Building classes in object-based languages by
automatic clustering

Petko Valtchev

INRIA Rhoéne-Alpes
655 av. de 'Europe, 38330 Montbonnot Saint-Martin, France

Abstract. The paper deals with clustering of objects described both by
properties and relations. Relational attributes may make object descrip-
tions recursively depend on themselves so that attribute values cannot
be compared before objects themselves are. An approach to clustering is
presented whose core element is an object dissimilarity measure. All sorts
of object attributes are compared in a uniform manner with possible ex-
ploration of the existing taxonomic knowledge. Dissimilarity values for
mutually dependent object couples are computed as solutions of a sys-
tem of linear equations. An example of building classes on objects with
self-references demonstrates the advantages of the suggested approach.

1 Introduction

Object-based systems provide a variety of tools for building software models of
real-world domains : classes and inheritance, object composition, abstract data
types, etc. As a result, the underlying data model admits highly structured de-
scriptions of complex real-world entities. With the number of object applications
constantly growing the need of analysis tools for object datasets becomes critical
[7]. Although the importance of the topic has been recognized [4, 1], it has been
rarely addressed in the literature : a few studies concerning object knowledge
representation (KR) systems [3,9, 1], or object-oriented (OO) databases [7] have
been reported in the past years.

Our own concern is the design of automatic class building tools for objects
with complex relational structure. A compact class can be built on-top of an
object cluster discovered by an automatic clustering procedure [5]. The main
difficulty that clustering application faces is the definition of a consistent com-
parison for all kinds of object attributes. Relations connect objects into larger
structures, object networks, and may lead to (indirect) self-references in object
descriptions. Self-references make it impossible to always compare object at-
tributes before comparing objects. Consequently, most of the existing approaches
to clustering [6,10] cannot apply on self-referencing descriptions.

We suggest an approach towards automatic class building whose core element
is an object dissimilarity measure. The measure evaluates object attributes in
a uniform way. Its values on mutually dependent object couples are computed

as solutions of a system of linear equations. Thus, even object sets with self-
references may be processed by a clustering tool. The discovered clusters are
turned to object classes and then provided with a intentional description.

The paper starts by a short presentation of an objects model together with
a discussion of aspects which make objects similar (Section 2). A definition of
a suitable dissimilarity measure is given in Section 3. The computation of the
measure on mutually dependent object couples is presented. Section 4 shows an
example of an application of the measure. Clustering and class characterization
are discussed in Section 5.

2 Object formalism

Object languages organize knowledge about a domain around two kinds of enti-
ties, classes and objects. Domain individuals are represented as objects, whereas
groups of individuals, or categories, give rise to classes. Thus, each class is as-
sociated to a set of member objects, its instances. Both classes and objects are
described in terms of attributes which capture particular aspects of the under-
lying individuals. A class description is a summary of instance descriptions.

In the following, only the descriptive aspects of object languages will be
considered. The object model of TROPES, a system developed in our team [8] will
be used to illustrate the object specific structure. However, the results presented
later in the paper hold for a much larger set of object models.

2.1 Objects, concepts and classes

A structured object in our model is a list of attribute values which are themselves
objects or simple values. For instance, an object representing a flat within a real-
estate knowledge base, may have fields for flat’s rent, standing, owner, etc. Fig. 1
shows example of an object, flat#5, with three attributes, rooms, owner and
rent.

Three kinds of attributes will be distinguished: properties, components and
links. Properties model features of the individual being modeled, for example
the rent of a flat, whereas components and links model relations to other in-
dividuals. Composition, or part-of, relation between individuals is expressed
through component attributes. Such an attribute relates a composite object to
one or a collection of component objects. Composition is distinguished due to
its particular nature : it is a transitive and non-circular relation. On the above
example, owner is a link and rooms is a component. Apart for nature, attributes
have a type which delimits their possible values. Object-valued attributes are
typed by object concepts whereas simple values are members of data types, fur-
ther called abstract data types (ADT). Finally, attributes may have a single value
or a collection of values in which case they are called multi-valued attributes.
Collections are built on a basic type by means of a constructor, 1ist or set.
For instance, the values of rooms attribute in flat#5 is a set of three instances
of the room concept.

owner type = human flat
) . cons = one
hi gh- st andi ng nature = link

rent type = real

kind-of flat

nature = property
r oonms type = room

cons = set

nature = conponent
flat#5 ~— -~~~ ~-~-~-~-~"-"-~-~-°-°~

rent interval = [2200 4000]

|
|
|
I
|
|
|
I
| |
| cons = one !
| |
) |
roons domain = {basic service} 1 :
I
|
|

rooms = {roon#24 roon#31

r oon¥#6}
"""" rent = 2400
owner = human#36

Fig. 1. Example of a concept, flat, a class, high-standing and an instance, flat#5.
All three entities provide lists of attributes : concept attributes specify type, nature
and constructor, which are necessary in interpreting values in instance attributes; class
attributes provide value restrictions on instance attributes; instance attributes contain
values.

Objects of a KB are divided into disjoint families, called concepts, e.g. flat,
human, room. An object is thus an instance of a unique concept, for example,
flat#5 of the flat concept drawn as a rectangle. Concepts define the structure
(set of object attributes with their types) and the identity of their instances. This
may be seen on upper right part of Fig. 1 : £lat defines the type, the nature
and the constructor of the three attributes of the example. Concepts are com-
parable to big classes in a traditional OO application, or to tables in relational
databases. A class defines a subset of concept instances called class members.
Classes provide value restrictions on attribute values of member objects, that is
sets of admissible values among all the values in the attribute basic type given
by the concept. Restrictions on property attributes correspond to sub-types of
the ADT, whereas restrictions on relations are classes of the underlying concept.
For example, the class high-standing on Fig. 1 restricts the rent attribute to
values in the interval [2200,4000] and the rooms attribute to sets composed of
members of the classes basic and service. Classes of a concept are organized
into a hierarchical structure called tazonomsy.

An object KB is made up of a set concepts. For each concept, a set of instances
are given which are organized into one or more class taxonomies. Objects and
classes of different concepts are connected by means of relational attributes.

2.2 Summary on objects as data model

An object is a member of the entire set of instances defined by its concept.
A class defines a sub-set of instances. In quite the same way, simple values are
members of the domain of their ADT whereas types define subsets of ADT values.
Unlike objects, simple values have neither identity, nor attributes.

Objects can be seen as points in a multi-dimensional space determined by
the object’s concept where each dimension corresponds to an attribute. A class
describes a region of that space and each member object lays exclusively within
the region. Furthermore, dimensions corresponding to relational attributes are
spaces themselves. Thus, a relation establishes a dependency between its source
concept and its target concept : instances of the former are described by means
of instances of the latter. An overview of all inter-concept dependencies is pro-
vided by a graphical structure, henceforth called conceptual scheme of the KB,
composed by concepts as vertices and relational attributes as (labeled) edges.
For example, the (partial) conceptual scheme of the real estate KB given on the
left of Fig. 2 is made up of three concepts, human, flat and room, and three
attributes: two links composing a circuit, owner and house, and a multi-valued
component relation, rooms.

The scheme summarizes the relations that may exist between instances of
different concepts in the KB. In fact, each object is embedded into a similar
relational structure where each concept is replaced by one or a collection of its
instances. The structure, which we call the network associated to an object o,
includes all objects which are related to o by a chain of attributes. In a network,
an edge corresponding to a multi-valued attribute may link a source object to
a set of target objects. For example, on the left of Fig. 2, the network of the
object flat#5 is drawn. Within the network, an edge rooms connects flat#5
to the three objects representing flat’s rooms. Observe the similar topologies of
both structures on Fig. 2. !

Finally, the network of o extended with classes of all its objects contains the
entire amount of information about o. It is thus the maximal part of the KB to
be explored for proximity computation.

—
flat#s owner human#36 owner
rooms rooms

* room#24 Y room#31 * room#6

I:l concept — = link 3 Multi-vaued I

C) object — 3 COMposition

Fig. 2. Example of a KB conceptual scheme, on the right, and an object network that
reflects the scheme structure, on the left. The network is obtained from the scheme by
replacing a concept by an instance or a collection of instances.

! Actually, there is a label-preserving morphism from each instance network to the
respective part of the conceptual scheme.

2.3 Analysis issues

We are concerned with class design from a set of unclassified objects within an
object KB. The problem to solve is an instance of the conceptual clustering prob-
lem [10] and therefore may be divided into two sub-tasks: constitution of member
sets for each class and class characterization [6]. A conventional conceptual clus-
tering algorithm would typically carry out both sub-tasks simultaneously using
class descriptions to build member sets. With an object dataset where link at-
tributes relate objects of the same concept this approach may fail. Let’s consider
the example of the spouse attribute which relates objects representing a mar-
ried couple. Within a class of human, the spouse attribute refers to a possibly
different class of the same concept. The attribute induces two-object circuits on
instances of human and therefore may lead to circular references between two
classes in the taxonomy. When classes are to be built in an automatic way, it is
impossible to evaluate two classes, say ¢ and ¢’, referring to each other since the
evaluation of each class would require, via the spouse attribute, the evaluation
of the other one.

We suggest an approach to automatic class building which deals with both
tasks separately. First, member sets are built by an automatic clustering proce-
dure based on an object proximity measure. The measure implements principles
suggested in [3] to compare object descriptions with self-references. Once all
class member sets are available these are turned into undescribed classes. The
characterization step is then straightforward since class attributes in particular
those establishing circuits, may refer to any of the existing classes.

As our aim is to find compact classes, we require the discovered clusters to be
homogeneous on all object attributes, inclusive relational ones. Thus, an object
proximity measure is to be designed which combines in a consistent way the dif-
ferences on both properties and relations. Keeping in mind the analogy between
objects and simple values we can formulate the following general comparison
principle. Given two points in a space, we shall measure their mutual difference
with respect to the relative size of the smallest region that covers both of them.
The smallest region is a type in case of primitive values and a class in case of
objects. It is unique for an ADT, but it may be interpreted in two different ways
for concepts. In a first interpretation, it corresponds to an existing class, the
most specific common class of both objects. Thus, the corresponding region is
not necessary the smallest possible one, but rather the smallest admissible by
the taxonomy of the concept. The second interpretation is straightforward : the
region is the effective smallest one, and is thus independent form the existing
taxonomy.

In the next section we describe a dissimilarity function based on the above
principle which deals successfully with circularity in object descriptions.

3 Dissimilarity of objects

A proximity measure, here of dissimilarity kind [12], is usually defined over a set
£2 of individuals w described by n attributes {a;}?_ ;. Attribute-level functions

6; compute elementary differences on each attribute a;, whereas global function
d = Aggr(é;) combines those differences into a single value. In case of object
KB, each concept () is assigned a separate object set (2, and hence a specific
function dg, .

3.1 Object-level function

Let C be a concept, e.g. £lat, with n attributes {ai, .., an} (we assume that each
object has all attribute values). In our model, the object dissimilarity function
d2, : C? — R is a normalized linear combination of the attribute dissimilarities
5{ : type(a;)> — R. For a couple of objects o and o' in C, dissimilarity is
computed as :

d;(0,0") = Z A * 5{(0.(1,,;,0'.(1,1-) . (1)
i=1

where); is the weight of attribute a; (3°;_, A; = 1). It is noteworthy that all
real-valued functions are normalized.

With respect to what has been said in the previous section, the value of
d%(o,0') may be interpreted in the following way. Suppose each 5{ evaluates
the size of the smallest region that contains the values o.a; and o'.a; within
the corresponding dimension. Then, d% (0, 0') computes the weighted average of
all such sizes. This is an estimation of the size of the smallest region covering
o and o' within the space of C. The form of d° has been chosen to enable the
computation in case of circularity. In the following, possible definitions for 5{ are
presented which are consistent with the general principle of the previous section.

3.2 Attribute-level functions

Following the attribute type, 5{ is substituted in Formula 1 either by a property
dissimilarity, 5’;‘ or by a relational dissimilarity 52,.

The dissimilarity of simple values depends on the ratio between the size
of their most-specific common type and the size of the whole ADT value set.
Formally, let T be an ADT of domain D. We shall denote by range(t) the size of
the sub-set of D described by the type ¢t. This value may be a set cardinal, when
T is a nominal or partially ordered type (structured as in [10]), or an interval
length T is a totally ordered type. For a couple of values in D, v and v', let vV '
denote their most specific common type within 7'. Then :

range(v Vv') — 0,5 % (range(v) + range(v'))

by (v,0) = range(D) ' (2)

The subtraction of the average of value ranges in the above formula allows
S”T” to remain consistent with conventional functions on standard types. For
example, with an integer type T = [0 10] the value of &7 (2,4) = 0, 2.

In case of object-valued attribute, the relative size of the effective smallest
region is estimated by applying a function of d° kind. Doing that, the dissim-
ilarity computation goes a step further in the object network structure, from

objects to attribute values. In case of a strongly connected component? of the
network the computation comes back to the initial couple of objects, o and o'.
For example, comparing two flats requires the comparison of their owners which
in turn requires the comparison of flats. In other words, the self-references in
object structure lead to recursive dependence between dissimilarity values for
object couples. Section 3.3 presents a possible way to deal with recursion.

The class dissimilarity §° compares objects as members of a class and no
more as attribute lists. More precisely, 6% estimates the relative size of the most
specific common class of two objects. Of course, the function can only be used
on an attribute a if a class taxonomy is available on C' = type(a). Moreover,
the computed values only make sense if the taxonomy structure reflects the
similarities between instances of C'.

Formally, let C' be a concept, the type of an object-valued attribute a and let
root(C") be the root class of C'. Let also 0}, o) be a couple of instances of C' and
let ¢ = 0} V 0} be the most specific common class of 0}, 05. Class dissimilarity
is then the ratio of the number of objects in the class and the total number
of concept instances. Thus, the more specific the class, the less dissimilar the
objects.

_ |[(members(c))|| — 1

5 (0}, 05)
O Imembers(root(C1))|)

(3)

where members() returns the set of member objects of a class. Here one stands
for the average of members() on both objects.

The above function allows the existing taxonomic knowledge in the KB to
be used for clustering, that is for building of new taxonomies.

In case of multi-valued attributes, both relational and of property nature, a
specific comparison strategy must be applied since collections may have variable
length. The resulting collection dissimilarity relies on a pair-wise matching of
collection members prior to the computation. Space limitations do not allow
the point to be extended here, but an interested reader will find a description
of a multi-valued dissimilarity in [11]. All functions defined in that paper are
consistent with the above dissimilarity model in that they are normalized and
represent valid dissimilarity indices.

3.3 Dealing with circularity

Circularity arises when strongly connected components occur in object networks.
A simple example of such component is the two-way dependency between flat
and human concepts established by the owner and house attributes. If the dis-
similarity of a couple of humans who own their residences is to be computed,
this depends, via the house attribute on the dissimilarity of the respective flats.
The flat dissimilarity depends, in turn, on the dissimilarity of the initial objects
via owner. Both values depend recursively on themselves. A possible way to deal
with such a deadlock is to compute the values as solutions of a system of linear
equations (see [2]).

2 not to mix with component attributes

A single system is composed for each strongly connected component that
occurs in both networks. In the system, the variables x; correspond to pairs of
objects which may be reached from the initial pair o, o’ by the same sequences of
relational links (no composition). For each couple, let’s say there are m couples,
an equation is obtained from Formula 1.

m
xr; = 1)1 + Z Ci,j * Zj . (4)
i=jit]

Here, b; is the local part of the dissimilarity dZ,, that is the sum of all dissimi-
larities on properties and components plus those links which does not appear in
the strongly connected component (so there are no variables representing them
in the system). The remaining dissimilarities are on link attributes which take
part in the circular dependence.

The coefficients ¢; ; in each equation are computed as follows. If the objects
of a couple corresponding to z; are the respective values of an attribute a in the
objects of the z; couple, then ¢; ; is the weight of the attribute a. Otherwise, ¢; ;
is 0.

The obtained system is quadratic (m variables and m equations).

CxX=B. (5)

The matrix C is diagonal dominant so the system has a unique solution. It
can be computed in a direct way or by an iterative method.

The measures d¢,, one per concept C, obtained by such a computation are
valid dissimilarity indexes, since positive, symmetric and minimal. Moreover, it
can be proved that if all 5{ functions are metrics, then d¢ are metrics too.

4 An example of dissimilarity computation

In the following, we shall exemplify the way d° is computed and used to cluster
objects. Due to space limitations, we only consider a sample dataset made ex-
clusively of human instances with three attributes: age, salary and spouse (see
Table 1). spouse attribute is of a link nature and its type is the human concept
itself. It thus establishes tiny cycles of two instances of the human concept. The
salary attribute indicates the month’s income of a person in thousands of eu-
ros, it is of float type and ranges in [1.8, 3.3] whereas the age attribute is of
integer type and ranges in [20, 35].

Let’s now see how the value of d° is computed for a couple of objects of the
set, say ol and o4. First, we fix the attribute weights at 0.4 for spouse, and
0.3 for both salary and age. According to Formula 1 the dissimilarity for ol
and o4 becomes:

o o (0l, 04) = 0.3 8 (26, 30) +0.38 (3, 2.7) + 045 (02, 03) . (6)

human

Table 1. A sample dataset of human instances

attribute |0l 02 03 04 05 06

age 26 23 27 30 32 35
salary 3 2322272932
spouse |02 ol 04 03 o6 0H

The first two differences are computed by a property function of 3f taking into
account the respective domain ranges. The total of both computations amounts

o

to 0,18. As no taxonomy is provided, 5 on spouse is replaced by dj ... :

o (02, 03) =038 (23, 27) +0.35 (2.3, 2.2) + 0.4 5 (01, 04) . (7)

"human

"human human(017 04)
due to the spouse circuit. Substituting a variable for each of them, lets say z;

and z,, the following linear equation system is obtained :

Here we come to the mutual dependency of d9 (02, 03) and df

o = 0.14 + 0.4z, (9)
Table 2. Dissimilarity values for dj, ..., and d} ,man

ol 02 03 04 05 06

ol |0 0.380.320.3 0.330.51
0210380 0.23 0.48 0.65 0.9
03 10.36 0.26 0 0.31 0.48 0.73
0410280430310 0.17 0.42
05105 0610460330 0.25
06 0.56 0.74 0.57 0.44 0.25 0

The solutions for z; and z, are 0.28 and 0.26 respectively. The values of
d? ,man for the whole dataset are given in Table 2. The table should be read as
follows : whereas the entries below the main diagonal represent the results of
the above d,.. . function, another function, lets call it dj ..., is given in the
upper part of the matrix. dj,,,...,, is computed only on age and salary attributes
taken with equal weights. We put it here to exemplify the specific features of the

relational measure in case of circularity.

A detailed examination of respective values for df, and d} ,,.an, leads to
the following observation. Given a couple of objects o' and o' which represent
a couple of spouses, lets consider an arbitrary third object o and its dissimi-
larity with each of the initial objects. Suppose also d},, ., (0", 0) is less than

dy uman(0",0). Then, the following inequalities hold :

—Zuman(oli O) < d;)luman(ol7 O) < dZuman(O”7 O) : (10)
The same inequalities hold for df,,,. . (0",0). Besides, the values of both mea-
sures for the initial couple remain the same:

d;)luman(ol7 O”) = d;)luman(ol7 O”) : (11)
The underlying phenomenon is a kind of attraction between the objects of a
couple, here o' and o”. Actually, the mutual influence of dissimilarity values
for both objects to a third one tends to minimize their difference. This means
that, within the space induced by the relational measure, both objects will lie
somehow "nearer” than in the space induced by the simple measure, even if the
absolute values of both functions remain equal.
Globally, the attraction results in a more compact dissimilarity matrices in
the sense that the total variance of the values tends to decrease with respect to a
non-relational measure with the same relative weights for property attributes. Of

0.4 A B C 0.6
0.2 0.3
ol o4 o5 o6 02 o3 ol 04 02 o3 o5 o6 0ol 04 02 03 05 06
Fig. 3. Clustering results for the dataset: A. single linkage clustering with d7 —as

input; B. single-linkage clustering with d},,,., as input; C. complete-linkage clustering
with df,,,.an as input. The scale for first two dendrograms is given on the left and the
scale of the last one on the right of the figure.

course, the above attraction phenomenon has been detected in a very particular
situation where couples of objects of the same concept are strongly connected.
However, a similar tendency can be observed in case of strongly connected com-
ponents of greater size and of heterogeneous composition.

5 Clustering

The matrix obtained by the computation of d° is used as an input for a hierarchi-
cal clustering algorithm which detects homogeneous object groups. An example

of clustering results may be seen on Fig. 3 where input data has been taken from
Table 2.

Thus, Fig. 3.A shows the result of a single linkage clustering on d}, ;.. values,
whereas the dendrograms on Fig. 3.B and Fig. 3.C are obtained with dj . by
a single-linkage and complete linkage algorithms respectively.

A first remark concerns the attraction between related objects which goes
as far as to change the dissimilarity-induced order between object couples. This
could be observed on the matrix, but the dendrogram shows it even better. In
fact, whereas o4 forms a compact class with o5 in the first case, on the second
dendrogram it is combined with o1. This shift is undoubtfully due to the influence
of the o04’s spouse, 03, which is nearer to the o1’s spouse then to o5’s. Both o1
and o4 are attracted to form a class with their spouses which may be seen on
both dendrograms B and C.

human- cl #3

ki nd- of human- r oot

spouse class = {human-cl #3}
salary interval =[2.2 3]
age interval = [23 30]

human- cl #1 human- cl #2

ki nd- of ki nd- of

human-cl #3 human-cl #3

spouse class = {human-cl #2}
salary interval =[2.7 3]
age interval = [26 30]

spouse class = {human-cl #1}
salary interval [2.2 2.3]
age interval [23 27]

Fig. 4. Part of the class hierarchy obtained after characterization. of classes found by
the hierarchical clustering.

. . . . o
As far as class inference is concerned, the clusterings with dj,,, .~ suggest

the existence of four classes below the root class. Before presenting them for
user’s validation, a characterization of each class in terms of attribute restric-
tions has to be provided. The description shows the limits of the region in the
concept space represented by the class and thus helps in the interpretation.
Fig. 4 shows the hierarchy made of three classes, corresponding to the object
clusters {o1,04}, {02,03} and {o1,04,02,03}. Observe the cross-reference be-
tween classes human-cl#1 and human-c1#2 established via the spouse attribute.

6 Conclusion

An approach towards the automatic class design in object languages has been
presented in the paper. Classes are built in two steps: first, member sets of classes
are discovered by a proximity-based clustering procedure, then, each class is
provided a characterization in terms of attributes.

The dissimilarity measure used for clustering compares objects with respect
both to their properties and their relations. In case of self-references in object

descriptions, the values of the measure are computed as solutions of a system of
linear equations. In addition, the measure allows available taxonomic knowledge
to be explored for object comparison, but does not require taxonomies to exist.
In sum, the measure is complete with respect to object descriptions and therefore
allows the detection of clusters which are homogeneous on all object attributes.

References

1.

10.

11.

12.

H.W. Beck, T. Anwar, and S.B. Navathe. A conceptual clustering algorithm for
database schema design. IEEE Transactions on Knowledge and Data Engineering,
pages 396 411, 1994.

. G. Bisson. Conceptual clustering in a first order logic representation. In Proceedings

of the 10th European Conference on Artificial Intelligence, Vienna, Austria, pages
458 462, 1992.

G. Bisson. Why and how to define a similarity measure for object-based repre-
sentation systems. In N.J.I. Mars, editor, Towards Very Large Knowledge Bases,
pages 236 246, Amsterdam, 1995. IOS Press.

. G. Booch. Object-oriented analysis and design with applications. Benjamin-

Cummings, 1994.

J. Euzenat. Brief overview of t-tree: the tropes taxonomy building tool. In Pro-
ceedings of the 4th ASIS SIG/CR classification research workshop, Columbus (OH
US), pages 69-87, 1993.

D.H. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine
Learning, 2:139-172, 1987.

. J. Han, S. Nishio, H. Kawano, and W. Wang. Generalization-based data mining

in object-oriented databases using an object-cube model. IEEE Transactions on
Knowlwdge and Data Engineering, 25(1):55-97, 1998.

INRIA Rhone-Alpes, Grenoble (FR). Tropes 1.0 reference manual, 1995.

J.-U. Kietz and K. Morik. A polynomial approach to the constructive induction
of structural knowledge. Machine Learning, 14(2):193-217, 1994.

R. Michalski and R. Stepp. Machine learning: an Artificial Intelligence approach,
volume I, chapter Learning from observation: conceptual clustering, pages 331 363.
Tioga publishing company, Palo Alto (CA US), 1983.

P. Valtchev and J. Euzenat. Dissimilarity measure for collections of objects and
values. In P. Coen X. Liu and M. Berthold, editors, Proceedings of the 2nd Sym-
posium on Intelligent Data Analysis., volume 1280 of Lecture Notes in Computer
Science, pages 259-272, 1997.

B. van Cutsem. Classification and dissimilarity analysis, volume 93 of Lecture
notes in statistics. Springer Verlag, New York, 1994.

