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ABSTRACT

Climate models developed within a given research group or institution are prone to share structural similarities,

which may induce resembling features in their simulations of the earth’s climate. This assertion, known as the

‘‘same-center hypothesis,’’ is investigated here using a subsample of CMIP3 climate projections constructed by

retaining only the models originating from institutions that provided more than one model (or model version). The

contributions of individual modeling centers to this ensemble are first presented in terms of climate change pro-

jections. A metric for climate change disagreement is then defined to analyze the impact of typical structural dif-

ferences (such as resolution, parameterizations, or even entire atmosphere and ocean components) on regional

climate projections. This metric is compared to a present climate performancemetric (correlation of error patterns)

within a cross-model comparison framework in terms of their abilities to identify the same-center models. Overall,

structural differences between thepairs of same-centermodels have a stronger impact on climate change projections

than on how models reproduce the observed climate. The same-center criterion is used to detect agreements that

might be attributable tomodel similarities and thus that shouldnot be interpreted as implying greater confidence in a

given result. It is proposed that such noninformative agreements should be discarded from the ensemble, unless

evidence shows that thesemodels can be assumed to be independent. Since this burden of proof is not generallymet

by the centers participating in amultimodel ensemble, the authors propose an ensemble-weighting schemebased on

the assumption of institutional democracy to prevent overconfidence in climate change projections.

1. Introduction

In recent decades, internationally coordinated efforts

have been conducted to provide credible ranges of cli-

mate change projections to the scientific community.

The World Climate Research Programme’s (WCRP’s)

Coupled Model Intercomparison Project (CMIP) mul-

timodel datasets CMIP3 (Meehl et al. 2007), CMIP5

(Taylor et al. 2012), and the upcoming CMIP6 (O’Neill

et al. 2016) consist of relatively large ensembles of simu-

lations aiming at sampling the main components of
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uncertainty that affect climate change projections

(Hawkins and Sutton 2011, 2009). The three main

sources of uncertainty emerge from the various possi-

ble outcomes of greenhouse gas and aerosol (GHGA)

emission pathways (Meinshausen et al. 2011; IPCC

2000), the diversity of climate modeling approaches

(Haughton et al. 2014), and the internal variability of

the climate system (Hawkins and Sutton 2011; Deser

et al. 2012; Lorenz 1963). In practice, partitioning

overall uncertainty into its main components is a com-

plex task due to the irregular structure of such large

ensemble frameworks (Hawkins 2011; Déqué et al.

2007, 2012). But more importantly, assessing model

uncertainty is a challenging exercise partly due to the

opportunity-based sampling that generated these

ensembles (Tebaldi and Knutti 2007; Annan and

Hargreaves 2010), the lack of independence between

climate models (Knutti et al. 2010; Tebaldi and Knutti

2007), and also the model selection, for instance by

modeling centers participating in a CMIP experiment

(Haughton et al. 2014).

Agreements between climate change projections from

several models are often interpreted as predictors of

confidence (e.g., IPCC 2013, 2007; Seager et al. 2007),

but such an inference is difficult to defend without any

robust measure of model independence (Pirtle et al.

2010). A natural approach to assess the extent of model

independence consists of identifying discrepancies from

the ‘‘truth plus error’’ paradigm, where the mean of a

sample of independent estimates should have an error

that converges to zero as the ensemble size becomes

very large. The cancellation of errors through simple

multimodel averaging has been shown to be less efficient

than expected because of correlations between model

errors (Jun et al. 2008; Reifen and Toumi 2009; Pennell

and Reichler 2011; Knutti et al. 2010; Haughton et al.

2015). Moreover, this approach is problematic because

the ensemble mean does not have the same characteris-

tics as the observed climate, particularly with respect to

the magnitude of natural climate variability, which is

strongly attenuated by the averaging process (Bishop and

Abramowitz 2013). Nevertheless, the truth-plus-error

paradigm remains the most widely used technique for

processing multimodel ensembles (IPCC 2007, 2013).

Alternatively, the ‘‘indistinguishable’’ (Annan and

Hargreaves 2010, 2011; Sanderson and Knutti 2012) and

‘‘replicate Earths’’ (Bishop and Abramowitz 2013)

paradigms now appear to be more suitable for inter-

preting multimodel ensembles, with the true climate

assumed to be among other members, and the ensemble

mean as the best estimate for any member.

It is generally accepted that, since modelers share

knowledge about climate models and the real physical

system, models are never completely independent and

thus common biases have to be expected from their

simulations (e.g., Knutti et al. 2010). Investigating

correlations between model errors follows the formal

definition of statistical independence, which has been

extensively used by the community in recent years

(e.g., Jun et al. 2008; Reifen and Toumi 2009; Pennell

and Reichler 2011; Knutti et al. 2010; Bishop and

Abramowitz 2013). Evans et al. (2013) compared the

independence ranking developed by Bishop and

Abramowitz (2013) with both a climatological and an

impact-performance criterion, and found that the in-

dependence measure was more efficient for minimiz-

ing the size of an ensemble of climate models. This

reduced ensemble also preserved important charac-

teristics of the original ensemble (mean and spread) in

the context of finding an optimal set of forcing sce-

narios to drive regional climate model ensembles.

More recently, it has been proposed to use the metric

of correlation of errors, along with a measure of en-

semble dispersion, to better address the issue of cli-

mate model independence (Haughton et al. 2014,

2015). Sanderson et al. (2015a,b) has also developed a

weighting scheme accounting for both model perfor-

mance and interdependence.

Despite these important efforts, it remains unclear

how our confidence in climate projections can be al-

tered by the knowledge that, in general, climate

models do not provide independent representations of

the observed climate system. In addition, regional

consequences of the lack of model independence have

received surprisingly little attention. Steinschneider et al.

(2015) have recently made such an attempt by accounting

for the effect of model similarities—by building on pre-

vious works from Bishop and Abramowitz (2013),

Abramowitz and Bishop (2015), and Haughton et al.

(2015)—to develop probabilistic climate projections for

a select number of spatially limited regions across the

United States.

Probably one of themost important findings regarding

the independence of climate models is that the corre-

lation of their output is highly related to their geneal-

ogy (Masson and Knutti 2011; Knutti et al. 2013). The

genealogy of climate models provides insights into

their development history—particularly important

since different models often share some history (see

Edwards 2011). Hence, tracking model history can re-

veal important information about model similarities,

which can manifest in the dynamical core, the physical

parameterizations, or the numerical methods that are

chosen, and be implemented by the development

teams. While no scientific consensus exists on how to

quantify model structural differences, models have to
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be compared qualitatively. It is known that modelers

sometimes share parts of model code, as well as larger

model components (e.g., ocean), or even entiremodels. This

sharing process naturally occurs when several models (or

versions of the same model) are developed under the same

roof, but it can also occur across institutions. For example, in

CMIP5, a rather limited diversity of ocean models corre-

sponds to a large number of climate models, notably the

Modular Ocean Model (MOM) and the Parallel Ocean

Program (POP) (Flato et al. 2013). Another example is

the Community Earth System Model (CESM; Hurrell

et al. 2013) and the Norwegian Earth System Model

(NorESM; Iversen et al. 2013), both of which are de-

rivatives of the Community Climate System Model,

version 4 (CCSM4; Gent et al. 2011). Similarly, the

Australian Community Climate and Earth-System

Simulator (ACCESS) model has the same atmospheric

component as the HadGEM2 model, which leads to

strong similarities in simulated features (Haughton

et al. 2015). Considering the several dozens of climate

models in use today, it is an extremely demanding task

to catalog all model differences and to assess their

independence in this way, which probably explains the

very limited amount of literature on this topic.

To assess the implications of using weakly indepen-

dent models in regional climate change projections,

this paper focuses on the way climate models are built.

To this end, we use center origin to form sets of models

with varying degrees of similarity. The effect of these

model dependencies is investigated in terms of both the

similarity of climate change projections and the cor-

relation of their error patterns. A joint use of these two

metrics will be proposed to identify situations where

the lack of model independence is likely to distort the

message conveyed by multimodel ensembles. Here the

use of the CMIP3 ensemble better isolates the impacts

of same-center dependencies—CMIP5 has a more com-

plex structure that is also affected by many intercenter

dependencies (e.g., Haughton et al. 2014).

The manuscript is organized as follows: Section 2a de-

scribes nine groups of models according to their structural

similarities and differences. A metric for quantifying

model regional agreements in climate change pro-

jections is defined in section 2b. In section 3a, the cli-

mate change projections, intermodel differences, and

the internal variability are compared among the mod-

eling centers for summer surface air temperature. In

section 3b, the metric of climate change agreement is

compared with the more common pairwise correlation

of error patterns. Section 3c describes an application of

our approach to assess the effective number of models

in the ensemble based on the principle of institutional

democracy. Finally, in section 3d, our proposed principle

of institutional democracy is implemented as a weighting

scheme for ensemble averaging.

2. Methods

a. Groups of same-center models

Since the name of the modeling center is an efficient

proxy for model similarities, here we focus on research

institutes that contributed simulations from more than

one model or model version to the CMIP3 archive. We

consider only simulations forced with the A1B emis-

sion scenario, resulting in an ensemble of 35 simula-

tions from 15 atmosphere–ocean general circulation

models (AOGCMs) and sevenmodeling groups (Table 1)

hosted by four countries.

Table 2 shows the 15models organized into nine pairs.

Each modeling center is represented by one pair, with

the exception of GISS, which provided three models to

the ensemble (hence three pairs). For each pair, this

table provides the details about modeling differences

according to the models’ main components (A, O, I, L,

and C for atmosphere, ocean, sea ice, land surface, and

coupling, respectively). The levels of these modeling

differences are categorized as either minor (m) or major

(M). While this categorization involves some subjectiv-

ity, the choices were made as follows. An m was given

when model components were known to be developed

on the same basis—such as two versions of the same

TABLE 1. Research institutes–groups that provided several models or versions to the CMIP3 multimodel archive.

Name of the institute–group Country Label

1 Canadian Centre for Climate Modelling and Analysis Canada CGCM

2 Center for Climate System Research (University of Tokyo), National Institute for

Environmental Studies, and Frontier Research Center for Global Change (JAMSTEC)

Japan MIROC

3 Commonwealth Scientific and Industrial Research Organisation (Atmospheric Research) Australia CSIRO

4 U.S. Department of Commerce/NOAA/Geophysical Fluid Dynamics Laboratory United States GFDL

5 NASA Goddard Institute for Space Studies United States GISS

6 National Center for Atmospheric Research United States NCAR

7 Met Office Hadley Centre for Climate Prediction and Research United Kingdom UKMO

1 DECEMBER 2016 LEDUC ET AL . 8303



code—but that underwent some modifications (e.g., the

value of parameters or changes in parameterization

packages). Conversely, an M was chosen when the two

components appeared to have different code bases (e.g.,

developed by different teams or with a different name

for the component). Understanding the exact nature of

the modeling differences in this latter case (M) implies a

deeper analysis of all the scientific assumptions being

used in both cases, which is beyond the context of the

current study.

The pairs 1–4 are formed by models with rather minor

structural differences. The CGCM models (pair 1)

differ only in atmosphere and ocean resolutions

(spectral T63 vs T47), and similarly for MIROC (pair

2) with a larger jump in resolution (spectral T106 vs

T42). The GFDL (pair 3) and CSIRO (pair 4) models

are different versions of the same models, with minor

modifications (which may include model parameters,

numerical approximations, or entire parameterization

packages) applied to some of their main components,

that is, atmosphere for GFDL, and ocean, ice, land,

and coupling for CSIRO.

Pairs 5–9 are formed by models that differ in more

general structural characteristics. The first GISS (God-

dard Institute for Space Studies Model E) pair (pair 5)

consists of two models (EH and ER) that have different

ocean components (Bleck 2002 vs Russell et al. 1995). In

addition, the two ocean models use different spatial res-

olutions: 28 3 28 and 48 3 58 for EH and ER, respectively.

For pairs 6–9, the models differ substantially according to

most of their main components (atmosphere, ocean, sea

ice, land, and coupling). An apparent similarity, however,

exists between themodels AOMandER (pair 6) inwhich

successive versions of the same ocean model are used

(Russell et al. 1995 vs Russell et al. 2000) but with dif-

ferent resolutions (48 3 38 for AOM). Among the three

models fromGISS, AOM appears to differ most from the

two others (EHandER), as it uses a different atmosphere

component (pairs 6 and 7). Finally, both pairs 8 and 9

includemodels fromdifferent generations with a common

history of development within the same institution: the

National Center for Atmospheric Research (NCAR) and

the Met Office Hadley Centre, respectively. NCAR

CCSM3 and PCM are essentially based on the same at-

mospheric model and also share the same ocean (Parallel

Ocean Program) and sea ice (Community Sea IceModel),

although those components correspond to different ver-

sions (Washington et al. 2000; Collins et al. 2006b). For the

Met Office (UKMO), HadGEM1 was mostly built upon

HadCM3, with the aim of being adapted for higher reso-

lutions, as well as an increased complexity in terms of

Earth system modeling (Johns et al. 2006).

b. Metric of climate change disagreement

To evaluate the extent to which climate models agree

or disagree, here we use a Welch’s unequal variances

t test of the difference between two samplemeans, that is,

each model being represented by the climate change

signal averaged over its available members. The magni-

tude of the models’ simulated internal variability is used

as the level of noise against which these differences are

tested. Given some significance level, the result of the test

reads as follows: The rejection of the null hypothesis of

equal means is interpreted as a disagreement, whereas an

agreement corresponds to a lack of evidence for rejecting

the hypothesis.

In the context of simulations run under transient

forcing conditions, the internal variability can be assessed

TABLE 2. Modeling differences between pairs (labeled from 1 to 9 in the first column) of models developed by the same centers in the

CMIP3 ensemble. The second and third columns give the name of the institution and the models’ identifiers, while the type of modeling

differences is detailed in the fourth column. In columns 5–9, model differences are compared according to their main components; refer to

the text. More details are provided in the model documentation from the Program for Climate Model Diagnosis and Intercomparison

(PCMDI) website (http://www-pcmdi.llnl.gov).

Pair Center Models Difference A O I L C

1 CGCM T63 and T47 Resolution for A and O. m m — — —

2 MIROC T106 and T42 Resolution for A and O. m m — — —

3 GFDL CM2.1 and CM2.0 Numerical scheme: advection, gravity waves, and damping at the

top boundary for A.

m — — — —

4 CSIRO 3.5 and 3.0 Eddy parameterization (transport coefficient) and mixed-layer

treatment (turbulent kinetic energy) for O, numerical scheme

for I, wind stress for C, and treatment of surface runoff and

river routing scheme for L.

— m m m m

5 GISS EH and ER O component. — M — — —

6 GISS AOM and ER A, I, C, and L components, and O version. M m M M M

7 GISS AOM and EH A, O, I, C, and L components. M M M M M

8 NCAR CCSM3 and PCM Resolution and version for A, O, and I. m m m M M

9 UKMO GEM1 and CM3 Notably resolution, dynamical core, and treatment of aerosols for A. M M M M M
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using the spread between simulations (members) from a

given model that differ only by slight perturbations in

their initial conditions (Deser et al. 2014). However,

models participating in large multimodel ensembles are

generally represented by very few members. For the

CMIP3 dataset, for example, the number of members

per model ranges from 1 to 7, thus leaving very few

degrees of freedom for addressing statistical signifi-

cance.We circumvent this issue by assessing the internal

variability as the temporal variability around a fitted

fourth-degree polynomial trend, similar to the approach

adopted in Hawkins and Sutton (2011, 2009). Such a

correspondence between temporal and intermember

variability assumes ergodicity (Reif 1965) of the climate

system, and it neglects the effects of the change of nat-

ural variability with GHGA emissions. These are not

very strong assumptions for a variable such as temper-

ature (Kay et al. 2015; Holmes et al. 2016).

Let now Pm,n(x, y) and Fm,n be two mean climate

states of a given variable (e.g., surface air temperature),

as simulated by the nth member from model m, and

where x and y represent the horizontal coordinates. In

what follows, P and F are defined as the recent past

(1980–2000) and future (2080–2100) periods, respec-

tively. The climate change signal can be defined as

Dm(x, y)5Fm(x, y)2Pm(x, y), where (�)m represents

the average over all available members from the mth

model. Assuming a pair of climate models, m 5 [1, 2],

the t statistic of the difference of the means between the

two models is

t5
D

1
2D

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2
1/N1

1 ŝ2
2/N2

q , (1)

where Nm is the sample size (number of members) used

in the calculation of Dm and ŝ 2
m quantifies the internal

variability affecting the climate change signal of themth

model. Here, ŝ 2
m corresponds to the sum of the variances

of theP and F climatic states (i.e., climates of the present

and future 20-yr averaging windows, respectively). It is

worth noting that the definition of the t statistic in Eq. (1)

does not assume equal variances, since the internal vari-

ability may be quite different among climate models.

The variance of the climate change signal can be

calculated as

ŝ2
m 5

2

N
m

�
Nm

n51

1

T2K2 1
�
T

t51

[X
m,n

(x, y, t)2 ~X
m,n

(x, y, t)]2,

(2)

where Xm,n(x, y, t) is a time series of mutually exclusive

20-yr averaging windows, t is the time index, and ~Xm,n is

the fourth-degree polynomial trend associated with cli-

mate change (fitted on the time series of 20-yr averaging

windows). Calculating the residual mean-square error of

the time series (Xm,n) around the trend ( ~Xm,n) allows one

to roughly estimate the magnitude of internal variability.

To do so, the sumof the squared errors is normalizedwith

its number of degrees of freedom T2 K2 1, where K is

the degree of the fitted polynomial. Assuming the in-

dependence of the future and past climatic states relative

to the trend (as a result of internal variability) and that

the internal variability does not change much in time, the

variance of the difference between two climatic states is

equal to twice the estimated variability, explaining the

multiplying factor of 2 in Eq. (2). The internal variability

is then averaged over the Nm members.

Since ŝ2
1 6¼ ŝ2

2, the t statistic in Eq. (1) can be assumed

to follow the Student’s distribution by using the Welch’s

approximation to the Behrens–Fisher problem, resulting

in a number of degrees of freedom being estimated di-

rectly from the data as (Scheffé 1970)

df 5
(ŝ2

1/N1
1 ŝ2

2/N2
)2

(ŝ2
1/N1

)2

N
1
(T2K2 1)

1
(ŝ2

2/N2
)2

N
2
(T2K2 1)

. (3)

This approach allows an important increase in the

number of degrees of freedom compared to a calculation

of the intermember spread over a specific period. It is

particularly convenient when very few members are

available, resulting in a test with a higher power to reject

the null hypothesis. Moreover, this method allows us to

include the GFDL, CSIRO, and UKMO groups, whose

models ran only a single member.

3. Results

a. Per-institute contributions to a multimodel
ensemble

The pairs of same-center models are now investigated

according to their projected changes in summer surface

air temperature. To enable direct comparison, all sim-

ulations were bilinearly interpolated over a common

global grid with 48 3 58 of resolution. For each model

pair given in Table 2, Fig. 1 gives the mean climate

change signal calculated as a 20-yr averaging window for

the 2080–2100 period (A1B scenario) relative to the

1980–2000 reference state (20CM3 experiment).

Figure 1 shows the individual contributions of each

modeling center to the entire ensemble. It appears that

the pairs mostly divide into two categories of climate-

sensitivity magnitude. The CGCM, CSIRO, GISS, and

NCAR centers are characterized by relatively low climate
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sensitivities over land regions, with values often below

48C. By comparison, the MIROC, GFDL, and UKMO

groups show much higher values, exceeding 78C in many

land areas. The MIROC center contributes to the ensem-

ble as a warm outlier over both land and ocean.

Figure 2 shows the intermodel difference for each pair

of climate change signals [i.e., the numerator of Eq. (1)].

As described in section 2b, the statistical significance of

these differences is calculated using the sum of the

models’ standard errors due to internal variability [de-

nominator of Eq. (1)]. As a complement, the average of

the natural climate variability, as defined in Eq. (2) for

one model, is given for each center in Fig. 3. Colored

areas in Fig. 2 represent regionswhere the null hypothesis

FIG. 1. (a)–(i) Same-center averages of the summer (JJA) surface air temperature (8C) change (A1B scenario, 2080–2100 relative to 1980–

2000) for the nine pairs of models given in Table 2.

FIG. 2. As in Fig. 1, but for the intermodel differences of the summer surface air temperature change. Differences that are not statistically

significant at the 5% level are uncolored.
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of equal means is rejected at the 5% significance level.

The order of calculation of intermodel differences cor-

responds to that presented in Table 2, where the most

recent–sophisticated model appears first. Hence, positive

differences in Fig. 2 generally relate to the way climate

projections evolve in time through the development of

succeeding model versions.

The CGCM models (Fig. 2a), which differ by their

resolution, show very low rejection rates over North

America, Europe, and Asia, thus implying a statistically

insignificant impact on the temperature changes. For the

MIROC pair (Fig. 2b), where the change in resolution is

more important, the higher-resolution model clearly

has a higher climate sensitivity, as seen by the positive

significant differences over most of the global domain

except in the northern midlatitudes. The intermodel

difference is also generally positive for the CGCM pair,

but to a smaller extent and magnitude. Since the climate

change signals for the CGCM andMIROC pairs are not

much different from a statistical point of view over land

regions in the northern midlatitudes, considering both

models in each pair does not add much supplementary

information to the ensemble as compared to the use of a

singlemodel version per center.However, since these data

are interpolated over the same grid, we note that a sizable

part of the potential added value (Di Luca et al. 2013) by

the higher-resolution models is not considered here.

Versions 2.0 and 2.1 of the GFDL CM (Fig. 2c) have

structural differences that can be understood as minor

modifications to the code of their atmospheric model. Ex-

pectedly, these showpractically no significant differences in

their climate change signal, with the exception of the

Southern Ocean. Similar to the GFDLmodels, Mark 3.0

and 3.5 of the CSIRO model (Fig. 2d) exhibit minor

differences in all components other than atmosphere,

which remains unchanged. The noticeable difference in

climate sensitivities between the CSIRO models appears

to be mostly due to changes in the ocean eddy parame-

terization and mixed-layer treatment, while the other

modeling differences (see Table 2 for more details) are

expected to play minor roles in this pair.

The five remaining pairs consist of models with more

important differences in structural characteristics. The

three GISS models are interesting to compare, since

one or more of their main components differ. For the

EH and ER models (Fig. 2e) with different ocean com-

ponents, significant positive differences exceeding 38C
are found over Hudson Bay in Canada, and around 1.68C
in the North Atlantic, with a relatively low rejection level

elsewhere. GISS-AOM and GISS-ER (Fig. 2f), which

differ in all of their components except the ocean, which

underwent only a change in version, exhibit smaller

differences over Hudson Bay (,18C), while negative

differences extend over land (e.g., western Canada, north

Asia, India, central Africa, and Australia). For the third

pair of GISS models, AOM versus EH (Fig. 2g), all of the

models’ main components have been changed signifi-

cantly. It is interesting to note that the large difference for

Hudson Bay and the North Atlantic are similar in mag-

nitude (with reverse sign) compared to the GISS EH–ER

pair, which represents the same change in the ocean

component. Changes in other components appear to have

FIG. 3. As in Fig. 1, but for multimodel averaged internal variability in the summer surface air temperature change.
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little influence on the maximum difference over Hudson

Bay (see the EH–ER pair), but the change in GISS at-

mospheric component (AOM–ER and AOM–EH pairs)

is responsible for most differences over land.

The NCAR models (CCSM3 and PCM1) are distinct

models developed within the same institution. The dif-

ferences between these models are statistically signifi-

cant over most of the domain. CCSM3 model warms

systematically faster than PCM, by about 28C in the

midlatitude land regions and by more than 38C in the

Arctic. Finally, the HadCM3 and HadGEM1 models

from the Hadley Centre were compared. It is interesting

to note that these two models, which might be consid-

ered independent models developed within the same

institute, lead to climate change signals that are statis-

tically indistinguishable over a large fraction of land

regions (except South America and eastern Europe).

These models are known to have very similar global-

climate sensitivities (Johns et al. 2006); the relatively low

rejection rate of the null hypothesis is comparable to

that of GISS-EH and GISS-ER, which share the same

atmospheric component (Fig. 2e).

While this should be interpreted carefully, our results

suggest that the Hadley Centre models cannot be taken

as independent models. Their common history of devel-

opment may involve shared parameterizations, one ex-

ample being the radiative transfer parameterization

package (Edwards and Slingo 1996), a component that

plays an important role in model climate sensitivity

to GHGA atmospheric concentration (Collins et al.

2006a). There is also a potential for less obvious de-

pendencies at the institutional level, such as in the choice

of the observational dataset used for model validation

and tuning. While these higher-level dependencies could

also apply to other same-center models, it should also

be taken into account that same-center models may lead

to similar responses for the right reasons, that is, a re-

sult that is independent of the details embedded within

each model and that converges toward the future to be

eventually observed (Levins 1966). Although this last

conjecture is tempting, a thorough study of model in-

dependence between these models is needed before it

can be asserted.

b. Discriminating between the same-center models

As shown in the previous section, structural similari-

ties between climate models developed within the same

institution can provide some insights into the spatial

structure of model agreements in climate change pro-

jections. Let us now consider the climate-change ‘‘dis-

agreement rate,’’ which consists of the fraction of the

global domain (in surface area) where two climate

change projections differ significantly relative to the

magnitude of the natural climate variability (i.e., the

fraction of colored areas in Fig. 2). The power of this

metric to discriminate the same-center model pairs from

all other pairs is now assessed within a cross-model

comparison framework for temperature change in both

summer and winter.

The disagreement rate for projected changes in summer

surface air temperature by the end of the twenty-first

century is given in Fig. 4a, for all possible combinations

between the first and second models of each pair given in

Table 1 (GISS-AOM is excluded to simplify the analysis).

Pairs of same-center models are represented along the

diagonal of the matrix. At first sight, the climate change

disagreementmetric has a rather low ability to identify the

same-center models, according to the current ensemble.

FIG. 4. Pairwise calculation of the climate change model disagreement metric (given as the rejection rate) for

temperature (2080–2100 relative to 1980–2000) in (a) summer and (b) winter. Models are organized as one model

per center on each axis.
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Nevertheless, three of the four lowest disagreement rates

(which represent pairs of models that strongly agree in

their projections) appear for same-center models (the

GFDL, GISS EH–ER, and UKMO pairs). On the other

hand, the MIROC, CSIRO, and NCAR pairs represent

strong model disagreements, which are more representa-

tive of those found for pairs of models developed by dif-

ferent centers. Overall, similar conclusions are obtained

for winter temperature change (Fig. 4b).

It is interesting to compare the previous metric of

climate change disagreement with a performance-

derived metric, such as pairwise correlation—the more

standard approach to addressing issues of model in-

dependence (Jun et al. 2008; Reifen and Toumi 2009;

Pennell and Reichler 2011; Knutti et al. 2010; Haughton

et al. 2015). Here, the pairwise correlation between

model errors is calculated using the HadCRUT4 global-

observed mean state of 1961–90 surface air temperature

(Morice et al. 2012); the results are shown in Figs. 5a and

5b for summer and winter seasons, respectively. While

this result could be metric dependent, it can be seen in

Fig. 5 that the power to discriminate between the same-

center model pairs from other pairs is quite a bit higher

in the case of the performance-derived metric as com-

pared to the case of the climate change disagreement

metric previously shown in Fig. 4. This further suggests

that typical model similarities andmodel origin act more

strongly to constrain agreements between model errors

than between regional climate sensitivities to GHGA

forcing. Interestingly, the same-center agreements that

were previously found using the climate change metric

are still detected for the correlation of errors. GFDL and

GISS are two striking cases of same-center models that

agree in both of their representation of the observed

mean climate and in terms of climate sensitivity. These

provide strong examples of dependent models that give

similar results, which will be referred to as the ‘‘non-

informative agreement’’ in the next sections.

c. Discarding noninformative agreements

When two models provide virtually equal climate

change signals, one may be inclined to consider this as

noninformative agreement, particularly if the resem-

blance can be attributed unequivocally to a dependency

relationship between the models. Attributing model

agreement to a lack of independence is, however, a

complex problem.Models that share several components

and that are developed within the same institution feed

suspicions that this agreement might result solely from

common design. In the following, we propose a conser-

vative approach to filter out noninformative agreements

from an ensemble, because these may potentially affect

ensemble statistics along with our confidence in them.

One popular approach for interpreting multimodel

ensembles is known as ‘‘one model, one vote’’ (Knutti

2010), which assumes each model is an equivalent

representation of the climate system. Contrasting with

this model-democratic point of view, here we propose

an ‘‘institute democratic’’ approach to consider multi-

model ensembles (i.e., one center, one vote). As a basic

rule to be applied on a per-gridpoint basis, two same-

center models are considered as a single one when their

signals are statistically indistinguishable (otherwise,

they are counted as two individual models). It is im-

portant to note that since all models are expected to

show no signal early in simulations, applying this rule

could reduce the information available in the ensemble

by discarding informative agreements (i.e., agreements

FIG. 5. As in Fig. 4, but for pairwise correlation of model errors relative to the HadCRUT4 dataset for temperature

(mean state between 1961 and 1990) . One member per model is used.
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between independent models showing no signal): ‘‘no

signal’’ in several models should, in fact, increase our

confidence that climate change is not occurring—relevant

information that should not be filtered out from the en-

semble. For this reason, the following analysis focuses

only on the cases where the signal is significant relative to

the noise in every model considered.

In what follows, we will present an example of dis-

carding noninformative agreements from the ensemble

by the strict application of the institute-democratic rule.

We will assume that such agreements occur when two

same-center models lead to equivalent projections. In

reality, however, the same-center models can agree and

still be independent; for the sake of simplicity; however,

we neglect this possibility and adopt a rather conserva-

tive approach. We strongly believe that the burden of

proof of the same-center model independence should be

at least partly held by the participating centers.

We define the number of independent models N0 as
the number of models that remain in the ensemble after

discarding one model per pair when an agreement is

found. It is interesting to compare N0 to the full size of

the ensemble (N5 14, where GISS-AOMwas excluded

to obtain an even ensemble size). By discarding non-

informative agreements related to model similarities,N0

can be thought of as the effective ensemble size, which is

often referred to be smaller than the actual number of

participating models in the ensemble (e.g., Pennell and

Reichler 2011; Annan and Hargreaves 2011).

The ratio N0/N for climate projections of tempera-

ture in the summer and winter seasons is shown in

Fig. 6. The lower limit of this ratio is 50% because N0

cannot be smaller than the number of institutions

(seven in this ensemble). At the upper limit, the ratio

reaches 100% when all intracenter model differences

are statistically significant. For temperature change in

summer (Fig. 6a), the ratio often has values smaller

than 65% over North America and Europe, while such

low values extend over most of Asia in winter (Fig. 6b).

Hence, the institute-democratic approach leads to an

effective ensemble size that is in general a little more

than half of the actual ensemble size over midlatitude

land regions. There are also some regions, particularly in

the tropics, where the effective ensemble size exceeds

90%. These regions are characterized by a large signal

relative to the multidecadal climate variability.

d. Model weighting under institutional democracy

Since the burden of proof that same-center models

can be assumed as independent models is generally not

met by modeling centers participating in internationally

coordinated experiments, we now translate the concept

of institutional democracy into a weighting scheme for

calculating the ensemble statistics. Based on the same

criteria as in section 3c for calculating the number of

independent models in the ensemble N0, half and unit

weights are assigned to each model depending on

whether a noninformative agreement was found with

the other model in the same-center pair. Using this

scheme for calculating the ensemble statistics of the

climate change signal in temperature (Figs. 7a and 7c for

summer, andFigs. 7b and 7d forwinter), it appears that the

model-democratic (arithmetic) and institute-democratic

(weighted) ensemble-mean climate change patterns are

very similar (the difference between the two types of

mean is shown in Figs. 7e and 7f), which is also true for

the intermodel spread (not shown). This similarity may

appear as highly specific to the current ensemble, which is

constructed based on a set of same-center model pairs.

However, the use of both a more sophisticated indepen-

dence metric and a typical ensemble of opportunity ap-

pear to lead to similar conclusions (Evans et al. 2013).

Despite the previous similarity, the level of confidence

associated with these statistics (ensemble mean and

spread) should, however, highly depend on the chosen

approach. Recalling the truth-plus-error paradigm, an

ensemble of N models is generally interpreted as a

sample of N independent and identically distributed

FIG. 6. Ratio (%) of the effective number of modelsN0 to the actual ensemble sizeN5 14. Climate change (2080–2100 relative to 1980–

2000) is given for surface air temperature in (a) summer and (b) winter. Uncolored areas are where the signal from at least one of the

models is not statistically significant at the 5% level.
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climate change estimates drawn from a larger population

(e.g., Stephenson et al. 2012; von Storch andZwiers 2013).

Under this paradigm, themodel-democratic samplemean

D̂ (one model, one vote) has a standard error (i.e., the

standard deviation of the sample mean) of

Std(D̂)5

ffiffiffiffiffi
ŝ2

N

s
, (4)

where ŝ2 is the intermodel sample variance of the climate

change signal and N is the ensemble size. Similarly, if we

now interpret Eq. (4) from the institute-democratic per-

spective, the variance of the weighted sample mean D0 is

Std(D̂0)5

ffiffiffiffiffiffiffi
ŝ02

N0

s
, (5)

where ŝ02 is the weighted intermodel sample variance of

the climate change signal andN0 is the effective ensemble

size. Equations (4) and (5) reflect different avenues under

the truth-plus-error paradigm to assess the statistical

uncertainty in the sampling of a multimodel mean. Since

(although partly due to the way the current ensemble is

built) this weighting technique leads to ŝ2 ’ ŝ02, the ratio
N0/N is approximately equal to the ratio of the squared

standard errors [Var(D̂)/Var(D̂0)]. For example, an N0/N
ratio of 60% involves inflating the model-democratic

standard error (standard deviation) by about 30% to

reach the institute-democratic value.

A convenient way to analyze the impact of this

weighting scheme is by comparing the ensemble-mean

signal with the statistical uncertainty (or standard error)

associated with it. The signal-to-uncertainty ratio

[D̂/Std(D̂) or D̂0/Std(D̂0)] of climate change projections

in summer temperature is shown in Figs. 8a and 8c

for the model-democratic and institute-democratic ap-

proaches, respectively. The signal becomes weaker

relative to uncertainty under the institute-democratic

approach. The relative error of the statistical uncertainty,

[Std(D̂0)2 Std(D̂)]/Std(D̂), can be interpreted as the

FIG. 7. (a) Model-democratic (arithmetic) and (c) institute-democratic (weighted) ensemble-mean climate change patterns for summer

surface air temperature (2080–2100 relative to 1980–2000) with (e) their difference (arithmetic minus weighted). (b),(d),(f) As in (a),(c),(e),

but for winter. Uncolored areas are where the signal from at least one of the models is not statistically significant at the 5% level.
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overconfidence associated with the arithmetic ensemble

mean that might be prevented by considering institutional

democracy. As shown in Fig. 8e, overconfidence is larger

than 25%over several regions (e.g., NorthAmerica, Asia,

SouthAfrica), while SouthAmerica andAustralia exhibit

lower overconfidence (,15%). Overconfidence exceeds

40% in winter (Fig. 8f) over several regions (parts of

Canada, North Africa, Europe, and eastern Asia). These

results provide some insight into the global spatial struc-

ture of ensemble overconfidence, while Steinschneider

et al. (2015) have recently shown a similar impact of the

effective ensemble size on the width of probability density

functions for climate projections over some regions dis-

tributed across the United States.

4. Discussion and conclusions

In this study, we have investigated the impact of model

similarities on regional climate change projections by

focusing on institutes that contributed more than one

model (or version) to the CMIP3 multimodel ensemble.

Typical differences among models are changes in resolu-

tion; numerical scheme; ocean eddy parameterization; or

even entire components, such as atmosphere or ocean.

In the first part of the analysis, the climate change

signals of surface air temperature at the end of the

twenty-first century are averaged for each modeling

center. The differences in climate change signals were

then calculated for these pairs of same-center models

and tested against the noise of internal variability.

Strong model agreements (i.e., indistinguishable cli-

mate change signals) were found over most of the land

regions for the CGCM, GFDL, GISS EH–ER, and

UKMO pairs of models. On the other hand, model

disagreements showed regional characteristics more or

less easily attributable to the model differences. An

interesting example is that of GISS EH–ER pair,

which showed significantly different responses over

FIG. 8. Ensemble-mean signal (2080–2100 relative to 1980–2000) to uncertainty ratio for summer surface air temperature calculated

using (a) the model-democratic [D̂/Std(D̂)] and (c) the institute-democratic [D̂0/Std(D̂0)] approaches. (e) The overconfidence given as the

relative error of the statistical uncertainty f[Std(D̂0)2Std(D̂)]/Std(D̂)g. (b),(d),(f) As in (a),(c),(e), but for winter. Uncolored areas are

where the signal from at least one of the models is not statistically significant at the 5% level.
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Hudson Bay and the North Atlantic. While these models

share the same atmosphere, sea ice, land, and coupling

components, they do differ in their ocean model. These

results suggest that the lack of model independence can

have an important impact on projections according to a

given simulated variable and geographical location, while

it could not be so for other cases. Another interesting

result is that of the Hadley Centre models, which despite

their important differences—they belong to different

generations—nevertheless show striking agreements in

their projections. This is consistent with Rauser et al.

(2015), who showed that successive generations of cli-

mate models can overlap significantly in terms of per-

formance. While the nature and meaning of similarities

between Hadley Centre models are beyond the scope of

this study, several questions are nonetheless prompted:

from the role played by the shared radiative transfer

parameterization package (Edwards and Slingo 1996) to

the impact of developing models under the same ‘‘cul-

ture,’’ including here validation and tuning methods.

In the second part of the analysis, the robustness of the

same-center hypothesis (i.e., whether same-centermodels

should give similar results) was investigated by comparing

the same-center and different-center model pairs using

1) the proposed metric of climate change disagreement

and 2) a metric based on the correlation of model-error

patterns (Pennell and Reichler 2011). The latter was

shown to be a successful method to quantify model in-

dependence and has been used on several occasions (Jun

et al. 2008; Reifen and Toumi 2009; Pennell and Reichler

2011; Knutti et al. 2010; Haughton et al. 2015). These

metrics were compared in a cross-comparison context

adapted for validating the same-center hypothesis (i.e., by

using one model per family on each axis). The same-

center models were more clearly discriminated in the

model-evaluation metric than under the climate change

disagreement metric. This result could be interpreted in

different ways: it may suggest that our criterion for future

climate needs further refinement to become a better

discriminator, or it may suggest that the issue of model

independence is of lesser importance in climate change

projections than it is for simulating the observed mean

state of climate. In essence, this would mean that model

differences tend to be expressed more readily in climate-

sensitivity differences than in present climate averages.

A finding related to the previous discussion is that

strong agreements in climate change signals from same-

center models tend to correspond to a strong correlation

of errors in evaluationmode, whereas the opposite is not

true: strong error correlations do not imply an indistin-

guishable climate change signal. Strong agreements in

both climate change and evaluation mode are likely

to be noninformative, given the underlying model

dependencies; caution should be exercised during the

analysis of such an ensemble of climate change projections.

Comparing groups of same-center models with other

arbitrary groups showed that model agreements in ei-

ther climate change or evaluation mode may occur in

groups of models created by different centers, as well.

This is not surprising, because typical model similarities

found using the same-center proxy method may also

appear among the models of different institutions. This

limitation of the same-center criterion can be twofold:

models from different groups may share parts of their

code, and they may share similar scientific premises

based on different codes. The former is sometimes

documented, but the information tends to be scattered

across the climate modeling literature. The latter is

much more difficult to establish and would entail a

meticulous comparison of the codes describing each

component, as well as their development histories.

Given the considerable scientific challenge in de-

termining how model similarities play a causality role for

model agreements in their response to GHGA forcing,

we have taken for the sake of simplicity the default po-

sition of identifying as ‘‘noninformative agreements’’ the

case when models that share multiple components or

were developed within the same institution provide sta-

tistically indistinguishable projections. Hence, we have

used the occurrence of such noninformative agreements

in the ensemble to downweigh the same-center models

on a per-cell basis. This procedure bears some resem-

blance to the calculation of an effective ensemble size

(Pennell and Reichler 2011; Annan and Hargreaves

2011) based on the pairwise correlations of model errors.

These estimates suggest an effective ensemble size that

could be as low as 25% of the actual number of models

populating the CMIP3 archive. By applying the institute-

democratic criterion to temperature change, we have

found the current CMIP3 subset to be smaller than 65%

of the actual ensemble size over several land regions by

the end of the century.

Assuming the same-center criterion as an alternative

definition of the effective ensemble size, it was then

implemented within an ensemble-weighting scheme.

Using such a technique, noninformative agreements can

be filtered out from the ensemble to favor diversity of

projections over the ensemble size. It was then shown

how using the same-center criterion increased confi-

dence intervals in the ensemble statistics. This result

should be interpreted as an apparent loss of confidence,

since the model-democratic case tends to provide

overconfident results. Despite this change in confidence,

the application of both types of averaging lead to en-

semble statistics (mean and variance) that are very

similar. This was partly attributed to the construction of
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the current ensemble, but it is worth noting that an in-

dependence ranking is an efficient way to reduce the size

of an ensemble while preserving its initial characteristics

(Evans et al. 2013).

Recalling that the issue of model independence goes

beyond the same-center context in the CMIP3 ensemble

(Knutti et al. 2010), this is increasingly true for its succes-

sors (CMIP5 and CMIP6). These ensembles are less in-

stitution centric since cross-institutional dependencies

become more common, as shown by the few examples

cited in the introduction (e.g., CESM and NorESM being

both forked from CCSM4). One strategy that could be

undertaken by the climate modeling community to cir-

cumvent noninformative model agreements is to develop

criteria of the kind suggested here to identify models of

very similar nature. For example, the current framework—

that applies the rule of institutional democracy to pairs of

models—could be generalized for arbitrarily sized groups.

Institutions were interpreted here asmodeling centers, but

one may think of more general definitions, such as groups

formed frommodels with a recent or significant overlap in

their development histories.

Centers that can afford to provide multiple models or

model versions to a CMIP experiment should make an

effort to show how the supplementary models add new

information to the ensemble. From the statistical point

of view, it is always better to have more simulations

available, but it is also true that many users do not rec-

ognize the fact that the ensembles of opportunity, such

as CMIP, do not necessarily consist of independent

models and that the model-democratic approach is

likely to yield overconfidence. ‘‘Flagging’’ models that

exhibit noninformative agreements based on the same-

center hypothesis proposed here could help users to

process the information provided by the ensembles of

opportunity. Similarly, parallel development of the

same model by a different institution should also be

made more explicit, as end users of climate model data

are not always aware of model origin beyond the

institution’s name.
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