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ABSTRACT

This study examines the assimilation of near-surface wind observations over land to improve wind now-

casting and short-term tropospheric forecasts. A new geostatistical operator based on geophysical model

output statistics (GMOS) is compared with a bilinear interpolation scheme (Bilin). The multivariate impact

on forecasts and the temporal evolution of the analysis increments produced are examined as well as the

influence of background error covariances on different components of the prediction system. Results show

that Bilin significantly degrades surface and upper-air fields when assimilating only wind data from 4942

SYNOP stations. GMOSon the other hand produces smaller increments that are in better agreement with the

model state. It leads to better short-term near-surface wind forecasts and does not deteriorate the upper-air

forecasts. The information persists longer in the system with GMOS, although the local improvements do not

propagate beyond 6-h lead time. Initial model tendencies indicate that the mass field is not significantly

altered when using static error covariances and the boundary layer parameterizations damp the poorly bal-

anced increment locally. Conversely, most of the analysis increment is propagated when using flow-dependent

error statistics. It results in better balanced wind andmass fields and provides a more persistent impact on the

forecasts. Forecast accuracy results from observing system experiments (assimilating SYNOP winds with all

observations used operationally) are generally neutral. Nevertheless, forecasts and analyses fromGMOS are

more self-consistent than those from both Bilin and a control experiment (not assimilating near-surface winds

over land) and the information from the observations persists up to 12-h lead time.

1. Introduction

In a continuous effort to improve short-term wind

forecasts for different applications such as wind energy,

airport operations, and road safety to name a few, recent

studies proposed the assimilation of near-surface wind

observations over land in numerical weather prediction

(NWP) systems. Surface observations have smaller

correlations with the flow aloft compared to integrated

variables such as surface pressure. Their impact on an-

alyses varies according to the atmospheric boundary

layer (ABL) coupling with the upper air, which depends

on atmospheric stability. Stationary background error

covariances and simple balance relationships do not

capture this well. Indeed, improvements from the as-

similation of near-surface wind observations appear

to be more significant within an assimilation system

based on an ensemble Kalman filter (EnKF) rather

than a three-dimensional variational data assimilation

(3DVAR) system (Ancell et al. 2015) because EnKF

samples flow-dependent (in time and space) background
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error covariances. Pu et al. (2013) also showed that

the EnKF allows for a better spatial distribution of

the analysis increment over complex terrain. The

assimilation of near-surface wind observations with

flow-dependent background error covariances has the

potential to improve temperature, humidity and winds

profiles (Hacker and Rostkier-Edelstein 2007), but re-

sults are sensitive to the way flow-dependent error sta-

tistics are handled by the assimilation system (Hacker

et al. 2007; Pu et al. 2013). The impact of flow-dependent

background error covariances on the assimilation of

near-surface wind observations over land is encourag-

ing, but there are still issues that need to be resolved.

Although near-surface observations can constrain the

state of the ABL, it is not yet fully understood why the

wind observations only have a positive impact on very

short-term local forecasts (Hacker and Snyder 2005;

Rostkier-Edelstein and Hacker 2010; Zack et al. 2010,

2011; Ancell et al. 2011, 2015).

Near-surface wind observations sample finescale

structures not explicitly resolved by NWP models. Many

near-surface wind observations over land are available

from the global observing system but were not used in

most data assimilation systems until recently because

of the discrepancy between the characteristics of

the measured and forecasted variables. The model

misrepresentation of surface characteristics generates so-

called representativeness errors. Biases and representa-

tiveness errors limit the global influence of near-surface

wind observations on operational forecast systems

(Ingleby 2015). Winds over small islands, subgrid-scale

headlands, and over land throughout the tropics are still

excluded from the Met Office data assimilation system.

Similarly, the NCEP Rapid Update Cycle (Benjamin

et al. 2007, 2010) as well as the research group at Uni-

versity of Washington (Dirren et al. 2007; Ancell et al.

2011) use strict quality-control checks to reject observa-

tions likely affected by biases and representativeness

errors. Other operational centers [e.g., Environment

and Climate Change Canada (ECCC)] simply omit all

wind observations from land stations to prevent degrad-

ing the near-surface wind analyses due to biases and

representativeness errors.

Directly assimilating biased observations in a bias

blind system undeniably produces biased analyses (Dee

2005). Still, removing model biases prior to the assimi-

lation of surface observations only improves the analysis

and nowcasting capability as the forecast quickly returns

toward the model’s own bias (Ancell et al. 2011; Ancell

2012). As an alternative to improve the model forecast

representation in observation space, Bédard et al. (2013)
proposed a geostatistical observation operator based

on a multiple gridpoint approach called geophysical

model output statistics (GMOS).As discussed in Bédard
et al. (2015), this can alleviate issues associated with

representativeness and systematic error. GMOS attri-

butes higherweights to themost representative grid points

and takes into account the natural on-site variability to

better represent meteorological phenomena locally. It

corrects the stationary and isotropic components of sys-

tematic and representativeness errors associated with lo-

cal geographical characteristics (e.g., surface roughness or

coastal effects). UsingGMOS as the observation operator

in data assimilation improves the consistency between

background states and observations, which results in

smaller innovations and analysis increments than what

was obtained previously with a bilinear interpolation

scheme used for in situ observations (Bilin).

The objective of this paper is to understand the mul-

tivariate impact of near-surface wind observations over

land and assess the temporal propagation of their anal-

ysis increments. A description of the assimilation system

is presented in the next section including the GMOS

operator, the quality-control procedure, and the obser-

vation error characteristics for the surface wind data.

Section 3 presents simple assimilation experiments to as-

sess the impact of only assimilating near-surface wind

observations. A large set of analyses were performed by

using background states taken from a full assimilation

experiment with ECCC’s data assimilation system. These

simplified assimilation experiments provide a framework

to compare the impact of different assimilation strategies.

Systematic model initial tendencies are used to assess the

influence of the observation operator, the background

error statistics, and different components of the NWP

model (e.g., the boundary layer parameterization) on the

temporal evolution of the analysis increment. Section 4

presents observing system experiments (OSEs) in which

the cumulated impact of near-surface wind data over a

1-month period is assessed in an operational context.

Special cases in which the assimilation of near-surface

winds has a significant impact are examined. The paper

ends by presenting conclusions in section 5.

2. Experimental framework

The experiments presented in this study are based on

the global four-dimensional ensemble–variational data

assimilation system (4DEnVar) developed at ECCC

(Buehner et al. 2013, 2015). ECCC’s global de-

terministic prediction system (GDPS), based on the

Global Environmental Multiscale model (GEM; Côté
et al. 1998; Charron et al. 2012; Zadra et al. 2014), has

a relatively high resolution (0.358 3 0.238 latitude–

longitude resolution: ;25km), similar to the gridpoint

spacing employed in other studies on the assimilation of
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near-surface winds over land [e.g., 20 km in Benjamin

et al. (2007); 27 km in Pu et al. (2013); 25 km in Ingleby

(2015)]. The GDPS was chosen because it is well de-

veloped and it relies on well-calibrated flow-dependent

background error covariances from the operational

EnKF (Houtekamer et al. 2014). The higher-resolution

regional system was not used because its data assimila-

tion component is not fully cycled. Thus, it would not

have been possible to assess the cumulative impact of

observations. Moreover, using an incremental formula-

tion (Laroche et al. 1999; Gauthier et al. 2007; Buehner

et al. 2015), the global and regional analysis increments

are generated on the same global lower-resolution grid

with the same observations (only those located over the

domain of the model) and the same error statistics be-

cause high-resolution flow-dependent background error

statistics are still in development.

a. The data assimilation system

The operational 4DEnVar uses 4D ensemble-based

background error statistics that comprise a stationary

homogeneous (static) and a flow-dependent (dynamic)

component to produce spatiotemporal analysis in-

crements. The static component is estimated using the

National Meteorological Center (NMC, now known as

NCEP) method (Parrish and Derber 1992; Gauthier

et al. 1998) and the flow-dependent component uses 256

ensemble members from ECCC’s operational EnKF.

The resolution of the analysis increment is determined

by the resolution of the background error covariances

(i.e., 800 3 400 grid, ;50-km horizontal grid spacing).

As discussed in Laroche et al. (1999), if the innovations

are computed with respect to the high-resolution back-

ground state, then the analysis increments can be com-

puted at a coarser-resolution corresponding to the scales

resolved by the background error covariances without

any loss of information. The two background error

components are blended equally below 40hPa and

gradually weighted toward the static error statistics

above. The system can be run using only the static or the

EnKF background error components. This feature is

convenient to test the impact of the different back-

ground error components. More details on the 4DEnVar

can be found in Buehner et al. (2015).

b. Geostatistical observation operator

Forecast values at the nearest model grid points of a

surface weather station may not properly represent the

observations, especially if the station is located on

complex terrain or coastal sites. On the other hand,

among the surrounding grid points, there are generally

one or several points that are more representative of the

observing site. Thus, GMOS uses a set of geostatistical

weights to relate the most representative grid points

with the observation site. From Bédard et al. (2013), the

GMOSmultipoint linear regression (HGMOS), at the kth

station, is formulated as follows:

H
(k)
GMOS(x) 5 �

i

(A
i
(k)x

i
)1C(k), (1)

where x is either the latitudinal (u) or longitudinal (y)

modeled wind component (the regression is done in-

dependently for u and y), C (k) is the systematic error

correction coefficient, and the subscript i is the index of

the four closest grid points to the kth observing site in a

2 3 2 square pattern. The amplitude coefficients Ai
(k)

weight the surrounding grid points and adjust the fore-

cast variability to best fit the observations. The wind

speed and direction observations from SYNOP stations

(available every 3 h) are transformed into wind com-

ponents to compute two sets of statistical coefficients

[A
(k)
i and C(k)] at each station according to Eq. (1). The

least mean square error minimization algorithm is

applied for u and y independently by comparing the

observed wind components with corresponding short-

range (3–12h) wind forecasts produced twice a day by

ECCC’s GDPS. The forecasts used to train the obser-

vation operators and for the assimilation experiments

are generated with the same model configuration.

GMOS combines a multiple gridpoint approach with

statistical error corrections to take advantage of the corre-

lation between resolved and unresolved scales. By exten-

sion, if the surrounding grid points are only weakly

representative, the geostatistical coefficientswill converge to

zero and GMOS will give a reduced weight to the obser-

vation in theassimilation system(i.e., theobservation impact

on the analysis is reduced). Thus, GMOS implicitly char-

acterizes the stationary part of the representativeness error

of the observations. Consequently, quality-control criteria

based on a difference between modeled and observed sta-

tionheights (e.g., Pu et al. 2013)orbasedon large innovation

variances [as in NCEP’s Rapid Refresh (RAP) system] are

not used in this study. More details on the use of GMOS in

data assimilation can be found in Bédard et al. (2015).

c. Observation quality control

The quality control of the observations consists of a

gross error check, a background check, and a variational

quality control. Gross error and background checks are

also performed on the training dataset because GMOS

relies on the availability of good quality data to train

its statistical coefficients (Bédard et al. 2013, 2015).

Only the 5331 stations benefiting from a minimum of

2 months of data are considered because a GMOS op-

erator based on a 2 3 2 gridpoint stencil requires a
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minimum of 2 months of training data (Bédard et al.

2015). The background check is sensitive to the obser-

vation operator and it can bias the GMOS statistical

coefficients. Therefore, the coefficients are computed

and updated through an iterative process. From the

8 months of data in the training dataset available (No-

vember 2012–June 2013), 6 months are used to compute

the statistical coefficients (training dataset) and

2 months are kept for cross validation to evaluate the

statistical robustness of theGMOS operator at each site.

The coefficients are first computed using the training

dataset. Then they are used within the background

check of the next iteration to filter out erroneous ob-

servations and they are recomputed. This last step is

repeated until the GMOS coefficients converge. For

most stations, the coefficients rapidly converge toward

stable values (e.g., after two or three iterations). A

maximum of 10 iterations is allowed to accommodate

stations presenting fewer observations. Although the

typical sample size varies between 500 and 1500 obser-

vation reports per station, 37 stations did not converge

because the number of good observations is too small

(some stations do not provide data for some periods of

time, while many others only report irregularly). In

such a case, a slight change in the coefficients may alter

significantly the relative quantity of good data (from the

few available). These stations are blacklisted because

they cannot provide robust coefficients to the geo-

statistical operator. Still, because of a lack of observa-

tions at 205 of the sites, the estimatedGMOSoperator at

these sites was not sufficiently robust to provide a better

fit, as compared with Bilin, to the observations in the

cross-validation dataset. Those sites, along with sites

where the observation errors is above 5ms21 (147 sta-

tions) are blacklisted.

Although each experiment has its own quality control,

the Bilin experiment uses the same observing stations as

the GMOS experiment to ensure that all experiments

benefit from the same number of observations to

perform a fair evaluation. The quality control of the

observing stations allows for a high data recovery

(92.7%) and the resulting 4942 SYNOP stations are

shown in Fig. 1. All stations presenting sufficient train-

ing data to obtain robust GMOS coefficients are used

and all surface wind observations having wind speed

above 1ms21 are assimilated, provided that they pass

background and gross error checks (wind vanes have a

poor accuracy at low wind speed; Bédard et al. 2015).

d. Observation error statistics

GMOS reduces the representativeness part of the

observation error and removes the observation error

bias. Bédard et al. (2015) showed that it is possible to

diminish the global observation error statistics (so)

prescribed in the assimilation systemwhen using GMOS

rather than Bilin (from 1.98 to 1.79m s21). GMOS

considers local representativeness errors independently

for each observation site. In this case, the observation

error statistics can also be site dependent. The obser-

vation error variances (so
2) are computed at each site

from innovation variances using the optimal back-

ground error variances to be used in the assimilation

system [sb
2 for near-surface winds over land: as com-

puted in Bédard et al. (2015)] following

hf[y2H(x
b
)]2hy2H(x

b
)ig2i5s2

o 1s2
b , (2)

where observations y are compared with the back-

ground state xb using an observation operator H. Here,

h i stands for the statistical average. Figure 2 shows the

frequency distribution (0.05m s21 bin intervals) of the

computed site dependent observation error standard

deviation (STD) using GMOS for the 4942 sites con-

sidered in this study.

e. Forecast evaluation dataset

Observations and analyses are used to evaluate the

forecast departure bias and STD. Wind observations

from SYNOP stations are used to evaluate local near-

surface wind forecasts. Radiosonde profiles and analyses

are used to diagnose both the mass (humidity, temper-

ature, and geopotential height) and wind fields at vari-

ous vertical levels. Throughout this study, only scores for

wind speed and geopotential height are presented be-

cause of the following: 1) bias scores for temperature

and humidity are neutral, 2) the STD scores for tem-

perature and humidity are similar to those for geo-

potential height, and 3) the bias and STD scores for wind

components are similar to those for wind speed. While

the near-surface wind evaluation is performed globally,

upper-air diagnostics are only shown over Europe and

neighboring countries where the SYNOP station density

FIG. 1. Spatial distribution of the 4942 SYNOP sites considered

in this study (black dots). The rectangle refers to the area where the

upper-air evaluation is performed.
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and their impact are the highest (see Fig. 1). Figure 3

shows the 1487 SYNOP and 124 radiosonde stations

located in this area, which covers latitudes ranging from

308 to 708N and longitudes ranging from 108W to 508E.

3. Simplified assimilation experiments

The temporal propagation of the analysis increment

and the multivariate impact of the analysis on the fore-

casts are evaluated through data assimilation experiments

performed in a simplified and controlled environment.

Only wind data from surface stations over land are as-

similated. These noncycling experiments use the same

6-h background fields provided by a full assimilation

cycle that did not assimilate the near-surface wind data

over land (for an objective comparison). The different

experiments are described in Table 1.

Two observation operators (Bilin and GMOS) were

used to assimilate the near-surface wind observations.

The experiments are evaluated against the control run

(CNTRL) for which the forecasts are initiated from the

6-h background fields (i.e., no observations are assimi-

lated). The experiments assimilated only 10-m wind

speed and direction observations (after converting to

zonal and meridional wind components) every 3h from

4942 SYNOP stations globally distributed over land. The

hybrid formulation of 4DEnVar was used first. Then, to

test the impact of multivariate covariances from the

different background error components, other experi-

ments were performed using either the NMC or the

EnKF background error statistics. Each experiment was

conducted over a 1-month period (February 2011). The

analyses and subsequent 48-h forecasts were produced

twice daily at 0000 and 1200UTC. The resulting forecasts

were verified against the surface observations themselves

and radiosonde profiles. Also, ECCC’s digital filter was

turned off to avoid filtering the analysis increments.

a. Evaluation against near-surface wind observations

GMOS is typically used to postprocess near-surface

wind forecasts (e.g., in wind power applications). To

FIG. 3. (a) Spatial distribution of the 1487 SYNOP sites (black dots) located in the selected domain. This area is

densely observed and (b) also includes 124 radiosonde stations used for upper-air evaluation purposes (black stars).

FIG. 2. Frequency distribution of the near-surface wind obser-

vation error STD using the GMOS operator for the 4942 SYNOP

stations considered in this study.
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show the improvement in the postprocessing brought by

GMOS, Fig. 4 presents the evaluation results against

near-surface wind observations for the CNTRL experi-

ment, postprocessed using either Bilin orGMOS (square

and circle symbols, respectively). Figure 4 also presents

the forecast results for the BilinHybrid and GMOSHybrid

experiments (solid and dashed lines, respectively).

This comparison shows that using GMOS for post-

processingproduces significantly lowerwind speeddeparture

bias and STD compared to Bilin. The use of GMOS results

in a better agreement betweenmodel states and near-surface

windobservations from the same stations as those used in the

assimilation. For this reason and for consistency with the

forecast postprocessing tools, GMOS is used to evaluate

the surface wind forecasts against SYNOP observations.

Figure 4a also shows that the BilinHybrid experiment

degrades wind speed biases up to 30-h lead time. This

degradation is prevented when using GMOS and the

bias scores are comparable to those from the CNTRL

experiment. The bias score alone is not sufficient to

evaluate the impact of the assimilation. However, the

small analysis and forecast bias score differences be-

tween CNTRL and GMOSHybrid (postprocessed using

GMOS) indicate that GMOS performs an efficient bias

correction. As the assimilation algorithm assumes that

the background and observations are not biased, directly

assimilating biased observations (e.g., using Bilin)

have a detrimental impact on the analysis and forecasts:

the resulting analysis is biased toward the observations

and the forecast model drifts back to its own bias (Dee

2005). The relatively constant small bias depicted by the

dashed line suggests that observations, forecasts, and

analyses are more consistent when using GMOS for the

assimilation and forecast postprocessing.

Figure 4b shows that the assimilation of near-surface

wind observations is beneficial for the forecast error

STD, but only during the first 6 h. This is consistent with

the results of Ancell (2012) and Ancell et al. (2011, 2015).

While the Bilin experiment reduces the near-surface wind

speed STD by 0.07ms21 (at 0h) over the CNTRL ex-

periment, the reduction with GMOS is 0.13ms21.

To better understand why the forecast skill from

the assimilation of near-surface wind observation van-

ishes quickly, the mean evolution of the forecast differ-

ences between CNTRL and the experiments (kdV(t)k5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du2 1 dy2

p
), is shown in Fig. 5. Results are presented for

TABLE 1. Configuration of the seven simplified data assimilation performed. Each experiment is listed alongwith its own combination of

near-surface wind observation operator, background, and observation error statistics prescribed to the data assimilation system as well as

assimilated observations. It is also specified if the experiments are cycled or not.

Expt name Cycling

Surface wind observation

operator (over land)

Surface wind observation

errors (over land)

Background error

covariances

Observations

assimilated

CNTRL No — — — None

BilinHybrid No Bilin Homogeneous Hybrid SYNOP: Winds

BilinEnKF No Bilin Homogeneous EnKF SYNOP: Winds

BilinNMC No Bilin Homogeneous NMC SYNOP: Winds

GMOSHybrid No GMOS Site dependent Hybrid SYNOP: Winds

GMOSEnKF No GMOS Site dependent EnKF SYNOP: Winds

GMOSNMC No GMOS Site dependent NMC SYNOP: Winds

FIG. 4. (a) Wind speed departure bias and (b) STD as a function of forecast lead time for different experiments

(CNTRL, Bilin, and GMOS). Note that the CNTRL experiment is postprocessed using both Bilin and GMOS in

order to highlight the impact of the operator on postprocessing.
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different observation operators (Bilin and GMOS) and

background error statistics (Hybrid, NMC, and EnKF)

over the February 2011 period. It represents the evolu-

tion of the analysis increment obtained when assimilat-

ing only near-surface winds. Figures 5a and 5b show the

results for forecasts lead time ranging between 0 and

48h, while Figs. 5c and 5d emphasize the first 6 h of the

integration.

Figure 5 shows that GMOS generates smaller analysis

increments than Bilin. This can be observed for the ex-

periments using static, flow-dependent, or hybrid back-

ground error covariances. In all cases, a significant

amount of the Bilin increment vanishes in the first hours

of forecast, while a greater fraction of the GMOS in-

crement persists. In the case of the EnKF, themagnitude

of the initial increment is reduced by 14% during the

first forecast hour when using Bilin, and only 6%

with GMOS.

The analysis increments from the NMC experiments

experience an important reduction in the first hours of

the integration (so-called forecast convergence). Most

of the information from the observations is damped

because the analysis increments are substantially re-

duced. This is indicative of having imbalanced analysis

increments that only reach a balanced state after 3–6 h.

In contrast in the EnKF experiments, the forecasts only

slightly converge in the first hours of integration before

diverging due to the inherent nonlinear perturbation

growth. This suggests that the analysis increments are

better balanced. By construction, the results for the

hybrid case are intermediate, but are relatively similar to

NMC results because the static error variances are

larger than the flow-dependent variances from the

EnKF near the surface (Bédard et al. 2015).

To understand the impact of the different background

error statistics on the forecasts convergence, the mo-

mentum prognostic equation,

›V

›t
5T

adv
1T

cori
1T

pg
1T

vd
1T

ob
1T

hd
, (3)

is studied. The terms on the right-hand side of Eq. (3)

are the tendencies from advection (Tadv), Coriolis effect

(Tcori), pressure gradients (Tpg), vertical diffusion (Tvd),

FIG. 5. Forecast differences (kdV(t)k5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du2 1 dy2

p
) betweenCNTRLand the experiments [(a),(c)Bilin and (b),(d)

GMOS] using different background error covariances (Hybrid, NMC, and EnKF). Results are presented for the

run launched at 0000 UTC 1 Feb. The results over the (top) whole 48-h forecast period and (bottom) only the

first 6 h.
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orographic blocking (Tob), and horizontal diffusion

(Thd) terms. Similar to Rodwell and Palmer (2007), the

systematic tendencies in the first time steps of the in-

tegration are used to measure the degree of balance of

the analysis increments and to assess the reduction of the

forecast differences observed in Fig. 5. Considering that

the analysis increment (dV) is small, its evolution can be

related to the tendency differences between two fore-

casts, one that uses the background (Vb) as initial con-

ditions (CNTRL) and the other using the analysis (Va).

Given that dV 5 Va 2 Vb at t 5 0, then

›(dV)

›t
’

›V
a

›t
2

›V
b

›t
5 d

�
›V

›t

�
. (4)

Combining Eqs. (3) and (4) allows attributing the in-

fluence of individual physical processes to the evolution

of the analysis increment. This can explain the conver-

gence of the forecasts during the first hours of model

integration.

Each component of Eq. (3) is computed at every sta-

tion and every model time step for the first 6-h forecasts

of each experiment. The scalar projection of the differ-

ences of these tendencies onto dV,

�����d
�
›V

›t

�
kdV

�����5
d

�
›V

›t

�
� dV

kdVk , (5)

where the operator � denotes a dot product, is calculated
and averaged over the 4942 stations. Equation (5) is

used to show the parts of d(›V/›t) that project onto the

analysis increment. Figure 6 shows the monthly mean

influence of each component of the tendencies on dV

[as computed in Eq. (5)] for the GMOSNMC and

GMOSEnKF experiments. The advection, Coriolis effect,

and horizontal diffusion terms are negligible compared

to the other terms. Only the total tendency as well as

pressure gradient, vertical diffusion, and orographic

blocking tendencies are presented in Fig. 6.

Figure 6 shows that the GMOSNMC case leads to

substantially more vertical diffusion during the first

model time steps than the GMOSEnKF case. The vertical

structure of the wind correlation with near-surface wind

is similar on average for both cases (not shown). How-

ever, Bédard et al. (2015) showed that the EnKF wind

error variances become small near the surface whereas

the NMC near-surface wind error variances remain

high. Thus, the GMOSNMC case produces stronger wind

increments near the surface. The formulation of the

vertical diffusion scheme (Mailhot and Benoit 1982;

Benoit et al. 1989) is sensitive to changes in the nominal

wind speed at the model boundary (e.g., lowest prog-

nostic level) as it is directly linked to the wind shear.

Also, the orographic blocking scheme [a typical form

drag formulated following Lott andMiller (1997); Zadra

et al. (2003)] is locally more active in the GMOSNMC

experiment (Fig. 6). This tendency is sensitive to near-

surface wind increments as it is proportional to the

square of the wind speed. Consequently, the relatively

large near-surface wind increments from theGMOSNMC

experiment generates more vertical diffusion and oro-

graphic drag than the GMOSEnKF experiment.

Figure 6a also shows that the near-surface wind ob-

servations have limited influence on the pressure gra-

dient force (square symbols) when using the static

background error covariances. The NMC background

error covariances include the coupling between wind

and mass fields near the surface (i.e., Ekman spiral).

FIG. 6. Contribution of themain terms of Eq. (3) on evolution of the forecast difference betweenCNTRL and the

experiments: (a) GMOSNMC and (b) GMOSEnKF. Results for advection, Coriolis effect, and horizontal diffusion

are omitted as their influence is small compared to the pressure gradient, the vertical diffusion, and orographic

blocking.
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However, single-observation experiments suggest that

the large-scale homogeneous and isotropic mass in-

crements from nearby stations are not always consistent

with each other due to the inhomogeneous and non-

isotropic nature of the near-surface flow characteristics

(not shown). In such cases, the interaction between

nearby mass increments is likely to reduce the effective

surface pressure increments, as observed in Fig. 6a. In

this case, the vertical diffusion dominates during the first

hour of model integration. The large vertical diffusion

and orographic blocking tendencies damp the un-

balanced analysis increments (dashed line and circle

symbol, respectively) to reach a balance with the pres-

sure gradient tendency. It explains why the forecast

difference between CNTRL and the GMOSNMC ex-

periment decreases sharply over time in Fig. 5. On the

other hand, the EnKF error statistics are flow de-

pendent. It is more likely to provide coherent surface

wind and pressure cross correlations for nearby stations.

Figure 6b shows that GMOSEnKF experiment produces

an effective pressure gradient force (square symbol) that

balances the small vertical diffusion (dashed line) and

orographic blocking (circle symbol) tendencies right

from the start and the increments persist over time

[jjd(›V/›t)Projjj ’ 0]. Consequently, most of the in-

formation extracted from the observations is propa-

gated within the forecast when using the EnKF

background error covariances, as shown in Fig. 5

(dashed lines).

Overall, the results show that large near-surface

background error variances can generate a significant

amount of vertical diffusion and orographic drag. Unless

counterbalanced by proper pressure gradient forces, the

atmospheric boundary layer parameterization schemes

(i.e., vertical diffusion and orographic blocking) cause

the local wind increments to be quickly damped. The use

of flow-dependent background error statistics providing

coherent multivariate correlations and variances is thus

crucial to produce sustainable analysis increments in the

lower troposphere. The general benefit of hybrid data

assimilation (Buehner 2005) is not questioned here.

However, it appears that the homogeneous and isotropic

component of the background error statistics is partic-

ularly ill-adapted for the assimilation of near-surface

wind observations over land, which limits their impact

on forecasts.

b. Evaluation against upper-air observations

Independent radiosonde profiles from 124 stations

(see Fig. 3b) are used to diagnose the forecast errors of

both wind speed and mass fields at different levels. As

mentioned earlier, the upper-air diagnostics are per-

formed over Europe because this area possesses the

highest SYNOP station density. Figures 7 and 8 present

vertical profiles of observation minus forecast departure

bias and STD for the February 2011 period. Figure 7

only presents the 24-h lead time biases because results

from the 12-, 36-, and 48-h lead times are similar. On the

other hand, Fig. 8 displays the forecast departure STD at

all lead times to fully appreciate the temporal evolution

of the information brought in by near-surface wind ob-

servations. Since the focus of this study is the lower

troposphere, only results from the surface up to 500 hPa

are presented.

The assimilation of near-surface wind using Bilin

significantly degrades wind speed and geopotential

height biases (Fig. 7), as well as the geopotential height

STD scores at all vertical levels (Fig. 8b). Differences in

Fig. 8a are not statistically significant, except at 48 h

where the GMOS wind speed STD score outper-

forms those from the Bilin and CNTRL experiments.

BilinHybrid negative impact on the geopotential height

FIG. 7. The 24-h forecast departure bias fromhybrid runs as evaluated against radiosonde observations over Europe

for (a) wind speed and (b) geopotential height.
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field is already present in the analyses. It is likely related

to the introduction of wind observations with significant

biases and representativeness errors that can degrade

the surface pressure fields through the multivariate

background error statistics. These results are consistent

with previous studies (e.g., Benjamin et al. 2007, 2010;

Ingleby 2015) and it explains why most operational

centers do not assimilate near-surface wind observations

over land.

Figures 7 and 8 also show that GMOSHybrid results are

generally neutral when compared to the CNTRL ex-

periment. It suggests that using GMOS to account for

representativeness errors and biases allows assimilating

near-surface wind observations without negatively im-

pacting the upper-air wind biases and the surface pres-

sure field (and thus geopotential height bias and STD)

through the multivariate background error covariances.

Consequently, the degradation previously observed

(when using Bilin) can be avoided with the use of the

GMOS operator.

4. Experiments with the operational system

OSEs were performed to evaluate the cumulative

impact of assimilating SYNOP wind data with the two

different observation operators (Bilin and GMOS) in an

operational context. The experiments use ECCC’s op-

erational GDPS (including 4DEnVar). The main char-

acteristics of these experiments are presented in Table 2.

In these experiments, all observations assimilated in

the GDPS were used, which include those from radio-

sondes, aircraft, wind profilers, land stations, ships, buoys,

scatterometers, atmospheric motion vectors, satellite-

based radio occultation, microwave, and infrared satel-

lite sounders/imagers. Wind observations from the 4942

SYNOP stations over land are also assimilated in

GMOSOSE and BilinOSE experiments. Although the use

of flow-dependent error statistics is beneficial for the as-

similation of near-surface wind data, previous results

fromBuehner (2005) showed that the assimilation system

more generally benefits from the hybrid representation of

the background error covariances. Therefore, the oper-

ational 4DEnVar configuration using hybrid covariances

was selected (Buehner et al. 2015). In total, three OSEs

were performed. Each experiment was carried out over a

5-week period (24 January–28 February 2011). The ex-

periments are evaluated over the February 2011 period

only. The 48-h forecasts were produced twice a day (at

0000 and 1200 UTC) and were verified against surface

stations, radiosonde profiles, and analyses from the same

forecast system (i.e., the so-called own analyses).

a. Evaluation against near-surface wind observations

Near-surface wind observations from the same 4942

SYNOP stations as those used in the assimilation were

used to diagnose the observation impact on local short-

term wind forecasts. Figure 9 presents the wind speed

forecast departure bias and STD as a function of forecast

lead time for the February 2011 period after being

postprocessed with GMOS. Figure 9a clearly shows that

Bilin has a detrimental effect on biases that persist up to

12-h lead time. This degradation is prevented when us-

ing GMOS such that GMOSOSE results are comparable

to those from the CNTRLOSE experiment.

Figure 9b shows that CNTRLOSE near-surface wind

departure STD rapidly decreases, and then grows

smoothly (after a 3-h forecast lead time). As CNTRLOSE

does not assimilate near-surface winds over land, in-

formation on near-surface winds is mostly inferred from

upper-air wind observations and from observations

FIG. 8. Forecast departure STD from hybrid runs as evaluated against radiosonde observations over Europe for

(a) wind speed and (b) geopotential height. (from left to right) Results are shown from 12-, 24-, 36-, and 48-h

forecasts, respectively.
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describing the mass fields (e.g., temperature, humidity,

surface pressure) through the background error corre-

lations at ;50-km resolution. In such case, the analysis

cannot depict finescale local effects as observed by near-

surface wind observations and it is up to the model to

develop them during the first hours of forecast, which

explains the error reduction between 0 and 3h. This error

reduction is avoided when assimilating near-surface

wind observations (full and dashed lines).

Figure 9b also shows that the assimilation of near-

surface wind observations is beneficial for very short-

term local wind predictions. However, this positive

impact decreases in time and is only significant up to 6h

because the vertical diffusion and orographic blocking

schemes damp the surface wind increments during the

first hours of the model integration. Still, the GMOSOSE

and BilinOSE experiments, respectively, improve the fit

of near-surface wind analyses to the observations (STD)

by 0.16 and 0.10ms21 over the CNTRLOSE experiment.

The fact that GMOS was used in the verification of the

forecasts of the BILIN experiment explains the large

difference at 0 h between the GMOS and BILIN exper-

iments. However, there is little difference between the

STD scores between the two experiments beyond 3h.

As expected, such improvements are small compared

to the improvement obtained from using GMOS as a

postprocessing module (Fig. 4) because the background

states and analyses carry information from all assimi-

lated observations. Still, in theOSE context, the fact that

near-surface wind observations can further improve

low-level wind analyses and very short-term forecasts

(in the presence of all operationally assimilated obser-

vations) can be helpful for applications that rely on very

short-range forecasts.

b. Upper-air evaluation

The forecast of both wind and mass fields is evaluated

at different levels over Europe and adjacent countries.

The 124 radiosonde stations presented in Fig. 3 are used

to compute the upper-air scores against observations.

Analyses from the experiments (i.e., the so-called own

analyses) are also used to assess the forecast. Unlike the

forecast verifications against observations, the score

against own analyses cannot be used to diagnose short-

range forecast skills because the forecast errors have a

strong imprint of the analysis error. Nevertheless, it is

useful to assess how consistent they are with each other.

Balance and higher consistency in itself is desirable, but

does not indicate that the forecasts are more accurate.

As pointed out by Rodwell and Palmer (2007), imbal-

anced initial conditions should experience a rapid spin-

down associated with relaxation, through diffusion, to

TABLE 2. Configuration of the three OSEs performed. Each experiment is listed along with its own combination of near-surface wind

observation operator, background and observation error statistics prescribed to the data assimilation system, as well as assimilated

observations. It is also specified if the experiments are cycled or not.

Expt name Cycling

Surface wind observation

operator (over land)

Surface wind observation

errors (over land)

Background error

covariances

Observations

assimilated

CNTRLOSE Yes — — Hybrid All

BilinOSE Yes Bilin Homogeneous Hybrid All 1 SYNOP winds

GMOSOSE Yes GMOS Site dependent Hybrid All 1 SYNOP winds

FIG. 9. Wind speed (a) departure bias and (b) STD as a function of forecast lead time for different experiments

(CNTRLOSE, BilinOSE, and GMOSOSE). Note that the GMOS operator is also used for postprocessing in all

experiments.
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the model’s own balance. Well-balanced cases, where

the analysis increment is propagated in time, should

provide forecasts that are more consistent with analyses,

as the information persists in the system, than un-

balanced cases, where the increments can be diffused by,

for example, the ABL parameterizations.

The weather over the area of interest (Fig. 3) in

February 2011 is examined to interpret the verification

scores. A careful inspection of the meteorological con-

ditions indicates that three low pressure systems moved

across the evaluation area during the first two weeks of

February. Figure 10 shows the sea level pressure for

those three cases (at 0600 UTC 5, 8, and 11 February).

More specifically, in each case the depression developed

over the Norwegian Sea and moved over Scandinavia

and the Baltic Sea before hitting Russia. Then a large

anticyclone formed over Russia and northern Europe

and remained quasi stationary during the second half of

February.

The scores against upper-air observations from both

experiments (GMOSOSE and BilinOSE) indicate that

near-surface wind observations have a neutral impact on

short-term tropospheric forecasts (not shown). As op-

posed to the verification scores against radiosondes, the

verification scores against analyses were calculated for

the whole area of interest without putting emphasis on

more densely observed regions. They provide a com-

plementary perspective that gives a more unified view of

the impact to capture the influence of near-surface wind

observations on forecasts over regions not well ob-

served. The forecast evaluation against own analyses

shows that the GMOSOSE forecasts and analyses are

slightly more self-consistent than those from the

CNTRLOSE experiment and BilinOSE produces fore-

casts and analyses that are less self-consistent (not

shown). Although the differences are not statistically

significant, results are coherent with results shown in

Fig. 5 where a significant part of the increment vanishes

in the first hours of the forecasts from the Bilin experi-

ment, while a greater fraction of the increment persists

in the forecasts from the GMOS experiment.

The spatial and temporal distribution of the verifica-

tion scores against analyses is studied to assess the dif-

ference between the experiments (GMOSOSE and

BilinOSE) and CNTRLOSE. The geographical distribu-

tion of the score differences is shown in Fig. 11. Results

for 12-h forecasts of 10-m wind speed are presented for

the February 2011 period. It shows that GMOSOSE and

BilinOSE scores are neutral over southwestern Europe

(light gray shades) because this region is already densely

observed by radiosonde stations (see Fig. 3) and char-

acterized by low synoptic activity during the evaluation

period. This is consistent with the neutral upper-air

FIG. 10. Sea level pressure (hPa) over Europe valid at 0600 UTC

(a) 5 Feb, (b) 8 Feb, and (c) 11 Feb.
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evaluation in this most densely observed region (e.g.,

western Europe). Figure 11a indicates that BilinOSE

forecasts and analyses are less self-consistent (20.5

to 21m s21) than those from CNTRLOSE for the area

impacted by synoptic activity during the evaluation pe-

riod (white shades). In this case, the use of Bilin is det-

rimental to the assimilation system, probably because of

biases and representativeness errors from coastal sites,

as suggested by Ingleby (2015) and Bédard et al. (2015).

On the other hand, Fig. 11b shows that GMOSOSE

forecasts and analyses are generally more self-consistent

(0.5m s21) than those from CNTRLOSE (dark gray

shades). Figure 3 shows that there are few radiosondes

in this area and one has to rely on verification against

analyses, which shows a positive impact from near-

surface wind observations over less densely observed

areas for the GMOSOSE case, as suggested in Dong et al.

(2011). There are many SYNOP stations in the area that

can provide useful information to the assimilation sys-

tem when accounting for biases and representativeness

errors with the GMOS operator.

Figure 12 presents a Hovmöller diagram to assess the

wind speed forecasts and analyses self-consistency as a

function of longitude and time (averaged over latitudes

308–708N). It presents the differences between the ex-

periments (BilinOSE or GMOSOSE) and CNTRLOSE

12-h forecast departure STD against own analyses. The

Hovmöller diagram shows that results are generally

neutral except during the first two weeks of February

between longitudes 208 and 408E where three light-

colored bands oriented from upper left to lower right

depict negative impacts (20.5m s21) moving from west

to east for BilinOSE on 5, 8, and 11 February (Fig. 12a).

For the GMOSOSE case (Fig. 12b), a dark band oriented

from upper left to lower right shows positive impacts

(0.5m s21) between longitude 308 and 408E on 8 Febru-

ary. For both experiments, the SYNOP wind observa-

tions impact coincides with the depressions described

previously.

These results suggest that the analysis increments are

propagated by the NWP model and allow near-surface

wind observations over land to have an impact on

forecasts downstream of the three low pressure systems

considered. For those specific cases, GMOSOSE pro-

duces forecasts that verify better against analyses from

the same NWP system (produced using SYNOP wind

observations along with all observations assimilated

operationally).

5. Summary and conclusions

The long-term goal of this study is to evaluate the

improvements to short-term tropospheric forecasts and

wind nowcasts from assimilating near-surface wind ob-

servations over land using an improved observation

operator (GMOS) in ECCC’s 4DEnVar. Specifically,

the multivariate impact of near-surface wind observa-

tions on analyses and forecasts, the spatiotemporal

propagation of the information in the NWP system and

the influence of different components of the assimilation

and prediction systems were examined.

First, simplified experiments were performed in which

only near-surface winds were assimilated using the same

background states and using either the Bilin or GMOS

observation operator. The results show that Bilin sig-

nificantly degrades surface and upper-air fields. GMOS,

on the other hand, produces smaller increments that are

in better agreement with themodel state confirming that

FIG. 11. Mean 12-h forecast departure STD (against own analyses) differences (control minus experiment) over

Europe. Results for 10-m wind speed (m s21) are averaged for the month of February 2011. Results for the

(a) BilinOSE and (b) GMOSOSE experiments. Positive (negative) values are represented by dark (light) colors. A

positive value (dark gray) indicates that the experiment is better than CNTRLOSE, while the light gray color

indicates neutral results.
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GMOS is a more suitable observation operator. It leads

also to better short-term near-surface wind forecasts

than Bilin and does not deteriorate the upper-air fore-

casts. The information persists longer in the system with

GMOS, although the local improvements do not prop-

agate beyond 6-h lead time. Initial model tendencies

reveal that the spatiotemporal propagation of the in-

formation is limited by the quality of the background

error covariances. The vertical structure of the station-

ary error statistics produces large near-surface wind in-

crements that cause the forecast model to generate

significant amounts of vertical diffusion and orographic

drag. Its homogenous and isotropic characteristics are

also ill adapted and the interaction between nearby

observing stations reduces the overall surface pressure

increments. The resulting increments are therefore un-

balanced and they are quickly damped by the large

vertical diffusion and orographic blocking tendencies.

On the other hand, the flow-dependent error statistics

from the EnKF have a vertical structure that can gen-

erate small wind increments near the surface. This

avoids shocking the NWP system and producing strong

transients dissipated through vertical diffusion and

orographic drag. The flow-dependent background error

statistics of the EnKF modify both wind and mass fields

in a more coherent way, generating pressure gradient

forces that balance the diffusive forces from the ABL

parameterization schemes. The system is initially better

balanced and allows the increment to propagate further

in time within the forecast. The use of flow-dependent

background error statistics is critical to produce sus-

tainable impacts on the atmosphere by means of co-

herent correlations between wind andmass fields as well

as appropriate variance structure in the vertical.

OSEs in which wind data from SYNOP stations over

the globe are assimilated, along with all other observa-

tions, were carried out to assess the impact of near-

surface wind observations in ECCC’s operational

context. The evaluation against upper-air data suggests

that SYNOP wind observations have a neutral impact

on short-term tropospheric forecasts. Conversely, the

evaluation against own analyses shows that the forecasts

and analyses issued from the GMOSOSE experiment

are more self-consistent with than those from the

CNTRLOSE and BilinOSE experiments for 12-h forecast

lead times. This suggests that GMOS allows for a better

use of near-surface wind observations and the analysis

increments are propagated in time.

Near-surface wind observations have a limited influ-

ence aloft because the flow is decoupled at the top of the

ABL (Bédard et al. 2015). Also, a large quantity of ob-

servations is already assimilated in the current system

(12 million observations per day). These may be factors

limiting the observation impact on the full 3D NWP

model, and improvements on short-term tropospheric

forecasts are modest especially over already well-

observed areas. However, because of their relatively

low cost and their use for monitoring, safety, and cli-

matological needs, near-surface wind observations are

abundant (;30 000 stations over the globe). The results

of this study suggest that the use of GMOS renews the

possibility of providing useful information on low-level

flow from the assimilation of near-surface wind obser-

vations. Operational centers could start assimilating

near-surface wind observations over land using GMOS

to take advantage of the short-term wind forecasts im-

provements without degrading surface and upper-air

fields. Such features can be useful in aNWP system using

FIG. 12. Hovmöller diagram presenting the 12-h forecast departure STD (against own analyses) differences

(control minus experiment) over Europe. Results for 10-m wind speed (m s21) are presented through February

2011 for different longitude bands over Europe. Results for the (a) BilinOSE and (b) GMOSOSE experiments.

Positive (negative) values are represented by dark (light) colors. A positive value (dark gray) indicates that the

experiment is better than CNTRLOSE, while the light gray color indicates neutral results.
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short data assimilation windows. This is the scope of a

future study where ;20000 stations will be used in the

Rapid Refresh (RAP) system currently employed at the

National Centers forEnvironmental Prediction (NCEP),

and thereby result in larger forecast improvements.

With the objective of making a better use of near-

surface wind observations over land and improving their

impact on short-term tropospheric forecasts, future work

must focus on the improvement of background error

statistics. With the improvement of flow-dependent

background error covariances and the reduction of the

static error component in the hybrid schemes, the impact

of near-surface wind observationsmay propagate further

in time and space.
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