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ABSTRACT 

The interest in tiny timing applications has been increased over the past decade with 
regard to an integrated reference oscillator which can offer same performance as oscilla­
tors based on quartz crystal. Microelectromechanical systems (MEMS) are considered 
as a good candidate that can have advantages regarding size scaling and integration 
with other fabrication processes at lower cast. 

The objective of thi s di ssertation is to real ize a high performance full y differentiai tran­
simpedance amplifier (TIA) for a highly integrated reference oscillator. The purpose 
of thi s circuit will be of sustaining oscillation from a MEMS resonator in closed-loop. 
This thesis covers non-linearity effects of MEMS resonator in which a Verilog-A mode! 
of clamped-clamped (C-C) bearn resonator is presented so that electrical and mechani­
cal non-linearities are exposed with this madel. A MEMS-based oscillator is imple­
mented by incorporating a transimpedance amplifier designed in O. 13 /-Lm with the 
Verilog-A madel. The phase noi se performance dependance on the resonator non-linear 
effects and its polarisation voltage are illustrated through simulations. Simulation re­
sults confirm that careful design must be applied when MEMS resonators are utilised in 
arder to ensure that non-linearities and biasing do not significantly deteriorate oscillator 
performance. 

In addition, two designs of fully differentiai transimpedance amplifier are designed 
in arder to meet the specifications of MEMS oscillators based on piezoelectric and 
capacitive resonators, respectively, in terms of quality factor and insertion Joss. The 
TIAs are designed in 65 nm CMOS process to take advantages of larger gain-bandwidth 
product wither lower power consumption which it can be offered by thi s technology, 
and thus to offset the resonator lasses and to ensure a small phase shift so that high 
oscillation frequencies (larger than 20 MHz) can be attained. Furthermore, gain and 
bandwidth can be adjustable separately and input and output impedances reduction 
methods are applied to avoid loading the resonator 's quali ty factor at a low power­
consumption cast. 

The first design uses a regulated cascade (RGC) topology as an input stage to benefit 
of higher gain and lower input impedance. Thus, the TIA can provide enough gain and 
bandwidth to sustain oscillation and compensate the !osses of the capacitive resonators. 
The proposed TIA consumes 1.4 mA from 1-V supp1y. The measured mid-band tran­
simpedance gain is 80 dBD and the TIA features an adjustable bandwidth with a max­
imum bandwidth of 214 MHz. The measure input-referred current noise of the TIA 
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at mid-band is below 4 pNJHz. The TIA is integrated with the MEMS piezoelectric 
disk resonator and the oscillator performance in terms of phase noise and frequency 
stability is reported. The measure phase noise in air and un der vacuum is about - 104 
dBc/Hz and - 116 dBc/Hz, respectively, at 1-kHz offset, while the phase noise floor 
reaches -130 dBc/Hz. The measured short-term stability of the MEMS-based oscilla­
tor is ±0.38 ppm. 

Finally, the second design presents a novel fully differentiai transimpedance amplifier, 
using the advantages of the regulated cascode (RGC) and common source active feed­
back topologies, suitable for oscillators based on piezoelectric resonators. The TIA 
consumes O. 9 mA from 1-V supply. The measured mid-band transimpedance gain is 
98 dBD and the TIA features an adjustable bandwidth with a maximum bandwidth of 
142 MHz. The measure input-referred current noi se of the TIA at mid-band is below 
15 pNJHz. The measure phase noi se of the oscillator based on Lamé-mode MEMS 
resonator is about - 120 dBc/Hz at 1-kHz offset under vacuum, white the phase noi se 
floor reaches - 127 dBc/Hz. The measured short-term stability of the MEMS-based 
oscillator is ± 0.25 ppm. 

Keywords: Transimpedance amplifier, Microelectromechanical system, Oscillator, Ca­
pacitive resonator, Piezoelectric resonator. 



RÉSUMÉ 

Au cours de la dernière décennie, les recherches portant sur les applications à base de 
référence temporelle ont montré un intérêt ce qui concerne 1 'oscillateur de référence 
intégré qui peut offrir les mêmes performances que les oscillateurs à base de cristal de 
quartz. Les microsystèmes électromécaniques (MEMS) sont considérés comme un can­
didat idéal qui peut avoir des avantages concernant la réduction de taille et l'intégration 
avec d'autres processus de fabrication à moindre coût. 

L'objectif est de réali ser un amplificateur à transimpédance (TIA) entièrement dif­
férentiel à haute performance pour un oscillateur de référence intégré. Le but de ce 
circuit sera de maintenir l'oscillation d ' un résonateur MEMS en boucle fermée. Ce 
mémoire couvre les effets non linéaires du résonateur MEMS à partir d ' un modèle 
en langage Verilog-A d' une poutre biencastrée. Ceci permet de modéli ser les effets de 
non-linéarité électriques et mécaniques. Un oscillateur basé sur le modèle Verilog-A du 
résonateur est ainsi implémenté avec un amplificateur à transimpédance conçu en 0.13 
p,m. La dépendance de la performance du bruit de phase sur les effets non linéaires du 
résonateur et sa tension de polarisation est illustrée par des simulations. Les résultats de 
la simulation confirment qu ' une conception soigneuse doit être appliquée lorsque les 
résonateurs MEMS sont utilisés afin de s'assurer que les non-linéarités et les tensions 
de polarisation ne détériorent pas considérablement les performances des oscillateurs. 

En outre, deux modèles d'amplificateur à transimpédance totalement différentiel sont 
conçus pour répondre aux spécifications des oscillateurs MEMS à base de résonateurs 
piézoélectriques et capacitifs, respectivement, en matière de facteur de qualité et de 
perte d ' insertion. Les amplificateurs sont conçus dans un processus CMOS 65 nm 
pour profiter des avantages en matière de larges gain et bande passante avec la moindre 
consommation de puissance offerts par cette technologie, par conséquent, compenser 
les pertes du résonateur et pour assurer un petit déphasage afin que des fréquences 
d'oscillation élevées (supérieures à 20 MHz) puissent être atteintes. De plus, le gain et 
la bande passante peuvent être réglables séparément et des méthodes de réduction des 
impédances d'entrée et de sortie sont appliquées pour éviter de charger le facteur de 
qualité du résonateur à faible coût de consommation. 

Le premier design utilise une topologie de cascade régulé (RGC) comme étage d 'entrée 
pour bénéficier d'un gain plus élevé et d ' une impédance d'entrée inférieure. Ainsi, 
l'amplificateur peut fournir suffisamment de gain et de bande passante pour maintenir 
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1' oscillation et compenser les pertes des résonateurs capacitifs. Le TIA proposé con­
somme 1.4 mA à partir d ' une alimentation de 1 V. Le gain en transimpédance maximal 
mesuré est de 80 dBD et leTIA dispose d ' une bande passante réglable avec une bande 
passante maximale de 214 MHz. La mesure du bruit en courant à 1 'entrée est inférieure 
à 4 pA/VHz. Le TIA est intégré au résonateur piézoélectrique à di sque et la perfor­
mance de l'oscillateur en fonction de bruit de phase et la stabilité de la fréquence a 
été présentée. La mesure de bruit de phase dans l' air et sous vide est d 'environ - 104 
dBc/Hz et -116 dBc/Hz, respectivement, à un décalage de 1 kHz, tandis que le bruit de 
phase de fond atteint -130 dBc/Hz. La stabilité mesurée à court terme de l'oscillateur 
est ± 0.38 ppm. 

Finalement, le deuxième design présente un nouvel amplificateur à tran impédance en­
tièrement différentiel, conçu aux oscill ateurs à base de résonateurs piézoélectriques, et 
ceci en utili sant les avantages des topologies de cascode régulé (RGC) et de source 
commune en rétroaction active L'amplificateur consomme 0.9 mA à partir d' une al­
imentation de 1 V. Le gain maximal en transimpédance mesuré est de 98 dB D et le 
TIA dispose d ' une bande passante réglable avec une bande passante max imale de 142 
MHz. La mesure du bruit en courant à l'entrée est inféri eure à 15 pA/VHz. Le bruit 
de phase de l' osci ll ateur mesuré est d 'environ - 120 dBc/Hz à décalage de 1 kHz sous 
vide, tandi s que le bruit de phase de fond atteint - 127 dBc/Hz. La stabi lité mesurée à 

court terme de l' osci ll ateur basé sur MEMS est de ± 0.25 ppm. 

Mots-clés: Ampli ficateur à transimpédance, Microsystème électromécanique, Osc illa­
teur, Résonateur électrostatique, Résonateur piezoélectrique. 



INTRODUCTION 

Many electronic deviees found in today's markets, such as transceivers for data trans­

fer, storage deviees and portable electronics rel y on timing references to deliver the 

performance expected from them. One of the essential components in these deviees is 

the quartz crystal, which acts as the master time reference. Severa! advantages have 

allowed the quartz crystal to be an excellent choice by the industry for frequency syn­

thesis applications. Quality factor, frequency stability and its performance in terms 

of phase noi se are the main advantages of crystal oscillators. However, crystal oscil­

lators are characterized by having a relatively large size, and are difficult to tightly 

integrate with other manufacturing technologies, making their cost and footprint rel a­

tively large. Severa) studies over the past decade have shown that oscillators based on 

micro-electromechanical (MEM) resonators make them excellent candidates to replace 

crystal-based resonators in timing applications. In comparison to quartz oscillators, 

MEMS oscillators that are 20% smaller have been commercialized (SiTime Corpora­

tion, 20 17). Also, severa) works have developed integration processes of MEM res­

onators with CMOS technology (Baltes et al., 2002), enabling a potential for further 

size and cost reductions. 

Micromachined resonators can be operated through two main widespread actuation 

mechanisms: piezoelectric or capacitive. Piezoelectric actuation generally provides 

high electromechanical transduction efficiencies and low signal transmission !osses, 

resulting in low motional resistances, which is very advantageous as it simplifies the 

design constraints of the associated electronic circuitry and results in lower power con­

sumption. Also, piezoelectric deviees do not require any DC voltage for operation. 
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However, piezoelectric deviees generally suffer from lower quality factors (Hung & 

Nguyen, 2011; Schneider & Nguyen, 2014; Zuo et al., 2010; Gong & Piazza, 2013) , 

which can deteriorate the phase noise of the oscillator. Resonators can a1so be classified 

based on their vibration modes as either flexural or bulk mode deviees . Bulk mode de­

vices typically exhibit high stiffness, and are consequently Jess prone to thermoelastic 

damping and consequently achieve large quality factors, even at atmospheric pressure 

(Xie et al., 2008; Clark et al., 2005; Elsayed et al., 20 13b; Lin et al., 2004a; Elsayed 

et al. , 201 1; Elsayed et al., 20 13a). 

In order to implement an oscillator with a MEM resonator, a transimpedance amplifier 

(TIA) needs to be interfaced with the resonator in a positive feedback loop to sustain 

a steady-state oscillation by converting the resonator driving current to an output volt­

age signal (Nabki et al. , 2009; Lin et al., 2004a) . The sharpness and quality of the 

output oscillation is usually determined by the quality factor of the resonator and the 

contributed noise of the TIA . To sustain oscillation, it is necessary for the TIA to have 

high transimpedance gain due to the resonator insertion Joss caused by it motional re­

si tance. Large bandwidth is also required to ensure that the oscillator phase shift at 

re onance frequency is around 0°, when the MEMS-based oscillator operates in series 

resonance mode (He et a l. , 2009). Furthermore, low input and output impedances are 

required to minimize the resonator Q-factor loading. Severa) transimpedance topolo­

gies have been reported in the literature for MEMS-based oscillator purposes (Salvia 

et al., 2009; Zuo et al., 20 1 0; Nabki & El-Gamal, 2008; Baghelani et al., 20 13 ; Li 

et al. , 2015 ; Lavasani et al. , 2015 ; Li et al., 2012; Lavasani et al. , 2011 ; Seth et al. , 

20 12; Lin et al. , 2004b; Sundaresan et al. , 2006; Chen et al. , 20 13 ; Li et al., 20 15 ; Huang 

et al., 2008) . While most designs used in (Nabki & El-Gamal , 2008; Baghelani et al., 

20 13; Lavasani et al. , 20 15 ; Li et al. , 20 12) are based on RGC topologies, an invert­

ing amplifier topology was proposed in (Zuo et al. , 201 0; Lavasani et al., 20 15). On 

the other hand, designs proposed in (Seth et al. , 20 12; Sundaresan et al., 2006; Huang 
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et al., 2008) use an automatic gain control circuit to regulate the oscillation ampli­

tude and reduce the resonator mechanical non-linearity effect. A current preamplifier 

was also introduced in (Lavasani et al., 20 Il). Furthermore, most TIAs use a single­

ended architecture (Li et al., 2015; Lavas ani et al., 2015; Li et al., 20 12) and gain­

bandwidth (GBW) product enhancement techniques (Lavasani et al., 2011) so th at TIA 

performance in terms of input-referred noise and power consumption will be improved. 

However, singled-ended TIAs demonstrate inferior noi se performance to that of fully 

differentiai TIAs. Differentiai topologies can benefit of common-mode noi se rejection 

and even harmonies rejection, and therefore, are more desired in applications requiring 

low noise operation (Carusone et al., 2011 ). However, power consumption of full y dif­

ferentiai transimpedance amplifier designs in (Seth et al., 20 12; Chen et al., 20 13) are 

higher than single-ended TIAs in (Sundaresan et al., 2006; Li et al. , 20 15 ; Huang et al., 

2008). 

0.1 Thesis contributions 

This di ssertation focused on the realization of CMOS transimpedance amplifier capable 

to interface with series-resonant MEMS oscillator applications. As the result of this 

research effort, two micromechanical reference oscillators based on both piezoelectric 

and capacitive MEMS resonators are demonstrated. The MEMS resonators presented 

here are developed by Dr. Mohannad Y. Elsayed in previous works (Elsayed et al., 

20 16; Elsayed & Nabki , 2017). The major contributions of the work presented in thi s 

thesis outlined as follows: 

0.1.1 Non-linear modeling of clamped-clamped MEMS resonator 

A non-linear analog hardware description language (AHDL) mode) for a clamped­

clamped bearn resonator is presented. The model captures the electrical and mechanical 

non-linear effects, and accounts for the spring softening and Duffing behavior present 
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in resonators at high drive levels . A trans impedance amplifier is designed in 0.13 /Lm 

CMOS to implement and simulate a MEMS-based oscillator incorporating the Verilog­

A model. 

O. 1.2 Design of a transimpedance amplifiers for MEMS-based oscillators 

Detailed study of two transimpedance ampli fiers is presented. This study covered both 

frequency and noise analyses in detail. The first transimpedance amplifier is suitable for 

oscillators based on capacitive resonators since their motional resistance is high, thus 

a sustaining oscillation can be achieved with higher gain. The second transimpedance 

amplifier is suitable for oscillators based on piezoelectric resonators. Since the mo­

tional resistance of piezoelectric resonators is higher than the capacitive resonators, 

despite lower quality factor efficiency, a sustaining oscillation can be achieved with 

lower gain. Both TIAs are fully differentiai and fabricated in a Taiwan Semiconductor 

Manufacturing Company (TSMC) 65 nm process with high gain-bandwidth product 

where tunable gain and bandwidth separately feature is introduced. Finally, the mea­

sured performances of MEMS-based oscillators are demonstrated and compared with 

state-of-the-art os ci Il a tors. 

0 .2 Thesis outline 

This thesis is organized in the following manner. Chapter 1 provides an overview of 

MEMS-based oscillators. In this chapter a Verilog-A model of clamped-clamped bearn 

resonator is presented. The phase noi se performance dependence on the resonator non­

linear effects and its DC polarization voltage are illustrated through simulations . 

Chapter 2 and Chapter 3 describe the design and optimization of the fully differentiai 

high-performance oscillators based on piezoelectric and capacitive resonators, respec­

tively. The tapies covered in these chapters include the performances of TIAs in terms 

of frequency and noi se responses. The open-loop and closed-loop performances of bath 
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capacitive and piezoelectric micromechanical oscillators are also covered. Finally, de­

sign trade-offs and their measured performance are provided including a comparison to 

the state-of-the-art. 





CHAPTERI 

MEMS RESONATOR MODELING 

1. 1 Introduction 

Reference oscillators are of great interest because of their ubiquitous use in timing 

applications and in modern wireless communication deviees. MEMS based oscillators 

offer advantages over that of traditional quartz crystal-based oscillators which perform 

as the resonant filter in such oscillators. However, MEMS resonators exhibit non-linear 

behavior and lower power handling capability in comparison to quartz crystals and are 

not as easy to mode! in circuit simulators in order to account for these particularities 

(van Beek & Puers, 20 12). 

MEMS resonator can be modeled in different ways. Lumped electrically equivalent lin­

ear models (i .e., RLC resonators) can be used, but are solely linear and do not directly 

account for the variation of the MEMS resonator with bias voltage. On the other hand, 

to include the non-linear effects present in MEMS resonators, severa! methods can be 

employed. Due of its electromechanical nature, the MEMS resonator exhibits differ­

ent electrical and mechanical non-linearities (Agrawal et al., 20 13), and these must be 

included in models that allow for the resonator to be faithfully represented in circuit 

simulations. Traditionally, finite element methods are used to mode! MEMS deviees. 

Unfortunately, such analyses lead to models that cannot be readily used in circuit simu­

lators, that do not mode! the resonator non-linearity faithfully, or that are cumbersome 
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Figure 1. 1: Clamped-clamped bearn resonator diagram (Nabki et al., 2009). 

to modify when the resonator biasing is changed. The so lution to this problem is to 

perform simulations in a circuit simulator by u ing an analog hardware description lan­

guage (AHDL) to mode! the MEMS resonator in a non-linear fashion (Koni shi et al., 

20 13). This allow for a single simul ation platform environment that can faithfully 

represent the resonator. 

Accordingly, in this work, a resonator madel is implemented us ing an AHDL: Verilog­

A. A transimpedance amplifier (TIA) is also designed in arder to implement a MEMS 

oscillator with the resonator. First, the resonator madel is presented, and is then inte­

grated with the TIA to show the impact of the non-linear madel on the MEMS oscillator 

performance. 

1.2 Theoretical background 

The resonator is composed of a micro-bearn which is clamped at bath ends and sus­

pended above an electro tatic actuation electrode, a shawn in Figure 1.1. While in 

operation, a OC polarisation voltage, Vp , is applied aeras the deviee in addition to the 

signal. 
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1.2.1 MEMS resonator analytical model s 

A lumped electrical mode! can be used as a small-signal mode! for the resonator. While 

this mode! is a good starting approximation of severa! parameters such as motional 

resistance behavior, resonance frequency and quality factor, it ignores electrostatic and 

mechanical non-linear effects inherent to the C-C resonator (Van Caekenberghe, 20 12). 

The expression of the electrostatic force for a C-C bearn resonator is g iven by 

1 [) 
Fe (X ( t)) = - ~ C (X ( t )) V ( t) 2 , 

2vx 
( 1. 1) 

where V(t) is the voltage applied across the C-C bearn , composed of a bias and sig­

nal voltage, and C(x(t)) is given by ( 1.2), where the fringing capacitance has been 

neglected: 
Eo A 

C(x(t))= ()" 
go+ x t 

( 1.2) 

In ( 1.2), Eo is the free space permittivity, A is the electrode area, g0 is the actuation 

electrode gap and x(t) is the resonator di splacement, later labeled as x for simplicity. 

The spring force is traditionally proportional to the di splacement through the linear 

spring constant k based on Hooke's law (Senturia, 2000) . However, with a C-C bearn, 

the spring force becomes non-linear with sufficiently large bearn displacement and its 

expression is given by (Rebeiz, 2004): 

( 1.3) 

where k1 is the linear spring constant in the spring force given by ( 1.4) and k3 is the 

cu bic spring constant given by ( 1.5): 

k1 = mw6 , and 

k _ 7!.4 E W r tr 
3 - 8L3 ' 

r 

( 1.4) 

( 1.5) 

where E is Young's modulus of structural materi al and Lr, W r and t r are the C-C bearn 

resonator dimensions, specifically its length, width and thickness. 
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Constant K is the amplitude-frequency (A-f) coefficient and is an important parameter 

to determine if the resonator will exhibit spring softening or spring hardening behavior 

(Lee et al., 2011). It is defined as 

3 k e3 
K = --wo, 

8 k el 
( 1.6) 

where ke1 and ke3 are the effective fundamental and cubic spring constants, respectively, 

and are defined as (Mestrom et al., 2009): 

v2 
k e l = k1 - 2Co-f , and 

9o 

v2 
ke3 = k3- 4Co-f , 

9o 

( 1.7) 

( 1.8) 

where C0 is the overlap capacitance. These take into account the effects of the electro-

static actuation of the resonator on the mechanical spring constants. 

The equation of motion (EOM) of the resonator can be mapped to a single degree-of­

freedom ( 1-DOF) mass-spring-damper system given by (Mestrom et al. , 2008): 

( 1.9) 

where a is the acceleration, d is the damping factor and v is the velocity of the mass. 

A 1-DOF mode) simplifies the modeling of the resonator, but it must take the reso­

nant mode-shape into account to accurately mode) the resonator. For this purpose, the 

effective mass and gap capacitance can be rewritten to include the electrostatic force 

non-linear effects . These are given by (Lin et a l. , 2004a; Nabki , 201 0) 

( 1.10) 

C(t) = EoWr , j dl 

Le 9o + T(t)Xmode(l) 
(1.1 1) 

where p is the density of the structural material, Le is the electrode length, Xmode is the 

bearn mode shape that depends on position lon the bearn and T( t ) is the time function 
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that describes the position of the bearn during vibration and can substitute x in ( 1.9). 

Note that the mode! supports different mode shapes, but only the first C-C mode is 

considered here, as it can be readily isolated in single resonator systems. 

In response to the resonant motion, an output current is generated and is given by 

. d 
'lout(t) = dt C(t)V(t) ( 1.12) 

1.3 System description 

1.3 . 1 AHDL mode! 

A Yerilog-A code was written to mode! the C-C bearn resonator based on ( 1.1 ), ( 1.3)­

( 1.5) and ( 1.9)-( 1. 12). The functional diagram of the code is shown in Figure 1.2. 

Initially, the integrator outputs is calculated with initial position , x 0 , and the output 

current, iout. can be calculated with the given input voltage, Vin · Afterwards, the bearn 

position is calculated within the mechanical and electrical modules where the equiva­

lent forces will take part in the EOM solver. 

The AHDL in SpectreRF supports only time-domain integration but not the integration 

of functions having variables other than time. Accordingly, the integration described 

in ( 1.10) and ( 1.11 ) is replaced by numerical integration. Severa) methods exist in 

numerical analysis to represent integration (Burden & Paires, 20 Il). The Legendre­

Gauss Quadratic method was selected in thi s work. Its equivalent expression is given 

by 

b- a b-a a+b b N ( ) 1 f (x ) dx ~ -
2

- ~ wi f -
2

- xi + -
2

- , (1.13) 

where J(x) is the function to be integrated, a and b are the integrallimits, N is the num­

ber of points, wi and xi are weight and position point, respectively, for the numerical 

integration. Coefficients wi et xi are calculated within the Yerilog-A code. 
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Figure 1.2: Verilog-A functional diagram. 
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Figure 1.3: MEMS-based oscil lator with expanded TIA black diagram. 

1.3 .2 MEMS osci ll ator system overview 

An osci ll ator consists of a MEMS resonator and a TIA, as shawn in Figure 1.3. The 
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TIA was designed in O.l3J.Lm CMOS. To minimize the quality factor loading (Lin et al., 

2004a) , a regulated cascode was used as input stage in order to obtain smaller input 

resistance, Rn· An output buffer was also designed in order to obtain smaller output 

resistance, R aut · A variable gain amplifier (VGA) alows for the gain of the TIA to 

be tuned with voltage V ctrl· The gain of the TIA is controlled by an automatic gain 

control (AGC) loop (Nabki & EI-Gamal , 2008) . Note that the polarisation voltage of 

the MEMS resonator, Vp, is applied with a bias tee. To sustain oscillation in closed-

1oop, the fo1lowing Barkhausen criteria are required (van Beek & Puers, 20 12; Lin 

et al., 2004a): 

~riA+ ~AIEA1S = Û
0
, and 

Zr~ R m + R in +Roui , 

( 1.14) 

( 1.15) 

where ~riA and ~MEMS correspond to the phase shifts of the TIA and resonator, re­

spectively, and Zr is the transimpedance gain of TIA. In thi s case, both resonator and 

TIA must have 0° phase shift. 

1.4 Simulation results 

Table 1. 1 summarizes the overall osci11ator circuit design parameters and simulated 

TIA performance metrics. 

1.4.1 MEMS resonator open-1oop behavior 

Before undertaking circuit simulation, the optimal number of points, N, to be included 

into the numerical integration block of the Verilog-A model was determined. The num­

ber of points used in the integration block is equivalent to dividing the resonator bearn 

into equal sections with relative motions characterized by the resonator mode-shape and 

time function. As shown in Figure 1.4, the simulation time is a linear function of N . 

The optimal number of sections is attained at Napt = 7 when the phase shift converges 

to 1.58°. In this work, simulations were performed with 60 bearn sections in order to 
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Table 1.1: Osci ll ator design parameters and TIA performance metrics 

Parame ter Value Unit 

Motional resistance, Rm 1.55 kD 

Motional inductor, Lm 9 1.56 mH 
Lumped mode! 

Motional capacitance, Cm 4.26 fF 

Feedthrough capacitance, C0 71.24 fF 

Beam width , Wr 10 J.-Lm 

Beam length, Lr 45 J.-Lm 

Beam thickness, tr 2 J.-Lm 

Gap, go 100 nm 

E lectrode length, Le 23 J.-Lm 
AHDL mode! 

Center frequency, Jo 8.06 1 MHz 

Young 's modulus, E 150 GPa 

Mass density, p 2.330 kg/m3 

Quality factor, Q 3000 

Po larisation voltage, Vp 6 v 
A-f coefficient, "' < 0 radis 

Input impedance, R n 89 D 

Output impedance, R aut 86 D 

Bandwidth 26 MHz 

TIA Gain, Zr 103 dBD 

Power supply, V 00 1.2 v 
Power consumption, P D C 2.16 mW 

operate the mode! at a high complexity leve! to demonstrate its computational stability 

with a large number of beam sections. To illustrate the non-linear effects included 

by the resonator mode!, severa! simulations were run . Figure 1.5 shows the resonator 

frequency response at different input power levels. The power levels were chosen to 

represent small, medium and large output oscillations which are given by -50, -35 and 

-15 dBm, respectively. The results indicate spring softening non-linear behavio r, as 
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Figure 1.4: Resonator phase shift at resonance frequency (solid line) and simulation 

elapsed time (dashed line) . 

typically seen in these type of resonators. As shown in Figure 1.5(a), for smaller ampli­

tude, the resonator has a linear transmission characteristic. With increasing amplitude, 

the non-linear effects appear with increased insertion Joss and Duffing behavior. Fig­

ure 1.5(b) shows the amplitude-frequency curve with the same power levels. As can 

be seen, the non-linearity effect begins to appear at the medium power leve!, and at 

-15 dBm, the resonator becomes sufficiently non-linear for its frequency response to be 

characterized by cyclic fold bifurcations. 

Also, the resonator DC bias voltage, Vp , has an effect on the frequency response since 

it is included in the resonance frequency express ion (Lin et al., 2004a) . As shown in 

Figure 1.6, increasing the OC bias voltage reduces the resonance frequency. Using 

an RLC resonator, it is hard to obtain such curves before having to recalculate its pa­

rameters for each bias voltage, and the non-linear effect previously shown cannot be 

modeled effectively. 
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Figure 1.6: Transmission characteristic for various DC bias voltage levels starting from 

6 V to 12 V. 

1.4.2 Oscillator phase noi se 

The overall circuit was simulated using the closed-loop configuration, as shown in Fig­

ure 1.3 . The start-up response is shown in Figure 1.7 using 6 V and 10 V DC bias 

voltages . The response with 10 V biasing is faster than with 6 V due to the reduced 

insertion Joss of the resonator at a higher bias voltage. The oscillator phase noi se was 

characterised in three simulations with different output oscillation levels, and the results 

are li sted in Table 1.2. The resulting RMS phase jitter is also listed as it is an important 

metric in oscillators used in timing applications. Due to non-linear effects leading to 

noise folding, the close-in phase noise and jitter performance is worsened at the higher 

oscillation Jevel suggesting an optimal resonator drive levet. 

To verify the influence of Vp on the phase noise, a 1 p, V 100 kHz harmonie source 

was added to the bias line. Figure 1.8 shows the phase noise in closed-loop with two 
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Figure 1.7: Start-up response of MEMS-based oscillator in closed-loop for (a) Vp=6V 

and (b) Vp= 1 OV. 

different Vp values. In this case, two spurs are seen in each curve. The first spur is 

the effect of the added interference source, while the second is rel ated to the oscillation 

itself. The detrimental effects of non linearity on se noise can be seen at a bias of 10 

V, where the close-in phase noise performance is dominated by resonator non-linearity 

and not the TIA flicker noise seen with a 6 V bias. Ali of the above-mentioned effects 



19 

Table 1.2: Oscillator noise performance for Vp = 10 V. 

Oscillation Leve) (dBm) - 15 -35 -50 

Phase Noise@ 100Hz (dBc/Hz) -65.69 -73.02 -34.56 

Phase Noise @ 100kHz (dBc/Hz) -119.9 -104.2 -83.82 

RMS Phase Jitter (ns) ( 100Hz to 100kHz offset) 6.25 1.51 131.17 
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Figure 1.8: Phase noise plot for two different OC polarisation voltages with a harmonie 

noise source. 

would not be modeled by a lumped RLC linear model , outlining the importance of 

taking into account non-linearities and bias voltage when designing MEMS oscil lators. 

1.5 Conclusion 

A non-linear AHDL model for a C-C bearn resonator was presented. The non-linear 

frequency response and the effects of the bias voltage were described. An oscillator 

was designed in a 0. 13 !-lm technology to demonstrate the use of the mode] in a circuit, 

and closed-loop simulations illustrated the impact the non-linear and biasing effects of 
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the MEMS resonator on the performance of the MEMS-based oscillator. Ultimately, 

the model captures severa) effects such as Duffing behavior or phase noise degradation 

when overdriving the resonator that cannot be modeled by a linear model. 



CHAPTER II 

OSCILLATOR BASED ON PIEZOELECTRIC RESONATOR 

2. 1 Piezoelectric di sk resonator overview 

The resonator used in this work is presented in (Eisayed et al., 20 16). A brief overview 

is given in this section . The resonator is based on a disk structure that is exciting through 

piezoelectric actuation . A diagram of the resonator is shown in Figure 2.1. The deviee 

is composed of a single-crystalline silicon central di sk structure acting as the main res­

onator structure. This di sk is 10 J..Lm thick and has a 200 J..Lm diameter. It is covered by 

a 0 .5 J..Lm layer of aluminum nitride (AIN), the piezoelectric material used for transduc­

tion. The di sk structure is supported by four suspension beams having a 10 J..Lm width 

(the minimum allowed by the design rules of the MEMS fabrication technology) with 

90° angular spacing, so as to correspond with the nodal points of the bulk wine-glass 

resonance mode. The support beams are anchored to the substrate at their ends and me­

chanically connected to the electrical pads. Each of these supports is associated with a 

pair of pads, one for the signal routed above the piezoelectric layer, and the other for the 

ground, routed through the underlying silicon structural layer. For thi s purpose, an alu­

minum layer above the disk structure is patterned into four distinct quadrants, in order 

to match the strain distribution and yield differentiai input/output ports. Each electrode 

is electrically connected to a distinct signal pad by an aluminum track routed above its 

respective suspension bearn. The conductive structural silicon layer itself acts as the 
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Si • AlN 
Si02 • Al 

Capacitive 

S: signal pads 
G: ground pads 
DC: electrodes for electrostatic tuning 

-- -------------

Figure 2.1 : Simplified diagram of the di sk resonator outlining the pads used for dif­

ferent iai piezoelectric driving by the TIA and the pads used for electrostatic tuning 

(Elsayed et al. , 20 16). 

ground plane of the dev iee, and connects with each ground pad while remaining elec­

trica lly insulated from the signal track by a layer of silicon dioxide. Alurninum nitride 

is not present on the supports to avoid any unintended transduction which would alter 

the resonance mode and possibly lead to undesirable spurious modes of vibration. Ca­

pacitive electrodes are placed around the disk structure for optional electrostatic tuning 

of the re onance frequency, based on the electrostatic spring softening phenomenon. 

2.2 Transimpedance amplifier circuit design 

The transimpedance amplifier circuit shawn in Figure 2.2 is composed of three fully 

differentiai stages: i) an input stage fo llowed by ii) a variable gai n ampli fier (VGA) 

and iii) an output stage based on a super source follower (SSF). An automatic gain con­

trol c ircuit (AGC) is also included to regul ate the oscillation amplitude and reduce the 
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Figure 2.2: MEMS-Based Oscillator functional diagram. 
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exertion of the resonator's mechanical non-linearity, thereby improving the oscillator 

frequency stability (Lee & Nguyen, 2003). 

The complete schematic of the TIA circuit is shawn in Figure 2.3 in which the biasing 

and common-mode feedback (CMFB) circuits are not shawn. The TIA provides low 

input impedance (~n) and low output impedance (Rout ) so as to compensate a large 

parasitic interconnect capacitance (Cp= 4 pF) and push the dominant pole far beyond 

the oscillation frequency, while reducing the loading ori the resonator's quality factor. 

This translates into a high GBW product requirement (Pettine et al., 20 12). 
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2.2. 1 Input stage 

The input stage should be carefully designed in such a way to satisfy severa! criteria. 

Besides the high GBW product criterion, tradeoffs between lower input impedance, 

power consumption and current noi se are also other key performance parameters to be 

considered when designing the intput stage. Three input stage topologies (Sackinger & 

Guggenbuhl , 1990; Salvia et al., 2009; Kopa & Apsel , 2008) were selected to be corn-

pared with the proposed input stage by means of circuit performance simulations using 

the SpectreRF simulator in a CMOS 65 nm technology. The first design (Sackinger 

& Guggenbuhl, 1990) is based on gm-boosted common-gate (CG) topology, known as 

regulated cascode (RGC) input stage and described in (Nabki & El-Gama!, 2008). The 

second topology is the common source feedback (CSFB) amplifier presented in (Kopa 

& Apsel, 2008). The CSFB technique is used to amplify current, which enhances the 

bandwidth by reducing the size of the Joad resistance. The third design considered is 

based on (Sa! via et al., 2009), where capacitive feedback is used as a current amplifier. 

The input-referred noise of this configuration is expected to be very low because of the 

absence of noise sources directly at the input (Razavi , 2000). 

Each topology has been simulated with an additional shunt parasitic capacitance of 

Cp = 4 pF, and to make a representative comparison of performance, the trans impedance 

gain was adjusted to be equal ( '"'-' 78 dBD). A normalized figure-of-merit (FOM1), 

which is given by 

FONh 
Gain[D] x BW[A1 H z] 

(2. 1) 
PDc[p,W] x Noise@fo[pA / v'Hz] x R n[D]. 

FO !Vh is used to evaluate the overall performance of the TIA input stage. 

According to Table 2.1, the capacitive feedback topology exhibits the lowest input­

referred current noi se, while the CSFB topology exhibits excessive noise. The gain 

of the RGC input stage is limited by the large load resistor due to the large DC volt-
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Table 2. 1: Simulated input stage performance comparison with target transimpedance 

gain of 78 dBD (shunt parasitic capacitance Cp = 4 pF). 

Spec. RGC Caps FB CSFB Proposed Work 

Bandwidth [MHz] 197 96 246 204 

Power consumption, Poe [p,W] 16 1 168 190 180 

Input Impedance, ~n [D] 76 4406 74 69 

Input-referred noi se @j 0 [pAJ.JHz] 5.05 0.89 8.86 3.35 

Figure-of-merit, FOM1 25.34 1.16 15.67 38.95 

age drop across it (Park & Toumazou, 2000). The large gain and bandwidth of the 

CSFB topology can be easi ly set. However, the li mitation of thi s topology cornes from 

the no ise performance. The capacitive feedback topology benefits from current pre­

amplification, and the transimpedance gain can be high with a smaller Joad resistor, 

un like resistive feedback topologies. The major drawback of the capacitive feedback 

topology is that its input impedance is very high at the resonant frequency, which will 

Joad a resonator's Q-factor. 

In order to benefit of lower input impedance while extending transimpedance gain and 

bandwidth , the proposed input stage is based on a modified versions of the RGC and 

CSFB topologies by using active feedback, as shown in Figure 2.3(a). 

2.2.1.1 Input impedance 

According to the small-signal analysis, the single-ended low-frequency input impedance 

of the proposed circuit is given by (Yuan & Sun, 2002) 

1 
~'Tl= ' 

~n. RGC X (1 + R2 9m3) 
(2.2) 

where ~n. RGC is the input impedance of the RGC circuit wh ich is given by 

1 
~n, R.GC = ( 1 + R ) , 

9m2 3 9m l 
(2 .3) 
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where 9m1, 9m2 and 9m3 are the transconductance of transistors Ml, M2 and NI3, re­

spectively. As indicated by (2.2), the input impedance of the input stage is (1 + R 2 9m3 ) 

times smaller than an RGC input stage. 

2.2.1.2 Transimpedance gain 

The expression for the input stage transimpedance gain is given by 

where Cn and Cout are the total input and the output capacitances of the input stage, 

respectively, C 1 is the equivalent capacitance between the drain of Nil and gate of M2, 

C2 is the equivalent capacitance between the drain of NI2 and gate of Jv13/ M 4, and 

R o,in is the output impedance of the input stage which is given by R o,in = T 0 4 Il T 0 5, 

where T 04 and T 05 are the output resistances of transistors ./III 4 and M 6, respectively. 

The OC trans impedance gain is given by 

Z (O) ~ R auL 9m4 T , 
9m3 

(2.5) 

where 9 m 4 is the transconductance of transistor NI 4. 

2.2.1.3 Bandwidth 

It can be seen from (2.4) that the 3-dB bandwidth of the input stage is limited by the 

dominant pole appearing at the drain of transi stor M2 and is given by 

1 
f -3dB ~ ---------------------

[ Cgd2 ( 1 + ~:) + C,,, + Cgd3 + C,d4 9m3 r"' ] , 
(2.6) 

where C9d,i={ 2,3,4} are the gate-drain capacitances of transistors M 2, M 3 and M 4, re­

spectively, and C983 is the gate-source capacitance of transistor NI3. 
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The local feedback of the input stage creates a zero at a frequency given by 

1 + R 3 9ml ~ 9ml 
2n-R3 C1 2nCl. 

(2.7) 

To keep the zero far away from the dominant pole (Park & Yoo, 2004 ), the transcon­

ductance 9ml of transistor Nil should be increased, i.e. increasing its width. However, 

increasing the width of M l will significantly increase capacitance C1, specifically the 

equivalent capacitance of the drain of Ml, and will reduce the zero frequency. Instead , 

capacitance C 1 can be reduced by reducing the width of transistor N/2 to decrease the 

equivalent capacitance at its gate. This will affect the input impedance of the the RGC 

stage in (2.3) since the transconductance 9m2 of transistor N/2 will be decreased. How­

ever, thi s will not critically affect the input impedance of the RGC stage or the input 

stage since 9111 2 is proportional to j(W/ L)2, while its gate capacitance is linearly pro­

portional to (W L )2. 

On the other hand, decreas ing the input impedance amounts to increas ing (1 + R 2 9m3 ) 

or (1 + R3 9md · The former will affect the DC TIA gain and the input stage bandwidth. 

Therefore, increasing R3 is selected as the method for input impedance reduction . 

2.2.1.4 Noise analysis 

The input-referred current noise is an important performance parameter to be consid­

ered when designing the proposed TIA. lt can be u ed to prov ide a representative com­

parison between different circuit topologies (see Table 2.1 ). Since the noi se is most! y 

contributed by the input stage, then the noi se of the other stages can be neglected to 

simplify the analy i . Therefore, a noi e analy is was carried-out based on the analysis 

method proposed in (Park & Yoo, 2004) where shot noi se and flicker noise are ignored. 

Assuming that ali noise sources are uncorrel ated, the input-referred cunent noise fo r 
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the input stage is calculated and its expression is given by 

(2.8) 

where ry is the noise coefficient (Shaeffer & Lee, 1997; Ogawa, 1981 ), k is Boltz­

mann 's constant, T the absolute temperature and 9 dO ,i= {l - 6} are the zero-bias drain 

conductances of transistors Ml-!11!6 , respectively. 

From (2.8), the noi se can be analysed as follow s: the thermal noise and the channel 

thermal noi se contributions from R 1 and NI3, respectively, are directly applied to the 

equivalent input noise. As the frequency increases, the noise is dominated by terms 

containing w2
. Therefore, to achieve a low noi se, resistor R 1 need to be increased and 

it is preferable to keep the size of transistor M3 as small as possible to maintain lower 

input-referred noise as weil as higher transimpedance gain and bandwidth performance. 

However, reducing the size of M3 can increase the input impedance of the TIA, as 

mentioned earlier, and increasing R3 can compensate the effect of reducing the size of 

NI3, thereby achieving an overall compromise of performance. 

2.2.2 Variable gain amplifier 

The variable gain amplifier shawn in Figure 2.3(a) is based on a differentiai pair am­

plifier in which transistors NI1 5 and M 16 form the input pair and M 17 and M18 act 

as active loads to provide high gain. The source degeneration transistor M ctrl is used 

in the triode region in arder to linearly tune the gain of the VGA over a large range 

through control voltage VcrRL_A · Assuming that the output resistance of transistors 
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M14 and M16 are sufficiently large, the gain of VGA can be expressed as 

G rv 9ml5 
VGA = -gds,ctrl r o l 8 + , 

9ml5 9ds ,ct1'l 
(2.9) 

where r 01s, 9 m 15 , and 9ds,ctrl are the output resistance of transistor M18, transcon­

ductance of transistor J\1!15, and the conductance of the source degeneration transistor 

M ctrl ' respective) y. Evidently, if r o l 4 and r ol6 are too large and 9ml5 » 9ds,ctrl, the gain 

VGA can rewritten as: 

GvGA ~ -gds,ctrl r o l 8 ~ -kn ,ctrl ( V as.ctr l - Vth ,ctrl) Tol8 , (2.10) 

where k n ,ctr-l, V as.ct1·L, and Vth .ctr-l are the transconductance parameter, gate-source volt­

age, and threshold voltage of transistor M ctTL' respectively. Consequently, source de­

generation transistor J\!fctrl can linearly control the VGA gain through control voltage 

VcrRL_A · 

2.2.3 Super source follower 

The output stage shawn in 2.3(a) is based on the SSF topology (Gray et al. , 2009) . 

It is based on a differenti ai pair amplifi er in which transistors M20 and M21 form 

the input pair and are loaded by the diode connected transistors M22 and M23. The 

outputs of the differentiai pair are connected to the AGC circuit for the gain control 

loop. The SSF is formed by transistors M24-M29 and resistors R7 and R8 to drive 

the fully differentiai resonator and it is characterized by a small output impedance in 

arder to avoid loading the resonator 's Q-factor. The gates of transistors M24 and J\1/27 

are controlled by control voltage VcrRL_Bw so that TIA bandwidth can be adjusted to 

yield the optimal phase loop characteristic. 

The gain of the SSF is given by 

9 m26 ro26 
GssF ~ -------------------------- (2. 11 ) 

1 
1 + 9m26 r o26 + (R Il ) 

7 ro25 9 m25 
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where 9 m 25 and 9m26 , r 025 and r 026 the transconductances and output resistances of 

transistors M25 and M26, respectively. As can be seen in (2.11), if 9m26 r 026 » 1 and 

(R7 Il r 025 ) is sufficiently large, the gain of SSF will be close to 1 VN. 

The output impedance of the supper source follower is given by 

Raut = { (R7 Il To25) Il ( r)(4 
) } ~ 1 

, 
1 + 9m26 To26 1 + 9m25 r o24 9m26 r o26 9 m25 

(2.12) 

where r 024 is the output resistance of transistor N/24. 

The output resistance of SSF is reduced by a factor of (r026 x 9 m 25 ) in comparison to 

the conventional source follower, whose output resistance is ,...._, 1/ 9m· This enhance­

ment of the output resistance is due to the negative feedback through transi stor M25. 

2.2.4 Automatic gain control circuit 

The schematic of the automatic gain control circuit is shown in Figure 2.3(b). The first 

stage consists of a differentiai positive peak detector (Wenbo et al. , 20 13) that monitors 

the output nodes of the differentiai pair composed of NI20-M21. The peak detector 

is based on a differentiai amplifier (11131-M34) and a current mirror (M36 and M37). 

Transistor M35 is used a small current sink to discharge capacitor CPD· The peak of the 

signal is then compared to an amplitude reference (VREF ), and the resulting difference 

is integrated to control the TIA's gain through (VcrRL_A) connected to Mctrl · 

2.3 Experimental results 

Two test configuration setups, shown in Figure 2.4, were used to characterize the 

MEMS oscillator: i) the open-loop configuration (solid lines) and ii) the closed-loop 

(dashed !ines). A Keysight E5061 B vector network analyzer (VNA) was used to mea­

sure the two-port S-parameters of the resonator and TIA and as weil as the oscillator in 

open-loop in order to obtain the frequency response. The output spectrum and phase 

noise of the oscillator were measured with a Keysight N9030A spectrum analyzer. 
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Figure 2.4: Test Setup of the MEMS-based oscillator in open- loop (so lid line) and 

closed-loop (dashed tine) with micrographs of the TIA and resonator dies. 

2.3. 1 Resonator characterization 

The frequency response of the resonator was measured in differentiai configuration with 

the VNA in air as weil as under a vacuum leve] of 100 mTorr. Different input power 

levels starting from - 20 dBm up to 10 dBm were applied to the resonator. Figure 

2.5 shows the transmission characteristic curves normalized to the center frequency of 

14.42 MHz with a Q-factor of 4900 under vacuum and 1950 in air. The maximum 

insertion Joss in air and under vacuum is of - 29 dB and - 22 dB , which corresponds 

to a motional resistance of 1.2 kS1 and 0.9 kS1, respectively. Thus, the results indicate 



1- -20 dBm --- -10 dBm -- --5 dBm ······ 0 dBm - 10 dBm 1 

- 28 

- 30 

>=:: 
0 - 34 

"é/3 
Cl) ·a - 36 
Cl) 

@ - 38 

~ 
- 40 

- 42 '----...,..-------...,..--------__j 
-10 -8 - 6 - 4 - 2 0 2 4 6 8 10 

Normalized frequency (kHz) 

(a) 

1--20 dl3m -- - -10 dDm -- --5 dl3m ···· ·· 0 dl3m - 10 dl3m 1 

- 20 

- 22 
' ' 

_..---._ - 24 
0::) 

- 26 '"0 

>=:: 
- 28 

0 - 30 "é/3 
Cl) 

- 32 ·a 
Cl) -34 
>=:: 
cO - 36 
~ -38 

- 40 

- 42 
- 10 - 8 - 6 - 4 - 2 0 2 4 6 

Normalized frequency (kHz) 

(b) 

33 

Figure 2.5: Normalized transmission characteristic curve for various input amplitude 

levels (a) in air, and (b) under vacuum . 

spring-softening non-linear behavior stemming from the negative amplitude- frequency 

(A-f) coefficient (K:) associated with this resonator (Bouchami & Nabki, 2014). The 
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Figure 2.6: Relative resonant frequency shi ft of the resonator as a function of the square 

of the output CUITent in air and under vacuum. 

amplitude-frequency coefficient can be defined as (Agarwal et al., 2006) 

!:lf 1 
r ] 2 ' 
J 0 d 

(2.13) 

where !:lf / fo is the relative resonant frequency shift and Id is the RMS drive current 

through the resonator. From Figure 2.6 the A-f coefficient was calculated in air and 

under vacuum to be -45 ppm/mA2 and - 12 ppm/mA2 , respectively ( iller, 198 ). 

As can be seen in Figure 2.7, the power-handling capability which conesponds to the 

critical vibration amplitude of the resonator was also characterized by measuring its 

1-dB compression point (Shao et al., 2008; Kaajakari et al., 2004). The 1-dB compres-

sion points in air and under vacuum were measured to occur at avai lab le input powers 

of 5.29 dBm and -5 .1 6 dBm. These are eq uivalent to a 0.32 mA and 0.14 mA RMS 

drive current in the resonator, respectively. 



--------. 
o:::l 
""d 
'----" 

(/) 
(/) 

0 .......... 

>:::: 
0 . ...... 
+" ..... 
il) 
(/) 

>:::: . ...... 
""d 
il) 
N . ...... 

ca 
s ..... 
0 z 

1 

0 

- 1 

- 2 

- 3 

- 4 

- 5 

- 6 

- 7 

-8 

l- In air --- Under vacuum 1 

Pl -dB , a ir = 5.29 dBm 

~-~-~-~--~--~--~--~- ~--~--~- ---------;~-'-,,-, -~ 

Pl-dB, vacuum = -5.16 dBm ',,, 
' 

' ' 
' 

' 
' ' ' 

' \ 

' ' 

- 30 - 25 - 20 - 15 - 10 - 5 0 5 10 

Input available power ( dBm) 

35 

Figure 2.7 : Measured resonator power-handling performance in air and under vacuum. 

2.3 .2 Transimpedance amplifier characterization 

The fully differentiai TIA is fabricated in a TSMC 65 nm low-power process and con­

sumes 1.4 mA from a 1-V supply. The circuit active area measures 150 x 220 p,m2 , as 

shown in Figure 2.4. To obtain the frequency response of the TIA, S-parameters were 

measured usi ng the Keysight E506l B VNA. The network analyzer input power lev el 

was set to -45 dBm and the S-parameters were taken from 100 kHz to 1 GHz. The 

transimpedance gain (Zr ) is calculated from the S-parameter characteristics as (Weiner 

et al., 2003) 

521 
Zr= Z0 x---

1- Su ' 
(2.14) 

where Z0 represents the 50 D transmission line impedance. 

Figure 2.8 shows the transimpedance gain and the 3-dB bandwidth of the TIA, versus 

two control signai s, VcrRL_A and VcrRL_Bw. The measured gain reaches ""81 dB D 

with bandwidth around 102 MHz extending to 214 MHz when the gain is reduced to 
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55 dBD. Control voltages can be varied independently. Over the Vc rRL_Bw range, the 

maximum gain variation for the same VcrRL_A value is of rv0.2 dB as seen in Figure 

2.8(a). The worst case insertion Joss extracted from Figure 2.5 (i.e., Pin=lO dBm in air) 

corresponds to a motional resistance equal to 1.7 kD which is corresponding to around 

65 dBD. For an input power of -5 dBm the extracted motional resistance is equal to 

1.35 kD which corresponds to 62.7 dBD. To overcome the resonator !osses, the maxi­

mal transimpedance gain of the sustaining amplifier is fixed to 78 dBD and 170 MHz 

bandwidth which is amply sufficient to meet the oscillation conditions (discussed in 

section 2.3.3). The AGC loop can then reduce the gain once the oscillation has reached 

the appropriate amplitude. The magnitude of the input and output impedances of the 

TIA at the resonant frequency of the resonator are 81 D and 100 D, respective! y. 

Figure 2.9 shows the measured transimpedance gain at its maximum for different input 

power levels varying from -48 dBm to - 20 dBm. A value of available power of 

-38.6 dBm was recorded for the 1-dB compress ion point of the TIA. 

Figure 2.10 shows the input-referred current noi se of the TIA measured with the Keysight 

N9030A spectrum analyzer across a 214 MHz bandwidth . At low frequencies , the noise 

is dominated by the fticker noise. The flat thermal noise ftoor is seen in the rv20 kHz -

40 MHz frequency range, where the input-referred noise is below 4 pNJHz, then goes 

up with a j2 slope because of the gain reduction beyond the bandwidth. 

The performance parameters of the TIA configured at the 78 dBD gain-level are sum­

marized in Table 2.2. 

2.3.3 Oscillator characterization 

2.3.3.1 Open-loop measurements 

To confirm that sufficient loop gain was present for the oscillation, the resonator was 

connected to the TIA in open-loop configuration under vacuum, and the frequency and 
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Figure 2.9: Measured 1-dB compression point of the TIA at the max tmum tran­

simpedance ga in (so lid tine) and at the oscillation frequency in closed-loop configu­

ration (dashed tine). 

Table 2.2: Performance parameters of the TIA (design 2) . 

Parame ter 

Tranimpeande gain [dBO] 

Bandwidth [MHz] 

Input impedance, R in @Jo [0] 

Output impedance, R oui @Jo [0 ] 

Power supply, V00 [V] 

Power Consumption, Poe [mW] 

Input-referred noi se ©fo [pA/.JHz] 
1-dB compression point, Pt -dB [dBm] 

Active area [mm2
] 

Pro cess 

Measured value 

TIA only Closed-loop 

78 69 

170 158 

81 81 

!00 !00 

1.4 1.4 

3.65 10.4 

-38 .6 -26.4 

0.033 

65 nm CMOS 
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Figure 2.10: Measured input-referred current noi se of the TIA. 

phase responses were measured using the Keysight E5061 B VNA. As illustrated in 

Figure 2.4 (dashed lines), the input and output ports of the VNA were connected to 

the differentiai inputs of the resonator and the differentiai outputs of TIA, respective) y, 

through an external bal un used to convert between differentiai and single-ended signais. 

It is observed from Figure 2.11 that the open-loop gain at the resonant frequency of the 

resonator is higher than 0 dB as formulated in condition ( 1.15). Furthermore, phases 

measured for different VcTRL_Bw varying from 0.35 V to 0.45 V have variation !::. cp of 

'"'..40°. This variation is induced by tuning the bandwidth by means of Vc rRL_Bw (Fig­

ure 2.8(b)). As a result, oo phase shift was obtained for VcTRL_Bw ::: 0.38 V, sati sfying 

condition ( 1. 14). Accordingly, the main advantage of adjustable bandwidth feature is 

to set the oscillator total phase shift at open-loop configuration to oo by setting the TIA 

phase shift c/YTI A to the suitable phase with regard to resonator phase shift c/YMEMS· This 

ensures that oscillation can be sustained in closed-loop. Therefore, the loaded Q-factor 
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Figure 2. 11: Measured open-loop gain and phase shift of the oscillator under vacuum. 

was measured from the open-loop gain bandwidth to be of 4000. 

2.3.3.2 Closed-loop measurements 

The resonator and TIA were set in a closed-loop configuration (solid lines in Figure 

2.4) and tested in air and un der vacuum to characterize the performance of the os­

cillator. While operating in steady-state, the transimpedance gain at the oscillation 

frequency was set by the AGC loop control and the measured gain was recorded to 

be rv69 dBD with a 3-dB bandwidth of 158 MHz, as illustrated in Table 2.2. At this 

gain level, the input-referred 1-db compression point corresponded to - 25.65 dBm, as 

shawn in Figure 2.9. Usi ng the Keys ight N9030A spectrum analyzer, the output power 

of the oscillator, controlled by the AGC loop, was measured by probing the positive 

SSF output directly to the spectrum analyser, which was recorded to be -6 dBm, as 

shawn in Figure 2. 12. Therefore, the TIA remains in linear reg ion so that can match 

the max imum drive power of the resonator which is below the TIA 1-dB compression 

capabi lity. 
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The expression for oscillator phase noi se is given as follows (Hajimiri & Lee, 1998) : 

2FkT 
L (jm) = -- X 

Po [1 + ( Jo ) 
2 

x (1 + 1:_)] 
2QLJm f m 

(2. 15) 

where F represents the noi se figure of the amplifier, P0 is defined as the osci ll ation 

power, Jo represents the carrier frequency, f m the offset frequency from the carrier 

frequency, f e is a constant related to 1/f noise corner of the oscil lator and QL denotes 

the loaded Q-factor and is defined as 

(2 .16) 

where Qu L is the intrinsic Q-factor of the resonator. 

The phase noise measurements of the oscillator in air and under vacuum are plotted in 

Figure 2.13 . The close-to-carrier phase noise was measured in atmospheric pressure 

and under vacuum to be -40 dBc/Hz and -60 dBc/Hz, respective) y at a 10Hz offset, 

and - 104 dBc!Hz and - 116 dBc!Hz, respective) y at a 1 kHz offset. The phase noi se 

ftoor reaches - 130 dBc/Hz and is dominated by the TIA noise. The phase noi se in the 

close-to-carrier region is improved by rv20 dB under vacuum. This improvement is due 
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Figure 2.13 : Measured phase noi se of the MEMS-based oscillator in air and under 

vacuum. 

to the considerable improvement in the loaded Q-factor, as expected from (2.15), which 

is caused by the higher resonator Q-factor, and the lower motional impedance Rm when 

operating under vacuum (El sayed et al. , 20 16). On the other hand, the close-ta-carrier 

phase noise follows the slope of 1/ P which corresponds to the op-conversion of the 

fi icker noise of the TIA. A 1/ f 2 region could not be observed as the fi icker noi se corner 

frequency is r-v20 kHz (i.e., above the resonator 's bandwidth). The fact that the close­

ta-carrier phase noise slope does not increase beyond 1 /.J3 indicates th at the resonator 

and TIA non-linearities are not exerted. Otherwise, noise-folding could occur resulting 

in a slope larger than 1/ P (Nabki & El-Gama!, 2008) , deteriorating close-ta-carrier 

phase noise performance. 

Short-term stability is a key perfo rmance metrics of an osc ill ator and is a measure of 

its frequency stability. The measured frequency stability of the resonator is illustrated 

in Figure 2.14. The oscillator shows a broadening of the output frequency over a fi ve-



0 

- 5 
,.----... - 10 s 1 

1 co - 15 1 

'\j 
-20 ..___. 

>--< -25 C,) 

~ -30 0 
o.. - 35 

+=> 
:::l - 40 
o.. 

- 45 
1 

+=> 
:::l 

0 - 50 

- 55 

- 60 
-2.5 

1--- Overdriven - Controlled with AGC 1 

- 2 - 1.5 - 1 -0.5 0 0. 5 1 1.5 2 

Normalized frequency (ppm) 

1 

1 
1 

1 

1 

1 
1 

1 
1 

1 

43 

2.5 

Figure 2.14: Oscillator signal short-time stability for the 14.42 MHz resonator (aver­

aged over a five-minute time span) with and without the AGC loop. 

minute time span. The frequency stability is improved from ± 2.1 ppm to ± 0.38 ppm, 

when the AGC is used, outlining the importance of not overdriving the resonator. 

In order to obtain a representative comparison, a figure-of-merit (FOM) is used to com­

pare the performance of the different osci ll ators in terms of phase noise and power 

consumption . It is given by (Zuo et al., 201 0) 

FOM2 = L(Jm) - 20log (f:.) +lü log ( 1~~) , (2. 17) 

where PDc is the OC power consumption of the oscillator circuit in mW. The cal­

culated FOM values and summarized specifications for other published MEMS oscil­

lators based on piezoelectric resonators are listed in Table 2.3 . As can be seen, the 

MEMS oscillator demonstrated in this work has the best figure-of-merit IFüMI when 

compared in air and under vacuum to other oscillators based on piezoelectric MEMS 

resonators (Pettine et al., 20 12; Ruffieux et al., 201 0; Zuo et al., 201 0; Wu & Rais­

Zadeh, 2015; Lavasani et al. , 2012; Lavasani et al., 2015) . Notably, the close-to-carrier 
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phase noise is lower under vacuum than the other works while dissipating relatively 

low-power consumption, th us offering a competitive phase noise at a 10 Hz offset. 

Wh ile the phase noise floor is higher than that of (Lavasani et al., 20 12; Lavasani et al., 

20 15), the circuit operates at lower power. The phase noise floor could be improved 

by further reducing the noise of the TIA at the cost of increased power consumption. 

Moreover, the resonator could be driven at a higher power leve) at the cost of degraded 

close-to-canier phase noise performance due to noise-folding. Finally, it is important 

to note that the resonator could be integrated in a system-in-package (SiP) in order to 

relax the design constraints of the TIA w.r.t. to gain-bandwidth , potentially yielding an 

enhanced FOM. 

2.4 Conclusion 

This chapter presented the design and implementation of a 14-MHz MEMS oscillator 

based on a piezoelectric di sk resonator and a low-power high gain-bandwidth product 

fully differentiai transimpedance amplifier with adjustable bandwidth. The TIA was 

fabricated in a TSMC 65 nm CMOS process and consumes 1.4 mW. An input tage 

topology that is based on the RGC and CSFB topologies and characterized by a high 

gain , wide bandwidth and low input impedance was proposed. The TIA can reach a 

maximum gain of "'80 dBD and features an adjustable bandwidth with a maximum 

of "'214 MHz. The input-refened current noise floor of the TIA was measured to be 

below 3.7 pN.,fJT;. 

The presented MEMS oscillator achieves a measured phase noi se in air and under vac­

uum of - 104 dBc/Hz and - 1 16 dBc/Hz at a 1-kHz offset, respective! y, with a phase 

noise floor of - 130 dBc/Hz. It al so mitigates resonator and TIA non-linearities to attain 

a low cl ose-to-carrier phase noi se of - 40 dBc/Hz and -60 dBc/Hz at a 10-Hz offset in 

air and vacuum, re pecti vely. It FOM relative to the tate-of-the-art issu peri or because 

of its power consumption and close-to-canier phase noi se performance. 
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CHAPTER III 

OSCILLATOR BASED ON CAPACITIVE RESONATOR 

3.1 Lamé-mode MEMS resonator 

A brief description of the Lamé-mode capacitive (i.e., electrostatic) MEMS resonator 

presented in (Elsayed & Nabki , 20 17) is given in this section. Figure 3.1 illustrates 

exploded and assembled 3D renditions of the resonator structure. Structures were fab­

ricated in a commercial silicon-on-insulator (SOI) technology, MicraGEM-Si, where 

they are realized through processing and wafer bonding of two SOI wafers (i.e., the top 

wafer and the bottom wafer) . The top wafer has its handle layer removed after bonding 

to the bottom wafer such that the resonator is mainly composed of a single-crystalline 

silicon central square suspended structure acting as the Lamé bulk mode resonator. This 

suspended square is 30 p,m thick, has a 230 p,m side length, and is formed in the deviee 

layer of the top SOI wafer. The resonator square structure is anchored to the substrate 

through four suspension beams placed at the corner nodal points of the resonance mode. 

Pads for an electrical connection to the central square are present in the end of each sus­

pension bearn. This allows the connection of the DC polarization voltage required for 

the electrostatic actuation of the deviee. These support beams are patterned in the de­

vice layer of the top SOI wafer. The central structure is surrounded by four electrodes 

utilized for capacitive actuation and sensing of the structure. The electrodes are formed 

in the deviee layer of the top SOI wafer and are separated from the central square by a 
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(a) 

A : actuation pads 
S: sensing pads 
C : central structure pads 

(b) 

Si 

Metal 

Figure 3. 1: Simplified diagram of the (a) exploded and (b) assembled views of the 

Lamé-mode MEMS resonator with corner supports (Elsayed & Nabki , 2017). 

Figure 3.2: SEM micrograph of the Lamé-mode MEMS resonator with corner supports 

(Elsayed & Nabki, 2017). 

2 ~-tm capacitive transduction gap, which is the minimum spacing allowed by the tech­

nology. The deviee layer of the bottom SOI wafer is patterned to form the electrode 

anchors and the anchors at the end of the suspension beams. SEM micrographs of the 

resonator are shawn in F igure 3.2. FEM simulations as weil as theoretical calculations 

predict a resonance frequency of 17.9 MHz. 
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Figure 3.3: MEMS-Based oscillator functional diagram. 

3.2 Transimpedance Amplifier Circuit Design 
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The TIA circuit shown in Figure 3.3 is composed of a three fully differentiai stages: 

i) an input stage followed by ii) a variable gain amplifier (VGA) controlled by an 

automatic gain control circuit (AGC) , and iii) an output stage (super source follower 

(SSF)) . The complete schematic circuit is shown in Figure 3.4 in which the biasing and 

common-mode feedback (CMFB) circuits are not shown. The sustaining amplifier pro­

vides low input impedance (~n) and low output impedance (Raut ) so as to compensate 

for large parasitic capacitance (Cp = 4 pF) and push the dominant pole far beyond the 

oscillation frequency. This translates into a high gain-bandwidth (GBW) product. 
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The gain of the TIA needs to be high enough in order to compensate for the motional 

resistance of the MEMS resonator and sustain the oscillation. The regulated cascode 

(RGC) topology (Sackinger & Guggenbuhl, 1990) was chosen as input stage to achieve 

a reasonable trade-off between gain, bandwidth and power consumption. 

The input impedance of the RGC input stage is given by 

1 

gm2 (1 + R 3 gml) ' 
(3 . 1) 

where gm1 and gm2 are the transconductances of transi stors !VIl and M2, respectively. 

Thus, smaller input impedance can be attained by increasing voltage gain of the local 

feedback stage given by (1 + R 3 gmd· 

The express ion of input stage gain is given by 

(3.2) 

where Gin• C1, and C9d2 are the total input capacitances of the input stage, the equiv­

alent capacitance between the drain of Ml and gate of M 2, and the gate-drain capaci­

tance of transistors M2, respective) y. To achieve a higher gain, R2 should be increased, 

although it cannot be arbitrarily enlarged because of design constraints. 

It can be seen from (3 .2) that the 3-dB bandwidth of the input stage is limited by the 

dominant pole appearing at the drain of transistor Nil and is given by 

1 1 
J -3

dB = 2n-Rl Gin '::::! 2n-Rl X ( Cgsl + Cgdl R 3gmi) ' 
(3.3) 

where C 9d1, C 951 , and C 952 are the gate-drain capacitance of transistor M l, and the 

gate-source capacitances of transistors Ml , and N/2, respectively. 
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În.RJ Îll,DI+R3 
Ïn.R2 

Figure 3.5: Simplified equivalent circuit of the RGC input stage used for noise analysis. 

The local feedback of the input stage generates a zero at a frequency of 

.fz ~ 2~~~ ~ _ [ ------=-------9ml ( _ ) l 
27T C9d1 + C9d2 1 + ~~ 

(3.4) 

To maintain the zero far away from the dominant pole (Park & Yoo, 2004), the gate­

drain capac itance of transistor NI2 should be reduced by decreasing its width. In this 

fashion, the RGC input impedance in (3.1) will not be dramatically affected since 9m2 

will not decrease considerably as it is prop01tional to J (W / L )2, while its gate capaci­

tance is linearly proportional to (lill L )2. This can be compensated by increasing R3 as 

the input impedance is inverse! y proportional to (1 + R3 9md, as shown in (3.1 ). 

The input-referred current noise is a key performance parameter to be considered when 

designing the proposed TIA. It can be used to provide a representative comparison 

between different circuit topologies. Since the noi se is mostly contributed by the input 

stage, the noi se of the other stages can be neglected. Therefore, a noise analysis carried­

out using the equi valent c ircuit shown in Figure 3.5, and is based on the analysis method 

proposed in (Park & Yoo, 2004), where shot noise and flicker noise are neglected. 

Assuming that ali noise sources are uncorrelated, the input-referred cutTent noi se of the 
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input stage can be shown to be given by 

(3.5) 

where 'Y is the noise coefficient (Shaeffer & Lee, 1997; Ogawa, 1981 ), k is Boltzmann 's 

constant, T is the absolu te temperature, and 9do , 1 and 9do,2 are the zero-bias drain con­

ductance of transistors Nil, and N/2, respective) y. 

From (3.5) , the noi se can be analyzed as follows: the thermal noise contribution from 

R1 is directly referred to the input, and as the frequency increases, the noi se is domi­

nated by terms containing w 2
. Therefore, a low input-referred noi se can be achieved by 

increasing resistor R 1 and thus for better TIA performance in terms of noi se. 

3.3 Experimental Results 

The resonator and the TIA were both characterized, and were then combined to impie­

ment the MEMS-based oscillator. Two test configuration setups shown in Figure 3.6 

were used to characterize the MEMS-based oscillator: i) the open-loop configuration 

and ii) the closed-loop configuration. 

3.3.1 Resonator Characterization 

The frequency response of the resonator was measured in differentiai configuration 

with the VNA under a vacuum leve) of 100 mTorr for OC polarisation voltages, VP, 

of 100 V and 200 V, and for various input power levels starting from -30 dBm up 

to 0 dBm. Figure 3.7 shows the transmission characteristic curves normalized to the 

center frequency of 17.93 MHz with a Q-factor of rv890k, and a peak transmissions of 

-57 dB and -45 dB for VP:::: 100 V and VP :::: 200 V, which correspond to motional 
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Figure 3.6: Test setup of the MEMS-based oscillator in open-loop (so lid Iines) and 

closed-loop (dashed lines) with micrographs of the TIA and resonator. 

resistances of 35 kO and 8.8 kO, respectively. The results at high input power levels 

indicate spring-hardening non-linear behavior, as the Lamé-mode resonator geometry 

is aligned with the <100> crystalline silicon orientation (Zhu & Lee, 20 14; Zhu & Lee, 

20 12; Zhu et al. , 2012) . Therefore, a posi tive amplitude- frequency (A- f) coefficient 

(K;) is associated with thi s resonator (Bouchami & Nabki, 20 14 ). 
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Figure 3.7: Normalized resonator transmission characteristic curves for various output 

input amplitude levels for (a) vp = 100 v and (b) vp = 200 v. 
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3.3.2 Transimpedance Amplifier Characterization 

The fully differentiai TIA is fabricated in a 65 nm CMOS process from TSMC, and con­

sumes only 0.9 mA from a 1-V supply. The total circuit area measures 130 x 225 J-Lm2
, 

as shown in Figure 3.6. To obtain the frequency response of the TIA, S-parameters 

were measured using a Keysight E5061 B VNA in a frequency range from 100 kHz to 

1 GHz with an input power leve! of -45 dB m. 

Figure 3.8 shows the transimpedance gain and the 3-dB bandwidth of the TIA, versus 

two control signai s, v; 'TRL_A and VcrRL_BW· The maximum achievable gain is 98 

dB D with a bandwidth of 90 MHz. The bandwidth can be extended to 142 MHz when 

the gain is reduced to 83 dBD. Control voltages can be varied independently in such 

a way that the gain and bandwidth are also independent from each other. As such, as 

V c rRL 8 w varies from 0.35 V to 0.45 V, the maximum gain variation (for the same 

V c rRL A value) is rv0.32 dB (as seen in Figure 3.8(a)). The motional resistances of 

35 kD and 8.8 kD , extracted from Figure 3.7 for Vp of 100 V and 200 V, respective! y, 

correspond to 91 dBD and 79 dBD, respective1y, which can be covered by the maximum 

gain available of the proposed TIA to ensure sufficient gain for oscillation. 

Figure 3.9 shows the input-referred current noi se of the TIA measured with a Keysight 

N9030A spectrum analyzer across a 142 MHz bandwidth. At low frequencies, the 

noi se is dominated by the fticker noi se, whi1e the input current noi se spectrum is flat 

in the frequency range from rv SOO kHz to 142 MHz where the input-referred noise is 

dominated by the white noise and reaches 15 pAJJi[;;. 

Figure 3.10 shows the measured transimpedance gain for different input power level s 

vary ing from -50 dBm to -35 dBm. The TIA 1-dB compression point was extracted 

to be of -39 dBm. The performance parameters of the TIA are summarized in Table 

3.1. 
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Figure 3.8: Measured TIA (a) gain and (b) bandwidth for different values of VcrRL_A 

and VcrRL_BW· 
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Figure 3.9 : Measured TIA input-refeiTed current noise. 

Table 3.1: Performance parameters of the TIA (design 1 ). 

Parameter 

Tranimpeande gain [dBD] 

Bandwidth [MHz] 

Input impedance, ~n @Jo [D] 

Output impedance, R aut @Jo [D] 

Power supply, V D D [V] 

Power Consumption, Poe [mW] 

Input-referred noi se @J0 [pA/ JHZ J 
Total circuit area [mm2 ] 

Pro cess 

Measured Value 

98 

170 

89 

100 

(\(\ 
V . 7 

14.5 

0.029 

65 nm CMOS 

3.3.3 MEMS Oscillato r Characteri zati on 

3.3.3. 1 Open-loop measurements 

To confirm that sufficient loop gain was present for the oscillation, the resonator was 

connected to the TIA in open-loop configuration under vacuum, and the frequency and 
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Input available power ( dBm) 

Figure 3. 10: Measured TIA gain for different input power levels, outlining the 1-dB 

compression point. 

phase responses were measured using a Keysight E5061 B VNA. As illustrated in Figure 

3.6, the input and output ports of the VNA were connected to the differentiai inputs of 

the resonator and the differentiai outputs of the TIA, respectively, through externat 

baluns which are used to convert between single-ended and differentiai signais . 

It is observed from Figure 3 .1 2 that the open-loop gain and phase shift at the resonant 

frequency of the resonator is higher than 0 dB and equal to 0°, respective! y, as formu­

lated in conditions ( 1.14) and ( 1.1 5), th us ensuring th at oscillation could be sustained 

in closed-loop. ln addition, the loaded Q-factor was measured from the open-loop gain 

bandwidth to be around 875,000. 

3.3.3.2 Closed-loop measurements 

The resonator and TIA were set in a closed-loop configuration (dashed lines in Figure 

3.6) and tested under vacuum to characterize the performance of the oscillator. 
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The phase noise measurements of the oscillator under vacuum are plotted in Figure 

3.11 for polarization voltages of 100 V and 200 V. The near-carrier phase noise at a 

10 Hz offset was measured to be approximately of -50 dBc/Hz and of -70 dBc/Hz 

at polarization voltages of 100 V and 200 V, respective! y. At an offset of 1 kHz, the 

phase noise was measured to be of - 120 dBc/Hz at both polarization voltages. At a 

polarization voltage of 100 V, the the TIA flicker noi se dominates the close-ta-carrier 

phase noise. However, at a polarization voltage of 200 V, the close-ta-carrier phase 

noise is deteriorated by the resonator non-linearity (Li et al., 20 15). This results in 

the phase noise in the close-ta-carrier region to be improved by rv20 dB when VP is 

decreased. At farther frequency offsets, the phase noise reaches a floor of -127 dBc/Hz 

and is dominated by the TIA noise. 

These phase noise measurements translate in time-domain jitter values. The RMS in­

tegrated phase jitter (from 12kHz to 20 MHz) is equal to 14 ps. Short-term stability is 

an importance performance criteria of the oscillator and is a measure of its frequency 

stability. The frequency stability of the resonator is illustrated in Figure 3.13. The os­

cillator shows a broadening of the frequency output over a five-minute time-span. Note 

that the frequency stability is improved when the AGC is used, from ± 1.04 ppm to 

± 0.25 ppm, as this ensures that the non-linearity of the resonator is not exerted. 
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Figure 3.11: Measured phase noi se in vacuum for po1ari zation voltages of 100 V and 
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To allow for a representative comparison, two figure-of-merits FOM2 (see (2.17)), and 

FOM3, are used to evaluate the overall MEMS oscillator performance in terms of 1) 

phase noise and power consumption, and 2) phase noise floor and motional resistance. 

The expression of FOM3 is given by (Seth et al., 2012) 

FOM3 = kT j"z Rz 
PN Floor x Pvc 0 

m > 
(3.6) 

lt can be noticed that proposed FOM3 is used to evaluate the low phase noise enabled 

by the TIA while considering the high resonator motional resistance (Seth et al., 2012). 

The calculated FOM2 and FOM3 values for different MEMS oscillators based on elec­

trostatic resonators in the literature are listed in Table 3.2. As can be seen, the MEMS­

based oscillator demonstrated in this work has the best figure-of-merits IFOM2 1 and 

FOM3 when compared to others (Seth et al., 2012; Lin et al. , 2004b; Sundaresan et al., 

2006; Chen et al., 2013; Li et al., 2015; Huang et al. , 2008) illustrating the performance 

of the proposed oscillator. lts close-to-carrier phase noise is notably lower as a result 

of the low noise of the TIA and the mitigation of the resonator non-linearity. 

3.4 Conclusion 

This paper presented a MEMS oscillator based on a Lamé-mode capacitive MEMS 

resonator and a fully differentiai high gain TIA. The TIA was fabricated in a 65 nm 

CMOS process from TSMC and consumes 0.9 mW from a 1-V supply. An RGC input 

stage was used in this work to benefit from high gain, wide bandwidth and lower input 

impedance which make it suitable for oscillators based on capacitive MEMS resonators . 

The TIA can reach a maximum gain of around 98 dBD and hasan adjustable bandwidth 

with a maximum bandwidth of around 142 MHz. The input-referred current noise of 

the TIA was measured below 15 pAJVJiZ in the mid-band. 

The proposed TIA was integrated with an 18-MHz Lamé-mode MEMS resonator to 

implement an oscillator. The presented MEMS oscillator achieves a phase noise of 
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-120 dBc/Hz, at a 1-kHz offset and the phase noi se floor is of -127 dBc/Hz. The 

oscillator exhibits a superior figure-of-merit relative to the state-of-the-art in terms of 

power consumption and phase noise. 





CONCLUSION 

In this thesis, the realization of CMOS transimpedance amplifier capable to interface 

with series-resonant MEMS oscillator applications was studied. First, a Verilog-A 

madel for a clamped-clamped bearn resonator was presented where electrical and me­

chanical non-linear effects were exposed. Moreover a transimpedance amplifier de­

signed in 0.13 J.Lm CMOS was implemented with the madel and MEMS-based oscillator 

simulation performances were done. The main goal of this work was to design two mi­

cromechanical reference oscillators based on bath piezoelectric and capacitive MEMS 

resonators. The MEMS resonators presented here were developed in previous works 

(Eisayed & Nabki , 2017; Elsayed et al., 20 16). Moreover, two transimpedance ampli­

fier designs were studied in details in which frequency and noi se analyses were devel­

oped for tradeoff condiseration. The first design was interfaced with the Lamé-mode 

capacitive resonator (Elsayed & N abki, 20 17). This design was characterized with 

higher gain in arder to compensate resonator's lasses, thereby sustaining oscillation. A 

regulated cascade (RGC) topology was used as an input stage to benefit from high gain 

with lower input stage and power consumption. The second transimpedance amplifier 

was interfaced with bulk-mode di sk piezoelectric resonator (Elsayed et al., 20 16). This 

design had a lower gain since the motional resistance of piezoelectric resonators is low. 

The input stage of the second design was based on RGC topology mixing with common 

source active feedback advantage topology in which lower input-referred current noi se 

and larger bandwidth were achieved. The architecture of transimpedance amplifiers 

was fully differentiai and was characterized with an adjustable gain and bandwidth sep­

arately feature. Finally, the measured performances of MEMS-based oscillators were 

demonstrated and compared with state-of-the-art oscillators. Proposed MEMS-based 
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oscillators offered superior figure-of-merit in terms of power consumption and phase 

noise. 

Future research will be focused on modeling Lamé-mode and disk resonators for further 

non-linearity effect consideration. Also MEMS switch will be used in MEMS-based 

oscillator to select from multiple resonators interfaced with the TIA in one single chip. 



APPENDIX A 

CMOS CHIP AND CHARACTERIZATION EVALUATION TEST BOARD 

A.l Printed circuit evaluation board 

A Printed circuit board (PCB) was des igned in arder to characterize the transi mpedance 

amplifiers. The double sided PCB shawn in Figure A.l and Figure A.2 was made 

with a standard 0.062 in ("' 1.5 mm) glass-reinforced FR-4 epoxy laminate and the 

final dimension was 10 x 15 cm2
. The different power supplies are provided from off­

chip low dropout (LDO) voltage linear regulators where their input power supplies are 

generated through one source path with available option of concocting to an external 

DC power supply or 3 x AAA batteries. 

A.2 CMOS Transimpedance amplifier chip 

A 48-pin QFN socket was used to place available CMOS chip packages for easier use. 

The micrograph of CMOS chip die is provided in Figure A.3 where TIAs were fabri­

cated using TSMC 65 nm process. The die has 48 pins with dimension of 1.5 x 0.7 mm2 

and contains two main different des igns for transimpedance amplifier. Each design was 

cloned in such a way for bath designs, every TIA's stage hasan external pin connection. 

It is noted that every design has a separate power supply pact . Thus, the design is se­

lected through PCB using two slide switchers. Finally, the 48-QFN functional diagram 

package is shawn in Figure A.4 and the pact description is illustrated in Table A.l. 
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Figure A. l: Evaluation board (a) photograph and (b) 3D top view. 

(a) (b) 

Figure A.2: Evaluation board (a) photograph and (b) 3D bottom view. 
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..,_--------1.5 mm--------+ 

Figure A.3: Micrograph of complete transimpedance ampli fier die fabricated in 65 nm 

CMOS process. 
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Figure A.4: Chip package pad layout functional diagram. 



Table A.l: Chip package pad descripti on. 

Pin No. Pinname Pin type Design consideration Description 

INI - 1+ Analog input Design 1-1 Positi ve CUITent input 

2 vss Power Shared Grou nd 

3 INI - 1- Analog input Design 1-1 Negati ve current input 

4 OUT ! - 1+ Analog output Design 1- 1 Positive voltage output 

5 vss Power Shared Grou nd 

6 OUT ! 1- Analog output Design 1- 1 Negative voltage output 

7 OUT ! - 2+ Analog output Design 1-2 Positive voltage output 

8 vss Power Shared Grou nd 

9 OUT ! 2- Analog output Design 1-2 Negati ve voltage output 

JO IN I - 2- Analog input Design 1-2 Negati ve current input 

Il vss Power Shared Ground 

12 INJ - 2+ Analog input Design 1-2 Positive current input 

13 lnput_Stage l Analog 110 Design 1-2 Input stage posi ti ve voltage output 

14 VGAI Analog l/0 Design 1-2 VGA positive voltage output 

15 VDDI 2 Power Design 1-2 1-V power supply 



Pin No. Pin name Pin type Design considerati on Description 

16 VDD_AGCl 2 Power Design 1-2 AGC 1-V power supply 

17 VBlAS_AGC_CMPR Biasing Shared Comparator Bias vo ltage 

18 VBlAS_AGC_PD Biasing Shared Peak detector bias voltage 

19 VBlAS_MPD_AGC_PD Biasing Shared current source bias voltage 

20 VREF_AGC Reference Shared Compara tor reference voltage 

2 1 VDD_AGC2_2 Power Design 2-2 AGC 1-V power supply 

22 VDD2_2 Power Design 2-2 1-V power supply 

23 VGA2 Analog 1/0 Design 2-2 VGA positi ve voltage output 

24 Input_Stage2 Analog 1/0 Design 2-2 Input stage positive voltage output 

25 OUT2_2+ Analog output Design 2-2 Positive voltage output 

26 vss Power Shared Ground 

27 OUT2_2- Analog output Design 2-2 Negative voltage output 

28 IN2_2- Analog input Design 2-2 Negative current input 

29 vss Power Shared Ground 

30 IN2_2+ Analog input Design 2-2 Positive current input 

31 OUT2 - 1- Analog output Design 2- 1 Negative voltage output 

32 vss Power Shared Ground -.) 
w 



-.] 

""" 
Pin No. Pin name Pin type Design consideration Description 

33 OUT2_ 1+ Analog output Design 2- 1 Posit ive voltage output 

34 IN2_ 1+ Analog input Design 2- 1 Positive current input 

35 vss Power Shared Grou nd 

36 IN2_1- Analog input Design 2- 1 Negative current input 

37 VDD2_ 1 Power Design 2- 1 1-V power supply 

38 VDD_AGC2 - Power Design 2- 1 AGC 1-Y power supply 

39 YCTRL_BW Anal og input Shared Adjust bandwith 

40 VREF _INPUT _C MFB Reference Design 2 Input Stage CMFB reference voltage 

4 1 VBIAS_INPUT Biasing Design 2 Input Stage CMFB bias voltage 

42 VBIAS_OUT Bias ing Shared output stage bias voltage 

43 VCTRL_A Control Shared YGA gain manua l control 

44 VR EF _ VGA_CMFB Reference Shared YGA CMFB reference vo ltage 

45 V BIAS_ VGA_CMFB Biasing Shared YGA CMFB bias voltage 

46 VBIAS_YGA Biasing Shared VGA bias voltage 

47 VDD_AGCI - 1 Power Design 1-1 AGC 1-Y power Supply 

48 YOD! - 1 Power Design 1-1 1-V power suppl y 
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