
Building classes in object-based languages byautomatic clusteringPetko ValtchevINRIA Rhône-Alpes655 av. de l'Europe, 38330 Montbonnot Saint-Martin, FranceAbstract. The paper deals with clustering of objects described both byproperties and relations. Relational attributes may make object descrip-tions recursively depend on themselves so that attribute values cannotbe compared before objects themselves are. An approach to clustering ispresented whose core element is an object dissimilarity measure. All sortsof object attributes are compared in a uniform manner with possible ex-ploration of the existing taxonomic knowledge. Dissimilarity values formutually dependent object couples are computed as solutions of a sys-tem of linear equations. An example of building classes on objects withself-references demonstrates the advantages of the suggested approach.1 IntroductionObject-based systems provide a variety of tools for building software models ofreal-world domains : classes and inheritance, object composition, abstract datatypes, etc. As a result, the underlying data model admits highly structured de-scriptions of complex real-world entities. With the number of object applicationsconstantly growing the need of analysis tools for object datasets becomes critical[7]. Although the importance of the topic has been recognized [4, 1], it has beenrarely addressed in the literature : a few studies concerning object knowledgerepresentation (KR) systems [3, 9, 1], or object-oriented (OO) databases [7] havebeen reported in the past years.Our own concern is the design of automatic class building tools for objectswith complex relational structure. A compact class can be built on-top of anobject cluster discovered by an automatic clustering procedure [5]. The maindi�culty that clustering application faces is the de�nition of a consistent com-parison for all kinds of object attributes. Relations connect objects into largerstructures, object networks, and may lead to (indirect) self-references in objectdescriptions. Self-references make it impossible to always compare object at-tributes before comparing objects. Consequently, most of the existing approachesto clustering [6, 10] cannot apply on self-referencing descriptions.We suggest an approach towards automatic class building whose core elementis an object dissimilarity measure. The measure evaluates object attributes ina uniform way. Its values on mutually dependent object couples are computed



as solutions of a system of linear equations. Thus, even object sets with self-references may be processed by a clustering tool. The discovered clusters areturned to object classes and then provided with a intentional description.The paper starts by a short presentation of an objects model together witha discussion of aspects which make objects similar (Section 2). A de�nition ofa suitable dissimilarity measure is given in Section 3. The computation of themeasure on mutually dependent object couples is presented. Section 4 shows anexample of an application of the measure. Clustering and class characterizationare discussed in Section 5.2 Object formalismObject languages organize knowledge about a domain around two kinds of enti-ties, classes and objects. Domain individuals are represented as objects, whereasgroups of individuals, or categories, give rise to classes. Thus, each class is as-sociated to a set of member objects, its instances. Both classes and objects aredescribed in terms of attributes which capture particular aspects of the under-lying individuals. A class description is a summary of instance descriptions.In the following, only the descriptive aspects of object languages will beconsidered. The object model of Tropes, a system developed in our team [8] willbe used to illustrate the object speci�c structure. However, the results presentedlater in the paper hold for a much larger set of object models.2.1 Objects, concepts and classesA structured object in our model is a list of attribute values which are themselvesobjects or simple values. For instance, an object representing a 
at within a real-estate knowledge base, may have �elds for 
at's rent, standing, owner, etc. Fig. 1shows example of an object, flat#5, with three attributes, rooms, owner andrent.Three kinds of attributes will be distinguished: properties, components andlinks. Properties model features of the individual being modeled, for examplethe rent of a 
at, whereas components and links model relations to other in-dividuals. Composition, or part-of, relation between individuals is expressedthrough component attributes. Such an attribute relates a composite object toone or a collection of component objects. Composition is distinguished due toits particular nature : it is a transitive and non-circular relation. On the aboveexample, owner is a link and rooms is a component. Apart for nature, attributeshave a type which delimits their possible values. Object-valued attributes aretyped by object concepts whereas simple values are members of data types, fur-ther called abstract data types (adt). Finally, attributes may have a single valueor a collection of values in which case they are called multi-valued attributes.Collections are built on a basic type by means of a constructor, list or set.For instance, the values of rooms attribute in flat#5 is a set of three instancesof the room concept.
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Fig. 1. Example of a concept, flat, a class, high-standing and an instance, flat#5.All three entities provide lists of attributes : concept attributes specify type, natureand constructor, which are necessary in interpreting values in instance attributes; classattributes provide value restrictions on instance attributes; instance attributes containvalues.Objects of a KB are divided into disjoint families, called concepts, e.g. flat,human, room. An object is thus an instance of a unique concept, for example,flat#5 of the flat concept drawn as a rectangle. Concepts de�ne the structure(set of object attributes with their types) and the identity of their instances. Thismay be seen on upper right part of Fig. 1 : flat de�nes the type, the natureand the constructor of the three attributes of the example. Concepts are com-parable to big classes in a traditional OO application, or to tables in relationaldatabases. A class de�nes a subset of concept instances called class members.Classes provide value restrictions on attribute values of member objects, that issets of admissible values among all the values in the attribute basic type givenby the concept. Restrictions on property attributes correspond to sub-types ofthe adt, whereas restrictions on relations are classes of the underlying concept.For example, the class high-standing on Fig. 1 restricts the rent attribute tovalues in the interval [2200,4000] and the rooms attribute to sets composed ofmembers of the classes basic and service. Classes of a concept are organizedinto a hierarchical structure called taxonomy.An object KB is made up of a set concepts. For each concept, a set of instancesare given which are organized into one or more class taxonomies. Objects andclasses of di�erent concepts are connected by means of relational attributes.2.2 Summary on objects as data modelAn object is a member of the entire set of instances de�ned by its concept.A class de�nes a sub-set of instances. In quite the same way, simple values aremembers of the domain of their adt whereas types de�ne subsets of adt values.Unlike objects, simple values have neither identity, nor attributes.



Objects can be seen as points in a multi-dimensional space determined bythe object's concept where each dimension corresponds to an attribute. A classdescribes a region of that space and each member object lays exclusively withinthe region. Furthermore, dimensions corresponding to relational attributes arespaces themselves. Thus, a relation establishes a dependency between its sourceconcept and its target concept : instances of the former are described by meansof instances of the latter. An overview of all inter-concept dependencies is pro-vided by a graphical structure, henceforth called conceptual scheme of the KB,composed by concepts as vertices and relational attributes as (labeled) edges.For example, the (partial) conceptual scheme of the real estate KB given on theleft of Fig. 2 is made up of three concepts, human, flat and room, and threeattributes: two links composing a circuit, owner and house, and a multi-valuedcomponent relation, rooms.The scheme summarizes the relations that may exist between instances ofdi�erent concepts in the KB. In fact, each object is embedded into a similarrelational structure where each concept is replaced by one or a collection of itsinstances. The structure, which we call the network associated to an object o,includes all objects which are related to o by a chain of attributes. In a network,an edge corresponding to a multi-valued attribute may link a source object toa set of target objects. For example, on the left of Fig. 2, the network of theobject flat#5 is drawn. Within the network, an edge rooms connects flat#5to the three objects representing 
at's rooms. Observe the similar topologies ofboth structures on Fig. 2. 1Finally, the network of o extended with classes of all its objects contains theentire amount of information about o. It is thus the maximal part of the KB tobe explored for proximity computation.
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Fig. 2. Example of a KB conceptual scheme, on the right, and an object network thatre
ects the scheme structure, on the left. The network is obtained from the scheme byreplacing a concept by an instance or a collection of instances.1 Actually, there is a label-preserving morphism from each instance network to therespective part of the conceptual scheme.



2.3 Analysis issuesWe are concerned with class design from a set of unclassi�ed objects within anobject KB. The problem to solve is an instance of the conceptual clustering prob-lem [10] and therefore may be divided into two sub-tasks: constitution of membersets for each class and class characterization [6]. A conventional conceptual clus-tering algorithm would typically carry out both sub-tasks simultaneously usingclass descriptions to build member sets. With an object dataset where link at-tributes relate objects of the same concept this approach may fail. Let's considerthe example of the spouse attribute which relates objects representing a mar-ried couple. Within a class of human, the spouse attribute refers to a possiblydi�erent class of the same concept. The attribute induces two-object circuits oninstances of human and therefore may lead to circular references between twoclasses in the taxonomy. When classes are to be built in an automatic way, it isimpossible to evaluate two classes, say c and c0, referring to each other since theevaluation of each class would require, via the spouse attribute, the evaluationof the other one.We suggest an approach to automatic class building which deals with bothtasks separately. First, member sets are built by an automatic clustering proce-dure based on an object proximity measure. The measure implements principlessuggested in [3] to compare object descriptions with self-references. Once allclass member sets are available these are turned into undescribed classes. Thecharacterization step is then straightforward since class attributes in particularthose establishing circuits, may refer to any of the existing classes.As our aim is to �nd compact classes, we require the discovered clusters to behomogeneous on all object attributes, inclusive relational ones. Thus, an objectproximity measure is to be designed which combines in a consistent way the dif-ferences on both properties and relations. Keeping in mind the analogy betweenobjects and simple values we can formulate the following general comparisonprinciple. Given two points in a space, we shall measure their mutual di�erencewith respect to the relative size of the smallest region that covers both of them.The smallest region is a type in case of primitive values and a class in case ofobjects. It is unique for an adt, but it may be interpreted in two di�erent waysfor concepts. In a �rst interpretation, it corresponds to an existing class, themost speci�c common class of both objects. Thus, the corresponding region isnot necessary the smallest possible one, but rather the smallest admissible bythe taxonomy of the concept. The second interpretation is straightforward : theregion is the e�ective smallest one, and is thus independent form the existingtaxonomy.In the next section we describe a dissimilarity function based on the aboveprinciple which deals successfully with circularity in object descriptions.3 Dissimilarity of objectsA proximity measure, here of dissimilarity kind [12], is usually de�ned over a set
 of individuals ! described by n attributes faigni=1. Attribute-level functions



�i compute elementary di�erences on each attribute ai, whereas global functiond = Aggr(�i) combines those di�erences into a single value. In case of objectKB, each concept Cl is assigned a separate object set 
l and hence a speci�cfunction doCl .3.1 Object-level functionLet C be a concept, e.g. flat, with n attributes fa1; ::; ang (we assume that eachobject has all attribute values). In our model, the object dissimilarity functiondoC : C2 ! IR is a normalized linear combination of the attribute dissimilarities�fi : type(ai)2 ! IR. For a couple of objects o and o0 in C, dissimilarity iscomputed as : doC(o; o0) = nXi=1 �i � �fi (o:ai; o0:ai) : (1)where �i is the weight of attribute ai (Pni=1 �i = 1). It is noteworthy that allreal-valued functions are normalized.With respect to what has been said in the previous section, the value ofdoC(o; o0) may be interpreted in the following way. Suppose each �fi evaluatesthe size of the smallest region that contains the values o:ai and o0:ai withinthe corresponding dimension. Then, doC(o; o0) computes the weighted average ofall such sizes. This is an estimation of the size of the smallest region coveringo and o0 within the space of C. The form of do has been chosen to enable thecomputation in case of circularity. In the following, possible de�nitions for �fi arepresented which are consistent with the general principle of the previous section.3.2 Attribute-level functionsFollowing the attribute type, �fi is substituted in Formula 1 either by a propertydissimilarity, �prT or by a relational dissimilarity �rC0 .The dissimilarity of simple values depends on the ratio between the sizeof their most-speci�c common type and the size of the whole adt value set.Formally, let T be an adt of domain D. We shall denote by range(t) the size ofthe sub-set of D described by the type t. This value may be a set cardinal, whenT is a nominal or partially ordered type (structured as in [10]), or an intervallength T is a totally ordered type. For a couple of values in D, v and v0, let v_v0denote their most speci�c common type within T . Then :�prT (v; v0) = range(v _ v0)� 0; 5 � (range(v) + range(v0))range(D) : (2)The subtraction of the average of value ranges in the above formula allows�prT to remain consistent with conventional functions on standard types. Forexample, with an integer type T = [0 10] the value of �prT (2; 4) = 0; 2.In case of object-valued attribute, the relative size of the e�ective smallestregion is estimated by applying a function of do kind. Doing that, the dissim-ilarity computation goes a step further in the object network structure, from



objects to attribute values. In case of a strongly connected component2 of thenetwork the computation comes back to the initial couple of objects, o and o0.For example, comparing two 
ats requires the comparison of their owners whichin turn requires the comparison of 
ats. In other words, the self-references inobject structure lead to recursive dependence between dissimilarity values forobject couples. Section 3.3 presents a possible way to deal with recursion.The class dissimilarity �cl compares objects as members of a class and nomore as attribute lists. More precisely, �cl estimates the relative size of the mostspeci�c common class of two objects. Of course, the function can only be usedon an attribute a if a class taxonomy is available on C 0 = type(a). Moreover,the computed values only make sense if the taxonomy structure re
ects thesimilarities between instances of C 0.Formally, let C 0 be a concept, the type of an object-valued attribute a and letroot(C 0) be the root class of C 0. Let also o01, o02 be a couple of instances of C 0 andlet c = o01 _ o02 be the most speci�c common class of o01, o02. Class dissimilarityis then the ratio of the number of objects in the class and the total numberof concept instances. Thus, the more speci�c the class, the less dissimilar theobjects. �clC0(o01; o02) = k(members(c))k � 1kmembers(root(C 0))k : (3)where members() returns the set of member objects of a class. Here one standsfor the average of members() on both objects.The above function allows the existing taxonomic knowledge in the KB tobe used for clustering, that is for building of new taxonomies.In case of multi-valued attributes, both relational and of property nature, aspeci�c comparison strategy must be applied since collections may have variablelength. The resulting collection dissimilarity relies on a pair-wise matching ofcollection members prior to the computation. Space limitations do not allowthe point to be extended here, but an interested reader will �nd a descriptionof a multi-valued dissimilarity in [11]. All functions de�ned in that paper areconsistent with the above dissimilarity model in that they are normalized andrepresent valid dissimilarity indices.3.3 Dealing with circularityCircularity arises when strongly connected components occur in object networks.A simple example of such component is the two-way dependency between flatand human concepts established by the owner and house attributes. If the dis-similarity of a couple of humans who own their residences is to be computed,this depends, via the house attribute on the dissimilarity of the respective 
ats.The 
at dissimilarity depends, in turn, on the dissimilarity of the initial objectsvia owner. Both values depend recursively on themselves. A possible way to dealwith such a deadlock is to compute the values as solutions of a system of linearequations (see [2]).2 not to mix with component attributes



A single system is composed for each strongly connected component thatoccurs in both networks. In the system, the variables xi correspond to pairs ofobjects which may be reached from the initial pair o, o0 by the same sequences ofrelational links (no composition). For each couple, let's say there are m couples,an equation is obtained from Formula 1.xi = bi + mXi=j;i6=j ci;j � xj : (4)Here, bi is the local part of the dissimilarity doC , that is the sum of all dissimi-larities on properties and components plus those links which does not appear inthe strongly connected component (so there are no variables representing themin the system). The remaining dissimilarities are on link attributes which takepart in the circular dependence.The coe�cients ci;j in each equation are computed as follows. If the objectsof a couple corresponding to xj are the respective values of an attribute a in theobjects of the xi couple, then ci;j is the weight of the attribute a. Otherwise, ci;jis 0.The obtained system is quadratic (m variables and m equations).C �X = B : (5)The matrix C is diagonal dominant so the system has a unique solution. Itcan be computed in a direct way or by an iterative method.The measures doC , one per concept C, obtained by such a computation arevalid dissimilarity indexes, since positive, symmetric and minimal. Moreover, itcan be proved that if all �fi functions are metrics, then doC are metrics too.4 An example of dissimilarity computationIn the following, we shall exemplify the way do is computed and used to clusterobjects. Due to space limitations, we only consider a sample dataset made ex-clusively of human instances with three attributes: age, salary and spouse (seeTable 1). spouse attribute is of a link nature and its type is the human conceptitself. It thus establishes tiny cycles of two instances of the human concept. Thesalary attribute indicates the month's income of a person in thousands of eu-ros, it is of 
oat type and ranges in [1.8, 3.3] whereas the age attribute is ofinteger type and ranges in [20, 35].Let's now see how the value of do is computed for a couple of objects of theset, say o1 and o4. First, we �x the attribute weights at 0.4 for spouse, and0.3 for both salary and age. According to Formula 1 the dissimilarity for o1and o4 becomes:dohuman(o1; o4) = 0:3 �f (26; 30) + 0:3 �f (3; 2:7) + 0:4 �f (o2; o3) : (6)



Table 1. A sample dataset of human instancesattribute o1 o2 o3 o4 o5 o6age 26 23 27 30 32 35salary 3 2.3 2.2 2.7 2.9 3.2spouse o2 o1 o4 o3 o6 o5The �rst two di�erences are computed by a property function of �f taking intoaccount the respective domain ranges. The total of both computations amountsto 0,18. As no taxonomy is provided, �f on spouse is replaced by dohuman :dohuman(o2; o3) = 0:3 �f (23; 27) + 0:3 �f (2:3; 2:2) + 0:4 �f (o1; o4) : (7)Here we come to the mutual dependency of dohuman(o2; o3) and dohuman(o1; o4)due to the spouse circuit. Substituting a variable for each of them, lets say x1and x2, the following linear equation system is obtained :x1 = 0:18 + 0:4x2 (8)x2 = 0:14 + 0:4x1 (9)Table 2. Dissimilarity values for dohuman and dohumano1 o2 o3 o4 o5 o6o1 0 0.38 0.32 0.3 0.33 0.51o2 0.38 0 0.23 0.48 0.65 0.9o3 0.36 0.26 0 0.31 0.48 0.73o4 0.28 0.43 0.31 0 0.17 0.42o5 0.5 0.61 0.46 0.33 0 0.25o6 0.56 0.74 0.57 0.44 0.25 0The solutions for x1 and x2 are 0.28 and 0.26 respectively. The values ofdohuman for the whole dataset are given in Table 2. The table should be read asfollows : whereas the entries below the main diagonal represent the results ofthe above dohuman function, another function, lets call it dohuman, is given in theupper part of the matrix. dohuman is computed only on age and salary attributestaken with equal weights. We put it here to exemplify the speci�c features of therelational measure in case of circularity.



A detailed examination of respective values for dohuman and dohuman, leads tothe following observation. Given a couple of objects o0 and o00 which representa couple of spouses, lets consider an arbitrary third object o and its dissimi-larity with each of the initial objects. Suppose also dohuman(o0; o) is less thandohuman(o00; o). Then, the following inequalities hold :dohuman(o0; o) < dohuman(o0; o) < dohuman(o00; o) : (10)The same inequalities hold for dohuman(o00; o). Besides, the values of both mea-sures for the initial couple remain the same:dohuman(o0; o00) = dohuman(o0; o00) : (11)The underlying phenomenon is a kind of attraction between the objects of acouple, here o0 and o00. Actually, the mutual in
uence of dissimilarity valuesfor both objects to a third one tends to minimize their di�erence. This meansthat, within the space induced by the relational measure, both objects will liesomehow "nearer" than in the space induced by the simple measure, even if theabsolute values of both functions remain equal.Globally, the attraction results in a more compact dissimilarity matrices inthe sense that the total variance of the values tends to decrease with respect to anon-relational measure with the same relative weights for property attributes. Of
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Fig. 3. Clustering results for the dataset: A. single linkage clustering with dohuman asinput; B. single-linkage clustering with dohuman as input; C. complete-linkage clusteringwith dohuman as input. The scale for �rst two dendrograms is given on the left and thescale of the last one on the right of the �gure.course, the above attraction phenomenon has been detected in a very particularsituation where couples of objects of the same concept are strongly connected.However, a similar tendency can be observed in case of strongly connected com-ponents of greater size and of heterogeneous composition.5 ClusteringThe matrix obtained by the computation of do is used as an input for a hierarchi-cal clustering algorithm which detects homogeneous object groups. An example



of clustering results may be seen on Fig. 3 where input data has been taken fromTable 2.Thus, Fig. 3.A shows the result of a single linkage clustering on dohuman values,whereas the dendrograms on Fig. 3.B and Fig. 3.C are obtained with dohuman bya single-linkage and complete linkage algorithms respectively.A �rst remark concerns the attraction between related objects which goesas far as to change the dissimilarity-induced order between object couples. Thiscould be observed on the matrix, but the dendrogram shows it even better. Infact, whereas o4 forms a compact class with o5 in the �rst case, on the seconddendrogram it is combined with o1. This shift is undoubtfully due to the in
uenceof the o4's spouse, o3, which is nearer to the o1's spouse then to o5's. Both o1and o4 are attracted to form a class with their spouses which may be seen onboth dendrograms B and C.
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