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correlations, and that those interested in achieving high 
monthly or annual time correlations between RCM output 
and observations may have to do so by increasing corre-
lation as much as possible at the shortest time scale. This 
may indicate that even when only concerned with time cor-
relations at large temporal scale, large-scale spectral nudg-
ing acting at the time-step level may have to be used.

Keywords Regional climate model · Spectral nudging · 
RCM-observations synchronicity

1 Introduction

General statistical properties of nested regional climate 
model (RCM)-generated simulations may seem at first 
sight similar to those produced by coupled global climate 
models (CGCMs). Similarities in fact exist when RCM-
simulated fields are studied without consideration of the 
chronology of events, such as climatological means or fre-
quency distributions. But due to the control exerted by the 
lateral boundary conditions upon nested RCM simulations, 
the RCM-simulated fields do exhibit some synchronicity 
with their driving data, whether GCM-simulated fields or 
reanalyses. When driven by reanalyses, RCM-simulated 
fields are also correlated with observations to some extent.

For several applications such as projected future cli-
mate changes, synchronicity is not an issue as only the 
overall trend matters. On the other hand, synchronicity is 
paramount in applications such as dynamical downscaling 
of reanalyses aiming at obtaining high-resolution pseudo 
observations. This last application was first suggested by 
Anthes (1983) and has become an active area of research 
over the last few years (e.g. Li et al. 2012; Stefanova et al. 
2011; Weisse et al. 2009; Kanamaru and Kanamitsu 2007). 

Abstract Unlike coupled global climate models (CGCMs) 
that run in a stand-alone mode, nested regional climate 
models (RCMs) are driven by either a CGCM or a reanaly-
sis dataset. This feature makes high correlations between 
the RCM simulation and its driver possible. When the 
driving dataset is a reanalysis, time correlations between 
RCM output and observations are also common and to be 
expected. In certain situations time correlation between 
driver and driven RCM is of particular interest and tech-
niques have been developed to increase it (e.g. large-scale 
spectral nudging). For such cases, a question that remains 
open is whether aggregating in time increases the cor-
relation between RCM output and observations. That is, 
although the RCM may be unable to reproduce a given 
daily event, whether it will still be able to satisfactorily 
simulate an anomaly on a monthly or annual basis. This is 
a preconception that the authors of this work and others in 
the community have held, perhaps as a natural extension 
of the properties of upscaling or aggregating other statis-
tics such as the mean squared error. Here we explore ana-
lytically four particular cases that help us partially answer 
this question. In addition, we use observations datasets and 
RCM-simulated data to illustrate our findings. Results indi-
cate that time upscaling does not necessarily increase time 
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A simple proof-of-concept exercise of any of these appli-
cations is to verify whether and under which conditions 
RCMs’ anomalies correlate well with those of the driving 
data. von Storch et al. (2000) have shown that the appli-
cation of large-scale spectral nudging greatly improves the 
time correlation between a reanalysis-driven simulation 
and observations, although the match is not perfect (e.g. 
Alexandru et al. 2009).

In applications of RCM downscaling for which synchro-
nicity matters, an important issue relates to the way chro-
nology-related statistical properties vary with time scale. 
For example, how does the time correlation between the 
RCM-simulated fields and the corresponding driving fields 
or observations change when considering the time series on 
daily, weekly, monthly, seasonal or annual basis?

A naïve view might lead one to think that time upscaling 
(aggregation) should necessarily improve time correlation 
and apparent synchronicity, analogous to temporal or spa-
tial upscaling that generally improves scores such as Root-
Mean-Square error or bias by reducing the unpredictable 
noise. A typical example is “hedging” in weather forecast, 
operation that uses low-pass filters or horizontal diffusion 
to remove poorly predicted finer scales (e.g. Jakimow et al. 
1992) in order to avoid the “double penalty” problem typi-
cal of high-resolution simulations (e.g. Mass et al. 2002; 
Bougeault 2002). The objective of this work is to investi-
gate in a simple framework whether this conjecture is also 
correct for time correlation of upscaled RCM-generated 
data.

This question can be generalized in the following way: 
How are weather anomalies in the driving data or observa-
tions reproduced by the RCM as a function of time scale? 
If the RCM and driving data are found to be somewhat 
asynchronous at some short time scale, can they be more 
synchronous on longer time scales? As simple as it may 
sound, the problem just stated is not trivial, and as far as the 
authors are aware, there exists no general solution without 
some strong assumptions. In what follows we explore ana-
lytically four particular cases that help us partially answer 
this question. In addition, we use observation datasets and 
RCM-produced data to illustrate our findings.

2  Analytical approaches

2.1  A very simple case

Here we discuss the simplest possible case when both the 
RCM-simulated and the observations time series have zero 
time autocorrelation and identical time variance. Despite 
its simplicity, this assumption can be somewhat realistic 
in some cases. Here mt will refer to a reanalysis-driven 

RCM-simulation seasonal anomaly time series and ot the 
corresponding observations anomaly time series, and their 
variance var(mt) = var(ot) = σ 2. In the following we will 
refer to ‘observations’ only, but all developments would 
equally apply to driving data as well.

Consider the case when the temporal correlation 
between these two time series is corr(m, o) = r (correla-
tion hereafter refers to Pearson correlation). It is shown in 
Appendix 1 that upscaling these time series by averaging 
two successive time steps or archival times as

yields a correlation

which is identical to that of the original time series.
This may seem a counterintuitive result at first as one 

might have expected that time averaging would filter-out 
noise, resulting in an increased correlation (Sect. 2.4 will 
further illuminate this result). The covariance is indeed 
decreased, but the variances of the two variables are 
decreased in the same proportion, keeping the correlation 
unchanged. This is in fact a well-known result of multivari-
ate statistics (see for example Johnson and Wichern 2007). 
Although theoretically the correlation is the same for the 
average, it should be noted that when estimating the corre-
lation with data, the error of the estimation will increase as 
the sample size decreases with averaging (see Appendix 5). 
We will explore this with more detail later.

One may wonder if this rule could be generalized to all 
scales, that is, whether the following rule is valid: lack of 
correlation at short time scales implies lack of correlation 
at longer scales. But of course this generalization would 
violate one of the initial assumptions since daily values are 
strongly correlated in time. We will consider in Sect. 2.3 a 
case when autocorrelation is taken into account.

2.2  A case with different variances and correlations

In this example we discuss a somewhat more general case than 
the previous one. Let us consider a year composed of two sea-
sons for simplicity, summer (S) and winter (W), each one with 
different variances, both for the simulated (m) and observed 
(o) variables, σ 2

Sm
, σ 2

So
, σ 2

Wm
, σ 2

Wo
, respectively, and with differ-

ent correlations between simulations and observations anoma-
lies, rS and rW, for summer and winter, respectively.

We may now ask about the correlation of the annual-
mean anomaly rA, where A = (S + W)/2. Assuming that 
successive seasons are uncorrelated, Appendix 2 shows that 
the correlation of the annual anomaly rA can be written as a 
function of seasonal values as

(1)Am = mt + mt+1

2
, Ao =

ot + ot+1

2

(2)corr(Am,Ao) = r
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Expression (2) is recovered in the special case of iden-
tical variances and identical correlations. An interesting 
case occurs when the second term in the denominator van-
ishes, that is, when the modeled variance differs from the 
observed one but this relative error is similar in both sea-
sons. In this case annual anomaly correlation rA is then a 
weighted average of the seasonal anomaly correlations

where a = σSmσSo and b = σWm
σWo

. This last expression 
can be easily generalized to more than two seasons or sub-
seasons. The weights are a function of the simulated and 
observed time variability, and the annual anomaly correla-
tion is dominated by the season with the largest variance. 
Contrary to what could have been intuitively expected, 
decreasing the time resolution of the time series from sea-
sonal to annual does not increase the correlation over that 
of the individual values. Furthermore, if we now note that 
the neglected term on the denominator is positive, we see 
that rA is in fact smaller than the seasonal weighted aver-
age. Hence, upscaling the time series not only does not 
increase the correlation but in fact may reduce it; this con-
dition would occur for instance when the model fails to 
simulate well seasonal variances.

2.3  Autoregressive case

Cases treated thus far have assumed no autocorrela-
tion within each time series, making them unrealistic in 
many instances. To allow for autocorrelation, we will 
now use a representation of simulated and observed time 
series by first-order autoregressive processes. Assuming 
that the simulated time series m and that of the observa-
tions o follow first order autoregressive processes, and 
knowing corr(ot ,mt), we want to know the upscaled 
value for corr(Ao,Am), where A0 = (ot+1 + ot)/2 and 
Am = (mt+1 + mt)/2.

In Appendix 3 it is shown that the solution is

where ρo and ρm are the autoregressive parameters of each 
time series for a first order autoregressive process (these 
parameters need to be constrained between −1 and 1 for 
the process to be second-order stationary, and are equal 
to the autocorrelations at lag 1). The simplest case result 

(3)

rA = rSσSmσSo + rWσWm
σWo

√

(

σSmσSo + σWm
σWo

)2 +
(

σSm
σSo

− σWm

σWo

)2

σ 2
So
σ 2
Wo

.

(4)rA = ars + brw

a+ b
.

(5)corr(Ao,Am) = corr(ot ,mt)
1
2

(

2+ ρm + ρo
√

1+ ρ
o

√

1+ ρ
m

)

presented in (2) is recovered when the autocorrelations 
vanish. The more interesting cases occur when the mul-
tiplying factor on the right-hand side differs from unity. 
As shown in Appendix 3, its value is always greater than 
or equal to 1, but only marginally so. For the reasonable 
case when the autoregressive parameters of simulations and 
of observations time series do not differ much, this factor 
exceeds unity by about 1 %, and it can reach 6 % when 
autocorrelations are the most different from each other but 
remaining positive (which means model and observations 
have quite different behaviours). These results suggest that

is a very good approximation. So this result also indicates 
that time-upscaling an RCM time series does not improve 
noticeably its time correlation with observations under this 
approximation.

2.4  Noise plus sinusoidal signal

For the next case we assume that both time series—that of 
the observations and that of simulated data—consist in a 
random noise superimposed upon a slowly evolving sinu-
soidal signal. To simplify we will postulate that parameters 
of both time series are equal, differing only in the instanta-
neous values of the random noise, which are uncorrelated 
here. This corresponds to the case in which the model is 
able to reproduce the long time-scale signal in both ampli-
tude and phase, but unable to reproduce the phase of the 
random noise features.

Under these assumptions, it is shown in Appendix 4 that 
the correlation of the upscaled time series is

where σ 2
R
 and σ 2

S
 represent the variances of the random 

terms and of the sinusoidal signal, respectively. The factor 
ω in the cosine function represents the angular frequency, 
which is inversely proportional to the period. For the sake 
of shortening the expressions we write it as a function of 
the angular frequency ω = 2π/T, where T is the period of 
the signal.

The factor on the right-hand side is greater than 1 
for a short time interval and/or long time-scale signal, 
2π�t/T < π

/

2 or when �t < T
/

4. If in keeping with the 
notation used in the previous sections we assume �t = 1 , 
we obtain that the period should be larger than the time 
covered by four successive time intervals. In this case the 
two successive data points to be averaged in the upscaling 
will have in most cases the same anomaly sign. For longer 

(6)corr(Ao,Am) ≈ corr(ot ,mt)

(7)

corr(Ao,Am) = corr(ot ,mt)



1+
σ 2
R

�

σ 2
S
cos(ω�t)

σ 2
R

�

σ 2
S
+ 1+ cos(ω�t)
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time periods this property becomes dominant. Table 1 gives 
a sense of the importance of this factor for a very long 
period signal fully encompassed in the time series.

When the noise term is small compared with the sinusoi-
dal signal amplitude, σ 2

R
< σ 2

S
, the correlation of the origi-

nal time series is high and averaging increases it further. 
When noise is dominant, σ 2

R
> σ 2

S
, the original correlation 

is low and averaging increases this correlation substan-
tially, but correlation remains modest.

This result sheds some light upon what our intuition 
may suggest: that when there is a distinct signal, reduction 
of noise by averaging does indeed increase the temporal 
correlation. The conflicting results obtained thus far indi-
cate that analytical developments cannot reach the bottom 
of all our questions. One may wonder whether real cases 
have properties that resemble more one case or another.

3  Some results from RCM simulations 
and observations

In order to illustrate the previous developments with actual 
data, in this section some results for precipitation and tem-
perature obtained from RCM simulations, weather stations, 
reanalysis, and gridded observation datasets are presented. 
The RCM used is the fifth-generation Canadian Regional 
Climate Model (CRCM5), described in Martynov et al. 
(2013) driven by Era Interim (Dee et al. 2011). For rea-
sons of availability, data coming from different simulations 
will be discussed: The two simulations used in the first 
subsection were performed on a subcontinental domain 
over eastern Canada on a 11-km grid mesh, while the 
three used in the second subsection were performed over 
a domain encompassing the entire North America a 22-km 
grid mesh. One of these three simulations uses a moderate 
large-scale nudging on the wind field, with a 6-h relaxa-
tion time from the top of the troposphere until 500 hPa, 
then diminishing linearly with height to become unforced 
at the surface (Separovic et al. 2011). For seasonal values 
observations from CRU3.20 dataset are used (Harris et al. 
2013). For daily observations data from Era-interim and 

from Environment Canada’s homogenized weather sta-
tions are used (see Mékis and Vincent 2011; Vincent et al. 
2012). Stations were chosen using two criteria: geographi-
cal coverage within the integration domain and data quality 
and completeness. Five stations were selected: Bagotville, 
Gaspé, Kuujjuaq, Kuujjuarapik, and Roberval (see Fig. 1).

3.1  Time upscaling from daily to monthly values

In this section we will analyse the time-correlation upscal-
ing from RCM-downscaled reanalysis and the correspond-
ing observed values. Downscaled daily data is taken from 
two CRCM5 simulations differing only in initial conditions 
(known internally at Ouranos as bba and bbb, hereafter 
mentioned as “twin” simulations), integrated for 32 years 
from 1980 to 2011. The gridpoints used are those that are 
closest to the selected weather stations. Daily values are 
divided in two time series, one for January and the other 
for July, in order to remove seasonality that may increase 
artificially the correlation. January and July are considered 
to have 32 days to facilitate computations. Daily values (a 
total of 1024 for each series) are upscaled using expression 
(1) to a 2-day average time series (a total of 512 for each 
series), to a 4-day average (a total of 256 for each series), to 
a 8-day average (a total of 128 for each series), to a 16-day 
(a total of 64 for each series), and to a 32-day average (a 
total of 32 for each series).

Figure 2 depicts time correlation for surface temperature 
between the CRCM5 downscaled reanalysis and the Envi-
ronment Canada observations for the different time scales 
studied. Blue lines indicate January values and red ones 
July values. Different symbols are used for the twin simula-
tions (a star and a cross). During winter, correlation seems 
to generally increase for longer timescales. During summer, 

Table 1  The first column indicates the ratio of variances between 
noise R and sinusoidal signal S

The second and third column show the correlation before and after 
the time upscaling, respectively. The forth column indicates the 
increase factor by upscaling

σ 2
R

/

σ 2
S

corr(o,m) corr(Ao,Am) Factor

1 0.5 0.66 1.33

¼ 0.8 0.89 1.11

4 0.2 0.33 1.66

Fig. 1  Location of selected Environment Canada weather stations
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correlation is lower than during winter, and the existence of 
an increase with timescale is not obvious. Twin simulations 
produce very similar although not identical results for both 
seasons. Figure 3 is similar to Fig. 2 but for precipitation. 
Without surprise correlations are lower than for tempera-
ture. Winter precipitation seems to have an overall increase 
with time scale, with twin simulations producing very simi-
lar results. Summer precipitation shows no clear signs of 
increase and twin simulations may differ considerably in 
some locations. 

It is important to recall that the estimations of correla-
tion presented at longer time scales are associated with 
larger random errors as the sample number is reduced by 
upscaling. Appendix 5 discusses and illustrates the mag-
nitudes of such errors. Single-day time series contain near 

1000 values and hence error bars can be found to the right 
of the diagram in Fig. 8. Series of 32-day averages con-
tain around 30 values and can be found near the left side 
of the same diagram. As we can see considering the color 
scale, high correlation values are associated with small but 
asymmetric intervals. For winter temperatures, correla-
tion values between 0.8 and 0.9 are common, which gives 
intervals of confidence (total length) of around 0.03 for 
1-day series and near 0.3 for 32-day series. This puts into 
question the statistical robustness of the apparent increase 
of correlation by time upscaling during winter noted in 
Figs. 2, 3. For summer temperature and precipitation in 
both seasons the situation is even less clear since lower 
overall correlation values are associated with larger inter-
vals of confidence.

Fig. 2  Time correlation of surface temperature between different 
CRCM5 simulations and station observations from Environment Can-
ada, for different timescales ranging between 1 and 32 days. Blue and 

red lines identify January and July values, respectively. Difference 
in symbols indicates results obtained from twin simulations. Each 
graphic depicts one of the selected weather stations (see Fig. 1)
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This suggests that even if time upscaling might appear 
to produce an increase in correlation, establishing its sta-
tistical robustness may need more data. But naturally this 
prompts the following question: Is a barely detectable 
increase in correlation by upscaling worth the statistical 
battle?

3.2  Time upscaling from seasonal to yearly values

The previous section omitted the impact of seasons when 
studying correlation at different timescales. In this section, 
as in Sect. 2.2 we will concentrate in the upscaling from 
seasonal to yearly sampling.

Figure 4 depicts correlations between a number of data-
sets and the CRU3.20 data for temperature (Fig. 4a) and 
precipitation (Fig. 4b). On the vertical axis the correlations 

obtained for annual values are plotted, while in the hori-
zontal axis values that estimate the annual quantity by 
weighted average of seasonal values are depicted [here we 
use an extension to four seasons of expression (4)]. Each 
color corresponds to a different dataset, three for differ-
ent simulations of the CRCM5 (bao, ban and bar2), and 
one (era_int) for the Era Interim reanalysis. Runs bao and 
ban have identical setups differing only in initial condi-
tions (twin simulations). Run bar2 is also identical but 
large-scale nudging is used. In order to give some statisti-
cal robustness correlations are computed for all grid points 
over the province of Québec, Canada (812 points in total; 
but note that spatial autocorrelation makes these points far 
from independent, particularly for the case of tempera-
ture). Colored stars indicate the median value for each 
dataset.

Fig. 3  As in Fig. 2 but for precipitation
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The graphs should be interpreted as follows: when 
points lay above the diagonal it indicates that upscal-
ing from seasonal to annual does in fact improve over 

simple combinations of seasonal correlation. As discussed 
in Appendix 5, errors in the estimations of correlation with 
a 30-year long time series are quite large, hence values in 
the scattergram have a considerable spread.

Figure 4a shows that for temperature most of the data 
cloud and their mean values lay above the diagonal, suggest-
ing that upscaling does improve correlation. This is particu-
larly clear for simulations bao and ban performed without 
large-scale nudging. For ERA-Int and the spectrally nudged 
simulation bar2, the improved correlation is more modest; 
but it should be kept in mind that it is difficult to improve 
very high correlations since it is a bounded quantity.

The case for precipitation is somewhat different (Fig. 4b, 
notice change of range in both axes). Correlations between 
observed and simulated precipitation are overall signifi-
cantly lower than that for temperature, and upscaling seems 
not to have a distinctive positive effect. The highest correla-
tions are slightly degraded by upscaling and the lower ones 
are slightly improved.

4  Conclusions

The aim of this study was to analyse the effect of time 
upscaling (aggregating) on the correlation between a time 
series produced by a reanalysis-driven RCM and observa-
tions. Lacking a general solution, we have approached the 
issue from four different simple analytical perspectives: 
1- Two stochastic correlated time series, without autocor-
relation and with identical variances, 2- As in 1, but allow-
ing different variances and correlations between series, as 
typical in the case of seasonal statistics, 3- Time series with 
an autoregressive behaviour, typical of short time interval 
series, and 4- Stochastic time series that are modulated by a 
sinusoidal signal, such as a interannual oscillations.

The four approaches delivered different results. The 
first two suggested that in the absence of autocorrelation, 
upscaling does not improve correlation and may in fact 
deteriorate it if the model fails to produce the appropriate 
seasonal interannual variances. Substantial autocorrela-
tion is however a typical property of daily time series—for 
fields such as surface temperature for example–, and this 
case was discussed in the third approach. Results indicated 
that no degradation occurs, but no substantial improvement 
is to be expected by upscaling either. The last case repre-
sented a stochastic time series with no autocorrelation—
and no cross correlation—with a superimposed sinusoidal 
signal (which in fact introduces autocorrelation and cross 
correlation in the time series). This case can be thought 
of, for example, as yearly values modulated by interan-
nual variability with a single dominant mode. In this case, 
upscaling produces a substantial increase in correlation for 
long time scale oscillations.

Fig. 4  Correlations between a number of datasets and the CRU3.20 
data for temperature (a) and precipitation (b). On the vertical axis the 
correlations obtained for annual values are plotted, while in the hori-
zontal axis values estimates of the annual quantity by weighted aver-
age of seasonal values are depicted [see expression (4)]. Each color 
corresponds to a different dataset, three (bao, ban and bar2) to dif-
ferent versions of CRCM5, and one (era_int) to the Era Interim rea-
nalysis. Runs bao and ban are identical simulations differing only in 
initial conditions. Run bar2 is also identical but uses a moderate form 
of large-scale spectral nudging. Values are taken for a period from 
1981 to 2010 over the province of Québec, Canada (main delimited 
area in Fig. 1). Correlations are computed at all grid points (which 
corresponds to 812 points). Colored stars indicate the mean value for 
each dataset
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The answer to the question asked in the introduction is 
hence not straightforward from a theoretical perspective. 
Results for real time series will depend on which property 
dominates and which assumptions are more realistic for the 
case chosen. Examples shown here with RCM-simulated 
data and observations corroborate in part the more cau-
tious analytical results, producing some hope of correlation 
increase with scale for winter but almost none for summer. 
More work with real data is needed to provide more robust 
answers for a variety of cases, although the hope of substan-
tial (and practical) gains by upscaling seems to be limited.

Before more is known about the topic, the safest 
approach may be to assume that lack of correlation at 
short time scales will express itself as lack of correlation 
at longer scales. If one is interested in achieving high cor-
relation with observations at time scales such as monthly, 
seasonal or annual, one may be constrained to use some 
form of large-scale nudging within the RCM in order to 
strengthen the control exerted by the driving data on short 
time scales. It is still to be seen how intense this nudging 
should be to attain satisfactory results.

In the examples presented here we have focused mainly 
on correlations between reanalysis-driven RCM simu-
lations and observed values. The formal considerations 
discussed in Sect. 2 are however relevant for other situa-
tions as well. Consider the following examples of two dif-
ferent sources of a given variable with significant cross 
correlation:

1. Two nested simulations driven by the same driving 
data, either using the same RCM (such as twin simula-
tions as in Alexandru et al. 2009), variants of a given 
RCM (such as spectrally nudged or not), or different 
RCMs.

2. An RCM simulation and its driving dataset, whether a 
reanalysis or some CGCM-simulated data. Note that 
this applies even if the variable to correlate is not used 
to drive the RCM, such as precipitation. Studies of 
correlation between reanalysis-driven RCMs and rea-
nalysis are common features in the production of high-
resolution pseudo-observations or poor’s man high-
resolution analysis by dynamical downscaling (e.g. 
Kanamaru and Kanamitsu 2007).

3. CGCMs simulations nudged towards reanalysis and 
observations (e.g. Eden et al. 2012).

4. Two observational datasets. Studies on temporal cor-
relation have been carried out, for example by Brands 
et al. (2012), who computed time correlations on a 
daily timescale between two different reanalysis.

Finally, here we have concentrated on time upscaling 
but this discussion could be extended to spatial-upscaling 
too. For example, whether for daily precipitation time 

correlation between RCM and observations improves when 
instead of a single station a regional scale is considered. 
This is also a question that deserves attention.
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Appendix 1

Let us consider a reanalysis-driven RCM-simulated anom-
aly time series mt and the corresponding observations 
anomaly time series ot. Let us assume for simplicity that 
the elements of each time series are random, decorrelated 
in time, with the same variance var(mt) = var(ot) = σ 2, 
and with correlation corr(mt , ot) = r between the two time 
series.

Consider now a time series made of the average between 
adjacent time elements of these time series:

The variances of these time series are obtained from

and similarly var(ōt) = 1
2
σ 2, and the covariances between 

these time series are

(8)m̄t =
mt + mt+1

2
, ōt =

ot + ot+1

2

(9)

var(m̄t) = var

(

mt + mt+1

2

)

= 1

4
{var(mt)+ var(mt+1)+ 2cov(mt ,mt+1)}

= 1

2
var(mt) =

1

2
σ 2

(10)

cov(m̄t , ōt) = cov

(

mt + mt+1

2
,
ot + ot+1

2

)

= 1

4

{

cov(mt , ot)+ cov(mt+1, ot+1)

+cov(mt , ot+1)+ cov(mt+1, ot)

}

= 1

2
cov(mt , ot) =

1

2
rσ 2
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Then using the definition of correlation we get

Appendix 2

Consider a summer time series S and a winter one W for 
both model simulations (m) and observations (o), with 
correlations

and

We want to know what is the correlation of the annual 
time series—here considered as the simple average of win-
ter and summer only—

where A = (S + W)/2. Using basic properties of the vari-
ance we get

If we assume for the sake of simplicity that the last two 
terms are negligible—season anomalies are uncorrelated— 
and using the first two expressions plus the definition of 
correlation, we get

The variance of the yearly signal can be obtained from 
the properties of the variance as

As before, assuming no correlation between seasons we 
get

Replacing this in (16) we get

and this can be rewritten as

(11)

corr(m̄t , ōt) =
cov(m̄t , ōt)

[var(m̄t)var(ōt)]
1/ 2

=
1
2
rσ 2

[

1
2
σ 2 1

2
σ 2

]1/ 2
= r.

(12)corr(Sm, So) = rS

(13)corr(Wm,Wo) = rW .

(14)corr(Am,Ao) = rA

(15)

cov(Am,Ao) = cov

(

Sm +Wm

2
,
So +Wo

2

)

=
1
4
(cov(Sm, So)+ cov(Wm,Wo)

+ cov(Sm,Wo)+ cov(Wm, So))

(16)rAσAmσAo = 1
4

(

rSσSmσSo + rWσWm
σWo

)

.

(17)

var

(

So +Wo

2

)

= 1
4
(var(So)+ var(Wo)+ 2cov(So,Wo))

(18)σ 2
Ao

= 1
4

(

σ 2
So

+ σ 2
Wo

)

.

(19)
rA =

(

rSσSmσSo + rWσWm
σWo

)

√

(

σ 2
Sm

+ σ 2
Wm

)(

σ 2
So

+ σ 2
Wo

)

The last expression is obtained after adding and subtract-
ing 2σ 2

Sm
σ 2
So
σ 2
Wm

σ 2
Wo

 under the square root in the denomina-
tor of (19) and reorganizing.

Appendix 3

Consider now that the RCM-produced time series (m) and 
the observed time series (o) can be represented as autore-
gressive process with a given standard deviation σ and 
autocorrelation ρ. Then, they can be represented as

and

where t refers to a particular time and ε represents a random 
noise. To obtain the property that interests us we impose 
that the terms that represent the random part are cross-cor-
related between model and observations so that

Knowing the correlation of the time series at succes-
sive times t, we now wonder about the correlation when the 
time series is transformed into averages of successive data. 
We define these new time series as

and

Correlation between the original time series

Applying the covariance operator to the series defined in 
(21) and (22) we get

and using the bilinear property we get

Since the random terms are decorrelated from the 
crossed time series we obtain

(20)

rA = rSσSmσSo + rWσWm
σWo

√

(

σSmσSo + σWm
σWo

)2 +
(

σSm
σSo

− σWm

σWo

)2

σ 2
So
σ 2
Wo

(21)ot+1 = ρoot + εo
t+1

(22)mt+1 = ρmmt + εm
t+1

(23)corr(εo
t
, εm

t
) = rε

(24)A0 =
ot+1 + ot

2

(25)Am = mt+1 + mt

2

(26)cov(ot+1,mt+1) = cov
(

ρoot + εo
t+1, ρmmt + εm

t+1

)

(27)

cov(ot+1,mt+1) = ρoρmcov(ot ,mt)+ cov(εo
t+1, ε

m

t+1)

+ ρocov(ot , ε
m

t+1)+ ρmcov(ε
o

t+1,mt)

(28)cov(ot+1,mt+1) = ρoρmcov(ot ,mt)+ cov(εo
t+1, ε

m

t+1)
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and finally

Similarly, using the properties of the variance in (21) and 
(22) (assuming no covariance between crossed terms) we get

and finally

Returning to (29) we can now rewrite it using (31) and 
the definition of covariance on both sides as

and finally as

It can be shown that this can also be written as

The second factor on the right hand side is smaller than 
1, and its pattern is shown in Fig. 5.

Correlation between the averaged series and the 
original

Using the information obtained above we will now try to 
estimate the correlation of the averaged signal. Knowing that

and

we can write the covariance as

replacing for the terms developed in the previous section we 
get

(29)cov(ot ,mt)(1− ρoρm) = cov(εo
t+1, ε

m

t+1)

(30)var(ot+1) = ρ2
o
var(ot)+ var(εo

t+1)

(31)var(ot)(1− ρ2) = var(εo
t+1)

(32)

corr(ot ,mt)σoσm(1− ρoρm) = rεσoσm

√

1− ρ2
o

√

1− ρ2
m

(33)corr(ot ,mt) = rε

√

1− ρ2
o

√

1− ρ2
m

(1− ρoρm)

(34)corr(ot ,mt) = rε

√

(1− ρoρm)2 − (ρm − ρo)2

(1− ρoρm)2

(35)A0 =
ot+1 + ot

2
= 1

2
(ot(1+ ρo)+ εo

t+1)

(36)Am = mt+1 + mt

2
= 1

2
(mt(1+ ρm)+ εm

t+1)

(37)

cov(Ao,Am) =
1
4
(1+ ρo)(1+ ρm)cov(ot ,mt)+

1
4
cov(εo

t+1, ε
m

t+1)

and then

To continue from here we need to write the variance of 
the average as a function of the original time series. Then 
applying the variance operator on (35) we get

and then

Using (31) we can finally write the previous expression 
as

(38)

cov(Ao,Am) = 1
4
(1+ ρo)(1+ ρm)σoσmrε

√

1− ρ2
o

√

1− ρ2
m

(1− ρoρm)

+ 1
4
rε

√

1− ρ2
o

√

1− ρ2
m
σoσm

(39)

cov(Ao,Am) = 1
4
rεσoσm

√

1− ρ2
o

√

1− ρ2
m

(

2+ ρm + ρo

1− ρoρm

)

(40)var(A0) = 1
4
var

[

(ot(1+ ρo)+ εo
t+1)

]

(41)var(A0) = 1
4
(1+ ρo)

2var(ot)+ 1
4
var(εo

t+1)

(42)var(A0) = 1
2
(1+ ρo)var(ot)

Fig. 5  Factor multiplying the correlation of the noise present in an 
autoregressive case for the correlation discussed in (34) from Appen-
dix 3
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A similar expression is also valid for Am.

Returning now to (39), operating on the left-hand side 
using (42) we get

Then replacing in (39) we get

The factor multiplying rε is smaller or equal than unity 
as can be seen in Fig. 6.

This can also be rewritten as a function of the correla-
tion of the time series using (33) so that

Here the factor is larger than unity, but marginally so 
as can be seen in Fig. 7. From here we can see that the 
corr(Ao,Am) ≈ corr(ot ,mt) seems to be a good approxi-
mation of (45).

The same result can be obtained using a multivariate 
approach (not shown).

(43)

cov(Ao,Am) = corr(Ao,Am)σAoσAm = 1√
2

1√
2
σoσm

√

1+ ρo

√

1+ ρm

(44)

corr(Ao,Am) = 1
2
rε

√

1− ρ
o

√

1− ρ
m

(

2+ ρm + ρo

1− ρoρm

)

(45)

corr(Ao,Am) = corr(ot ,mt)
1
2

(

2+ ρm + ρo
√

1+ ρ
o

√

1+ ρ
m

)

Appendix 4

Here we assume that both time series—that of the obser-
vations and that of the model—consist in a random noise 

Fig. 6  Factor multiplying the correlation of the noise present in an 
autoregressive case for the upscaled correlation as defined in expres-
sion (44) from Appendix 3

Fig. 7  Factor multiplying the correlation of the time series present 
in an autoregressive case for the upscaled correlation as defined in 
expression (45) from Appendix 3

Fig. 8  Confidence intervals for the Pearson correlation. The horizon-
tal axis represents the sample size in logarithmic scale. The ordinate 
represents the upper 95 % confidence interval (when values are posi-
tive), and the lower 95 % confidence interval (when values are nega-
tive). Since these values are dependent on the actual correlation value, 
intervals are defined for different correlation values (in color)
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superimposed on a sinusoidal signal, and may be written 
as

and

where σ 2
R
 and σ 2

S
 represent the variances of the random 

term and of the sinusoidal signal, respectively. For the sake 
of shortening the expressions we write it as a function of 
the angular frequency w = 2π/T, where T is the period of 
the signal (in years, for example). The random variables ε 
have zero mean and unit variance.

In the following we will assume that parameters in both 
time series are equal, differing only on the instantane-
ous values of the random noise. We will also assume this 
time for the sake of simplicity that there is no correlation 
between the variables ε.

Correlation of original series

With these definitions we can estimate the variance of each 
time series and we obtain

and

The covariance between both times series can be written 
as

Also knowing that the variance of a sinusoidal func-
tion is ½, and assuming lack of correlation between noise 
instantaneous values we obtain that

and using the definition of correlation that

Correlation of averaged series

With this information we can now try to estimate the cor-
relation for the filtered or averaged time series, defined as 
in the previous appendices as

we obtain that

(46)ot = σRoε
o

t
+

√
2σSo cos(wt)

(47)mt = σRmε
m

t
+

√
2σSm cos(wt),

(48)var(ot) = σ 2
R
+ σ 2

S

(49)var(mt) = σ 2
R
+ σ 2

S
.

(50)

cov(ot ,mt) = σ 2
R
cov(εo

t
, εm

t
)+ 2σ 2

S
cov[cos(wt), cos(wt)]

(51)cov(ot ,mt) = σ 2
S

(52)corr(ot ,mt) =
σ 2
S

σ 2
R
+ σ 2

S

A0 =
ot+1 + ot

2
and Am = mt+1 + mt

2

and

Applying the variance operator to (53) we get

and then

Simplifying we obtain

and finally

An identical result is found for Am.
Now, the covariance between the two averaged time 

series can be written from (53) and (54) as

then as

Using that the correlation of two sinusoidal waves can 
be written as a cosine of the difference in phase we get

and finally using (58) as

(53)

Ao = 1
2
σR(ε

o

t
+ εo

t+1)+
√
2

2
σS[cos(wt)+ cos(w(t +�t)]

(54)

Am = 1
2
σR(ε

m

t
+ εm

t+1)+
√
2

2
σS[cos(wt)+ cos(w(t +�t)]

(55)

var(Ao) =
1
4
σ 2
R
var(εo

t
+ εo

t+1)+
2

4
σ 2
S
var[cos(wt)+ cos(w(t +�t)]

(56)

var(Ao) =
1
2
σ 2
R
var(εo

t
)

+
2

4
σ 2
S
{var[cos(wt)] + var[cos(w(t +�t)]]

+ 2cov[cos(wt), cos(w(t +�t)]}

(57)

var(Ao) = 1
2
σ 2
R
+ 1

2
σ 2
S
{1+ corr[cos(wt), cos(w(t +�t)]}

(58)var(Ao) = 1
2
σ 2
R
+ 1

2
σ 2
S
[1+ cos(w�t)]

(59)

cov(Ao,Am) =
1
4
σ 2
R
cov(εo

t
+ εo

t+1, ε
m

t
+ εm

t+1)

+ 21
4
σ 2
S
cov{cos(wt)+ cos[w(t +�t)],

cos(wt)+ cos[w(t +�t)]}

(60)
cov(Ao,Am) = 21

4
σ 2
S (2cov{cos(wt), cos(wt)}

+ 2cov{cos(wt), cos[w(t +�t)]})

(61)cov(Ao,Am) = 1
2
σ 2
S (1+ cos(w�t))

(62)corr(Ao,Am) =
σ 2
S
(1+ cos(w�t))

σ 2
R
+ σ 2

S
(1+ cos(w�t))
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Writing as function of the original correlation we get

and finally as

Extracting the variance of the signal we obtain

The factor on the right-hand side is larger than 1 for 
short time interval increments with respect to the period. 
Table 1 gives a sense of the importance of this factor for 
long periods fully encompassed in the time series.

Appendix 5

Distribution of the estimated correlation coefficient 
for bivariate data

Fisher (1915) derived the explicit distribution of the esti-
mate (r̂) of the correlation coefficient (r). Since the form 
of this distribution is rather complex, it is sufficient here to 
recall the expectation and variance of the estimated correla-
tion coefficient which are respectively given by

and by

It is thus clear that the variance decreases as a function 
of n, the number of independent replicates of the bivariate 
variables.

Confidence interval for the estimation of correlation

The Pearson correlation coefficient r between two popula-
tions is usually estimated by means of two random sam-
ples. This estimation can be associated to an error bar, the 
same way that is the case with other statistical estimations. 

(63)

corr(Ao,Am) = corr(o,m)
σ 2
R
+ σ 2

S

σ 2
S

σ 2
S
(1+ cos(w�t))

σ 2
R
+ σ 2

S
(1+ cos(w�t))

(64)

corr(Ao,Am) = corr(o,m)
(σ 2

R
+ σ 2

S
)(1+ cos(w�t))

σ 2
R
+ σ 2

S
(1+ cos(w�t))

(65)

corr(Ao,Am) = corr(o,m)



1+
σ 2
R

�

σ 2
S
cos(w�t)

σ 2
R

�

σ 2
S
+ 1+ cos(w�t)





(66)E
(

r̂
)

= r

{

1−
(

1− r
2
)

2n

}

,

(67)var
(

r̂
)

=
(

1− r
2
)2

n

(

1+ 11

2n
r
2 + · · ·

)

.

Since in this work we are interested in changes in correla-
tions, it is crucial to know whether changes are within the 
expected error.

The Fisher transform can be used to this aim (e.g. von 
Storch and Zwiers 1999). Figure 8 displays how con-
fidence intervals vary with sample size and correlation 
value. The horizontal axis represents the sample size in 
logarithmic scale, the ordinate represents the upper 95 % 
confidence interval (when values are positive), and the 
lower 95 % confidence interval (when values are nega-
tive). Since these values are dependent on the actual cor-
relation value, intervals are defined for different correla-
tion values (in color). Note how the interval of confidence 
tightens for a given sample size for increasing values of r. 
Similarly, decreasing sample size for a given r diminishes 
confidence in a single estimation and makes the upper and 
lower intervals more symmetric. This last case is very rel-
evant in the issue of upscaling or aggregation since these 
operations may reduce sample size. For example, a time 
series of monthly anomalies is three times longer than one 
of seasonal anomalies.
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