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A COMBINATORIAL RULE FOR (CO)MINUSCULE SCHUBERT CALCULUS

HUGH THOMAS AND ALEXANDER YONG

ABSTRACT. We prove a root system uniform, concise combinatorial rule for Schubert cal-
culus of minuscule and cominuscule flag manifolds G/P (the latter are also known as compact
Hermitian symmetric spaces). We connect this geometry to the poset combinatorics of [Proc-
tor ’04], thereby giving a generalization of the [Schützenberger ‘77] jeu de taquin formulation
of the Littlewood-Richardson rule that computes the intersection numbers of Grassman-
nian Schubert varieties. Our proof introduces cominuscule recursions, a general technique
to relate the numbers for different Lie types. A discussion about connections of our rule to
(geometric) representation theory is also briefly entertained.
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1. INTRODUCTION

1.1. Overview. The goal of this paper is to introduce and prove a root-theoretically uni-
form generalization of the Littlewood-Richardson rule for intersection numbers of Schu-
bert varieties in minuscule and cominuscule flag varieties.

Let G denote a complex, connected, reductive (e.g., semisimple) Lie group. Fix a choice
of Borel and opposite Borel subgroups B, B− and maximal torus T = B∩B−. Let W denote
the Weyl group N(T)/T , Φ = Φ+ ∪ Φ− the ordering of the roots into positives and nega-
tives, and ∆ the base of simple roots. Choosing a parabolic subgroup P canonically corre-
sponds to a subset ∆P ⊆ ∆; let WP := W∆P

denote the associated parabolic subgroup of W.

The generalized flag variety G/P is a union of B−-orbits whose closures Xw := B−wP/P

with wWP ∈ W/WP are the Schubert varieties. The Poincaré duals {σw} of the Schubert
varieties form the Schubert basis of the cohomology ring H⋆(G/P) = H⋆(G/P; Q).

Among the simplest of the G/P’s are the projective spaces and Grassmannians. How-
ever, as our results help demonstrate, the relative simplicity of their geometric and
representation-theoretic features is shared by the wider settings of minuscule and comi-
nuscule flag varieties (the latter are better known as compact Hermitian symmetric
spaces). These are selected cases of G and its maximal parabolic subgroup P; see the pre-
cise definition in Section 2.1. (Actually there is little difference between the two settings.
We focus on the latter, explaining the adjustments for the former as necessary.) These
G/P’s and their Schubert varieties are of significant and fundamental interest in geom-
etry and representation theory, see, e.g., [BiLa00, Chapter 9], [Kos61] and the references
therein, as well as, e.g., [Pe06, PuSo06] for more recent work.

The generalities of G/P specialize nicely to the (co)minuscule cases. Associated to G is
the poset of positive roots ΩG = (Φ+,≺) defined by the transitive closure of the covering
relation α ≺ γ if γ − α ∈ ∆. For each (co)minuscule G/P let ∆ \ ∆P = {β(P)} be the simple
root corresponding to P. We study the subposet

ΛG/P = {α ∈ Φ+ : α contains β(P) in its simple root expansion} ⊆ ΩG.

The (co)minuscule hypothesis assures that ΛG/P is self-dual and planar, see Section 2.2.

Moreover, rather than work with W/WP-cosets directly, it is possible in (co)minuscule
cases to view the Schubert basis as indexed by lower order ideals λ ⊆ ΛG/P (for a proof,
see Proposition 2.1). We refer to these lower order ideals as (straight) shapes, and we call
their elements boxes. Let YG/P be the lattice of these shapes, ordered by containment.

The Schubert intersection numbers {cν
λ,µ(G/P)} are defined by

(1) σλ · σµ =
∑

ν∈YG/P

cν
λ,µ(G/P)σν.

These numbers count points of intersection of generically translated Schubert varieties
and are therefore positive integers invariant under a natural S3-action on the indices.

It is a longstanding goal in combinatorial algebraic geometry to discover a visibly
positive combinatorial rule useful for understanding the numbers cν

λ,µ(G/P). Few cases
have complete solutions or conjectures, even for G = GLn(C). The archetypal Grass-
mannian case is solved by the Littlewood-Richardson rule; the first modern statement
and proof is due to Schützenberger [Sc77] using the combinatorics of jeu de taquin. See,
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e.g., [Bu02, Co05, KnTa03, KnYo04, Kog01], and the references therein, for variations on
generalized Littlewood-Richardson type formulas for GLn(C)-Schubert calculus.

It is a natural problem is to find such a rule for (co)minuscule flag varieties.

This paper extends the jeu de taquin formulation of the Littlewood-Richardson rule to
the Schubert calculus of (co)minuscule flag varieties. It provides the first uniform general-
ization of the Littlewood-Richardson rule that involves both classical and exceptional Lie
types (see, e.g., [Pu06] for earlier efforts in this direction). This suggests the potential to
extend alternative frameworks for the Littlewood-Richardson rule and its consequences
and/or generalizations to the (co)minuscule setting, and beyond.

In particular, our rule may be interpreted in terms of emerging and classical connec-
tions between Schubert calculus and (geometric) representation theory: for example, in
connection to the geometric Satake correspondence of Ginzburg, Mirković-Vilonen and
others, see, e.g., [MiVi99], and separately, to Kostant’s [Kos61] study of Lie algebra coho-
mology (see also [BelKu06]). See the remarks in Section 6.

1.2. Statement of the main result. If λ ⊆ ν are in YG/P, their set-theoretic difference is
the skew shape ν/λ. A standard filling of a (skew) shape ν/λ is a bijective assignment
label : ν/λ → {1, 2, . . . , |ν/λ|} such that label(x) < label(y) whenever x ≺ y. The
result of this assignment is a standard tableau T of shape ν/λ = shape(T). The set of all
standard tableaux is denoted SYTG/P(ν/λ).

4
2
1 3

5

2 4 5
1 3

5 7 8
2 3 6

1 4

FIGURE 1. Standard tableaux of shape ν/λ for types An−1, Cn and E6 re-
spectively (the empty boxes are those of λ); see Sections 2 and 3 for context.

Given T ∈ SYTG/P(ν/λ) we now present (co)minuscule jeu de taquin. Consider x ∈
ΛG/P that is not in ν/λ, maximal in ≺ subject to the condition that it is below some element
of ν/λ. We associate another standard tableau (of a different skew shape) jdtx(T) arising
from T called the jeu de taquin slide of T into x: Let y be the box of ν/λ with the smallest
label, among those that cover x. Move label(y) to x, leaving y vacant. Look for boxes
of ν/λ that cover y and repeat the process, moving into y the smallest label available
among those boxes covering it. The tableau jdtx(T) is outputted when no such moves are
possible. (The result is a standard tableau; indeed, all the intermediate tableaux are.) The
rectification of T is the result of an iteration of jeu de taquin slides until we terminate at
a standard tableau rectification(T) of a (straight) shape.

7
2 5 6
1 4
x 3

7
5 6
2 4
1 3

T = jdtx(T) =

FIGURE 2. A standard tableau and a jeu de taquin slide, in type E7

A novelty of this paper is the connection between (co)minuscule Schubert calculus and
work of Proctor [Pro04]. That paper extends results of Schützenberger [Sc77], Sagan [Sa87]
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and Worley [Wo84]. It proves in the greater generality of “d-complete posets” that the rec-
tification is independent of the order of jeu de taquin slides; see Section 4.

Define the statistic shortroots on (skew) shapes to be the number of boxes of ν/λ ⊆
ΛG/P that are short roots. We are now ready to state our combinatorial rule.

Main Theorem. Let λ, µ, ν ∈ YG/P and fix Tµ ∈ SYTG/P(µ). In the minuscule case, the Schu-
bert intersection number cν

λ,µ(G/P) equals the number of standard tableau of shape ν/λ whose

rectification is Tµ; in the cominuscule case, multiply this by 2shortroots(ν/λ)−shortroots(µ).

The Main Theorem provides a root-theoretic generalization/reformulation of classical
theorems in the subject. Besides Schützenberger’s rule [Sc77] for Grassmannians, it gen-
eralizes the work of [Pra91, Wo84] for isotropic Grassmannians. Moreover, in the latter
case, the power of 2 that appears in the product rule for Schur Q− polynomials is given a
new interpretation, via the shortroots statistic. We emphasize that for the simply-laced
root systems, the factor 2shortroots(ν/λ)−shortroots(µ) always equals 20−0 = 1.

In Section 2, we give preliminaries about (co)minuscule flag varieties and associated
combinatorics. We give examples of the Main Theorem in Section 3. Our proof, found in
Sections 4–6, is a collaboration of combinatorial and geometric ideas. There, we introduce
the ideas of the “infusion involution” and “cominuscule recursions”. The latter are cen-
tral to our (non-uniform) proof method of reducing the difficult exceptional Lie type cases
to the classical Lie type orthogonal Grassmannian case; this argument is based on the geo-
metric observation that certain Richardson varieties are isomorphic to Schubert varieties
in smaller cominuscule flag manifolds. In fact, these ideas are introduced in greater gen-
erality than needed in our proofs. However, we believe they are interesting in their own
right, and we attempted to describe them in a natural context. We conclude in Section 7
with a collection of remarks and problems.

The discovery of the Main Theorem exploited a number of computational tools: John
Stembridge’s SF and Coxeter/Weyl packages for Maple, Allen Knutson’s algorithm [Kn03]
(as implemented in [Yo06]). In addition, we wrote the Maple package Cominrule to aid
the reader in exploring the properties of both the rule and (co)minuscule jeu de taquin. 1

2. (CO)MINUSCULE FLAG VARIETIES AND THEIR COMBINATORICS

2.1. Definition and classification. Our main source for background on (co)minuscule
flag varieties is [BiLa00, Chapter 9]. For a maximal parabolic subgroup P, interchange-
ably call it, its flag variety G/P or the root β(P) ∈ ∆ (or, more properly, also the funda-
mental weight ωβ(P)) cominuscule if whenever β(P) occurs in the simple root expansion
of γ ∈ Φ+, it does so with coefficient one. The cominuscule G/P’s have been classified,
see Table 1. In each case, the cominuscule β(P) ∈ ∆ are marked in the Dynkin diagram.
In case of choice, selecting either one leads to a (possibly isomorphic) cominuscule G/P.

A maximal parabolic subgroup P, G/P and β(P) ∈ ∆ is minuscule if the associated
fundamental weight ωβ(P) satisfies 〈ωβ(P), α

⋆〉 ≤ 1 for all α ∈ Φ+ under the usual pair-
ing between weights and coroots. The classification of minuscule flag varieties almost
coincides with that of the cominuscules. In the conventions of Table 1, for the type Bn mi-
nuscule case we select node n rather than node 1. This is the odd orthogonal Grassman-
nian OG(n, 2n + 1), which is actually isomorphic to the even orthogonal Grassmannian

1Available at the authors’ websites.
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Root system Dynkin Diagram Nomenclature

An

◦ ◦ ◦ ◦ ◦ ◦•
1 2 · · · k · · · n Grassmannian Gr(k, Cn)

Bn

◦ ◦ ◦ ◦ ◦ ◦>•
1 2 · · · · · · n Odd dimensional quadric Q2n−1

Cn, n ≥ 3
◦ ◦ ◦ ◦ ◦ ◦<•
1 2 · · · · · · n Lagrangian Grassmannian LG(n, 2n)

Dn, n ≥ 4

◦ ◦ ◦ ◦ ◦HH
��

◦
◦

•
1 2 · · · · · · n−1

n

◦ ◦ ◦ ◦ ◦HH
��

◦
◦

1 2 · · · · · · n−1

n•
•

Even dimensional quadric Q2n−2

Orthogonal Grassmannian OG(n + 1, 2n + 2)

(for either choice of one of the nodes n − 1 or n)

E6
◦ ◦ ◦ ◦ ◦• •

◦

1 3 4 5

2

6
Cayley Plane OP2

(for either choice of one of the nodes 1 or 6)

E7

• ◦ ◦ ◦ ◦ ◦◦

◦

1 3 4 5

2

6 7 (Unnamed) Gω(O3, O6)

TABLE 1. Classification of cominuscule G/P’s

OG(n + 1, 2n + 2). Consequently, their Schubert intersection numbers coincide. The type
Cn minuscule case corresponds to selecting node 1 rather than node n.

2.2. More specifics about cominuscule ΛG/P. We give two pictures of ΛG/P: “thin” and
“fattened” versions where elements of ΛG/P (i.e., boxes) are represented by either dots
“•” or squares “�”. The former are more convenient for illustrating the poset relations
(smaller elements are lower in the diagram), and ΛG/P’s position inside ΩG. The latter are
more convenient for manipulations in Section 3 and 4; for this reason, the fattened ΛG/P

is rotated 45 degrees clockwise relative to the thin ΛG/P.

The self-duality of ΛG/P is as follows. Let u0 be the maximal length element of WP.
Note that u0 preserves the subset ΛG/P: the positive roots it makes negative are exactly
those not in ΛG/P, and thus if u0 moved a root in ΛG/P outside, applying u0 twice would
send that root negative, contradicting the fact u2

0 = 1. Let rotate denote this involution
on ΛG/P. In particular, this sends shapes to upper order ideals of ΛG/P and conversely.

We summarize features of each ΛG/P in Table 2. We proceed to analyze the specifics
in each of the Lie types. Inside the fattened depictions, we draw a sample shape λ =

(λ1, λ2, . . . ) where λi is the number of boxes in column i, as read from left to right.

Type An−1: Figure 3 depicts the case k = 4 and n = 7. Lower order ideals correspond to
Young shapes (partitions) drawn in “conjugate French notation”. The rotate involution is
“rotate by 180 degrees”. So, for example, rotate(ν) is the complement (3, 2)c in ΛGr(k,Cn).

Type Bn: Classes are indexed by a single row of some length j, denoted (1j) = (1, 1, . . . , 1).
Again rotate is “rotate by 180 degrees”. See Figure 4. Here, rotate(14) = (13)c.

Type Cn: Shapes are strict partitions λ = (λ1 > λ2 > . . . ) contained inside the “staircase”.
The boxes not on the anti-diagonal of the fattened diagram (i.e., those boxes not directly
above “n” in the thin diagram) correspond to short roots. Here rotate corresponds to
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G/P ΛG/P description # boxes Short root boxes

Gr(k, Cn) k × (n − k) rectangle k(n − k) none
Q2n−1 (2n − 1)-row 2n − 1 middle box

LG(n, 2n) n-step staircase
(

n+1

2

)
all non-anti-diagonal boxes

Q2n−2 double tailed diamond 2n − 2 none
OG(n + 1, 2n + 2) n − 1-step staircase

(
n

2

)
none

OP2 irregular 16 none
Gω(O3, O6) irregular 27 none

TABLE 2. Summary of facts about cominuscule ΛG/P

 . . . . .  . . . . . 1 2 3 k n−1

FIGURE 3. ΛGr(k,Cn), ΩGLn(C) and the shape ν = (4, 2, 1)

 . . . . . 1 2 n

FIGURE 4. ΛQ2n−1 , ΩSO2n+1(C) and the shape ν = (14) = (1, 1, 1, 1)

flipping across the diagonal line of symmetry in the fattened depiction. See Figure 5,
where, e.g., the shape (3, 1) involves two short roots, the shape (4, 1) would involve three
short roots. Here rotate(3, 1) = (4, 2)c.

Type Dn: The Orthogonal Grassmannian OG(n + 1, 2n + 2) comes from either choosing
node n − 1 or n. In either case, ΛOG(n+1,2n+2) is isomorphic (as a poset) to ΛLG(n−1,2n−2)

(type Cn−1) drawn above. The shapes are shifted shapes, as in type Cn−1 above. However,
this time, none of the boxes correspond to short roots.

For the case of the even dimensional quadrics, see Figure 6. (For the Dynkin diagrams
with “forks”, the ΩG becomes complicated to draw, so we omit them.) In this case the
visualization of rotate depends on the parity of n. For the n is odd case it is the 180

degree rotation, whereas if n is even the same is true except that the middle nodes stay
fixed. For instance, if n = 5, rotate(14) is (14)c whereas when n = 6, rotate(15) is
(1, 1, 1, 2)c.
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 . . . . . 1 2 n

FIGURE 5. ΛLG(n,2n), ΩSp2n(C) and the shape ν = (3, 1)

FIGURE 6. ΛQ2n−2 and the shape ν = (1, 1, 2, 1)

Types E6 and E7: rotate is again 180 degree rotation. See Figures 7 and 8. In the depicted
E6 case, rotate(ν) = νc, whereas in the E7 case rotate(ν) = (1, 1, 1, 2, 5, 5)c.

FIGURE 7. ΛOP2 and the shape ν = (1, 1, 2, 3, 1)

2.3. Minuscule ΛG/P. As mentioned, the minuscule cases coincide with the cominuscules
except in types B and C, which we discuss now.

Type Bn: This minuscule flag variety is isomorphic to OG(n+ 1, 2n+ 2); its ambient poset
is the same ΛOG(n+1,2n+2), see Figure 5. (Which nodes in the poset correspond to short
roots is different, but, because we are now in the minuscule case of the Main Theorem,
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FIGURE 8. ΛGω(O3,O6) and the shape ν = (1, 1, 1, 2, 3, 3, 1)

this is irrelevant.) Note that u0 in this case now acts differently on ΛOG(n,2n+1), so in this
case we declare that rotate acts as it does on ΛOG(n+1,2n+2)

∼= ΛLG(n−1,2n−2).

Type Cn: This is the projective space P2n−1. Here ΛG/P
∼= ΛQ2n−1 with the same shapes,

see Figure 4. (Again, which nodes correspond to short and long roots differ, which is
irrelevant to the Main Theorem.)

2.4. Shapes index the Schubert basis. For w ∈ W the inversion set is I(w) = {α ∈ Φ+ :

w · α ∈ Φ−}, using the standard action of W on Φ. Consider an irreducible rank two root
system Φ{η,γ} ⊆ Φ. It inherits from Φ a decomposition into positives and negatives, with
η, γ ∈ Φ+ as its simple roots. If η and γ are of different lengths, let γ be the shorter of
them. Order the positive roots of Φ{η,γ}

(2) (η, η + γ, γ) or (η, η + γ, η + 2γ, γ)

depending on whether the root system is A2 or B2, respectively (G2 has no cominuscule
simple roots). A subset S ⊆ Φ+ is called biconvex if S ∩ Φ{η,γ} is either a beginning or
ending subset of the positive roots, for all Φη,γ ⊆ Φ+, with respect to (2). It is known that
S = I(w) for some w ∈ W if and only if S is biconvex [Bj83, BjEdZi90].

The natural projection G/B ։ G/P induces an inclusion H⋆(G/P) →֒ H⋆(G/B) sending
σwWP

∈ H⋆(G/P) to σwP ∈ H⋆(G/B), where wP ∈ W is the minimal length representative
of wWP. Alternatively, σw ∈ H⋆(G/B) appears as the image of a Schubert class under
the projection if and only if the descents of w are a subset of ∆ \ ∆P, i.e., ℓ(wsβ) < ℓ(w)

only when β ∈ ∆ \ ∆P. Here ℓ(w) denotes the Coxeter length, the minimal length of an
expression for w in terms of the simple reflections sβ. When ∆ \ ∆P = {β(P)} we call
such a w Grassmannian at β(P). Equivalently, these are the elements of WP, the minimal
length coset representatives of W/WP.
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The remaining facts in this section are essentially well-known. We include a proof of
the following since it is basic to this paper.

Proposition 2.1. Let G/P be a cominuscule flag variety. The Schubert classes in H⋆(G/P) are
in bijection with λ ∈ YG/P. Specifically, for each w ∈ W that is Grassmannian at β(P), the
inversion set I(w) is a lower order ideal in ΛG/P, and conversely every lower order ideal in ΛG/P

is the inversion set of a w ∈ W which is Grassmannian at β(P).

Proof. Let λ ∈ YG/P. Let Φ{η,γ} be as above. If λ ∩ Φ{η,γ} 6= ∅, then by (2) either η or γ

involve β(P) in their simple root expansions.

By the cominuscule assumption, any α ∈ Φ+ involving β(P) does so with coefficient
one. From this and (2) combined we deduce that β(P) appears in only one of η or γ, and
in the nonsimply-laced case, that β(P) appears in η. By symmetry, we may assume that
β(P) also appears in η in the simply-laced case. Thus λ ∩ Φ{η,γ} contains η and since λ

is a lower order ideal, it is a beginning subset of the positive roots. Hence λ is biconvex
and λ = I(w) for some w ∈ W. But the descents of w are ∆ ∩ I(w) = {β(P)}. So w is
Grassmannian at β(P) as desired.

Conversely, let w be Grassmannian at β(P). Suppose α ∈ I(w) but β(P) does not occur
in α. If α 6∈ ∆ then write α = γ1 + γ2 where γ1, γ2 ∈ Φ+. Notice at least one of γ1 or
γ2 is in I(w) (otherwise α would not be, a contradiction). Thus inductively, we reduce to
the case α ∈ ∆ anyway. Thus α is a descent of w, contradicting our assumption that w is
Grassmannian at β(P). So α involves β(P), and since β(P) is cominuscule, it does so with
coefficient one. Hence I(w) ⊆ ΛG/P.

Now, suppose γ ∈ I(w) and δ ≺ γ in ΛG/P. We may assume γ − δ = ρ ∈ ∆. Note
ρ 6= β(P). Since ρ 6∈ I(w) but γ ∈ I(w), then w · δ = w · γ − w · ρ ∈ Φ−. Thus δ ∈ I(w),
and so I(w) is a lower order ideal. �

For brevity, we omit the proof of the next fact.

Lemma 2.2. Let G/P be a cominuscule flag variety and λ, ν ∈ YG/P. Then λ ⊆ ν if and only if
uWP is smaller than vWP in the Bruhat order W/WP where λ = I(u) and ν = I(v), under the
correspondence of Proposition 2.1.

Corollary 2.3. (a) If λ 6⊆ ν then cν
λ,µ(G/P) = 0 for all shapes µ ⊆ ΛG/P.

(b) If |λ| + |µ| = |ΛG/P| then σλ · σµ =

{
σΛG/P

if λ = rotate(µc),
0 otherwise,

where µc is the

complement of µ ⊆ ΛG/P.
(c) If λ ∩ rotate(µ) 6= ∅ then σλ · σµ = 0.

Proof. By Lemma 2.2 and Proposition 2.1, combined with the discussion of the injection
H⋆(G/P) →֒ H⋆(G/B) given before Proposition 2.1, the assertions become well-known
facts about the Schubert intersection numbers on G/B. �

3. EXAMPLES OF THE COMBINATORIAL RULE

In the examples, Tµ is the “consecutive” standard tableau, i.e., the one with 1, 2, 3, . . . , µ1

labeling the first column, followed by µ1 + 1, µ1 + 2, . . . labeling the second column etc.
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The Grassmannian: Let us do the computation c
(4,2,1)

(3,1),(2,1)
(Gr(4, C7)) = 2 (type A7). Here

ν/λ = (4, 2, 1)/(3, 1). Of the 6 standard tableaux, only two rectify to T2,1:

2

1
3

, 2

3
1

7→

2
1 3

.

The isotropic Grassmannians: First we compute c
(4,2)

(2,1),(2,1)
(LG(4, 8)) (type C4). Here

ν/λ = (4, 2)/(2, 1) and shortroots(ν/λ) = 3, while shortroots(µ) = 1. There are two stan-
dard tableau of shape ν/λ, but only one rectifies to T2,1:

2
1 3

7→

2 3
1

Hence c
(3,1)

(2,1),(2,1)
(LG(4, 8)) = 1 ·23−1 = 4. The same analysis shows c

(4,2)

(2,1),(2,1)
(OG(6, 12)) = 1

(type D5), since ΛOG(6,12)
∼= ΛLG(4,8) but now there are no short roots.

The quadrics: First let us compute c
(14)

(12),(12)
(Q7) (type B4). Here ν/λ = (14)/(12) and

shortroots(ν/λ) = 1 since this skew shape involves the middle box of ΛQ7 , while

shortroots(µ) = 0. We have c
(14)

(12),(12)
(Q7) = 1 · 21−0 = 2 since:

1 2 7→ 1 2

The even dimensional quadrics have a quirky dependency on the parity of n. When

n = 5, we have c
Λ

Q8

(1,1,2),(1,1,2)
(ΛQ8) = 1 as witnessed by

2 3 4
1

7→ 4
1 2 3

,

whereas c
Λ

Q8

(1,1,2),(14)
(ΛQ8) = 0. The similar n = 6 computation gives c

Λ
Q10 (Q10

(1,1,1,2),(15)
) = 1 be-

cause
2 3 4 5
1

7→
1 2 3 4 5

.

Thus cominuscule jeu de taquin properly detects the subtle definition of rotate in these
cases: these calculations agree with Corollary 2.3(b).

The Cayley plane: We compute c
(1,1,2,4,4,1)

(1,1,2,1,1),(1,1,2,2,1)
(OP2) = 2 as shown by

4 6
2 5 7
1 3

, 6 7
2 4 5
1 3

7→

4 6
1 2 3 5 7

.

Gω(O3, O6): Finally, c
(1,1,1,2,5,5,2,1,1)

(1,1,1,2,5,3),(1,1,1,2,1)
(Gω(O3, O6)) = 4 since

3
2 4 5 6

1

, 3
1 4 5 6

2

, 5
1 3 4 6

2

, 6
1 3 4 5

2

7→

5
1 2 3 4 6

.
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4. JEU DE TAQUIN METHODS

The basic result used is due to Robert Proctor [Pro04]. We develop consequences of it
for our purposes.

Theorem 4.1. [Pro04] Let ν/λ ⊆ ΛG/P be a skew shape and T ∈ SYTG/P(ν/λ). Then the
procedure rectification(T) is independent of the order of applying jeu de taquin slides.

In [Pro04], this theorem is proved for the more general class of “d-complete posets”.
Mark Haiman has raised the question of assigning a geometric context to these posets.

4.1. Reversing. Jeu de taquin is reversible. Given T ∈ SYTG/P(ν/λ), consider x ∈ ΛG/P

not in ν/λ but minimal in ≺ subject to being above some element of ν/λ. The reverse jeu
de taquin slide revjdtx(T) of T into x is defined similarly to a jeu de taquin slide, except
we move into x the largest of the labels among boxes in ν/λ covered by x. The reverse
rectification revrectification(T) is the end result of the iterated application of these
slides, ending with a standard filling of a rotated shape.

Proposition 4.2. Fix a skew shape ν/λ ⊆ ΛG/P and T ∈ SYTG/P(ν/λ).

(a) The analogue for reverse jeu de taquin of Theorem 4.1 holds.
(b) Suppose y ∈ ΛG/P is vacated by jdtx(T), then revjdty(jdtx(T)) = T .
(c) Suppose y ∈ ΛG/P is vacated by revjdtx(T), then jdty(revjdtx(T)) = T .

Proof. Since ΛG/P is self-dual, reverse jeu de taquin slides is identified with ordinary jeu
de taquin slides where the labels “i” play the usual role of the labels “|ν/λ| − i + 1”. This
reduces (a) to Theorem 4.1. The claims (b) and (c) are easy inductions on the size of T . �

4.2. The infusion involution. Given U ∈ SYTG/P(ν/λ), a specific choice of jeu de taquin
slides usable to rectify U can be recorded as a tableau T ∈ SYTG/P(λ). Suppose U rectifies
to X with shape(X) = γ. It turns out that there is a natural choice of tableau Y of shape ν/γ

which rectifies to T . In fact, the map taking (U, T) to (X, Y), which we will call infusion,
and which we define below, is an involution.

Given T ∈ SYTG/P(λ) and U ∈ SYTG/P(ν/λ), we define infusion(T, U) to be a pair
of tableau (X, Y) with X ∈ SYTG/P(γ) and Y ∈ SYTG/P(ν/γ) (for some γ ∈ YG/P with
|γ| = |ν/λ|) as follows: place T and U inside ΛG/P according to their shapes. Now remove
the largest label “m” that appears in T , say at box x ∈ λ. Since x necessarily lies next to
ν/λ, apply the slide jdtx(U), leaving a “hole” at the other side of ν/λ. Place “m” in that
hole and repeat moving the labels originally from U until all labels of T are exhausted. In
particular, we declare that the labels placed in the created holes at each step never move
for the duration of the procedure. The resulting straight shape tableau of shape γ and
skew tableau of shape ν/γ are X and Y respectively.

Example 4.3. Let G/P = Gr(3, C7), λ = (2, 1) and ν = (3, 3, 2). The elements of T and U are
depicted below, with the labels of the former are underlined and the labels of the latter
are given in bold. We also compute infusion(T, U) as a sequence of jeu de taquin slides,
where at each stage the labels of (the eventual) Y are marked with “⋆”:

(T, U) = 4 5

3 2 3

1 2 1

7→ 4 5

2 3 3⋆

1 2 1

7→ 4 5

2 3 3⋆

1 1 2⋆

7→ 4 1⋆

2 5 3⋆

1 3 2⋆

= infusion(T, U) = (X, Y).
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Hence γ = (3, 2).

Theorem 4.4. The procedure infusion defines an involution on

LockingSYT(G/P) :=
⋃

ν,γ∈YX

SYTG/P(γ) × SYTG/P(ν/γ).

In particular, let λ, µ, ν ∈ YG/P and set

Iν
λ,µ(G/P) = {(T, U) : shape(T) = λ, shape(U) = ν/λ, infusion(T, U) = (X, Y)

where shape(X) = µ} ⊆ LockingSYT(G/P).

Then infusion bijects Iν
λ,µ(G/P) and Iν

µ,λ(G/P).

Proof. Consider the procedure revinfusion: given T ∈ SYTG/P(λ), U ∈ SYTG/P(ν/λ)

placed inside ΛG/P as in the above description of infusion, instead remove the smallest
label “s” that appears in U, say at box x ∈ ν/λ. Apply revjdtx(T), leaving a “hole” at
the other side of λ. Place “s” in that hole and repeat until all labels of U are used. This is
indeed the inverse map of infusion, as seen by inductively applying Proposition 4.2(b),
i.e., revinfusion(infusion(T, U)) = (T, U).

Thus, the “involution” assertion of the theorem amounts to showing that
revinfusion(T, U) = infusion(T, U) for all (T, U). View both procedures and the jeu de
taquin slides as a sequence of “swaps” of the labels of adjacent boxes in ΛG/P. We prove
that for each label in T and U, those swaps involving the label are the same (i.e., in the
same order and in the same position inside ΛG/P, although possibly occurring at different
times in the overall swap sequence). Then since the path taken by any label is the same
in both procedures, the results are the same. In fact, it suffices to establish that T ’s labels
undergo the same swaps in both operations, as the claim about U’s labels is then implied.

It is easy to check from the definitions of infusion and revinfusion that the swaps
involving the largest label “m” of T are the same in both procedures. Since after infusion
moves “m” into its final position in ΛG/P it never moves again, for |λ| ≥ 2 the remainder

of the infusion procedure is an application of infusion to (T̃ , Ũ) where T̃ is T with “m”

removed and Ũ is U after “m” has moved through it. By induction, revinfusion(T̃ , Ũ) =

infusion(T̃ , Ũ) and all swaps involving labels of T̃ and Ũ are the same.

It remains to show that the swaps not using “m” are the same in both revinfusion(T, U)

and revinfusion(T̃ , Ũ). Define two sequences T0 := T, T1, . . . , T|ν/λ| and T̃0 := T̃ , T̃1, . . . T̃|ν/λ|,

where Ti and T̃i are the tableaux resulting from moving the labels “1” through “i” of U

(respectively Ũ) through T during revinfusion(T, U) (respectively revinfusion(T̃ , Ũ)).

Similarly define the pair of sequences U0 := U, U1, . . . , U|ν/λ| and Ũ0 := Ũ, Ũ1, . . . Ũ|ν/λ|,

which are derived from U and Ũ respectively after the said moving of labels.

We show by induction on i ≥ 0 that Ti is T̃i with an added corner box containing “m”

and Ũi is obtained by applying to Ui a jeu de taquin slide into that box occupied by “m”.

The base case i = 0 holds by construction. For the induction step, there are two cases
to consider. If the “m” in Ti−1 is not adjacent to the “i” in Ui−1, then “i” occupies the

same (corner) box in both Ui−1 and Ũi−1 since the jeu de taquin slide that makes up the
difference between these two tableau does not affect the position of the label “i”. There-

fore the same moves will be made as we pass “i” through Ti−1 and T̃i−1 (in particular, the
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label “m” never moves). Hence the desired conclusion for Ti and T̃i holds. In addition,

notice Ui and Ũi only differ from Ui−1 and Ũi−1 respectively by removing the label “i”.
Moreover, the jeu de taquin slide of Ui−1 into the box labeled “m” has the same effect as

the jeu de taquin slide of Ui into that box. Thus, Ui and Ũi differ by a jeu de taquin slide
into that box, as desired.

Otherwise, if the “m” in Ti−1 is adjacent to the “i” in Ui−1, then to obtain Ti, the first
swap that occurs is between the “m” and the “i”. But after this initial swap, the “i” will

be in the same location as the “i” in Ũi−1 and so the same swaps will be made as we pass

to Ti and T̃i, so these latter two tableau satisfy the conclusion. Also, since the jeu de taquin

slide that makes the difference between Ui−1 and Ũi−1 involves swapping “i” and “m” as

the first step, it is clear that Ui and Ũi satisfy the conclusion. This completes the induction
argument, and hence the theorem. �

Corollary 4.5. If µ∈YG/P and U∈SYTG/P(µ) then #{W∈SYT(ν/λ) :rectification(W)=

U} is independent of the choice of U ∈ SYTG/P(µ).

Proof. First consider Iν
µ,λ(G/P). Since choosing U ∈ SYTG/P(µ) amounts to a choice of

sequence of jeu de taquin slides that rectify V ∈ SYTG/P(ν/µ), and by Theorem 4.1, any
choice leads to the same rectification, we conclude that the number of times a particular
tableau U ∈ SYTG/P(µ) appears as the first component of a pair in Iν

µ,λ(G/P) is indepen-
dent of U. Specifically, it equals #{V ∈ SYTG/P(ν/µ) : shape(rectification(V)) = λ}. On
the other hand, the number of elements of Iν

λ,µ(G/P) which are carried by infusion to a

pair of tableaux beginning with U is fλ(G/P)·#{W ∈ SYTG/P(ν/λ) : rectification(W) =

U}. By Theorem 4.4, these two numbers are equal, so:

#{W ∈ SYTG/P(ν/λ) : rectification(W) = U} =

#{V ∈ SYTG/P(ν/µ) : shape(rectification(V)) = λ}

fλ(G/P)

is independent of U. �

Proposition 4.6. Fix µ ∈ YG/P. The procedures rectification and revrectification are
mutually inverse bijections between SYTG/P(rotate(µ)) ↔̃ SYTG/P(µ).

Proof. By Theorem 4.4 specialized to ν = ΛG/P, rectification and revrectification are
mutually inverse bijections between the set of all fillings of rotated shapes and the set of
all fillings of straight shapes. Given T ∈ SYTG/P(µ), let shape(revrectification(T)) =

rotate(α) for some α ∈ YG/P. By Corollary 4.5, every tableau in SYTG/P(µ) appears as the
rectification of some filling of shape rotate(α). By Corollary 4.5 applied to
revrectification, any filling of shape rotate(α) can be obtained by reverse-rectifying
some filling of shape µ, so any filling of shape rotate(α) rectifies to a filling of shape µ.
Thus, rectification and revrectification are mutually inverse bijections between fill-
ings of shape rotate(α) and of shape µ. We can therefore define a bijection Ψ which takes
a shape α to the unique shape of the rectification of any standard filling of rotate(α). We
now show Ψ is the identity map.

First, we show that Ψ is an automorphism of YG/P. Suppose α consists of a shape β

together with a single additional corner box x. It suffices to show that Ψ(β) ⊆ Ψ(α). Fix

a filling T of rotate(α) in which rotate(x) has label “1”. Let the tableau T̃ be T with the
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box labeled 1 removed. Clearly jeu de taquin methods apply to T̃ . Pick any sequence of
jeu de taquin slides T0 = T, T1 = jdtx1

(T0), . . . , Ti = jdtxi
(Ti−1), . . . , rectification(T)

rectifying T . We can define a parallel sequence of jeu de taquin slides {T̃i = jdtx̃i
(T̃i−1)}

starting with T̃0 = T̃ where x̃i = xi if the label of Ti−1 moving into xi is not “1” and x̃i is
the box in Ti−1 with label “1” otherwise. It is easy to check that for each i, Ti with the “1”

removed is T̃i. Also, when T = Tk has been rectified, T̃k is a filling of Ψ(α)/(1). Since a jeu
de taquin slide removes an “outside corner” from a skew shape, then Ψ(α) is Ψ(β) with
such a corner added. Hence, Ψ takes covering relations to covering relations, as desired.

Let Q be an arbitrary finite poset, and let D(Q) be the lattice of order ideals (down-
closed sets) in Q. Let Aut(Q) and Aut(D(Q)) denote the group of poset automorphisms
of Q and D(Q), respectively. There is a natural inclusion from Aut(Q) to Aut(D(Q)).
This inclusion is actually a group isomorphism: from φ ∈ Aut(D(Q)), the corresponding
automorphism of Q can be recovered by restricting φ to the principal order ideals of D(Q)

(which form a poset canonically isomorphic to Q).

So Ψ induces a poset automorphism of ΛG/P. For Bn (n ≥ 4), Cn, Dn (for the Orthogonal
Grassmannians), E6 and E7 the only poset automorphism is the identity. Hence Ψ is the
identity in these cases. For the remaining cases, check that Ψ is the identity on principal
lower order ideals of ΛG/P. This is straightforward. �

Let {eν
λ,µ(X)} be computed by the rule of the Main Theorem.

Corollary 4.7. eν
λ,µ(X) = eν

µ,λ(X) = e
rotate(λc)

rotate(νc),µ
(X).

Proof. By Theorem 4.4 and Corollary 4.5, we have eν
λ,µ(X) = |Iν

λ,µ(X)|/fλ(X)fµ(X) =

|Iν
µ,λ(X)|/fµ(X)fλ(X) = eν

µ,λ(X). For the remaining equality, fix U ∈ SYTX(rotate(µ)) and
note that since rotate(ν/λ) = rotate(λc)/rotate(νc), by Proposition 4.2:

(3) e
rotate(λc)

rotate(νc),µ
(X) = #{T ∈ SYTX(ν/λ) : revrectification(T) = U}.

By Theorem 4.1 and Proposition 4.2(b) combined, it follows that each T ∈ SYTX(ν/λ)

in (3) satisfies rectification(T) = rectification(U). By Proposition 4.6,

shape(rectification(U)) = µ. Hence eν
λ,µ(X) ≥ e

rotate(λc)

rotate(νc),µ
(X). Reversing the roles of

λ and ν above gives equality. �

5. PROOF OF THE MAIN THEOREM

5.1. Schubert like numbers. Fix a cominuscule flag variety X = G/P and a collection of
real numbers {dν

λ,µ(X)}. It is useful to call {dν
λ,µ(X)} Schubert like if (I)-(IV) below hold:

(I) (S3-symmetry) dν
λ,µ(X) = dν

µ,λ(X) = d
rotate(λc)

rotate(νc),µ
(X) = d

rotate(µc)

λ,rotate(νc)
(X) = d

rotate(µc)

rotate(νc),λ
(X)

= d
rotate(λc)

µ,rotate(νc)
(X);

(II) (Codimension) dν
λ,µ(X) = 0 unless |λ| + |µ| = |ν|;

(III) (Containment) If λ 6⊆ ν then dν
λ,µ(X) = 0 for all µ ∈ YX; and

(IV) (Iterated box product)
∑

|γ|=|ν/λ| f
γ(X)dν

λ,γ(X)2shortroots(γ)−shortroots(ν/λ) = fν/λ(X), where

fν/λ(X) = |SYTX(ν/λ)| and fγ(X) = |SYTX(γ)|.

Proposition 5.1. For any cominuscule flag variety X, {cν
λ,µ(X)} is Schubert like.
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The Monk-Chevalley formula states that for any β ∈ ∆ and w ∈ W

(4) σsβ
· σw =

∑

α∈Φ+ , ℓ(wsα)=ℓ(w)+1

nαβ

(β, β)

(α, α)
σwsα .

Here nαβ is the coefficient of β in the expansion of α into simple roots, and (•, •) is the
inner product defined on the span of ∆, as determined by the Cartan matrix.

Lemma 5.2. Let β = β(P) and w ∈ W be Grassmannian at β(P). Then in (4)

(i) nα,β ∈ {0, 1}

(ii) wsα is Grassmannian at position β(P) whenever nαβ 6= 0

Proof. (i) holds by the definition of β = β(P) being cominuscule. (ii) uses our discussion
about H⋆(G/P) →֒ H⋆(G/B) in the paragraph before Proposition 2.1. �

Proposition 5.3. For any cominuscule flag variety X,

(5) σ2 · σλ =
∑

µ∈YX and µ/λ is a single box

2shortroots(µ/λ)σµ

Moreover, σi
2

=
∑

|γ|=i f
γ(X)2shortroots(γ)σγ.

Proof. The first claim is proved by comparing (4) and (5) and applying Lemmas 2.2 and 5.2.
The second holds by the definition of fγ(X), since each standard tableau is inductively
built up by adding the box labeled “k” at the kth step. �

Proof of Proposition 5.1: (I) and (II) hold by the geometric definition of cν
λ,µ(X) while (III)

holds by Corollary 2.3. For (IV), using the definition of fν/λ(X), Proposition 5.3, and Corol-
lary 2.3 we have

σΛX
fν/λ(X)2shortroots(ν/λ) = σλσ

|ν/λ|
2

σrotate(νc) =
∑

|γ|=|ν/λ|

fγ(X)cν
λ,γ(X)2shortroots(γ)σΛX

. �

5.2. Cominuscule recursions. Let X̃ = G̃/P̃ be a second cominuscule flag variety. Define
a cominuscule recursion to be a poset injection Θ : Λ

X̃
→֒ ΛX such that ΛX is a disjoint

union of Θ(Λ
X̃
) and of L(Θ) and Γ(Θ), which are subsets of ΛX whose elements are all

either incomparable with or below (respectively, above) every element of Θ(Λ
X̃
). Clearly:

Definition-Lemma 5.4. If λ ∈ YX then λ := Θ−1(λ) is in Y
X̃

. Also, if γ ∈ Y
X̃

then γ̂ :=

Θ(γ) ∪ L(Θ) is in YX.

Fix λ, µ, ν ∈ YX such that

(6) λ ⊆ ν, L(Θ) ⊆ λ and Γ(Θ) ⊆ νc.

Then dν
λ,µ(X) is Θ-recursive if

(7) dν
λ,µ(X) =

∑

γ∈Y
X̃

cν

λ,γ
(X̃) d

γ̂

L(Θ),µ
(X).

A collection {dν
λ,µ(X)} is Θ-recursive if each dν

λ,µ(X) is, whenever (6) holds.

Recall that {eν
λ,µ(X)} are the numbers computed by the rule of the Main Theorem, cf.,

Corollary 4.7.
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Theorem 5.5. Fix a cominuscule recursion Θ : Λ
X̃

→ ΛX and assume eν
λ,µ(X̃) = cν

λ,µ(X̃) for all
λ, µ, ν ∈ Y

X̃
. Then {eν

λ,µ(X)} is Θ-recursive.

Proof. Construct standard fillings of ν/λ rectifying to a fixed S ∈ SYTX(µ) in two steps.

First choose γ ∈ Y
X̃

and one of the e
γ̂

L(Θ),µ
(X) tableaux T ∈ SYTX(γ̂/L(Θ)) rectifying to S.

By Corollary 4.5, there are cν

λ,γ
(X̃) ways to fill ν/λ that rectify to T (i.e., rectify to T viewed

as a standard tableau of γ ∈ Y
X̃

). As this filling of ν/λ rectifies to S, “≥” for (7) holds.

For “≤”, given a standard filling of ν/λ that rectifies to S, we want to show that it can
be seen to arise as one the above standard fillings. By Theorem 4.1, we can start rectifying
by exclusively choosing boxes x ∈ Θ(Λ

X̃
) to slide into, until this is no longer possible. At

that point we have a tableau in SYTX(γ̂/L(Θ)) for some γ ∈ Y
X̃

. �

We use Theorem 5.5 in the Main Theorem’s proof. Once the latter is proved, we obtain:

Corollary 5.6. For any cominuscule flag variety X and cominuscule recursion Θ, {cν
λ,µ(X)} is

Θ-recursive.

5.3. The exceptionals OP2 and Gω(O3, O6) . One has helpful Θ-recursions here:

• ΘE6
: OG(6, 12) → OP2 identifying ΛOG(6,12) with (1, 1, 2, 3, 3, 1)/(1)

• ΘE7(a) : OP2 → Gω(O3, O6) identifying ΛOP2 with (1, 1, 1, 2, 4, 4, 2, 1)/(1)

• ΘE7(b) : OG(7, 14) → Gω(O3, O6) identifying ΛOG(7,14) with (1, 1, 1, 2, 5, 5, 3, 3)/(16)

Note the “twist” in how ΛOG(6,12) and ΛOG(7,14) are embedded; see Figure 9.

FIGURE 9. ΘE6
, ΘE7(a) and ΘE7(b) respectively (the circled nodes represent

the image of the cominuscule recursion in each case)

The geometric proof of the following proposition is delayed until Section 6.

Proposition 5.7. For X = OP2 and X = Gω(O3, O6), {cν
λ,µ(X)} is ΘE6

-recursive and respectively
ΘE7(a) and ΘE7(b)-recursive.
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The strategy of the remainder of the proof is that any collection of Schubert like num-
bers {dν

λ,µ(X)} satisfying the applicable Θ-recursions above are uniquely determined. Then
since {cν

λ,µ(X)} and {eν
λ,µ(X)} have these properties, they are the same.

Lemma 5.8. Suppose {dν
λ,µ(X)} is Schubert like. Then dν

λ,µ(X) is uniquely determined if any of
the following hold:

(i) X = OP2 and dν
λ,µ(X) is ΘE6

-recursive; or

(ii) X = Gω(O3, O6) and dν
λ,µ(X) is ΘE7(a)-recursive; or

(iii) X = OP2 or X = Gω(O3, O6) and all but possibly one dν
λ,γ(X) with |γ| = |ν| − |λ| is

uniquely determined; or
(iv) µ = ∅.

Proof. For (i) and (ii), since L(ΘE6
) and L(ΘE7(a)) is a box, all dγ̂

L(Θ),µ
on the right-hand

side of (7) are determined by (I), (II) and the case |ν/λ| = 1 of (IV). For (iii), by (IV):
dν

λ,µ(X) = (fν/λ(X) −
∑

γ6=µ fγ(X)dν
λ,γ(X))/fµ(X) and each of the dν

λ,γ(X) is determined, by
(i) or (ii). Lastly, (iv) follows from (I) and the case |ν/λ| = 0 of (IV). �

Corollary 5.9. Assume {dν
λ,µ(Gω(O3, O6))} is Schubert like and ΘE7(a) and ΘE7(b)-recursive.

Then dν
λ,µ(Gω(O3, O6)) is uniquely determined if either of the following hold:

(i) |νc| ≥ 14; or
(ii) λ = L(ΘE7(b)) and Γ(ΘE7(b)) ⊆ νc.

Proof. For (i), if |νc| ≥ 18 then Γ(ΘE7(a)) ⊆ νc, and apply Lemma 5.8(ii) or (iv). If 14 ≤
|νc| ≤ 17 then all shapes of that size contain rotate(Γ(ΘE7(a))) except one, respectively:
(1, 1, 1, 2, 4, 4, 1), (1, 1, 1, 2, 4, 4, 2), (1, 1, 1, 2, 4, 4, 2, 1), (1, 1, 1, 2, 4, 4, 2, 1, 1), and then use

Lemma 5.8(ii) or (iv), or (iii) applied to d
rotate(µc)

λ,rotate(νc)
(X) = dν

λ,µ(X).

For (ii) if |νc| ≥ 14 then apply (i). So assume |νc| ≤ 13. Thus |µ| ≥ 8. If L(ΘE7(b)) ⊆ µ

then dν
µ,L(ΘE7(b))

is ΘE7(b)-recursive and by (7):

dν
µ,L(ΘE7(b))

(Gω(O3, O6))=
∑

γ∈YOG(7,14)

cν
µ,γ(OG(7, 14)) d

γ̂

L(ΘE7(b)),L(ΘE7(b))
(Gω(O3, O6)).

and each nonzero d
γ̂

L(ΘE7(b)),L(ΘE7(b))
(Gω(O3, O6)) is known by (i) since |γ̂c| = 15. If

L(ΘE7(b)) 6⊆ µ then 8 ≤ |µ| ≤ 10 and µ is the only shape of that size not containing
L(ΘE7(b)). Then dν

λ,µ(Gω(O3, O6)) is determined by the above argument and Lemma 5.8(iii).
�

Proposition 5.10. Let X = OP2 or X = Gω(O3, O6). If {dν
λ,µ(X)} are Schubert like and satisfy

the applicable Θ-recursions, then each dν
λ,µ(X) is uniquely determined (and by Propositions 5.1

and 5.7 thus equal to cν
λ,µ(X)).

Proof. Suppose X = OP2. If |λ|+ |µ|+ |νc| < 16 = |ΛX| then use (II). Otherwise at least one
of |λ|, |µ| or |νc| is at least 6. By (I) assume it is |νc|. If |νc| ≥ 9, then Γ(ΘE6

) ⊆ νc and apply
Lemma 5.8(i) or (iv). For 6 ≤ |νc| ≤ 8 there is only one shape of that size to which we
cannot use Lemma 5.8(i) or (iv), namely (1, 1, 2, 2), (1, 1, 2, 3), and (1, 1, 2, 4) respectively.

So we can use Lemma 5.8(iii) applied to d
rotate(µc)

λ,rotate(νc)
(X) = dν

λ,µ(X). This completes the

proof for this case.
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Now let X = Gω(O3, O6). If |λ|+ |µ|+ |νc| < 27 = |ΛX| then use (II). Otherwise: by (I), as-
sume |νc| ≥ max(|λ|, |µ|, 9), by Corollary 5.9(i) assume 9 ≤ |νc| ≤ 13 and by Lemma 5.8(ii),
assume that dν

λ,µ(X) is not ΘE7(a)-recursive.

Hence, if |νc| ≥ 10 then Γ(ΘE7(b)) ⊆ νc. Since 10 ≤ |νc| ≤ 13, at least one of λ or µ has
size at least 7. Suppose by (I) that it is λ. If dν

λ,µ(X) is ΘE7(b)-recursive, we use (7) and
Corollary 5.9(ii). Note that for the possible values of |λ|, at most one shape γ of that size
has L(ΘE7(b)) 6⊆ γ. Thus, if dν

λ,µ(X) is not ΘE7(b)-recursive, it is the unique dν
γ,µ(X) with

|γ| = |λ| which is not, and we use Lemma 5.8(iii).

Finally, let |νc| = 9. Thus |λ| = |µ| = 9 also. If Γ(E7(b)) ⊆ νc then apply the argu-
ment of the previous paragraph. Otherwise rotate(νc) = (1, 1, 1, 2, 4). By (I), we are

done unless in fact λ = µ = rotate(νc). So it remains to consider d
rotate((1,1,1,2,4)c)

(1,1,1,2,4),(1,1,1,2,4)
(X) =

d
(1,1,1,2,5,4,2,1,1)

(1,1,1,2,4),(1,1,1,2,4)
. By (IV): f(1,1,1,2,5,4,2,1,1)/(1,1,1,2,4)(X) =

∑
|γ|=9 fγ(X)d

(1,1,1,2,5,4,2,1,1)

(1,1,1,2,4),γ
(X) which

in turn equals f(1,1,1,2,4)(X)d
(1,1,1,2,5,4,2,1,1)

(1,1,1,2,4),(1,1,1,2,4)
(X)+

∑
γ6=(1,1,1,2,4)f

γ(X)d
(1,1,1,2,5,4,2,1,1)

(1,1,1,2,4),γ
(X). In the

latter summation, each γ contains rotate(Γ(ΘE7(b))). So d
(1,1,1,2,5,4,2,1,1)

(1,1,1,2,4),γ
is determined by

(I) and the argument of the previous paragraph. The proposition follows. �

Proposition 5.11. For X = OP2 and X = Gω(O3, O6), {eν
λ,µ(X)} are Schubert like, satisfy the

applicable Θ-recursions, and hence the Main Theorem holds in these cases.

Proof. Clearly (II) and (III) are satisfied. (I) is immediate from Corollary 4.7. For (IV)
we need to prove

∑
γ,|γ|=|ν/λ| f

γ(X)eν
λ,γ(X) = fν/λ(X). For each of the fγ(X) tableaux T ∈

SYTX(γ) there are eν
λ,γ(X) tableaux U ∈ SYTX(ν/λ) such that rectification(U) = T .

This proves “≤”. Conversely, since any U ∈ SYTX(ν/λ) rectifies to some T ∈ SYTX(γ),
equality holds. Finally, eν

λ,µ(X) satisfies the stated recursions by Theorem 5.5. The re-
maining claim follows from Propositions 5.1, 5.10 and the fact that cν

λ,µ(OG(6, 12)) =

eν
λ,µ(OG(6, 12)) and cν

λ,µ(OG(7, 14)) = eν
λ,µ(OG(7, 14)), which are shown in Section 5.5. �

5.4. The quadrics Q2n−1 and Q2n−2. From Proposition 5.3, it is easy to check for Q2n−1

(type Bn) that

σk
2

=

{
σ(1k) if 1 ≤ k < n,
2σ(1k) otherwise.

Since H⋆(Q2n−1) is generated by σ2, the Main Theorem holds in this case.

The case Q2n−2 (type Dn), since σ2 does not generate H⋆(Q2n−2), we need to also use
Corollary 2.3(c) and the following calculations using Proposition 5.3:

σk
2

=






σ(1k) if 1 ≤ k ≤ n − 2,
σ(1n−3,2) + σ(1n−1) if k = n − 1,

2σ(1n−3,2,1) if k = n,
2σ(1n−3,2,2,1k−n−1) otherwise.

and σ2 · σ(1n−3,2) = σ2 · σ(1n−1) = σ(1n−3,2,1).

5.5. Conclusion of the proof of the Main Theorem; the minuscule cases. For Gr(k, Cn),
the result is a mild reformulation of [Sc77]. Similarly, for LG(n, 2n) we have restated the
work of [Pra91] and [Wo84, Theorem 7.2.2]. Now, it is known that the Schubert inter-
section numbers for OG(n + 2, 2n + 4) differ from the LG(n, 2n) case by a power of 2

plainly equal to 2shortroots(ν/λ)−shortroots(γ), see, e.g., [BerSo02, Section 3] and the references
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therein. This, combined with Proposition 5.11 proves the OP2 and Gω(O3, O6) cases. To-
gether with the analysis of the quadric cases in Section 5.4, this completes the cominus-
cule cases. For minuscules, the case of OG(n, 2n + 1) holds by the remarks in Sections 2.1
and 2.3, while for P2n−1 use Proposition 5.3, as done for the odd quadrics. �

6. COMINUSCULE RECURSIONS AND SCHUBERT/RICHARDSON VARIETY ISOMORPHISMS

6.1. Proof of Proposition 5.7. Fix lists of cominuscule Lie data (G, B, T(G), P, Φ(G), W(G))

and (H, C, T(H), Q, Φ(H), W(H)) as in Section 1.1, where T(H) ⊆ T(G), Φ(H) ⊆ Φ(G),

X̃ = H/Q and X = G/P. Let Yw(X),Xw(X) ⊆ X respectively be the Schubert cell and Schu-
bert variety for wW(G)P ∈ W(G)/W(G)P. The opposite Schubert cell is Yw(X) := BwP/P

and the opposite Schubert variety is Xw(X) := Yw(X). The Richardson variety X v
u(X) is

the reduced and irreducible scheme-theoretic intersection Xu(X) ∩ X v(X). With obvious

adjustments, we use this notation for the subvarieties of X̃.

Below, we only refer to the cominuscule recursions Θ where Θ = ΘE6
, ΘE7(a) or ΘE7(b).

When unspecified, statements about Θ refer to all three choices. Also, β(P) corresponds
to the node 1 of the E6 and E7 Dynkin diagrams from Table 1. Set δ ∈ W(G) to be sβ1

if
Θ = ΘE6

, ΘE7(a) and sβ7
sβ6

sβ5
sβ4

sβ3
sβ1

if Θ = ΘE7(b).

There is a natural embedding of W(H) into W(G). Discussion of this, together with the
proofs of the following proposition and lemma are briefly delayed until Section 6.2.

Proposition 6.1. There is an embedding η : X̃ →֒ X such that:

(I) η(Xw(X̃)) = Xwδ
δ (X);

(II) η(Xw(X̃)) = Xwmaxδ
wδ (X), where wmax ∈ W(H) is the maximal length element that is

Grassmannian at β(Q).

Lemma 6.2. Let w ∈ W(H)Q, with I(w) = γ. Then I(wδ) = γ̂.

Assuming Proposition 6.1 and Lemma 6.2, we now prove Proposition 5.7.

Corollary 6.3. η(X ν

λ
(X̃)) = X ν

λ (X) and η⋆([X
ν

λ
(X̃)]) = [X ν

λ (X)] ∈ H⋆(X, Q).

Proof. Let I(u) = λ, I(v) = ν. Now, η(X ν

λ
(X̃)) = η(Xu(X̃) ∩ X v(X̃)). The image is set-

theoretically equal to Xwmaxδ
uδ (X)∩X vδ

δ (X) = Xuδ(X)∩Xδ(X)∩Xwmaxδ(X)∩Xvδ(X) = Xvδ
uδ(X) =

Xν
λ(X). Since η is an embedding, this is the (scheme-theoretic) image. The statement about

homology follows. �

Corollary 6.4. η(X γ(X̃)) = X γ̂

L(Θ)
(X) and η⋆([X

γ(X̃)]) = [X γ̂

L(Θ)
(X)] ∈ H⋆(X, Q).

Proof. Specialize Corollary 6.3: ν = γ̂, λ = L(Θ). So η(X γ(X̃)) = η(X γ

∅ (X̃)) = X γ̂

L(Θ)
(X). �

Since Richardson varieties are homologous to scheme-theoretic unions of Schubert va-
rieties (or equally, of opposite Schubert varieties), we have:

(8) [X ν

λ
(X̃)] =

∑

γ∈Y
X̃

cν

λ,γ
(X̃) [X γ(X̃)] ∈ H⋆(X̃, Q).
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Pushing forward on both sides of (8) gives, by Corollaries 6.3 and 6.4:

(9) [X ν
λ (X)] =

∑

γ∈Y
X̃

cν

λ,γ
(X̃) [X γ̂

L(Θ)
(X)] ∈ H⋆(X, Q).

Expanding each [X γ̂

L(Θ)
(X)] into {[Xµ(X)]} and extracting coefficients on both sides of (9),

we obtain: cν
λ,µ(X) =

∑
γ∈Y

X̃
cν

λ,γ
(X̃)c

γ̂

L(Θ),µ
(X), proving Proposition 5.7.2 �

6.2. Proofs of Proposition 6.1 and Lemma 6.2. We fix inclusions of root systems. When
Θ = ΘE6

the inclusion identifies the nodes 1, 2, 3, 4, 5 of D5 respectively with 6, 5, 4, 3, 2

of E6. Similarly, for Θ = ΘE7(a), identify 1, 2, 3, 4, 5, 6 of E6 with 3, 2, 4, 5, 6, 7 while for
Θ = ΘE7(b) identify 1, 2, 3, 4, 5, 6 of D6 with 1, 3, 4, 5, 6, 2 of E7. This induces inclusions of
the objects of the Lie data for H and G; we assume them for the duration of the paper. In
particular, W(H) ⊆ W(G) as a parabolic subgroup. Let W(G)P be the parabolic subgroup
of W(G) corresponding to omitting node 1, and let W(H)Q be the parabolic subgroup of
W(H) ⊆ W(G) omitting nodes 1 and 3 when Θ = ΘE6

, ΘE7(a), and omitting nodes 2 and 7
when Θ = ΘE7(b). The following is a straightforward (finite) check:

Lemma 6.5. If α ∈ Λ
X̃

then Θ(α) = δ−1α. If α ∈ Φ(H) \ (−Λ
X̃
) then δ−1α 6∈ Φ(G) \ (−ΛX).

Also I(δ) = L(Θ).

Lemma 6.6. If w ∈ W(H), then ℓ(wδ) = ℓ(w) + ℓ(δ).

Proof. Check that I(δ−1)∩Φ+(H) = ∅. Since I(w) ⊆ Φ+(H), then I(δ−1)∩I(w) = ∅. Thus
if α ∈ I(δ), δ(α) ∈ −I(δ−1) ⊆ Φ−(G) \ Φ−(H) ⊆ Φ−(G) \ −I(w). Thus, α ∈ I(wδ) as
well. Hence by repeated application of [Hu90, Lemma 1.6(b)], ℓ(wδ) = ℓ(w) + ℓ(δ). �

Proof of Lemma 6.2. Lemma 6.6 implies I(wδ) = I(δ) ∪ δ−1I(w). Now apply the first and
third parts of Lemma 6.5. �

Corollary 6.7. If w ∈ W(H)Q. Then wδ ∈ W(G)P.

Proof. By Lemma 6.2, I(wδ) ∈ YG/P. By Proposition 2.1, wδ ∈ W(G)P. �

Lemma 6.8. δ−1Qδ ⊆ P.

Proof. Let Uα, α ∈ Φ(H) denote the root group, see, e.g., [Hu75, Section 26.3]. It suffices
to show δ−1T(H)δ ⊆ P and δ−1Uαδ ⊆ P for α ∈ Φ(H) \ (−Λ

X̃
) since these subgroups

generate Q. Now, δ−1T(H)δ ⊆ P since δ ∈ W(G) = N(T(G))/T(G). By [Hu75, Theorem
26.3], δ−1Uαδ = Uδ−1(α). By the second part of Lemma 6.5, δ−1α ∈ Φ(G) \ (−ΛX) so
Uδ−1(α) ⊆ P. �

Proof of Proposition 6.1: Pick a representative δ̌ ∈ N(T(G)) of δ. Consider the map υ : H →

G/P defined by the inclusion of H into G, right multiplying by δ̌ and naturally projecting
to G/P. This map descends to a well-defined set-theoretic map η : H/Q → G/P: let
x, y ∈ H with xQ = yQ, i.e., x = yq for some q ∈ Q. Now υ(x) = xδP/P = yqδP/P =

yδδ−1qδP/P = yδP/P = υ(y), where the second-last equality is by Lemma 6.8.

2It is worthwhile to point out that these ideas extend to equivariant K-theory KT (X).
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Thus the fibers of υ are unions of cosets xQ. Since Q is a closed subgroup of H, the
universal mapping property [Hu75, Theorem 12.1] shows υ factors uniquely as a morphism
through H/Q and hence this latter morphism must be equal to η.

Let U ′
w(H) :=

∏
α∈I(w−1) Uα(H) ⊆ C. There is a normal form for H/Q is given by:

(10) H/Q =
∐

w∈W(H)Q

U ′
w(H)wQ/Q.

Here we have applied [Hu75, Theorem 28.4] together with the well-known identification
of Yw = CwQ/Q ⊆ H/Q with CwC/C ⊆ H/C, see, e.g., [Br05] (just before Example 1.2.3).

Consider η applied to a cell of H/Q: η(U ′
w(H)wQ/Q) = U ′

w(H)wδP/P. By Corol-
lary 6.7, wδ ∈ W(G)P, so it indexes a cell in the decomposition of G/P similar to (10).
The inclusion of H into G embeds U ′

w(H) into U ′
wδ(G) (as varieties, both being affine

spaces) since I(w−1) ⊆ I((wδ)−1). Also, Hδ̌ ⊆ C−Qδ ⊆ B−δP (again using Lemma 6.8).

Thus η(CwQ/Q) embeds into BwδP/P ∩ B−δP/P. Taking closures we get Xw(H/Q) ⊆
Xwδ

δ (G/P). These are irreducible varieties of the same dimension, namely ℓ(w), so this
inclusion is an isomorphism.

For (II), the argument are similar. First, η embeds Yw(X̃) = C−wQ/Q into B−wδP/P =

Ywδ(X). Next, note that η(H/Q) = η(CwmaxQ/Q) ⊆ BwmaxδP/P. Thus, η(Yw(X̃)) embeds
into Xwmaxδ

wδ . Taking closures, and observing that the varieties on both sides have the same
dimension, namely ℓ(wmax) − ℓ(w), we see that the two varieties are isomorphic. �

7. FINAL REMARKS AND QUESTIONS; (GEOMETRIC) REPRESENTATION THEORY

Problem 7.1. Find equivariant, K-theoretic and/or quantum analogues of the Main Theorem.

This is a standard kind of question in the subject. That being said, in consultation with
Allen Knutson and Terence Tao, we surmise that there is hope to obtain these general-
izations in the cominuscule setting. For example, in the special case of Grassmannians,
puzzle theorems/conjectures generalizing the Littlewood-Richardson rule exist in each of
the three basic directions (as well as some combinations), see respectively, e.g., [KnTa03,
Bu02, BuKrTa03] (the latter of which reduces the quantum problem to the 2-step flag man-
ifold problem, which is computed by a conjecture of Knutson). Thus:

Problem 7.2. Reformulate the Main Theorem via a uniform generalization of the puzzles of
[KnTa03].

In view of [Va05a, Appendix A], a geometric motivation for Problem 7.2 is that a solu-
tion might suggest appropriate degenerations of Richardson varieties giving a geometric
version of the Main Theorem, in the spirit of [Va05a]. This geometry could yield interest-
ing arithmetic consequences, see [Va05b].

We remark on a representation theoretic interpretation of the Main Theorem, as told
to us by Allen Knutson. One special property of cominuscule flag manifolds that sepa-
rates them from general G/P’s is that they are also the only smooth Schubert varieties on
the affine Grassmannian. The geometric Satake correspondence of Ginzburg, Mirković-
Vilonen and others relates the geometry of the affine Grassmannian of G to the representa-
tion theory of the Langlands dual group G∨. This correspondence associates cominuscule
flag manifolds to minuscule representations. See, e.g., [MiVi99]. Consequently, the Main
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Theorem computes special cases of the natural action of the cohomology of the affine
Grassmannian on the intersection homology of its Schubert varieties. This viewpoint
suggests further avenues for potential generalization.

Finally, there is a connection between the cominuscule Schubert intersection numbers
and tensor product multiplicities mν

λ,µ(G) of the finitely many irreducible representations
of Levi subgroups appearing in the exterior algebra of the subspace corresponding to
ΛG/P. See [Kos61, Section 8] and [BelKu06].

Problem 7.3. When does cν
λ,µ(G/P) = mν

λ,µ(G)?

It is known that the equality holds for the “single simple factor case” in G = GLn(C).
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