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1 Abstract 14 

Peat specific yield (SY) is an important parameter involved in many peatland hydrological 15 

functions such as flood attenuation, baseflow contribution to rivers and maintaining 16 

groundwater levels in surficial aquifers. However, general knowledge on peatland water 17 

storage capacity is still very limited, due in part to the technical difficulties related to in 18 

situ measurements. The objectives of this study were to quantify vertical SY variations of 19 

water tables in peatlands using the water table fluctuation method (WTF) and to better 20 

understand the factors controlling peatland water storage capacity. The method was tested 21 

in five ombrotrophic peatlands located in the St. Lawrence Lowlands (southern Québec, 22 

Canada). In each peatland, water table wells were installed at three locations (up-gradient, 23 

mid-gradient and down-gradient). Near each well, a 1 m long peat core (8 cm x 8 cm) 24 

was sampled, and sub-samples were used to determine SY with standard gravitational 25 

drainage method. A larger peat sample (25 cm x 60 cm x 40 cm) was also collected in 26 
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one peatland to estimate SY using a laboratory drainage method. In all sites, the mean 27 

water table depth ranged from 9 to 49 cm below the peat surface, with annual fluctuations 28 

varying between 15 and 29 cm for all locations. The WTF method produced similar 29 

results to the gravitational drainage experiments, with values ranging between 0.13 and 30 

0.99 for the WTF method, and between 0.01 and 0.95 for the gravitational drainage 31 

experiments. SY was found to rapidly decrease with depth within 20 cm, independently of 32 

the within-site location and the mean annual water table depth. Dominant factors 33 

explaining SY variations were identified using ANOVA. The most important factor was 34 

peatland site, followed by peat depth and seasonality. Variations in storage capacity 35 

considering site and seasonality followed regional effective growing degree days and 36 

evapotranspiration patterns. This work provides new data on spatial variations of peatland 37 

water storage capacity using an easily implemented method that requires only water table 38 

measurements and precipitation data. 39 

Key words: peatland, water storage, specific yield, water table fluctuation, drainage 40 

experiment 41 

2 Introduction 42 

Peatlands play important hydrologic functions by attenuating flooding by storing 43 

water during high precipitation events (Acreman and Holden, 2013), contributing to river 44 

base flows (Bourgault et al., 2014) and maintaining groundwater levels in superficial 45 

aquifers (McLaughlin et al., 2014). However, enhanced knowledge on quantification of 46 

water storage capacity is needed to better understand these peatland hydrological 47 

functions. In peatlands, peat storage capacity (S) strongly varies within the first meter and 48 

buffers water table fluctuations, flow velocities and evapotranspiration fluxes (White, 49 

1932). For example, when the water table is high, flow velocities and evapotranspiration 50 

fluxes increase; the opposite happens during low water table periods.  51 

In mineral aquifers, long-term water storage is also controlled by climatic forcing 52 

such as summer water deficits (Yeh et al., 2006), by anthropogenic activities such as 53 

groundwater extraction, and to a more limited extent by land drainage which can reduce 54 

aquifer recharge (Winter et al., 1998). Short-term changes occur mainly in response to 55 
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rainfall, pumping, and evapotranspiration fluxes (Healy and Cook, 2002; Geris et al., 56 

2015). These processes are also active in peatland ecosystems. They are especially 57 

important due to the contrasted values of S between the acrotelm and the catotelm 58 

(Ingram and Bragg, 1984). In addition, peat S also changes due to expansion and 59 

compression, which is a seasonal effect of water content variation (also named mire 60 

breathing; Price and Schlotzhauer, 1999), ice expansion in the peat, or a longer time scale 61 

effect of organic matter oxidation. Therefore, water table fluctuation does not occur only 62 

when air enters the specific yield (SY) as the water table declines. However, as a first 63 

approximation S is usually assimilated to SY (Price, 1996).  64 

Peat SY can vary by up to two orders of magnitude (0.01 – 1) within the first top 65 

50 cm (Vorob'ev, 1963; Holden, 2009; Dettmann and Bechtold, 2016). This buffers 66 

peatlands against both inundation and excessive drying (Waddington et al., 2015). SY has 67 

been quantified  based on field measurements using porous disk infiltrometers (Holden et 68 

al., 2001; Holden, 2009), rain-to-rise ratio (Letts et al., 2000; McLaughlin and Cohen, 69 

2014; Dettmann and Bechtold, 2016), tracer tests (Ronkanen and Klove, 2008), 70 

laboratory drainage experiments (Vorob'ev, 1963; Price, 1996; Rosa and Larocque, 71 

2008), and pressure chamber measurements (Moore et al., 2015). The rain-to-rise ratio 72 

method is equivalent to the water table fluctuation method (WTF; White, 1932) 73 

commonly used in aquifers to quantify groundwater recharge (Healy and Cook, 2002).  74 

The WTF method is a simple alternative to laboratory measurements. It has 75 

significant potential as an easily implemented, low-cost method to determine peat SY. 76 

Because peat deposits are heterogeneous (Baird et al., 2015) and compressible media 77 

where hysteresis is observed between water table rise and precipitation due to air 78 

encapsulation, gas bubble production, and unsaturated pore filling (Nachabe, 2002; 79 

Barton et al., 2006; Ramirez et al., 2015), we hypothesised that the WTF method is more 80 

adapted to peatland than conventional laboratory measurements. The use of the WTF 81 

method in peatlands, offers an excellent opportunity to upscale the understanding of 82 

water storage capacity using widely available data of water table and precipitation.  83 
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The objective of this research was to adapt the WTF method to quantify vertical SY 84 

variations in peatlands and better understand the factors controlling their water storage 85 

capacity. It is assumed that seasonal expansion and compression expansion of peat do not 86 

influence the short-term rain event-based calculation of SY. It is also assumed that 87 

changes in peat surface topography following a single rain event can be considered 88 

negligible. The WTF method was tested in five ombrotrophic peatlands located in the St. 89 

Lawrence Lowlands in southern Quebec (Canada), and results were compared to SY 90 

estimates from laboratory measurements on collected peat samples.  91 

3 Study sites 92 

The five studied peatlands (Large Tea Field – LTF, Sainte-Séraphine – SSE, Lac 93 

Cyprès – LCY, Victoriaville – VIC, Issoudun – ISO) are located in the southern part of 94 

the St. Lawrence Lowlands (Quebec, Canada) in three different watersheds 95 

(Châteauguay, Nicolet, and Du Chêne) (Figure 1). All sites are headwater peatlands 96 

formed in topographic depressions, except LCY, which is located on the flank of fine to 97 

medium aeolian sand deposits. All sites are characterized by a hummock and lawn 98 

microtopography without any surface pools. Hollows and mud bottom were found only at 99 

sites ISO and VIC.   100 

The five sites are set in different geological contexts, characterized by quaternary 101 

surficial sediments (marine clay, fluvial sandy silt, clayey silty till, aeolian fine to 102 

medium sand, and regressive marine sand) deposited following the last deglaciation since 103 

12,3 kaBP (Richard and Occhietti, 2004) (Table I). Peat thickness vary between 40 cm 104 

and 522 cm with maximum of 190 cm in LCY, 522 cm in SSE, 493 cm in LTF, 345 cm 105 

in VIC and 454 cm in ISO. Their surface range between 0.5 and 6.0 km
2
 (Table 1) and 106 

they have developed as complexes with a central ombrotrophic section. Lateral 107 

minerotrophic conditions were found only at site SSE.  108 

Mean annual precipitation (reference period: 1981 – 2010) for the Châteauguay 109 

(LTF), Nicolet (SSE, LCY, VIC), and du Chêne (Issoudun – ISO) watersheds varies 110 

between 965 mm (Châteauguay) and 1114 mm (Nicolet), with the driest conditions  111 

recorded in the LTF region specifically. For all sites (Figure 2), minimum monthly 112 
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precipitation occurs during the winter, and maximum monthly precipitation occurs during 113 

the summer (Environment Canada, 2015). Mean annual temperature (for the same 114 

reference period as for mean annual precipitation) varies between 4.8 °C and 6.7 °C, with 115 

the lowest values in the ISO region. For all sites, minimum and maximum temperatures 116 

are recorded in January and July respectively (Figure 2). Effective growing degree days 117 

(GGD>0) (reference period: 1974-2000) varies between 1800 and 2000 for the 118 

Châteauguay watershed, between 1600 and 1800 for the Nicolet watershed, and between 119 

1400 and 1600 for the du Chêne watershed (Atlas agroclimatique du Québec, 2012) 120 

(Table I).  121 

Vegetation surveys performed at all sites show that Sphagnum spp. (Sph sp.), Kalmia 122 

angustifolia (Kal ang), and Eriophorum vaginatum (Eri vag) are the main species. 123 

Andromeda glaucophylla (And gla), Aulacomnium palustre (Aul pal), Chamaedaphne 124 

calyculata (Cha cal), Carex spp. (Car sp.), Rhododendron groenlandicum (Rho gro), and 125 

Polytricum strictum (Pol str) were also found, albeit sparsely (Larocque et al., 2015; 126 

Lefebvre et al., 2015; Pasquet et al., 2015). Climatic conditions differ slightly from west 127 

to east, in terms of effective growing degree days and ecoregion vegetation assemblages, 128 

from the hickory and maple forest (Carya cordiformis and Acer saccharum) in the 129 

western section (LTF), to the lime tree and maple forest (Tilia americana and Acer 130 

saccharum) eastward, which supports the slightly colder and wetter conditions of the ISO 131 

site. 132 

4 Methodology 133 

4.1 Site instrumentation 134 

Elevation data were obtained for the five sites from a Digital Elevation Model 135 

(DEM; 1 x 1 m resolution) derived from airborne light detection and ranging (LiDAR) 136 

surveys. Absolute errors on elevations vary between 5 and 48 cm (Hodgson and 137 

Bresnahan, 2004; Aguilar et al., 2010), with the smallest errors for open areas. Based on 138 

the DEM, three locations were identified in each peatland (up-gradient, mid-gradient, and 139 

down-gradient) for the installation of wells (Figure 3). Distances between up-gradient and 140 
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down-gradient wells vary between 123 and 760 m with mean slopes from 0.08% to 141 

0.24% (Table 1). 142 

Water table variations were recorded at these three locations within each site using 143 

wells constructed from 3 cm OD PVC pipes, with 2 m long intakes perforated with 144 

0.0254 cm slits from top to bottom, and sealed at their base. All wells were inserted into 145 

Sphagnum lawn microforms. Sites were also equipped with three level loggers (Solinst), 146 

a barometric logger (Solinst), and a rain gauge tipping bucket (Hobo). The level loggers 147 

and barometric loggers were attached to the well screw tops. Water table variations, 148 

barometric pressure, and precipitation were measured every 5 minutes from June 2014 to 149 

August 2015 (with the exception of the winter months between November 2014 and 150 

April 2015). Sites were also instrumented with a metal bar at down-gradient locations to 151 

monitor changes in topography due to peat expansion and contraction. These changes 152 

were monitored three times during the study period (spring, summer, and autumn) using a 153 

reference level located on the metal bars.   154 

4.2 Small cube experiment  155 

Five 1 m long peat cores were sampled using a Box corer (8 x 8 cm) (Jeglum, 1991) 156 

at the up-gradient location of each studied peatland. Sampling compression in the 157 

acrotelm was 10 cm for LTF, 12 cm for SSE, 20 cm for LCY, 8 cm for VIC, and 2 cm for 158 

ISO, and were proportional to the acrotelm thickness. Cores were cut into two 50 cm 159 

sections using a sharp knife, wrapped in cellophane, and stored at 4°C. Humification 160 

analysis was performed on 5 cm peat slices throughout the whole 5 cores. SY 161 

measurements were performed on 7 x 7 x 8 cm peat samples (14 cores in total; 3 for LTF, 162 

3 for SSE, 2 for LCY, 3 for VIC and 3 for ISO) using gravity drainage experiments 163 

assuming that SY can be assimilated to its drainable porosity (Price, 1996).  164 

Gravity drainage was performed in acrylic cubes (7 x 7 x 8 cm) and used to estimate 165 

SY following Eq. (1) (Freeze and Cherry, 1979),  166 

�� =
��

�∗∆	
         (1) 167 
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where Vd is the drained water volume (cm
3
), A is the area of the peat sample 168 

(7 cm x 7 cm = 49 cm
2
), and ∆h is the water table fluctuation (cm). Peat samples were 169 

resized after 0.5 cm was cut from each side to remove any compression due to 170 

transportation. Samples were saturated for 24 hours and drained for an additional 24 171 

hours. Each acrylic cube was connected at the bottom to a 1.3 cm plastic tube attached to 172 

an adjustable base support to drain the samples. Each drainage experiment began by 173 

decreasing the height of the plastic tube to that of the bottom of the tested sample. 174 

Although slightly different from conventional drainage experiments, this method was 175 

specifically chosen so as to be comparable to the experimental tank method described in 176 

section 4.3. 177 

For the less decomposed samples, the errors were proportional to the lost volume due 178 

to compression above the water table. Errors were calculated using the ratio between the 179 

loss of height and the mean annual water table depth since compression was limited to 180 

the unsaturated zone. Since compression was not evenly distributed throughout the core, 181 

errors on SY measurement were only applied to the upper 20 cm. 182 

  For the more decomposed samples (below 20 cm; all the sites), rapid outflow was 183 

observed, probably due to secondary porosity created during sample insertion into the 184 

acrylic cubes. The rapid outflow was measured at the beginning of each experiment and 185 

divided by the total volume of the acrylic cubes (7 x 7 x 8 cm) to quantify the maximum 186 

error associated with the method.  187 

4.3 Experimental tank 188 

The laboratory method developed by Rosa and Larocque (2008) to estimate SY was 189 

adapted to quantify the fine-scale, empirical relationship between SY and depth below the 190 

peat surface. Laboratory experiments were conducted in a 40 cm long, 25 cm wide, and 191 

36 cm high experimental tank built using 4 mm thick clear acrylic panels (Figure 4). The 192 

peat sample was retrieved from the LTF peatland at the up-gradient location. The mean 193 

water table depth (26 cm) at this site is equivalent to that of the four other studied 194 

peatlands, making it representative of all sites for this experiment. No compression was 195 

observed during sampling.  196 
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In the laboratory, the two sides of the peat sample were supported with perforated 197 

stainless steel plates to create two experimental reservoirs. These reservoirs were 198 

connected using flexible 5.1 cm PVC tubing, and redirected to a single outlet to control 199 

water table elevation within the reservoirs. The tank was filled from the bottom with 200 

water collected in the field with 4 L Nalgene bottles. A neon lamp suspended 15 cm 201 

above the tank provided 12 h of daylight to maintain living vegetation conditions. 202 

Drainage experiments were performed every centimetre between 0-20 cm, and every 203 

2.5 cm between 20-36 cm. Drainage intervals were increased below 20 cm so as to 204 

reduce volumetric error measurements since SY and drained water decrease with depth 205 

below the peat surface. Drainage experiments were performed twice for the upper 20 cm 206 

to account for air encapsulation and unsaturated pore filling (Nachabe, 2002; Barton et 207 

al., 2006). No compression or expansion resulting in a change of the peat elevation was 208 

observed during the drainage experiments. 209 

 SY estimates were obtained using Eq. 1, as defined in section 4.2 above, but with an 210 

A = 40 cm x 25 cm = 1000 cm
2
. However, SY could not be estimated below 0.08, due to 211 

an increase in volumetric error measurements associated with the decreasing water 212 

volume released from the drainable porosity and to bottom sedimentation within the two 213 

reservoirs.   214 

4.4 Water table fluctuation method 215 

Using the WTF method, specific yield (SY) was calculated as follows: 216 

�� = 
/∆ℎ  (2)  217 

where P is the amount of precipitation, and ∆h is the water level rise following a 218 

precipitation event.  Eq. (2) assumes that the time lag between the end of each 219 

precipitation event and the maximum water level rise is sufficiently short for 220 

evapotranspiration, net subsurface flow and water table recession following P events (i.e., 221 

water reaching the saturated zone is entirely transferred into storage). The method also 222 

assumes that recharge is equal to precipitation (i.e., no runoff), that the static equilibrium 223 

water content profile within the unsaturated zone is attained instantaneously following a 224 
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rain event and that any rain-to-rise ratio deviation from a theoretical model will be due to 225 

the presence of a capillarity fringe, air entrapment, peat expansion and contraction, net 226 

subsurface flow, water recession following P events and antecedent moisture content of 227 

the unsaturated zone.  228 

A computation script written in the R language (R, 2008) was developed to identify 229 

the precipitation events to be considered and the maximum water table rise following 230 

each precipitation event. The program automatically calculated total precipitation during 231 

a given event (P), maximum water level rise following this event (∆h), and SY using three 232 

parameters: the time interval (Timeint), the maximum (maxprec) and minimum 233 

precipitation (minprec). Timeint was used to separate precipitation events. Maxprec and 234 

minprec were used to determine which precipitation events to include in the SY calculation. 235 

Small precipitation events were excluded based on the assumption that a large proportion 236 

of the precipitation never reached the saturated zone during these events. Large 237 

precipitation events were also excluded since they induced large ∆h with depth 238 

approximation error. Measurement errors on ∆h were equal to 1 mm whereas P errors  are 239 

estimated to be as high as 6.4 % of total P for small rain events (Chiah, 2003; 240 

Hodgkinson et al., 2004). Therefore, precipitation events smaller than 1 mm and larger 241 

than 35 mm, and those associated with water table variations smaller than 10 mm were 242 

excluded, since the relative error on rain to rise ratio (equivalent to SY) was too large in 243 

these cases. 244 

While calibrating the R program, variations with Timeint were set between 1 and 10 245 

hours, maxprec between 20-100 mm and minprec between 0-10 mm. These intervals were 246 

chosen since precipitation events between 10 and 20 mm easily reached the saturated 247 

zone and were well constrained vertically. Timeint, maxprec, and minprec were calibrated to 248 

minimize the residual sum of squared errors (RSSE) between the model estimation, using 249 

SY obtained from the WTF method, and the individual laboratory SY values, obtained 250 

using the small cube experiment and the experimental tank method, while seeking to 251 

retain a maximum number of precipitation events. A minimal value of Timeint was used to 252 

support the hypothesis that subsurface flow was negligible and that the night-time 253 

recession period (4 to 9 hours) was greater than Timeint. This is based on the observation 254 
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that the time lag between the end of a precipitation event and the maximum water table 255 

increase was less than 3 hours (mean of 2 hours) for all rainfall events. 256 

For all-time series analysis, Timeint, maxprec, and minprec were set to 3 hours, 35 mm 257 

and 7 mm, respectively. Time series were resampled at 10, 20, 30, 40, and 60 min, and 258 

one day time intervals to identify the maximum time step required to calculate SY. 259 

Modification of the selected time intervals had no effect on SY calculation, except for the 260 

one day time interval. To optimize calculations, the one hour time series interval was 261 

used for all SY calculations.  262 

All SY calculated using the WTF method (SY WTF) were compared between sites, 263 

depths, location within the peatland, and seasonality, using one-way Analysis of Variance 264 

(ANOVA) implemented in R. Significant differences found among these variables were 265 

further analyzed using Tukey’s Honest Significant difference (HSD), again in R. Finally, 266 

all SY and rates of SY decrease with depth obtained from the WTF, the experimental tank, 267 

and the small cube experiment methods were compared.   268 

5 Results 269 

5.1 Surface topography, hydrology and peat humification 270 

At all locations in the five studied peatlands, the upper 5 cm was composed of living 271 

vegetation while peat was slightly humified between 10 and 20 cm below the surface 272 

(H3-H4; (Von Post, 1922). Peat humification increased toward the catotelm, with highly 273 

decomposed peat (H7- H8-H9) for sites VIC, LCY, LTF, and SSE, and slightly to 274 

moderately decomposed peat (H4-H5) for site ISO.  275 

Throughout the five peatlands, water table depths (WTD) varied between 1 and 60 276 

cm, with a maximum measured variation of 19 cm in LCY, 26 cm in SSE, 24 cm in LTF, 277 

15 cm in VIC, and 19 cm in ISO. With the exception of VIC, WTD decreased from the 278 

up-gradient to the down-gradient locations (Figure 5). Mean WTD for all sites combined 279 

varied between 9 and 49 cm for up-gradient locations, between 12 and 33 cm for mid-280 

gradient locations, and between 6 and 44 cm for down-gradient locations. Mean WTD for 281 

all locations in a given site in 2014 and 2015 were 41 cm in LCY, 37 cm in SSE, 26 cm 282 
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in LTF, 19 cm in VIC, and 9 cm in ISO. Acrotelm thickness varied between 35 cm and 283 

55 cm (comprised value of humification lower than H5) with mean acrotelm thickness 284 

equaled to 55 cm for LCY, 50 cm for SSE, 45 cm for LTF, 30 cm for VIC and 45 cm for 285 

ISO.  286 

Changes in peat surface topography throughout the study sites and within each 287 

peatland were on average 1.0 cm during the two monitored growing seasons. One 288 

extreme value of 5 cm change in peat surface topography was measured at the ISO site 289 

where ice was still partly presents following the record-cold winter 2014-2015.   290 

5.2 Specific yield estimated using the small cube method experiment 291 

and experimental tank measurements 292 

The SY values estimated using the cube (SYcube) and the tank (SYtank) methods varied 293 

from 0.01 and 0.95 within the first meter (SYcube and SYtank cannot exceed 1.0) (Figure 6). 294 

The mean SYtank and SYcube of the living and slightly humified peat layer comprised within 295 

the acrotelm was 0.69 and 0.35 for the two methods respectively. For the cube method, 296 

SY rates decreased with depth, varying between 0.001 and 0.030 cm
-1

. The upper ~25 cm 297 

showed rates of decrease varying from 0.015 cm
-1

 to 0.030 cm
-1

, whereas the rate of 298 

decrease between 25 cm and 100 cm is indistinguishable from 0 cm
-1

. The average SY 299 

measurement error for the small cube experiment on the 0-20 cm samples was 0.49 for 300 

LCY, 0.32 for SSE, 0.38 for LTF, 0.42 for VIC and 0.22 for ISO, with an overall mean of 301 

0.37. The average SY measurement error due to this manipulation was estimated to be 302 

0.05 (n=40), with a maximum value of 0.11. For the experimental tank method, the rate 303 

of SY decrease with depth is 0.07 cm
-1

 between 10 and 25 cm, and 0.005 cm
-1

 for the 304 

bottom sections (25-30 cm).  While modeling SYtank as a function of depth, SYtank between 305 

0 and 10 cm were not considered due to the lack of variation with depth associated with 306 

the living vegetation. 307 

Between 0 cm and 20 cm, SYcube measurements were considerably lower than SYtank, 308 

probably due to peat compression during coring for SYcube which varied between 2 and 309 

20 cm. No compression was observed during sampling for the tank experiment. Hence, 310 

the SYcube measurements should be considered to represent the lower boundary of the true 311 
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SY values. Even if these data should not be used as absolute values, they suggest a non-312 

linear trend of SY with respect to depth.   313 

SYtank values for depth between 0 and 10 cm were relatively constant, and differed 314 

considerably from the values obtained at greater depth. This is consistent with the greater 315 

peat humification below 10 cm, which changed from poorly humified (H1-H2) above 316 

10 cm to slightly humified (H3-H4) below.  317 

Different regression models for the SY vs depth relationship (i.e., linear, log, and 318 

power law) were calculated. Similar to the work of Sherwood et al. (2013), the best fit 319 

model for both methods were power law models: 320 

�� =	������ℎ
���  (3) 321 

where β0 =  1.45 and β1= -0.75, with resulting RSSE = 0.62 for the small cube method, 322 

and where β0 = 41.41 and β1= 1.58, with resulting RSSE = 0.19 for the experimental tank 323 

method. These power law models are used henceforth to describe SY changes with depth. 324 

However, the rate of SY decrease with depth needs to be adjusted for each peatland since 325 

the mean water table depth and acrotelm thickness can vary between peatlands.  326 

5.3 Specific yield estimated using the WTF method 327 

During 2014 and 2015, a total of 1182 precipitation events were recorded, ranging 328 

between 1 and 57.2 mm, with a mean of 5 mm, and precipitation intensity varying 329 

between 0.2 to 27.6 mm/hour. During this period, ∆h values varied from 10 to 178 mm. 330 

Following a rain event, the calculated SY WTF varied between 0.02 and 2, with a mean of 331 

0.59 (Figure 7). A total of 99 precipitation events (13%) generated SY WTF values 332 

exceeding 1, 183 (24%) resulted in SY WTF values between 0.59 and 1, and 465 (63%) 333 

resulted in SY values smaller than 0.59. Values of SY WTF above 1 were not considered in 334 

the analysis since they did not respect the hypothesis that runoff was negligible. 335 

SY WTF values were highly variable between sites, with values between 0.32 and 0.99 336 

for ISO, 0.18 and 0.99 for VIC, 0.13 and 0.99 for LTF, 0.25 and 0.90 for SSE, and 0.29 337 

and 0.88 for LCY (Figure 8). The best fit power law equation for the SY-depth models 338 
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used β0 ranging from 6.69 to 2783.01 and β1 from -0.94 to -2.23. Modeled rates of SY 339 

decrease with depth varied between 0.008 cm
-1

 and 0.06 cm
-1

 for all sites, with a higher 340 

rate of decrease when water table levels were high. The rate of SY decrease with depth 341 

shows similar patterns across all sites.  342 

Results from the ANOVA showed that site, seasonality, within-site location, and 343 

depth have a significant effect on SY. Site (p < 0.0001), depth (p < 0.0001), and 344 

seasonality (p = 0.007) were the strongest factors, while location within the peatland was 345 

the weakest (p = 0.05; Figure 9).   346 

Considering site (Figure 9a), LCY, VIC, and ISO show no significant difference in 347 

their median SY, whereas LTF and SSE, differ strongly from LCY, VIC, and ISO 348 

(confidence interval of 99%). For depth (Figure 9b), groups of 0-5, 5-10, and 10-15 cm 349 

show higher calculated SY than deeper groups. However, there are no systematic 350 

significant differences between all depth groups. For seasonality (Figure 9c), SY varies 351 

following the seasons and shows no significant difference during the wet periods (May, 352 

June, October, and November). Finally, the ANOVA results indicated that within-site 353 

location was not a dominant factor since no statistical difference was found between the 354 

up-gradient, mid-gradient, and down-gradient locations when comparing the different 355 

locations in a given peatland or when merging all the sites (Figure 9d). 356 

6 Discussion 357 

6.1 Specific yield measurements 358 

The SY measurements and rates of decrease obtained in this study were generally 359 

consistent with the range of values reported for different types of wetlands (peatland, 360 

blanket peat, open water, constructed peatland, cutover bog) and using different methods 361 

(e.g., gravity drainage, moisture retention measurements, infiltration rate experiment, 362 

water table fluctuation method, tracer tests) (Table II).  Using the WTF method, Moore et 363 

al. (2015), McLaughlin and Cohen (2014), and Dettmann and Bechtold (2016) reported 364 

SY values ranging from 0 to 1.1, from 0.13 to 1.05 and 0 to 0.9 within the first 50, 65 and 365 

45 cm respectively. This was equivalent to rates ranging between ~ 0.007-0.013 cm 
-1 

366 
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(Moore et al., 2015), 0.02 cm
-1

 (McLaughlin and Cohen, 2014) and ~ 0 – 0.08 cm 
-1

 367 

(Dettmann and Bechtold, 2016).  Using pressure chamber experiment measurements as 368 

quantitatively equivalent to SY, Moore et al. (2015) found that SY varied between 0.1 and 369 

0.7, at a rate ranging between 0.007 and 0.013 cm
-1

. With infiltration measurements, 370 

Holden (2009) found that SY varied between 0.01 and 1.00 within the upper 20 cm, 371 

independently of the surface vegetation (with the exception of Eriophorum, where it 372 

reached 0.001). This is equivalent to a decrease in SY with depth of between ~ 0.02 and ~ 373 

0.05 cm
-1

. Finally, using gravity experiments, Vorob’ev (1963) investigated SY and the 374 

relationship between capillarity fringe and gravitational moisture in unforested low-lying 375 

swamps (the term used by the author to designate peatlands), and found that SY decreased 376 

non-linearly with depth, from ~0.09 to ~0.45, at a rate of ~0.04 to 0.06 cm
-1

 (Table II). In 377 

this study, SY varied between 0.13 and 0.99 using the WTF method and between 0.01 and 378 

0.95 using the small cube and tank drainage experiments. These results are strong 379 

observational evidence of the sharp decrease of SY with depth. Moreover, results obtained 380 

using the WTF method show almost identical ranges and patterns obtained by Dettmann 381 

and Bechtold (2016).   382 

6.2 Comparison of methods 383 

In this work, the cube method and the experimental tank were combined to determine 384 

the fine scale variations of SY as a function of depth within the top peat deposit 385 

(experimental tank) and the general patterns of SY as a function of depth throughout the 386 

peat column (cube method). The sampling process can induce artificial modifications to 387 

the peat. For instance, the use of a box corer to sample peat is an imperfect method, 388 

especially in peatlands with a thick acrotelm layer that can be easily compressed. 389 

However, the box corer provides the capacity to sample deeper peat cores, thus providing 390 

insight into the values of SY lower within the peat column. Sampling the larger peat 391 

volume required for the experimental tank induces minimal peat compression, but 392 

addressed only on the top peat layer. Moreover, SY measurements are commonly 393 

performed directly in the laboratory on samples that have different volumes or in the field 394 

where it is hard to evaluate the scale of the measurements. In fact, strong heterogeneity of 395 

hydrodynamic properties are constantly encountered at very small scale and expected to 396 
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modify measurements and induce a scale effect (Turner et al., 2015). Hence, it is 397 

expected that SY obtained in the laboratory will disagree with SY measurements obtained 398 

with in situ methods.  399 

Comparing results from the three different methods remains challenging also because 400 

they depart slightly from the SY definition. For example, the drainage experiments (small 401 

cubes and tank) measure drainage porosity which is an approximation of SY. 402 

Nevertheless, given the fact that the WTF method provided SY values similar to those of 403 

the cube method and of the experimental tank and that the results obtained in this study 404 

are almost identical to the results obtained by Dettmann and Bechtold (2016) using the 405 

same method, it is hypothesized that the assumption underlying the use of the WTF 406 

method are reasonable. In future research, the WTF method will need to be used in a 407 

wide variety of peatlands to fully constrain its validity.  408 

6.3 Factors influencing storage capacity variations 409 

Many authors (Moore et al., 2015; Thompson and Waddington, 2013; Holden, 2009; 410 

Price, 1996) have demonstrated that peatlands vary significantly in terms of 411 

microtopography (hummock, lawn, hollow, pool), disturbances (fire, drainage), 412 

hydrogeological context, and hydroclimatic environment (Geris et al., 2015). These are 413 

all factors that have been recognized as affecting storage capacity. Fires have been shown 414 

to decrease SY, which increases the flashiness of water table fluctuations (Sherwood et 415 

al., 2013). SY differ between hummocks and hollows as these tend to dry up more rapidly 416 

and retain more water than hummocks (Moore et al., 2015). Hydrogeological contexts 417 

control the connectivity of peatlands to aquifers, limiting water table fluctuations (i.e., 418 

minerotrophic peatland), and hydroclimatic conditions modify precipitation regimes, 419 

evapotranspiration, and soil moisture dynamics, exerting a control on water storage 420 

(Geris et al., 2015).  421 

In this study, observed SY differences could not be explained by the presence of 422 

disturbances or variations in microform, since vegetation assemblages did not show 423 

strong evidence of perturbation and microforms did not differ significantly within and 424 

between sites. Additionally, the hydrogeological context, which was found to differ 425 
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strongly from site to site (Table I) could not explain the increasing SY trend observed in 426 

Figure 9a. LCY and VIC have both developed on fine to medium sand (high 427 

permeability), whereas ISO formed on glacial clayed silt (low permeability), yet no 428 

statistical difference was found between their means.  429 

Between site locations, differences in storage capacity are better explained by the 430 

decreasing trend in effective growing degree days registered from the south-west to the 431 

north-east St. Lawrence Lowlands. Higher numbers of effective growing degree days 432 

increase overall evapotranspiration rates. Sites characterized by greater 433 

evapotranspiration tend to have water tables closer to their respective minimum annual 434 

water table position, where humification is higher. Therefore, under similar precipitation 435 

regimes, those sites experiencing higher evapotranspiration rates will have lower SY WTF. 436 

However, their dynamic storage capacity will be higher, since more space is available 437 

before reaching a threshold water-table depth. 438 

Large variations in SY with depth within the peat profile (Figure 9b) have also been 439 

reported in the literature (Moore et al., 2015; Holden, 2009; Vorob’ev, 1963), and 440 

correspond to the increasing degree of peat decomposition with depth. For instance, a SY 441 

of greater than 0.13 is equivalent to a Von Post degree of decomposition between H1 and 442 

H5, whereas a SY of less than 0.13 is equivalent to a degree of decomposition between H6 443 

and H9. This link between SY and degree of decomposition has also been reported by 444 

Letts et al. (2000), where SY decreased from 0.66 to 0.13, with peat type changing from 445 

fibric to sapric, and by Boelter (1964), who reported SY as high as 0.80 in undecomposed 446 

peat and as low as 0.10 in highly decomposed peat. However, results from the current 447 

study show that depth is not a systematic explanatory factor when all sites were 448 

considered together. Similar Sy WTF distributions with depth were observed for all sites, 449 

independently of the mean annual WTD of each. For example, at LCY where mean 450 

annual WTD is 41 cm, Sy WTF is almost identical to that of ISO, where mean annual 451 

WTD is only 9 cm. Therefore, mean annual WTD should not be considered to be a proxy 452 

of peatland water storage capacity. 453 
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Seasonality is another important control on dynamic storage capacity (Figure 9c). 454 

Indeed, median SY WTF is higher during wet periods compared to dry periods. This is 455 

explained by the fact that evapotranspiration rates are higher during dry periods 456 

compared to wet periods. Moreover, these results are consistent with recent findings by 457 

Geris et al. (2015), showing that tree cover temporarily increases the dynamic storage 458 

capacity during summer due to higher evapotranspiration.  459 

The absence of a within-site location effect on SY WTF in this study (Figure 9d) has 460 

strong implications for future research. The absence of spatial variation within the studied 461 

sites suggests that a single SY-depth model could be sufficient to represent a given site. 462 

However, more research is needed to better understand the vertical SY variation of the 463 

water table fluctuation layer, due to the various hydrogeological contexts and 464 

microforms.   465 

6.4 Implications for peatland understanding and management 466 

Results from this study have many hydrological implications in terms of 467 

hydrological modelling, evapotranspiration feedback, WT-climate linkage, and 468 

understanding peatland water storage capacity at the local and global scales. Many 469 

authors have studied overland and rapid/slow subsurface flow within peatlands to 470 

quantify peatland-surface water interactions (Devito et al., 1997; Reeve et al., 2000; 471 

Reeve et al., 2001; Holden et al., 2008). The WTF method provides a means to quantify 472 

the SY, and therefore to better understand the timing and the transition between overland 473 

and subsurface flow within peatlands. Two previously established (McLaughlin and 474 

Cohen, 2014) SY ranges were also observed in this study: greater than 1, and between 0 475 

and 1. SY values greater than 1 indicate additional water input from uphill or from the 476 

redistribution of precipitation within the peatland. When SY is between 0 and 1, 477 

precipitation accumulates within the pore spaces until a threshold, where pore sizes of 478 

undecomposed peat are too large to hold more water (Holden, 2009). Somewhat 479 

counterintuitively, this can be interpreted as indicating that the water table does not need 480 

to reach the surface to be characterized by a SY WTF of greater than 1. 481 

Page 17 of 40

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

18 

 

Peatland water storage capacity is an important component of flood mitigation 482 

(Acreman and Holden, 2013). The results obtained with the WTF method offer new data 483 

that could be very useful for short term transient hydrological/hydrogeological models. A 484 

single model of vertical SY could be used in physically-based models to simulate peatland 485 

dynamics (Reeve et al., 2006). This could lead to more accurate estimates of the delay 486 

between precipitation and river floods in watersheds containing large peatland coverage. 487 

However, using long-term transient hydrological models requires a thorough 488 

understanding of the effect of swelling/shrinking peat soils on water storage capacity 489 

(Camporese et al., 2006) which is rarely available. 490 

7 Conclusion 491 

The objective of this study was to adapt the WTF method in order to quantify 492 

vertical SY variations in peatlands and to better understand the factors controlling 493 

peatland water storage capacity. This objective was achieved by comparing results from 494 

laboratory experiments on small and intermediate-size peat samples with results from the 495 

WTF method. The methods were carried out on five peatlands of the St. Lawrence 496 

lowlands, at three different locations within each peatland. 497 

Although uncertainties in SY were identified for the cube samples in the upper peat 498 

layers, similar relationships describing vertical variations with depth reported in the 499 

literature suggest that results from the WTF are reasonable. Results show that this method 500 

is a promising tool to quantify SY and its vertical variation within the water table 501 

fluctuation layer of peatlands. The power law apparently provides the best description of 502 

SY-depth variations.  503 

Moreover, site location and seasonality are dominant controls upon water storage 504 

capacity, suggesting that both hydroclimatic context and evapotranspiration are of 505 

primary importance to understanding peatland water storage capacity. This research has 506 

shown that within-site location plays a minor role in SY variations, suggesting that the 507 

WTF method could be used to quantify water storage capacity using a single dip well. 508 

However, further studies are needed to investigate the influence of microforms (i.e., 509 

hummocks, hollows and pools) and hydrogeological context on water storage capacity. 510 
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The WTF method is non-invasive, inexpensive, and can easily be used in a wide 511 

variety of contexts, since hourly precipitation and peatland water table fluctuation data 512 

are commonly measured in peatland monitoring projects. This method provides a 513 

relatively simple means of improving the available data on peatland water storage 514 

capacity in different conditions, thus contributing to better understand peatland 515 

hydrological functions. 516 
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Table I Site descriptions: coordinate, altitude, area, distance and mean slope 

between up-gradient and down-gradient location, watershed, lithology, dominant 

species, annual evapotranspiration and difference between precipitation (P) and 

evapotranspiration (ETP).  

site Lat Long 
Altitude 

(m) 
Area 

(km
2

) 

  

Distance 

(m):slope 

(%) 

Watershed Lithology 
Dominant 

species 

Annual 

ETP 

(mm) 
P-ETP 

LTF 45.132 -74.217 51 6.0 
  

697:0.08 Chateauguay Marine clay 
Sph sp, Kal Ang, 

Eri Vag, Rho Ca, 

Pol Str, Aul Pal 
640 - 710 neg 

SSE 46.042 -72.345 84 4.9 
  

760:0.20 Nicolet 
Fluvial silt/Glacial 

clayey silt 
Sph sp, Kal Ang, 

Eri Vag, Cha Cal 
575 - 701 pos /neg 

LCY 45.950 -72.187 106 0.5 
  

123:0.24 Nicolet 
Eolian fine to 

medium sand 
Sph sp, Kal Ang, 

Cha Cal, Rho Gro 
575 - 701 pos /neg 

VIC 46.023 -72.077 118 2.6 
  

593:0.16 Nicolet 
Marine exondated 

fine sand 

Sph sp, Kal Ang, 

Eri Vag, Pol Str, 

Cha Cal, Rho Gro 
575 - 701 pos /neg 

ISO 46.579 -71.597 117 2.8 
  

454:0.23 du Chene Glacial clayey silt 
Sph sp, Kal Ang, 

Eri Vag, Car sp, 

And Gla, Cha Cal 
548 - 611 pos  
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Table II Specific yield measurements in wetlands as reported in the literature. 

Sy 

Rate 

decrease 

(cm
-1

) 

Method Author Main objective 
Wetland 

type 

depth 

(cm) 
year 

0 – 0.9 ≈ 0 - 0.08 WTF 
Dettmann and 

Bechtold 2016 
methological development peatland 0 - 45 2016 

0 - 1.1 0.007 – 0.013 WTF 
Moore et al. 

2015 
site-depth-microforms peatland 0 - 65 2015 

0.1 - 0.7 0.007 – 0.013 Pressure chamber 
Moore et al. 

2015 
site-depth-microforms peatland 0 - 50 2015 

0.13 - 1.05 0.02 WTF 
McLaughlin and 

Cohen 2014 

evapotranspiration and 

groundwater exchange 

estimation 
open water 

50 - 0 

(above 

surface) 
2014 

0.05 - 0.4 NA WTF 
McLaughlin and 

Cohen 2014 

evapotranspiration and 

groundwater exchange 

estimation 
open water 

60 – 0 

(above 

surface) 
2014 

0 - 0.85 NA Pressure chamber 
Thompson and 

Waddington 

2013 

microforms-depth-density-

wildfire alteration 
peatland 0 - 45 2013 

0.01 - 1 0.02-0.05 Infiltrometer Holden 2009 depth-cover type 
upland 

blanket peat 
0 - 20 2009 

0.23 NA 
Gravity 

(experimental 

tank) 

Rosa and 

Larocque 2008 
peat hydrological 

properties 
peatland 0 - 40 2009 

0.75-0.99 NA Tracer tests 
Ronkanen and 

Klove 2008 
modelling of water 

treatment wetlands 
contructed 

peatland 
NA 2008 

0.13 - 0.66 NA Gravity Lett et al 2000 
depth - humification -

modelling WT variation 
peatland 0 - 35 2000 

0.25 - 0.55 ≈ 0.01 Gravity Price, 1996 
effect of peat harvesting 

on water balance 
peatland 0 - 55 1996 

0.04-0.06 ≈ 0 Gravity Price, 1996 
effect of peat harvesting 

on water balance 
cutover bog 0 - 62 1996 

0.1 - 0.55 ≈ 0 - 0.015 Gravity Price 1992 
water budget - 

hydrological processes 
blanket bog 0 - 250 1992 

0.09 - 0.45 0.04 - 0.06 Gravity Vorob.ev. 1963 depth-cover type 
swamp 

(peat) 
0 - 20  1963 
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Figure 1 Locations of the five studied peatlands in the Châteauguay (LTF), Nicolet (SSE, LCY, and VIC), and 
Du Chêne (ISO) watersheds of southern Québec (Canada).  

Figure 1  
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Figure 2 Mean monthly precipitation (bars) and temperature (lines) between 1981 and 2010 for 
Châteauguay (black), Nicolet (grey), and du Chêne (light grey) watersheds. Note that temperatures curves 

for Châteauguay and Nicolet overlap or nearly overlap for much of the year.  
Figure 2  
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Figure 3 Up-gradient, mid-gradient, and down-gradient locations of the instrumented wells in the studied 
peatlands. Black arrows show general water circulation patterns.  

Figure 3  
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Figure 4 Design of the experimental tank with an impermeable base support built for the drainage 
experiment to calculate specific yield variations with depth (modified from Rosa and Larocque, 2008).  

Figure 4  
45x31mm (600 x 600 DPI)  
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Figure 5 Water table depths and precipitation from June 2014 to August 2015 at the up-gradient (black), 
mid-gradient (grey), and down-gradient (light grey) locations at a) Large Tea Field (LTF), b) Sainte-

Séraphine (SSE),  c) Lac Cyprès (LCY), d) Victoriaville (VIC), and e) Issoudun (ISO). The period without 
data corresponds to the winter season. The LTF time series is only from June to September 2014 due to 

technical difficulties with the pluviometer in the summer 2015.  
Figure 5  
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Figure 6  Variation in specific yield (SY) with depth using the small cube (mean values are plotted for each 
site), experimental tank (LTF only) and WTF (LTF only) methods. The black line shows the SY-depth 

relationship using the experimental tank method (LTF) and the grey line shows the logarithmic SY-depth 

relationship using the cube method (LTF).  
Figure 6  
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Figure 7 Water table variation (∆h) as a function of precipitation (P) for all sites and locations. Each point 
represents a single precipitation event. Dashed lines and associated value represent the ratio of P/∆h 

equivalent to SY.  
Figure 7  
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Figure 8 Variation in specific yield estimated using the power law model applied to the WTF method as a 
function of depth below the surface for all peatlands and all locations (up-gradient, mid-gradient and down-

gradient).  
Figure 8  

152x101mm (300 x 300 DPI)  

 
 

Page 36 of 40

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 9 Influence of a) site, b) depth below the surface, c) seasonality (May to November), and d) within-
site location on specific yield found using the WTF method. Each box plot shows the minimum (lower bar), 
the first quartile (lower portion of the box), the median (bold black line), the third quartile (higher portion of 

the box), the maximum (upper bar), and the outliers (circles).  
Figure 9  
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