 3.3 Represents the data structure in OpenCVoeiiiisecsnccninnensnnnenceneas 48
Figure 3.4 Design model compatible with the case studycccovrervervreicrensesunscnnenes 49
Figure 3.5 Templates iMages.....cccuumimninisisiercscssnsnsssursnssensnessnssnsssssssssssssssssessesssssnoses 50
Figure 3.6 Pre-processing steps of the recognition SYStemcceeereeucsececrcesacsncacnsen 51
Figure 3.7 Gaussian blur on 1D pixel array ... sttt saes 52
Figure 3.8 1D Gaussian kernel ceereseesrent s Rssnesbeasassnssan 53
Figure 3.9 Threshold Operationcceceveeiccesinnnsncnninissnsncsnssssssisssssicsmisnsscssssssseseas 54
Figure 3.10 Show graphically a pixel image and the corresponding contour 55

Figure 3.11 Represents a sentry model.......cccceeevenueuinucane 55

xi

Figure 3.12 A test image presents the CONTOULScc.coueuirieiiieerieeniiiiiie s 58
Figure 3.13 Different types of Retrieval MOdESccooeeimivccieicnriiniiiiiccescne 58
Figure 3.14 Bounding box around the contourcccecevvieeriinieiiineccsieccneens 59
Figure 3.15 Represents MatchTemplate functionceeeeevevvrvenescncceeiiieeeeenns 62
Figure 3.16 Represents the input image and template image as matriX...........cc.c...... 63
Figure 3.17 Represents match results.......coevveeveiiivniieiiiiniicicsicsciisccveneinee 65
Figure 3.18 Represents doubles of contour...........coeeiiciiiiiiininnincccccccieee 68
Figure 3.19 Represents detected edges of lIn€.......cccevueeuicieniciiniincnciniccicceee 69
Figure 3.20 Different styles for drawing lin€.......cccccceeviinineiininciiincniicccciccnees 70
Figure 3.21 Represents point in the image........occeierueeerrerecrneneciineseiciceecesnee 71
Figure 3.22 XML file structure in CMMNcccoiviniiniiiiiiiiniceeececccieseeaene 77
Figure 3.23 CMMN case file meta-model (OMG)cocvverviieneniiescieneeerecceenne 78
Figure 3.24 Case file structure in XML format........cccceveiveiirniinininincncncicciseenn 78
Figure 3.25 Case Plan structure in XML format..........cceerveueerrireerenrensessnesssisssessenns 79
Figure 3.26 Plan Item Definition (OMG)ccoovviiiiiiiiiiiiiiniiicicincecrcnes 80
Figure 3.27 Sentry structure in XML formatoooeviuiiiiniiiennnececicncciceeen 81
Figure 3.28 Connector structure in XML format.........cccceoeveeineccenicnenneniincinenaes 81
Figure 3.29 CMMNDI class diagram (OMG)ccccevviiiimiiniiiiniiieniniccncincennn 82
Figure 3.30 CMMNDI structure in XML format...........ccouevmeeencricincieneeeccennenns 83
Figure 3.31 CMMNShape structure in XML formatcccoevvvmneniriiniiiccncrennnnee 83
Figure 3.32 CMMNEdge structure in XML format.........cccoocveinininininiciinniicniennnn 84
Figure 4.1 Sentry based dependency between two taskscccccceeevviveninicnniicincencan 86
Figure 4.2 Recognize Tasks B and Diamonds as inner contours..........ccoeeeeuenienennene 89
Figure 4.3 Samples elements not recognized by the system.........c.oceoeveriirncrnnnenn. 90

Figure 4.4 Recognizes file instead of task in composite shape.........ccccccevvrivrrvrcvennen 94

LIST OF TABLES

Table Page
Table 1.1Comparison of software fidelity Ul prototyping tools.........cccecevvereeerennnee. 25
Table 4.1 Results of primitive shapes recognitionccceceeveeeeeeecrvceeeeceeeereeneee. 87

Table 4.2 Results of model fragments reCOnitioncoccecvevevveveniinrirreriereeeereennens 87

RESUME

La nature des premicres activités de spécification des exigences nécessite une
approche de modélisation plus flexible par rapport a celle fournie par des outils de
modélisation traditionnels. Il existe une variété d’outils de modélisation pour capturer
les processus métier sous une forme structurée. En dépit de leurs avantages, de tels
outils ne sont pas naturels pour I’utilisateur humain et ne sont pas utilisés dans les
premiéres étapes de modélisation et de développement. En comparaison avec d’autres
approches flexibles, telles que les outils Office et le tableau blanc qui sont
fréquemment utilisés dans les premiéres étapes de modélisation des systémes a cause
de leur utilisation plus naturelle pour ’humain. Néanmoins, ces outils informels
offrent plus de flexibilité et de liberté au détriment de la gestion de la consistance, la
gestion des changements et I’interchangeabilité des modéles.

Etant donné que ni les approches flexibles ni les outils de modélisation traditionnels
sont idéals, nous proposons dans ce mémoire une nouvelle approche intermédiaire
dans le but de réduire I’écart entre ces deux approches. Nous proposons un outil qui
reconnait des esquisses des modeles CMMN faits & la main et les transforme en un
format qui peut étre importé par un outil formel. Dans cette approche, nous utilisons
la reconnaissance des formes et la correspondance des patrons pour reconnaitre les
modeles CMMN faits a la main et les traduire en des modéles CMMN formels. Par la
suite, ces modeles formels sont sérialisés dans un fichier XML conforme au format
d’échange des modeles CMMN. Ce fichier peut étre importé dans un outil CMMN
conforme. L’efficacité de notre approche a été testée sur plus de 500 dessins faits a la
main. Les résultats confirment I’efficacité de notre approche.

Mots clés : pré-analyse des exigences, modélisation formelle, approches de formes
libres, esquisses faites a la main, traitement d’images, vision par ordinateur, modelent
CMMN, outils de modélisation CMMN.

ABSTRACT

The nature of early requirements activities requires a more flexible approach to
modeling than is provided with traditional modeling tools. A variety of modeling
tools exist to capture of business process models in a structured form. Despite their
advantages, such tools are unnatural for the human user, and are not used in early
stages of modeling and development. In comparison, more flexible approaches such
as office tools or whiteboards are more common in the early stage of system
modeling, as well as more natural for the human user. However, these informal tools
give the user flexibility and freedom, at the expense of consistency management,
change management and model interchange.

Because neither flexible approaches nor traditional modeling tools are ideal, in this
thesis we propose a new intermediate approach in order to reduce the gap between
these two approaches. We propose a tool that can recognize early hand sketches of
CMMN models and transform them into a format that can be imported into a formal
tool. In our approach, we use shape recognition and pattern matching to recognize
freehand drawings of CMMN models and translate them into formal CMMN models.
Next, these formal models are serialized into an XML file that is compliant with the
CMMN model interchange format and can then be imported into CMMN-compliant
tools. The effectiveness of our approach has been tested on more than 500 drawings.
The results confirmed the effectiveness of our approach.

Keywords: pre-requirement analysis, formal modeling, free-form approaches, hand-
drawn sketch, image processing, computer vision, CMMN models, CMMN modeler.

INTRODUCTION

Prior to the invention of computers, paper and pencil were considered the tools that
provided the primary support of different activities. Simple sheets of paper or
whiteboards were among early means of documenting ideas. These days, with vast
technological improvements in the field of computer science, there is more of a
tendency to use digital devices instead of the traditional paper or white boards. The
invention of computers and their accessories, such as the mouse, keyboard, and
monitor, has introduced a very suitable alternative for primary tools. Paper and
pencil-based tools were, and still are, used in the pre-requirements step of the

software development life cycle.

Most activities during the software development life cycle involve a process that
ensures that good software is built. Requirements engineering is referred to as an
essential phase in this process (Chakraborty ef al., 2012). Before getting into this
critical phase, some form of business analysis that is called pre-requirements is
executed in order to determine whether new development is required (Ossher ef al.,
2010). «In this phase, before requirements are formulated, a business analyst needs to
collect information, organizing it to achieve insight, envisioning alternative futures

and presenting insights and recommendations to stakeholders» (Ossher ef al., 2010).

Hence, business analysts in this stage need to use a simple way to interact with the
stakeholders in order to explain the structure, policies, problems, needs, and
opportunities for improvement at all levels of a project, while stakeholders are

interviewed in order to discover their needs and requirements.

However, currently, with the increasing popularity of "touchscreen technology”, all
kinds of users, including business analysts, are usually provided with the option of
entering the information directly through the screen using their fingers or a pen rather
than using a mouse. They can also do things like move things on the screen and scroll
them, and make them bigger or smaller. Therefore, by having a tablet, and using
office tools such as word processors, and drawing or presentation tools, analysts
during the early stages of requirements engineering could interact with stakeholders
much more easily. In regards to this interaction, it is not static, because the needs and
requests are changeable, and so analysts and stakeholders might edit or delete

unnecessary parts, as well as create or extend necessary items.

0.1 Problem Statement

The more flexible approaches such as paper and pencil, whiteboards, or office tools
known as "free-form" approaches (Ossher ef al., 2011) are used in the early stage of
system modeling, in order to have freehand drawings or writings (sketches).
According to (Coyette et al., 2007) free-form approaches have a variety of

advantages, such as:

o The sketcher is free to use as an approach at any stage of design, without the
need to follow a certain chain of steps or framework (Newman et al., 2003);

o The sketcher does not need a training course in order to draw or write
sketches, and the result can be produced quickly (Duyne et al., 2002);

e This approach allows the sketcher to concentrate on basic structural issues,
rather than trivial details (e.g., exact alignment, typography and colors)
(Landay et Myers, 2001);

e This approach encourages creativity, and lets the sketcher to bring their ideas
on the paper without any limitation (Landay et Myers, 2001), and

The collaborative execution of sketches between business analyst and
stakeholders, allow them to evolve designs while discussing and taking turns
between sketching and annotating designs (Plimmer et Apperley, 2003b).

Despite these strengths, free-form approaches have weaknesses as well. Using these

approaches, the structured form of the documented information would not be

available and the opportunity for changes and post-processing could be limited. Thus,

time wasting and overpriced remodeling of early sketches is necessary to make

further modifications possible (Wiiest ef al., 2012).

Opposing free-form approaches, it is the "formal modeling tool" which uses

business process model in a structured form (Ossher e al., 2011). Formal modeling is

more unnatural for humans and more understandable for devices. They have a variety

of advantages, such as:

«Support multiple view on the same model for visualization and convenience
of manipulation» (Ossher er al., 2010);

«Facilitate consistency management of the model» (Ossher et al., 2010);
«Provide domain-specific assistance (e.g., "content assist") based on model

structurey» (Ossher et al., 2010);

Prepare documentation of the modeling decisions (e.g., rationales) (Ossher ef
al.,2011);

«Provide syntax, semantic model and semantic mapping» (Ossher er al.,
2010), and

«Integration with other formal tools and processes, such as model-driven
engineering (MDE) and model checking» (Ossher et al., 2010).

Despite these advantages, formal modeling tools are not efficient at early stages of

modeling and development. In comparison, it is more common to use informal

mechanisms such as free-form approaches (Ossher et al., 2011).

(Ossher et al., 2010) argued that the input they received from many practitioners
clearly indicated that neither informal modeling nor formal modeling is ideal. In this
context, we believe that a new class of tools is required to reduce the gap between the
two approaches. Such intermediate approaches should be able to handle sketches that
are produced at early stages of modeling, and transfer such informal sketches into
formal models. This would allow business analysts to migrate easily to a later stage

with a formal tool.

0.2 Objective

The purpose of this thesis is to develop a tool that migrates hand-drawn sketches of
CMMN (OMG) models to formal models that can be imported into a CMMN
modeling tool. CMMN is an OMG standard for representing case models, i.e., models
of business processes that involve a lot of knowledge intensive tasks, such as a
medical diagnosis, or a law case. For this project, we will generate models for
Trisotech’s CMMN Modeler (Trisotech).

To this end, we will need to:

e Define a method for accepting the totally unstructured and unclear input,
including freehand drawing of CMMN models;

e Develop a technique for matching the inputs with the default patterns of
CMMN models;

e Build the recognized model fragments into a CMMN model that can be

serialized into the XML interchange format for CMMN, to support the
exchange of the model, and its importation into CMMN-compliant tools.

0.3 Methodology

The research methodology relies on the literature on image processing, pattern

recognition, template matching, and a semantic description of hand-drawn shapes.

After evaluating several architectures, we decided to base this study on the freehand
sketches that can be recognized and converted into the user’s regular intended shapes.
Hence, the approach evaluates the raw sequence of points as an input according to
default patterns of CMMN models and determines whether the points signify some
more organized input. Moreover, sketch recognition as part of the image processing
and computer vision is covering a lot of detail calculations. Thus, extending,
developing and proposing a general approach based on OpenCV library and Template
Matching rules for converting user’s input to CMMN models into a CMMN modeling
tool is defined. At the end, simulation tests to assess the maximum usability of the

application are done.

0.4 Thesis Plan

The second chapter of this thesis introduces the essential concepts of online and
offline shape recognition, and the methods that each approach should follow for
investigating the data input. In addition, the advantages and disadvantages of the low
fidelity prototyping tools and high fidelity prototyping tools are compared. The third
chapter describes the CMMN models and their structures. The approach which
comprises the foundation of this study is recognizing and converting hand-drawn
sketches into CMMN modeling tool that is described in the fourth chapter. The fifth
chapter evaluates the application and finalizes the thesis with the conclusions and the

implications for the future research.

CHAPTER I

STATE OF THE ART ON SKETCH RECOGNITION SYSTEMS

Pattern recognition is a branch of machine learning (Michalski ez al., 2013) that
emphasizes the recognition of data patterns and data regularities in order to classify
them into a number of categories or classes (Kpalma et Ronsin, 2007). It is composed
of a collection of mathematical, statistical, heuristic, and inductive techniques of the
fundamental role in order to find the actual problems through mathematical methods
(Liu et al., 2006). The development of pattern recognition is increasing very fast.
Nowadays, pattern recognition is a wide research area that can impact a wide range of
disciplines such as engineering, mathematics, art, and medicine. Optical character
recognition systems represent one of the most successful applications of technology
in the field of pattern recognition and artificial intelligence. The main purpose of
these applications is classifying the input pattern in a specific class (Kpalma et
Ronsin, 2007). Hence, this chapter focuses on the essential concepts of representing
image data that is composed of vector graphics and raster graphics. In the following,
the pattern recognition approaches that can be separated into two sections, online
recognition and offline recognition, are explained. To complete the discussion, the

methods and similarities and differences between the two are described.

1.1 Vector Graphics and Raster Graphics

Computer graphics are pictures and movies created using computers. In this field,
there are two substantial ways of representing image data (see figure 1.1): raster
(bitmap) graphics and vector graphics (Umbaugh, 1997). Raster graphics (Umbaugh,
1997) are defined by pixels. These pixels are non-scalable, and each of these tiny
square dots represents a color. Thus, to make an image, these dots combine into
pattern and raster graphics programs define which pixel will be which color, and what
the dimensions of the image should be. In raster graphics, the definition of resolution
is the number of pixels contained within a file that is often referred to as DPI (dots
per inch). Therefore, raster graphics are dependent on resolution. By contrast, vector
graphics (Umbaugh, 1997) are defined by a series of mathematical equations for
specifying lines, curves, and shapes, as well as the editable attributes such as line’s
direction, thickness, and color. Vector files do not need to account for each pixel.

Hence vectors can be scalable to any arbitrary size and they are independent of the

resolution. Also, they require much less memory compared to raster graphics.

Consequently, the vector graphics are more advantageous than raster graphics. The
attempt is to vectorize input data for more efficient storage and easier handling to

analyse and process geometric shapes.
Vector-based Image Bitmap Image

Text Text

Text Text

Figure 1.1 Represents vector and raster graphics (Vector vs. Raster Graphics)

1.2 Optical Character Recognition

With the development of digital computers, a wide range of applications such as
banking, security, postal processing, and language identification with the

methodologies of OCR (Optical Character Recognition) systems are exposed.

OCR methodology is based on the recognition of printed documents or handwritten
by using computers (RS et Afseena, 2015). Hence, this technology uses a digital
camera or a scanner to record and store different types of documents such as paper
documents or character images, and then translates all of these documents into
machine editable formats like ASCII code (RS et Afseena, 2015). Therefore, the
storage space required for documents is reduced, and the speed of data recovery is
increased. For instance, OCR can be used in various fields like banking, where they
must deal with vast amounts of paper. With OCR, it could be processed without

human intervention.

«OCR can be classified into two categories based on text type and acquisition of
documents» (RS et Afseena, 2015) (see figure 1.2). OCR is composed of two types
on the basis of text type: HCR (Handwritten Character Recognition) and PCR
(Printed Character Recognition) (RS et Afseena, 2015). HCR recognizes handwritten
input such as paper documents, and PCR recognizes printed documents (RS et
Afseena, 2015). In the second layer, HCR as a subdivision of OCR is divided into
offline and online recognition systems based on acquisition of documents, which can
include overall stages such as pre-processing, segmentation, feature extraction, and

classification (RS et Afseena, 2015).

10

 Optical Chassicter
Recognition

|

Figure 1.2 Classification of optical character recognition (RS et Afseena, 2015)

1.2.1 Offline Recognition

There has been a lot of research in the field of offline character recognition (Arica et
Yarman-Vural, 2001; Mori et al., 1984; Plamondon et Srihari, 2000; RS et Afseena,
2015; Suen et al., 1980; Vinciarelli, 2002). In this approach, a digital image that is
usually obtained by scanning or by photographing is taken as an input for recognition
(figure 1.3). Hence, in offline recognition, before getting into the character
recognition phase, several imperfect and costly pre-processing steps have to be
executed. The purpose of pre-processing steps is to exclude irrelevant information,

and include relevant information in the input (RS et Afseena, 2015).

The first step of pre-processing is thresholding, which is composed of several
techniques (Sezgin, 2004). Thresholding is used to distinguish objects from the
background of the image, and to convert a grayscale image into a binary black and

white image (RS et Afseena, 2015; Sezgin, 2004).

In the second step, in order to improve the recognition performance, some sort of
noise removal must be used to extract the foreground textual matter from, for

instance, textured background by removing interfering strokes, impulse noise,

11

Gaussian noise, speckle noise, and photon noise (Cheriet et Suen, 1993; Plamondon
et Srihari, 2000; RS et Afseena, 2015). Image denoising has various other
applications and has been discussed in these papers (Motwani et al., 2004; Rao et

Panduranga, 2006).

Figure 1.3 Offline recognition.The image of the word is converted into gray-level

pixels using a scanner (Plamondon et Srihari, 2000).

In the second step, in order to improve the recognition performance, some sort of
noise removal must be used to extract the foreground textual matter from, for
instance, textured background by removing interfering strokes, impulse noise,
Gaussian noise, speckle noise, and photon noise (Cheriet et Suen, 1993; Plamondon
et Srihari, 2000; RS et Afseena, 2015). Image denoising has various other
applications and has been discussed in these papers (Motwani et al., 2004; Rao et

Panduranga, 2006).

The last step of pre-processing is using the black and white image as the input in
order to utilize the thinning process on it. This process reduces patterns to thin-line
representations. The aim of the thin-line technique is keeping the geometrical and
topological properties of the image intact, and this makes it appropriate for analysis in
the next phases (Lam et al., 1992). As shown in figure 1.4, the steps involved in

preprocessing are displayed.

12

recognition

(a) (b)
recognition recognition

© (d

Figure 1.4 Pre-processing steps of offline recognition.: (a) Scanned raw input image;
(b) Thresholded black and white with noise; (¢) Denoised image; (d) Thinned image

(Soisalon-Soininen, 2011)

The preprocessing steps explained above are common to all offline recognition
problems, and can be used in characters or graphics issues. The second phase of
offline recognition, which includes segmentation, is the process of converting input
images into text. It does so in three steps: line segmentation, word segmentation, and
character segmentation (RS et Afseena, 2015). Hence, this step separates sentences
from text and then divides words and letters of sentences subsequently (Suen et al.,

1980).

The last phase, the feature extraction, which extracts most relevant features, mainly
depends on the application (RS et Afseena, 2015). Different feature extraction
methods are explained in the literature (Chen et Kégl, 2010; George et Gafoor, 2014;
Majumdar, 2007; Mamatha et al., 2013; Nemmour et Chibani, 2011). These methods
describe how the features of the segmented character are extracted and, according to
these features, each character is assigned to one of the specified classes such as the
upper and lower case letters, the ten digits, and special symbols (Plamondon et

Srihari, 2000).

13

Because there is a strong relation between character and shape recognition (Arica et
Yarman-Vural, 2001; Llados ez al., 2001), it is useful to study the basic approaches,
methods, and applications related to offline recognition. For example, the recognition
task of mathematical formula involves two tasks: symbol recognition, and two-
dimensional structure interpretation (Garain et Chaudhuri, 2004). Although the
approaches in online and offline recognition methods are different, understanding the
challenges in offline recognition leads us to discover and use the benefits of online

methodologies (Arica et Yarman-Vural, 2001).

1.2.2 Online Recognition

In online systems, the character or shape recognition process is executed while the
user is writing or drawing (Plamondon et Srihari, 2000). Hence, a freehand stroke is
captured by computer mouse, or a finger on a touchscreen device, based on the mouse
or finger’s movement (figure 1.5). Furthermore, a freehand stroke drawn by human
user is usually very cursive, inaccurate, and contains imperfections. For example,
supposedly straight lines will be drawn as arcs, and circles will be drawn as ellipses

with irregular shapes and significant noise.

(Liu, 2003) proposed an approach for online recognition that presents a general
overview to the user in order to specify the general problems of online graphics
recognitions, and find the solutions for converting the sequence of coordinate points
into the user intended input. This approach (see figure 1.7) consists of three steps:
primitive shape recognition, composite graphic object recognition and document
recognition and understanding. To describe the primitive shape recognition (see
figure 1.6), four sub steps were defined that include (a) stroke curve pre-processing,

(b) shape classification (c) shape fitting and (d) shape regularization.

14

3 e
= -
: %
1 <\._j
05 .
2 3 4 5 8 7 8 9

x(t) (cm)

Figure 1.5 Online recognition. Similar data as (figure 1.3) presents as point trajectory
data. The x, y coordinate is recorded as a function of time with a digitizer

(Plamondon et Srihari, 2000).

Stroke Preprocessing

:

Shape Classification

:

Shape Fitting

i

Shape Regularization

Figure 1.6 Primitive shape recognition steps (Xiangyu et al., 2002)

15

While the user is drawing a freehand stroke, the concern of primitive shape
recognition is to determine the type and parameters of the primitive shape, which can
be a line, a triangle, a rectangle, an ellipse, etc. (Liu, 2003). After recognizing and
converting the current stroke, it is possible to combine the current stroke (recognized
primitive shape) together with previously recognized primitive shapes, based on their
spatial relationships. This is the composite graphic object recognition step (Liu,
2003). Document recognition and understanding is the last step of online recognition.
After recognizing and converting the graphical elements (primitive shapes and
composite graphic objects), we need to understand the connections and relationship
among the elements, as well as their semantics (Liu, 2003). In the following section

we explain more about the subset of primitive shape recognition.

i -
i i
k *
4 H
% H
: i
— i b onaapmrmerment .
3 ¥
i H
§ i
¥ sewrregmentan *rhpmpans vy st e ’

Figure 1.7 Subprocesses of online graphics recognition: (a) Raw input strokes; (b)
Strokes recognized as primitive shapes; (c) Primitive shapes combined into a
composite object according to their spatial relationship; (d) The semantic of the

composite object interpreted using context information (Soisalon-Soininen, 2011).

16

1.2.2.1 Pre-Processing

Pre-processing in online recognition has the same role as in offline recognition. It
aims to remove the noise and minor mistakes in order to make the strokes more
similar to the user’s intention. Preprocessing can be divided into four steps: polygonal
approximation, agglomerate points filtering, end points refinement, and convex hull
calculation (Liu, 2003; Wenyin et al., 2001). The convex hull calculation is used

individually for recognizing closed shapes and thus will not be discussed here.

(Xiangyu et al., 2002) explain that, generally, the input hardware produces a lot more
points than are necessary to define the shape of the stroke. By removing these points
from the chain, the sketchy line will be approximately displayed by a polyline with
much fewer critical vertices. Therefore, by determining the extent to which this is
controlled by parameter ¢, the polyline can maintain the original shape (figure 1.8).
«If the distance of a point to the straight-line segment formed by connecting its
neighbors is smaller than ¢, this point is non-critical and should be removed from the
polyline» (Xiangyu et al., 2002). Hence, on the one hand more vertices are left by
getting smaller the € value, on the other hand the edge accuracy is improved. This

process is referred to as polygonal approximation.

/ﬁ Polygonal
approximation

withe= 1.0
Polygonal
approximation

with g= 5.0

Figure 1.8 Illustrations of the polygonal approximation process(Xiangyu et al., 2002).

17

Using a pen or digitizer might produce a hooklet or circlet (see figure 1.9) at the end
of the stroke which usually has much higher point agglomerations than the average

value of the whole polyline.

Hooklet
/ Cimieﬁ

Figure 1.9 Agglomerate pointsas a hooklet and a circlet (Xiangyu et al., 2002).

The task of agglomerate points filtering (see figure 1.10) examines the point
agglomerations of the input polyline. By finding these segments, it starts removing

these noises and uses fewer points to represent the segment.

L

(a) (b)

Figure 1.10 Agglomerate points filtering: (a) the sketchy line before processing; (b)
the sketchy line after processing (Xiangyu et al., 2002).

Another "noise" introduced by hand drawing is the case where the stroke that is
painted by the user is intended to be a polygon, but ends up as a non-closed form, or a

form with a cross near its end points (see figure 1.11).

18

J 2

(a) (b

Figure 1.11 Shapes with improper endpoints(a) A pentagon with a cross; (b) an un-

closed triangle (Xiangyu et al., 2002).

Hence, these improper endpoints bring enough barriers for both shape classification
and regularization. As a result, end point refinement can be used to close an open

stroke by extending its endpoints along its end directions (see figure 1.12).

PASYAA)

(a) (b) (c)
Figure 1.12 Examples of endpoint refinement: (a) The sketchy line before processing;
(b) After pulling the end points; (c) After deleting extra points (Xiangyu et al., 2002).

1.2.2.2 Shape Classification

After pre-processing, shape classification is the ‘most essential part of shape
recognition. It is used to decide whether an unclear stroke drawn by a user can

represent a predefined shape such as a square, a circle, and arrow, etc. Moreover, in

19

the field of shape recognition, the main focus of the academic papers is shape
classification (Liu, 2003).

In general, the purpose of shape classification is to extract beneficial information
from the input data to facilitate the classification. The extent of classification methods
due to the amount of detail in the process and the ability of combining different parts

from different approaches is abundant.

(Llados et al., 2001) proposed the traditional categorization of pattern recognition in
the context of symbol recognition methods. Such methods can be divided into
statistical and structural methods. «In statistical pattern recognition, each pattern is
represented as an n-dimensional feature vector extracted from the image» (Lladds et
al., 2001). Therefore, this classification is conducted by partitioning the feature space
into different classes. Thus, we need to focus on the selection of the features, as well

as the selection of the method in order to partition the feature space.

The properties of the patterns that need to be classified can affect the selection of the
features space. «The main criteria must be to minimize the distance among patterns
belonging to the same class and to maximize the distance among patterns belonging
to different classes» (Llados et al., 2001). Once a set of features has been chosen, we
use classification to partition the feature space and assign each feature vector to one
of the predefined classes. Three of the most common selection methods are: k-nearest

neighbours, decision tree and neural networks (Llados et al., 2001).

The k-nearest neighbors method (Larose, 2005; Lladds et al., 2001) is based on a
similarity measure. We need to define a distance function among feature vectors in
order to assign each input image to the class with the closest representative (Llados et
al., 2001). Once all representatives are defined for each input pattern and each class,
the set of the k-closest representatives is built, and the pattern will be assigned to the

class that has the most representatives in this set (Lladés ez al., 2001).

20

The decision tree (Freund et Mason, 1999; Lladés et al., 2001) method constructs
using simple decision rules. In this method, specific conditions about the value of a
particular feature are tested in each node (Freund et Mason, 1999; Lladés et al.,
2001). Classification will be executed by tracing the branches in the tree based on the
result of condition testing (Freund et Mason, 1999; Lladés et al., 2001). As a result,

one of the tree leaves corresponds to the recognized symbols is reached.

The neural networks (Bishop, 1995; Lladés et al., 2001) solves problems in the same
function of the human brain. Hence, the learning ability is one of the advantages of
this approach. Based on this ability, neural networks have obtained good
classification rates in many different domains. This advantage enables them to adapt
themselves according to the properties of the training set (Bishop, 1995; Lladés et al.,
2001). By learning automatically, the neural network optimizes its parameters in

order to recognize the symbols in the training set (Bishop, 1995; Lladés et al., 2001).

In the structural approach (Lladds et al., 2001), a description of the shapes is used as
a reference. Hence, this method uses a set of geometric primitives, and their
relationships to represent symbols (Lladds et al., 2001). Straight lines and arcs are the
primitives used to describe the shape of the symbols, as well other geometric
primitives such as loops, contours, or simple shapes (circles, rectangles, etc.) (Lladds
et al., 2001). For example, a diamond can be represented as a set of four lines with
certain constraints (Lladés et al., 2001). Therefore, a model of an ideal shape is built
for each symbol by using these primitives (Lladds ef al., 2001). As a result, an input
image is classified based on the best match between the representation of the image
and the model of the symbol (Lladés et al., 2001).

1.2.2.3 Shape Fitting and Regularization

Shape fitting and regularization is less complicated than shape classification. After
classifying the sketch, the fitting process is employed to investigate whether a shape

from a class is similar to the sketch. Hence, the aim is to use different methods to find

21

the parameters of the fitted shape that has the lowest average distance to the sketch
(Xiangyu et al., 2002). Several approaches have been proposed to do this, are

explained below.

Chen and Xie, proposed an approach which finds the fitting shape based on an
analysis of the drawn curve with reference models (Chen et Xie, 1996). Their
technique uses fuzzy filtering rules in order to recognize the correct model and to
eliminate the undesirable points. There are different fitting methods for lines, circles,

circular arcs, ellipses and elliptical arcs.

For generating a straight line from a sequence of points, they attempt to find a line
with the best approximates of the scattered data. Thus, the method of least-squares
(Marquardt, 1963) is used to generate it. Furthermore, three non-collinear points can
be used to determine whether an arc is a circle or a circular arc. Thus, for representing
the circle, fuzzy information is needed to obtain a weighted average of centers and
radius by choosing all possible triplets of points in the freehand drawing. For ellipse
fitting, the liming multiplier technique is proposed. More methods for ellipse and

polygonal fitting are suggested by Liu (Liu, 2003; Wenyin et al., 2001; Xiangyu et
al., 2002).

Liu discussed a set of shape regularization rules that are described in more detail in
his work (Xiangyu et al., 2002). These rules attempt to correct the defects of the
drawing of a sketcher. They suggest a process that includes of two sub-processes:

inner-shape regularization and inter-shape regularization.

The inner-shape regularization (figure 1.13) consists of making modifications to the
fitted shapes according to several rectifications (Xiangyu et al., 2002). The first
rectification adjusts the edges or the A-axis and B-axis of polygons in order to
equalize their lengths. The second rectification adjusts the edges of polygons to make

them parallel. The third rectification connects the inner angles of polygons to lean

22

towards regular figures such as rectangles. Furthermore, horizontal/vertical
rectification as the last rectification in inner shape regularization is able to rectify the
edges of a polygon, or the axes of an ellipses or diagonals of a diamond to horizontal

or vertical.

B —

(a) (b)

Figure 1.13 Inner shape regularization (a) rectifying a triangle into an isosceles

triangle; (b) rectifying two rectangles into the same size (Xiangyu et al., 2002).

The inter-shape regularization (figure 1.14) introduces a group of rectifications
including size, position, and critical points (Xiangyu et al., 2002). Size rectification
adjusts a group of adjacent primitive shapes that have the same type or approximately
of the same size. The edges of two adjacent polygons that are nearly on the same
horizontal/vertical line are adjusted by position rectification. At the end, the critical
points rectification is applied to rectify the centers of ellipses, the vertexes of

polygons, and the mid points of edges.

23

(a)
(b)
(c)

Figure 1.14 Inter-shape regularization: (a) Scale the two adjacent squares to have the

same size; (b) Shift the two adjacent circles to have the same position; (c) Shift the

triangle and the square, the leftmost vertex of the triangle is at the center of the

rightmost edge of the square (Xiangyu et al., 2002).

1.3 Sketch Recognition Systems

Coyette and Vanderdonckt proposed three categories for UI prototypes that were
defined according to their degree of fidelity, which refers the accuracy that allows
them to present the reality of the UI (Coyette et Vanderdonckt, 2005). The first Ul
prototype tool is the high-fidelity (Hi-Fi) that shows the final result inapplicable. It
can be considered as a high fidelity tool which supports building a Ul that almost
complete and usable (Coyette et Vanderdonckt, 2005). Hence, this kind of Ul
prototype includes editing functions such as undo, erase, and move can build a
complete GUI (Graphical User Interface) for designers (Coyette et Vanderdonckt,
2005).

24

The medium-fidelity (Me-Fi) approach falls between high-fidelity and low-fidelity
prototypes in order to present the major functions and details (Coyette et
Vanderdonckt, 2005). This approach maintains the information relevant to color
schemes, typography or other minor details (Coyette et Vanderdonckt, 2005). The
low-fidelity (Lo-Fi) approach is used to keep the general information to obtain a
general understanding of what is desired (Coyette et Vanderdonckt, 2005). Hand
sketch on paper is well known as one of the most effective ways to represent the first
drafts of a future Ul (Bailey et Konstan, 2003; Coyette et Vanderdonckt, 2005;
Landay et Myers, 2001; Newman et al., 2003). This unlimited approach known as a
low-fidelity UI prototype has many advantages. For example, during any design step,
sketches can be drawn without any prerequisites (Newman et al., 2003). This method
is fast and quick to produce (Duyne et al., 2002). Hence, instead of confusing the user
with unessential details, it lets the sketcher focus on essential structural issues
(Landay et Myers, 2001). As another advantage, not only can it encourage creativity
(Landay et Myers, 2001) but it also increases the level of collaboration between
designers and end-users (Plimmer et Apperley, 2003a). Furthermore, «creating a low-
fidelity UI prototype (such as Ul sketches) is at least 10 to 20 times easier and faster
than its equivalent with a high-fidelity prototype such as produced in Ul builders»
(Coyette et Vanderdonckt, 2005; Duyne et al., 2002).

By comparing these Ul prototypes, a Lo-Fi prototype has a set of advantages to
compare the other prototypes (see a summary of these advantages in table 1.1). By
having several screens that have a lot in common, using copy and paste instead of
rewriting the whole screen is more profitable. despite, lack of assistance in this
approach is palpable (Coyette et Vanderdonckt, 2005). Consequently, by considering
the Lo-Fi advantages and combining these approaches, two families of software tools
which contain Ul sketching with or without code generation will be developed

(Coyette et Vanderdonckt, 2005).

25

This current section is divided in two subsections. Section 1.3.1 describes about

sketch-based tools for UML class diagrams, and section 1.3.2 explains the sketch

based tools in other domains.

Table 1.1Comparison of software fidelity Ul prototyping tools (Coyette et
Vanderdonckt, 2005)

Fidelity Appearance Advantages Shortcomings
- Is facilitator-driven
1 G i cont -l@m@tedforusabiﬁtv!ests
- Sketchy - Short production time - Limited support of
Low - Little visual o navigational aspects
detai Pt g - Low atractiveness for end
- drawing skills needed i
- No code generation
- Medium development cost
- Simple - Average production time - Is facilitator-driven
- medium level | - May involve some basic graphi- | - Limited for usability tests
Medium of detail, close | cal aspects as specified instyle | - Medium support of naviga-
to appearance | guide: labels, icons,... tional aspects
of final Ul - Limited drawing skills - No code generation
- Understandable for end user
- Fully interactive / - High development cost
-Defirtive, | - gorves orusabllylesting | iep oroducion ime
High i - Serves for prototype validation | ~ Advanced drawing and
-Look and Feel | ~ 0" ' specification skills needed
of final Ul Aiuciias iciond - Very inflexible with respect to
SN CEC U changing requirements
- Code generation i

1.3.1

Sketch-Based Tools for UML Class Diagrams

Hammond and Davis proposed Tahuti as a sketch-based tool for UML class

diagrams (Hammond et Davis, 2006b). Tahuti uses a multi-layer recognition

framework to recognize sketches by their geometrical properties (Hammond

et Davis, 2006b). It allows users to sketch object freely in many different

ways, instead of requiring the user to draw the object in a pre-defined

manner (Hammond et Davis, 2006b). Moreover, Tahuti uses two different

26

views, draw view and interpreted view, in order to display user sketches and
the result of the recognition process. Furthermore, the user can switch

between the two views.

The multi-layer recognition framework of Tahuti uses a formal language
called LADDER, which was created by Hammond and Davis (Hammond et
Davis, 2006a; Hammond, 2007). kKLADDER is the first sketch description
language for user interface developers to describe how sketched diagrams in
a domain are drawn, displayed and edited» (Hammond et Davis, 2006a).
Hence, the language employed in this framework implements the first
prototype system that has the ability to automatically generate a sketch
interface for a domain only by considering domain description (Hammond et
Davis, 2006a).

This framework is divided into three parts: Domain Description, Translation,
and Domain Independent Sketch Recognition System (Hammond, 2007).

Figure 1.15 shows an overview of such a framework.

According to the figure 1.15, a number of predefined shapes, constraints, display
methods, and editing behaviors are supplied in domain description. Moreover this
domain consists of a display section and an editing section. «A display section
specifies what should be displayed on the screen when the shape is recognized.
Editing section specifies how the shape can be edited. Common editing commands
involve movement and deletion of the shape» (Hammond et Davis, 2006a).
Following the domain description, the translation process is started to parse the
shape’s definitions and generate code that is needed to recognize shapes, edit triggers,
and display the shapes once they are recognized (Hammond et Davis, 2006a). As the
last part of this framework, the domain independent sketch recognition System is
used. When the stroke is drawn, first of all, the system searches the drawn shapes

database in order to check whether the gesture drawn is an editing trigger for any

27

shape or not (Hammond et Davis, 2006a). If the stroke is found, not to be an editing

gesture, it must be a drawing gesture.

Domain Description
Shape Definition of Arrow

{define shape Arrow

(components
{Line shaft)
{Line head1)
{Line head2))
(constraints
(coincident shaft p1 head1.p1)
{coincident shaft.p1 head2.p1)
(equallength head1 head2)
(acuteMeet head1 shaft)
(acuteMeet shaft head2))
(alases
(Point head shaft.p2)
(Point tai shaftp1))
(editing
((trigger (holdDrag head))

({trigger (holdDrag til))
(action {rubber-band this head wil))
{(trigger (holdDrag this))
{action (moves this)))
(display
{original-strokes shaft)
{cleaned-strokes head 1 head?)
{color red))

(comment "An arrow with an open head ")

(action (rubbsr-band this tail head)) ==

-t

Input Stroke
Sketch
Recognition
Translation System
Recognition Editing
° Primliive Shapes * Primitive Actions
Primlitve Constraints * Primitive Triggers
* Domain Shapes * Primitive Behaviors
ngenemnng headt p2 * Domain Behaviors
shape a< 90 heed1 p1
iz haft.p2
e [e O,
= head2p2
Drawn Shapes ?
Database
generating !
editing . i 1
recognizers 1Y _ _ : |
Display
* Primitive Exhibltors
o e | * Domaln Exhibitors
: g:;?:ﬂng original sroke Esmx‘ghl line
axhibitors straight line

| Output Screen |

Figure 1.15 LADDER Framework (Hammond, 2007)

Thus, the system preprocesses the stroke into a collection of primitives in order to

add them to the drawn shapes database (Hammond et Davis, 2006a). The recognition

module tries to build a higher order shape by examining the drawn shapes database

(Hammond et Davis, 2006a). At the end, the display module displays the viewable

shapes which are defined by the domain description.

Qiu presents SketchUML as a sketch based tool that allows users to sketch UML

class diagrams on a computer with editing capabilities (Qiu, 2007). Therefore, it can

28

recognize sketches immediately, and the user does not need to switch to different
view to see the recognition results. The tool also supports text recognition and
enables users to write text directly inside class objects (Qiu, 2007). SketchUML
needs to define sketching flexibility and recognition accuracy. Hence, a geometry-
based approach is used to recognize common element in the diagram (Qiu, 2007).

Furthermore, it uses a graffiti-based approach to identify special gestures (Qiu, 2007).

Chen and Grundy present SUMLOW as a unified modeling language (UML) diagram
tool that uses an E-whiteboard and sketching-based user interface (Chen et al., 2008).
This experimental tool proposes sketching-based techniques for early-phase
requirements and design modeling. Thus, it allows designers to sketch UML
constructs mixing different UML diagram elements, diagram annotations and hand-
drawn text (Chen et al., 2008). Their approach has a number of advantages, including
keeping a copy of the hand sketches, whereas other sketching based UML design
tools convert hand sketches to formal models, and lose the originals. Further, users
can use various pen strokes to manipulate sketched diagrammatic elements. Finally,
SUMLOW can recognize various UML constructs in sketch view that are hand-

drawn, and formalized elements in diagram view.

1.3.2 Sketch-Based Tools in Other Domains

DENIM (Lin et al., 2002; Newman et al., 2003) is one example of a Lo-Fi
prototyping tool that allows designers to quickly sketch web pages and present them
in different levels of details including a site map, a storyboard, and an individual
page. DENIM unified these levels through zooming views. DEMAIS (Bailey et al.,
2001) is another Lo-Fi prototyping that bridges the gap in multimedia design and
enables a designer to quickly sketch temporal and interactive design ideas. Hence, it
is made up of an interactive multimedia storyboard tool that is able to capture about
90 percent of a designer’s behavioral design ideas (Bailey et Konstan, 2003). Neither
DENIM nor DEMALS produces any final code or other output. By contrast, the Hi-Fi

29

prototyping tools which are discussed next, support code generation (Coyette et
Vanderdonckt, 2005).

Jin et al. propose an approach for pen-based user interfaces that follow a novel and
fast shape classification and regularization algorithm for online sketchy graphics
recognition (Xiangyu et al., 2002). This recognition process is divided into
four stages, including preprocessing, shape classification, shape fitting, and
regularization, which explained the previous chapter. The attraction force model is
used to combine the vertices on the input sketch stroke based on certain threshold
(Xiangyu et al., 2002). Thus, the total number of vertices is reduced before the type
of shape can be determined. Following this process, the shape is classified as a
primitive shape according to a rule-based approach (Xiangyu et al., 2002). Finally,
using shape fitting and regularization gradually rectifies the primitive shape into a

regular one that fits the user-intended shape (Xiangyu et al., 2002).

Yu and Cai focus on low-level geometric features, instead of working on domain-
specific knowledge in order to achieve a domain-independent system for sketch
recognition (Yu et Cai, 2003). Their approach follows two steps. First, the stroke is
approximated according to one primitive shape or a combination of primitive shapes
that can be further used in domain-specific applications. Accordingly, a recursive
algorithm segments the stroke using direction and curvature information.
Furthermore, the algorithm uses geometrical features and stroke direction data to

distinguish between graphical primitives (line, arc, circle, and helix).

The second step takes all the recognized primitive shapes as input and analyzes
connectivity between them according to following these segmentations (Yu et Cai,
2003): 1) remove false and redundant elements, 2) adjust the size and position of the
elements, and 3) adjust their layout to make a match predefined domain independent

objects.

30

Their hierarchical output is presented in three steps, including (a) the lowest level,
which maintains the original information of stroke (b) the mid-level, which stores the
vertexes and primitive shapes and (c) the highest level , the semantic level composed
of the relation tables which consist of recognized primitive shapes and basic objects
(Yu et Cai, 2003).

Landay and Myers proposed a system called SILK (Sketching Interfaces Like Krazy)
(Landay et Myers, 2001). SILK tries to recognize primitive components that are basic
shapes such as rectangles, squiggly lines (representing text), straight lines and
ellipses. This approach looks for spatial relationships between new components and
other components in the sketch in order to combine the primitive components to
make up a Ul component such as a button, text field, menu bar, or scrollbar. In
addition, SILK recognizes editing gestures such as delete, and grouping or

ungrouping objects.

The underlying recognition engine of SILK uses Rubine’s gesture recognition
algorithm to identify the primitive components (Rubine, 1991). According to this
algorithm, each of the primitive components is trained with 15 to 20 examples, and
they vary in size, and drawing direction (Landay et Myers, 2001). However, this
algorithm has some limitations. For example, the gestures used in Rubine’s algorithm
are all single strokes, to avoid the segmentation problem of multi-stroke character
recognition. Furthermore, it does not handle variations in size and rotation (Landay et

Myers, 2001).

Calhoun et al. proposed a recognition system that can recognize symbols composed
of multiple strokes (Calhoun et al., 2002). Their approach applies a trainable
recognizer in order to describe the definition of the geometric primitives, as well as
the geometric relationships between them. Geometric primitives are characterized by
intrinsic properties such as line or arc, length, relative length, slope (for lines only),

and radius (for arcs only) (Calhoun et al., 2002). Geometric relationships between

31

primitives are built based on certain parameters such as the existence of intersections
between primitives, the relative location of intersections, the angle between
intersecting lines, and the existence of parallel lines (Calhoun er al., 2002). The
approach supports two types of recognition methods. In the first method, each
primitive symbol needs to follow the specified definition, which is learned by
examining a few examples of the symbol and its geometric relationships. However,
this method requires some attention from the drawer (Calhoun et al., 2002). The
second method uses a form of best-first search based on a speculative quality metric

and pruning (Calhoun ef al., 2002).

1.4 Conclusion

We investigated sketch-based tools in different domains, as well as their approaches
to recognize hand-drawn sketches. However, these approaches were inspirational for
understanding the concept of sketch recognition, despite, the context of this thesis is
based on recognizing CMMN hand-drawn sketches as primitive shapes and
composite shapes. Hence, we need to implement a new approach to recognize a
freehand drawing of CMMN models. Moreover, we verify an approach to transfer
these recognized elements into a format that can be imported into a formal modeling
tool. Thus, the second issue is to serialize these formal models into an XML file that
is compliant with the CMMN model interchange format and can then be imported
into CMMN compliant tools. In the next chapters, the meaning of CMMN, as well as
the definition of each CMMN model was explained.

CHAPITRE II

CASE MANAGEMENT MODEL AND NOTATION (CMMN)

In regards to case management systems, in order to define, create, and manage
business processes, it’s necessary to provide a case folder as the primary building,
which holds a collection of business documents and other information (Marin et al.,
2012). Case management was developed to manage social work and related
application areas such as insurance claim processes, healthcare processes, lawsuit

services processes, social services process, etc. (Marin et al., 2012).

Case Management Model and Notation (CMMN) is an industry-wide standard by the
Object Management Group (OMG) to represent and manage cases within the context
of case management. CMMN supports the representation of a wide range of
knowledge worker activities, including planning (e.g., business strategic planning
initiatives), follow-up (e.g., maintenance and repairs), collaboration (e.g.,
specification development), record-keeping (e.g., audits), decision-making (e.g., court
cases), and problem resolution (e.g., customer service) (Trisotech). Hence, CMMN is
used to « document case-oriented business processes to drive process improvement

efforts for knowledge work » (Trisotech).

34

2.1 Notations

In this section, we provide an overview of the CMMN notation in order to model the

core constructs of a case.

2.1.1 Case

Knowledge workers, who are experts in their specific field, are able to execute
different instances of the model, which is called a case in the case management
domain (de Carvalho et al., 2016). For instance, a doctor in the healthcare domain can
specify a case that involves caring for a patient, in terms of a medical history and
current medical problems (de Carvalho et al., 2016; OMG). In another example, a
judge, for the law domain, can define a case involving the application of the law to a
subject in a particular situation (de Carvalho et al., 2016; OMG). Generally speaking
a case is a top-level concept that combines all the elements that constitute a case
model. Hence, « A case is a proceeding that involves actions taken regarding a
subject in a particular situation to achieve a desired outcome» (OMG). In the

following subsections, we will describe the components of the case modeling.

2.1.2 Case Plan Model

The case plan model (OMG) contains all of the activities for the case. It is composed
of all of the elements that represent the initial plan of the case, as well as all elements
that support the further evolution of the plan (OMG). A "Folder" shape, as shown in
figure 2.1, is considered to display a case plan model. Therefore, the name of the case

can be enclosed in the upper left rectangle.

35

/ <CaseName> \

Figure 2.1 Represents Case Plan Model shape

2.1.3 Task

A task, as shown in figure 2.2, is a unit of work, as well as a base class for
representing all the work that is done in a case (OMG). Task as a central element in
CMMN composed of five different types of task that include: the non-blocking
human task, the blocking human task, the process task, the decision task and the case
task. In addition, there is a discretionary task that is executed depending on the case

manager discretion.

[——————— -
! i
i '
Task ; Discretionary Taski
1 i
Ve ——— A

Figure 2.2 Ordinary Task shape and Discretionary Task shape (left to right)

The non-blocking human task (OMG), as shown in figure 2.3, is completed at the
same moment that it is started. Hence, in the case model, when a non-blocking human
task starts, we do not wait for it to complete: the sequence flow continues with the
next task in the sequence. By contrast, the blocking human task (OMG), as shown in
figure 2.4, stops the sequence flow until it is completed. All other tasks are by default
"blocking".

36

Figure 2.4 Blocking Human Task shapes

The process task (OMG), as shown in figure 2.5, is used in order to links to a BPMN
diagram. Hence, by clicking the symbol in the upper left corner of the element, a link

to a BPMN diagram will be created (Signavio).

Figure 2.5 Process Task shapes

A decision task (OMG), as shown in figure 2.6, is used to repeat a task that consists
of a decision represented by a DMN diagram. Hence, by clicking the symbol in the
upper left corner of the element, a link to a DMN diagram will be created (Signavio).

37

———————

Figure 2.6 Decision Task shape

Finally, the case Task (OMG), as shown in figure 2.7, is used to embed an existing
case model in another. Therefore, by clicking the symbol in the upper left corner of

the case task element, a link to a CMMN diagram will be created (Signavio).

——

Figure 2.7 Case Task shapes

2.14 Stage

A stage (OMG) is defined as a container to visually organize tasks and other CMMN
elements. Hence, a certain number of sequence flows, tasks, and sub-stages can be
represented by a stage (Signavio). As shown in figure 2.8, stages can be expanded or
collapsed and have a - or + on the bottom center. In an expanded stage, the elements
that constitute it become visible and a collapsed stage is linked to another CMMN

diagram (Signavio).

38

AN : e

@ (®

Figure 2.8 Expanded Stage shape and Collapsed Stage shape (left to right)

2.1.5 Event

An event (OMG) waits for specific things to happen in the case. Events typically
mark the enabling, activation, and termination of stages and tasks, or the achievement
of milestones (OMG). CMMN supports the representation of event listeners, which
wait for a particular event to occur. Different types of listener exist (OMG), as shown
in figure 2.9. There are timer event listeners that wait for a certain amount of time to
elapse for a certain predefined point in time. There are also generic event listeners

that wait for an event to occur. Finally there are user event listeners that wait for user

O © ®

Figure 2.9 Event shapes: "Event Listener", "Timer Event Listener" and "User Event

input.

Listener" elements (left to right).

2.1.6 Case File

A case file (OMG), as shown in figure 2.10, represents documents that contain
information that is used, or produced, by the case. Such documents could include

pieces of unstructured or structured information that can be tended from simple to

39

complex sources. The contents of a case file can be defined using any information
modeling language (de Carvalho et al., 2016). Case files can be attached to another

element using a connector (Signavio).

Figure 2.10 Case File shape

2.1.7 Milestone Item

A milestone (OMG), as shown in figure 2.11, represents the state of the case.
Therefore, milestones as sub-goals within the case process indicate whether a certain
point or stage has been reached or completed (Signavio). A milestone is depicted by a
rectangle shape with half-rounded ends. Furthermore, a milestone may have zero or

more entry criteria when it is reached.

C D

Figure 2.11 Milestone shape

2.1.8 Sentry

The diamond shaped Entry Criterion (OMG) and Exit Criterion (OMG) called
"sentries," as shown in figure 2.12, specify the main conditions that need to occur to
influence the further proceedings of a case (OMG) .These sentries can be attached to
tasks, stages, milestones, and case files. Additionally, they don’t even need to be
attached to other elements; sentries can stand alone within a sequence flow

(Signavio).

40

A sentry used as an entry criterion is depicted by a shallow "diamond." this indicates
that the incoming sequence flow directly attached to the sentry has to be finished
before the sequence flow can continue (Signavio). A sentry used as an exit criterion is
depicted by a solid “diamond” that presents when a plan item is complete. It implies

that the sequence can continue in what direction.

O ¢

Figure 2.12 Entry Criterion shape and Exit Criterion shape (left to right)

2.1.9 Connector

Connectors (OMG) define relations between CMMN elements, as shown in figure
2.13. A connector object is represented by a dotted line that does not have
arrowheads. However, the direction of the flow or association is determined by the

presence of a sentry (entry criterion or exit criterion) (OMG).

Figure 2.13 Connector Shape

For example, the diagram shown in figure 2.14 illustrates a situation where the entry

criterion of Task B depends on the completion of Task A (OMG).

TaskA f—cemmermmes ... Task B

Figure 2.14 Sentry based dependency between two tasks

41

2.1.9.1 Connector usage

Connectors can be used to visualize dependencies between plan items. For example,
the following figure 2.15 shows a situation where Task C can be activated only if
Task A and Task B complete (OMG).

Task A 1

Task B f—eem—mei—us

Figure 2.15 Using sentry-based connectors to visualize "AND"

Figure 2.16 illustrates a situation where Task C can be activated if Task A or Task B
completes (OMG).

TaskA b—eemeim—mn,

Task C

Task B |

Figure 2.16 Using sentry-based connectors to visualize "OR"

42

Figure 2.17 shows a situation where Stage B depends on the exit criterion of Stage A
(OMQG).

Figure 2.17 Visualize dependency between stages using sentry-based connector

Figure 2.18 shows a situation where Task A depends on the achievement of
Milestone A (OMG).

Figure 2.18 visualize dependency between a task and a milestone using the sentry-

based connector

Figure 2.19 shows a situation where Task A depends on a timer event listener

receiving a timer event (OMG).

................... Task A

Figure 2.19 Visualize dependency between a Task and a Timer Event Listenerusing

the Sentry-based connector

Figure 2.20 shows a situation where Task A depends on a Case File Item (OMG).

43

BI.._.._.._. ‘ Task A

Figure 2.20 Visualize dependency between a task and a case file itemusing the sentry-

based connector

2.2 Example of Case Plan Model

In this section, as shown in figure 2.21, we illustrate the use of the various elements

by representing a claim processing example used in the standard.

The case plan model below contains all the activities for representing the case of a
CMMN training certificate. This case is organized with two separate stages that
include Secretary and CMMN-Trainer. At the beginning, the task of the user event
listener waits for the new employees who want to start the training. On the one hand,
the sequence flow is stopped until the list employees without training will be ready.
On the other hand, according to the case manager discretion, the discretionary task
checks when potential trainees are free. These two tasks should be complete in order
to inform potential trainees and trainer what course is planned. In the following,
milestone defines the state of the stage of Secretary represented that indicates CMMN

training is planned.

In the CMMN-Trainer stage, before starting the training, the timer event listener
defines a certain amount of time for the duration of the course. In the following, the
trainer explains the topics of the training to employees. At the end of the training, the
case file element that is produced by the case contains a CMMN training certificate.

A sentry used as an exit criterion presents when a plan item is complete.

44

Get CMMN
training certificate

&

Snew
employees
started

Secretary

énst employees

Inform potential
trainees &

without CMMN

i /.! trainer

|
Check when !

H Set up CMMN

potential =< :rain’i)ng date
trainees are free:
il

CMMN-Trainer

(Explain Case

Explain other

CMMN training
Degins

Explain Sentries |-« MMN elements

L Plan ltems

CMMN training is
planned

N

CMMN
Training
Certificate

Figure 2.21 combinations of various elements in CMMN (Signavio)

23

Conclusion

In this chapter, the concept of CMMN was described. Moreover, the CMMN

notations and their meaning in the context of CMMN in order to model the core

constructs of a case were explained. In the following, we employed an example of

claim processing to illustrate the use of the various CMMN elements. In the next

chapter, hand-drawn sketches of CMMN models are recognized using feature

extractions and heuristics. We will describe our approach in detail and explain the

certain issues in each step of the implementation.

CHAPITRE III

EXPERIMENTAL RESULTS

Sketch recognition domain is an approach that automatically recognizes hand-drawn
diagrams with the use of a computer. Hence, research in this domain during recent
years has expanded due to the advancements in artificial intelligence and human-
computer interaction. Similarly, hand-drawn recognition can be introduced as a
subset of the sketch recognition domain. Thus, it can be part of the ability of a
computer to receive and interpret handwritten input from sources which can include a
paper document, touch-screens, picture, and several other devices. Moreover,
different types of recognition algorithms are used, such as gesture-based, appearance-
based, geometry-based, or a combination thereof.

In this chapter, we explain the implementation of the tool that investigates different
stages of the CMMN elements hand-drawn sketch recognition, and analyzes a set of

issues at each stage and describing their solutions in details.

3.1 Case Study

This thesis is planning to deal with recognizing the CMMN elements hand-drawn
sketches. Therefore, we need to address two issues: 1) recognizing elementary
CMMN constructs within user hand-drawn sketches, and 2) recognizing semantic
relationships between them in a way that is consistent with the semantics of CMMN.

Figure 3.1 shows on the left hand side what an input might look like. On the right

46

hand side, we show the corresponding CMMN model, as visualized by a CMMN
modeling tool.

In other words, we need to create a prototype of a case model from a hand-drawn
sketch in order to export it into a business process management or case management

system for case automation.

P ma———

] “‘“LD
°H & e O

Figure 3.1 Formalizes case model from a CMMN hand-drawn sketch

Indeed, in order to recognize CMMN elements from hand-drawn sketches, we

specified three steps that include:

e Primitive shape recognition;
o Composite graphic object recognition, and

e Semantic connections recognition and understanding.

In the beginning, the user draws a sketch that includes CMMN elements. Therefore,
the first step consists of reading a raw input image and recognizing the contours as
primitive shapes. The second step, consisting of recognizing composite shapes that
correspond to CMMN elements, combines the primitive shapes based on their spatial
relationships. The third step of recognition consists of understanding the semantic
connections between the primitive shapes, according to the CMMN elements spatial
relationships. Once this is done, we can export the result model into an XML file

using CMMN’s model interchange format.

47

In the next part of this chapter, each step is explained in detail. In particular, we will
discover the problems inherent in each step, and describe algorithms that will attempt

to solve them.

3.2 Technology Used

Our prototype was produced in Java on the eclipse IDE, as well as using the OpenCV
library (OpenCV). This library is an open source C++ library, as shown in Figure 3.2,
which is optimized for real-time image processing and computer vision applications.
OpenCV has a modular structure, meaning it has several hundreds of image
processing and computer vision algorithms which make developing advanced
computer vision applications easy and efficient (OpenCV)..

&\ JRE System Library [JavaSE-1.8]
v =) OpenCV-24.6

v (w8 opencv-2413,jar
#3 org.opencv.calib3d
3 org.opencv.contrib
#3 org.opencv.core
3 org.opencv.features2d
3 org.opencv.gpu
3 org.opencv.highgui
3 org.opencv.imgproc
8 org.opencv.ml
3 org.opencv.objdetect
3 org.opencv.photo
f# org.opencv.utils
f# org.opencv.video
= META-INF

Figure 3.2 OpenCYV library on the Eclipse IDE

In OpenCV, digital images are represented using numerical variables for each point.
Thus, images are represented using matrices as well as metadata about the image. To
give an illustration (see figure 3.3), the mirror of the car is nothing more than a matrix

containing all the intensity values of the pixel points (OpenCV documentation, 2013).

48

But the camera sees this:

194 210 201 212 199 213 215 195 178 158 182 209
180 189 190 221 209 205 191 167 147 115 129 163
114 126 140 188 176 165 152 140 170 106 78 88
87 103 115 154 143 142 149 153 173 101 57 57
102 112 106 131 122 138 152 147 128 84 58 66
94 95 79 104 105 124 129 113 107 87 69 67
68 71 69 98 89 92 98 95 89 88 76 67
41 56 68 99 63 45 60 82 S8 76 74 65
20 41 69 75 56 41 51 73 S5 70 63 44
SO S50 57 69 75 75 73 74 53 68 59 37
72 S9 53 66 84 92 B84 74 S7 72 63 42
67 61 58 65 75 78 76 73 S9 75 69 50

Figure 3.3 Represents the data structure in OpenCV (Szeliski, 2010)

3.3 Sketch Recognition Design and Implementation

Our example, despite its simplicity, offers an overview of the recognition system and
the connection of classes in order to implement the three recognition steps mentioned
earlier. In the following, each step is described in detail. Figure 3.4 gives an overview
of the design model of the prototype. Subsequent sections will give more details

about the relevant parts of the design model.

<<Java Cass>> <clava Cass»> - <wava Cass>>
O FsadFolders (® FindMatching © Segmeniedimage

Figure 3.4 Design model compatible with the case study

3.4 Primitive Shape Recognition

The definition of primitive shape includes recognition of elementary CMMN
constructs within user hand sketches. In this section, we investigate how to extract the
contours from inside the sketch and recognize them as the primitive shapes that

compose the CMMN notation.

3.4.1 Reading Hand-Drawn Sketch

In order to recognize the primitive shapes within a hand sketch, the program needs to
find and read the hand-drawn sketch as an input. Figure 3.5 shows a sample of

CMMN primitive shapes. The definition of each shape was explained in Chapter II.

Thus, we need to find the paths that both input and predefined templates are stored.
Hence, "ReadFolders" Java class was defined, as shown in Appendix A, in order to

read the path of the main directory and also listing all files from the directory and its

50

subdirectories. In addition, we defined a condition for reading only the files with the

suffix of JPG or PNG to avoid reading the files with difference suffix and format.

O 9

Event File Sentry Task

Figure 3.5 Templates images

3.4.2 Pre-Processing

In order to perform any object detection, as we mentioned in chapter II, pre-
processing steps are necessary. Hence, we used the OpenCV library to implement
some pre-processing functions on the input image to improve the final result (Figure
3.6). These functions are used to accomplish various linear or non-linear filtering
operations on 2D images. that were represented by a two-dimensional matrix
(OpenCV).

The first step of the pre-processing process converts an image from RGB to
grayscale. It means that an input image will be converted from one color space to
another (OpenCV documentation, 2013). The default color format in OpenCV is
BGR, in other words, the bytes are reversed. Thus, a standard (24-bit) color image is
composed of an 8-bit Blue, 8-bit Green and 8-bit Red. This sequence is repeated for
each pixel (Blue, Green, Red), and so on (OpenCV documentation, 2013). «When
grayscale images are converted to color images, all components of the resulting
image are taken to be equal; but for the reverse transformation, the gray value is

computed using the perceptually weighted equation» (Bradski et Kaehler, 2008):

RGBTOGRAY: Y € 0.299R+0.587G+0.114B 3.1

51

o %M

(a) Original input image (colorful) (b) Convert RGB to grayscale image

L=

0 &

(c) Smoothing grayscale image (d) Convert grayscale to binary image

Figure 3.6 Pre-processing steps of the recognition system: (a)=>(b) Grayscale
operation converts RGB image to grayscale image; (b) = (c) Blur operation reduces
noise and smoothing the grayscale image; (c)->(d) Threshold operation assigns one
value (black) to the pixel value greater than the threshold value, else assign another

value (white).

The second step of the pre-processing process is called image smoothing, as well as
image blurring, which reduces noise and smoothies the image. In order to perform a
smoothing operation, we apply a filter. The overall performance of the filter is that
«an output pixel’s value (i.e. g (7, j)) is determined as a weighted sum of input
neighborly pixel values (i.e. f (i+k, j+1)) » (OpenCV documentation, 2013), typically
-1< k <1 and -1< [<1 (figure 3.7). In addition, the coefficient of the filter that is
called the kernel is defined by h (%, /) (OpenCV documentation, 2013). The equation

below shows the smoothing operation (OpenCV documentation, 2013):

52

glij) =D Fli+kj+)h(k1)
kil (3.2)

The OpenCV library comes with several filters. We used the Gaussian filter
(OpenCV documentation, 2013; Szeliski, 2010) , which is done by «convolving each
point in the input array with a Gaussian kernel and then summing all the points
contribute to produce the output array» (OpenCV documentation, 2013; Szeliski,
2010). In order to make the context clearer, a 1D Gaussian kernel is presented (figure
3.8). Hence, the pixel located in the middle contains the biggest weight. Therefore, «
the weight of its neighbors decreases as the spatial distance between them and the

center pixel increases » (OpenCV documentation, 2013; Szeliski, 2010).

Figure 3.7 Gaussian blur on 1D pixel array (Szeliski, 2010)

53

0.4

031

(x)
bt
o

0.1

-4 -2 0 2 4
x

Figure 3.8 1D Gaussian kernel (OpenCV documentation, 2013)

As a result, a 2D Gaussian can be represented using the following equation (OpenCV
documentation, 2013; Szeliski, 2010):

—(x— ux)2+—(y — My)?
202 20}

Go(x,y) = Ae (3.3)

Where [is the peak and © represents the variance (for each of the variables x and y)

(OpenCV documentation, 2013; Szeliski, 2010).

Thresholding (OpenCV documentation, 2013), as the last step of the image pre-
processing, is a non-linear operation that segments grayscale images in order to
convert them into binary images. Thresholding gives threshold values, pixels that

have a value above the threshold are kept white, and the others are changed to black.

There are several threshold operations in OpenCV, but we chose the binary inverted
function (Figure 3.9) (OpenCV documentation, 2013), to perform a threshold
operation. Hence, if the pixel value is greater than a threshold value, it is assigned one
value (black), otherwise, it is assigned to another value (white). The threshold
operation can be expressed as the following equation (OpenCV documentation,
2013):

54

0 if src(x,y) > thresh
maxVal otherwise G.4)

dst(x,y) = {

SR A Lo
Figure 3.9 Threshold operation: If the intensity of the pixel src(x,y) is higher than

thresh, then the new pixel intensity is set to a 0. Otherwise, it is set to MaxVal .The

horizontal blue line represents the threshold tiresh (OpenCV documentation, 2013)

The "preprocessImage” java method, as shown in Appendix A, shows the details of

pre-processing image operations.

For our purposes, we need to compare each primitive shape contained in the hand-
drawn sketch to the predefined template's images. Hence, a table will be specified to
classify the template's images according to their name, and storing their features
based on their name. Note that the same preprocessing is applied to the predefined
CMMN shapes to allow for a fair comparison. Appendix A shows the methods

preprocess all templates with details.

3.4.3 Contour Finding

Before we compare hand sketches to CMMN templates, we need to convert both the
input image and the templates to contours. A contour is a list of points that represent
a binary image (Bradski et Kaehler, 2008), A hand-drawn sketch is composed of the
sequence of points, which represent the shapes. Thus, the first step of finding shapes

in the hand-drawn sketch and identifies their features is to detect contours.

The function "findcontours" (Bradski et Kaehler, 2008) in OpenCV library, finds

contours within a binary image. Hence, each contour is a sequence of points, each

55

represented by four values that consist of four important elements as pointers to other
points in the sequence. OpenCV represents contour as an array of quadruples
(Bradski et Kaehler, 2008):

(h_prev, h_next, v_prev, and v_next)

As shown in figure 3.10, where h_prev is the horizontal coordinate (x) of the
previous point in the contour, h_next is the horizontal coordinate of the next point in
the sequence, and v_prev and v_next are the vertical (y) coordinates of the previous

and next point in the sequence, respectively.

0
1 2 (0,2,0.2)
2 2 (1,3,1,3)
3 > (2,4,2,4)
4

Figure 3.10 Show graphically a pixel image and the corresponding contour

Note however that, in some cases, some contours are inside other contours, like the
sentry in CMMN, which as a diamond that is part of a task (see figure 3.11). The first
problem that can occur is trying to figure out how to extract the inner contours from

outer contours.

Figure 3.11 Represents a sentry model

56

In this case, we can call outer contour as a parent and inner contour as a child. By
defining this structure (Bradski et Kaehler, 2008), we can specify how the contours
are connected to each other. In other words, the contour can be specified as a child of
some other contour or it can be defined as a parent. This type of relationship is called
the hierarchy (Bradski et Kaehler, 2008).

In order to retrieve the hierarchy, the contour retrieval mode that is an argument of
function “findcontours” is used. There are four different types of Retrieval Mode that
include (Bradski et Kaehler, 2008):

RETR_EXTERNAL, RETR_LIST, RETR_TREE and RETR_CCOMP

RETR _EXTERNAL (Bradski et Kaehler, 2008) returns only extreme outer contours.
As shown in figure 3.12, there is only one outer contour. Therefore, figure 3.13-(a),
represents the first contour points as an outermost sequence and there are no inner
contours.

RETR _LIST (Bradski et Kaehler, 2008) is the simplest retrieval mode that retrieves
all the contours without creating any parent-child relationship and puts them on the
list. In other words, all contours are on the same level. Figure 3.13-(c), illustrates the
list from the image in figure 3.12. Therefore, all contours are connected to one
another by h_prev and h_next.

RETR_TREE (Bradski et Kaehler, 2008) retrieves all the contours in order to create a
full hierarchy list. As shown in figures 3.12 and figures 3.13-(d), the root node of the
tree is the outermost contour. Below the root node, each hole is connected to the other
hole at the same level. In addition, «each of those holes, in turn, has children,
which are connected to their parents by vertical links. This continues down to the
most interior contours in the image, which become the leaf nodes in the tree.»
(Bradski et Kaehler, 2008).

57

Finally, RETR_CCOMP (Bradski et Kaehler, 2008) retrieves all the contours and
arranges them into a two-level hierarchy. Hence, the top-level boundaries are placed
in hierarchy-1 which is the first level; the boundaries of the holes are placed in
hierarchy-2 which is second level (Bradski et Kaehler, 2008). As shown in figure
3.13-(b), « the boundaries of the holes are connected to their corresponding exterior
boundaries by v_next and v_prev » (Bradski et Kaehler, 2008). In addition, all of the
holes are connected to one another by the h_prev and h next pointers (Bradski et
Kaehler, 2008).

Recall that the RETR_CCOMP mode retrieves a two level hierarchy where the first
level represents outer contours which act as parents, and the second level contains
inner contours which act as children. Hence, we need to write an algorithm that only
retrieves the children of parents. In the algorithm below, according to the figure
3.12, we represent how to retrieve all the hierarchy levels as a child and parent and

only extract the hierarchy level relevant to the inner contours.

Algorithm 1: Finding Second Level Of Hierarchy(h)
Input: list of contours C = C4,...,Ci
Output: retrieve all the inner contours
1 for C=C; to Cp do
2 find the first level of hierarchy as parents ¢ = cg, ¢ooo, Co10
3 find the second level of hierarchy as children & = hgo, ho1, hocoo, Foioo
4 remove ¢ = cg, Co00, Co10

s return k = hgo, ko1, Roooo, Lo100

58

Figure 3.12 A test image presents the contours that could be exterior contours

(dashed lines) or interior contours (dotted lines) (Bradski et Kaehler, 2008)

(a) C¥ RETR_EXTERNAL
tiow - 0 () £V RETR TREE
find » <O
{b) CV_RETR_CCOMP “?""’"“‘“."
&nmm-ﬂd’ﬂ-ﬁ <00 B0
H100 5O 01 0D B00OD KO100

4
RO ~O 10
() €V, RETR LSt

fiest » o0100G 0 1001>< W01 00~ <01 02000+ W01 =10

Figure 3.13 Different types of Retrieval Modesin order to find contours in OpenCV
(Bradski et Kaehler, 2008)

59

The "segmentlmage" Java class, shown in Appendix A, is responsible for finding

contours inside the hand-drawn sketch.

3.4.4 Feature Extraction

In this stage, after finding all children contours, we need to extract the features of
each contour. By finding the contour features such as length, area, and bounding box,
we specify the contours as independent shapes. By extracting these features, we can
start looking for matches between the independent shapes and CMMN’s template

images.

Using the "boundingRect" function in OpenCV, we can find the bounding box around
each contour (see figure 3.14) and extract its features such as the top-left coordinate
of the rectangle as the starting point of the contour, as well as its width and height as
the width and height of the contour (Bradski et Kaehler, 2008). Thus, each contour

will be presented based on these features.

xy)

height

A

width
Figure 3.14 Bounding box around the contour (Bradski et Kaehler, 2008)

The "getShapeSubBitMap" Java Class, as shown in Appendix A, is responsible for
specifying the bounding box around each contour. The following algorithm shows the

main function.

60

Algorithm 2: Feature Extraction
Input: A list of contours C = Ci, ..., Cg
Output: A list of contours features
w: the width of rectangle box
h: the height of rectangle box
<: the start coordinate x of rectangle box
y: the start coordinate vy of rectangle box
Cy: the width of contour
C},: the height of contour
for C =C, to Cy do
Cu (v, y+h)
Cr +(x, x+w)
return (C,, Cy)

=R~ R R S B

=
<

3.4.5 Contour Resizing

When drawing hand sketches, people rarely worry about the size of their sketches on
the proportionality of their figures, i.e., the relative size of height versus width for
example. In order to compare the contours recognized in hand drawing to those in
CMMN’s templates, we need to resize the hand drawn contours to the same
dimension as the template we are trying to match it to. In other words, we need to
rescale each contour according to the area of each template image by keeping aspect
ratio. The following code, shown in Appendix A as the "getResizeSize" Java class

shows the way that we rescaled the contour by keeping its aspect ratio.

61

Algorithm 3: Resize Contour(C')

Input: A list of contours C = C, ..., Cg, a list of template’s images
T=1,...T,
Output: A list of re-size contours
1 C,,: the width of contour
2 Cp: the height of contour
3 Ty: the width of template
4 R,: the re-size width of template
Ry,: the re-size height of template
R, <0

5
6
7 Ry «0
8
9

for C = C, to Ci do
scale +C,, / Cy
10 Ry « Ty
11 Ry « Ry / scale

12 return (R, Rp)

By rescaling the contours, we can enter into the next step, which is finding the match

between each contour and each template image.

3.4.6 Template Matching

Now that all closed contours in the input image were retrieved and resized according
to each template’s image area, we can start focusing on the main part of sketch
recognition, which is finding a match between each contour extracted and a collection
of template’s images. Template Matching is a method for searching and finding the
location of a template image in a contour. Therefore, OpenCV provides a function
"matchTemplate" (Bradski et Kaehler, 2008) for this purpose. This method (figure
3.15, figure 3.17) starts to slide the template image over the contour in two
dimensions, and compares the template and contour under the template image,

looking for a strong match (Bradski et Kaehler, 2008).

S 4]

0 & O

Figure 3.15 Represents MatchTemplate function: starts to slide the template image

over the input image in order to find matches (Mup).

The template matching function can implement one of three matching methods that

include:

(a) Square difference matching method (method = TM_SQDIFF)
(b) Correlation matching methods (method = TM CCORR)
(c) Correlation coefficient matching methods (method = TM_CCOEFF)

In the following, we will explain each method along with its mathematical formula.
(a) Square difference matching method (method = TM SQDIFF)

«The results of these methods (figure 3.17) match the squared difference, so a perfect
match will be 0 and bad matches will be large » (Bradski et Kaehler, 2008).

R o ()= 2T y)~ I+ 2",y +)

iﬁf
(3.5)
In order to clarify the meaning of the method, as shown in figure 3.16, we defined
two matrices that have the same dimensions. When the two matrices have the same
size, we will have a single value to compute. So, normally, the point with the highest

score is always going to be (9, 9).

63

(a) Input image by 3-by-3 matrix (b) Template image by 3-by-3 matrix

Figure 3.16 Represents the input image and template image as matrix

(b) Correlation matching methods (method = TM CCORR)

« The result of these methods (Figure 3.17) multiplicatively match the template
against the image, so a perfect match will be large and bad matches will be small or 0

» (Bradski et Kaehler, 2008).

R__(x,9)= Y [T(x",y) - I(x+x",y+y)}
x>y (3.6)

(c) Correlation coefficient matching methods (method = TM CCOEFF)

« The result of these methods (figure 3.17) match a template relative to its mean
against the image relative to its mean, so a perfect match will be 1 and a perfect
mismatch will be -1; a value of 0 simply means that there is no correlation (random

alignments) » (Bradski et Kaehler, 2008).

R (5:9)= X T(x',y)- I x4,y 4y)]
7 (3.7)

Tl(xl’yl) — T(x', yl)_

1
(w. h)z T(x",y")
=y (3.8)

64

1

I'(x+x',y+y)=I(x+x",y+y)—
yey r+y (w.h)z I(x+x",y+y")
=y

(3.9)

(=@ 3]

Y ccomnomio

(57 Template =[S i

a) Input image b) Template image

65

Figure 3.17 Represents match results of six matching methods according to the

illustrations a) input image and b) template image (Mup)

The best match for square difference is 0 and for the other methods it is the maximum
point; thus, matches are indicated by dark areas in the left column and by bright spots

in the other two columns » (Bradski et Kaehler, 2008).

By implementing these three matching methods, based on the highest experimental
matching result, we selected the TM CCORR_NORMED method that represents the

following formula:

T (T) - x4,y +1))
Y w TOOY) - Ty 4%,y +y)?

R(xi y) =
(3.10)

The result of this comparison returns a grayscale image, where each pixel defines
how much the neighborhood of that pixel matches with each template image
(OpenCV).

An empty matrix needs to be defined in order to store the result. On one hand, by
default in OpenCV, the input area image is bigger than template area. On the other
hand, the area of each contour that is already extracted and resized by keeping aspect
ratio can be bigger than the size of the template. Hence, before defining the empty
matrix for storing the match result, we need to specify which area (contour area or
template area) is bigger. In the following, the size of the bigger matrix is defined as
(WxH) and the size of the smaller matrix is defined as (wxh).The size of the result that
contains the output image will be (W-w+1, H-h+1). The following algorithm displays

the function.

66

Algorithm 4: Result Matrix(R)

Input: A list of resize contours C = Cy, ..., Cg, 2 list of template’s
images T =T,..., Ty,

Output: An empty matrix for storing result of matching
1 (W, H): the size of bigger matrix
2 (w,h): the size of smaller matrix
3 Ry: the width of re-size contour
4 Ry: the height of re-size contour
5 T,,: the width of template
6 T}h: the height of template
if (Ry > Ty) or (Ry > T}) then

(W,H) «(R,,, Ry) and (w, k) «(Ty,T%)
9 else

10 (W,H) «(T,,T}) and (w,h) «(Ry, Ry)
1 return (W —-w+1,H-h+1)

@ <

By having the results comparison of each contour and each template image, we need
to find the best match for each contour. Therefore, the "minMaxLoc" method in
OpenCV returns four outputs that include minimum value, maximum value,
minimum point location (in two dimensions), and maximum point location (in two
dimensions). Hence, for each contour, an array list of results is obtained by
comparing each contour with all template images is retrieved. Consequently, the best
match is composed of the result with the maximum value. The "MaximumValue"

java class, implements this function, whose algorithm is shown next.

67

Algorithm 5: Best Matching Result(R)
Input: A list of matching result R = Ry, ..., R,
Output: find the best match for each contour C
find a list of maximum value of matching results
find a list of the location of maximum values
Maz, (—Rl
for R@' = Rz to R.n do

if R; > Max, then

|_ Maz, +R;

7 return Maz,

O oA W o

As shown in Appendix A, the "FindMatching" Java class shows the details of the

template matching process.

We should note that even though the matching method compares contours that are
one pixel wide (see below the issue with thick drawings), the algorithm performed
well, for the following reasons:

o The preprocessing steps that we perform prior to computing the contours

clean the image and remove the “noise” that can result from wobbly drawings,
by smoothing lines prior to detecting contours;

e By reducing both contours to the same bounding box, we eliminate errors due
to differences in dimension ratios (e.g. ratio of height to width in hand sketch
versus in template);

e The matching algorithm that we chose (TM_CCORR_NORMED), which was
validated with experimental results, looks at means as opposed to individual
points, and finally

e The matching algorithm returns the best match among the available templates.

This is what enabled us to get good results, despite the fact that we are matching

predefined templates against one-pixel wide hand-drawn shapes.

68

3.4.7 Contour Distance

When the user draws a hand sketch using a thick pen or brush, the contour
recognition step can return manifold contours (see figure 3.18). We have no easy way
of detecting manifold contours. Thus, we simply rely on the proximity of contours to

disregard some of them.

(2) (b)

Figure 3.18 Represents doubles of contour: (a) hand-drawn contour; (b) recognized

primitive shapes

Hence, for solving this issue, we need to calculate the distance from the starting point
of each contour with the rest of the recognized contours inside the hand-drawn sketch
and define the threshold for comparing the distance between them. Therefore, if the
distance of the considered contour from the rest of the detected contours in the list is
less than the threshold, we dismiss the contour. We will repeat the same calculation
for the remaining contours on the list. The "CalculateDistanceBetweenContour" Java

class, as shown in Appendix A, shows the details.

3.4.8 Line Detection

The template matching method explained earlier only works for contours, which are
closed geometric figures that only used to recognize the closed contours. Then, how
do we recognize lines? Given a hand-drawn sketch, if we remove all of the closed

contours, as shown in the algorithm below, we should be left with lines. However, we

69

should point out that in case the lines are drawn with a thick pen or brush, as shown
on the left hand-side of figure 3.19, then the OpenCV function for determining
contours will return a closed contour that corresponds to the outer edges of the thick
lines (see right hand side of figure 3.19). To this end, we used a threshold for the ratio
between the dimensions of the contours to filter out contours that correspond to edges

of thick lines.

Figure 3.19 Represents detected edges of line

Algorithm 6: Detect Line(L)

Input: A list of contours C = C, ..., C, and the input image img
Output: A list of line L = Lq,...,Ly,

w: the width of rectangle box

h: the height of rectangle box

r: the start coordinate x of rectangle box

y: the start coordinate y of rectangle box

w0, he0,c0,y+<0

for C =C, to C; do

define a rectangle box around each C

initialize Th as a threshold to increase the area of rectangle box
p +(z—Th,y—-Th)

p2o+{(z+w+Th,y—Th)

ps+{c+w+Th,y+h+Th)

pae(x—Th,y+h+Th)

save the points(p;, p2, ps, p4) in a list

paint the list of points with black color in img

[~ S - I I N S

= e
[T SR}

[
-

return img

o
(4.

There are two reasons for specifying a threshold:

1. To avoid recognizing the edges of each closed contour as a line;
2. A hand drawn line can be in a different position against the closed contour, as

shown in figure 3.20. Thus, a proper line for the rest of the process is created.

70

To detect lines, we first apply edge detection to the lines. In the following, using
"Hough Line Transform" method in OpenCV that search a binary image for
straight lines is required. This method investigates that whether any point in a
binary image could be part of some set of possible lines (Bradski et Kaehler,

2008) .

[]—

Figure 3.20 Different styles for drawing line

This method (see figure 3.21) expresses the line in the polar coordinate system.
Hence, the equation for a line can be written as (Bradski et Kaehler, 2008; OpenCV
documentation, 2013):

P =xcosf +y sind 3.11)

In general, for each point (X, yo), we can define a family of lines that goes through
that point as (Bradski et Kaehler, 2008; OpenCV documentation, 2013):
Py = Xp c0s0 + y, sind (3.12)

In other words, each pair (Py, ©) represents each line that passes by (xo, yo) (see
figure 3.21-a) (Bradski et Kaehler, 2008; OpenCV documentation, 2013). For each
point (Xg, Yo), the family of lines that go through it is defined (see figure 3.21-b)

71

(Bradski et Kaehler, 2008; OpenCV documentation, 2013). Thus, this operation will
be done for all the points in an image. Hence, if the curves of two different points
intersect, it means that both points belong to the same line (see figure 3.21-c)
(Bradski et Kaehler, 2008; OpenCV documentation, 2013).

In order to detect line, a threshold as the minimum number of intersections is defined.
Thus, if the number of intersection between curves of every point in the image is
above the threshold, then a line with the parameters (O, p) of the intersection point is
recognized (OpenCV documentation, 2013).

OpenCV implements two kind of Hough Line Transforms that include "HoughLines"
(Bradski et Kaehler, 2008) and "HoughLinesP" (Bradski et Kaehler, 2008).The first
function returns a vector of couples (6, Py) as a result and the second function, rather
than collecting every possible point, it collects only a fraction of them. Hence, if the
peak is going to be high enough, then it returns the start point and end point of the
detected lines (x0,y0,x1,yl) (Bradski et Kaehler, 2008; OpenCV documentation,
2013).

18] [;

a) b) c)

Figure 3.21 Represents point in the image (a) Represent a point (xo, yo) in the image:
(b) represents lines that parameterized by a different p and 0; (c) Any of these lines
represents points in the parameters (p, 0), consider together form a curve of

characteristic shape (Bradski et Kaehler, 2008).

72

By recognizing lines, the system is able to discover the spatial relationships between
each line and contours as a connector in the next section. The java class detects line,

as shown in Appendix B; "DetectLine" shows the details for recognizing line.

3.4.9 Line Distance

Because hand drawn sketches can have thick linés, multiple lines may end up being
recognized. For solving this issue, we use the same solution that is used for primitive
shapes: we merge lines whose mutual distance is below a certain threshold. By
finding the nearest lines, we calculate the minimum coordinate of the start point, as
well as calculate the maximum coordinate of the end point for all lines whose
distance is less than the threshold. Thus, the system avoids recognizing one line
several times. Further, we want the system to recognize the longest line. The

following algorithm displays some part of the function.

Algorithm 7: Merge lines(L)
Input: A list of lines L = Ly, ..., Ly,
Output: find the coordinate of longest line by merging the nearest lines
initialize Th as a threshold to find the nearest lines
distance <0
for L=14 to L, do
initialize distance by calculating the distance of lines
if distance < Th then
(Zmin, Ymin) +—calculate the minimum start point of lines
(zmaz; Ymaz) +calculate the maximum end point of lines

NS W R W e

>]

return ((Imén, ymin); (zmaza ’ymaz))

"CalculateDistanceBetweenLines" Java class, as shown in Appendix B shows the

details.

3.5 Composite Graphic Object Recognition

Composite shapes are composed of primitive shapes. Thus, we need to combine the

primitive shapes that were recognized in the previous step, using their spatial

73

relationships. There are two main composite shapes, sentry and connector, that we
will focus on them in this section. Hence, the first issue is:
How do we define the diamond in the square (defined as a task element in CMMN)

and recognize the sentry image as an element in CMMN?

3.5.1 Intersection Area

In order to recognize sentries, we need to discover whether the diamond is inside the
task or not. Hence, we define a function that receives the coordinates of all tasks and
diamonds and then starts calculating the distance of each vertex of diamond with the
task area. Therefore, whenever one of the coordinates of the vertices of the diamond
is part of the task, the diamond, which is called séntry in CMMN, is considered to be
part of the composite shape. The following code displays some part of the function.

Algorithm 8: Intersection Arca
Input: A list of sentries S = 55....,5,, A list of tasks T = T4,T,,
Output: find intersection area

1 initialize the coordinates of sentry z, <~ 0, y, + 0, w, 0, hy < 0
2 initialize the coordinates of task z; < 0, 3, < 0, wy < 0, hy « 0
3 while §#£ ¢ and T # ¢ do
4 if (35 > 24) and (z, < Ty +wy) and (Y, > y) and (ys < ye + hy) then
5 |_ return irue
6 el_se
7 if (zs+ (we/2) > 1) and (x5 + (ws/2) < T + T) and
(ys - (hs/2) > yt) and (ys - (ha/2) > yt + ht) then
8 |_ return frue
9 else

10 if (£ + w;) > x¢) and (z, +ws < e+ wy) and (Y, > y:) and
(ys < y¢ + h¢) then

11 |_ return true

12 else

13 if_(a:, + (ws/2) > 1) and (T + (ws/2) < T2 +wy) and
(s + (Rs/2) > v:) and (ys + (hs/2) < ¢ + h;) then
14 | return true

15 return false

74

As shown in Appendix B, "CalculateIntersectionArea" Java class shows the Details

calculation.

3.5.2 Connector Detection
The second issue in composite graphic object recognition is:
How do we recognize the connection between lines and other contours?

To solve this issue, we need to find the contours that are connected to lines, by
discovering spatial relationships, if necessary. We would need to calculate the

distance between each shape and the start point and end point of each line.

Regarding the bounding box around each contour, by assuming that the start point of
the line or end point of the line can be connected to the vertical edge of a contour or
horizontal edge of the contour, we can start calculating the distance of each start point

and end point of line with one of two selected edges.

To calculate the distance, first of all, the system needs to detect whether the line at
hand-drawn sketch is vertical or horizontal. Because the CMMN modeler recognizes
only vertical or horizontal lines, our algorithm is based on recognizing straight line.
By clarifying this part, we are able to define whether the coordinate of one of the two

points of line is in the range of the horizontal edge or vertical edge.

Finally, the distance between the start and end point of the line and the edges is

calculated and the minimum distance will be selected.

The following algorithm shows how a connection is established. The threshold is
specified for calculating the distance of each point of the line and each primitive
shape to compare the minimum gained distance. If it is less than the threshold, the

shape is connected to the line.

75

Algorithm 9: Minimum Distance Between Line And Contours

Input: A list of contours C' = C},....C,, Line L
Output: find the minimum distance between contours and line
initialize the start point or end point of line (zr,yz)

2 initialize the start point and end point of edges of contour

2]

(mscy ?/ac),(l’ec, yec)
initialize Th as a threshold to find the minimum distance between edge

and start point or end point of line
initialize (Psz,Psy) to hold the coordinates of line start
initialize (Pex.pey) to hold the coordinates of line end
initialize distance to hold the distance of contour and line

7 if Yoc = Yoo then

8
9
10
11
12

13
14

15

16

17
18

19

20

21

/ /1t is a horizontal line, Make sure that line start has smaller x

if 2,. > xz.. then

(PszsPay) + (Xecs Yec)

(peanpey) — (xsc, ysc)

else

(Psz» Psy) + (Xses Yac)

| (PezPey) + (Xec; Yec)

//If the point is not between the line start and line end then return
infinite value

if 1, < (psg — Th) or x, > (Pex + Th) then

distance +x

else

//If the point is between line start and line end then calculate the
distance

distance + distance of edge and one of the start point or end
_point of line

return distance

76

22 else

23 if (ysc > ye.c) then
24 //1t is a vertical line, Make sure that line start has smaller y
25 | (Psz-Psy) + (¥ee) Yec)

26 | (PezPey) + (Xscr¥ac)
27 else

28 | (Psz,Psy) + (Xsc, Ysc)
20 | (DewsPey) (Xecs Yec)

30 //If the point is not hetween the line start and line end then return
infinite value

31 if y, < (psy —Th) or yp > (Pey + Th) then

32 distance

33 else

34 //1f the point is between the line start and line end then calculate the
distance

35 distance + distance of edge a.n%one of the start point or end point of
_line

36 return distance

As shown in Appendix B, the "Connector" Java class shows the details of detect

connector.

3.6 Semantic Connection Recognition and Understanding

By recognizing the primitive shapes as well as the spatial relationships between them,

the next and final issue is:

How do we display these detected CMMN elements and semantic connections
between them in CMMN modeler?

To do this, we create an XMI file that stores details of all the detected CMMN
element specifications as well as their spatial relationships. This XML file should be
in a format that can be imported in CMMN modeler. Thus, we need to understand the
XMI schema for CMMN to generate the appropriate tags. In this section, we will

regularly refer to aspects of CMMN execution semantics.

77

XML file structure in CMMN, as shown in figure 3.22, consists of two major parts
that includes the case (OMG) and CMMN DI (OMG). Case is a top-level concept that
combines all the elements that constitute a case model, and that defines the semantic
relationships between the elements (OMG). Each model element has attributes such
as coordinates, width, height, label and so on. The CMMN DI section is used to

specify the visual attributes of elements that include a collection of shapes and edges.

«hxml version="1.8" encoding="UTF-8" standalone="yes"?>
<camn:definitions author="" exporter="(MMN Modeler” id="_65d434ed-7986-4034-b2aa-45959d8a8996" nase="Drawing 1° targetNamespace="http: //ww.
trisotech. com/cmmn/definitions/_65d434ed-7906-4034-b2aa-45959d8a8996" xmlns="http://ww. trisotech.com/cmmn/definitions/_65d434e4-7906-4034-
b2aa-45959d0a8996" xalns: trisob="http://ww.trisotech.com/2014/triso/bpan” xalns:cmmndi="http: //uwiv. omg.org/spec/CMMN/20151109/CMMNDI" xmlns:rss="
http://purl.org/rss/2.0/" xalns:cmmn="http:/ /. ong.org/spec/CMN/20151109/MODEL" xmlns:di="http: //we.omg.org/spec/(MHN/26151169/D1" xmlns:
trisofeed="http://trisotech.con/feed” xmins:trisocmmn="http://ww.trisotech.com/2814/triso/cmmn" xalns:triso="http://wem. trisotech.com/2015/triso/
nodeling” xmlns:xsi="http: //wws.w3.org/2001/XM.Schema-instance” xmlns:dc="http: //ww.omg.org/spec/CHMN/28151169/DC">
<cmmn: caseFileItemDefinition id="DEF_ 547¢"/>
<cmmn:case names“Page 1° id="Case(PM_66b")
<cmmn: caseFileModel>
<cmmn:caseFileItem definitionRef="0EF_ 547¢" multiplicity="Unspecified” id="_547¢"/>
</cman: caseFileModel>
<cmmn: casePlanModel autoComplete="false" names"Page 1° id="CPM_68b5">
<cmmn:planltem definitionRef="PID 8ab9™ id="_8ab9~/>
<cmmn:task isBlocking="true” id="PID_ 8ab9"/>
</cmmn: casePlanModel>
</cmmn:cased>
<comndi : C(MMNDI>
<camndi: (M¥Diagram name="Page 1" id="_p@bS4" sharedStyle="_75ca">
<comndi:Size height="1850.0" width="1545.5"/>
<cmmndi:CMMNShape camnElementRef="_1036" id="_eBe5">
«dc:Bounds height="76.0" width="97.0" x»"191.5" y="52.8"/>
<cnandi: (MMNLabel/>
</cmandi: (MNShape>
<camndi :(MMNShape camnflementRefs"_08503" id="_bebd">
«<dc:Bounds height="28.0" width="20.8" x»"279.0" y="76.8"/>
<camndi:(MMNLabel/>
</cmandi: (MNShape>
¢</cmandi : (MDiagram>
<cnandi: (M¥NStyle fontFamily="Arial Helvetica,sans-serif” ide"_75ca™f>
</comndi: CMMNDL >
</cman:definitions>

Figure 3.22 XML file structure in CMMN

3.6.1 Case

To understand the structure of a case model, we provide a partial CMMN meta-model
in figure 4.23. In the following, in order to explain the semantic relationships between
CMMN elements, we will focus on the association caseFileModel and

casePlanModel and explain them in detail.

78

packsge CMMN| [2] Cassfile u
CMMNElement
+id : String
Fay
CaseFile +caseFleltems CaseFileltem +definitionRei | CaseFileltemDefinition
0.1 1.." |+name : Strirg 0.° 1 +name : Sirng
+mutiplicity : Mutiplicity Enum +defintionTypa2 : URI
+children +iargetRefs +structureRef: QName
0.’ T 0.° o
+sourceRef 10..
+parent |0,.1 w 0..1
«enumerations Import
MultiplicityEnum +importType : Siring
ZercOrOne tlocaton : Strng
ZeroOrMere +namespaca : LRI
ExactlyOne
OneOrNore
Urspecfied
Urknown

Figure 3.23 CMMN case file meta-model (OMG)

3.6.1.1 CaseFile

Every case is associated with exactly one CaseFile (see figure 3.24). The case
information is represented by the CaseFile. In addition, every CaseFile must contain
at least one CaseFileltem. In the following, every CaseFileltem must be associated
with exactly one CaseFileltemDefinition. Thus, in order to specify the association
between each FileltemDefinition and each CaseFileltem, the definitionRef for each
FileltemDefinition must be the id of each CaseFileltem. The XML file below
displays some part of the XML file in CMMN, which describes CaseFile.

<cmmn:caseFileItemDefinition id="DEF__93"/>
<cmmn:case name="Page 1" id="CaseCPM_00b5">
<cmmn:caseFileModel>
<cmmn:caseFileItem definitionRef="DEF_ 93" multiplicity="Unspecified" id="_93"/>
</cmmn:caseFileModel>

Figure 3.24 Case file structure in XML format

As shown in Appendix C, the “writeFileltemDefinition” and “writeFileltem” java

methods show how to serialize a case file on an XML file.

79

3.6.1.2 Case Plan

CasePlan is constructed from the building blocks that are composed of
PlanltemDefinition elements (figure 3.25). Each PlanltemDefinition can represent
one CMMN element, which can include PlanFragment (and Stage), Task,
EventListener or Milestone. Thus, in order to specify the association between each
PlanltemDefinition, and each certain CMMN element, the definitionRef for each
PlanltemDefinition must be the id of each CMMN element.

The XML file below displays some part of the XML file in CMMN, which describes
a CasePlanModel (see figure 3.25).

<cmmn:casePlanModel autoComplete="false" name="Page 1" id="CPM_08b5">
<cmmn:planItem definitionRef="PID__1036" id="_1036"/>
<cmmn:task isBlocking="true" id="PID__1@36"/>
</cmmn:casePlanModel>

Figure 3.25 Case Plan structure in XML format

80

package CMMN [|| Plan nunmmy

CMMNE/ement

+id : String

PlanitemDefinition +gdefauttControl | PlanitemControl |
+name : String 0.1 0.1

[PlanFragmont] | Task | LEvomListonor’ ’ Milestone |
L

Figure 3.26 Plan Item Definition (OMG)

Sentries, which are used as entry criteria, are a CMMN element that not provided as
an independent CMMN element, but need to be present as part of other CMMN
elements, such as stage or task (figure 3.27). Hence, the relations between a
PlanltemDefinition and sentry are represented with the association "entryCriterion".
Therefore, in order to specify the connection between mentioned CMMN elements
and each Sentry, sentryRef for each entryCriterion that must be the id of each sentry.
The XML file below displays some part of the xml file in CMMN, which shows a
sentry as part of a task.

81

<cmmn:planItem definitionRef="PID__1@36" id="_1036">
<cmmn:entryCriterion sentryRef="_76fd" id="_0503"/>
</cmmn:planItem>
<cmmn:sentry id="_76fd">
<cmmn:ifPart id="_1392"/>
</cmmn:sentry>
<cmmn:task isBlocking="true” id="PID__1@36"/>

Figure 3.27 Sentry structure in XML format

Because a connector in CMMN is used to visualize dependencies between CMMN
elements (see figure 3.28), it is necessary to show which CMMN elements a
connector belongs to. The sequence flow direction or association is defined by
an entry criterion or exit criterion (OMG).Thus, one side of a connector will be
associated with a sentry and present as planitemOnPart, while the other side belongs
to the other planltemDefinition that is connected to sentry. Therefore, in order to
specify this association, we define the sourceRef for each planltemOnPart that must
be the id of specific planltemDefinition that is connected to planltemOnPart. The
XML file below displays some part of the XML file in CMMN, which describes the

connection between two tasks.

<cmmn:casePlanModel autoComplete="false” name="Page 1" id="CPM_0@b5">
<cmmn:planltem definitionRef="PID__1036" id="_1036">
<cmmn:entryCriterion sentryRef="_76fd" id="_0503"/>
</cmmn:planltem>
<cmmn:planltem definitionRef="PID__8ab9" id="_8ab9"/>
<cmmn:sentry id="_76fd">
<cmmn:planltemOnPart sourceRef="_8ab9" id="_8704">
<cmmn:standardEvent>complete</cmmn:standardEvent>
</cmmn:planltemOnPart>
<cmmn:ifPart id="_1392%/>
</cmmn:sentry>
<cmmn:task isBlocking="true” id="PID__1036"/>
<cmmn:task isBlocking="true” id="PID__8ab9"/>
</cmmn: casePlanModel>

Figure 3.28 Connector structure in XML format

82

As shown in Appendix C, "writeplanltem", "writeEvent", "writeTask" and

"writeSentry" java methods show how to serialize a PlanltemDefinition.

3.6.2 CMMN DI

CMMN DI (OMG) is used to specify the visual properties of elements that include a
collection of shapes and edges. Figure 3.29 shows the partial Meta model for the
CMMNDI component. It shows that CMMNDI is a container for the shared
CMMNStyle and all the CMMNDiagrams defined in Definitions (OMG).

package Data[[§) CMMN thnmu

| DI::DiagramElement

‘T[

Di::Diagram

|
!
|
+name . String

| *documentation = String
| sresolution . Real 1
LTSS

+«cmmnElementRef
disgramElements |
CMMNDiagramEiement v 0.° Yy e
lo.- 0.’ l o -
!
1 CMMNStyle +sharedStyls “ DC::Dimension |
‘ - | | sze |
‘ 0.1 0..
+localSty I 1 0..1 |+width Real
i d 1 +height - Real ‘
8 0..1 0.1 ‘ _—

Figure 3.29 CMMNDI class diagram (OMG)

The class CMMNDiagram (OMG) is a kind of Diagram that represents a depiction of
all or part of a CMMN model (OMG). In other words, it is the container of
CMMNDiagramElement that is composed of CMMNShape and CMMNEdge (figure
3.30). The XML file below displays some part of the XML file in CMMN that
describes a CMMNDiagram.

83

<cmmndi : CHMNDI >
<cmmndi:CMMNDiagram name="Page 1" id="_0@b54" sharedStyle="_75ca”>
<cmmndi:Size height="10858.0" width="1545.5"/>
<cmmndi :CMMNShape cmmnElementRef="_0503" id="_bebd™>
<dc:Bounds height="28.8" width="28.8" x="279.8" y="76.0"/>
<cmmndi:CMMNLabel/>
</cmmndi : CMMNShape>
<cmmndi:CMMNEdge cmmnElementRef="_8784" isStandardEventVisible="true” targetCMMNElementRef="_@503" ida"
_dfba5921-5e71-4e86-b3c5-1768277dfee8">
<di:waypoint x="297.99999996125814" y="89.99972164182996"/>
«di:waypoint x="411.5391946702358" y="89.9681169865079"/>
<cmmndi :CMMNLabel/>
</cmmndi : CMMNEdge>
</cmmndi : CMAMNDiagram>
<cmmndi:CMMNStyle fontFamily="Arial,Helvetica,sans-serif” id="_75ca"/>
</cmmndi : CMMNDI >

Figure 3.30 CMMNDI structure in XML format

As shown in Appendix C, the methods "writeFileValues", "writeLineValus"
"writeEntryCriterionValus", "writeEventValues" and "writetaskValues" are used to

serialize the entitiecs CMMNDiagramElement, CMMN Shape and CMMNEdge.

3.6.2.1 CMMNShape
The CMMNShape is a kind of Shape that depicts a CMMNElement from the CMMN

model (figure 3.31). Hence, in order to associate it with a CMMN element, there is a
cmmnElementRef attribute contains the id of each planltemDefinition. The XML file
below displays some part of the XML file in CMMN, which describes CMMNshape.

<cmmndi:CMMNShape cmmnElementRef="_0503" id="_bebd">
<dc:Bounds height="28.0" width="20.0" x="279.0" y="76.0"/>
<cmmndi:CMMNLabel/>

</cmmndi :CMMNShape>

Figure 3.31 CMMNShape structure in XML format

3.6.2.2 CMMNEdge

The CMMNEdge class represents relationships between two CMMN model elements.
Hence, CMMNEdge are used to depict links in the CMMN model (OMG). In order to
use CMMNEdge to show a PlanltemOnPart, we define cmmnElementRef for each

84

CMMNEdge that must be the id of PlanltemOnPart. Further, we need to define the
targetCMMNElementRef for each CMMNEdge that must be the id of one of the
criterion (either an EntryCriterion or an ExitCriterion) that is linked to the Sentry
holding the PlanltemOnPart. The XML file below displays some part of the XML file
in CMMN, which describes CMMNEdge (Figure 3.32).

<cmmndi:CMMNEdge cmmnElementRef="_8704" isStandardEventVisible="true" targetCMMNElementRef="_0503"
id="_dfba5921-5e71-4e86-b3c5-1768277dfee8">
<di:waypoint x="297.99999996125814" y="89.99972164102996"/>
<di:waypoint x="411.5391946702358" y="89.9681169865079"/>
<cmmndi:CMMNLabel/>
</cmmndi:CMMNEdge>

Figure 3.32 CMMNEdge structure in XML format

3.7 Conclusion

In this chapter, we described the implementation of our approach that recognizes both
primitive shapes and composite shapes. We explained a set of issues at each stage of
recognition and found the heuristic solutions, as well as an employed OpenCV
library. In the following, using XML file according to the CMMN models’ structures
makes it possible to interpret each CMMN element and their semantic relationships.
Therefore, the hand-drawn sketches will be recognized and formalized by importing
the XML file in CMMN modeling tools. In the next chapter, we will evaluate our
program by investigating various samples are collected and specifying the

performance of the tool.

CHAPITRE IV

TEST SETTING AND RESULTS

To evaluate the accuracy of the recognition system, we need to test it on various
samples. We collected 20 drawings made by experimental subjects. These subjects

were aged between 24 -33 and are regular computer users.
The subjects received the following information and instructions:

1. They were introduced to CMMN syntax and its different elements;

2. They were introduced to the CMMN modeler and were told about what our
system can do (recognize hand-drawings and put them into a format that is
appropriate for a formal modeling tool);

3. They were told to make sure that their drawings had closed shapes;

4. They were told that they could use any painting software and pointing device;

5. They were told not to worry about scale or paint brush thickness. However,
they could not use the air brush, which leaves gaps between paint points;

6. Finally, they were told to "draw normally,” without trying to be particularly

precise.

86

4.1 Test Setting Overview

After explaining the requirements, the subjects were asked to draw 5 of each CMMN
model primitives (lines, events, tasks, files, entry criteria (diamond)) as well as
composite shapes, as shown in figure 4.1, to prepare for the experiment. For example,

one task and one entry criterion connected to a line that is called model fragments.

TaskA Jeeemeromes ... Task B

Figure 4.1 Sentry based dependency between two tasks

We began by measuring the recognition performance for primitive shapes. Recall that
the way matching works is by comparing each CMMN input shape to the category of
predefined shapes, and me'asuring the similarity between the input shape and the
predefined CMMN shapes. The predefined shape that achieves the highest similarity
value is assumed to be the intended shape. The next table shows a square matrix
where each row corresponds to an input shape, each column represents a predefined
shape, and cell (x, y) represents the percentage of times that predefined shape y was
found to be the best match for input shape x. Thus, shape (x, x) represents the

percentage of accurate recognitions.

With regards to composite shapes, the recognition performance depends on a

combination of:

1. The recognition of the primitive shapes

87

2. The accuracy of the calculations of the spatial relationships between the

primitive shapes, and the strength of the inferences drawn from such

relationship

Table 4.1 Results of primitive shapes recognition:The drawn (expected) shape is

shown on the left and the recognized shape at the top

Event Task File Entry Criterion Line
Event 98% 2%
Task 2% 92% 6%
File 2% 68% 30%
Entry Criterion | 8% 92%
Line 100%

Table 4.2 Results of model fragments recognition: The drawn (expected) shape is

shown on the left and the recognized shape as part of model fragments at the top

Task Line Entry Criterion | Event File
Task A 02% 2% 6%
Line 100%
Entry Criterion 80% 20%
Task B 86% 14%

4.2 Recognition Accuracy

The recognition rate for a test set of 500 drawings, composed of both primitive

shapes and composite shapes, is presented in tables 4.1 and 4.2. table 4.1 shows

significant differences between recognition rates for the different primitive shapes,

ranging from 30% for a file, to a 98% for an event. The difference is due, in good

88

part, to the distinctiveness of the shapes. For example, there is a a big similarity
between files and tasks, which are both rectangular, but with a file having a clipped
angle (Figure 4.3c, Figure 4.3d). Hence, the recognition rate of the file was the lowest
of all shapes (30%). Indeed, many files (68%) were actually recognized as tasks. The
opposite is not true. This may be due to the prevalence of files in the 500

handrawings. However, generally speaking, the average performance is acceptable.

Note also that lines are the easiest shapes to recognize, with a 100% rate. Indeed, the
sequence of points that can form a line is specified by three parameters that include
threshold, minLinLength and maxLineGap. These parameters were adjusted in order
to accept the shortest line with the minimum number of intersections to constitute a

line.

Events also had a high recognition rate. The cases where the sketch was not
recognized (figure 4.3a) were mostly due to the event being drawn similar to a

square.

The recognition rate for entry criteria (diamond) was also high the cases that were not
recognized (Figure 4.3b) were often due to the fact that the entry criterion resembled

an event that was rotated 45 degrees.

Sentry based dependency between two tasks, as shown in figure 4.1, represents as
model fragments that consist of primitive shapes and one composite shape, itself

consisting of an entry criterion (diamond) that is part of a task.

The recognition rate for entry criteria (diamond) as primitive shapes (see table 4.1) is
92%, while its recognition rate in the second table (see table 4.2) as part of a

composite shape, is noticeably reduced (80%).

According to the definition structure of algorithm 8 in chapter IlI, recognition entry

criterion (diamond) as part of the composite shape is completely dependent on the

89

recognition rate of Task B. Hence, we need to recognize a task as Task B and then go

into the second level that is recognized entry criterion (diamond) as part of Task B.

As shown in table 4.2, recognition rate of Task B as a task is 86% and as a file is
14%. Due to the fact that the Task B, As shown in figure 3.6, was recognized as an
inner contour (see figure 4.2), the similarity of the Task B drawing to the Task
template was decreased. By extension, the recognition rate of Task B affects the

recognition rate of the entry criterion (diamond).

a) Exterior contour (parent) b) Interior contours (children)

Figure 4.2 Recognize Tasks B and Diamonds as inner contours based on figure 3.6

There are other reasons for the low recognition rate of entry criteria (diamond). First,
there is the way that humans draw sketches by hand. Because drawing the diamond as
part of the composite shape is more difficult than drawing it as a primitive shape, the

similarity of a diamond to the event template, as shown in table 4.2, is increased and

90

many diamonds will end up being recognized as events. The second reason why entry
criteria do not have good recognition rate is related to the bounding box around each
diamond. As shown in figure 4.2, the diamond vertices are smoothed by bounding

box edges. Hence, the similarity of the diamond to the event will be increased.

While the recognition rate of the individual primitive shapes is high (on average), the
recognition rate for the aggregates is in the [72% - 80%] range. This is to be

expected, considering the way our algorithm works.

(a) Events not recognized (b) Entry criterions not recognized

D L-—-_-l

(c) Files not recognized (d) Tasks not recognized

Figure 4.3 Samples elements not recognized by the system

43 Limitations

The current implementation has a number of limitations. First, it is sensitive to
rotation. There are ways to change the algorithms to make them rotation proof.
However, this would complicate the recognition of sentries (diamonds) which relies

on their 45 degree tilting. We would then need to take into account the relative size

91

and position of the shapes we need to distinguish, for example between tasks and

entry/exit criteria, which lead us to the next possible improvement.

The second limitation involves recognizing the text. In chapter II, we talked about
optical character recognition and offline character recognition as one of
its subcategories, which includes overall stages such as pre-processing, segmentation,

feature extraction, and classification.

Recognizing text within the context of geometric figure drawings, as is the case with
CMMN (or other types) of models, is more complicated than recognizing text within
purely textual documents. We envision a multi-step process, as explained next. The
first step would be common with shape recognition, and would consist of pre-
processing and object detection. A second step would consist of separating contours
that contain text from other shapes. A third step would extract the text from shapes. A
fourth step would classify the text based on the simplest category (the digits [0-9] and
letters of the English alphabet [a-z]). The fifth step would reconstruct the text by
putting together all the letters and numbers to construct strings in the right positions
that can be within or outside the shapes. The last step would attach those strings as
labels to the shapes within which they appear. We would need to implement and

experiment with such a system to see how well it works.

Finally, note that we gave the experimental subjects some directives about how to do
their handsketches. For example, we asked them to make sure they “close their
shapes”, to ease contour computation and shape recognition, although we used
various thresholds to make sure that our algorithms can complete or “close”
imperfectly closed shapes. Also, the experiemental subjects were instructed not to use
“paint brush” or thick pens when drawing. These are not serious limitations, but we

cannot say that we performed the experiments on totally natural drawings.

CONCLUSION

Knowledge worker in order to hold a collection of business documents and other
information relevant to their business processes; need to use case management
systems as the primary building. Within the context of case management, Case
Management Model and Notation (CMMN) support the representation of a wide
range of knowledge worker activities to manage social work and related application
areas such as insurance claim processes, healthcare processes, lawsuit services

processes, social services process, etc. (Marin et al., 2012).

Using CMMN as a formal modeling tool at early requirements activities in the
software development life cycle is not efficient as well as flexible approaches such as
office tools or whiteboards composed of some restrictions that include lack of
consistency management, published changes, or information migration. Hence a new
intermediate approach in order to reduce the gap between these two approaches is

required.

The purpose of our research is to develop a new intermediate approach in order to
reduce the gap between these two approaches. Our approach reads early hand
sketches of CMMN models and transforms them into a format that can be imported
into a formal CMMN modeling tool. In this thesis, we presented in detail a set of
algorithms to extract and recognize the contours of CMMN models hand-drawn
sketches of primitive shapes and composite shapes. Different pre-processing
algorithms were applied to the input sketches to prepare them for recognition. We can

present the list of steps as below:

94

e Retrieve contours from a hand-drawn sketch;
¢ Clarify contours using pattern modeling algorithms;
o Identify a spatial relationship between primitive shapes;

¢ And use their relationships to recognize composite shapes.

To implement our system, we used the OpenCV library, which provides a rich set of
image processing functions. While our system was geared for recognition of CMMN
hand sketches, it could easily be parameterized to recognize hand sketches in any
graphical modeling language, provided that the graphical icons used for the various

elements are reasonably distinguishable.

At present, the algorithm first recognizes primitive shapes and then composite shapes.
The better algorithm could use a two-way recognition algorithm that refines the
recognition of the individual primitive shapes based on following of the composite

shape.

Figure 4.4 Recognizes file instead of task in composite shape

As shown in figure 4.1, even if our system finds that a file is the best match for B,
because sentries are only used to link tasks, we can revise the classification of B as a
task. Of course, the human could be making a modeling mistake, but we believe that

the interplay between the two will enhance the recognition rate for composite shapes.

95

On the other hand, the human user has a main role in implementing the hand-drawn
sketch. Hence, different ways that a user chooses to draw the shapes, or even write
the text, can be identified. Investigation on human user mannerisms can affect the
performance of recognition algorithms. Consequently, assessing these aspects would
require interviewing the subjects and monitoring their behavior, as well as utilizing a

more realistic test setting.

APPENDICE A

PRIMITIVE SHAPE RECOGNITION JAVA CLASSES

98

10

12
13

15
16
17
18
19
20

22

24

25

27
28
2%
30

31

package CMMNElementsketchRecognitionSystem ;

/**
* This class composed of the main method, start listing all
files
* from the main directory and its sub directories and then
calling the class <code>TemplateMatchingDemo</code>
* in order to use the template matching method in the
OpenCV library and comparing each shape
* of the original image to the template images that is
specified in the main directory
* and its sub directories. in the following the class of
WriteXmlFile start writhing the XML file
* according to the structure of CMMN modeler which is able
to import the XML file inside the CMMN Modeler software
* @author SaraAmirsardari
*

*/
public class SketchRecognition {

public static final int LINE_DETECTION_TRESHOLD =10;
public static final int MIN_LINE LENGTH=";
public static final int MAX_LINE__GAP=30;

public static void main(String[] args) {
System . loadLibrary (Core . NATIVE__ LIBRARY_NAME) ;

// reading the folders and sub folders

ReadFolders ic = new ReadFolders () ;

File MainDirectory = new

File ("C:/Users/SARA/Desktop/opencv/sample/templatel00") ;
ArrayList<String> pathsList = new ArrayList<> () ;

pathsList = tc.readDir (MainDirectory) ;

TemplateMatchingDemo md = new TemplateMatchingDemo () ;

// define for loop in order to read the files with the
suffix of JPG or PNG

ArrayList<String> listOfTemplates=new ArrayList<> () ;

for (int i = 1; | < pathsList.size () ; i++) {
if (pathsList.get (i) .contains ("png”) ||
pathsList . get (i) . contains (" ‘pg”)) {
listOfTemplates . add (pathsList.get (i)) ;
}
}

md . preprocessAllTemplates (listOfTemplates) ;

String sketchFileName =
"C:/Users/SARA/Desktop/opencv/sample/s.png";
md. runMatchingDemo (sketchFileName) ;

DetectLine dl = new DetectLine () ;

dl. setlnitiallmage (md . getCleanedUpimage ()) ;

dl. setShapesToRemove (md. getParentContrours ()) ;
dl.detectLine () ;

WriteXmiFile writeXmIShapes = new WriteXmlFile () ;
writeXmlShapes . setResultOfLines (dl. getResultOfLines ()) ;
writeXmIShapes . WriteXml (md) ;

99

100

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

package CMMNElementsketchRecognitionSystem ;

import java.io.File;
import java.util. ArrayList;

/**Contains some methods to list files and folders from a
directory

* Qauthor SaraAmirsardari

*/

public class ReadFolders{

/*'k

* get the path of main directory

* @param f main directory path to be listed
*/

public void readFile (File f) {
System . out. printin (f. getPath ()) ;

/ * &
* List all files from a directory and its sub directories
* @param f sub directory paths to be listed
* @return pathList of all directory and its sub directories
*/
public ArraylList<String> readDir (File f) {

File subdir[]1=f.listFiles () ;
ArrayList<String> pathsList= new ArrayList<>() ;

//verify the sub directory is file or is directory
for (File f__arr:subdir) {

if(f_arr.isFile()) {
//if the sub directory is file so read the file path

pathsList.add (f_arr.getPath ()) ;
this.readFile (f_arr);

101

}
if (f_arr.isDirectory ()) {

//if the sub directory is a directory, so list all
files path inside the directory
ArrayList<String> dirFiles = this.readDir(f_arr) ;
pathsList . addAll (dirFiles) ;
}

}
return pathsList ;

102

29

30
31

32

33

34

package CMMNElementsketchRecognitionSystem ;

import java.io.File;
import java.util.Amaylist;
import java.util. HashMap;
import java.util. Iterator;
import java.util.List;
import java.util.Set;
import java.util.Vector;

import org.opencv.core.Core;
import org.opencv.core.Core.MinMaxLocResult ;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint;
import org.opencv.core.Point;
import org.opencv.core.Range;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.highgui.Highgui;
import org.opencv.imgproc.Imgproc;
import org.opencv . utils.Converters ;
import org.w3c.dom.css.RGBColor;

/**

* This class does the matching process between input image
and template's images that include the following steps:

* 1) First of all, start doing pre-processing on the input
image and the template's images

* 2) extract features of each contour in the input image

* 3) resize the size of each contour according to the width
of template image as well as keeping the aspect ratio

* 4) At the end start finding the best match between each
contour and template's images

* The OpenCV library is used in order to do the
Pre-processing process as well as doing the template matching
* @author SaraAmirsardari

35
36

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69
70

*
*/
class TemplateMatchingDemo {

private List<MatOfPoint> parentContrours = new ArrayList<MatOfPoint> () ;
private Mat cleanedUplmage ;

public Mat getCleanedUplmage () {
return cleanedUplmage ;

public List<MatOfPoint> getParentContrours () {
return parentContrours ;

public void setParentContrours (List<MatOfPoint> parentContrours) {
this. parentContrours = parentContrours;

private int id = -1;

public int nextld () {
id=id+ 1;
return id;

private int sh=-1;

public int nextShape () {
sh=sh+ 1;
return sh;

/**
* this variable will hold the list of templates,organized
by shape type/name
*
*/
private HashMap<String, Mat> templateTable = new HashMap<String,
Mat> ()

103

104

72

13 / * Kk

74 * This variable will contain arrays of coordinates of the
various shapes

75 * recognized in the input figure, organized by shape
type/name

76 *

77 */

78 private HashMap<String, ArrayList<CoordinatesOfContours>>

shapeCoordinates = null;
79

80 public ArrayList<CoordinatesOfContours>
getListOfCoordinatesOfShapesOfType (String shapeName) {

81 return shapeCoordinates . get (shapeName) ;

82 }

83

84 /**

85 * This class represents a bitmap that was already
segmented. The actual

86 * bitmap is in <code>segmentedBitMap</code> and the
contours are

87 * represented in the instance variable
<code>contours</code>.

88 *

89 * @author SaraAmirsardari

90 *

9 */

92

93 class Segmentedimage {

94 public Mat segmentedBitMap ;

95

96 public ArraylList<MatOfPoint> contours ;

97

98 public Segmentedimage (Mat bitmap, ArrayList<MatOfPoint>

listOfContours) {

99 segmentedBitMap = bitmap ;

*00 contours = listOfContours ;

01 }

102 }

103
104
105

106

107

108

109

110

111

113

14

116

117
118

119

120
21
122
23
124
125

126

127

128

129

130

105

/**
* This function does pre-processing process(gaussian
blurring, thresholding)
* in a picture file (JPEG or PNG) to prepare them for
matching.
* the file name is contained in the string inFile. It
first loads
* the "bitmap" from the file <code>inFile</code> that
applies filters to it.
* @param
* @return the processed image matrix
*/
public Mat preprocessimage (String inFile) {
// load the image and convert it to gray
Mat img = Highgui.imread (inFile,
Highgui.CV__LOAD__IMAGE__ GRAYSCALE) ;
Mat destination = new Mat(img.rows (), img.cols (), img.type());
//blur operation reduces noise and smoothing the
grayscale image
Imgproc . GaussianBlur (img, destination, new Size(3, 3), 0);
// Threshold operation which converts a grayscale image
into a binary image
Imgproc . threshold (destination, destination, -1, 255,
Imgproc. THRESH__ BINARY_INV + Imgproc. THRESH_ _OTSU) ;
this.cleanedUpimage = destination.clone() ;
return destination;

/**

* This function gets the list of
templates<code>listOfTemplates</code> as a

* string and convert them to matrix and then store them
in the Arraylist

* <Mat> of <code>template</code>.

* @param listOfTemplates is list of template's images

* @return the processed template matrix to the template
table

*/

106

32 public void preprocessAllTemplates (ArrayList<String> listOfTemplates) {
133

34 for (int i = 0; i < listOfTemplates .size () ; i++) {

35 String nextTemplateFileName = listOfTemplates . get (i) ;

136 // find the name of the file, without the .jpg or

.png extension. That file name will represent the
name of the

137 // CMMN construct (file, sentry, event, etc. Here is
an example of what it looks like
38 //

C:\Users\SARA\Desktop\opencv\sample\templatel00\task\ta
sk.png. first, separate file name based on \, and
remove extension

40 String splitter = File.separator.replace ("\\", "\\\\");

41 String {1 pathElements = nextTemplateFileName . split (splitter) ;

142 String fileName = pathElements [pathElements . length - 1] ;

.43 String templateName = (fileName.split("\\.")) [0];

14 // load the template and convert it to gray

.45 Mat img = Highgui.imread (nextTemplateFileName,
Highgui.CV_LOAD _IMAGE _GRAYSCALE) ;

46 Mat destination = new Mat (img.rows () , img.cols() , img.type()) ;

.4 //blur operation reduces noise and smoothing the
grayscale template image

.48 Imgproc . GaussianBlur (img, destination, new Size (3, 3), 0);

19 // Threshold operation which converts a grayscale
template image into a binary template image

50 Imgproc . threshold (destination, destination, -1, 255,
Imgproc. THRESH _BINARY_INV + Imgproc. THRESH _OTSU) ;

.51 // add the processed template matrix to the template
table

152 templateTable . put (templateName , destination) ;

.53 }

54 }

"56

57 [**

158 * this function takes as input the name of a graphical

159

-60

73

174
175
176
177

178
179
80
181
182
83
184
185
186
187
88
89
190

107

file (PNG or JPEG)
* and returns a record (an instance of
<code>SegmentedImage</code>)
* consisting of, 1) the bitmap of the segmented image,
and 2) the list of
* contours (each contour being a vector of points).
*
* @param inFile is image matrix
* @return
*/
public Segmentedimage segmentimage (String inFile) {
Mat segmentedBitMap = preprocessimage (inFile) ;

// find the contours inside input image
Mat hierarchy = new Mat () ;
ArrayList<MatOfPoint> contours = new ArrayList<MatOfPoint> () ;
Imgproc . findContours (segmentedBitMap ,
contours, hierarchy ,Imgproc. RETR_CCOMP,
Imgproc. CHAIN_ APPROX__NONE) ;
ArrayList<MatOfPoint> contoursToRemove = new
ArrayList<MatOfPoint> () ;
for (int idx=0; idx<contours.size () ; idx++) {
double[] contourHierarchy = hierarchy.get (0 ,idx) ;
if (contourHierarchy [3] 1=-1) {
Imgproc . drawContours (segmentedBitMap , contours ,idx, new
Scalar (255, 255, 255),2);
this. parentContrours . add (contours . get {idx)) ;
} else {
contoursToRemove . add (contours . get (idx)) ;

}

for (MatOfPoint i: contoursToRemove) {
contours . remove (i) ;

return new Segmentedimage (segmentedBitMap, contours) ;

108

.91 [**
* in this function, the feature of each contour inside
the image extracted

93 * @param enclosingBitmap is the input image

94 * @param shape is the contour inside input image

.95 * @return the new contour matrix that include the contour
feature such as start coordinate (x,y), width and height.

96 */

.9 public Mat getShapeSubBitMap (Mat enclosingBitmap, MatOfPoint shape)

9

99 int w = Imgproc.boundingRect (shape) . width;

2 int h = Imgproc.boundingRect (shape) . height ;

201 int x = Imgproc.boundingRect (shape) .x;

02 int y = Imgproc.boundingRect (shape) .y;

203 System.out.printin(x + " "+ y+ " "+w+ " "+h+" ")

Range rowRange = new Range(y, y + h) ;
Range colRange = new Range(x, x + w);

206 return new Mat (enclosingBitmap, rowRange, colRange) ;

201 }

08

209 [**

210 * This function resize the contours (subShapeBitMap)
according to the

211 * template size by preserving the scale of the contours.

212 * @param subShapeBitMap is contour matrix

13 * @param templateWidth is width of template image

21 * @return the new size of contour matrix

215 */

216

217 public Size getResizeSize (Mat subShapeBitMap, double templateWidth
) {

18

219 double scale = (double) subShapeBitMap.width() / (double)

subShapeBitMap . height () ;

220 double newW = templateWidth ;

221 double newH = newW / scale;

222 return new Size (newW, newH) ;

223 }
224

225
226

227

229

30
231
232

233

35
236
237

238
239
240
241
242
243
244

248

/**

* This function finds the matching between the contour
that was defined in

* <code>currentShapeSubBitMap</code> and the template
that was defined in

* <code>templates</code>

*

*/

public Arraylist<FindMatching> findMatching (Mat
currentShapeSubBitMap, Mat segmentedinputBitMap, int shapeld) {

ArrayList<FindMatching> returnValue = new ArrayList<> () ;
Set<String> templateNames = templateTable . keySet () ;
Iterator<String> templateNamelterator = templateNames . iterator () ;
ArrayList<MinMaxLocResult> results = new
ArrayList<MinMaxLocResult> () ;

while (templateNamelterator.hasNext()) {
String templateName = templateNamelterator . next() ;

Mat segmentedTemplateBitMap = templateTable . get (templateName) ;
// resize the contour according to the template size
Size newSize = getResizeSize (currentShapeSubBitMap ,
segmentedTemplateBitMap . width ()) ;

Mat resizedimage = new Mat () ;

Imgproc . resize (currentShapeSubBitMap , resizedimage, newSize) ;
Mat resizedimage1 = new Mat() ;

resizedlmage1 = resizedimage ;

Mat biggerlmage, smallerimage ;
if (resizedimage1.rows() > segmentedTemplateBitMap .rows () | |
resizedimage1.cols () > segmentedTemplateBitMap .cols ()) {
// the image is bigger
biggerlmage = resizedimage1 ;
smallerimage = segmentedTemplateBitMap ;
} else {
// the template is bigger

109

110

261

265

268

278
279
80

282
28

285
286

288
289
290
291

biggerimage = segmentedTemplateBitMap ;
smallerimage = resizedimage1;

}

int result cols = biggerimage.cols () - smallerimage.cols () + 1;
int result _rows = biggerlmage.rows() - smallerimage.rows () + 1;
Mat result = new Mat (result rows, result_cols,

CvType.CV__32FC1) ;

// these two method (Imgproc.TM_SQDIFF and
Imgproc.TM_SQDIFF NORMED)give the minimum value

Imgproc . matchTemplate (biggerimage, smallerimage, result,

Imgproc. TM__ CCORR_ NORMED) ;

ArraylList<Double> listOfMaxVal = new ArrayList<>(}) ;
//The functions minMaxLoc find the minimum and
maximum element values and their positions
MinMaxLocResult mmr = Core.minMaxLoc (result) ;
results . add (mmr) ;
Point matchLoc = mmr.maxLoc;
double maxValue = mmr.maxVal;
listOfMaxVal . add (maxValue) ;
double globalMaximimum = MaximumValue (listOfMaxVal) ;
if (maxValue > 0) {

FindMatching findM = new

FindMatching (segmentedTemplateBitMap, result, matchLoc,

maxValue,

templateName) ;
returnValue . add (findM) ;

}

return returnValue;

private double MaximumValue (ArrayList<Double> listOfMaxVal) {

double maxValue = listOfMaxVal.get(0) ;

292

303

323

324
325
326
327

/**

*
*
*
*

*

*/

for (int s = 0; s < listOfMaxVal.size () ; s++) {
if (listOfMaxVal.get(s) > maxValue)
maxValue = listOfMaxVal .get (s) ;
}

return maxValue;

runMtchingDemo finds the template in original image
@param inFile is original image

@param templateFile is the template image

@param outFile

@param match_method

public void runMatchingDemo (String inFile) {

System.out. printin (" \nRunning Template Matching");
System . loadLibrary (Core . NATIVE__LIBRARY__NAME) ;

// find the contours in the input image

Segmentedimage segmentedinputimage = segmentimage (inFile) ;

Mat segmentedinputBitMap = segmentedinputimage . segmentedBitMap ;
ArrayList<MatOfPoint> contours = segmentedinputimage . contours ;

// let us now iterate over the different shapes/contours
in the input image, trying to find a match in each case

shapeCoordinates = new HashMap<String,
ArrayList<CoordinatesOfContours>> () ;

for (int i = 0; i < contours.size () ; i++) {
MatOfPoint currentShape = contours.get (i) ;
Mat currentShapeSubBitMap =
getShapeSubBitMap (segmentedinputBitMap , currentShape) ;
int x = Imgproc . boundingRect (currentShape) . x;
int y = Imgproc . boundingRect (currentShape) .y;

111

112

328

329

330

332
333
334

36
337

338

340
34

342

344
34

346
347

348

349
350

351

// Doing the template matching and returning an array
list of Mat with two values:

// 1.The template that was compared to
<code>currentShapeSubBitMap</code>

// 2.The result comparison of
<code>currentShapeSubBitMap</code> and
<code>segmentedTemplateBitMap</code>
ArrayList<FindMatching> results =

findMatching (currentShapeSubBitMap , segmentedinputBitMap, i) ;
FindMatching bestResult = computeBestResult (results) :

// get the shape name

String shapeName = bestResult. getTemplateName () ;

// add the current match to the appropriate list of
shapes

ArrayList<CoordinatesOfContours> sameShapeCoordinateArray =
shapeCoordinates . get (shapeName) ;

// if array is empty (this is the first shape of this

type encountered in the figure) then initialize it

if (sameShapeCoordinateArray == null) {
sameShapeCoordinateArray = new
ArrayList<CoordinatesOfContours> () ;
shapeCoordinates . put (shapeName , sameShapeCoordinateArray) ;

}

CoordinatesOfContours recognizedShapeCoordinates = new
CoordinatesOfContours (bestResult . getMatchLoc () .x + x,
bestResult . getMatchLoc () .y + Y,
bestResult. getSegmentedTemplateBitMap () .cols () ,
bestResult. getSegmentedTemplateBitMap () .rows () ,
nextid()) ;

// Just add the recognized square to the list if it
does not overlap any other
CalculateDistanceBetweenContours t = new
CalculateDistanceBetweenContours () ;

if (!t.isOverlapping (recognizedShapeCoordinates,

sameShapeCoordinateArray)) {
recognizedShapeCoordinates . setType (shapeName) ;
sameShapeCoordinateArray . add (recognizedShapeCoordinates) ;

}

Set<String> tmpKeySet = shapeCoordinates . keySet () ;
for (String key : tmpKeySet) {
ArrayList<CoordinatesOfContours> tmpCordinates =
shapeCoordinates . get (key) ;
for (CoordinatesOfContours coordinate : tmpCordinates) {
System . err. printin (coordinate) ;
}

}

FindMatching computeBestResult (ArrayList<FindMatching> results) {
FindMatching bestResult = null;
for (FindMatching currentResult : results) {
if (bestResult==null ||
currentResult . getMaxValue () >bestResult. getMaxValue ()) {
bestResult = currentResult ;
}

}
return bestResult;

113

114

o U e W N

10

12
13
14

16
17
18
19
20

22
23

24
25
26
27
28
29
30
31

package CMMNElementsketchRecognitionSystem ;

import org.opencv.core.Mat;
import org.opencv.core.Point;

/** This class represents:

* 1, The templates that were already converted from string
to Mat and stored in <code>segmentedTemplateBitMap</code>
* 2, The result that was already received from template
matching method in order to compare the template and contour
together

* 3. The match location and maximum value for each result
that were already defined by the <code>matchLoc</code> and
<code>maxValue</code>

* 4, The <code>idTemplate</code> is specified for
identifying each template

* Rauthor SaraAmirsardari

*

*/
public class FindMatching (

Mat segmentedTemplateBitMap ;
Mat result ;

Point matchLoc;

double maxValue;

String templateName ;

public FindMatching (Mat segmentedTemplateBitMap , Mat result, Point
matchLoc, double maxValue, String templateName) {
this.segmentedTemplateBitMap = segmentedTemplateBitMap ;
this.result = result;
this.matchLoc=matchLoc;
this.maxValue=maxValue ;
this.templateName=templateName ;

public void setSegmentedTemplateBitMap (Mat
segmentedTemplateBitMap) {

115

this.segmentedTemplateBitMap = segmentedTemplateBitMap ;
}
public Mat getSegmentedTemplateBitMap () {

return segmentedTemplateBitMap ;

}

public void setResult (Mat result) {
this.result = result;

}

public Mat getResult() {
return result;

}

public void setMatchLoc (Point matchLoc) {
this.matchLoc = matchLoc;

}

public Point getMatchLoc () {
return matchlLoc;

}

public void setMaxValue (Double maxValue) {
this.maxValue = maxValue;

}

public Double getMaxValue () {
return maxValue;

}
public void setTemplateName (String templateName) {

this .templateName=templateName ;
}
public String getTemplateName () {
return templateName;

}

116

19

23
24
25
26

28

30

31
32
33

package CMMNElementsketchRecognitionSystem ;
import java. util.ArrayList;

/**
* This class calculates the distance between each shape and
the rest of the shapes in input image
* @Qauthor SaraAmirsardari
L4
public class CalculateDistanceBetweenContours {

/**

* This method calculate the distance between two shapes
* Qparam sl is the first shape to calculate.

* @param s2 is the second shape to calculate.

* @return the distance between shapes.

iy

public double calculateDistance (CoordinatesOfContours s1,
CoordinatesOfContours s2) {

double distance = 0;

double dx = s1.getX() - s2.getX();
double dy = s1.getY () - s2.getY ()
distance = Math.sqrt (dx*dx + dy*dy) ;
return distance;

/**

* This method Verifies if the shape is overlapping with
any other shape in the list

* @param s is the shape to compare if it is overlapping.
* @param list is the list of all other shape that will
compare to shape.

* @return True if the shape overlaps any other shapes,
false otherwise.

S

public boolean isOverlapping (CoordinatesOfContours s,
ArrayList<CoordinatesOfContours> list) {

117

boolean overlap = false;
for (int i=0; i< list.size () ; i++) {
// define a threshold for specifying the overlap
distance between to shapes
double threshold = 7;
if (calculateDistance (s, list.get(i)) <= threshold) {
overlap = true;
return overlap;

return overlap;

Figure a.4 Represent ‘coordinate’ java class

package CMMNElementsketchRecognitionSystem ;

/**

* Interface for all the coordinates.
* @author SaraAmirsardari

*/

public interface Coordinates {

public double getX() ;
public double getY () ;
public double getWidth () ;
public double getHeight () ;

118

package CMMNElementsketchRecognitionSystem ;
import org.opencv.core.Point;

/**
* This method gets and sets the start point and end point of
each contour edge
* Qauthor SaraAmirsardari
*
*/
public class CoordinatesOfContourEdge {
private Point stariLine;
private Point endLine;

public Point getStartLine () {
return startLine;

}

public void setStartLine (Point startLine) {
this.startLine = startLine;

}

public Point getEndLine () {
return endLine;

}

public void setEndLine (Point endLine) {
this.endLine = endLine;

16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

119

package CMMNElementsketchRecognitionSystem ;
import org.opencv.core.Point;
public class CoordinatesOfContours implements Coordinates {

private double X;
private double y;
private double width;
private double height;
private int id;
private String type = "";

/**
* This class defines the coordinate of shapes inside the
input image
*/
public CoordinatesOfContours (double x, double y, double width,
double height, int id) {
this.X = X;
this.y =y;
this.width = width;
this. height = height;
this.id = id;

public double getX() {
return X;

public double getY () {
return y;

public double getWidth () {
return width;

public double getHeight() {

120

44

68

}

return height;

public int getid() {

}

return id;

public String getType () {

}

return type;

public void setType (String type) {

}

this.type = type;

public String toString () {

}

return "Coordinate: ("+this.x+","+this.y+"),
Width:"+this.width+", Height:"+this.height;

public CoordinatesOfContourEdge getToplLine () {

}

CoordinatesOfContourEdge result = new CoordinatesOfContourEdge () ;
result. setStartLine (new Point (x,y)) ;

result. setEndLine (new Point (x+width, y)) ;

return result;

public CoordinatesOfContourEdge getBottomLine () {

}

CoordinatesOfContourEdge result = new CoordinatesOfContourEdge () ;
result. setStartLine (new Point (x, y+height)) ;

result. setEndLine (new Point (x+width, y+height)) ;

return result;

public CoordinatesOfContourEdge getleftLine () {

CoordinatesOfContourEdge result = new CoordinatesOfContourEdge () ;
result. setStartLine (new Point(x,y)) ;

result. setEndLine (new Point(x, y+height)) ;

return result;

121

public CoordinatesOfContourEdge getRightLine () {
CoordinatesOfContourEdge result = new CoordinatesOfContourEdge () ;
result. setStartLine (new Point (x+width,y)) ;
result. setEndLine (new Point (x+width, y+height)) ;
return result;

APPENDICE B

COMPOSITE SHAPE RECOGNITION JAVA CLASSES

124

1 package CMMNElementsketchRecognitionSystem ;

3 /**

4 * This class gets and sets the coordinates of lines
5 * @author SaraAmirsardari

6 */

7 public class CoordinatesOfLines {
8

9

10 private double x1;

1 private double y1;

12 private double xX2;

13 private double y2;

14 private int id;

15

16 /**

17 * This class defines the coordinate of each line inside

the input image

18 /

19

20 public CoordinatesOflines (double x1, double y1, double X2, double

y2,int id) {

2

22 this.x1 =x1;

23 this.yl = y1;

24 this.x2 = x2;

25 this.y2 = y2;

26 this.id = id;

27 }

28
29 public double getX1() {

30 return x1;

31 }

32

33 public double getY1() {

34 return y1;

35 }

36
37 public double getX2() {

125

return x2;

}

public double getY2() {
return y2;

}
public int getid() {

return id;

}

public String toString () {
return " ro o “: ("+this.x1+", "+this.yl+"),

n : ("+this.x2+", "+this.y2+")";

126

package CMMNEIlementsketchRecognitionSystem ;

/**

*

This class get the input image and delete all closed

contour

*

*

*

*

and start recognizing the contours which include lines.
the OpenCV library is used in order to detect lines
@author SaraAmirsardari

*/

public class Detectline {

private Arraylist<CoordinatesOfLines> ResultOfLines=new ArrayList<> () ;

public ArraylList<CoordinatesOfLines> getResultOfLines () {

return ResultOfLines;

private Mat initiallmage ;
private List«MatOfPoint> shapesToRemove ;

public Mat getinitiallmage () {
return initiallmage ;

public void setlnitiallmage (Mat initiallmage) {
this.initiallmage = initiallmage ;

public List<MatOfPoint> getShapesToRemove () {
return shapesToRemove ;

public void setShapesToRemove (List<MatOfPoint> shapesToRemove) {
this.shapesToRemove = shapesToRemove ;

}

/ * %

39

40

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

62
63
64
65
66
67
68

69

70

* This method start defining the bounding box around each
closed shape

* and then using threshold in order to increase the area
of each closed shape

* @param shape

*/

private void removeShape (MatOfPoint shape) {

}

int x = Imgproc.boundingRect (shape) .x;

int y = Imgproc.boundingRect (shape) .y;

int width = Imgproc.boundingRect (shape) . width ;

int height = Imgproc . boundingRect (shape) . height ;
MatOfPoint mpoints = new MatOfPoint () ;

double threshold = 8;

List<Point> points = new ArrayList<Point> () ;

points . add (new Point (x-threshold, y-threshold)) ;

points . add (new Point (x+width+threshold , y-threshold)) ;
points . add (new Point (x+width+threshold , y+height+threshold)) ;
points . add (new Point (x-threshold , y+height+threshold)) ;

mpoints . fromList (points) ;
//paint all closed contours by black color
Core. fillConvexPoly (this. initiallmage, mpoints ,new Scalar(0,0,0));

public void detectlLine() {

this.ResultOfLines = new ArrayList<>() ;
for (MatOfPoint shape: this.shapesToRemove) {
removeShape (shape) ;

}

// image - 8-bit, single-channel binary source
image. The image may be modified by the function.

// lines - Output vector of lines. Each line is
represented by a 4-element vector (x 1, y 1, x 2, y 2),
// where (x 1,y 1) and (x_2, y_2) are the ending
points of each detected line segment.

// rho : The resolution of the parameter r in pixels.

We use 1 pixel.

127

128

72

73

74

75

76
17
78
79
BO
81
B2
83

84
85
86
87
88
89
90

92

93

94
95
96
97
98
99
00
01

// theta: The resolution of the parameter theta in
radians. We use 1 degree (CV_PI/180)

// threshold: The minimum number of intersections to
“detect” a line

// minLinLength: The minimum number of points that
can form a line. Lines with less than this number of
points are disregarded.

// maxLineGap: The maximum gap between two points to
be considered in the same line.

Mat line = new Mat() ;

int threshold = SketchRecognition . LINE _DETECTION _TRESHOLD;
int minLineLength =SketchRecognition .MIN__LINE__LENGTH;

int maxLineGap =SketchRecognition . MAX_ LINE _GAP;

int id=0;

Imgproc. Canny (this.initiallmage, this.initiallmage, 50, 200) ;
Imgproc . HoughLinesP (this. initiallmage, line, 1, Math.Pl/180,
threshold, minLineLength, maxLineGap) ;

for(int i=0; i < line.cols() ; i++) {
double[] val = line.get(0, i) ;
double x1 =val[0],

yl =val[1],
x2 =val[2],
y2 = val[3];

CoordinatesOfLines recognizeLine = new CoordinatesOfLines (x1,
yl, x2, yzlid):

CalculateDistanceBetweenLines linedistance = new
CalculateDistanceBetweenLines () ;

linedistance . mergingLines (recognizeLine, ResultOfLines) ;

129

package CMMNElementsketchRecognitionSystem ;

import java.util. ArrayList ;

import java.util.Collections ;

’ / * K
* This class calculates the distance between each line and
the rest of the lines in input image

7 * @author SaraAmirsardari

8 */

1
2
3
4
5
6

13
14
15
16
17
18

19
20

22
23
24
25
26
27
28
29

30

31

32

33

34

public class CalculateDistanceBetweenLines {

/**
* This method calculate the distance between two lines.
* @param linel is the first line to calculate.
* @param line2 is the second line to calculate.
* @return
*/
public double calculateDistance (CoordinatesOfLines linet,
CoordinatesOfLines line2) {

double distance = 0;

double dx = line1.getX1() - line2.getX1() ;
double dy = line1.getY1() - line2.getY1() ;
distance = Math.sqrt (dx*dx + dy*dy) ;
return distance;

/**

* This method merges the lines according to their distance
* @param line is the first line to compare its distance
with the rest of line in list

* @param list is the list of all lines in input image

* this method verifies:

* first: the distance of the two lines that is less that
threshold or not,

* second: if it is less than the threshold, it starts
merging two lines based on

* the minimum start point of lines and maximum end point

130

of lines
* this method returns the longest line
*/
public void mergingLines (CoordinatesOfLines line,
ArrayList<CoordinatesOfLines> list) {
38
ArrayList<CoordinatesOfLines> linesToRemove=new ArrayList<>() ;
) for (int i=0; i < list.size () ; i++) {
// define a threshold for specifying the standard
distance between independent lines
double threshold = 12;
int id=U;

if (calculateDistance (line, list.get(i)) <= threshold) {
id++;
ArrayList<Double> coordinateX=new ArrayList<>() ;
coordinateX . add (line.getX1 ()) ;
coordinateX . add (list. get (i) .getX1()) :
coordinateX . add (line.getX2()) ;
coordinateX . add (list. get (i) .getX2()) ;
Double linex1 = Collections . min (coordinateX) ;
Double linex2 = Collections . max (coordinateX) ;

ArrayList<Double> coordinateY=new ArrayList<>() ;
coordinateY . add (line.getY1 ()) ;
coordinateY . add (list. get (i) .getY1()) ;
coordinateY . add (line.getY2()) ;
coordinateY . add (list. get (i) .getY2()) :
Double liney1 = Collections . min (coordinateY) ;
Double liney2 = Collections . max (coordinateY) ;

62
CoordinatesOfLines newLine = new CoordinatesOfLines (linex1,
liney1, linex2, liney2,id) ;

64

65 line = newline;
linesToRemove . add (list.get (i)) ;

67 }

68

69 }

131

list.add (line) ;
for (CoordinatesOfLines lineToRemove : linesToRemove) {
list.remove (lineToRemove) ;

package CMMNElementsketchRecognitionSystem ;
import org.opencv.core.Point;

/**
* This class gets and sets the coordinate of shape and
coordinate of line as well as the distance between them
* @Qauthor SaraAmirsardari
*
*/
public class DistanceFromContourToLine {
CoordinatesOfContours shape;
Point linePoint ;
double distance;

public double getDistance () {
return distance;

}

public void setDistance (double distance) {
this.distance = distance;

}

public CoordinatesOfContours getShape () {
return shape;

}

public void setShape (CoordinatesOfContours shape) {
this.shape = shape;

}

public Point getLinePoint () {
return linePoint;

}

public void setLinePoint (Point linePoint) {
this.linePoint = linePoint;

132

6
7
8
9
10

11
12

13

15
16

18
19
20

23

24
25
26

28
29
30
31

package CMMNElementsketchRecognitionSystem ;
/ *
* This class calculates the distance of start point and end
point of each line with two specified shapes(task and
sentry) .
* Hence, we need to get the coordinates of lines from
<code>detectLine</code> class as well as
* the coordinates of tasks and sentries from
<code>WriteXmlFile</code> class
* @author SaraAmirsardari

*/
public class Connector {

private ArrayList<CoordinatesOfLines> resultOfLines= new ArrayList<> () ;
private ArraylList<CoordinatesOfContours> resultOfTasks= new
ArrayList<> () ;

private Arraylist<CoordinatesOfContours> resultOfSentries= new
ArrayList<> () ;

public void setResultOfLines (ArraylList<CoordinatesOfLines>
resultOfLines) {
this.resultOfLines = resultOfLines ;
}
public ArrayList<CoordinatesOfLines> getResultOfLines () {
return resultOfLines ;

public void setResultOfTasks (ArrayList<CoordinatesOfContours>
resultOfTasks) {
this.resultOfTasks = resultOfTasks ;

}
public ArraylList<CoordinatesOfContours> getResultOfTasks () {

return resultOfTasks ;

public void setResultOfSentries (ArrayList<CoordinatesOfContours>

32
33
34
35
36
37
38
39
40

42

43
44

45
46

48
49
50

51

52
53
54
55
56
57
58

59

60

133

resultOfSentries) {
this.resultOfSentries = resultOfSentries ;

public ArrayList<CoordinatesOfContours> getResultOfSentries () {

return resultOfSentries ;

/**

* This method calls the
<code>findConnexionForPoint</code> method in order to
calculate

* the distance of start point and end point of line with
the specified shapes

* @param line is the coordinate of each line

* @return the result which includes the list of shapes
connected to the line

*/

public List«CoordinatesOfContours>
getCloserShapeForLine (CoordinatesOfLines line) {

List<CoordinatesOfContours> result= new Arraylist<> () ;
result.add (findConnexionForPoint (new Point (line.getX1 (),
line.getY1()))):

result. add (findConnexionForPoint (new Point (line.getX2 (),
line.getY2()))):

return result;

/**

*

* @param p is one of the start point or end point of line
* this method calculate the distance of start point or
end point of line with the specified shapes

* @return the minimum distance of each start point or end
point of line with the specified shapes

*/

134

public CoordinatesOfContours findConnexionForPoint (Point p) {

List<DistanceFromContourTolLine> distances = new Arraylist<>() ;

for (CoordinatesOfContours task : this.resultOfTasks) {
DistanceFromContourToLine distance = new
DistanceFromContourToLine () ;
distance . setShape (task) ;
distance . setDistance (computeDistance (task, p)) ;
distances . add (distance) ;

}

for (CoordinatesOfContours sentry : this.resultOfSentries) {
DistanceFromContourToLine distance = new
DistanceFromContourToLine () ;
distance . setShape (sentry) ;
distance . setDistance (computeDistance (sentry, p)) ;
distances . add (distance) ;

}

DistanceFromContourToLine minimalDistance = null;
for (DistanceFromContourToline distance : distances) {
if (minimalDistance == null ||
distance . getDistance () <minimalDistance . getDistance ()) {
minimalDistance = distance ;
}
}
return minimalDistance .getShape () ;

}

/**
* This class computes the distance of start point and end
point of line with two
* edges of closed counter that can be vertical or
horizontal
88 */
private double computeDistanceToLine (Point pointToCompute,
CoordinatesOfContourEdge contourEdge) {

double threshold = 5;
Point lineStart = contourEdge . getStartLine () ;
Point lineEnd = contourEdge . getEndLine () ;

94
95
96

97
98
99
00
101
102

103

04
105
06

107
108

09
110
111

112
113
14
15
116
17

118

119
120

21
122
123

124

boolean isHorizontal = (lineStart.y == lineEnd.y) ;
if (isHorizontal) {
//It is a horizontal line, Make sure that lineStart
has smaller x
if (lineStart.x>lineEnd.x) {
Point p = lineStart;
lineStart = lineEnd;
lineEnd = p ;
}
//1f the point is not between the start point of line
and end point of line then return infinite value
if (pointToCompute . x<lineStart . x-threshold | |
pointToCompute . x>lineEnd . x+threshold) {
return Double. MAX _VALUE;
}else({
//If the point is between the start point of line
and end point of line then calculate the distance

return Math.abs (lineStart.y-pointToCompute.y) ;
}
} else {
//It is a vertical line, Make sure that lineStart has
smaller y
if (lineStart.y>lineEnd.y) {
Point p = lineStart;
lineStart = lineEnd;
lineEnd = p ;
}
//1f the point is not between the start point of line
and end point of line then return infinite value
if (pointToCompute . y<lineStart. y-threshold | |
pointToCompute . y>lineEnd . y+threshold) {

return Double. MAX_VALUE;
}else({

//1f the point is between the start point of line
and end point of line then calculate the distance
return Math.abs (lineStart. x-pointToCompute . x) ;

135

136

}
public double computeDistance (CoordinatesOfContours shape, Point p) {

double result = Double. MAX VALUE;
List<Double> distances = new ArrayList<>() ;

distances . add (new Double (computeDistanceToLine (p,
shape.getTopLine()))):

distances . add (new Double (computeDistanceToline (p,
shape . getBottomLine ()))):

distances . add (new Double (computeDistanceToline (p,
shape . getlLeftLine ()))):

distances .add (new Double (computeDistanceToLine (p,
shape . getRightLine()))),

for (Double distance : distances) {
if (distance .doubleValue () < result)
resuit = distance . doubleValue () ;

}

return result;

1

137

package CMMNElementsketchRecognitionSystem ;
import org.opencv.core.Point;

/**

* This class gets and sets the coordinate of lines and the
shapes that are connected to lines

* @author SaraAmirsardari

*

*/
public class ConnectorResult {

CoordinatesOfContours shape ;
Point linePoint ;

public ConnectorResult (CoordinatesOfContours shape, Point linePoint) {
this.shape=shape;
this.linePoint=linePoint ;

}

public CoordinatesOfContours getShape () {
return shape;

}

public void setShape (CoordinatesOfContours shape) {
this.shape = shape;

}

public Point getLinePoint () {
return linePoint;

}

public void setlLinePoint (Point linePoint) {
this.linePoint = linePoint;

APPENDICE C

SEMANTIC CONNECTION RECOGNITION JAVA CLASSES

140

16
17
18

19

25

28

30

32

package CMMNElementsketchRecognitionSystem ;
/ ¥* %
* This class start writhing the XML file according to the
structure of CMMN modeler
* which is able to import the XML file inside the CMMN
Modeler software

* @author SaraAmirsardari
*

*/
public class WriteXmlFile {

private Map<CoordinatesOfContours, CoordinatesOfContours>
connectionsMap = new HashMap<>() ;

private Map<CoordinatesOfContours, CoordinatesOfLines> shapesTolines

= new HashMap<>() ;

private ArraylList<CoordinatesOfContours> resultOfTasks= new

ArrayList<>() ;

public ArrayList<CoordinatesOfContours> getResultOfTasks () {
return resultOfTasks ;

}

private ArrayList<CoordinatesOfContours> resultOfSentries= new

ArrayList<>() ;

public Arraylist<CoordinatesOfContours> getResultOfSentries () {
return resultOfSentries ;

}

private ArraylList<CoordinatesOfLines> resultOfLines= new ArrayList<>() ;

public Arraylist<CoordinatesOfLines> getResultOfLines () {

return resultOfLines;
}

public void setResultOfLines (ArrayList<CoordinatesOfLines>
resultOfLines) {
this.resultOfLines = resultOfLines ;

34
35
36
37

38
39
40

42
43
44
45
46
a7
18

49
50
51
52
53
54
S5
56

58
59
60
61
62
63
64
65
66
67
68
69

141

public void WriteXml (TemplateMatchingDemo md) {

try {

DocumentBuilderFactory docFactory =
DocumentBuilderFactory . newinstance () ;
DocumentBuilder docBuilder = docFactory . newDocumentBuilder () ;

// root elements

Document doc = docBuilder. newDocument () ;

doc. setXmIStandalone (true) ;

Element rootElement = doc. createElement ("cmmn:definitions") ;
doc.appendChild (rootElement) ;

// staff elements

Element staff1 =
doc.createElement ("cmmn: caseFileItemDefinition") ;
rootElement . appendChild (staff1) ;

Element staff = doc.createElement ("cmmn:case) ;
rootElement . appendChild (staff) ;

Element staff2 = doc.createElement (" crmmndi : CMMNDI") ;
rootElement . appendChild (staff2) ;

//set attribute for root element

Aftr defv1l = doc.createAttribute ("author) ;
defv1.setValue (" ") ;
rootElement . setAttributeNode (defv1) ;

Attr defv2 = doc.createAttribute ("exporter") ;
defv2.setValue ("CMMN Modeler") ;
rootElement . setAttributeNode (defv2) ;

Attr defv3 = doc. createAttribute ("id") ;
defv3.setValue (" _bcc573eb-adf3-4fb4-abb5-434ae50ac5ce”) ;
rootElement . setAttributeNode (defv3) ;

142

70

2
73
74
75
76

77
78
79
80

83
B4

86

88

89

90

92

93

95

96

97
98

Attr defvd = doc. createAttribute ("name™) ;
defvd .setValue ("Drawing 1");
rootElement . setAttributeNode (defv4) ;

Attr defvS = doc.createAttribute ("targetNamespace") ;

defv5.setValue ("http://www.trisotech.com/cmmn/definitions
/ bcc573eb-adf3-4fb4-abb5-434ae50ac5ce") ;
rootElement . setAttributeNode (defvs) ;

Attr defvé = doc. createAttribute ("xmlns") ;

defv6 . setValue ("http://www.trisotech.com/cmmn/definitions
/_bcc573eb-adf3-4fb4-abb5-434ae50ac5ce™) ;
rootElement. setAttributeNode (defvB) ;

Attr defv7 = doc.createAttribute ("xmlns:dc") ;

defv7 .setValue ("http://www.omg.org/spec/CMMN/20151109/DC"
)i
rootElement . setAttributeNode (defv7) ;

Attr defv8 = doc.createAttribute ("xmlns:trisofeed") ;
defv8.setValue ("http://trisotech.com/feed") ;
rootElement . setAttributeNode (defv8) ;

Attr defv9 = doc.createAttribute ("xmins:triso");

defv9.setValue ("http://www.trisotech.com/2015/triso/model
ing") ’.

rootElement . setAttributeNode (defv9) ;

Attr defv10 = doc. createAttribute ("xmlns:di") ;

defv10.setValue ("http://www.omg.org/spec/CMMN/20151109/DT

")
rootElement . setAttributeNode (defv10) ;

99
100
101
102
103
104

105
106

07
108

109
110

1
112

13
-14

15
116

117

18
119
120

22
23
124
125

126

143

Attr defv11 = doc. createAttribute ("xmlns:rss”);
defvi1.setValue ("http://purl.org/rss/2.0/");
rootElement. setAttributeNode (defvi1) ;

Attr defv12 = doc. createAttribute ("xmlns:cmmndi™) ;
defv12.setValue ("http://www.omg.org/spec/CMMN/20151109/CM
MNDI") ;

rootElement . setAttributeNode (defv12) ;

Attr defv13 = doc.createAttribute ("xmlns:trisob”);
defvi3.setValue ("http://www.trisotech.com/2014/triso/bpmn
ro)o,;Element .setAttributeNode (defv13) ;

Attr defv14 = doc. createAttribute ("xmlns:cmmn") ;

defv14.setValue ("http://www.omg.org/spec/CMMN/20151109/MO
DEL") ;

rootElement . setAttributeNode (defv14) ;

Attr defv15 = doc.createAttribute ("xmlns:xsi") ;

defv15.setValue ("http://www.w3.0rg/2001/XMLSchema~instanc
foo)télement .setAttributeNode (defv15) ;

Attr defv16 = doc.createAttribute ("xmlns:trisocmmn™) ;
defv16.setValue ("http://www.trisotech.com/2014/triso/cmmn
ro)o';EIement .setAttributeNode (defv16) ;

//finish set attribute for root element

// get the coordinate of contours which are matched
with the template's images

144

ArrayList<CoordinatesOfContours> Filelist =

md . getListOfCoordinatesOfShapesOfType (" £ile") ;
8 if (Filelist==null) Filelist = new

ArrayList<CoordinatesOfContours>() ;

30 ArrayList<CoordinatesOfContours> squarelist =
md . getListOfCoordinatesOfShapesOfType (" task") ;
3 if (squarelist==null) squarelist = new

ArrayList<CoordinatesOfContours> () ;
32
33 this .resultOfTasks=squarelist ;

35 ArrayList<CoordinatesOfContours> Sentrieslist =
md . getListOfCoordinatesOfShapesOfType ("sentry”);
R if (Sentrieslist==null) Sentrieslist = new
ArrayList<CoordinatesOfContours> () ;

.38 ArrayList<CoordinatesOfContours> Eventlist =
md . getListOfCoordinatesOfShapesOfType ("event™) ;
39 if (Eventlist==null) Eventlist = new

ArrayList<CoordinatesOfContours> () ;

] // set attribute to staffl
element (caseFileItemDefinition)
.42 for (CoordinatesOfContours recognizefile : Filelist) {
4 writeFileltemDefinition (doc, staff1, recognizefile) ;
}
45
46 // set attribute to staff element (case)
. Attr attr = doc. createAttribute ("id") ;

.48
attr. setValue ("Case_3b0a4c03-c271—47c3-9e87-30c57c034 fdb")

.
7

149 staff . setAttributeNode (attr) ;

50

Lol Attr attr1 = doc.createAttribute ("name™) ;
52 attr1 .setValue ("Page 1");

53 staff . setAttributeNode (attr1) ;

155
156

157
58

160

61
162
163

164
165

66
167
-68

169

70
171
172
173
174
175
176
177
178
179

180

181
182

183
184

185

145

// set attribute to casefilemodel
Element casefilemodel =

doc.createElement (" cmmn : caseFileModel") ;
staff . appendChild (casefilemodel) ;

for (CoordinatesOfContours recognizefile : Filelist) {
writeFileltem (doc, casefilemodel, recognizefile) ;

Element caseplanmodel =
doc.createElement (" cmmn : casePlanModel”) ;
staff. appendChild (caseplanmodel) ;

// set attribute to caseplanmodel element
Attr caseplan = doc. createAttribute ("id") ;

caseplan .setValue (" _3b0a4c03-c271-47¢3-9e87-30c57c034fdb")

caseplanmodel . setAttributeNode (caseplan) ;

Attr caseplan1 = doc. createAttribute ("autoComplete™) ;
caseplan1.setValue ("false") ;
caseplanmodel . setAttributeNode (caseplan1) ;

Attr caseplan2 = doc. createAttribute ("name"}) ;
caseplan2.setValue ("Page 1");
caseplanmodel . setAttributeNode (caseplan2) ;

// calculate if there is an intersection between

square and diamond or not

ArrayList <CoordinatesOfContours> intersectionSentries= new

ArrayList<>() ;

for (CoordinatesOfContours coordinatesOfSquare : squarelist) {
// define the list of sentries that have
intersection with squares

for (CoordinatesOfContours coordinatesOfSentries :
Sentrieslist) {

146

if (CalculatelntersectionArea . recognizelntersection (coordinates

OfSentries , coordinatesOfSquare)) {
intersectionSentries . add (coordinatesOfSentries) ;

}

this . resultOfSentries=intersectionSentries ;
writeplanitem (doc, caseplanmodel, coordinatesOfSquare,
intersectionSentries, aull) ;

}

//define the connector and the shapes connected to it

Connector connector=new Connector () ;

connector . setResultOfLines (this.resultOfLines) ;

connector . setResultOfSentries (this . getResultOfSentries ()) ;
connector . setResultOfTasks (this . getResultOfTasks ()) ;

for (CoordinatesOfLines line : this.resultOfLines) {

List<CoordinatesOfContours> shapes =
connector . getCloserShapeForLine (line) ;

connectionsMap . put (shapes.get(0) , shapes.get(1)):
connectionsMap . put (shapes.get (1) , shapes.get(0)) ;
shapesToLines . put (shapes .get (0) , line) ;
shapesToLines . put (shapes.get(1), line);

//writhing planltem element

for (CoordinatesOfContours coordinationEvent : Eventlist) {
writeplanitem (doc, caseplanmodel, null, null,
coordinationEvent) ;

1 }
//writhing Sentry element
21 for (CoordinatesOfContours coordinationSentries :
this.resultOfSentries) {
1 writeSentry (doc, caseplanmodel,

coordinationSentries , connectionsMap . get (coordinationSentries) , sh

218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

234
235
236

237

239
240
241
242
243
244

245
246
247
248
249
250

147

apesToLines . get (coordinationSentries)) ;

//writhing Event element

for (CoordinatesOfContours coordinationEvent : Eventlist) {
writeEvent (doc, caseplanmodel, coordinationEvent) ;

}

//writhing Task element

for (CoordinatesOfContours coordinationSquare : squarelist) {
writeTask (doc, caseplanmodel, coordinationSquare) ;

//writhing CMMN Diagram

Element CMMNDiagram =
doc.createElement (" cmmndi : CMMNDiagram") ;
staff2 . appendChild (CMMNDiagram) ;

// set attribute
Attr Diagramv1 = doc.createAttribute (" id") ;

Diagramv1 .setValue (" _180025a0-f126-4805-8689-7ee0a0£3c190
")i

CMMNDiagram . setAttributeNode (Diagramv1) ;

Attr Diagramv2 = doc. createAttribute ("name") ;

Diagramv2.setValue ("pPage 1");

CMMNDiagram . setAttributeNode (Diagramv2) ;

Attr Diagramv3 = doc.createAttribute ("sharedstyle”) ;
Diagramv3.setValue ("cbla46a0-82e9-4c14-8495-8d3f50061e96"
)

CMMNDiagram . setAttributeNode (Diagramv3) ;

//writhing the size as child of CMMN Diagram

Element cmmndiSize = doc. createElement (" crmmndi:Size") ;
CMMNDiagram . appendChild (cmmndiSize) ;

148

265
266

268
269
270
271

274

276
277
278
279
280
281
282
283
284
285

// set attribute

Afir Sizevl = doc. createAttribute ("height ™) ;
Sizev1.setValue ("1050.0") ;

cmmndiSize . setAttributeNode (Sizev1) ;

Attr Sizev2 = doc.createAttribute (“width™) ;
Sizev2.setValue ("1485.0") ;

cmmndiSize . setAttributeNode (Sizev2) ;

//writhing the shape as child of CMMN Diagram

Element CMMNShape = doc.createElement (" cmmndi :CMMNShape") ;
CMMNDiagram . appendChild (CMMNShape) ;

// set attribute
Attr Shapev1 = doc. createAttribute ("cmmnElementRef”);

Shapev1 .setVaIue("_3b0a4c03—c271—47c3—9e87—30c57c034fdb")
éMMNShape . setAttributeNode (Shapev1) ;

Attr Shapev2 = doc. createAttribute ("1d") ;
Shapev2.setVa|ue("_d8d81e5a—d265-4bal—9f94-4b0d47037451")
(;ZMMNShape . setAttributeNode (Shapev2) ;

Element dcBounds = doc.createElement ("dc:Bounds™) ;
CMMNShape . appendChild (dcBounds) ;

Attr boundv1 = doc. createAttribute ("height™) ;
boundv1.setValue ("600.0") ;
dcBounds . setAttributeNode (boundv1) ;

Attr boundv2 = doc. createAttribute ("width™) ;
boundv2 .setValue ("800.0") ;
dcBounds . setAttributeNode (boundv2) ;

Attr boundv3 = doc.createAttribute (" x") ;

286
287
288
289
290
291

293

294
295
296

298

99
300
301
302

149

boundv3.setValue ("34.0") ;
dcBounds . setAttributeNode (boundv3) ;

Attr boundv4 = doc. createAttribute ("y") ;
boundv4 .setValue ("34.0") ;
dcBounds . setAttributeNode (boundv4) ;

Element cmmndiCMMNLabe =
doc.createElement (" cmmndi : CMMNLabel™) ;
CMMNShape . appendChild (cmmndiCMMNLabe) ;

for (CoordinatesOfContours coordinateOfSentry :
this. resultOfSentries) {

CoordinatesOfLines line =

shapesToLines . get (coordinateOfSentry) ;

writeLineValus (doc, CMMNDiagram, line, coordinateOfSentry) ;
}

for (CoordinatesOfContours coordinatesOfSquare : squarelist) {
writetaskValues (doc, CMMNDiagram, coordinatesOfSquare) ;

}

for (CoordinatesOfContours coordinatesOfSentries : Sentrieslist) {
writeEntryCriterionValus (doc, CMMNDiagram,
coordinatesOfSentries) ;

}

for (CoordinatesOfContours coordinationOfEvent : Eventlist } {
writeEventValues (doc, CMMNDiagram, coordinationOfEvent) ;

}

for (CoordinatesOfContours coordinatesOfFile : Filelist) {
writeFileValues (doc, CMMNDiagram, coordinatesOfFile) ;

}

//writhing the style as child of CMMN Diagram

Element cmmndiStyle = doc.createElement (" cmmndi:CMMNStyle™) ;

staff2 . appendChild (cmmndiStyle) ;

// set attribute
Attr Stylev1 = doc. createAttribute (" fontFamily”) ;

150

321

36
38
339

340

342

345
346
34

348

351

354

Stylev1.setValue ("Arial, Helvetica, sans-serif");
cmmndiStyle . setAttributeNode (Stylev1) ;

Attr Stylev2 = doc. createAttribute ("id") ;
Stylev2. setValue ("cblad6a0-82e9-4cl4-84 95-8d3£50061e96") ;
cmmndiStyle . setAttributeNode (Stylev2) ;

// write the content into xml file

TransformerFactory transformerFactory =

TransformerFactory . newlnstance () ;

Transformer transformer = transformerFactory . newTransformer () ;
transformer . setOutputProperty (OutputKeys . STANDALONE, "ves") ;
DOMSource source = new DOMSource (doc) ;

StreamResult result = new StreamResult (new

File("C: /Users/SARA/Desktop/opencv/result. cmmn™)) ;
transformer . transform (source , resuit) ;

System .out.printin("File saved! ") :

} catch (ParserConfigurationException pce) {
pce . printStackTrace () ;

} catch (TransformerException tfe) {
tfe . printStackTrace () ;

}

public void writeFileltemDefinition (Document doc, Element staff1,
CoordinatesOfContours recognizefile) {

Atftr planitemv1 = doc.createAttribute ("1d"} ;
planitemv1 . setValue (" £r "+ recognizefile . getid ()) ;
staff1 . setAttributeNode (planitemv1) ;

}

public void writeFileltem (Document doc, Element casefilemodel ,
CoordinatesOfContours recognizefile) {

Element cmmncaseFileltem =
doc . createElement ("crmn: caseFileltem") ;

372

casefilemodel . appendChild (cmmncaseFileltem) ;

//set attribute

Attr fileitemv1 = doc. createAttribute ("definitionRef™) ;
fileitemv1 . setValue (" £r" + recognizefile .getid()) ;
cmmncaseFileltem . setAttributeNode (fileitemv1) ;

Attr fileitemv2 = doc. createAttribute ("multiplicity™);
fileitemv2 . setValue ("Unspecified") ;
cmmncaseFileltem . setAttributeNode (fileitemv2) ;

Attr fileitemv3 = doc. createAttribute ("id") ;
fileitemv3.setValue ("£v" + recognizefile.getid ()) ;
cmmncaseFileltem . setAttributeNode (fileitemv3) ;

public void writeplanitem (Document doc, Element caseplanmodel,
CoordinatesOfContours

coordinatesOfSquare , ArrayList<CoordinatesOfContours>
intersectionSentries , CoordinatesOfContours coordinationEvent) {

Element cmmnplanitem = doc.createElement ("cmmn:planItem”) ;
caseplanmodel . appendChild (cmmnplanltem) ;

// set attribute
Attr planitemv1 = doc.createAttribute ("definitionRef") ;

if (coordinatesOfSquare = null) {

planitemv1 .setValue ("t" + coordinatesOfSquare .getid()) ;
}telse if (coordinationEvent != null) {

planitemv1 . setValue ("e" + coordinationEvent.getid ()) ;

}
cmmnplanitem . setAttributeNode (planitemv1) ;

Aftr planitemv2 = doc. createAttribute ("id") ;
if (coordinatesOfSquare != null) {
planitemv2 . setValue ("pi" + coordinatesOfSquare .getid()) :

151

152

391

39

400

A& & & a

& A & &
™

410

a1
413
a1

a1

416
a1

18
419
420
421
422

423

} else if (coordinationEvent != null) {
planitemv2 .setValue ("pi" + coordinationEvent.getid ()) ;

}
cmmnplanitem . setAttributeNode (planitemv2) ;

if (intersectionSentries !=null) {
if (tintersectionSentries .isEmpty ()) {
for (CoordinatesOfContours coordinationSentries :
intersectionSentries) {

Element entryCriterion =
doc.createElement ("cmn:entryCriterion™);
cmmnplanitem . appendChild (entryCriterion) ;

Attr entryCriterionv1 = doc.createAttribute ("sentryrRef") ;
entryCriterionv1 . setValue ("senr" +

coordinationSentries . getid ()) ;

entryCriterion . setAttributeNode (entryCriterionv1) ;

Attr entryCriterionv2 = doc. createAttribute ("id”) ;

entryCriterionv2 . setValue ("Rsen"+coordinationSentries . getid ()
):
entryCriterion . setAttributeNode (entryCriterionv2) ;

* This method write the eventListener

* @param doc

* @param caseplanmodel

* @param coordinationEvent

*x/
publie void writeEvent (Document doc, Element caseplanmodel,
CoordinatesOfContours coordinationEvent) {

Element eventListener = doc.createElement ("cmmn:eventListener™) ;

424
425
426
427
428
429
430

432
433
434
435
436
437

439

440
441
442
443
444

446
447
448
449
450
451
452
453

454
455
456
457

459
460

caseplanmodel . appendChild (eventListener) ;

// set attribute

Attr cmmneventListenervl = doc.createAttribute ("id") ;
cmmneventListenervi . setValue ("e" + coordinationEvent .getid ()) ;
eventListener . setAttributeNode (cmmneventListenerv1) ;

/**

* This method write the Task
* @param doc

* @param caseplanmodel

* @param recognizesquare

*/

public void writeTask (Document doc, Element caseplanmodel,
CoordinatesOfContours recognizesquare) {
Element cmmntask = doc.createElement ("cmmn:task") ;
caseplanmodel . appendChild (cmmntask) ;
// set attribute
Attr cmmntaskv1 = doc. createAttribute (" isElocking™) ;
cmmntaskv1 . setValue ("true") ;
cmmntask . setAttributeNode (cmmntaskv1) ;

Attr cmmntaskv2 = doc.createAttribute ("id") ;
cmmntaskv2 . setValue ("t" + recognizesquare .getid ()) ;
cmmntask . setAttributeNode (cmmntaskv2) ;

/ % d
* This method write the Sentry as well as the connection
to connector
* @param doc
* @param caseplanmodel
* @param coordinationSentries
* @param coordinatesOfSquare
* @param line
*/
public void writeSentry (Document doc,Element caseplanmodel,

153

154

CoordinatesOfContours coordinationSentries , CoordinatesOfContours
coordinatesOfSquare , CoordinatesOfLines line) {

4 System . err.printin ("taskkkkkk"+ coordinatesOfSquare) ;
463 System.err.printin ("sentryyyyyyy" +coordinationSentries) ;
System.err.printin ("Llineeeceeee"+ line) ;
4865 Element cmmnsentry = doc. createElement ("cmmn:sentry");
4 caseplanmodel . appendChild (cmmnsentry) ;
4
468 if (coordinationSentries !=null) {
4 Attr sentryval = doc.createAttribute ("1d") ;
4 sentryval .setValue ("senR" + coordinationSentries . getid ()) ;
4 cmmnsentry . setAttributeNode (sentryval) ;
4 }
4
4 Element cmmnplanitemOnPart =
doc. createElement ("cmmn :planitemOnPart™) ;
4 cmmnsentry . appendChild (cmmnplanitemOnPart) ;
4
48 if (coordinatesOfSquare != null) {
4 Attr planitemOnPart = doc. createAttribute (" sourceRef") ;
4 planltemOnPart . setvalue ("pi" +coordinatesOfSquare .getid ()) ;
4 cmmnplanitemOnPart . setAttributeNode (planitemOnPart) ;
4 }
48
3 if (line!'= null) {
4 Attr planitemOnPart1 = doc. createAttribute ("1d") ;
486 planitemOnPart1 . setValue ("line"+line.getid()) ;
cmmnplanitemOnPart . setAttributeNode (planitemOnPart1) ;
488 }
4
4 Element cmmnstandardEvent =
doc. createElement (" cmmn : standardEvent") ;
a9 cmmnplanitemOnPart . appendChild (cmmnstandardEvent) ;
492 // set attribute
4¢ Attr standardEvent= doc. createAttribute ("complete”);

49 cmmnstandardEvent . setAttributeNode (standardEvent) ;

497
498
499
500
501
502

504
505
506

508
509
510
511

155

Element cmmnifpart = doc.createElement ("cmmn:ifrart™);
cmmnsentry . appendChild (cmmnifpart) ;

// set attribute

Attr ifpartvl = doc. createAttribute ("id") ;

ifpartv1 . setValue (i fpa"+coordinationSentries . getid ()) ;
cmmnifpart . setAttributeNode (ifpartv1) ;

}

/**
* This method writes Task specifications
* @param doc
* @param CMMNDiagram
* @param coordinatesOfSquare
*/
public void writetaskValues (Document doc, Element CMMNDiagram,
CoordinatesOfContours coordinatesOfSquare) {
Element CMMNShape2 = doc. createElement (" crimndi : CMMNShape") ;
CMMNDiagram . appendChild (CMMNShape2) ;

// set attribute

Attr Shape2v1 = doc. createAttribute (" cnmnElementRef ™) ;
Shape2v1 .setValue ("pi"+coordinatesOfSquare .getid ()) ;
CMMNShape2 . setAttributeNode (Shape2v1) ;

Attr Shape2v2 = doc. createAttribute ("id") ;
Shape2v2 .setValue ("sh"+ coordinatesOfSquare . getid ()) ;
CMMNShape2 . setAttributeNode (Shape2v2) ;

Element dcBounds1 = doc.createElement ("dc:Bounds") ;
CMMNShape?2 . appendChild (dcBounds1) ;

Attr bound2v1 = doc. createAttribute ("height") ;
bound2v1.setValue (Double . toString (coordinatesOfSquare . getHeight ())) ;
dcBounds1 . setAttributeNode (bound2v1) ;

Attr bound2v2 = doc. createAttribute ("width") ;
bound2v2. setValue (Double . toString (coordinatesOfSquare . getWidth ())) ;
dcBounds1 . setAttributeNode (bound2v2) ;

156

540

565

Aftr bound2v3 = doc. createAttribute (" x") ;
bound2v3. setValue (Double . toString (coordinatesOfSquare . getX ())) ;
dcBounds1 . setAttributeNode (bound2v3) ;

Aftr bound2v4 = doc. createAttribute (" v") ;
bound2v4 . setValue (Double . toString (coordinatesOfSquare .getY ())) ;
dcBounds1 . setAttributeNode (bound2v4) ;

Element cmnmndiCMMNLabel2 =
doc.createElement ("cmmndi : CMMNLabel™) ;
CMMNShape2 . appendChild (cmmndiCMMNLabel2) ;

/**

* This method writes Event specifications

* @param doc

* @param CMMNDiagram

* @param coordinationOfEvent

*/
public void writeEventValues (Document doc, Element CMMNDiagram,
CoordinatesOfContours coordinationOfEvent) {

Element CMMNShape2 = doc. createElement (" cmmndi : CMMNShape") ;
CMMNDiagram . appendChild (CMMNShape?2) ;

// set attribute

Attr Shape2v1 = doc. createAttribute ("cmmnElementRef") ;
Shape2v1.setValue ("pi"+coordinationOfEvent.getid ()) ;
CMMNShape2 . setAttributeNode (Shape2v1) ;

Attr Shape2v2 = doc. createAttribute ("id") ;
Shape2v2.setValue (" sh"+ coordinationOfEvent . getid ()) ;
CMMNShape2 . setAttributeNode (Shape2v2) ;

Element dcBounds1 = doc.createElement("dc:Bounds"”) ;
CMMNShape2 . appendChild (dcBounds1) ;

Attr bound2v1 = doc. createAttribute ("height") ;

572
573
574
575

76
577
578
579
580
581
582

584
585
586

598
599

157

bound2v1 . setValue (Double . toString (coordinationOfEvent . getHeight ())) ;
dcBounds1 . setAttributeNode (bound2v1) ;

Attr bound2v2 = doc. createAttribute ("width") ;
bound2v2 . setValue (Double . toString (coordinationOfEvent . getWidth ()} }) ;
dcBounds1 . setAttributeNode (bound2v2) ;

Attr bound2v3 = doc.createAttribute (" =) ;
bound2v3. setValue (Double . toString (coordinationOfEvent . getX ()))
dcBounds1 . setAttributeNode (bound2v3) ;

Attr bound2v4 = doc.createAttribute ("y") ;
bound2v4 . setValue (Double . toString (coordinationOfEvent . getY ())) ;
dcBounds1 . setAttributeNode (bound2v4) ;

Element cmmndiCMMNLabel2 =
doc. createElement (" cmmndi : CMMNLabel") ;
CMMNShape2 . appendChild (cmmndiCMMNLabel2) ;

* This method writes sentry specifications
* @param doc

* @param CMMNDiagram

@param coordinatesOfSentries

*

*/
public void writeEntryCriterionValus (Document doc, Element
CMMNDiagram, CoordinatesOfContours coordinatesOfSentries) {
Element CMMNShape2 = doc. createElement (" cimndi : CMMNShape™) ;
CMMNDiagram . appendChild {CMMNShape2) ;

// set attribute

Attr Shape2v1 = doc.createAttribute ("cmmnElementRef™) ;
Shape2v1 . setValue ("rsen"+coordinatesOfSentries . getid ()) ;
CMMNShape?2 . setAttributeNode (Shape2v1) ;

Attr Shape2v2 = doc.createAttribute ("id") ;
Shape2v2 . setValue ("sh"+ coordinatesOfSentries . getid ()) ;

158

CMMNShape2 . setAttributeNode (Shape2v2) ;

Element dcBounds1 = doc. createElement ("dc:Bounds™) ;
61 CMMNShape2 . appendChild (dcBounds1) ;

Attr bound2vi1 = doc.createAttribute ("height™);
bound2v1 . setValue (Double . toString (coordinatesOfSentries . getHeight ()))
dcBounds1 . setAttributeNode (bound2v1) ;

Attr bound2v2 = doc.createAttribute ("width") ;
bound2v2 . setValue (Double . toString (coordinatesOfSentries . getWidth ())) ;
dcBounds1 . setAttributeNode (bound2v2) ;

Attr bound2v3 = doc. createAttribute ("x") ;
bound2v3 . setValue (Double . toString (coordinatesOfSentries . getX())) ;
dcBounds1 . setAttributeNode (bound2v3) ;

Attr bound2v4 = doc.createAttribute ("vy™) ;
bound2v4 . setValue (Double . toString (coordinatesOfSentries . getY ())) ;
dcBounds1 . setAttributeNode (bound2v4) ;

Element cmmndiCMMNLabel2 =
doc . createElement (" cmmndi : CMMNLabel™) ;
CMMNShape2 . appendChild (ecmmndiCMMNLabel2) ;

/**

* This method writes Line specifications
* @param doc

* @param CMMNDiagram

38 * @param line
639 * @param coordinatesOfSentries
640 */

public void writeLineValus (Document doc, Element CMMNDiagram,
CoordinatesOfLines line, CoordinatesOfContours coordinatesOfSentries) {

159

643 System.out.printin ("show me lines: " + line);

644 Element CMMNShape2 = doc.createElement (" cmmndi : CMMNEdge") ;
645 CMMNDiagram . appendChild (CMMNShape2) ;

646

647 // set attribute

648 Attr Shape2v1 = doc.createAttribute ("cmmnElementRef”) ;

649 if (line!'=null) {

650 Shape2v1.setValue (" 1ine"+line.getid ()) ;

CMMNShape2 . setAttributeNode (Shape2v1) ;

653 Attr Shape2v2 = doc. createAttribute ("1d") ;
Shape2v2 .setValue ("1i"+ line.getid ()) ;
655 CMMNShape?2 . setAttributeNode (Shape2v2) ;
656
657 Attr Shape2v3 = doc. createAttribute (" targetCMMNE lementRef") ;
658 Shape2v3. setValue ("Rsen " +coordinatesOfSentries . getid ()) ;
659 CMMNShape2 . setAttributeNode (Shape2v3) ;
660
661 Attr Shape2v4 = doc.createAttribute ("isStandardEventVisible") ;
662 Shape2v4 . setValue ("true”) ;
663 CMMNShape? . setAttributeNode (Shape2v4) ;
664
665 Element diwaypoint = doc.createElement ("di:waypoint");
666 CMMNShape?2 . appendChild (diwaypoint) ;
667
668 Attr bound2v1 = doc. createAttribute ("x") ;
669 bound2v1 . setValue (Double . toString (line.getX1 () +8)) ;
670 diwaypoint . setAttributeNode (bound2v1) ;
67
672 Attr bound2v2 = doc. createAttribute ("y") ;
673 bound2v2. setValue (Double . toString (line.getY1 ())) ;
674 diwaypoint . setAttributeNode (bound2v2) ;
675
676 Element diwaypoint2 = doc.createElement ("di:waypoint”);
677 CMMNShapeZ2 . appendChild (diwaypoint2) ;
678
679 Attr bound2v3 = doc. createAttribute ("x") ;
680 bound2v3 . setValue (Double . toString (line.getX2 () +8)) ;

681 diwaypoint2 . setAttributeNode (bound2v3) ;

160

682

688

696

12
713

18

Aftr bound2v4 = doc.createAttribute ("v") ;
bound2v4 . setValue (Double . toString (line. getY2())):
diwaypoint2 . setAttributeNode (bound2v4) ;

}

Element cmmndiCMMNLabel2 =

doc. createElement (" cmmndi : CMMNLabel™) ;
CMMNShape2 . appendChild (cmmndiCMMNLabel2) ;

* This method writes File specifications

* @param doc

* @param CMMNDiagram

* @param coordinatesOfFile

*/
public void writeFileValues (Document doc, Element CMMNDiagram,
CoordinatesOfContours coordinatesOfFile) {

Element CMMNShape2 = doc.createElement (" cmmndi : CMMNShape") ;
CMMNDiagram . appendChild (CMMNShape2) ;

// set attribute

Attr Shape2v1 = doc. createAttribute ("cmmnElementRef") ;
Shape2v1.setValue (" £ v "+coordinatesOfFile . getid ()) ;
CMMNShape2 . setAttributeNode (Shape2v1) ;

Attr Shape2v2 = doc.createAttribute ("1d") ;
Shape2v2.setValue ("sf"+ coordinatesOfFile .getid ()) ;
CMMNShape2 . setAttributeNode (Shape2v2) ;

Element dcBounds1 = doc.createElement ("dc:Bounds™) ;
CMMNShape2 . appendChild (dcBounds1) ;

Attr bound2v1 = doc.createAttribute ("height") ;
bound2v1 . setValue (Double . toString (coordinatesOfFile . getHeight ())) ;
dcBounds1 . setAttributeNode (bound2v1) ;

Attr bound2v2 = doc. createAttribute ("width") ;

161

bound2v2 . setValue (Double . toString (coordinatesOfFile . getWidth ())) ;
dcBounds1 . setAttributeNode (bound2v2) ;

Attr bound2v3 = doc. createAttribute ("x") ;
bound2v3. setValue (Double . toString (coordinatesOfFile .getX ())) ;
dcBounds1 . setAttributeNode (bound2v3) ;

Attr bound2v4 = doc.createAttribute (" ") ;
bound2v4 . setValue (Double . toString (coordinatesOfFile .getY ())) ;
dcBounds1 . setAttributeNode (bound2v4) ;

Element cmmndiCMMNLabel2 =
doc. createElement (" cmmndi : CMMNLabel") ;
CMMNShape2 . appendChild (cmmndiCMMNLabel2) ;

BIBLIOGRAPHY

Arica, N. et Yarman-Vural, F.T. (2001). An overview of character recognition
focused on off-line handwriting. JEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 31(2), 216-233.

Bailey, B.P. et Konstan, J.A. (2003). Are informal tools better?: comparing DEMALIS,
pencil and paper, and authorware for early multimedia design. Proceedings of
the SIGCHI conference on human factors in computing systems (p. 313-320).
:ACM

Bailey, B.P., Konstan, J.A. et Carlis, J.V. (2001). DEMAIS: designing multimedia
applications with interactive storyboards. Proceedings of the ninth ACM
international conference on Multimedia (p. 241-250). : ACM

Bishop, C.M. (1995). Neural networks for pattern recognition. : Oxford university
press.

Bradski, G. et Kaehler, A. (2008). Learning OpenCV: Computer vision with the
OpenCV library. : " O'Reilly Media, Inc.".

Calhoun, C., Stahovich, T.F., Kurtoglu, T. et Kara, L.B. (2002). Recognizing multi-
stroke symbols. AAAI Spring Symposium on Sketch Understanding (p. 15-
23).

Chakraborty, A., Baowaly, M.K., Arefin, A. et Bahar, A.N. (2012). The role of
requirement engineering in software development life cycle. Journal of
emerging trends in computing and information sciences, 3(5), 723-729.

Chen, C.P. et Xie, S. (1996). Freehand drawing system using a fuzzy logic concept.
Computer-Aided Design, 28(2), 77-89.

Chen, G. et Kégl, B. (2010). Invariant pattern recognition using contourlets and
AdaBoost. pattern recognition, 43(3), 579-583.

Chen, Q., Grundy, J. et Hosking, J. (2008). SUMLOW: early design-stage sketching
of UML diagrams on an E-whiteboard. Softw., Pract. Exper., 38(9), 961-994.

164

Cheriet, M. et Suen, C.Y. (1993). Extraction of key letters for cursive script
recognition. Pattern Recognition Letters, 14(12), 1009-1017.

Coyette, A., Schimke, S., Vanderdonckt, J. et Vielhauer, C. (2007). Trainable sketch
recognizer for graphical user interface design. Proceedings of the 11th IFIP
TC 13 international conference on Human-computer interaction (p. 124-135).
Rio de Janeiro, Brazil : Springer-Verlag

Coyette, A. et Vanderdonckt, J. (2005). A sketching tool for designing anyuser,
anyplatform, anywhere user interfaces. Human-Computer Interaction-
INTERACT 2005, 550-564.

de Carvalho, R.M., Mili, H., Boubaker, A., Gonzalez-Huerta, J. et Ringuette, S.
(2016). On the analysis of CMMN expressiveness: revisiting workflow
patterns. Enterprise Distributed Object Computing Workshop (EDOCW),
2016 IEEE 20th International (p. 1-8). :IEEE

Duyne, D.K.V., Landay, J. et Hong, J.I. (2002). The design of sites: patterns,
principles, and processes for crafting a customer-centered Web experience. :
Addison-Wesley Longman Publishing Co., Inc.

Freund, Y. et Mason, L. (1999). The alternating decision tree learning algorithm. icml
(p. 124-133).

Garain, U. et Chaudhuri, B.B. (2004). Recognition of online handwritten
mathematical expressions. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 34(6), 2366-2376.

George, A. et Gafoor, F. (2014). Contourlet Transform Based Feature Extraction For
Handwritten Malayalam Character Recognition Using Neural Network.
International Journal of Industrial Electronics and Electrical Engineering,

2(4).

Hammond, T. et Davis, R. (2006a). LADDER: A language to describe drawing,
display, and editing in sketch recognition. ACM SIGGRAPH 2006 Courses
(p.27). : ACM

Hammond, T. et Davis, R. (2006b). Tahuti: A geometrical sketch recognition system
for uml class diagrams. ACM SIGGRAPH 2006 Courses (p. 25). : ACM

Hammond, T.A. (2007). Ladder: A perceptuaily-based language to simplify sketch
recognition user interface development. Massachusetts Institute of
Technology.

165

Kpalma, K. et Ronsin, J. (2007). An overview of advances of pattern recognition
systems in computer vision : Advanced Robotic Systems.

Lam, L., Lee, S.-W. et Suen, C.Y. (1992). Thinning methodologies-a comprehensive
survey. IEEE Transactions on pattern analysis and machine intelligence,
14(9), 869-885.

Landay, J.A. et Myers, B.A. (2001). Sketching interfaces: Toward more human
interface design. Computer, 34(3), 56-64.

Larose, D.T. (2005). k-Nearest Neighbor Algorithm. Discovering Knowledge in
Data: An Introduction to Data Mining, 90-106.

Lin, J.,, Newman, M.W., Hong, J.I. et Landay, J.A. (2002). Denim: An informal
sketch-based tool for early stage web design. Proceedings of the 2002 AAAI
Spring Symposium-Sketch Understanding (p. 148-149).

Liu, W. (2003). On-line graphics recognition: State-of-the-art. International
Workshop on Graphics Recognition (p. 291-304). : Springer

Llados, J., Valveny, E., Sanchez, G. et Marti, E. (2001). Symbol recognition: Current
advances and perspectives. International Workshop on Graphics Recognition
(p. 104-128). : Springer

Majumdar, A. (2007). Bangla basic character recognition using digital curvelet
transform. Journal of Pattern Recognition Research, 2(1), 17-26.

Mamatha, H., Sucharitha, S. et Murthy, K.S. (2013). Handwritten Kannada Numeral
Recognition based on the Curvelets and Standard Deviation. International
Journal of Signal Processing Systems, 1(1), 74-78.

Marin, M., Hull, R. et Vaculin, R. (2012). Data centric bpm and the emerging case
management standard: A short survey. International Conference on Business
Process Management (p. 24-30). : Springer

Marquardt, D.W. (1963). An algorithm for least-squares estimation of nonlinear
parameters. Journal of the society for Industrial and Applied Mathematics,
11(2),431-441.

Michalski, R.S., Carbonell, J.G. et Mitchell, T.M. (2013). Machine learning: An
artificial intelligence approach. : Springer Science & Business Media.

166

Mori, S., Yamamoto, K. et Yasuda, M. (1984). Research on machine recognition of
handprinted characters. [EEE Transactions on Pattern Analysis and Machine

Intelligence(4), 386-405.

Motwani, M.C., Gadiya, M.C., Motwani, R.C. et Harris, F.C. (2004). Survey of
image denoising techniques. Proceedings of GSPX (p. 27-30).

Mup. Récupéré le April 22,2017 de http://www.mup.co.il/OpenCV/

Nemmour, H. et Chibani, Y. (2011). Handwritten Arabic word recognition based on
Ridgelet transform and support vector machines. High Performance
Computing and Simulation (HPCS), 2011 International Conference on (p.
357-361). :IEEE

Newman, M.W., Lin, J., Hong, J.I. et Landay, J.A. (2003). DENIM: An informal web
site design tool inspired by observations of practice. Human-Computer
Interaction, 18(3), 259-324.

OMG. Case Management Model and Notation, version 1.0. May 2014 de
http://www.omg.org/spec/CMMN/1.0/PDF

OpenCV. Récupéré le April 22,2017 de http://opencv.org

OpenCV documentation. (2013). Récupéré le April 22, 2017 de
http://docs.opencv.org/2.4/doc/tutorials/tutorials.html

Ossher, H., Andr, #233, Hoek, v.d., Storey, M.-A., Grundy, J., Bellamy, R. et Petre,
M. (2011). Workshop on flexible modeling tools (FlexiTools 2011).
Proceedings of the 33rd International Conference on Software Engineering (p.
1192-1193). Waikiki, Honolulu, HI, USA : ACM

Ossher, H., Bellamy, R., Simmonds, 1., Amid, D., Anaby-Tavor, A., Callery, M.,
Desmond, M., de Vries, J., Fisher, A. et Krasikov, S. (2010). Flexible
modeling tools for pre-requirements analysis: conceptual architecture and
research challenges. ACM Sigplan Notices, 45(10), 848-864.

Plamondon, R. et Srihari, S.N. (2000). Online and off-line handwriting recognition: a
comprehensive survey. IEEE Transactions on pattern analysis and machine
intelligence, 22(1), 63-84.

Plimmer, B. et Apperley, M. (2003a). Software to sketch interface designs. Ninth
International Conference on Human-Computer Interaction (p. 73-80).

167

Plimmer, B. et Apperley, M. (2003b). Software to sketch interface designs. (Ninth
International Conference on Human-Computer Interaction).

Qiu, L. (2007). Sketchuml: The design of a sketch-based tool for uml class diagrams.
Proceedings of World Conference on Educational Multimedia, Hypermedia
and Telecommunications, 986-994.

Rao, D. et Panduranga, P.P. (2006). A survey on image enhancement techniques:
classical spatial filter, neural network, cellular neural network, and fuzzy
filter. Industrial Technology, 2006. ICIT 2006. IEEE International Conference
on (p. 2821-2826). :IEEE

RS, S.N. et Afseena, S. (2015). Handwritten Character Recognition—A Review.
International Journal of Scientific and Research Publications.

Rubine, D. (1991). Specifying gestures by example. (Vol. 25) : ACM.

Sezgin, M. (2004). Survey over image thresholding techniques and quantitative
performance evaluation. Journal of Electronic imaging, 13(1), 146-168.

Signavio. Récupéré le 4/17/2017 de
https://editor.signavio.com/userguide/en/modeling_and notations/cmmn/editi
ng_cmmn.html

Soisalon-Soininen, E. (2011). Online Sketch Recognition: Geometric Shapes. Aalto
University.

Suen, C.Y., Berthod, M. et Mori, S. (1980). Automatic recognition of handprinted
characters—the state of the art. Proceedings of the IEEE, 68(4), 469-487.

Szeliski, R. (2010). Computer vision: algorithms and applications. : Springer
Science & Business Media.

Trisotech. Récupéré le 11/7/2016 2016 de http://www.trisotech.com/digital-
enterprise-suite

Umbaugh, S.E. (1997). Computer vision and image processing: A practical approach
using CViptools with Cdrom. : Prentice Hall PTR.

Vector vs. Raster Graphics. de http://www.abetdisc.com/answers/cd-cover-
design/vector-vs-bitmap-or-raster-graphics/

Vinciarelli, A. (2002). A survey on off-line cursive word recognition. Pattern
recognition, 35(7), 1433-1446.

168

Wenyin, L., Jin, X. et Sun, Z. (2001). Sketch-based user interface for inputting
graphic objects on small screen devices. International Workshop on Graphics
Recognition (p. 67-80). : Springer

Wiiest, D., Seyff, N. et Glinz, M. (2012). Flexible, lightweight requirements
modeling with Flexisketch. Requirements Engineering Conference (RE), 2012
20th IEEE International (p. 323-324). :IEEE

Xiangyu, J., Wenyin, L., Jianyong, S. et Sun, Z. (2002). On-line graphics recognition.
Computer Graphics and Applications, 2002. Proceedings. 10th Pacific
Conference on (p. 256-264). :IEEE

Yu, B. et Cai, S. (2003). A domain-independent system for sketch recognition.
Proceedings of the Ist international conference on Computer graphics and
interactive techniques in Australasia and South East Asia (p. 141-146).
ACM

	Page vierge

