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Département de mathématiques, UQAM Department of Mathematics

P. O. Box 8888, Station A SUNY Buffalo

Montreal H3C 3P8 Buffalo, N.Y., 14214-3093

Canada U.S.A.

e-mail: boyer@math.uqam.ca e-mail: xinzhang@math.buffalo.edu

1Partially supported by grants: NSERC OGP 0009446 and FCAR EQ 3518.
2Partially supported by NSERC grant OGP 0170284 .

1



1 Introduction

Let M be a compact connected orientable 3-manifold whose boundary is a torus. We

call such 3-manifold a knot exterior. We shall assume throughout this paper that knot

exteriors are hyperbolic, that is, their interiors admit a complete hyperbolic metric of finite

volume. A slope r on ∂M is the ∂M -isotopy class of an unoriented essential simple closed

curve it contains. The set of slopes on ∂M can be identified with the ±-pairs of primitive

homology classes in H1(∂M) - a slope r determines a primitive homology class H1(∂M),

well-defined up to sign, obtained by orienting a representative curve for r and considering

the homology class it carries. As usual, we use ∆(r1, r2) to denote the distance between

two slopes r1 and r2 on ∂M , i.e. their minimal geometric intersection number on ∂M . The

distance between two slopes coincides with the absolute value of the algebraic intersection

number between the corresponding homology classes.

The Dehn filling of M with slope r is the manifold M(r) obtained by attaching a solid

torus V to M by a homeomorphism of ∂V → ∂M which sends a meridian curve of V to

a simple closed curve in ∂M of the given slope r. W. Thurston has shown [34] that all

but finitely many fillings of M are hyperbolic manifolds and a fundamental problem is to

determine constraints on the set of slopes r on ∂M for which M(r) is not hyperbolic. This

occurs, for instance, if π1(M(r)) is either a finite or an infinite cyclic group. The cyclic

filling theorem, due to M. Culler, C. McA. Gordon, J. Luecke and P. Shalen [11], provides

the model for the type of result which can be expected. If C denotes the set of slopes r on

∂M such that π1(M(r)) is cyclic, then it states that C contains no more than three slopes

and the distance between any two slopes in C is at most 1. One can visualize this result as

follows: the cyclic filling theorem is equivalent to the statement that there is a basis α, β of

H1(∂M) such that the pairs of classes corresponding to C are contained in ±{α, β, α + β}.

Next consider the set F of slopes r on ∂M such that π1(M(r)) is either finite or infinite

cyclic. In his address to the 1990 ICM in Kyoto [16], Cameron Gordon conjectured that

the distance between any two slopes in F is no more than 3. Since that time his conjecture

has taken on the more definitive form below (see Conjecture B of Gordon’s problem 1.77 in

[21]).

The Finite Filling Conjecture (C. McA. Gordon) For a hyperbolic knot exterior M ,

there are at most 5 finite or infinite cyclic filling slopes on ∂M and the distance between

any two such slopes is at most 3. Further the distance 3 is realized by at most one pair of

slopes.

The number 5 and the distance 3 in the statement of the finite filling conjecture are the

best upper bounds that one can expect - they are realized on an example due to Jeff Weeks
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(see Example 11.7). An elementary argument shows that the conjecture is equivalent to

the statement that there is a basis α, β of H1(∂M) such that ±-pairs of primitive classes in

H1(∂M) corresponding to F are contained in ±{α, β, α + β, α + 2β, α+ 3β}.

Let #F denote the number of slopes in F and ∆(F) the maximum distance between a

pair of its slopes. Shortly after Gordon announced his conjecture, S. Bleiler and C. Hodgson

obtained the inequalities #F ≤ 24 and ∆(F) ≤ 23 [1] through an analysis of when the

manifolds M(r) admit a Riemannian metric of strictly negative sectional curvature. More

recently, S. Boyer and X. Zhang obtained the bounds #F ≤ 6 and ∆(F) ≤ 5 in work which

should be thought of as a continuation of [11]. This line of thought is further developed

here, leading to a proof of the conjecture.

Theorem 1.1 The finite filling conjecture is true.

Of particular significance is the case where M is the exterior MK of a hyperbolic knot

K in the 3-sphere. Let µK denote the meridinal slope of K. This is the slope on ∂M

represented by an essential curve which bounds a disk in a tubular neighbourhood of K. It

is conjectured (see Conjecture A in problem 1.77 [21]) that if r is a slope on ∂MK for which

π1(MK(r)) is a finite group, then ∆(r, µK) ≤ 1.

Theorem 1.2 Let K be a hyperbolic knot in S3 and let MK denote its exterior. There

is at most one finite filling slope r on ∂MK satisfying ∆(r, µK) ≥ 2, and if there is one,

∆(r, µK) = 2.

Proof. It was proved in [2] that ∆(r, µK) ≤ 2 for any finite filling slope r. Since the

distance between any two slopes r1 6= r2 on ∂MK for which ∆(rj , µK) = 2 is divisible by 4,

Theorem 1.1 implies that not both of r1, r2 can be finite filling slopes. ♦

Specializing further, suppose that MK is the exterior of an amphicheiral hyperbolic

knot K in the 3-sphere. If µ, λ ∈ H1(∂MK) are the primitive classes corresponding to a

meridian-longitude pair for K, then the slopes on ∂MK are in bijective correspondence with

Q ∪ {1
0} via “slope r ↔ ±(pµ+ qλ) ↔ p

q
”. We remind the reader that H1(MK(p

q
)) ∼= Zp.

Theorem 1.3 If K ⊂ S3 is an amphicheiral hyperbolic knot, then the only fillings, other

than the trivial one, which can possibly yield a manifold with a finite fundamental group,

are those corresponding to 1 and −1. In particular, only the binary icosahedral group can

occur as the fundamental group of a manifold with a finite fundamental group obtained by

a non-trivial filling of an amphicheiral knot exterior.

Proof. Note that as K is amphicheiral, MK(p
q
) is homeomorphic to MK(−p

q
) for all slopes

p
q
∈ Q∪{1

0}. Hence if p
q

is a non-trivial finite filling slope of MK , then −p
q

is as well, yielding

2



a manifold with the same fundamental group. Note that q 6= 0 as the slope is non-trivial,

while p 6= 0 because otherwise, H1(MK(p
q
)) would be infinite. Thus |pq| ≥ 1. On the other

hand, the finite filling conjecture implies that 3 ≥ ∆(p
q
, −p
q

) = 2|pq| and therefore |pq| ≤ 1.

Hence p
q

= ±1. Consideration of the abelianizations of the seven types of finite groups

which can be isomorphic to the fundamental group of a 3-manifold (§2) shows that the

fundamental group of M(±1) is either the trivial group or the binary icosahedral group.

But since ∆(1,−1) = 2, the cyclic filling theorem implies that the first possibility cannot

arise. The proof of the theorem is therefore complete. ♦

We will sketch our proof of the finite filling conjecture in what remains of the introduc-

tion, and then describe the organization of the paper.

Let π denote the fundamental group of M . The set of characters of representations of

π with values in SL(2,C) may be identified with the points of a complex affine algebraic

set X(M) [12]. Since M is hyperbolic, X(M) contains the character χ of a discrete faithful

representation of π in SL(2,C). It turns out that any algebraic component X0 of X(M)

containing χ is a curve [13] and Culler and Shalen have shown how such a curve determines

a Culler-Shalen norm ‖ · ‖ : H1(∂M ; R) → [0,∞) (see chapter 1 of [11]). Roughly speaking,

if r is the slope associated to a primitive element α ∈ H1(∂M), then ‖α‖ measures the

number of characters of representations π1(M(r)) → SL(2,C).

The unit ‖ · ‖-ball B is a finited-sided, convex, balanced polygon which encodes topo-

logical information about M in a striking way - the vertices of B are rational multiples

of primitive elements in H1(∂M) whose associated slopes are the slopes of the boundaries

of certain essential surfaces in M . It turns out that amongst all the nontrivial classes in

H1(∂M ; Z), the norm ‖·‖ takes on relatively small values on those classes which correspond

to finite or cyclic filling slopes, but which are not boundary slopes ([11] and [2]). This sug-

gests that not only are there few such classes, but that they are “close” to each other. In fact

this idea was one of the essential ingredients used in [2] to deduce the inequalities #F ≤ 6

and ∆(F) ≤ 5. More can be said though. It follows from [2] and [4] that the conjecture

holds except perhaps for a finite number of explicitly given norms. The new element we

introduce in this paper to deal with the remaining open cases is the A-polynomial, due to

D. Cooper, M. Culler, H. Gillet, D. Long and P. Shalen [8]. We describe it now.

Fix a basis µ, λ of π1(∂M) ∼= Z2 and let D0 be the closure in C2 of the set of all pairs

(u, v) where there is some representation ρ : π → SL(2,C) satisfying

• χρ ∈ X0,

• ρ|π1(∂M) is upper-triangular, and

• ρ(µ) =

(

u ∗
0 u−1

)

, ρ(λ) =

(

v ∗
0 v−1

)

.

It turns out that D0 is a plane algebraic curve and is thus defined by a polynomial, called
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the A-polynomial of X0. In order to exploit this construction to our best advantage, it is

essential for us to work with a polynomial having integer coefficients. One way to achieve

this is to replace X0 by its orbit CM under the natural Aut(C) ×H1(M ; Z2)-action on the

components of X(M) (§5). The curve CM has various useful properties, but in particular the

plane curve DM it determines (as above) is defined over the rationals. Hence it is the zero set

of a primitive polynomial p ∈ Z[u, v] without repeated factors. We take the A-polynomial

of CM, written

AM(u, v) =
∑

(m,n)

bm,nu
mvn ∈ Z[u, v],

to be a certain power of p (§6), the power being chosen to better reflect the close relationship

between AM and the Culler-Shalen norm ‖·‖M determined by CM. This definition is a natural

consequence of the applications we have in mind, but we warn the reader that following the

original definitions ([8]), the A-polynomial of CM would have been taken to be p(u, v).

The Newton polygon NM of AM is the convex hull of {(m,n) | bm,n 6= 0}. The notion of

width, due to P. Shanahan [31], is introduced in §7 and is used to show how the geometry of

NM determines the Culler-Shalen norm ‖·‖M of CM (§8). One consequence of this relationship

is that NM and BM, the ‖ · ‖M-ball of radius sM = min{‖α‖M | α ∈ H1(∂M)\{0}} determine

each other in a very nice way.

Theorem 1.4 The Newton polygon NM is dual to BM in the following sense. The line

through any pair of antipodal vertices of BM is parallel to a side of NM. Conversely the line

through any pair of antipodal vertices of NM is parallel to a side of BM.

This relation gives, in particular, a different and simple proof of one of the main results

of [8] - the slope of a side of the Newton polygon is a boundary slope of M (see Corollary

8.4).

Our proof of the finite filling conjecture can now be described. Consider one of the

putative Culler-Shalen norms where the work in [2] and [4] does not suffice to prove the

conjecture, and suppose that M is a hyperbolic knot exterior for which ‖ ·‖M coincides with

this norm. From the preceding discussion, we can determine precisely what the polygon NM

would have to be. Now the coefficients of AM are constrained in various ways. For instance

Cooper and Long have shown that bm,n = ±1 if (m,n) is a corner of NM [10]. Further

it follows from [8] that the edge polynomials of AM (see §6) are products of cyclotomic

polynomials. We show in §11 that the assumption that a filling of M along a given slope

yields a manifold with a finite fundamental group implies that the roots of an associated

specialization of the variables in the A-polynomial are either ±1 or certain roots of unity.

It turns out that in each of the cases we consider, except one, we are able to use these

constraints to show that the conjecture holds. In this one bad case, the constraints allow
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us to determine AM, but do not lead to a contradiction. Nevertheless, in the appendix

we are able to prove that this polynomial is not the A-polynomial of any hyperbolic knot

exterior M . The idea behind our argument goes back to [8]. There it is described how work

of C. Hodgson shows that if the given polynomial was the A-polynomial of a hyperbolic

3-manifold M , then the real 1-form

ω = ln|u|d(arg(v)) − ln|v|d(arg(u))

is exact on the smooth part of DM = A−1
M (0). In particular the integral of ω over any closed,

piecewise-smooth loop in DM is zero. We find an explicit closed curve in DM on which this

condition fails. Arguments of this type were first used by D. Cooper and D. Long in [9,

§10]. We are grateful to Daryl Cooper for his suggestions concerning our calculations and

for verifying them with his own computer programme.

The paper is organized as follows. In §2, 3, 4 some of the work of [2] is recalled,

refined and further developed. The action of Aut(C)×H1(M ; Z2) on the components of the

character variety X(M) is discussed in §5. The theory of A-polynomials is broached in §6
and that of width in §7 with an eye to deriving various relationships between A-polynomials

and Culler-Shalen norms in §8. We specialize these constructions to the canonical curve

CM and develop its particular properties in §9 and §10. Applications to Dehn filling is the

purpose of §11. Our proof of the finite filling conjecture is outlined in §12, where we split

it into five propositions which are examined successively over the paper’s next five sections.

In the last section we make some general remarks on finite surgery on knots in the 3-sphere

and give a new proof that hyperbolic 2-bridge knots admit no non-trivial finite surgeries

(due to Delman [14] and independently to Tanguay [32]). Finally, there is an appendix

which provides a proof that a certain polynomial in Z[u, v] cannot be the A-polynomial of

a hyperbolic knot exterior.
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2 Preliminaries

Our references for the basic notions, terminology and notation relating to the topology

of 3-manifolds are [19] and [20], for knot theory [29], for algebraic geometry [30], and for

the SL(2,C)-character varieties of 3-manifolds [12].

All manifolds are assumed to be orientable and smooth, unless otherwise specified. By

a surface we mean a compact 2-manifold. By an essential surface in a compact 3-manifold

we mean a properly embedded, incompressible surface no component of which is ∂-parallel

and no 2-sphere component of which bounds a 3-ball. A 3-manifold is called irreducible if

it does not contain an essential 2-sphere, and reducible otherwise.

Throughout the paper, M will denote a hyperbolic knot exterior. A slope r on ∂M

is called a boundary slope if there is an essential surface F in M such that ∂F ∩ ∂M is a

non-empty set of parallel simple closed curves on ∂M of slope r. A boundary slope r on

∂M is said to be strict if there is an essential surface F in M such that F is not the fiber

in any representation of M as a fiber bundle over the circle and such that ∂F ∩ ∂M is a

non-empty set of parallel simple closed curves on ∂M of slope r.

The finite groups which can arise as the fundamental groups of closed, orientable 3-

manifolds are contained among the seven following families [25].

C-type: Cyclic groups Zj = Z/jZ for j ≥ 1;

Even D-type: D4n × Zj with n ≥ 2 even, j ≥ 1 and gcd(n, j) = 1, where D4n = <

x, y | x2 = (xy)2 = yn > is the binary dihedral group of order 4n.

Odd D-type: D(2k, 2l + 1) × Zj for k ≥ 2, j ≥ 1, l ≥ 1 gcd(2(2l + 1), j) = 1, where

D(2k, 2l + 1) = < x, y | x2k

= 1, y2l+1 = 1, xyx−1 = y−1 >.
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Note that D(22, 2l + 1) is isomorphic to the binary dihedral group D4(2l+1) = < x, y | x2 =

(xy)2 = y2l+1 > of order 4(2l + 1).

T-type: T (8, 3k) × Zj for k ≥ 1, j ≥ 1, gcd(6, j) = 1, where T (8, 3k) = < x, y, z | x2 =

(xy)2 = y2, z3k

= 1, zxz−1 = y, zyz−1 = xy >.

Note that T (8, 3) is isomorphic to the binary tetrahedral group T24 = < x, y | x2 = (xy)3 =

y3, x4 = 1 >.

O-type: O48 ×Zj for j ≥ 1, gcd(6, j) = 1, where O48 = < x, y | x2 = (xy)3 = y4, x4 = 1 >

is the binary octahedral group.

I-type: I120 ×Zj for j ≥ 1, gcd(30, j) = 1, where I120 = < x, y | x2 = (xy)3 = y5, x4 = 1 >

is the binary icosahedral group.

Q-type: Q(8n, k, l)×Zj , where Q(8n, k, l) = < x, y, z | x2 = (xy)2 = y2n, zkl = 1, xzx−1 =

zr, yzy−1 = z−1 >, n, k, l, j are relatively prime odd positive integers, r ≡ −1 (mod k) and

r ≡ 1 (mod l).

We call a slope r on ∂M a finite filling slope or a cyclic filling slope if M(r) has,

respectively, a finite or a cyclic fundamental group. If r is a slope on ∂M such that the

fundamental group of M(r) is of one of the types listed above, then we shall say that r is

a finite filling slope of that type.

Lemma 2.1 If M admits a finite filling slope r, then H1(M ; Q) ∼= Q. Further if r is

(1) a T -type or I-type slope, then H1(M(r); Z2) ∼= 0 and H1(M ; Z2) ∼= Z2.

(2) an O-type or odd D-type slope, then H1(M(r); Z2) ∼= Z2 and H1(M ; Z2) ∼= Z2 or Z2⊕Z2.

(3) an even D-type or Q-type, then H1(M(r); Z2) ∼= Z2 ⊕ Z2.

Proof. The proof is a simple homological argument which can be easily deduced from [2,

Lemma 5.1]. ♦

Proposition 2.2 ([11]) If r is a finite or cyclic filling slope in ∂M and is also a boundary

slope, then ∆(r, r′) ≤ 1 for any other finite or cyclic filling slope r′.

Proof. If the first Betti number of M is 1, then the conclusion of the lemma follows from

[11, Theorem 2.0.3]. If the first Betti number of M is larger than 1, then by Lemma 2.1,

both r and r′ must be (infinite) cyclic filling slopes. Thus ∆(r, r′) ≤ 1 by the cyclic surgery

theorem of [11]. ♦

We shall frequently use V and L to denote H1(∂M ; R) and H1(∂M ; Z) respectively.

Once we have fixed an ordered basis {µ, λ} of L, we shall often identify the pair (V,L) with

(R2,Z2) by associating µ to (1, 0) and λ to (0, 1).
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By a pair of elements in V we mean a ± pair {(a, b), (−a,−b)}. A slope on ∂M deter-

mines, and is determined by, a pair of primitive elements of L. We call a primitive homology

class a boundary class, or a strict boundary class, or a cyclic filling class or a finite filling

class, etc., if the corresponding slope has that property.

For a primitive class α ∈ L corresponding to a slope r on ∂M , the manifold M(r) will

also be denoted by M(α).

If two slopes r1 and r2 correspond to ±(p1, q1),±(p2, q2) ∈ Z2, then basic surface topol-

ogy can be used to show that ∆(r1, r2) coincides with the absolute value of the algebraic

intersection number between the classes in H1(∂M) corresponding to (p1, q1) and (p2, q2).

Thus

∆(r1, r2) = |p1q2 − p2q1|.

Consequently, for any two elements α and β in H1(∂M ; Z), we use ∆(α, β) to denote the

absolute value of their algebraic intersection number.

Any rank 2 subgroup of the homology group L will be referred to as a sublattice.

The following lemma will prove useful later in the paper.

Lemma 2.3 Let L̃ be a sublattice of L = H1(∂M ; Z) of index q ≥ 1. Suppose that α ∈ L̃

is primitive in L.

(1) If β ∈ L is a class such that ∆(α, β) = 1, then L̃ = {jα + kqβ | j, k ∈ Z}.
(2) γ ∈ L̃ if and only if ∆(α, γ) ≡ 0 (mod q).

Proof. Since α and qβ are both in L̃ and span a sublattice of L of index q, part (i)

holds. To prove part (ii), let γ = jα + mβ ∈ L. Then ∆(α, γ) = |m|. In particular,

∆(α, γ) ≡ 0 (mod q) if and only if |m| ≡ 0 (mod q). By part (i) the latter holds if and only

if γ ∈ L̃. ♦

For an irreducible complex affine curve C, we denote its smooth projective model by

C̃. Note that C̃ is birationally equivalent to C and that any birational equivalence between

them induces an isomorphism between the function fields C(C) and C(C̃). Thus any rational

function f on C corresponds to a rational function f̃ on C̃. For f̃ ∈ C(C̃) and point x ∈ C̃,

we use Zx(f̃) to denote the multiplicity of x as a zero of f̃ . The multiplicity of x as a pole

of f̃ will be denoted by Πx(f̃).

A birational equivalence from C̃ to C is regular at all but a finite number of points of C̃,

called ideal points of C̃. Normalization [30, Chapter II, §5] determines a surjective regular

map ν : Cν→C of C where Cν is a non-singular affine set which can be identified with the

subset of C̃ whose complement C̃ \ Cν is the set of ideal points of C̃.
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Let C be an affine curve having n irreducible components C1, ..., Cn and set C̃ = C̃1 ⊔
.... ⊔ C̃n, Cν = Cν1 ⊔ .... ⊔ Cνn (here “⊔” denotes disjoint union). An ideal point of C̃ is an

ideal point of C̃i for some i, i.e. a point of C̃ \ Cν .

A point x on a complex, affine, algebraic set X is called a simple point if it is contained

in a unique algebraic component X0 of X and is a smooth point of X0 [30]. The point x is

simple on X if and only if the dimension of the Zariski tangent space of X at x is equal to

the dimension of some irreducible component of X which contains x.

3 The type of a finite filling slope

In order to develop the theory of finite filling classes in the most useful way, we need to

refine our notion of the type of a finite filling slope.

Recall that a representation ρ ∈ R(G) is reducible if ρ(G) can be conjugated into the

set of upper triangular matrices. We call a representation ρ ∈ R(G) virtually reducible if

there is a finite index subgroup G̃ of G such that the restriction of ρ to G̃ is reducible.

The reducibility of a representation in R(G) is determined by its character [12, Corollary

1.2.2] and so we call χ ∈ X(G) reducible, or virtually reducible, if it is the character of a

representation having that property. A representation or character which is not reducible

is called irreducible.

Suppose that α is a finite filling class and that ρ̄ : π1(M(α)) → PSL(2,C) is an irre-

ducible representation. Let T12, I60, O24 and Dn denote, respectively, the tetrahedral group,

the icosahedral group, the octahedral group, and the dihedral group of order 2n. It follows

from [2, §5] that

image(ρ̄) ∼=























Dn, for some n ≥ 2 if α is D or Q-type

T12 if α is T -type

I60 if α is I-type

O24 or D3 if α is O-type.

Let ψ̄ be the composition π1(M) → π1(M(α))
ρ̄→ PSL(2,C) and define φ̄ = ψ̄|π1(∂M).

Lemma 3.1 Let ρ̄, ψ̄, and φ̄ be as above and set q = |φ̄(π1(∂M))|. If α has O-type assume

that image(ρ̄) ∼= O24. Then

(1) q ∈ {1, 2} if α is D or Q-type and ψ̄ can be arbitrarily closely approximated on R̄(M)

by non-virtually reducible representations.

(2) (a) q = 3 if α is T -type and H1(M ; Z) has no 3-torsion.

(b) q ∈ {1, 2} if α is T -type and H1(M ; Z) has non-trivial 3-torsion.
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(3) q ∈ {1, 2, 3, 5} if α is I-type.

(4) (a) q ∈ {2, 4} if α is O-type and H1(M ; Z) has no 2-torsion.

(b) q ∈ {1, 2, 3} if α is O-type and H1(M ; Z) has non-trivial 2-torsion.

Proof. Suppose first of all that α is of type T . Since φ(π1(∂M)) is cyclic and is a sub-

group of T12, it has order q ∈ {1, 2, 3}. If H1(M ; Z) has no 3-torsion then H1(∂M ; Z3) →
H1(M ; Z3) ∼= Z3 is surjective, and hence the composition H1(∂M ; Z3) → H1(M ; Z3) →
H1(M(α); Z3)

σ→ H1(T12; Z3) is as well, where σ is the homomorphism induced by ρ̄. It

follows that the cyclic group φ(π1(∂M)) does not lie in [T12, T12] ∼= Z2 ⊕ Z2, and therefore

φ(π1(∂M)) ∼= Z3, i.e. q = 3.

Suppose next that α is of type T andH1(M ; Z) has non-trivial 3-torsion. ThenH1(M ; Z3) ∼=
A⊕B where A = image(H1(∂M ; Z3) → H1(M ; Z3)) ∼= Z3

∼= B. Since Z3
∼= H1(M(α); Z3) ∼=

(A/ < image(α) >) ⊕B we see that the composition H1(∂M ; Z3) → H1(M(α); Z3) is zero.

This implies that φ̄(π1(∂M)) ⊂ [T12, T12] ∼= Z2 ⊕ Z2, and therefore q ∈ {1, 2}.

The cases where α is of type I or O are handled in a similar fashion.

Next assume that α is D or Q-type. The argument here is necessarily more involved as

the torsion in the image of ρ̄ has arbitrarily high order.

Without loss of generality we may suppose that q > 1. Now ψ̄ is a point on R̄(M), the

PSL(2,C)-representation variety of π1(M) ([3]). Arguing as in Lemmas 4.3 and 4.4 of [2], it

can be shown that the dimension of the Zariski tangent space of R̄(M) at ψ̄ is 4. It follows

that ψ̄ is a simple point of R̄(M) (cf. §2) and hence X0, the component of the PSL(2,C)-

character variety of π1(M) which contains the character of ψ̄, is a curve. The hypotheses

of part (1) of this lemma imply that X0 contains non-virtually reducible characters. The

argument in the proof of [2, Theorem 2.1] can then be adapted to a PSL(2,C) setting to see

that there is an index 2 sublattice L̃ of L, which contains α, on which φ̄ is trivial (compare

[2, Lemma 6.1(3)]). Thus q = 2. ♦

Definition 3.2 Suppose that α is a T, I or O-type class and fix an irreducible represen-

tation ρ̄ : π1(M(α)) → PSL(2,C) whose image is O24 if α has type O. According to [2,

Lemma 5.3], ρ̄ is well-defined up to conjugacy, and an outer automorphism of its image when

α is of type I. If φ̄ denotes the composition π1(∂M) → π1(M) → π1(M(α))
ρ̄→ PSL(2,C),

we shall say that a finite filling class has type T (q) if it is of type T and q = |φ̄(π1(∂M))|.
Similarly we define I(q)-type and O(q)-type filling classes.

A simple consequence of these definitions is the following useful result.
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Proposition 3.3 Suppose that α is a finite filling class of type T (q), I(q) or O(q). If β ∈ L

is another finite filling class such that ∆(α, β) ≡ 0 (mod q), then it also has, respectively,

type T (q), I(q) or O(q).

Proof. Say α has type T (q) and fix a representation ρ̄ : π1(M(α)) → PSL(2,C) whose

image is the tetrahedral group T12. If we denote by φ the composition π1(∂M) → π1(M) →
π1(M(α))

ρ̄→ T12, then from the definition of q and the hypothesis that ∆(α, β) ≡ 0 (mod q)

we deduce that φ(β) = ±I. Thus the composite π1(M) → π1(M(α))
φ̄→ T12 factors through

π1(M(β)). It is shown in [2, Lemma 5.3] that if the fundamental group of a 3-manifold is

finite and admits a homomorphism onto the tetrahedral group, then it is T -type. From the

definition of q we now see that β is actually of type T (q). ♦

4 Norm curve components of X(M)

In this section we collect some basic facts and properties of the norm curve components of

the SL(2,C)-character variety of M , and of the Culler-Shalen norms which they determine

on the 2-dimensional real vector space H1(∂M ; R). These norms were originally defined

in [11] and applied to the study of cyclic and finite fillings in [11] and [2]. See [3] for a

discussion of Culler-Shalen norms in the setting of the PSL(2,C)-character variety of M .

For a finitely generated group G, we use R(G) to denote the set of all representations of

G with values in SL2(C). It is well known that R(G) has the structure of a complex affine

algebraic set [12]. The character of an element ρ ∈ R(G) is the function χρ : G→C defined

by χρ(g) = trace(ρ(g)). The set of characters of the representations in R(G), denoted by

X(G), is also a complex affine algebraic set [12] and is called the SL(2,C)-character variety

of G. The surjective map t : R(G)→X(G) which sends a representation to its character is

regular in the sense of algebraic geometry. For a compact manifold W , R(W ) and X(W )

will denote R(π1(W )) and X(π1(W )) respectively.

For each g ∈ G, the evaluation map Ig : X(G)→C defined by Ig(χρ) = χρ(g) is regular

[12] and so fg = (Ig + 2)(Ig − 2) is as well. It is easy to verify that Ig, and hence fg, is

unchanged if we replace g by its inverse or any of its conjugates in G.

Consider a hyperbolic knot exterior M . The Hurewicz homomorphism induces an iso-

morphism H1(∂M ; Z) ∼= π1(∂M), and so we can identify L = H1(∂M ; Z) with a subgroup

of π1(M), well-defined up to conjugacy. Each δ ∈ L therefore determines a regular function

Iδ : X(M) → C. An irreducible 1-dimensional algebraic component X1 of X(M) is called

a norm curve component (for reasons to be made clear below) if Iδ is nonconstant on X1

for every δ ∈ L \ {0}. Since M is an orientable hyperbolic manifold, X(M) contains the
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characters of discrete faithful representations [12, Proposition 3.1.1]. It is proven in [11,

Proposition 1.1.1] that any irreducible component of X(M) containing such a character is

a norm curve component of X(M).

Proposition 4.1 Let X1 be a norm curve component of X(M). Then all but finitely many

characters in X1 are irreducible.

Proof. It follows from Lefschetz duality that the rank of the natural homomorphism

H1(∂M ; Z) → H1(M ; Z) is 1, and so there is a non-zero class α ∈ H1(∂M ; Z) which is

homologically trivial in M . Thus if χ is the character of an abelian representation, we have

χ(α) = 2.

Now every reducible character in X(M) is easily seen to be the character of a diagonal,

and therefore abelian, representation of π1(M). Hence it follows from the previous para-

graph that if X1 contains infinitely many reducible characters, then Iα|X1 is constantly

equal to 2, contradicting the assumption that X1 is a norm curve. Thus we are done. ♦

The set of virtually reducible characters in a norm curve is also constrained. Our next

result shows that if this set is infinite, then the norm curve consists of the characters of

very special collection of representations.

Let D denote the set of diagonal matrices in SL(2,C) and consider the group

N = {
(

z 0

0 z−1

)

,

(

0 w

−w−1 0

)

| z,w ∈ C∗}.

which contains D as an index 2 subgroup.

Proposition 4.2 Let X1 be a norm curve component of X(M) which contains infinitely

many virtually reducible characters. Then there is an index 2 subgroup π̃ ⊂ π1(M) such

that χ|π̃ is reducible for each χ ∈ X1. Indeed each element of X1 is the character of a

representation ρ : π1(M) → N and π̃ = ρ−1(D) for the generic χρ ∈ X1.

Proof. Suppose that ρ ∈ R(M) is irreducible and π̂ is a finite index normal subgroup of

π1(M) such that ρ|π̂ is reducible, but not central. The non-centrality of ρ|π̂ implies that

there are at most two lines in C2 which are invariant under the π̂-action determined by ρ.

Since π̂ is a normal subgroup of π1(M), these one or two lines are actually invariant under

the action of π1(M) on C2 determined by ρ. The irreducibility of ρ implies that there are

exactly two lines L1, L2 ⊂ C2 invariant under this action. Fix any A ∈ SL2(C) which takes

L1 ∪ L2 to the coordinate axes. Then the image of ρ1 = AρA−1 lies in N . It follows that

π̃ = ρ−1
1 (D) is an index 2 subgroup of π1(M) on which ρ is diagonal.
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Now suppose that {χ1, χ2, χ3, . . .} ⊂ X1 is an infinite set of virtually reducible char-

acters. By Proposition 4.1 we may assume that each χj is the character of an irreducible

representation ρj ∈ R(M). We claim that we may assume that each ρj conjugates into

N . This follows from the preceding paragraph if we suppose that infinitely many of the ρj

have infinite image. Suppose then that each ρj has finite image. ¿From the classification

of finite subgroups of SL(2,C) (see e.g. [36, Lemma 2.6.5]) we see that ρj(π1(M)) is either

the binary tetrahedral group, the binary octahedral group, the binary icosahedral group,

or a binary dihedral group. There are only finitely many characters of representations in

R(M) of the first three types, so without loss of generality, the image of each ρj is a binary

dihedral group, and hence conjugate into N .

Assume then that each ρj conjugates into N and define π̃j = ρ−1
j (D), an index 2

subgroup of π1(M). Since there are only finitely many such subgroups we may assume that

π̃j = π̃k for each j, k ≥ 1. Then χj|π̃1 is reducible for each j. But the set of characters in

X1 which are reducible when restricted to π̃1 is an algebraic subset of X1 (cf. [12, Corollary

1.2.2]) and therefore χ|π̃1 is reducible for each χ ∈ X1. One may now argue, as in the

first paragraph of the proof, that each irreducible character χ ∈ X1 is the character of a

representation ρ ∈ R(M) for which ρ(π1(M)) ⊂ N and ρ−1(D) = π̃1. The density of such

characters in X1 implies that the proposition holds. ♦

Our next two corollaries show that norm curve components ofX(M) contain only finitely

many virtually reducible characters as long as M is the exterior of a knot in the 3-sphere, or

a manifold which admits a finite filling which has neither a cyclic nor dihedral fundamental

group.

Corollary 4.3 Suppose that X1 is a norm curve component of X(M). If H1(M ; Z2) ∼= Z2,

then X1 contains only finitely many virtually reducible characters.

Proof. Suppose that X1 contains infinitely many virtually reducible characters. According

to Proposition 4.2, there is an index 2 subgroup π̃ of π for which χρ is reducible for each

χρ ∈ X1. Let p : M̃ → M be the 2-fold cover determined by π̃. Restriction determines a

regular map p∗ : X1 → X(M̃ ) whose image determines a curve Y1 in X(M̃ ).

Let T̃ be a boundary component of M̃ and consider α̃ ∈ H1(T̃ ; Z) \ {0}. Since X1 is a

norm curve, the identity Ip∗(α̃)|X1 = Iα̃|Y1 ◦ p∗ implies that Iα̃|Y1 is non-constant. Then

by Proposition 4.1, ∂M̃ cannot be connected and so π1(∂M) ⊂ π1(M̃ ). But then there is a

surjection π → π/π̃ = Z2 which vanishes on π1(∂M). This is impossible as the hypothesis

that H1(M ; Z2) ∼= Z2 implies that H1(∂M ; Z2) → H1(M ; Z2) is surjective. Thus there are

only finitely many virtually reducible characters in X1. ♦

13



Corollary 4.4 Suppose that X1 is a norm curve component of X(M) and that it contains

the character of a representation ρ with finite image which is neither cyclic nor binary

dihedral. Then X1 contains only finitely many virtually reducible characters.

Proof. Our hypothesis on ρ implies that it does not conjugate into N . Thus the corollary

follows from Proposition 4.2. ♦

Now consider a norm curve component X1 of X(M). The method of [11, §1.4] can be

used to define a norm ‖·‖1 on H1(∂M ; R) which satisfies (and is determined by) the identity

‖δ‖1 = degree(fδ|X1) = 2degree(Iδ|X1) for each element δ ∈ L.

Our next proposition lists some of the basic properties of this norm.

Proposition 4.5 (1) Let

s1 = min{ ‖δ‖1 | δ ∈ L \ {0}}
B1 = {v ∈ V | ‖v‖1 ≤ s1}.

Then B1 is a compact, convex, finite-sided, balanced (i.e. B1 = −B1) polygon whose vertices

are rational multiples of boundary classes in L. They are strict boundary classes if X1

contains non-virtually reducible characters.

(2) There are at most three (pairs of) classes of L which lie on ∂B1 but are not vertices.

Their mutual distances are at most 1.

(3) Choose an ordered basis {µ, λ} for L such that ‖µ‖1 = s1 and identify V with the µλ-

plane (as discussed in §2). Then if (a, b) ∈ B1, we have |b| ≤ 2. Moreover, if there is some

(a, b) ∈ B1 with b = 2, then (a, b) ∈ L and B1 is a parallelogram with vertices ±(1, 0) and

±(a, b). ♦

Proof. Part (1) is proved as in [11, §1.4], though see [11, Proposition 1.2.7] and [3, Propo-

sition 5.2 (5)] for the strictness of the boundary slopes associated to vertices of B1 when X1

contains the character of a non-virtually reducible representation. Part (2) can be found in

[11, §1.1], while part (3) is proved in [2, Lemma 6.4]. ♦

It was shown in [11] and [2] how to obtain restrictions on the norms of finite or cyclic

filling classes, which are not strict boundary classes, from norm curves which contain the

character of a discrete, faithful representation. These results can be extended to general

norm curves.

Proposition 4.6 Suppose that X1 is a norm curve component and that α = (m,n) ∈ L is

a finite or cyclic filling class which is not a strict boundary class.
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(1) If α ∈ L is a cyclic filling class, and X1 contains a character which is not virtually

reducible, then ‖α‖1 = s1. Hence α ∈ ∂B1 but is not a vertex of B1.

(2) If α is a D-type or a Q-type filling class and X1 contains a character which is not

virtually reducible, then (i) ‖α‖1 ≤ 2s1 and (ii) ‖α‖1 ≤ ‖β‖1 for any non-zero element

β ∈ L such that ∆(α, β) ≡ 0 (mod 2).

(3) (a) If α is a T (q)-type filling class and H1(M ; Z) has no 3-torsion, then q = 3 and

(i) ‖α‖1 ≤ s1 + 4, (ii) ‖α‖1 ≤ ‖β‖1 for any non-zero element β ∈ L such that ∆(α, β) ≡
0 (mod q).

(b) If α is a T (q)-type filling class and H1(M ; Z) has non-trivial 3-torsion, then q ∈
{1, 2} and (i) ‖α‖1 ≤ s1 + 4, (ii) ‖α‖1 ≤ ‖β‖1 for any non-zero element β ∈ L such that

∆(α, β) ≡ 0 (mod q). If ‖α‖1 > s1, then q = 2.

(4) If α is an I(q)-type filling class, then q ∈ {1, 2, 3, 5} and (i) ‖α‖1 ≤ s1 + 8, (ii) ‖α‖1 ≤
‖β‖1 for any non-zero element β ∈ L such that ∆(α, β) ≡ 0 (mod q). If ‖α‖1 > s1, then

q > 1.

(5) (a) If α is an O(q)-type filling class and H1(M ; Z) has no 2-torsion, then q ∈ {2, 4}, and

(i) ‖α‖1 ≤ s1 + 6, (ii) ‖α‖1 ≤ ‖β‖1 for any non-zero element β ∈ L such that ∆(α, β) ≡
0 (mod q).

(b) If α is an O(q)-type filling class and H1(M ; Z) has non-trivial 2-torsion, then q ∈
{1, 2, 3}, and (i) ‖α‖1 ≤ s1 +12 and (ii) ‖α‖1 ≤ ‖β‖1 for any non-zero element β ∈ L such

that ∆(α, β) ≡ 0 (mod q). If ‖α‖1 > s1, then q > 1.

Proof. Most of the details of the argument can be found in the proof of [2, Theorem 2.3],

taking into account Lemma 2.3, Proposition 4.1, and Corollary 4.4 of this paper. The fact

that q > 1 when ‖α‖1 > s1 follows from [2, Lemmas 4.1, 4.2, and 5.3]. ♦

Corollary 4.7 Suppose that α and β are finite filling classes, but not strict boundary

classes. If α is of type T (q), I(q) or O(q) and ∆(α, β) ≡ 0 (mod q), then ‖β‖1 = ‖α‖1.

Proof. The result follows immediately from Propositions 3.3 and 4.6. ♦

The final result of this section will prove useful in the proof of the finite surgery conjec-

ture.

Corollary 4.8 Suppose that X1 is a norm curve component which contains a non-virtually

reducible character. Choose a basis {µ, λ} for L such that ‖µ‖1 = s1 and identify H1(∂M ; R)
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with the µλ-plane. If α = (j, 2) is a finite or cyclic filling class, but is not a strict boundary

class, and q ≤ 2, then α is neither a C, D, Q, T (q), O(q) or I(q)-type filling class.

Proof. Suppose otherwise. Then there is an integer m such that α = (2m+ 1, 2) is, say, a

D-type filling class (the other classes can be treated similarly). Since ∆(α, µ) = 2, Lemma

2.1 implies that both α and µ are contained in the index two sublattice L̃ of L described in

Proposition 4.6 (2). Thus ‖α‖1 ≤ ‖µ‖1 = s1, i.e. α = (2m+1, 2) ∈ ∂B1. Hence Proposition

4.5 (3) implies that (2m + 1, 2) is a vertex of B1, and thus is a strict boundary class by

Proposition 4.5 (2). But this is contrary to our assumption. ♦

5 The Aut(C) × H1(M ; Z2)-action

Let Aut(C) denote the group of field automorphisms of the complex numbers. As we

shall see below, the group Aut(C)×H1(M ; Z2) acts in a natural fashion on the set of norm

curve components of X(M). A key fact for us is that the orbits of this action are defined

over the rationals.

The groupAut(C) acts on both Cn and the ring C[z1, z2, . . . , zn]: for φ ∈ Aut(C), (c1, c2, . . . , cn) ∈
Cn, and polynomial

∑

m∗

am∗
zm1
1 zm2

2 . . . zmn
n ∈ C[z1, z2, . . . , zn], we have

φ(c1, c2, . . . , cn) = (φ(c1), φ(c2), . . . , φ(cn))

φ(
∑

m∗

am∗
zm1
1 zm2

2 . . . zmn
n ) =

∑

m∗

φ(am∗
)zm1

1 zm2
2 . . . zmn

n .

These actions are compatible in the sense that if V (J) denotes the algebraic set associated

to an ideal J in C[z1, z2, . . . , zn], then

φ(V (J)) = V (φ(J))

for each φ ∈ Aut(C). Similarly if V ⊂ Cn is an algebraic set and J(V ) ⊂ C[z1, z2, . . . , zn] is

its ideal, then

φ(J(V )) = J(φ(V ))

Algebraically definable notions such as “dimension”, “irreducible”, “component”, “simple

point”, etc. are preserved by the actions.

We say that an ideal J ⊂ C[z1, z2, . . . , zn] is defined over a subfield K of C if it is

generated as a C[z1, z2, . . . , zn]-module by polynomials f1, . . . , fm ∈ K[z1, z2, . . . , zn]. If J

is defined over K and each field over which J is defined contains K, we say that K is the

minimal field of definition for J . The following theorem is due to André Weil (see e.g. [22,

§III, Theorem 7 and §III.5]).

16



Theorem 5.1 (Weil) Each ideal J ⊂ C[z1, z2, . . . , zn] has a minimal field of definition.

Further, the algebraic set V (J) ⊂ Cn is invariant under φ ∈ Aut(C) if and only if φ

restricts to the identity on the minimal field of definition of J . ♦

Corollary 5.2 An ideal J ⊂ C[z1, z2, . . . , zn] is defined over Q if and only if V (J) is

invariant under each automorphism of C. ♦

Next consider a finitely generated group G. The action of Aut(C) on SL2(C) given by

φ(

(

a b

c d

)

) =

(

φ(a) φ(b)

φ(c) φ(d)

)

determines actions of Aut(C) on R(G) and X(G) where for ρ ∈ R(G) we have

φ(ρ)(g) = φ(ρ(g))

and for χρ ∈ X(G),

φ(χρ)(g) = χφ(ρ)(g) = φ(χρ(g)).

These actions are compatible with those described above under the algebraic embeddings

of R(G) and X(G) into affine space discussed in [12]. Hence by Corollary 5.2, both R(G)

and X(G) are defined over Q. Indeed the same holds for the union of the algebraic sets in

any Aut(C)-orbit of components of either R(G) or X(G).

Lemma 5.3 Let X1 ∈ X(M) be a norm curve component of X(M) and φ ∈ Aut(C).

(1) Then X2 = φ(X1) is also a norm curve component of X(M). Indeed ‖ · ‖2 = ‖ · ‖1.

Thus the norm polygon B1 defined by X1 and the norm polygon B2 defined by X2 coincide.

(2) If X1 contains a character which is not virtually reducible, then so does X2 = φ(X1).

Proof. For each δ ∈ L there is a commutative diagram

X1
φ

- X2

C

fδ|X1

? φ
- C.

fδ|X2

?

Since the degree of a map between curves is the cardinality of the inverse image of a generic

point in its range, and since φ is a bijection (non-continuous in general), we see that the

degree of fδ|X1 and that of fδ|X2 coincide. Thus ‖ · ‖1 = ‖ · ‖2.
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Part (2) of the lemma is easy to deduce, for if π̃ is a subgroup of π1(M) and ρ ∈ R(M)

restricts to a reducible representation on π̃, there is a line L1 in C2 invariant under the

π̃-action determined by ρ. Then φ(L1) is invariant under the π̃-action determined by φ(ρ).

Thus ρ virtually reducible if and only if φ(ρ) = φ ◦ ρ is. ♦

Two other actions of interest to us are those determined by H1(G; Z2) = Hom(G, {±1})
on R(G) and X(G). For ǫ ∈ H1(G; Z2), ρ ∈ R(G) and χρ ∈ X(G) we define

ǫ(ρ)(g) = ǫ(g)ρ(g)

and

ǫ(χρ)(g) = χǫ(ρ)(g) = ǫ(g)χρ(g).

These actions are by algebraic isomorphisms and thus permute the algebraic components

of X(G), conserving dimension.

When G = π1(M), we shall identify H1(G; Z2) with H1(M ; Z2).

Lemma 5.4 Let X1 ∈ X(M) be a norm curve component and ǫ ∈ H1(M ; Z2).

(1) Then X2 = ǫ(X1) is also a norm curve component of X(M). Indeed ‖ ·‖2 = ‖ ·‖1. Thus

the norm polygon B1 defined by X1 and the norm polygon B2 defined by X2 coincide.

(2) If X1 contains a character which is not virtually reducible, then so does X2 = ǫ(X1).

Proof. For each δ ∈ L there is a commutative diagram

X1
ǫ

- X2

C

fδ|X1

? =
- C.

fδ|X2

?

Since ǫ|X1 is an isomorphism, we see that ‖δ‖1 = ‖δ‖2. Thus ‖ · ‖1 = ‖ · ‖2.

The conclusion of part (2) is obvious. ♦

The actions of Aut(C) and of H1(M ; Z2) commute, and so there are combined actions

of the direct product Aut(C)×H1(G; Z2) on R(G) and X(G). From Corollary 5.2 we derive

the following proposition.

Proposition 5.5 Let Y be the union of the algebraic sets in an Aut(C) ×H1(G; Z2)-orbit

of components of either R(G) or X(G). Then Y is defined over Q. ♦
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6 A-polynomials

In this section, we discuss the A-polynomial of M associated to a norm curve component

X1 and defined with respect to a fixed ordered basis B = {µ, λ} of π1(∂M). The basic

reference is [8]. Bearing in mind its use in the proof of the finite filling conjecture, it is most

natural for us to choose a different normalization for the A-polynomial from that found in

[8] - our A-polynomial is a power of theirs.

Fix a basis B = {µ, λ} of π1(∂M). Given a norm curve component X1 of X(M), one can

construct an algebraic plane curve D1 as follows. Let i∗ : X(M)→X(∂M) be the regular

map induced by the inclusion induced homomorphism i# : π1(∂M)→π1(M). Let Λ be the

set of diagonal representations of π1(∂M), i.e.

Λ = {ρ ∈ R(∂M) | ρ(µ), ρ(λ) are diagonal matrices}.

Then Λ is a subvariety of R(∂M) and it is readily seen that t|Λ : Λ → X(∂M) is a degree

2 surjective map. We may identify Λ with C∗ × C∗ through use of the eigenvalue map

PB : Λ→C∗×C∗. It sends a representation ρ ∈ Λ to (u, v) ∈ C∗×C∗ if ρ(µ) =

(

u 0

0 u−1

)

and ρ(λ) =

(

v 0

0 v−1

)

.

By hypothesis the function Iµ is non-constant on X1 and it clearly factors through

X(∂M). Thus if Y1 = i∗(X1) is the algebraic closure of i∗(X1) in X(∂M), then Y1 is an

irreducible curve in X(∂M). Next let W1 denote the curve t|−1
Λ (Y1) in Λ, and finally define

D1 to be the algebraic closure of PB(W1) in C× C. The following diagram summarizes the

construction.

Λ ⊃W1 = t|−1
Λ (Y1)

∼=
- PB(W1) ⊂ PB(W1) = D1 ⊂ C2

X1
i∗

- Y1 = i∗(X1) ⊂ X(∂M)

t

?

The curveD1 is characterized by the conditon that generically speaking, a point (u, v) lies on

D1 if and only if there is a representation ρ ∈ R(M) with χρ ∈ X1 such that ρ|π1(∂M) ∈ Λ

and the upper left hand entries of ρ(µ) and ρ(λ) are u and v respectively.

Let p1(u, v) be a defining polynomial of D1 with no repeated factors. Note that by

construction, D1 contains neither of the coordinate axes so that p1 is not divisible by either
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u or v. Set

A1(u, v) = p1(u, v)
d1

where d1 is the degree of the map i∗ : X1→Y1. We call A1(u, v) the A-polynomial of X1

with respect to the basis B = {µ, λ}. Note that A1(u, v) is uniquely determined up to

multiplication by a non-zero complex constant.

Remark 6.1 (1) In [8] the authors considered the A-polynomial of the whole character

variety of M . Specifically, they proved that each algebraic component of X(M) gives rise,

by the process described above, to a plane algebraic set of dimension less than or equal to

1. Let D be the the union of the curves which arise from this process. The A-polynomial of

[8] is a polynomial with no repeated factors which defines D. In particular they do not take

into account the degree d1 of i∗ : X1 → X(∂M). Thus in the notation above, our p1(u, v) is

always a factor of their A-polynomial, but if d1 > 1, our A-polynomial is not. Our choice of

normalization is, of course, a matter of convenience, but it is also quite natural. This will

become evident in §8.

(2) Very little seems to be known about the degree d1 of i∗ : X1 → X(∂M), though

Nathan Dunfield has shown that if X1 contains the character of a discrete, faithful repre-

sentation, then d1 ≤ |H1(M ; Z2)|/2 [15, Corollary 3.2].

Proposition 6.2 ([8]) There are integers r, s ≥ 0 such that

A1(u, v) = ǫurvsA1(u
−1, v−1)

where ǫ ∈ {±1}.

Proof. This follows directly from the construction of A1(u, v). One verifies that two el-

ements ρ, ρ′ ∈ Λ have the same image under the map t|Λ if and only if when ρ(µ) =
(

u 0

0 u−1

)

and ρ(λ) =

(

v 0

0 v−1

)

, then ρ′(µ) =

(

u−1 0

0 u

)

and ρ′(λ) =

(

v−1 0

0 v

)

.

It follows that D1 is invariant under the involution (u, v) 7→ (u−1, v−1). Hence there are

integers r, s ≥ 0 and a constant c ∈ C∗ for which urvsA1(u
−1, v−1) = cA1(u, v). It is simple

to deduce that c ∈ {±1}. ♦

Corollary 6.3 Suppose that A1(u, v) =
∑

am,nu
mvn is the A-polynomial of a norm curve

component X1 of X(M). Let m0 be the maximal exponent of A1(u, v) in u and n0 the

maximal exponent in v. Then am,n = ǫam0−m,n0−n for all m and n and some fixed constant

ǫ ∈ {±1}. ♦

The Newton polygon of a two variable polynomial p(u, v) =
∑

am,nu
mvn is the convex

hull in R2 of the set {(m,n) | am,n 6= 0}. A polygon in R2 is called balanced if it is invariant

under reflection in some point of R2.
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Proposition 6.4 ([8]) The Newton polygon N1 of A1(u, v) is finite sided, convex and bal-

anced. If N1 has an edge of slope q/p, then pµ + qλ is a boundary class of the manifold

M .

Proof. (Sketch) The first statement follows from the definition of the polygon and Corollary

6.3. The second is proved exactly as in [8]. The idea is that an appropriate Puiseaux

parameterization of D1 associated to the given edge determines the asymptotic behaviour

of both Iµ and Iλ at some ideal point of X1. This behaviour was shown in [12] to determine

a boundary class of M , which in this instance can be shown to be pµ+ qλ. (In §6, we will

give another proof of this result which does not appeal to Puiseaux expansions.) ♦

The A-polynomial has many interesting properties, one of the most remarkable we de-

scribe next. Let N1 be the Newton polygon of the A-polynomial A1(u, v) =
∑

am,nu
mvn

of a norm curve X1. Fix an edge E of N1 having slope q/p, say, so that there is an integer

k for which qm− pn = k for each (m,n) ∈ E. Then after taking appropriate roots we have

∑

(m,n)∈E

am,nu
mvn =

{

v
−k
p
∑

(m,n)∈E am,n(uv
q

p )m if p 6= 0

u
k
q
∑

(m,n)∈E am,n(u
p

q v)n if q 6= 0.

The edge polynomials associated to E are

fE(z) =
∑

(m,n)∈E

am,nz
m if p 6= 0

and

gE(z) =
∑

(m,n)∈E

am,nz
n if q 6= 0.

When both p, q 6= 0 it is easy to verify that z0 is a non-zero root of fE if and only if there

is a non-zero root z1 of gE such that zp0 = zq1. The significance of these roots is explained

in the following proposition.

Proposition 6.5 ([8]) Let E be an edge polynomial of the Newton polygon N1. Then every

root of an edge polynomial associated to E is a root of the unity. Further if α = pµ + qλ

is the boundary class associated to the edge E and z0, respectively z1, is a non-zero root of

fE, respectively gE, then fα takes on the value (zp0 −z−p0 )2, respectively (zq1 −z−q1 )2, at some

ideal point of X̃1. In particular if one of ±1 is a root of either fE or gE, then fα takes on

the value zero at some ideal point of X̃1. ♦

We shall see in §8 that the A-polynomial of a norm curve component ofX(M) determines

the associated Culler-Shalen norm. The proof will be based on our next result.
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Proposition 6.6 Let X1 be a norm curve component of X(M) and suppose that ‖µ‖1 = 2n1

and ‖λ‖1 = 2m1. Then m1 is the largest power of u which occurs in A1(u, v) while n1 is

the largest power of v.

Proof. We show that ‖µ‖1 = 2n1 where n1 is the largest power of v in A(u, v). The other

equality is derived similarly.

Recall the plane curve D1 associated to X1 and the polynomial p1(u, v) ∈ C[u, v], with-

out repeated factors, which defines it. Consider the commutative diagram

W1

∼=
- D1 ∩ (C∗ × C∗)

⊂
- C∗ × C∗

H
H

H
H

H
H

H
H

H
H

H

ψ

j
X1

i∗

degree d1

- Y1

t|W1 degree 2

?

C∗

pru

?

H
H

H
H

H
H

H
H

H
H

H

Iµ|X1

j 9�������������������������

z 7→ z + z−1

degree 2

C

Jµ

?

where pru is projection on the first factor, ψ is defined by the commutativity of the diagram,

and Jµ : Y1 → C sends χ to χ(µ). It follows that

‖µ‖1 = 2degree(Iµ|X1) = 2d1degree(ψ).

Now degree(ψ) is the cardinality of ψ−1(u0) for a generic point u0 ∈ C∗, and this, in turn,

equals #{v ∈ C∗ | p1(u0, v) = 0}. To compute this quantity, think of p1 as a polynomial in

v, say

p1(u, v) =

k
∑

s=0

hs(u)v
s.

Since A1 = pd11 we have n1 = d1k. Expand ∂p1
∂v

in a similar fashion and consider the resultant

Resv(p1,
∂p1
∂v

) ∈ C[u]. Since p1 has no repeated factors, this resultant is non-zero (see, for

instance, [23, Corollary, §V.10]). ¿From the properties of the resultant we see in particular

that for the generic u0 ∈ C∗, p1(u0, v) is a polynomial of degree k in v with distinct roots.

Hence degree(ψ) = k and so from above

‖µ‖1 = 2degree(Iµ|X1) = 2d1degree(ψ) = 2d1k = 2n1.

♦
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Corollary 6.7 If µ is not a boundary class parallel to an edge of the Newton polygon N1.

Then A1(1, v) is a polynomial of degree ‖µ‖1

2 with non-zero constant term. Similarly A1(u, 1)

is a polynomial of degree ‖λ‖1

2 with non-zero constant term.

Proof. We shall continue to use the notation in the proof of the previous proposition.

Recall that A1(u, v) = p1(u, v)
d1 = (

∑k
s=0 hs(u)v

s)d1 where n1 = kd1. Thus

A1(u, v) = h0(u)
d1 + (terms involving v, . . . , vn1−1) + hk(u)

d1vn1 .

Since µ is not a boundary class, there is no edge of N which is horizontal (Proposition

6.4). Hence h0 and hk are non-zero constant polynomials. The desired result is then a

consequence of this fact and Proposition 6.6. ♦

It is necessary to extend our notions to more general curves in X(M). To that end let

C = X1 ∪ ....∪Xk where X1,X2, . . . ,Xk are norm curve components of X(M). Let ‖ · ‖j be

the Culler-Shalen norm of Xj and Aj(u, v) its A-polynomial with respect to a basis {µ, λ}
of π1(∂M). Define the Culler-Shalen norm of C, denoted ‖ · ‖C : H1(∂M ; R) → [0,∞), by

‖ · ‖C = ‖ · ‖1 + ‖ · ‖2 + . . .+ ‖ · ‖k,

and the A-polynomial of C, with respect to {µ, λ}, by

AC(u, v) = A1(u, v)A2(u, v) . . . Ak(u, v).

Note that AC is well-defined up to multiplication by a non-zero complex constant. Of

particular interest to us is the case where C consists of the curves in an Aut(C)×H1(M ; Z2)

orbit.

Suppose that X1 is a norm curve component of X(M) and fix (φ, ǫ) ∈ Aut(C) ×
H1(M ; Z2). By Lemmas 5.3 and 5.4, X2 = (φ, ǫ)(X1) is also a norm curve component

of X(M) and in fact ‖ · ‖2 = ‖ · ‖1.

Next consider the A-polynomial of X2 with respect to a fixed basis {µ, λ} of π1(∂M).

Let Di be the plane curve associated to Xi and pi(u, v) a polynomial, without repeated

factors, which defines it. ¿From the construction of the plane curves Di, it is not difficult

to see that

D2 = {(ǫ(µ)φ(u), ǫ(λ)φ(v)) | (u, v) ∈ D1},

which we denote by (φ, ǫ)(D1). Hence we may take

p2(u, v) = φ(p1)(ǫ(µ)u, ǫ(λ)v),

which we denote by (φ, ǫ)(p1(u, v)). Let d(X1) ∈ Z+ denote the degree of the restriction

map X1 → i∗(X1) ⊂ X(∂M) which is induced from the inclusion i : π1(∂M)→π1(M).
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Lemma 6.8 Suppose that X1 is a norm curve component in X(M). Then d((φ, ǫ)(X1)) =

d(X1).

Proof. Both (φ, ǫ) : X1 → (φ, ǫ)(X1) and (φ, ǫ ◦ i) : i∗(X1) → (φ, ǫ ◦ i)(i∗(X1)) are injec-

tive functions, so the conclusion is an immediate consequence of the commutativity of the

following diagram.

X1
i∗

- i∗(X1)

(φ, ǫ)(X1)

(φ, ǫ)

? i∗
- i∗((φ, ǫ)(X1)) = (φ, ǫ ◦ i)(i∗(X1)).

(φ, ǫ ◦ i)
?

♦

Corollary 6.9 Suppose that X1 is a norm curve component of X(M) and (φ, ǫ) ∈ Aut(C)×
H1(M ; Z2). If X2 = (φ, ǫ)(X1) then

A2(u, v) = φ(A1)(ǫ(µ)u, ǫ(λ)v).

♦

We finish this section with a proposition describing some of the main properties of the

A-polynomial of an Aut(C) ×H1(M ; Z2)-orbit of a norm curve component of X(M).

Proposition 6.10 Suppose that X1 is a norm curve component in X(M). Let X1,X2, . . . ,Xk

be the distinct components in its Aut(C) ×H1(M ; Z2)-orbit. Set C = X1 ∪X2 ∪ . . . ∪Xk

and let AC(u, v) =
∑

am,nu
mvn be the A-polynomial of C with respect to a basis {µ, λ} of

π1(∂M). Let N be the Newton polygon of AC. Then

(1) After multiplying by a non-zero complex constant, AC(u, v) may be taken to have integer

coefficients whose greatest common denominator is 1. Such a representative is well-defined

up to sign.

(2) Let m0 be the maximal exponent of u occurring in AC(u, v) and n0 that of v. Then for

some ǫ ∈ {±1}, am,n = ǫam0−m,n0−n for all m and n.

(3) The coefficients of AC(u, v) indexed by the corners of N are equal to ±1.

(4) The non-zero roots of any edge polynomial fE(z) or gE(z) determined by AC(u, v) are

roots of the unity. In fact fE(z) and gE(z) are products of a power of z with some cyclotomic

polynomials. Further if α = (p, q) is the boundary class associated to the edge E and if ±1

is a root of either fE(z) or gE(z), then fα takes the value zero at some ideal point of C̃.
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(5) Let i : ∂M → M be the inclusion and i∗ : H1(∂M ; Z2)→H1(M ; Z2) the associated

homomorphism. If

(i) i∗(µ) 6= 0 and i∗(λ) = 0, then am,n = 0 when m is odd.

(ii) i∗(µ) = 0 and i∗(λ) 6= 0, then am,n = 0 when n is odd.

(iii) i∗(µ) 6= 0 and i∗(λ) 6= 0, then am,n = 0 when m+ n is odd.

Proof. Let Dj be the plane curve associated to Xj . Since X1,X2, . . . ,Xk consists of several

Aut(C)-orbits, the discussion prior to Lemma 6.8 implies that D1,D2, . . . ,Dk consists of

several Aut(C)-orbits as well, though note that there is a positive integer r, possibly larger

than 1, such that each orbit occurs r times. It follows from Corollary 5.2 that D1∪D2∪ . . .∪
Dk is defined over Q, and so after multiplication by a suitable non-zero complex constant,

p1(u, v)p2(u, v) . . . pk(u, v) ∈ Q[u, v].

By Lemma 6.8,

AC(u, v) = Πk
j=1pj(u, v)

d(Xj ) = (Πk
j=1pj(u, v))

d1 ∈ Q[u, v].

After multiplying by a further non-zero rational constant we can assume that AC(u, v) ∈
Z[u, v] and that its coefficients have no common integer factors, other than ±1. This

determines AC(u, v) up to sign. Part (1) of the lemma is therefore proved.

Next note that the conclusion of part (2) is a consequence of Proposition 6.2 and the

identity AC(u, v) = A1(u, v)A2(u, v) . . . Ak(u, v).

For part (3), we observe that the proof of the main theorem in [10] applies verbatim to

our situation, by the normalization we have chose in part (1) for AC(u, v).

Part (4) follows from Proposition 6.5.

Finally consider part (5). From the definition of C and Corollary 6.9, it follows that

A(u, v) = A(ǫ(µ)u, ǫ(λ)v) for any ǫ ∈ H1(M ; Z2). If µ 6∈ ker(H1(∂M ; Z)→H1(M ; Z)) but λ

is, there is ǫ ∈ H1(M ; Z2) such that ǫ(µ) = −1 and ǫ(λ) = 1. Hence A(u, v) = A(−u, v) for

each (u, v) ∈ C2. Therefore all odd exponents of u in A(u, v) must be zero. The other two

cases are handled in a similar fashion. ♦

7 Width

In this section we define and study the width function of a polygon, originally introduced

in [31]. It is the key ingredient to understanding the relationship between Culler-Shalen

norms and the A-polynomial.
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We consider R2 as a standard uv-plane. A polygon N in R2 is called balanced if it is

invariant under reflection in some point of R2. Two points on N are called antipodes if they

are related by such a reflection.

Let N ⊂ R2 be a convex, balanced polygon whose vertices lie in Z2. The width function

w = wN : Q ∪ {∞} → Z is defined by taking w(q/p) = k if k + 1 is the number of lines in

the plane of slope q/p which contain points of both Z2 and N .

The group SL2(Z) acts on both R and R2 in the following fashions. If Ψ =

(

a b

c d

)

∈

SL2(Z) then for u ∈ R, we set Ψ(u) = au+b
cu+d , and for (u, v) ∈ R2, we set Ψ(u, v) =

(au + bv, cu + dv). Since Ψ takes lines in R2 of slope u ∈ R ∪ {∞} to lines of slope

(Ψ(u−1))−1, we readily deduce the following lemma.

Lemma 7.1 If N is a convex, balanced polygon in R2 whose vertices lie in Z2 and Ψ ∈
SL(2,Z), then Ψ(N) is a convex, balanced polygon whose vertices lie in Z2 and

wΨ(N)((Ψ(p/q))−1) = wN(q/p).

♦

Fix a convex, balanced polygon N ⊂ R2 whose vertices lie in Z2. Starting from a fixed

vertex v1 of N and passing around N in a counter-clockwise fashion, we may order the re-

maining vertices v2, v3, . . . , vt, v
∗
1 , v

∗
2 , . . . , v

∗
t where vj and v∗j are antipodes. The plane is de-

composed into a collection of sectors by the lines based at the origin whose slopes are those of

the edges of N . The sectors are numbered in a natural fashion S1, S2, . . . , St, S
∗
1 , S

∗
2 , . . . , S

∗
t

as indicated in the figure below. Note that for each j, Sj and S∗
j are antipodal sectors.

V

V

V

V

V

V 1

2

3

*

* *

1

1

2

23

3

θθ

θ

θ

θ

θ1

1

1

2

2

2

3

3

S

SSS

S

S

S

S

3

*

*

*

θ3
θ3

θ1

θ1θ2

θ2
0

Figure 1: Sectors of a balanced polygon
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Lemma 7.2 Let q/p be the slope of a line based at the origin which lies in Sj ∪ S∗
j . If

vj = (m,n) and v∗j = (m∗, n∗), then

wN(q/p) = |(m−m∗)q − (n− n∗)p|.

Proof. Let [vj, v
∗
j ] denote the line segment in the plane spanned by vj and v∗j . By our

choice of q/p, if wN(q/p) = k, then the number of lines in the plane of slope q/p which

contain points of both Z2 and [vj , v
∗
j ] is k + 1. Choose integers s, t such that qs − pt = 1

and define Ψ =

(

q −p
−t s

)

∈ SL2(Z). Then from Lemma 7.1 we see that wN(q/p) =

wΨ(N)(∞), while wΨ(N)(∞) is easily seen to be the absolute value of the u-coordinate of

Ψ(m,n) − Ψ(m∗, n∗) = ((m−m∗)q − (n− n∗)p,−(m−m∗)t+ (n− n∗)s). Thus

wN(q/p) = |(m−m∗)q − (n− n∗)p|.

♦

In our next result we obtain a closed expression for width in terms of the coordinates of

the vertices of N .

Lemma 7.3 Let N be a convex, balanced polygon whose vertices lie in Z2 and are numbered

consecutively v1, . . . , vt, v
∗
1 , . . . , v

∗
t as above. Denote by (mj , nj) the coordinates of vj and by

(mt+1, nt+1) those of v∗1. Then for each pair of relative prime integers p, q,

wN(q/p) =
t
∑

j=1

|(mj+1 −mj)q − (nj+1 − nj)p|.

Proof. Recall the sectors S1, . . . , St, S
∗
1 , . . . , S

∗
t determined by N and the given ordering of

its vertices. Now the ordering of the vertices of N depends only on the choice of v1 and since

N is balanced, the sum
∑t

j=1 |(mj+1 −mj)q− (nj+1 −nj)p| remains unchanged if we make

any other choice. Thus we may assume that (p, q) ∈ S1. Set αj = (mj+1 −mj , nj+1 − nj)

and observe that by Lemma 7.2

wN(q/p) = |(mt+1 −m1)q − (nt+1 − n1)p|

= |
t
∑

j=1

{(mj+1 −mj)q − (nj+1 − nj)p}|

= |
t
∑

j=1

αj · (q,−p)|

where αj · (q,−p) denotes the scalar product between αj and (q,−p). Now by construction

α1, α2, . . . , αt all lie in the sector S∗
2 ∪ S∗

3 ∪ . . . ∪ S∗
t . On the other hand, since (q,−p) is
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obtained by rotating (p, q) ∈ S1 by an angle of π/2 in a counterclockwise direction, it lies in

the sector disjoint from (S∗
2∪S∗

3∪. . .∪S∗
t )\{(0, 0)} and bounded by the half-rays throuh the

vectors obtained by rotating α1 clockwise by π/2 and αt counterclockwise by π/2 (Figure

2). In particular αj · (q,−p) ≤ 0 for each j ∈ {1, 2, . . . , t}. Thus

wN(q/p) = |
t
∑

j=1

αj · (q,−p)|

=

t
∑

j=1

|αj · (q,−p)|

=

t
∑

j=1

|(mj+1 −mj)q − (nj+1 − nj)p|

as claimed. ♦
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Figure 2: Calculating the width of q/p from sectors

Proposition 7.4 Let N be a convex, balanced polygon whose vertices lie in Z2. Then N

determines a norm ‖ · ‖N : R2 → [0,∞) satisfying

‖(p, q)‖N = wN(q/p)

for each pair of coprime integers p, q. Further, if the vertices of N are numbered in coun-

terclockwise order v1, v2, . . . , vt, v
∗
1 , v

∗
2 , . . . , v

∗
t and (mj , nj) are the coordinates of vj and

(mt+1, nt+1) those of v∗1, then

‖(u, v)‖N =
t
∑

j=1

|(mj+1 −mj)v − (nj+1 − nj)u|.

28



Proof. According to the previous lemma, for any pair of relatively prime integers p, q we

have

wN(q/p) =

t
∑

j=1

|(mj+1 −mj)q − (nj+1 − nj)p|.

Define

‖ · ‖N : R2 → [0,∞)

by

‖(u, v)‖N =

t
∑

j=1

|(mj+1 −mj)v − (nj+1 − nj)u|.

Then ‖ · ‖N is clearly a norm and has all the required properties. ♦

Two convex, balanced polygons in R2 are called dual if each edge of one polygon is

parallel to the line segment between some pair of antipodal vertices of the other.




o




o




Figure 3: A pair of dual polygons

Corollary 7.5 The boundary of a ‖ · ‖N -ball is a convex, balanced polygon which is dual to

N .

Proof. It follows from Lemmas 7.2 and 7.3 that

‖(u, v)‖N = |(mj −m∗
j )v − (nj − n∗j)u| for all (u, v) ∈ Sj ∪ S∗

j .

In particular if B1 is the ball of radius 1 of ‖ · ‖N , then ∂B1 ∩ Sj and ∂B1 ∩ S∗
j are line

segments of slope
nj−n

∗

j

mj−m∗

j
. It follows that ∂B1 is a balanced, convex polygon whose edges are

parallel to the line segments in the plane whose endpoints are antipodal vertices of N and

whose vertices lie on the half-rays ∂S1 ∪ ∂S2 ∪ . . .∪ ∂St ∪ ∂S∗
1 ∪ . . .∪ ∂S∗

t . By construction,

the boundaries of these half-rays are parallel to the edges of N . Thus N and B1 are dual

polygons. ♦
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8 Relations between Culler-Shalen norms and A-polynomials

One of our main goals in this section is to show that the norm polygon defined by a curve

in X(M) and the Newton polygon of the associated A-polynomial are dual in the sense

of the previous section. We shall continue to use the notation developed previously in the

paper: for a norm curve component X1 of X(M), ‖·‖1 will denote the Culler-Shalen norm it

defines, B1 the ‖·‖1-ball of radius s1 = min{‖δ‖1 | δ ∈ L\{0}}, D1 the plane algebraic curve

associated to X1, p1(u, v) a polynomial without repeated factors which defines D1, d1 the

degree of the restriction-induced map X1 → i∗(X1) ⊂ X(∂M), and A1(u, v) = [p1(u, v)]
d1

the A-polynomial associated to X1 relative to the basis {µ, λ}. Recall that A1(u, v) is well-

defined up to multiplication by a non-zero complex constant and is divisible by neither u

nor v.

If the ordered basis {µ, λ} of π1(∂M) is replaced by another {σ = µpλq, ζ = µsλt},

where Ψ =

(

p q

s t

)

∈ SL2(Z), and Â1(w, z) is the A-polynomial of X1 with respect to

{σ, ζ}, then there are integers a, b for which

Â1(w, z) = wazbA1(w
tz−q, w−szp).

Hence we deduce the following lemma.

Lemma 8.1 Consider a new basis {σ, ζ} = {µpλq, µsλt} of π1(∂M) where Ψ =

(

p q

s t

)

∈

SL2(Z). Let N1 be the Newton polygon of the A-polynomial of X1 relative to {µ, λ} and N̂1

the Newton polygon of the A-polynomial of X1 relative to the basis {µpλq, µsλt}. Then up

to a translation in the plane,

N̂1 = (Ψtranspose)−1(N1).

♦

Proposition 8.2 Let X1 be a norm curve component of X(M). Fix an ordered basis {µ, λ}
of H1(∂M ; Z) ⊂ H1(∂M ; R) and let A1(u, v) be the A-polynomial of X1 relative to it. If N1

is the Newton polygon of A1(u, v) and (p, q) ∈ L is a primitive class, then

‖(p, q)‖1 = 2wN1
(q/p).

Hence for each (u, v) ∈ R2,

‖(u, v)‖1 = 2‖(u, v)‖N1
.
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Proof. Since A1 is not divisible by u, Proposition 6.6 implies that ‖λ‖1 = 2wN1
(∞). Sim-

ilarly ‖µ‖1 = 2wN1
(0).

Consider a pair of relatively prime integers p, q. Choose s, t ∈ Z such that pt− qs = 1,

set Ψ =

(

q −p
t −s

)

∈ SL2(Z) and observe that Ψ(p, q) = (0, 1). Then from Lemma 7.1 we

see that wN1
(q/p) = wΨ(N1)(∞). From Lemma 8.1 we see that up to a translation in the

plane, Ψ(N1) is the Newton polygon of X1 relative to the basis {µ−sλ−t, µpλq} of π1(∂M).

Hence from the previous paragraph we see that 2wΨ(N1)(∞) = ‖pµ + qλ‖1. The proof is

completed by noting that any two norms on R2 which agree on Z2 are identical. ♦

Corollary 8.3 Under the hypotheses of Proposition 8.2, the Newton polygon N1 of A1 and

the norm polygon B1 of ‖ · ‖1 are dual polygons.

Proof. The conclusion follows from Proposition 8.2 and Corollary 7.5. ♦

Let X1 be a norm curve component of X(M). It is shown in [11, Lemma 1.4.1] that if

x is an ideal point of X̃1, then either

(1) Πx(f̃r) = 0 for each slope r on ∂M , or

(2) there is a unique slope r for which Πx(f̃r) = 0.

We say that a slope r is associated to an ideal point x of X̃1 (and vice versa) if f̃r(x) is

finite while f̃r′(x) = ∞ for some other slope r′. By [11], a slope r associated to an ideal

point of X1 must be a boundary slope. Also note that there may be several ideal points of

X1 associated to a given slope r.

Corollary 8.4 ([8]) There is an edge of slope q/p of the Newton polygon N1 of the A-

polynomial of X1 if and only if pµ+ qλ is a boundary class associated to some ideal point

of X1.

Proof. A primitive pair ±(pµ+ qλ) corresponds to a slope associated to some ideal point

of X1 if and only if it is a rational multiple of some vertex of the norm polygon B1 of ‖ · ‖1

([2, Lemma 6.1]). Since B1 is dual to the Newton polygon N1, the latter occurs if and only

if N1 has an edge of slope q/p. ♦

Our next result gives another characterization of ‖ · ‖1 in terms of A1. Define the span

of a Laurent polynomial p(z) ∈ C[z, z−1] to be

span(p) = max degreez p(z) − min degreez p(z).

Proposition 8.5 Suppose that pµ+ qλ is not a boundary class associated to an ideal point

of X1. Then

‖pµ+ qλ‖1 = 2spanA1(z
−q, zp).
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Proof. The case where pµ+ qλ equals µ or λ follows from Corollary 6.7. For the general

case fix a basis {σ, ζ} = {µpλq, µsλt} of π1(∂M) where pt−qs = 1. We noted before Lemma

8.1 that if Â1(w, z) is the A-polynomial of X1 with respect to {σ, ζ}, then there are integers

a, b for which

Â1(w, z) = wazbA1(w
tz−q, w−szp).

Since pµ + qλ is not a boundary class associated to an ideal point of X1, Corollary 6.7

implies that ‖pµ+ qλ‖1 is twice the degree of Â1(1, z) = zbA1(z
−q, zp). Thus ‖pµ+ qλ‖1 =

2spanA1(z
−q, zp). ♦

It is shown in [11, §1.4] that for any slope r, there is a linear function φr : H1(∂M ; R) →
R such that

|φr(δ)| =
∑

ideal points x of X̃1

associated to r

Πx(f̃δ)

for each δ ∈ H1(∂M ; Z). It follows that for each η ∈ H1(∂M ; R) we have

‖η‖1 =
∑

slopes r

|φr(η)|.

Our next result shows how the Newton polygon determines |φr|.

Proposition 8.6 Suppose that p and q are coprime integers such that q/p is the slope of

an edge of the Newton polygon N1 of A1(u, v). Suppose further that the endpoints of this

edge have coordinates (m,n) and (m′, n′). If r denotes the slope associated to ±(pµ+ qλ),

then

|φr(u, v)| = 2|(m−m′)v − (n− n′)u|.

Proof. Let v1, v2, . . . , vt, v
∗
1 , v

∗
2 , . . . , v

∗
t be an ordering of the vertices ofN1, as in the previous

section. Let (mj, nj) be the coordinates of vj and (mt+1, nt+1) those of v∗1 . Choose relatively

prime pairs of integers (p1, q1), (p2, q2), . . . , (pt, qt) such that (mj+1 −mj, nj+1 − nj) is an

integral multiple of (pj, qj), say

(mj+1 −mj , nj+1 − nj) = lj(pj, qj).

Then by Corollary 8.4, the slopes associated with the ideal points of X1 are r1, r2, . . . , rt

where rj corresponds to ±(pjµ + qjλ). Since φrj (pj , qj) = 0, there is a non-zero integer l′j
for which

φrj (u, v) = |l′j ||pjv − qju|.

Thus if (u, v) ∈ R2 ≡ V ,

t
∑

j=1

|l′j ||pjv − qju| =

t
∑

j=1

|φrj (u, v)|
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= ‖(u, v)‖1

= 2‖(u, v)‖N1
by Proposition 8.2

=

t
∑

j=1

2|(mj+1 −mj)v − (nj+1 − nj)u| by the definition of ‖ · ‖N1

=

t
∑

j=1

2|lj ||pjv − qju|.

Thus for each (u, v) ∈ R2,
∑t

j=1(2|lj | − |l′j |)|pjv − qju| = 0. Since (pj, qj) and (pk, qk) are

linearly independent for j 6= k, it follows that for each value of the index j,

φrj(u, v) = |l′j ||pjv − qju| = 2|lj ||pjv − qju| = 2|(mj+1 −mj)v − (nj+1 − nj)u|

as claimed. This completes the proof. ♦

Next we extend the results of this section to more general curves in X(M). Consider

C = X1 ∪ .... ∪Xk ⊂ X(M) where each Xj is a norm curve component of X(M). Recall,

from §6 that the A-polynomial of C, with respect to a basis {µ, λ} of π1(∂M), is given

by AC(u, v) = Πk
j=1Aj(u, v), where Aj is the A-polynomial of Xj with respect to {µ, λ}.

Let NC, N1, . . . , Nk be the associated Newton polygons and wNC
, wN1

, . . . , wNk
their width

functions.

Lemma 8.7 wNC
= wN1

+ wN2
+ ...+ wNk

.

Proof. Since wNC
(0) is the largest power of v occurring in AC(u, v), and similarly for each

wNj
(0), it is clear that wNC

(0) = wN1
(0) + wN2

(0) + ...+ wNk
(0).

Let p, q be an arbitrary pair of coprime integers and choose s, t ∈ Z such that tp−sq = 1.

Set Ψ =

(

t −s
−q p

)

and observe that by Lemma 7.1 we have wNC
(q/p) = wΨ(NC)(0). Now

Ψ(NC) is the Newton polygon of the Laurent polynomial ÂC(w, z) = AC(wpzq, wszt) =

A1(w
pzq, wszt)A2(w

pzq, wszt) . . . Ak(w
pzq, wszt) = Â1(w, z)Â2(w, z) . . . Âk(w, z). Hence if

N̂C, N̂j are the Newton polygons of ÂC, Âj , j = 1, ..., k, then N̂C = Ψ(NC) and N̂j = Ψ(Nj).

Thus

wNC
(q/p) = wΨ(N)C

(0)

= wN̂C
(0)

= wN̂1
(0) + wN̂2

(0) + ...+ wN̂k
(0)

= wΨ(N1)(0) + wΨ(N2)(0) + ...+ wΨ(Nk)(0)

= wN1
(q/p) + wN2

(q/p) + ...+wNk
(q/p).

This completes the proof. ♦
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Theorem 8.8 Suppose that X1,X2, . . . ,Xk is a collection of distinct norm curve compo-

nents of X(M) and set C = X1∪X2∪. . .∪Xk. Let ‖·‖C be the Culler-Shalen norm of C and

‖ · ‖NC
the width function norm determined by the Newton polygon NC of the A-polynomial

of C. Then the following results hold.

(1) 2‖ · ‖NC
= ‖ · ‖C.

(2) If pµ+ qλ is not a boundary class associated to an ideal point of C, then

‖pµ+ qλ‖C = spanAC(zq, z−p).

(3) NC is balanced and dual to the norm polygon BC of ‖ · ‖C.

(4) NC has an edge of slope q/p if and only if BC has a vertex whose associated slope is q/p.

(5) Suppose that r is a slope on ∂M and φr the linear functional on H1(∂M ; R) which

satisfies

|φr(α)| =
k
∑

j=1











∑

ideal points x of X̃j

associated to r

Πx(fα)











for α ∈ H1(∂M ; Z). If (m,n) and (m′, n′) are the coordinates of the endpoints of an edge

of N of slope q/p, then

|φr(u, v)| = 2|(m−m′)v − (n− n′)u|.

Proof. Let ‖ · ‖j be the Culler-Shalen norm of Xj and Nj the Newton polygon of its

A-polynomial.

If p, q are relatively prime integers, then

2‖(p, q))‖NC
= 2wNC

(q/p)

= 2

k
∑

j=1

wNj
(q/p) by Lemma 8.7

= 2
k
∑

j=1

‖(p, q)‖Nj

=
k
∑

j=1

‖(p, q)‖j by Proposition 8.2

= ‖(p, q)‖C.

Hence (1) holds.

Next observe that Part (2) is a consequence of the definitions and Proposition 8.5, while

part (3) follows from (1), Corollary 7.5 and Corollary 6.3. Finally (4) and (5) are proven

exactly as the analogous results are handled in the proofs of Corollary 8.4 and Proposition

8.6. ♦
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9 The canonical curve and norm

In this section we define the canonical curve in the character variety of a hyperbolic

knot exterior and study the associated norm and A-polynomial. We shall continue to use

the notations established in previous sections.

According to the rigidity theorem for hyperbolic 3-manifolds of finite volume [34, §5],
there are exactly two conjugacy classes of discrete faithful representations of π1(M) in

PSL2(C). Further the characters of these two conjugacy classes differ by complex conju-

gation. Thurston proved that all such representations lift to SL2(C) (see [12, Proposition

3.1.1]), and thus the set of characters of such lifts consists of two orbits of the H1(M ; Z2)-

action on X(M), one orbit the complex conjugate of the other. It can then be shown

that there are precisely 2|H1(M ; Z2)| = 2|H1(M ; Z2)| conjugacy classes of discrete faithful

representations of π1(M) in SL(2,C) ([26, Corollary V.1.3], compare Lemma 9.5).

Let X1,X2, . . . ,Xk be the components ofX(M) which contain the character of a discrete

faithful representation and recall from §4 that each is a norm curve component. ¿From the

discussion above we see that CM , the Aut(C) × H1(M ; Z2)-orbit of X1 (cf, §5), contains

X2, . . . ,Xk. Indeed it characterized by the fact that it is the smallest subvariety of X(M)

which is defined over the rationals and which contains these curves. Thus we call CM the

canonical norm curve of X(M).

Suppose that CM contains n algebraic components, say

CM = X1 ∪X2 ∪ . . . Xn.

By Lemmas 5.4 and 5.3 each Xj is a norm curve component of X(M). Let ‖ · ‖j , sj, and

Bj denote respectively the Culler-Shalen norm, the minimal non-zero value of ‖ · ‖j , and

the ‖ · ‖j-ball of radius sj. Let ‖ · ‖M , sM , and BM denote those of CM . We call ‖ · ‖M the

canonical norm on H1(M ; Z).

Proposition 9.1 (1) ‖ · ‖M = n‖ · ‖1, sM = ns1, and BM = B1.

(2) BM is a finite-sided convex polygon balanced about the origin whose vertices are rational

multiples of strict boundary classes of L.

(3) BM contains at most three (pairs of) nontrivial classes of L which are not vertices of

BM, and their mutual distances are at most one.

(4) Choose a basis {µ, λ} for L such that ‖µ‖M = sM and identify H1(∂M ; R) with µλ-plane.

If (a, b) ∈ BM, then |b| ≤ 2. Further if there is some (a, b) ∈ BM with b = 2, then (a, b) ∈ L

and BM is a parallelogram with vertices ±(1, 0) and ±(a, b).
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Proof. Part (1) is a consequence of the definition of ‖·‖M and the Lemmas 5.4 and 5.3. The

rest follows mostly from Proposition 4.5, though for the strictness of the boundary slopes in

part (2) we combine Lemma 5.3 with the observation that discrete faithful representations

are not virtually reducible. ♦

Lemma 9.2 The inequality 4 ≤ 2|H1(M ; Z2)| ≤ sM holds.

Proof. We noted above that there are exactly 2|H1(M ; Z2)| characters of discrete faithful

representations of π1(M) in SL(2,C), and each of these characters lies in CM . Fix µ ∈
L ∩ ∂BM and note that since fµ takes the value zero at each of these characters, we have

sM = ‖µ‖M =
∑n

j=1 degree(fµ)|X̃j
≥ 2|H1(M ; Z2)|. ♦

The inequality given in the lemma is sharp as sM = 4 when M is the figure eight knot

exterior. For this manifold, CM is an irreducible curve (see [6] for details).

Proposition 9.3 Fix a basis {µ, λ} of L where ‖µ‖M = sM and identify H1(∂M ; R) with

the µλ-plane. Suppose that α ∈ L is a finite or cyclic filling class but is not a strict boundary

class.

(1) If α is a C-type filling class, then

(i) ‖α‖M = sM. Hence α ∈ ∂BM but is not a vertex of BM.

(ii) the absolute value of the λ-coordinate of α is less than or equal to 1.

(2) If α is a D-type or a Q-type filling class, then

(i) ‖α‖M ≤ 2sM.

(ii) ‖α‖M ≤ ‖β‖M for any non-trivial element β ∈ L satisfying ∆(α, β) ≡ 0 (mod 2).

(iii) the absolute value of the λ-coordinate of α is less than or equal to 1.

(3) (a) If α is a T (q)-type filling class and H1(M ; Z) has no 3-torsion, then q = 3 and

(i) ‖α‖M ≤ sM + 4.

(ii) ‖α‖M ≤ ‖β‖M for any nontrivial class β ∈ L satisfying ∆(α, β) ≡ 0 (mod q).

(iii) if β ∈ L is a finite filling class satisfying ∆(α, β) ≡ 0 (mod q), then β is also of type

T (q) and ‖β‖M = ‖α‖M.

(b) If α is a T (q)-type filling class and H1(M ; Z) has 3-torsion, then q ∈ {1, 2} and

(i) ‖α‖M ≤ sM + 4 and q = 2 if ‖α‖M > sM.

(ii) ‖α‖M ≤ ‖β‖M for any nontrivial class β ∈ L satisfying ∆(α, β) ≡ 0 (mod q).

(iii) if β ∈ L is a finite filling class satisfying ∆(α, β) ≡ 0 (mod q), then β is also of type

T (q) and ‖β‖M = ‖α‖M.

(4) If α is an I(q)-type filling class, then q ∈ {1, 2, 3, 5} and

(i) ‖α‖M ≤ sM + 8 and q > 1 if ‖α‖M > sM.
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(ii) ‖α‖M ≤ ‖β‖M for any nontrivial class β ∈ L satisfying ∆(α, β) ≡ 0 (mod q).

(iii) if β ∈ L is a finite filling class satisfying ∆(α, β) ≡ 0 (mod q), then β is also of type

I(q) and ‖β‖M = ‖α‖M.

(5) (a) If α is an O(q)-type filling class and H1(M ; Z) has no 2-torsion, then q ∈ {2, 4} and

(i) ‖α‖M ≤ sM + 6.

(ii) ‖α‖M ≤ ‖β‖M for any nontrivial class β ∈ L satisfying ∆(α, β) ≡ 0 (mod q).

(iii) if β ∈ L is a finite filling class satisfying ∆(α, β) ≡ 0 (mod q), then β is also of type

O(q) and ‖β‖M = ‖α‖M.

(b) If α is an O(q)-type filling class and H1(M ; Z) has 2-torsion, then q ∈ {1, 2, 3} and

(i) ‖α‖M ≤ sM + 12 and q > 1 if ‖α‖M > sM.

(ii) ‖α‖M ≤ ‖β‖M for any nontrivial class β ∈ L satisfying ∆(α, β) ≡ 0 (mod q).

(iii) if β ∈ L is a finite filling class satisfying ∆(α, β) ≡ 0 (mod q), then β is also of type

O(q) and ‖β‖M = ‖α‖M.

Proof. Parts (1), (2) of the proposition follow directly from Proposition 4.6 (1), (2) and

Proposition 9.1. Parts (3) (ii) and (iii) are consequences of Propositions 4.6 (3) and 3.3

respectively. To prove part (3) (i), first recall that

C̃M = X̃1 ∪ . . . ∪ X̃n.

For each δ ∈ L,

‖δ‖M =
n
∑

j=1

‖δ‖j =
n
∑

j=1

degree(f̃δ|X̃j
) =

n
∑

j=1

∑

x∈X̃j

Zx(f̃δ)

where Zx(f̃δ) is the multiplicity of x as a zero of f̃δ. Hence

‖α‖M = ‖µ‖M + (‖α‖M − ‖µ‖M) = sM +
n
∑

j=1

∑

x∈X̃j

(Zx(f̃α) − Zx(f̃µ)).

Thus if J = {x ∈ C̃M | Zx(f̃α) > Zx(f̃µ)}, then

‖α‖M ≤ sM +
∑

x∈J

(Zx(f̃α) − Zx(f̃µ)).

Recall that X̃j = Xν
j ∪ Ij where Xν

j
ν→ Xj is the normalization of Xj and Ij is the finite

set of ideal points of X̃j . Fix x ∈ J ∩ X̃j . The hypothesis that α is not a strict boundary

slope implies that x ∈ Xν
j ([11, Prop. I.6.1] and Proposition 4.5). We now proceed in the

manner of [2, §4]. It was shown there that

• Zx(f̃α) − Zx(f̃µ) = 2.
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• the Zariski tangent space of X(M) at ν(x) is 1-dimensional.

• ν(J) is the set of characters in CM correspondingto representations which send α to

{±I} and whose image is the binary tetrahedral group.

The first statement shows that ‖α‖M ≤ sM + 2|J |. It follows from the second that ν(x) is a

simple point of X(M) (cf. §2) and therefore ν−1(ν(x)) = x. Hence ‖α‖M ≤ sM + 2|ν(J)|.
Finally combining the third with the method of [2, Lemma 5.6] implies that |ν(J)| = 2.

Thus ‖α‖M ≤ sM + 4, as claimed.

Parts (4) and (5) can be proved similarly. ♦

Remark 9.4 The previous proposition can be sharpened under certain additional assump-

tions. For instance if µ is a cyclic filling class, but not a strict boundary class, then

Zx(f̃µ) ≤ Zx(f̃α) for each x ∈ C̃M [11, Proposition 1.1.3]. Hence following the method

of proof of Proposition 9.3 we have

‖α‖M =











sM or sM + 4 if α is T -type

sM or sM + 8 if α is I-type

sM, sM + 4, sM + 8, or sM + 12 if α is O-type and H1(M ; Z2) = Z2 ⊕ Z2

We close this section with some useful properties concerning the canonical norm of a

class in the kernel of H1(∂M ; Z2) → H1(M ; Z2).

Lemma 9.5 H1(M ; Z2) acts freely on the Zariski open set of non-virtually reducible char-

acters in CM.

Proof. Let χρ ∈ CM be a non-virtually reducible character and suppose there is an ǫ ∈
H1(M ; Z2) such that χρ = ǫ ·χρ. We will show that ǫ is the trivial homomorphism π1(M) →
{±I}.

Since ρ is irreducible and ǫ · χρ = χǫρ, there is a matrix A ∈ SL(2,C) satisfying ǫρ =

AρA−1. Suppose that there is some ξ ∈ π1(M) for which ǫ(ξ) = −I. Set ρ(ξ) = B. Then

−B = ǫ(ξ)ρ(ξ) = Aρ(ξ)A−1 = ABA−1, and so A = −BAB−1. It follows that trace(A) = 0,

and so without loss of generality we may assume that A =

(

i 0

0 −i

)

. The subgroup

π̃ = ker(ǫ) of π1(M) has index 2 and for any γ ∈ π̃, ρ(γ) = Aρ(γ)A−1. It follows that ρ(γ)

is diagonal and thus ρ|π̃ is a reducible representation. But this contradicts our choice of ρ.

Hence ǫ is the trivial element of H1(M ; Z2). ♦

Consider the |H1(M ; Z2)|-sheeted regular covering p : M̃→M corresponding to the

surjective homomorphism π1(M)→H1(M ; Z2). The homomorphism p# : π1(M̃ )→π1(M)
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induces a regular map p∗ : X(M)→X(M̃ ) and the closure EM of p∗(CM) in X(M̃) is a curve

in X(M̃). It is an elementary exercise to show that if χ1, χ2 ∈ CM are two non-virtually

reducible characters then p∗(χ1) = p∗(χ2) if and only if χ2 = ǫχ1 for some ǫ ∈ H1(M ; Z2).

Hence by Proposition 4.2 and Lemma 9.5, p̃∗ : C̃→Ẽ is generically a |H1(M ; Z2)|-to-one

map.

Fix a boundary component T̃ of ∂M̃ . For any element δ̃ ∈ L̃ = H1(T̃ ; Z) ⊂ L (we

identify L̃ with p#(L̃)) let I
δ̃

: X(M̃ ) → C be the evaluation map and set f
δ̃

= I2
δ̃
− 4.

There is a commutative diagram of surjective rational maps

CM

p∗
- EM

H
H

H
H

H
H

H
f
p#(δ̃) j ��

�
�

�
�

�
�

f
δ̃

C.

Define the degree of a rational function f : X → Y between curves to be
∑

degree(f |Xj :

Xj → f(Xj)), where the sum is over the algebraic components Xj of X. Then

‖p#(δ̃)‖M = degree(fp#(δ̃)|CM) = |H1(M ; Z2)|degree(fδ̃|EM).

If f̃
δ̃
|C̃M has p distinct poles, then its degree is at least 2p since f

δ̃
= (I

δ̃
+ 2)(I

δ̃
− 2). In

order to apply this observation, let β1, β2, . . . , βp be the strict boundary classes associated

to the vertices of BM. Then for any j = 1, 2, . . . , n there are ideal points x1, x2, . . . , xp of

X̃j such that for δ ∈ L, f̃δ(xj) ∈ C if and only δ is a non-zero, integral multiple of βj . For

each j, choose a class β̃j ∈ L̃ such that p#(β̃j) is a non-zero multiple of βj . Then from

the commutativity of the diagram above we see that f̃
δ̃
(p∗(xj)) ∈ C if and only p#(δ̃) is a

non-zero multiple of βj . It follows that for any δ̃ ∈ L̃ \ {0}, f̃
δ̃

has at least p − 1 distinct

poles in X̃j . Further if p∗(δ̃) is a primitive class which is not a boundary class associated

to a vertex of BM, then f̃
δ̃

has at least p distinct poles. In summary, we have derived the

following proposition.

Proposition 9.6 Suppose that α ∈ L is a primitive class which lies in the kernel of the

homomorphism H1(∂M ; Z2)→H1(M ; Z2) induced by inclusion. Let n be the number of

algebraic components of CM.

(1) ‖α‖M is divisible by 2n|H1(M ; Z2)|.
(2) If BM has p pairs of vertices then

‖α‖M ≥
{

2n(p− 1)|H1(M ; Z2)| if α is a rational multiple of a vertex of BM

2np|H1(M ; Z2)| if α is a rational multiple of a vertex of BM.

♦

39



10 The canonical A-polynomial

Let X1,X2, . . . ,Xn be the algebraic components of CM and B = {µ, λ} a basis for

π1(∂M). Suppose that Aj(u, v)) is the A-polynomial of Xj with respect to B. The canonical

A-polynomial of M , with respect to the basis B, is the product

AM(u, v) = A1(u, v)A2(u, v)...An(u, v).

Let NM be the associated Newton polygon. Our next results follow immediately from

Theorem 8.8 and Proposition 6.10.

Proposition 10.1 The canonical norm polygon BM is dual to the canonical Newton polygon

NM and ‖ · ‖M = ‖ · ‖NM
. Further, ‖µ‖M = 2n0 and ‖λ‖M = 2m0, where n0 is the maximal

exponent of v in AM(u, v) and m0 that of u. ♦

Proposition 10.2 If pµ + qλ is not a boundary class associated to an ideal point of CM,

then

‖pµ+ qλ‖M = 2spanAM(zq, z−p).

♦

Proposition 10.3 The canonical A-polynomial AM(u, v) =
∑

am,nu
mvn of M has the fol-

lowing properties:

(1) After multiplying by a non-zero complex constant, AM(u, v) may be taken to have integer

coefficients whose greatest common denominator is 1. Such a representative is well-defined

up to sign.

(2) Let m0 be the maximal exponent of u occurring in AM(u, v) and n0 that of v. Then for

some ǫ ∈ {±1}, am,n = ǫam0−m,n0−n for all m and n.

(3) The coefficients of AM(u, v) indexed by the corners of N are equal to ±1.

(4) The non-zero roots of an edge polynomial fE(z) or gE(z) determined by AM(u, v) are

roots of the unity. In fact fE(z) and gE(z) are products of a power of z with some cyclotomic

polynomials. Further if α = (p, q) is the boundary class associated to the edge E and if ±1

is a root of either fE(z) or gE(z), then fα takes the value zero at some ideal point of C̃M.

(5) Let i : ∂M → M be the inclusion and i∗ : H1(∂M ; Z2)→H1(M ; Z2) the associated

homomorphism. If

(i) i∗(µ) 6= 0 and i∗(λ) = 0, then am,n = 0 when m is odd.

(ii) i∗(µ) = 0 and i∗(λ) 6= 0, then am,n = 0 when n is odd.

(iii) i∗(µ) 6= 0 and i∗(λ) 6= 0, then am,n = 0 when m+ n is odd. ♦
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Corollary 10.4 ([8]) If M is a knot exterior in S3 and {µ, λ} is the standard meridian-

longitude basis of L, then the powers of u occurring in the canonical A-polynomial of M are

even numbers. ♦

11 Applications to Dehn filling

In this section we discuss some results concerning the manifolds obtained by Dehn filling

on M , results derived from the canonical polynomial AM(u, v).

A 3-manifold is small if it does not contain any closed incompressible surfaces. If a small

3-manifold is homeomorphic to a Seifert fibred space, then it admits a Seifert structure

whose base orbifold is S2 with at most three singular fibres [20, §IV].

Proposition 11.1 Let X1 be a norm curve component of X(M) and suppose that α ∈ L

is a primitive class. Suppose that x ∈ Xν
1 where Zx(f̃α) > Zx(f̃δ) for some δ ∈ L \ {0} and

ν(x) = χρ ∈ X1.

(1) If M(α) is a small 3-manifold which is a Seifert fibred space, then χρ is a simple point

of X(M). Furthermore χρ takes only real values on π1(M) and the eigenvalues of ρ(γ) lie

on either the real line or the unit circle.

(2) If M(α) has a finite fundamental group then χρ is a simple point of X(M). Furthermore

the eigenvalues of ρ(δ) are roots of unity of order less than or equal to 10.

Proof. (1) By [11, §1.5], the condition that Zx(f̃α) > Zx(f̃δ) implies that there is some

ρ ∈ t−1(ν(x)) with non-cyclic image in PSL(2,C) such that ρ(α) ∈ {I,−I}. In fact ρ can

be chosen to have a non-abelian image, for the argument in [11] shows that ρ can be chosen

so that its image is also non-diagonalisable in PSL(2,C). Hence if its image is abelian,

then it must conjugate into the group of upper-triangular parabolic matrices. But this

cannot occur because the hypothesis thatM(α) be small implies that rankH1(M(α); Z) = 0.

Thus rankH1(M ; Z) = 1 and therefore any parabolic representation has cyclic image in

PSL(2,C), contrary to our choices.

Assume then, without loss of generality, that image(ρ) is non-abelian. We can also

assume that ρ(π1(M)) is non-abelian when projected to PSL(2,C), for otherwise image(ρ)

would be the quaternion group of order 8, and so again the proposition holds. Since ρ(α) =

±I, ρ induces a representation π1(M(α)) → PSL(2,C) and our assumptions imply that

the latter factors through a group ∆ of the form < a, b | ap = bq = (ab)r = 1 > for

some p, q, r ≥ 2. Choose a1, b1 ∈ π1(M) which are sent to a, b under the composition

π1(M) → π1(M(α)) → ∆. Now fix g ∈ G. There is a word w = w(a1, b1) such that

ρ(g) = ±ρ(w) so that χρ(g) = ±χρ(w). It follows from [12, Proposition 1.4.1] that χρ(w) =
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P (χρ(a1), χρ(b1), χρ(a1b1)) where P is a polynomial with integral coefficients. Now by

construction, each of ρ(a1), ρ(b1) and ρ(a1b1) has finite order in SL(2,C), and so have real

traces. Thus χρ(g) = ±χρ(w) ∈ R. Finally, χρ is a simple point of X(M) by [5].

Fix g ∈ G. By part (1), trace(ρ(g)) is real. Now ρ(g) is conjugate to a matrix of the

form
(

u ∗
0 u−1

)

.

Let u = reiθ. Then u+u−1 = reiθ+ 1
r
e−iθ = (r+ 1

r
) cos θ+i(r− 1

r
) sin θ and so (r− 1

r
) sin θ = 0.

If sin θ = 0, then u is real. If r − 1
r

= 0, then r = 1 and u lies on the unit circle.

(2) Again by [11, §1.5], the condition that Zx(f̃α) > Zx(f̃δ) implies that there is some

ρ ∈ t−1(ν(x)) with non-cyclic image such that ρ(α) ∈ {I,−I}. Thus α has type T, I,O,D

or Q. By [5], χρ is a simple point of X(M). We can use ρ to construct an irreducible

representation ρ̄ : π1(M(α)) → PSL(2,C). It follows from Lemma 3.1, and the discussion

immediately preceding it, that ρ(π1(∂M)) is a cyclic group of order no larger than 10. Thus

part (2) holds. ♦

Let AM(u, v) be the canonical A-polynomial of M with respect to the basis {µ, λ}.

Proposition 11.2 Suppose that α = (p, q) ∈ H1(M ; Z) is a primitive class which is not a

strict boundary class. Let (u0, v0) be a solution of either
{

AM(u, v) = 0

upvq = 1
or

{

AM(u, v) = 0

upvq = −1.

Assume that M(α) is a small 3-manifold.

(1) If one of u0 or v0 is not ±1, then there is a representation ρ ∈ R(M), with non-abelian

image, whose character lies in CM and for which

ρ(µ) =

(

u0 0

0 u−1
0

)

and ρ(λ) =

(

v0 0

0 v−1
0

)

.

(2) If one of u0 or v0 is neither real nor on the unit circle, then M(α) is not a Seifert fibred

space which is small.

(3) If one of u0 or v0 is not a root of unity of order less than or equal to 10, then π1(M(α))

is not finite.

Proof. (1) We shall assume that u0 6= ±1. The case v0 6= ±1 is handled similarly.

As (u0, v0) is a solution of AM, there is an algebraic component X1 of CM whose associ-

ated plane curve D1 contains (u0, v0). Recall from §6 that we have the following diagram

of regular maps between affine algebraic sets:
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W1 = t|−1
Λ (Y1) ⊂ Λ - D1 = PB(W1) ⊂ C × C

X1
i∗

- Y1 = i∗(X1) ⊂ X(∂M)

t

?

Hence we have an associated diagram of rational maps between smooth projective sets:

W̃1
- D̃1

X̃1
ĩ∗

- Ỹ1

t̃
?

Each map in this latter diagram is surjective, so there is a point w ∈ W̃1 which is mapped to

a point d ∈ ν−1(u0, v0) ⊂ Dν
1 ⊂ D̃1. Fix any x ∈ X̃1 such that ĩ∗(x) = t̃(w) ∈ Ỹ . Note that

by construction f̃µ(x) = (u0 − u−1
0 )2 ∈ C∗, while f̃α(x) = 0. Hence Zx(f̃µ) = 0 < Zx(f̃α).

Assume first that x ∈ X̃1 −Xν
1 , i.e. x is an ideal point. Since α is not a strict boundary

class, [11, Prop. I.6.1] implies that there is an essential closed surface in M which remains

essential in M(α), contrary to our supposition that M(α) is a small 3-manifold. Thus

x ∈ Xν
1 . Set ν(x) = χρ ∈ X1 where ρ ∈ R(M) and note that by the argument in the

proof of [11, Proposition 1.5.5], we may assume that ρ is not diagonalisable. Hence if

the image of ρ is abelian, then its non-central elements would have to consist of parabolic

matrices. But this would imply that u0, v0 ∈ {±1}. Hence ρ is a non-abelian representation.

Finally observe that since one of u0, v0 is different from ±1, we can assume that ρ|π1(∂M)

is diagonal.

(2) We continue to use the notation of part (1). Since M(α) is a Seifert space which is

small and Zx(f̃µ) = 0 < Zx(f̃α), Proposition 11.1 implies that χρ is a real valued function.

But this contradicts the fact that either χρ(µ) = u0 + u−1
0 6∈ R or χρ(µ) = v0 + v−1

0 6∈ R.

Thus M(α) cannot be a Seifert space which is small.

Part (3) follows from a similar argument. ♦

In our next two results we see how the existence of finite filling slopes of a given type

constrains the A-polynomial.

Proposition 11.3 Suppose that α = pµ + qλ ∈ L is an I(5)-type finite filling class which

is not a strict boundary class. Suppose further that ‖α‖M > sM. The following statements

hold.
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(1) There are integers a, b, c, j where j ≥ 1 and θ ∈ {±1} for which AM(zq, z−p) =

±za(z − 1)b(z + 1)c(z4 + θz3 + z2 + θz + 1)j .

(2) Let ǫ be the non-zero element of H1(M ; Z2) = Z2 and choose θ ∈ {±1} so that

AM(zq, z−p) = ±za(z − 1)b(z + 1)c(z4 + θz3 + z2 + θz + 1)j . Then

(i) if q is odd, AM(zq,−z−p) = ±za(z − ǫ(µ))b(z + ǫ(µ))c(z4 + ǫ(µ)θz3 + z2 + ǫ(µ)θz + 1)j .

(ii) if p is odd, AM(−zq, z−p) = ±za(z − ǫ(λ))b(z + ǫ(λ))c(z4 + ǫ(λ)θz3 + z2 + ǫ(λ)θz + 1)j .

Remark 11.4 It can be shown that the power j which occurs in Proposition 11.3, and in

the proposition which follows, is 1. As we won’t be needing this in the proof of the finite

filling conjecture, we will only prove the simpler statements.

Proof. According to Lemma 2.1, H1(M ; Z2) = Z2 and further i∗(α) is a generator of this

group. In what follows, ǫ will denote the non-zero element of H1(M ; Z2). Clearly we have

ǫ(α) = −1.

The hypothesis ‖α‖M > sM implies that there is a point x ∈ C̃M such that Zx(f̃α) >

Zx(f̃µ). Since π1(M(α)) is finite, [11, Proposition 1.6.1] implies that x ∈ CνM. If we set

ν(x) = χρ0 ∈ CM, then from [11, §1.5] it follows that we can assume that ρ0 is non-abelian

and that ρ0(α) = ±I. By possibly replacing ρ0 by ǫ · ρ0 we may arrange for ρ0(α) = I.

Since α has type I(5) and ρ0 factors through π1(M(α)), ρ0(π) ⊂ SL(2,C) is isomorphic to

the binary icosahedral group (see §3) and ρ0(π1(∂M)) has image Z5 in PSL(2,C). After

conjugating ρ0 by an element of SL(2,C) we may arrange for its restriction to π1(∂M) to

be diagonal, say

ρ0(µ) =

(

u0 0

0 u−1
0

)

, ρ0(λ) =

(

v0 0

0 v−1
0

)

.

Choose integers s, t so that qs − pt = 1 and set z0 = us0v
t
0. Then zq0 = u0 and z−p0 = v0

so AM(zq0 , z
−p
0 ) = 0. Further it is clear that ±ρ0(π1(∂M)) ∼= Z5 ⊂ PSL(2,C) is generated

by ±ρ0(sµ + tλ) =

(

z0 0

0 z−1
0

)

. Thus z0 is a primitive nth root of unity where n =

|ρ0(π1(∂M))| ∈ {5, 10}. Since AM is an integral polynomial it follows that AM(zq, z−p) is

divisible by the irreducible polynomial of z0, which is z4 + z3 + z2 + z + 1 if n = 5 or

z4 − z3 + z2 − z + 1 if n = 10. To complete the proof of part (1) of the proposition, we

must show that any non-zero root z1 of AM(zq, z−p), different from ±1, is also a primitive

nth root of unity.

Let z1 be such a root and note that (zq1)
s(z−p1 )t = zqs−pt1 = z1 6= ±1. Thus if (u1, v1) =

(zq1 , z
−p
1 ), then one of u1, v1 is different from ±1. By Proposition 11.2 there is a character

χρ1 ∈ CM of a non-abelian representation ρ1 ∈ R(M) such that

ρ1(µ) =

(

u1 0

0 u−1
1

)

, ρ1(λ) =

(

v1 0

0 v−1
1

)

.
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Therefore ρ1(α) = I. Now it is shown in [2, §5] that up to conjugacy there are precisely

four non-abelian representations ρ : π → SL(2,C) such that ρ(α) = ±I. In fact these

four representations are given by ρ0, ǫ · ρ0, φ ◦ ρ0 and ǫ · φ ◦ ρ0 where φ is a non-trivial

outer automorphism of the image of ρ0 (the binary icosahdral group). Since ǫ(α) = −1, it

follows that up to conjugation there are exactly two non-abelian representations ρ ∈ R(M)

satisfying ρ(α) = I and they are ρ0 and φ ◦ ρ0. In particular ρ1 is conjugate to one

of these two representations. In either case, u1 is a primitive mth root of unity where

m = |ρ1(π1(∂M))| = |ρ0(π1(∂M))| = n. This completes the proof of part (1) of the

proposition.

To prove part (2) choose θ ∈ {±1} and integers a, b, c, j so that AM(zq, z−p) = ±za(z −
1)b(z+1)c(z4+θz3+z2+θz+1)j. Since ǫ(DM) = DM, we see that AM(u, v) = ±AM(ǫ(µ)u, ǫ(λ)v).

Now ǫ(α) = −1 and so if q is odd then ǫ(λ) = ǫ(λ)q = −ǫ(µ)p. Therefore AM(u, v) =

±AM(ǫ(µ)u, ǫ(λ)v) = ±AM(ǫ(µ)u,−ǫ(µ)pv). ThusAM(zq, z−p) = ±AM(ǫ(µ)zq,−(ǫ(µ)z)−p) =

±AM((ǫ(µ)z)q ,−(ǫ(µ)z)−p). In particular the roots of AM(zq, z−p), counted with multi-

plicity, correspond bijectively to those of AM(zq,−z−p) under the function which sends

a zero z1 of AM(zq, z−p) to the root ǫ(µ)z1 of AM(zq,−z−p). Hence AM(zq,−z−p) =

±za(z − ǫ(µ))b(z + ǫ(µ))c(z4 + ǫ(µ)θz3 + z2 + ǫ(µ)θz + 1)j . A similar argument works

if p is odd. This completes the proof of the proposition. ♦

Similarly one can show

Proposition 11.5 Suppose that α = pµ + qλ ∈ L is a T (3)-type finite filling class which

is not a strict boundary class. Suppose further that ‖α‖M > sM. The following statements

hold.

(1) There are integers a, b, c, j where j ≥ 1 and θ ∈ {±1} for which AM(zq, z−p) =

±za(z − 1)b(z + 1)c(z2 + θz + 1)j .

(2) Let ǫ be the non-zero element of H1(M ; Z2) = Z2 and choose θ ∈ {±1} so that

AM(zq, z−p) = ±za(z − 1)b(z + 1)c(z2 + θz + 1)j . Then

(i) if q is odd, AM(zq,−z−p) = ±za(z − ǫ(µ))b(z + ǫ(µ))c(z2 + ǫ(µ)θz + 1)j .

(ii) if p is odd, AM(−zq, z−p) = ±za(z − ǫ(λ))b(z + ǫ(λ))c(z2 + ǫ(λ)θz + 1)j . ♦

Example 11.6 Let M be the exterior of the (−2, 3, 7)-pretzel knot. It is known [1] that

M is hyperbolic and that if µ, λ are the standard meridian-longitude coordinates for knots

in the 3-sphere then the 17µ+ λ-filling of M has fundamental group I120 × Z/17. It is also

known that 18 and 19-fillings yield lens spaces. The canonical A-polynomial of M , with

respect to µ, λ, has been calculated in [8] to be

AM(u, v) = −1 + (u16 − 2u18 + u20)v + (2u36 + u38)v2 + (−u72 − 2u74)v4 +

(−u90 + 2u92 − u94)v5 + u110v6.
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From the polynomial and its Newton polygon we see that the minimal norm sM = 12 and

further that the norm of the slope 17 is 20 = sM + 8. Specializing the variables to v = z−17

and v = −z−17 yields

AM(z, z−17) = −(z4 − z3 + z2 − z + 1)(z − 1)3(z + 1)3z−1

in the former case and

AM(z,−z−17) = −(z4 + z3 + z2 + z + 1)(z − 1)3(z + 1)3z−1

in the latter. Setting u = z and v = ±z−18 or ±z−19 yields Laurent polynomials whose

roots are ±1.

Figure 4: The (−2, 3, 7)-pretzel knot

Example 11.7 In our second example we take M to be the exterior of the knot K in the

lens space L(5, 1) obtained by Dehn filling one of the boundary tori of the Whitehead link

exterior with the slope 5 (with respect to the standard meridian-longitude coordinates). It

is commonly referred to as the figure-8 sister knot. This manifold is also hyperbolic and

admits five finite Dehn fillings [35]: the two fillings parameterized by 3µ + λ and 3µ + 2λ

are of T -type, while those parameterized by 2µ+ λ, µ+ λ and µ-fillings are lens spaces. A

computer-aided calculation shows

AM(u, v) = 1 + (u2 − u4)v − 2u4v2 + (−u4 + u6)v3 + u8v4

and so sM = 8 while the norms of both 3µ+ λ and 3µ+ 2λ are 12 = sM + 4. Corresponding

to the T -type filling associated to 3µ+ λ we have

AM(z, z−3) = −(z2 − z + 1)(z − 1)2(z + 1)2z−5
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while

AM(z,−z−3) = (z2 + z + 1)(z − 1)2(z + 1)2z−5.

Corresponding to the T -type filling slope 3µ+ 2λ we have

AM(z2, z−3) = AM(−z2, z−3) = −(z2 − z + 1)(z − 1)2(z + 1)2z−1.

5

K

Figure 5: The figure-8 sister knot

12 Outline of the proof of the conjecture

¿From now till the end of the paper µ ∈ L will denote a class satisfying ‖µ‖M = sM . We

shall also assume that either

• µ is not a vertex of BM, or

• each class in ∂BM ∩ L is a vertex of BM.

Let λ ∈ L be a class such that {µ, λ} is a basis for L. We parameterize the slopes on ∂M

by the set of primitive classes pµ+ qλ ∈ L where either q > 0 or q = 0 and p = 1.

A class in L will be called integral if its λ coordinate is ±1.

Define F0 to be the set of finite or cyclic filling classes α = pµ+ qλ which are not strict

boundary classes.

Theorem 12.1 Let #, ∆, and n0 denote respectively the number, the maximal mutual

distance, and the maximal value of the λ-coordinates of all classes in F0. Then # ≤ 5,

∆ ≤ 3, n0 ≤ 2. Further ∆ = 3 can be realized by at most one pair of classes.

Assuming Theorem 12.1 holds, we may complete the proof of the finite filling conjecture

as follows.

47



Proof of the finite filling conjecture. Denote by F the set of all finite or cyclic filling

classes and by S the set of all strict boundary classes. If F ∩ S = ∅, then the conjecture

follows from Theorem 12.1. Suppose next that F ∩S = {α}. By Proposition 2.2, any finite

or cyclic class has distance at most 1 from α. Hence if α = µ, then all other finite or cyclic

classes are integral and so by Theorem 12.1, their number is at most four and their maximal

mutual distance is at most 3, realized at most once. This implies that the conjecture holds.

Similarly if α 6= µ, the truth of the conjecture is easy to verify. Finally, if F ∩S ⊃ {α1, α2},
then it follows from Proposition 2.2 that # ≤ 4 and ∆ ≤ 2. ♦

The rest of the paper is devoted to the proof of Theorem 12.1. One easily sees that it

is a consequence of the following five propositions (the inequality n0 ≤ 2 has been proved

in [2, Theorem 7.2]). Recall that 4 ≤ sM ≡ 0 (mod 2) (Lemma 9.2).

Proposition 12.2 If sM ≤ 6 then # ≤ 5,∆ ≤ 3 and there are at most two classes in F0

whose mutual distance is 3.

Proposition 12.3 When sM ≥ 8, there is at most one class in F0 whose λ-coordinate is

equals 2.

Proposition 12.4 When sM ≥ 8, there are at most four integral classes in F0 and their

maximal distance is at most three.

Proposition 12.5 When sM ≥ 8, ∆ ≤ 3.

Proposition 12.6 When sM ≥ 8, there is at most one pair of classes α and β in F0 for

which ∆(α, β) = 3.

These propositions will be proved in the next five sections. Throughout, i : ∂M → M

will be the inclusion and i∗ : H1(∂M ; Z2) → H1(M ; Z2) the induced homomorphism.

13 Proof of Proposition 12.2

We shall divide the proof of Proposition 12.2 into two main cases: (I) sM = 4 and (II)

sM = 6.

Case I. sM = 4.

By Lemma 9.2, H1(M ; Z2) = Z2 and by Proposition 9.3, F0 ⊂ 3BM. We shall divide

Case I into two subcases depending on whether or not µ is a vertex of BM.

48



Subcase I.1. µ is not a vertex of BM.

It then follows from [2, Lemma 6.5] that CM is an irreducible component of X(M), and

BM is a parallelogram with vertices ±(a, 2/(k+2)) and ±(a+2, 2/(k+2)), for some integer

k ≥ 0 satisfying a(k + 2)/2 ∈ Z. In fact using the Newton polygon we can find a much

stronger constraint on k.

Lemma 13.1 k ≡ 2 (mod 4).

Proof. According to Proposition 9.6 (2), we must have i∗(µ) 6= 0. We claim first that k

must be even. We may assume that k > 0 and so from the shape of BM, there exist two

consecutive integral classes in L, say α1 = (m, 1) and α2 = (m + 1, 1), such that neither

α1 nor α2 is a boundary class corresponding to a vertex of BM and that ‖α1‖M = ‖α2‖M =

2(k + 2). Since i∗(µ) 6= 0, one of α1 and α2, say α1, must lie in the kernel of i∗. Hence

applying Proposition 9.6, we see that ‖α1‖M is divisible by 4, and so k is even.

Now we replace λ by the class corresponding to ( (k+2)
2 a+ (k+2)

2 , 1). Then BM becomes the

parallelogram whose vertices are ±(−1, 2
(k+2) ) and ±(1, 2

(k+2)). It follows from Proposition

10.1 that the Newton polygon is a parallelogram whose vertices are (0, 1), (k+2, 1), ( (k+2)
2 , 0)

and ( (k+2)
2 , 2) (the case k = 4 is depicted in Figure 6). In particular a (k+2)

2
,0

6= 0. Since

i∗(µ) 6= 0, Proposition 10.3 implies that (k+2)
2 is even. Thus k ≡ 2 (mod 4). ♦

When k = 2, one can easily check from the shape of BM together with Proposition 9.3,

that # ≤ 4, ∆ ≤ 2 (recall F0 ⊂ 3BM). Similarly when k ≥ 6 the only possible class in F0

is µ. Thus Proposition 12.2 holds in Subcase I.1.

λ

µ

MBo
1

1o

 2 

2

MN

(-2,1) (-1,1) (1,1) (2,1)

(1,0)

(0,1)

3 4 5 6

(3, 1)(-3,1)

(a) (b) (c) ( ε ε1
a) b)ε ( ε

ε( )

(
)(

ε1)

(1) u 

v

Figure 6: The canonical norm polygon and Newton polygon when k = 4 in Subcase I.1

Subcase I.2 µ is a vertex of BM.

By the convention set at the beginning of §12, all points of ∂BM ∩L are vertices of BM .

Since sM = 4, CM is either irreducible or contains exactly two components, i.e. CM = X1 or
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CM = X1∪X2. According to [2, Lemma 6.6 (2)] (which remains true for BM since BM = B1

by Proposition 9.1), there are three types possible for the shape of BM.

Subcase (I.2.a) BM is a parallelogram with vertices ±(1, 0) and ±( 2m
k+2 ,

2
k+2) for some inte-

gers m and k ≥ 0.

We may assume that m = 0. When k ≥ 1, the fact that F0 ⊂ 3BM is sufficient to

obtain the estimates ∆ ≤ 2 and # ≤ 2. Suppose then that k = 0. In this case BM is

a parallelogram with vertices ±(1, 0) and ±(0, 1) (Figure 7). Since F0 ⊂ 3BM consists of

non-∂-slopes, F0 ⊂ {(−1, 2), (1, 2), (−2, 1), (−1, 1), (1, 1), (2, 1)}. Now by Proposition 10.1,

the canonical Newton polygon NM is as shown in Figure 7 and by Proposition 10.3 (1)-(3),

the canonical A-polynomial of M with respect to the basis B = {µ, λ} is of the form

AM(u, v) = 1 + au+ ǫ1u
2 + (b+ cu+ ǫbu2)v + (ǫǫ1 + ǫau+ ǫu2)v2,

where a, b ∈ Z and ǫ, ǫ1 ∈ {±1}. Since ‖µ‖M = ‖λ‖M = 4, the zero sets in C̃M of both fµ

and fλ consists of the four discrete faithful characters of π1(M). In particular, neither fµ

nor fλ has a zero at an ideal point of C̃M. Therefore by Proposition 10.3 (4), +1 and −1

are not zeros of any edge polynomial of AM(u, v). At least one of µ and λ is not contained

in the kernel of i∗ and without loss of generality we take i∗(µ) 6= 0. Then by Proposition

10.3 (4) and (5), we have a = 0 and since ±1 are not roots of the edge polynomials of NM,

we have ǫ1 = 1. Hence AM(u, v) = 1 + u2 + (b + cu + ǫbu2)v + (ǫ + ǫu2)v2. We now use

AM(u, v) to show
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M
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(a)

(b) (c)
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b)

ε

(
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v

Figure 7: The canonical norm polygon and Newton polygon when k = 0 in Subcase I.2.a

Lemma 13.2 When k = 0, α = (−2, 1) is not a finite filling class.

Proof. Suppose otherwise. From Figure 7, we see that ‖α‖M = sM + 8 and α must be an

I(5)-type class by Proposition 9.3 (recall H1(M ; Z2) = Z2). Also by Proposition 11.3 there
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is an integer d ≥ 1 for which AM(u, u2) = 1 + (b+ 1)u2 + cu3 + ǫ(b+ 1)u4 + ǫu6 is divisible

by either (u4 +u3 +u2 +u+1)j or (u4 −u3 +u2−u+1)j and the only roots of the quotient

are ±1. Obviously j = 1.

Fix θ ∈ {±1} and suppose that AM(u, u2) is divisible by u4 + θu3 + u2 + θu+ 1. Long

division yields the quotient ǫu2 − ǫθu + ǫ(b + 1). But since the coefficient of u is odd,

ǫu2 − ǫθu+ ǫ(b+ 1) has roots other than ±1. This contradiction completes the proof of the

lemma. ♦

Similarly one can show that none of the classes (2, 1), (1, 2) and (−1, 2) can be in F0.

Thus when k = 0, we have ∆ ≤ 2 and # ≤ 2.

Subcase (I.2.b) BM is a parallelogram with vertices ±(1, 0) and ±(2(2j+1)
k+2 , 4

k+2), for some

integers j and k ≥ 2.

In this case, one can easily verify that F0 ∩ 3BM contains at most four classes, the

distance between any two of them is at most three, and the distance three is realized by at

most one pair of these classes.

Subcase (I.2.c) BM is a polygon with vertices ±(1, 0),±( 2m
k+2 ,

2
k+2),±(2(m+j)

k+2 , 2
k+2), for some

integers m, j, k with j ≥ 1 and k ≥ j − 1.

We may assume that m = 0. By the dual relationship between BM and NM (Proposition

10.1), the latter has vertices (0, 0), (0, 1), (j, 2), (k + 2, 2), (k + 2, 1) and (k + 2 − j, 0) (see

Figure 8). In particular the coefficient of v in AM is non-zero. Thus by Proposition 10.3

(5) we see that i∗(λ) = 0. Hence i∗(µ) 6= 0 and so applying the same result we see that

no odd powers of u occur in AM(u, v). Consideration of the coefficients corresponding to

the vertices (j, 2) and (k + 2, 2), we see that both j and k are even. In particular this

implies j, k ≥ 2. When k ≥ 4, one readily verifies that Proposition 12.2 is a consequence of

Proposition 9.3, so the only case we need consider is when k = j = 2.

Suppose then that k = j = 2. The only classes in 3BM which can lie in F0 are

(−1, 1), (1, 1) and (3, 1) (Figure 8). We need only show that (−1, 1) is not a finite fill-

ing class. ¿From the previous paragraph we see that the canonical A-polynomial is of the

form

AM(u, v) = 1 + ǫ1u
2 + (ǫ2 + cu2 + ǫǫ2u

4)v + (ǫǫ1u
2 + ǫu4)v2

where c ∈ Z and ǫ, ǫ1, ǫ2 ∈ {±1}. Since ‖µ‖M = 4, f̃µ has no zeros at ideal points of C̃M.

Hence by Proposition 10.3 (4) we have ǫ1 = 1. So AM(u, v) = 1+u2 + (ǫ2 + cu2 + ǫǫ2u
4)v+

(ǫu2 + ǫu4)v2.

Lemma 13.3 When k = j = 2, α = (−1, 1) is not a finite filling class.
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Figure 8: The canonical norm polygon and Newton polygon when k = j = 2 in Subcase

I.2.c

Proof. Suppose otherwise. From the shape of BM, we see that ‖α‖M = sM + 8 and there-

fore α must be an I(5)-type class (recall H1(M ; Z2) = Z2). Then by Proposition 11.3,

AM(u, u) = 1+ ǫ2u+u2 + cu3 + ǫu4 + ǫǫ2u
5 + ǫu6 is divisible by either u4 +u3 +u2 +u+1 or

u4 − u3 + u2 − u+ 1, and the roots of the quotient are ±1. But for θ ∈ {±1}, the quotient

of AM(u, u) by u4 + θu3 + u2 + θu + 1 is q(u) = ǫu2 + ǫ(ǫ2 − θ)u + ǫ(1 − θǫ2). Since the

leading term of q(u) is not congruent (mod 2) to its constant term, it has a root other than

±1. Thus α = (−1, 1) cannot be a finite filling class. ♦

Case II. sM = 6.

In this case we also have H1(M ; Z2) = Z2 (Lemma 9.2). Therefore by Proposition 9.3,

F0 ⊂ 7
3sM . We consider two subcases.

Subcase II.1 µ is not a vertex of BM.

By [2, Lemma 6.5 (2)], there are three subcases to consider.

Subcase (II.1.a) BM is a parallelogram with vertices ±(3(2m+ 1)/|k|, 6/|k|) and ±(3(2m+

1 + k)/2|k|, 3/|k|), for some integer m and odd integer k, with |k| ≥ 5.

After an appropriate change in λ, we may assume that m = 0. By symmetry, we may

also suppose that k ≤ −5.

According to Proposition 10.1, NM has vertices (0, 1), (1, 3), (1−k
2 , 2) and (−(1+k)

2 , 0) (the

case k = −5 is pictured in Figure 9). Since (0, 1) is a vertex, Proposition 10.3 (5) implies

that i∗(λ) = 0, so i∗(µ) 6= 0. But then the same result implies that no odd power of u

occurs in AM, contrary to the fact that (1, 3) is a vertex of NM. Thus this case cannot arise.

Subcase (II.1.b)BM is a parallelogram with vertices ±(3m/|k|, 3/|k|) and ±(3(m+k)/2|k|, 3/2|k|),
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Figure 9: The canonical norm polygon and Newton polygon when k = −5 in Subcase II.1.a

for some integers m and k, with |k| ≥ 3.

We may assume that m = 0 and k ≥ 3. If k ≥ 7, the primitive classes in 7
3BM are a

subset of {±µ,±λ}, and so we need only consider k = 3, 4, 5 and 6. The cases k = 3, 5, 6

can be handled in a straightforward manner using Proposition 9.3 alone, so we shall assume

that k = 4. In this case F0 ∩ 7
3BM ⊆ {µ,−µ+ λ, µ+ λ, 2µ+ λ, 3µ+ λ}. It suffices then to

prove that at least one of −µ+ λ and 3µ+ λ is not an element of F0.

Assume otherwise and set α = −µ + λ, β = 3µ + λ. As ∆(α, β) = 4, neither of these

classes can be a boundary class (Proposition 2.2). Further since ‖α‖M = ‖β‖M = 14 and

H1(M ; Z2) = Z2, it follows from Proposition 9.3 that α and β both have type I. Finally

through consideration of the shape of BM, the same result implies that in fact they both

have type I(5).

In order to determine the AM(u, v), we first observe that the Newton polygon NM has

vertices (0, 0), (0, 2), (4, 1) and (4, 3). As (4, 1) is a vertex of NM, Proposition 10.3 implies

that i∗(λ) = 0 and hence i∗(µ) 6= 0 ∈ H1(M ; Z2). The same result now shows that there

are integers a, b and ǫ, ǫ1 ∈ {±1} such that

AM(u, v) = 1 + (a+ bu2 + ǫ1u
4)v + (ǫǫ1 + ǫbu2 + ǫau4)v2 + ǫu4v3.

According to Proposition 11.3, there is some θ ∈ {±1} and integer j ≥ 1 for which

AM(u, u) = ǫu7 + ǫau6 + ǫ1u
5 + ǫbu4 + bu3ǫǫ1u

2 + au+ 1

is divisible by (u4 + θu3 + u2 + θu+ 1)j . Moreover, the roots of the quotient lie in {±1}.
Obviously j = 1 and performing the division yields the quotient

q(u) = ǫu3 + ǫ(a− θ)u2 + (ǫ1 − ǫθa)u+ (ǫb− ǫ1θ)
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and the four identities
(1) ǫb− ǫ1θ = 1

(2) θb− ǫ1θ = 1

(3) ǫǫ1 + ǫθ − ǫ1θ = 1

(4) θa− θǫ1 + ǫa = 1.

Since the roots of q lie in {±1} we have

ǫq(u) = u3 + (a− θ)u2 + (ǫǫ1 − θa)u+ (b− ǫǫ1θ)

∈ {u3 + 3u2 + 3u+ 1, u3 − u2 − u+ 1, u3 + u2 − u− 1, u3 − 3u2 + 3u− 1}

and so in particular a is even. Now Identity (1) implies that b− ǫǫ1θ = ǫ and so a further

examination of the possible coefficients of ǫq(u) yields a− θ = ǫ(ǫǫ1 − θa) = ǫ1 − ǫθa. Hence

ǫ1 + θ = (1 + ǫθ)a ≡ 0 (mod 4).

Thus both sides of this equation are zero. It follows that

ǫ1 = −θ and a = −ǫθa

Hence by Identity (2) we deduce that b = 0. It follows from these calculations that

AM(u, v) = 1 + av − θu4v − ǫθv2 − θau4v2 + ǫu4v3

and consequently

AM(u, u−3) = 1 + au−3 − θu− ǫθu−6 − θau−2 + ǫu−5

= −θu−6(u− θ)(u6 + au3 − θǫ).

But this contradicts Proposition 11.3 since our assumptions imply that β = 3µ + λ is an

I(5)-type class of non-minimal norm which is not a boundary class. Hence at least one of

α, β is not an element of F0. This completes the analysis of Subcase (II.1.b).

Subcase (II.1.c) BM has three pairs of vertices ±(3m/(2j+ q), 3/(2j + q)), ±(3(m+ j)/(j +

q), 3/(j + q)) and ±(3(m + j + q)/(j + 2q), 3/(j + 2q)), for some integers m, j > 0, q > 0,

with j + q ≥ 3.

We may assume that m = −j. Then the vertices of NM are (0, 1), (0, 2), (q, 3), (j +

q, 2), (j + q, 1) and (j, 0) (the case j = 1, q = 2 is depicted in Figure 10). Since i∗(µ) 6= 0

(Proposition 9.6) it follows from Proposition 10.3 (5) that both j and q are even. One can

now verify, using Proposition 9.3, that Proposition 12.2 holds.

Subcase II.2 µ is a vertex of BM .

According to [2, Lemma 6.6 (3)], we have seven subcases to consider.
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Figure 10: The canonical norm polygon and Newton polygon when j = −1, q = 2 in Subcase

II.1.c

Subcase (II.2.a) BM is contained in a parallelogram with vertices ±(1, 0) and ±(m, 1), with

(m, 1) being a strict boundary class associated to a vertex of BM .

We may assume that m = 0. Then, 7
3BM is contained in the parallelogram with vertices

±(7
3 , 0) and ±(0, 7

3 ). In this parallelogram the primitive classes are ±(1, 0),±(−1, 1),±(0, 1)

and ±(1, 1). Noting that (1, 0) and (0, 1) are rational multiples of the vertices of BM, and

therefore strict boundary classes, we have # ≤ 2, ∆ ≤ 2.

Subcase (II.2.b) BM is contained in a parallelogram with vertices ±(1, 0) and ±(6m
5 ,

6
5) with

(2m+ 1, 2) being a strict boundary class associated to a vertex of BM .

We may assume that m = 0. Then 7
3BM is contained in the parallelogram with vertices

±(7
3 , 0) and ±(0, 14/5). The primitive classes in this parallelogram are ±(1, 0),±(−1, 1),

±(0, 1),±(1, 1),±(2, 1) and ±(1, 2). Since (1, 0) and (1, 2) are strict boundary classes, we

have # ≤ 4, ∆ ≤ 3 and there is at most one pair of slopes realizing the distance 3.

Subcase (II.2.c) BM is contained in a parallelogram with vertices ±(1, 0) and ±(m3 , 1) where

(m, 3) is a strict boundary class associated to a vertex of BM .

We may assume that m = 1. Then 7
3BM is contained in the parallelogram with ver-

tices ±(7
3 , 0) and ±(7

9 ,
7
3 ). The primitive classes in this parallelogram are ±(1, 0),±(−1, 1),

±(0, 1),±(1, 1) and ±(1, 2). Since (1, 0) is strict boundary class we have # ≤ 4, ∆ ≤ 3 and

there is at most one pair of slopes realizing the distance 3.

Subcase (II.2.d)BM is contained in a polygon with vertices ±(1, 0), ±(m, 1) and ±(3(2m+1)
5 , 6

5)

where (2m+1, 2), (1, 0) and (m, 1) are strict boundary classes associated to vertices of BM .

We may assume that m = 0. Then 7
3BM is contained in the polygon with vertices

±(7
3 , 0), ±(0, 7

3) and ±(7
5 ,

14
5 ). The primitive classes in this polygon are ±(1, 0), ±(−1, 1),
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±(0, 1), ±(1, 1), ±(2, 1) and ±(1, 2). But (1, 0), (1, 2) and (0, 1) are strict boundary classes,

so # ≤ 3, ∆ ≤ 3 and there is at most one pair of slopes realizing the distance 3.

Subcase (II.2.e) BM is contained in the polygon with vertices ±(1, 0), ±(m + 1, 1) and

±(3(2m+1)
5 , 6

5 ) where (2m+ 1, 2), (1, 0) and (m+ 1, 1) are strict boundary classes associated

to vertices of BM .

We may assume that m = 0. Then 7
3BM is contained in the polygon with vertices

±(7
3 , 0), ±(7

3 ,
7
3) and ±(7

5 ,
14
5 ). The primitive classes in this polygon are ±(1, 0), ±(−1, 1),

±(0, 1), ±(1, 1), ±(2, 1) and ±(1, 2). But (1, 0), (1, 2) and (1, 1) are strict boundary classes,

so # ≤ 3, ∆ ≤ 3 and there is at most one pair of slopes realizing the distance 3.

Subcase (II.2.f) BM is a polygon with vertices ±(1, 0), ±( 3m
|k|+q ,

3
|k|+q) and ±(3(m−k)

2|k|+q ,
3

2|k|+q),

for some integers m, k 6= 0 and q > 0, satisfying |k| + q ≥ 3.

We may assume that m = 0 and k < 0. Then NM has vertices (0, 0), (0, 2), (−k, 3), (q −
k, 3), (q − k, 1) and (q, 0) (the case k = −1 and q = 2 is shown in Figure 11). We already

know that since ‖µ‖M = 6, i∗(µ) 6= 0. Hence q is even by Proposition 10.3 (5). On the other

hand, from the shape of NM we see that both even and odd powers of v occur in AM, and

so i∗(λ) 6= 0. Proposition 10.3 (5) therefore implies that k is odd. When |k| + q > 3, one

can easily check that Proposition 12.2 is a consequence of Proposition 9.3. Thus we must

analyze the case k = −1, q = 2.

When k = −1 and q = 2, BM and NM are shown in Figure 11 and the canonical A-

polynomial is of the form AM(u, v) = 1 + au+ ǫ1u
2 + (b+ cu+ du2 + ǫ2u

3)v + (ǫǫ2 + ǫdu+

ǫcu2 + ǫbu3)v2 + (ǫǫ1u+ ǫau2 + ǫu3)v3 for some integers a, b, c, d and ǫ, ǫ1, e2 ∈ {±1}. Since

i∗(µ) 6= 0 and i∗(λ) 6= 0, Proposition 10.3 (5) implies that a = b = d = 0. Thus

AM(u, v) = 1 + ǫ1u
2 + (cu+ ǫ2u

3)v + (ǫǫ2 + ǫcu2)v2 + (ǫǫ1u+ ǫu3)v3.

The primitive classes contained in 7
3BM are ±(1, 0), ±(−1, 1), ±(0, 1), ±(1, 1), (2, 1) and

±(1, 2). It suffices for us to show that (2, 1) is not in F0.

Lemma 13.4 When k = −1 and q = 2, α = (2, 1) is not a finite filling class.

Proof. Suppose otherwise. ¿From the shape of BM, we see that ‖α‖M = sM + 8 and

since H1(M ; Z2) = Z2, α must be an I(5)-type class. Therefore by Proposition 11.3,

AM(u, u−2) = 1 + ǫ1u
2 + (cu + ǫ2u

3)u−2 + (ǫǫ2 + ǫcu2)u−4 + (ǫǫ1u + ǫu3)u−6 = u−5(ǫǫ1 +

ǫǫ2u + ǫu2 + ǫcu3 + cu4 + u5 + ǫ2u
6 + ǫ1u

7) is divisible by either u4 + u3 + u2 + u + 1 or

u4 − u3 + u2 − u+ 1 and the roots of the quotient polynomial are ±1.

Fix θ ∈ {±1}. If AM(u, u−2) is divisible by u4+θu3+u2+θu+1, the quotient polynomial

is q(u) = ǫ1u
3 + (ǫ2 − ǫ1θ)u

2 + (1 − ǫ2θ)u + (c − θ). By hypothesis q(u) is congruent to
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Figure 11: The canonical norm polygon and Newton polygon when k = −1 and q = 2 in

Subcase II.2.f

(u+1)3 (mod 2) and so ǫ2− ǫ1θ, the coefficient of u2 in q, is odd. This is clearly false. Thus

(2, 1) is not in F0. ♦

Subcase (II.2.g) BM is a polygon with vertices ±(1, 0), ±(3m/(2j + k + q), 3/(2j + k + q)),

±(3(m+ j)/(j + k+ q), 3/(j + k+ q)) and ±(3(m+ j + k)/(j + 2k+ q), 3/(j + 2k+ q)), for

some integers m, j > 0, k > 0, q > 0.

We may assume that m = −j. Then NM has vertices (0, 1), (0, 2), (k, 3), (k + q, 3), (j +

k + q, 2), (j + k + q, 1), (j + q, 0) and (j, 0). From Proposition 10.3 we see that both j and

q are even while k is odd. It now follows from Proposition 9.3 that Proposition 12.2 holds

in this case. The proof of Proposition 12.2 is therefore complete.

14 Proof of Proposition 12.3

¿From now till the end of §17 we assume that sM ≥ 8. The proof of Proposition 12.3 is

based on the following three lemmas.

Lemma 14.1 Suppose that sM = 8.

(1) If µ is not a vertex of BM , then BM has at most four pairs of vertices and the

absolute values of the λ-coordinates of the associated boundary classes are no larger than 3.

Further,

(i) if BM has a pair of vertices whose associated boundary classes have λ-coordinates

equal to 3 in absolute value, then BM is a parallelogram and the absolute value of the λ-

coordinate of its other pair of vertices is 1.
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(ii) if BM has at least two pairs of vertices whose associated boundary classes have λ-

coordinates which are larger than 1 in absolute value, then BM is a parallelogram and the

absolute value of the λ-coordinate of its other pair of vertices is 2.

(2) If µ is a vertex of BM , then BM has at most five pairs of vertices and the absolute

values of the λ-coordinates of the associated boundary classes are no larger than 4. Further,

(i) if BM has a pair of vertices whose associated boundary classes have λ-coordinates

equal to 4 in absolute value, then BM is parallelogram.

(ii) if BM has a vertex pair whose associated boundary classes have λ-coordinates equal

to 3 in absolute value, then BM has exactly one more vertex pair, besides ±µ, and its

associated boundary classes are integral.

(iii) if BM has two pairs of vertices whose associated boundary slopes have λ-coordinates

equal to 2 in absolute value, then BM has no other vertex pairs, besides ±µ.

Proof. Apply [2, Lemma 6.2]. ♦

Lemma 14.2 Suppose that sM = 10.

(1) If µ is not a vertex of BM , then BM has at most five pairs of vertices and the absolute

values of the λ-coordinates of the associated boundary classes are no larger than 4. Further,

(i) if BM has a pair of vertices whose associated boundary classes have λ-coordinates

equal to 4 in absolute value, then BM has only one other pair of vertices and the absolute

value of the λ-coordinates of its associated classes is 1.

(ii) if BM has a pair of vertices whose associated boundary classes have λ-coordinates

equal to 3 in absolute value, then BM has at most one vertex pair whose associated boundary

class has λ-coordinate equal to 2, in which case BM is a parallelogram.

(iii) if BM has a pair of vertices whose associated boundary classes have λ-coordinate

equal to 3 in absolute value, then BM has at most two more vertex pairs whose associated

boundary classes are integral.

(2) If µ is a vertex of BM , then BM has at most six pairs of vertices and the absolute

values of the λ-coordinates of the associated boundary classes are no larger than 5 in absolute

value. Further,

(i) if BM has a pair of vertices whose associated boundary slopes have λ-coordinates

equal to 5 in absolute value, then BM is parallelogram.

(ii) if BM has a vertex pair whose associated boundary classes have λ-coordinates equal

to 4 in absolute value, then BM has exactly one vertex pair, besides ±µ, in which case the
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associated boundary class is integral.

(iii) if BM has a vertex pair whose associated boundary classes have λ-coordinates equal

to 3 in absolute value, then BM has at most one vertex pair whose associated boundary slope

has λ-coordinate equal to 2 in absolute value, in which case BM has exactly three vertex

pairs.

(iv) if BM has a vertex pair whose associated boundary classes have λ-coordinates equal

to 3 in absolute value, then BM has at most two other vertex pairs whose associated boundary

classes are integral.

Proof. Apply [2, Lemma 6.2]. ♦

Lemma 14.3 Suppose that sM = 8. If BM is a parallelogram with vertices ±(m− 1, 1) and

±(m+ 1), then F0 ⊂ {(1, 0), (m, 1)}. In particular # ≤ 2 and ∆ ≤ 1.

Proof. We may assume that m = 0 and so BM is as shown in Figure 12. According to

Proposition 9.3, any finite filling class is contained in 5
2BM . Therefore F0 ⊂ {(−1, 2), (1, 2),

(−2, 1), (2, 1), (0, 1), (1, 0)}. We now use AM to show that α = (−2, 1) 6∈ F0. By symmetry

neither are (−1, 2), (1, 2) or (2, 1).

If α ∈ F0, then since sM + 8 = ‖α‖M > ‖α+µ‖M, ‖α+ 2µ‖M, ‖α+ 3µ‖M, Proposition 9.3

implies that it must be an I(5)-type class. Thus by Lemma 2.1, i∗(λ) = i∗(α) 6= 0.
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Figure 12: The canonical norm polygon and Newton polygon

By Proposition 10.1, NM is as shown in Figure 12. Hence the canonical A-polynomial is

of the form AM(u, v) = u2 + (au+ bu2 + cu3)v + (ǫ1 + du+ eu2 + ǫdu3 + ǫǫ1u
4)v2 + (ǫcu+

ǫbu2 + ǫau3)v3 + ǫu2v4 for some integers a, b, c, d, e and ǫ, ǫ1 ∈ {±1}.
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By Proposition 11.3, there is some θ ∈ {±1} such that u−2AM(u, u2) = 1 + au + (b +

ǫ1)u
2+(c+d)u3+eu4+ǫ(c+d)u5+ǫ(b+ǫ1)u

6+ǫau7+ǫu8 is divisible by (u4+θu3+u2+θu+1)j

for some integer j ≥ 1. Further the roots of the quotient lie in {±1}. Obviously j ≤ 2

but in fact it’s easy to see that j = 1. For otherwise Proposition 11.3 implies that neither

A(u, u2) nor A(u,−u2) have roots in {±1}. But this contradicts the fact that any discrete

faithful character in CM corresponds to a point in {±(1, 1),±(1,−1)}. Hence we have j = 1.

Let ǫ be the non-zero element ofH1(M ; Z2) = Z2 and recall that we have shown ǫ(λ) 6= 0.

If ǫ(µ) = 0 then Proposition 10.3 (5) implies that a = b = c = 0. Thus u−2AM(u, u2) =

1 + ǫ1u
2 + du3 + eu4 + ǫdu5 + ǫǫ1u

6 + ǫu8. Its quotient by u4 + θu3 + u2 + θu + 1 is

q(u) = ǫu4 − ǫθu3 + ǫǫ1u
2 + ǫ(d − ǫ1θ)u + (e − ǫθd) where e − ǫθd = 1. But since the

coefficient of u3 in q is odd, q has roots other that ±1, contrary to our set-up.

Assume then that ǫ(µ) 6= 0. Then Proposition 10.3 (5) implies that b = d = 0. Calcula-

tion shows that up to a power of u we have

AM(u, u2) = ǫu8 + ǫau7 + ǫǫ1u
6 + ǫcu5 + eu4 + cu3 + ǫ1u

2 + au+ 1.

Dividing AM(u, u2) by u4 + θu3 + u2 + θu+ 1 yields the quotient polynomial

q(u) = ǫu4 + ǫ(a− θ)u3 + ǫ(ǫ1 − θa)u2 + ǫ(c− θǫ1)u+ 1.

Since the roots of q lie in {±1}, examination of its coefficients shows that both a and c are

odd. Hence by Proposition 10.3 (4) we see that |a| = |c| = 1. The same result then implies

that ǫ1 = ǫ = 1. Hence the leading and constant coefficients of q are both 1. It follows that

q(u) is either (u+ 1)4, (u − 1)4, or (u + 1)2(u− 1)2. Since |a| = 1 we have |a− θ| ≤ 2 and

thus q(u) = (u+1)2(u−1)2 = u4−2u2 +1. Examination of the coefficient of u3 in q implies

that a = θ. But then from the coefficient of u2 we obtain −2 = ǫ(ǫ1 − θa) = 1− 1 = 0. This

final contradiction completes the proof of Lemma 14.3. ♦

We are now ready to give the proof of Proposition 12.3. For points v1, v2 ∈ H1(∂M ; R),

let [v1, v2] denote the line segment they span.

Assume that there are two classes in F0 whose λ-coordinate is 2. By [2, Theorem 1.1(1)],

there are at most two such classes and if two, we may assume without loss of generality

that they are ±(1, 2) and ±(−1, 2). By Proposition 9.3 (1) and (2), neither of these two

slopes has type C,D,Q, T (2), O(2) or I(2).

Assume first that ‖(−1, 2)‖M, ‖(1, 2)‖M ≤ 2sM. Then [(−1/2, 1), (1/2, 1)] ⊂ BM. Since

this segment contains (0, 1) it follows that it actually lies on ∂BM. Noting that (0, 1) is not

a vertex of BM, our conventions imply that neither is (1, 0). Hence if sM = 8, Lemma 14.1

implies that BM must be a parallelogram with vertices ±(−1, 1),±(1, 1). But then from

Lemma 14.3 we deduce that (−1, 2) 6∈ F0. Thus sM > 8 and since ‖(−1, 2)‖M = ‖(1, 2)‖M =
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2sM, it follows from Proposition 9.3 that (−1, 2) and (1, 2) are both of type O(3). Now

∆((1, 2), (−1, 1)) = 3, and so from Proposition 9.3 we see that 2sM = ‖(1, 2)‖M ≤ ‖(−1, 1)‖M.

But this contradicts the fact that (−2/3, 2/3) ∈ [(−1/2, 1), (−1, 0)] ⊂ BM and therefore

‖(−1, 1)‖M = 3
2‖(−2/3, 2/3)‖M < 2sM. Thus one of ‖(−1, 2)‖M and ‖(1, 2)‖M is larger than

2sM.

By symmetry we may suppose that α = ‖(1, 2)‖M > 2sM. From Proposition 9.3 we see

that it must be an O(3)-type filling class and so as above we have 2sM < ‖(1, 2)‖M ≤
‖(−1, 1)‖M . Therefore ‖(−1/2, 1/2)‖M > sM . Now (−1/2, 1/2) ∈ [(−1, 0), (0, 1)] and

since ‖(−1, 0)‖M = sM, the convexity of ‖ · ‖M implies that ‖v‖M > sM for each v ∈
[(−1/2, 1/2), (0, 1)]. In particular we have ‖(−1/3, 2/3)‖M > sM. Thus ‖(−1, 2)‖M ≥ 3sM ≥
sM + 16, which contradicts Proposition 9.3 (5). The proof of Proposition 12.3 is therefore

complete.

15 Proof of Proposition 12.4

Let I0 be the set of integral classes in L which are finite or cyclic filling classes, but not

strict boundary classes, and let ∆(I0) denote the maximal distance between elements in I0.

We only need to show that ∆(I0) ≤ 3 (which implies that the number of elements in I0 is

at most 4).

Fix α1 ∈ I0 which satisfies

‖α‖M ≤ ‖α1‖M for each α ∈ I0.

As a first case, suppose that ‖α1‖M < 2sM. Then I0 ⊂ int(2BM). Since each horizontal line

in the µλ-plane intersects BM in a line segment of length no larger than 2, there exists a

line segment L ⊂ {(u, 1) | u ∈ R} of length strictly less than 4 which contains I0. Thus

Proposition 12.4 holds in this case.

We shall therefore assume below that ‖α1‖M ≥ 2sM. Since sM ≥ 8, Proposition 9.3

implies that we may assume that either

- α1 is of type D,Q, I(q) or O(q) where q ≤ 3; or

- sM = 8, ‖α1‖M = 16, and each α ∈ I0 with ‖α‖M = 16 is an I(5)-type class.

We consider these two cases separately below.

Case 1. α1 is of type D,Q, I(q) or O(q) where q ≤ 3.

Suppose first of all that there is an integral class α0 in L such that ‖α0‖M < ‖α1‖M.

Then there is an integer j 6= 0 such that α0 = α1 + jµ. Set ǫ = j/|j| and choose integers

m, r ≥ 0 such that r < q and |j| = md + r. Then by the choice of q we have ‖α1 +
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ǫmqµ‖M, ‖α1 + ǫ(m+ 1)qµ‖M ≥ ‖α1‖M > ‖α0‖M = ‖α1 + ǫ(mq + r)µ‖M. By the properties

of a norm we must have ‖α1 + ǫkµ‖M > ‖α1‖M for each k < mq and each k > (m + 1)q.

But this implies that m = 0 and I0 ⊂ {α1, α1 + ǫµ, . . . , α1 + qǫµ}. Therefore Proposition

12.4 holds.

Now assume that ‖α1‖M ≤ ‖α‖M for each integral class α ∈ L. By the choice of α1 it

follows that ‖α‖M = ‖α1‖M for each α ∈ I0. Without loss of generality we may assume

that I0 ⊂ {α1, α1 + µ, . . . , α1 + kµ}. Clearly ‖α1 + jµ‖M = ‖α1‖M for 0 ≤ j ≤ k. Since

∆(I0) = k, we need to show that k ≤ 3.

If ‖α1‖M = 2sM and k ≥ 4, then α1
2 ,

α1
2 + µ and α1

2 + 2µ all lie on ∂BM. It follows that

BM is a parallelogram with vertices α1
2 and α1

2 + 2µ. But then α1 is a strict boundary class,

contrary to our hypotheses. Thus we must have k ≤ 3 when ‖α1‖M = 2sM, so Proposition

12.4 holds in this case.

We may suppose then, for the rest of the proof of Case 1, that ‖α1‖M > 2sM. ¿From

Proposition 9.3, we see that sM = 8 or 10, each α ∈ I0 is an O-type class, ‖α1‖M ≤ sM + 12,

and H1(M ; Z2) ∼= Z2 ⊕ Z2.

If sM = 10 then by Proposition 9.6, µ 6∈ ker(H1(∂M ; Z2) → H1(M ; Z2)) and so one of

‖α1‖M and ‖α1 + µ‖M is divisible by 4. But then since 20 = 2sM < ‖α1‖M < sM + 12 = 22,

‖α1 + µ‖M 6= ‖α1‖M. Hence k = 0.

Last we consider the case where sM = 8. As 2α1 ∈ ker(H1(∂M ; Z2)→H1(M ; Z2)),

‖2α1‖M is divisible by 8 by Proposition 9.6 and thus ‖α1‖M is visible by 4. But 16 = 2sM <

‖α1‖M ≤ sM + 12 = 20 and so ‖α1‖M = 20. Hence I0 ⊂ ∂(5
2BM). Since neither α1 nor

α1 + kµ are strict boundary slopes we must have k ≤ 4 (cf. the argument for the case

‖α1‖M = 2sM).

Suppose k = 4. Then 2
5α1,

2
5(α1 + 2µ) and 2

5(α1 + 4µ) lie on ∂BM but are not ver-

tices of BM. By Lemma 14.1, we see that BM is a parallelogram with vertices {±2
5(2α1 −

µ),±2
5(2α1 + 9µ)}. Without loss of generality we may take λ = α1 + 2µ. Then the New-

ton polygon NM is a diamond with vertices (5, 0), (0, 2), (5, 4) and (10, 2). Therefore the

canonical polynomial AM(u, v) has u5 (up to sign) as a monomial. Now we must have

µ ∈ ker(H1(∂M ; Z2)→H1(M ; Z2)) since the monomial u5 appears in AM(u, v) (by Proposi-

tion 10.3 (5) (i) and (iii)). But then by Proposition 9.6 (2), we would have ‖µ‖M ≥ 16 (note

that µ is not a vertex of BM). This contradiction completes the proof of Proposition 12.4

in Case 1.

Case 2. sM = 8, ‖α1‖M = 16, and each α ∈ I0 with ‖α‖M = 16 is an I(5)-type class.

Choose α0 ∈ I0 and k ≥ 0 so that α0 + kµ ∈ I0 and I0 ⊂ {α0, α0 +µ, . . . , α0 + kµ}. We

must show that k ≤ 3.
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Since I0 ⊂ 2BM we have k ≤ 4. If k = 4 then the horizontal line segment of length

2, [α0
2 ,

α0
2 + 2µ], lies in BM. This in particular implies that µ is not a vertex of BM. Since

neither α0 nor α0 + 4µ are strict boundary classes, Lemma 14.1 implies that BM is a

parallelogram with vertices {±(α0 +µ, 1),±(α0 + 3µ, 1)}, or {±1
3 (2α0 +µ),±1

3(2α0 + 7µ)},
or {±1

4(3α0 + 2µ),±(α0 + 3µ)}, or {±(α0 + µ),±1
4(3α0 + 10µ)}. Now the latter two cases

are not possible because for these configurations we have 8 = ‖7
8 (α0 + 2µ)‖M and so ‖α0 +

2µ‖M 6∈ Z. By Lemma 14.3, the first case cannot occur. Hence BM must have vertices

{±1
3(2α0 + µ),±1

3(2α0 + 7µ)}. In particular, ‖α0‖M = ‖α0 + 4µ‖M = 16 and thus both

of α0 and α0 + 4µ are I(5)-type filling classes. The proof of Proposition 12.4 in Case 2 is

completed by an appeal to the following lemma.

Lemma 15.1 Suppose that sM = 8 and BM is a parallelogram with vertices {±1
3 (2α0 +

µ),±1
3(2α0 + 7µ)}, where α0 is an integral class in L. If α0 is an I(5)-type class, then

α0 + 4µ is not an I(5)-type class.

Proof. Without loss of generality we may take λ = α0 + 2µ. Then BM is the polygon with

vertices ±2
3(−3, 2),±2

3 (3, 2) and thereforeNM is the diamond with vertices (3, 0), (0, 2), (3, 4)

and (6, 2). It follows from Proposition 10.3 that i∗(µ) = 0. The same result now implies

that there are integers a, b, c and ǫ, ǫ1 ∈ {±1} such that AM(u, v) = u3 + (ǫ1 + au + bu2 +

cu3 + ǫbu4 + ǫau5 + ǫǫ1u
6)v2 + ǫu3v4 where c = ǫc. Setting v = u2 we obtain

AM(u, u2) = u3[ǫu8 + ǫǫ1u
7 + ǫau6 + ǫbu5 + cu4 + bu3 + au2 + ǫ1u+ 1].

Suppose that α0 = (−2, 1) is an I(5)-type class. Then by Proposition 11.3 there is a

θ ∈ {±1} and d ≥ 1 for which AM(u, u2) is divisible by (u4 + θu3 + u2 + θu + 1)j . As in

Lemma 14.3, we see that j = 1. Long division of u−3AM(u, u2) by (u4 + θu3 + u2 + θu+ 1)

yields the quotient

q(u) = ǫu4 + ǫ(ǫ1 − θ)u3 + ǫ(a− θǫ1)u
2 + ǫ(b− θa)u+ 1

as well as the equation c− θǫb = 1. Since the roots of q are ±1 and the coefficient of u3 is

ǫ(ǫ1−θ) ∈ {−2, 0, 2}, it follows that ǫq(u) = (u−1)3(u+1), (u−1)2(u+1)2 or (u−1)(u+1)3.

It can then be argued that

a = −1, b = −ǫθ, c = 0, ǫ1 = ǫθ.

Thus

AM(u, v) = u3 + (ǫθ − u− ǫθu2 − θu4 − ǫu5 + θu6)v2 + ǫu3v4.

If we assume that α0 + 4µ = 2µ+ λ is also an I(5)-type class then

u5AM(u, u−2) = u8 + θu7 − ǫu6 − θu5 − ǫθu3 − u2 + ǫθu+ ǫ
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has either ζ = e
2πi
5 or −ζ as a root. Substituting these values into AM(u, u−2) yields ǫ = 1

and

θ =

{

1 if ζ is a root of AM(u, u−2)

−1 if −ζ is a root of AM(u, u−2).

Thus

AM(u, v) = u3 + (θ − u− θu2 − θu4 − u5 + θu6)v2 + u3v4.

But it is proven in the appendix to this paper that there is no compact, irreducible, ori-

entable, hyperbolic 3-manifold M whose boundary is a torus which has such a canonical

A-polynomial. Thus α0 + 4µ is not an I(5)-type class. ♦

16 Proof of Proposition 12.5

Suppose that α, β ∈ F0. We need to show that ∆(α, β) ≤ 3. Suppose otherwise. Then

by Propositions 12.3 and 12.4 we see that one of α and β, say β, has λ-coordinate 2, while

α is integral. After possibly changing λ we can assume that β = (1, 2). Since the distance

between an integral class and β is always an odd number, [2, Theorem 1.1(1)] implies that

∆(α, β) = 5. Hence α = (−2, 1) or (3, 1) and by possibly changing the orientation of λ we

may assume that α = (−2, 1). Let γ and η denote (−1, 1) and (1, 1) respectively.

An application of [2, Theorem 1.1 (2)] yields the fact that neither α nor β is a cyclic

filling class.

Recall that for points ω, σ ∈ V = H1(∂M ; R), we use [ω, σ] to denote the line segment

in V with endpoints ω and σ.

The following lemma records several useful inequalities.

Lemma 16.1

(1) ‖λ‖M, ‖η‖M < ‖β‖M.

(2) (i) 5‖λ‖M ≤ ‖α‖M + 2‖β‖M with equality if and only if [ sM
‖α‖M

α, sM
‖β‖M

β] ⊂ ∂BM.

(ii) If 5sM = ‖α‖M + 2‖β‖M, then λ ∈ ∂BM.

(3) ‖β‖M ≤ ‖α‖M and ‖β‖M = ‖α‖M if and only if both α and β are of type I(5).

Proof. (1) Suppose that ‖β‖M ≤ ‖λ‖M. Then since β = 2λ+µ we have ‖β‖M = ‖2λ+µ‖M ≥
2‖λ‖M − sM ≥ 2‖β‖M − sM and so ‖β‖M ≤ sM which contradicts Propsition 4.5 (3). Thus

‖β‖M > ‖λ‖M and a similar argument shows that ‖β‖M > ‖η‖M.

(2) (i) The line segment [ sM
‖α‖M

α, sM
‖β‖M

β] lies entirely in BM and intersects the λ-axis

at (0, 5sM
‖α‖M+2‖β‖M

). On the other hand ∂BM intersects the positive λ-axis at (0, sM
‖λ‖M

)
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and so 5sM
‖α‖M+2‖β‖M

≤ sM
‖λ‖M

, i.e. 5‖λ‖M ≤ ‖α‖M + 2‖β‖M. Further if there is equality

then the three points sM
‖α‖M

α, sM
‖λ‖M

λ, sM
‖β‖M

β of norm sM all lie on [ sM
‖α‖M

α, sM
‖β‖M

β]. Thus

[ sM
‖α‖M

α, sM
‖β‖M

β] ⊂ ∂BM.

(ii) If 5sM = ‖α‖M + 2‖β‖M, then part (i) shows that sM = ‖λ‖M.

(3) According to part (1) of this lemma we have ‖β‖ > sM and so by Proposition 9.3, β

cannot have type C, D, Q, or T (q), I(q), O(q) where q ≤ 2.

Assume next that β is of type T (3), O(3) or I(3). Recall γ = (−1, 1). Then since

∆(β, γ) = 3, Proposition 9.3 implies ‖β‖M ≤ ‖γ‖M. There are some x, t ∈ (0, 1) such

that γ = x((1 − t)α + tβ) and so ‖γ‖M < ‖(1 − t)α + tβ‖M ≤ (1 − t)‖α‖M + t‖β‖M ≤
(1 − t)‖α‖M + t‖γ‖M. Hence ‖α‖M > ‖γ‖M ≥ ‖β‖M.

If β is of type I(5), then since ∆(β, α) = 5, Proposition 9.3 (4) shows that α is also of

type I(5) and ‖β‖M = ‖α‖M. Hence part (3) of the lemma holds in this case.

Next we suppose that β is of type O(4) and that ‖α‖M < ‖β‖M. According to Proposition

9.3 (5), ‖β‖M ≤ sM+6 and so by part (2) we have 5sM ≤ 5‖λ‖M ≤ ‖α‖M +2‖β‖M ≤ 3sM+16.

Thus sM = 8, ‖α‖M = sM + 4, ‖β‖M = sM + 6 from part (2) we obtain ‖λ‖M = sM and the

line segment [ sM
‖α‖M

α, sM
‖β‖M

β] = [23α,
4
7β] lies in ∂BM. Now the segment [µ, 4

7β] also lies in

BM and intersects the horizontal line through 2
3α ∈ ∂BM in the point (3

4 ,
2
3) = 2

3α + 25
12µ.

But this is impossible as BM contains no horizontal segment of length larger than 2.

Finally suppose that β is of type O(4) and that ‖α‖M = ‖β‖M. We must show that

this case cannot occur. The inequalities of part (2) imply that sM = 8, ‖λ‖M = sM and

‖α‖M = ‖β‖M = sM + 6 = 7
4sM. Hence by Proposition 9.3 (3) and (5), we see that α is

not of type T . As β is of type O(4) we have H1(M ; Z2) = Z2 and therefore by Lemma 2.1

i∗(µ) = i∗(β) = 0. It follows that i∗(α) 6= 0 and so H1(M(α); Z2) = 0. Hence Lemma 2.1

implies that α must be of type I (we already knew that it is not of type C or T ). Now α

cannot be of type I(2) since ‖α‖M > sM = ‖λ‖M. It cannot have type I(5) for otherwise

β would also (Proposition 9.3 (4)), so as our final case assume it is of type I(3). Then

since ∆(α, η) = 3 we have ‖η‖M ≥ ‖α‖M = sM + 6 and therefore (4
7 ,

4
7) is not contained in

the interior of BM. On the other hand, we have ‖β‖M = sM + 6 and thus the line segment

[(4
7 ,

8
7), µ] is contained in BM. But the segments [(4

7 ,
8
7 ), µ] and [η,−η] intersect in the point

( 8
11 ,

8
11 ), which implies that (4

7 ,
4
7) is contained in the interior of BM. This contradiction

completes the proof of the lemma. ♦

We now complete the proof of Proposition 12.5.

Lemma 16.2 α cannot be of type C,D,Q or O(q), T (q), I(q) where q ≤ 3.

Proof. This follows from Proposition 9.3 since ‖α‖M ≥ ‖β‖M > ‖λ‖M, ‖η‖M ≥ sM by
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Lemma 16.1. ♦

Lemma 16.3 α cannot be of type O(4).

Proof. If α has type O(4) then from Proposition 9.3 (5) and Lemma 16.1 (3) we see that

‖β‖M < ‖α‖M ≤ s+6. Hence by Lemma 16.1 (2) we have 5sM ≤ 3sM +14. But then sM < 8,

a contradiction. Therefore the lemma holds. ♦

Lemma 16.4 α cannot be of type I(5).

Proof. If α is of type I(5), then from Proposition 9.3 (4) we see that β also has type

I(5) and ‖α‖M = ‖β‖M. Hence Lemma 2.1 implies that i∗(µ) = i∗(β) = i∗(α) 6= 0 while

i∗(γ) = i∗(η) = 0. Then by Proposition 9.6, both ‖γ‖M and ‖η‖M are divisible by 4. Since

‖α‖M = ‖β‖M ≤ sM + 8, Lemma 16.1 (2) shows that either

(i) sM = 12 = ‖λ‖M, ‖α‖M = ‖β‖M = sM + 8, and [ sM
‖α‖M

α, sM
‖β‖M

β] ⊂ ∂BM, or

(ii) sM = 10 = ‖λ‖M and ‖α‖M = ‖β‖M = sM + 8, or

(iii) sM = 8 = ‖λ‖M and ‖α‖M = ‖β‖M ∈ {sM + 6, sM + 8}.
We’ll deal with these cases separately.

In case (i) note first that the line segment of negative slope [µ, 3
5β] lies in BM and

calculation shows that it intersects the horizontal line through 3
5α in the point 3

5α+2µ. On

the other hand, the fact that α is not a strict boundary class implies that the edge of ∂BM

containing [35α,
3
5β] extends through 3

5α and ends below and to the left of it. It follows that

there is a horizontal line lying just below 3
5α which intersects BM in a segment of length

strictly longer than 2, which is impossible. Thus case (i) leads to a contradiction.

Next consider case (ii). Recall ‖γ‖M, ‖η‖M ≡ 0 (mod 4) and since the segments [59α, λ]

and [µ, 5
9β] lie in BM and it follows that ‖γ‖M = ‖η‖M = 12. The segments [−µ, 5

9α] and

[µ, 5
6η] lie in BM and are parallel, so in fact they lie in ∂BM. Hence µ is not a vertex of

BM. Now 5
9β ∈ BM so there is a vertex v1 of BM whose λ-coordinate is larger than 1.

Actually v1 may be taken to lie in the sector bounded by the half-rays based at the origin

and passing through λ and η. Let (m1, n1) ∈ L be the strict boundary class associated to

v1. Since β is not a strict boundary class we have |n1| ≥ 3. Consider the edge of BM which

contains [−µ, 5
9α]. Since α is not a strict boundary slope this edge passes through 5

9α to

an edge v2 associated to a strict boundary class (m2, n2) where |n2| ≥ 2. An application of

Lemma 14.2 reveals that |n1| = 3, |n2| = 2 and BM is a parallelogram. Since ‖λ‖M = sM it is

easy to see that (m1, n1) = (2, 3) while (m2, n2) = (−2, 3). The Newton polygon of AM is a

parallelogram with vertices (0, 2), (2, 5), (5, 3) and (0, 3). In particular since (0, 3) is a vertex

of NM, Proposition 10.3 (5) implies that i∗(µ) = 0, contrary our previous calculations. Thus

case (ii) leads to a contradiction.
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Now consider case (iii) when ‖α‖M = ‖β‖M = sM+6. The line segment [µ, 4
7β] lies in BM,

which implies that ‖η‖M ≤ 11
8 sM = 11. Hence since ‖η‖M is divisible by 4, ‖η‖M = 8 = sM.

The segment [µ, η] is therefore contained in BM, as is [−µ, 4
7α]. But then BM contains a

horizontal line segment of length longer than two, which is impossible.

Finally suppose that ‖α‖M = ‖β‖M = sM + 8 in case (iii). The line segment [12α, λ] lies

in BM, which implies that ‖γ‖M = 8 or 12. If ‖γ‖M = 8, then as ‖α/2‖M = sM and lies on

[−µ, γ] we see that this segment is contained in ∂BM. Similarly since ‖λ‖M = sM and is

contained on [γ, 1
2β], this segment is contained in ∂BM as well. Thus γ is a vertex of BM.

Let e be the edge of BM which contains [γ, 1
2β] and v1 the endpoint of e other than γ. Now

v1 6= 1
2β since β is not a boundary class associated to a vertex of BM. Further Lemma 14.3

shows that v1 6= η = (1, 1). Then by Lemma 14.1, we see that v1 = (2
3 , 1). Now [v1, µ] is

contained in BM which implies that ‖η‖M ≤ 4
3sM ≤ 11. Thus since ‖η‖M is divisible by 4,

‖η‖M = 8. But then [γ, η] is contained in ∂BM, which contradicts Lemma 14.3. Therefore

we have ‖γ‖M = 12.

The segment [µ, 1
2β] lies in BM and so ‖η‖M = 8 or 12. In the former case the parallel

segments [µ, η], [−µ, α/2] lie in BM and have horizontal separation equal to 2, so in particular

they lie in ∂BM and therefore µ is not a vertex of BM. Further we have [η, λ] ⊂ ∂BM as

‖β/2‖M = sM. Thus η is a vertex of BM. By Lemma 14.3, γ cannot be a vertex of BM,

and so since α is not a strict boundary class, Lemma 14.1 can be used to prove that BM

is the polygon with vertices ±η,±λ and ±(−1, 2/3). But then NM has a vertex at (3, 0),

which implies that i∗(µ) = 0 (Proposition 10.3 (5)), contrary to our previous calculations.

Thus ‖η‖M = 12. It follows that [µ, 1
2β] ⊂ ∂BM and since β is not a strict boundary class,

this segment extends upward along an edge of BM to a vertex, say v1, of BM, whose λ-

coordinate is larger than 1. If v1 is a positive multiple of a primitive class (m,n) ∈ L, then

Lemma 14.1 implies that that n = 3 and since λ ∈ ∂BM, an easy calculation shows that v1

must be the point (2
5 ,

6
5 ), which is the intersection of the two edges of BM containing the

segments [µ, 1
2β] and [12α, λ]. Lemma 14.1 now shows that BM has at most one other vertex

pair different from ±µ, and this pair corresponds to an integral class. Owing to the fact

that α is not a strict boundary class, we deduce that BM must be the parallelogram with

vertices ±(2
5 ,

6
5) and ±(−6

5 ,
2
5). But then NM is the parallelogram with vertices (3, 0), (0, 1),

(1, 4) and (4, 3). In particular Proposition 10.3 (5) implies that i∗(µ) = 0, contrary to our

previous calculations. This final contradiction completes the proof of the lemma. ♦

According to the three previous lemmas, α 6∈ F0. This contravenes our hypotheses and

so completes the proof of Proposition 12.5.
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17 Proof of Proposition 12.6

If there is no half-integral class in F0, then Proposition 12.6 holds by Propositions 12.3

and 12.4. So we may assume that there is some β ∈ F0 whose λ-coordinate is 2. Without

loss of generality, we may assume that β = (1, 2). Applying Propositions 12.3 and 12.5, we

see that F0 ⊂ {β, α = (−1, 1), λ = (0, 1), η = (1, 1), γ = (2, 1),m = (1, 0)}. If Proposition

12.6 is not true, then α, γ ∈ F0. We shall assume this in order to derive a contradiction.

We start by developing some useful inequalities.

Lemma 17.1

(1) sM < ‖α‖M, ‖β‖M, ‖γ‖M.

(2) ‖λ‖M, ‖η‖M < ‖β‖M.

(3) (i) 3‖λ‖M ≤ ‖α‖M + ‖β‖M with equality if and only if [ sM
‖α‖M

α, sM
‖β‖M

β] ⊂ ∂BM.

(ii) If 3sM = ‖α‖M + ‖β‖M, then λ ∈ ∂BM.

(4) (i) 3‖λ‖M ≤ ‖γ‖M + ‖β‖M with equality if and only if [ sM
‖γ‖M

γ, sM
‖β‖M

β] ⊂ ∂BM.

(ii) If 3sM = ‖γ‖M + ‖β‖M, then λ ∈ ∂BM.

Proof. (1) The inequality ‖β‖M > sM follows from Proposition 4.5. Suppose next that

‖α‖M = sM. Then ‖β‖ ≥ 2sM as otherwise λ would be contained in the interior of BM.

If ‖β‖ = 2sM then as neither α nor β are strict boundary classes, [α, β/2] is contained in

the interior of an edge of ∂BM. Let v be the endpoint of this edge which has negative

µ-coordinate. Then [−µ, v] ⊂ BM. Hence if ‖γ‖M ≤ 2sM then the line {(x, 1/2) | x ∈ R}
intersects BM in a segment of length larger than 2. As this is impossible it follows that either

‖β‖M > 2sM or ‖γ‖M > 2sM. If ‖γ‖M > 2sM, then γ is of type O(2) or O(3) by Proposition

9.3. In the former case we have 2sM < ‖γ‖M ≤ ‖λ‖M = ‖α+ µ‖M ≤ 2sM, which is obviously

impossible. The latter is ruled out by the inequalities 2sM < ‖γ‖M ≤ ‖α‖M = sM. A similar

argument shows that ‖β‖M cannot be larger than 2sM. Hence sM < ‖α‖M and an identical

argument gives sM < ‖γ‖M.

(2) This may be deduced in the same manner that was used to prove Lemma 16.1 (1).

(3) (i) The line segment [ sM
‖α‖M

α, sM
‖β‖M

β] lies entirely in BM and intersects the λ-axis at

(0, 3sM
‖α‖M+‖β‖M

). On the other hand ∂BM intersects the positive λ-axis at (0, sM
‖λ‖M

) and so
3sM

‖α‖M+‖β‖M
≤ sM

‖λ‖M
, i.e. 3‖λ‖M ≤ ‖α‖M + ‖β‖M. Further if there is equality then the three

points sM
‖α‖M

α, sM
‖λ‖M

λ, sM
‖β‖M

β of norm sM all lie on [ sM
‖α‖M

α, sM
‖β‖M

β]. Thus [ sM
‖α‖M

α, sM
‖β‖M

β] ⊂
∂BM.

(ii) If 3sM = ‖α‖M + ‖β‖M, then part (i) shows that sM = ‖λ‖M.

(4) This follows as in part (3). ♦
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The following lemma is a consequence of Proposition 9.3 and Lemma 17.1.

Lemma 17.2 β cannot have type C,D,Q or T (q), O(q), I(q) where q ≤ 2. ♦

Lemma 17.3 β cannot have type O(3).

Proof. If β is of type O(3) then so are α and γ (Proposition 3.3). Theorem 1.5 of [2] implies

that H1(M ; Z2) = Z2 ⊕Z2 and so from Lemma 2.1 we deduce that i∗(µ) = i∗(β) 6= 0. Thus

either i∗(γ) = 0 or i∗(α) = 0. But then H1(M(α); Z2) = Z2⊕Z2 or H1(M(γ); Z2) = Z2⊕Z2,

contrary to Lemma 2.1. Thus β is not of type O(3). ♦

Lemma 17.4 β cannot have type T (3) or I(3).

Proof. If β is of type T (3) or I(3), then both α and γ have the same type as β. In

particular H1(M(β); Z2) = H1(M(α); Z2) = H1(M(γ); Z2) = 0 and H1(M ; Z2) = Z2.

Thus i∗(µ) = i∗(β) 6= 0 but either i∗(γ) = 0 or i∗(α) = 0. Then H1(M(α); Z2) = Z2 or

H1(M(γ); Z2) = Z2, giving a contradiction. Thus β cannot have type T (3) or I(3). ♦

Lemma 17.5 β cannot have type O(4).

Proof. Suppose otherwise. Then Proposition 10.3 implies that H1(M ; Z2) = Z2, and thus

i∗(µ) = i∗(β) = 0. Hence i∗(α) = i∗(γ) 6= 0. Therefore by Lemma 17.1 (1), both α and γ

have type I or T . Also Proposition 9.6 implies that ‖µ‖M and ‖β‖M are divisible by 4. Hence

as sM < ‖β‖M ≤ sM + 6 we deduce that ‖β‖M = sM + 4. Now 3sM ≤ ‖α‖ + ‖β‖ ≤ 2sM + 14

(recall α has type T or I) and so sM ≤ 14. But sM = ‖µ‖M is divisible by 4, so sM = 8 or

12. In the latter eventuality Lemma 17.1 (3), (4) implies that

- ‖α‖M = 20, ‖λ‖M = 12 and [35α,
3
4β] ⊂ ∂BM, and

- ‖γ‖M = 20, ‖η‖M = 12 and [35γ,
3
4β] ⊂ ∂BM.

Therefore 3
4β is a vertex of BM, contrary to our assumptions, and so sM = 8. Another

application of Lemma 17.1 (3), (4) shows that ‖α‖M, ‖γ‖M ≥ 12 while ‖λ‖M = ‖η‖M = 8.

Since the point 2
3β is in BM, the polygon BM has a vertex whose associated boundary

class has λ-coordinate at least three. According to Lemma 14.1 there are only four possible

shapes for BM:

(i) a parallelogram with vertices ±1
2(µ+ 3λ) and ±1

2(3µ+ λ),

(ii) a parallelogram with vertices ±1
2(−2µ+ λ) and ±1

2(2µ+ 3λ),

(iii) a polygon with vertices µ,±1
2(µ+ 3λ) and η,

(iv) a polygon with vertices µ, λ and ±1
2(2µ+ 3λ).
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In each of these four cases one verifies that the associated Newton polygon has a corner at

a lattice point whose second coordinate is odd. But we have already shown that i∗(µ) = 0

while i∗(λ) 6= 0 and so Proposition 10.3 (5) shows that AM(u, v) involves only even powers

of v. This contradiction completes the proof that β cannot be of type O(4). ♦

Lemma 17.6 β cannot have type I(5).

Proof. Suppose otherwise. Then H1(M ; Z2) = Z2 and i∗(µ) = i∗(β) 6= 0. Thus ex-

actly one of α and γ is not in ker(H1(∂M ; Z2)→H1(M ; Z2)). We will treat the case

α 6∈ ker(H1(∂M ; Z2)→H1(M ; Z2)), the other can be handled similarly.

Now our hypotheses imply that H1(M(α); Z2) = 0 while H1(M(γ); Z2) = Z2. Thus α is

either a T or I-type class and γ is either a D or O-type class (neither α nor γ has C-type

by Lemma 17.1 (1)). We also have

‖λ‖M ≡ ‖γ‖M ≡ 0 (mod 4)

by Proposition 9.6.

First note that γ cannot be of type O(3) because β is of I-type and ∆(β, γ) = 3. Next

assume that γ is of type O(2) or D so that ‖γ‖M ≤ ‖λ‖M. Then by Lemma 17.1 (1) we

have ‖λ‖M > sM and so part (3)(i) of that result implies 3(sM + 2) ≤ 2sM + 16, or sM ≤ 10.

If sM = 10, then Lemma 17.1 gives 10 < ‖λ‖M ≤ 12 and so ‖λ‖M = 12. We also have

‖γ‖M = 12 since 10 < ‖γ‖M ≤ ‖λ‖M and ‖γ‖M is divisible by 4. Lemma 17.1 now implies

that ‖β‖M = ‖α‖M = sM + 8 and ‖η‖M = 10. Hence the line segments [ sM
‖α‖M

α, sM
‖β‖M

β] and

[ sM
‖γ‖M

γ, sM
‖β‖M

β] are contained in ∂BM. But this is impossible as it implies sM
‖β‖M

β is a vertex

of BM. Hence sM 6= 10. If sM = 8, Lemma 17.1 implies that ‖λ‖M = 8 = sM (recall it is

divisible by 4), contradicting the fact that ‖λ‖M > sM. Thus γ cannot be of type D or O(2).

Finally suppose that γ is of type O(4). Then ‖γ‖M ≤ sM + 6 and so by Lemma 17.1 we

see that sM ≤ 14.

If sM = 14, then by Lemma 17.1 we obtain ‖λ‖M = 14, which is not divisible by 4, a

contradiction.

Next suppose that sM = 12. Then Lemma 17.1 implies that ‖λ‖M = ‖η‖M = 12. As

‖γ‖M > sM and divisible by 4, ‖γ‖M = 16. Hence from Lemma 17.1 we see that ‖β‖M = 20

and [ sM
‖γ‖M

γ, sM
‖β‖M

β] ⊂ ∂BM. Now sM
‖γ‖M

γ is not a vertex of BM and so if v ∈ (µ, sM
‖γ‖M

γ)

we have ‖v‖M < sM. Hence for such v we have ‖v − 2µ‖M > sM. In particular 3
5α + 2µ ∈

(µ, sM
‖γ‖M

γ) so ‖3
5α‖M > sM = 12, or ‖α‖M > 20 = sM+8, a contradiction. Therefore sM 6= 12.

Now consider the case where sM = 10. By Lemma 17.1 we have ‖η‖M = 10 and ‖λ‖M =

12 (note again that ‖λ‖M divisible by 4). Hence Lemma 17.1 implies that ‖α‖M = ‖β‖M =
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18. Further the segment [ sM
‖α‖M

α, sM
‖β‖M

β] ⊂ ∂BM. Lemma 17.1 also gives 12 ≤ ‖γ‖M.

Hence ‖γ‖M = 12 or 16. In fact ‖γ‖M = 16. To see this suppose that it is 12. Then

3‖η‖M = ‖γ‖M +‖β‖M and therefore the segment [ sM
‖γ‖M

γ, sM
‖β‖M

β] ⊂ ∂BM. But then sM
‖β‖M

β =

[ sM
‖α‖M

α, sM
‖β‖M

β]∩[ sM
‖γ‖M

γ, sM
‖β‖M

β] is a vertex of BM, implying that β is a strict boundary class,

a fact our hypotheses exclude. Thus ‖γ‖M = 16. Next observe that since sM = 10 and β

is not a strict boundary class, the segment [ sM
‖α‖M

α, sM
‖β‖M

β] ⊂ ∂BM extends past sM
‖β‖M

β to a

vertex v1 of BM corresponding to a boundary class mµ+nλ where 3 ≤ n ≤ 5 and 1 ≤ n
m
< 2

(Lemma 14.2). We claim n 6= 5. For otherwise BM would be a parallelogram with vertices

±µ and ±v1 which is impossible as ‖γ‖M < 2sM. So (m,n) = (2, 3) or (3, 4). The latter

case can be excluded as it would imply that η lies in the interior of BM. Thus v1 lies on the

line of slope 3
2 through the origin. One can now verify that [v1,

sM
‖γ‖M

γ] ⊂ ∂BM. Since both

[ sM
‖α‖M

α, sM
‖β‖M

β] and [v1,
sM

‖γ‖M
γ] lie in ∂BM, they extend downwards to two more vertices

v2 and v3 of BM whose associated boundary classes must be integral (Lemma 14.2). By

hypothesis α and γ are not strict boundary classes, so v2 lies on a line through the origin of

slope − 1
k

where k is an integer which is at least 2, and v2 lies on the line of slope 1
j

through

the origin where j is at least 3. But this is impossible as one can now easily see that BM

contains a horizontal segment of length longer than 2. This contradiction completes the

proof that sM 6= 10.

Finally assume that sM = 8. Since ‖λ‖M is divisible by 4 and 3‖λ‖M ≤ ‖α‖M + ‖β‖M ≤
2sM + 16 = 32, we have ‖λ‖M = 8. Also 3‖η‖M ≤ ‖γ‖M + ‖β‖M ≤ 2sM + 14 = 30 and

therefore ‖η‖M = 8 or 10. Now sM < ‖γ‖M ≤ sM + 6 = 14 and ‖γ‖M is divisible by 4, so in

fact ‖γ‖M = 12. If we now assume that ‖η‖M = 10, then we obtain the impossible relation

30 = 3‖η‖M ≤ ‖γ‖M+‖β‖M ≤ 12+16 = 28. Hence ‖η‖M = 8. Note that ‖β‖M ≤ sM+8 = 16.

We shall consider two cases ‖β‖M < 16 and ‖β‖M = 16 separately.

Suppose first of all that ‖β‖M < 16 = 2sM and let v1 = uµ + vλ be the vertex of BM

which has the maximal λ-coordinate. Let mµ+ nλ be a primitive class which is a positive

rational multiple of v1. Since ‖β‖M < 2sM and β is not a strict boundary class, n > 2.

Now by Lemma 14.1, v1 is the unique vertex of BM whose λ-coordinate is larger than 1.

It follows that [v1, λ] and [v1, η] are contained in ∂BM and thus extend downward to two

more vertices of BM which can be easily seen to be distinct from ±µ. But this contradicts

Lemma 14.1.

Finally suppose that ‖β‖M = 16. Then ‖λ‖M = ‖β/2‖M = ‖η‖M = 8 = sM. It follows

that the segment [λ, η] ⊂ ∂BM. If η is not a vertex of BM, then BM is a parallelogram by

Proposition 9.6 (2) and the segment [λ, η] extends to a vertex v1 which is either 4
3µ+λ, 3

2µ+λ

or 5
3µ + λ. The first and third are ruled out by the fact that if either were a vertex then

λ would be as well (Lemma 14.1). But then BM would not be a parallelogram. Thus

v1 = 3
2µ+ λ. We see then that BM is the parallelogram with vertices ±(−1

2 , 1) and ±(3
2 , 1).
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So the Newton polygon NM is the parallelogram with vertices (1, 0), (0, 2), (3, 4) and (4, 2).

Hence the A-polynomial AM(u, v) contains u (up to sign) as a monomial, which contradicts

to Proposition 10.3 (5).

Assume now that η is a vertex of BM. By Proposition 9.6 (1), BM contains at most two

more vertex pairs. Since 2
3γ = (4

3 ,
2
3) is in ∂BM, there is vertex v1 of BM whose µ-coordinate

is larger than 1. Since α is not a vertex of BM, one can easily see that BM has two vertices

with non-positive µ-coordinates and positive λ-coordinates. So BM would have at least four

pairs of vertices, which contradicts Lemma 14.1. Therefore γ cannot be of type O(4). ♦

The above lemmas imply that β 6∈ F0. This contradiction completes the proof of

Proposition 12.6.

18 Finite surgery on small knots in S3

In this section we make some general remarks concerning finite surgery on small knots

in the 3-sphere, i.e. those knots K whose exteriors MK contain no closed essential surface,

and show how the theory developed previously in this paper can be used to give a quick

proof of the classification of the finite surgery slopes of 2-bridge knots (due to Delman [14]

and independently to Tanguay [32]).

The finite surgery slopes on ∂MK have been classified when K is a torus knot [27] and

a satellite knot [2], so we only need to consider small hyperbolic knots. Fix such a knot and

let M denote its exterior, CM the canonical norm curve in X(M), and BM the canonical

norm polygon. It is a consequence of Theorem 2.0.3 of [11] that the finite filling slopes on

∂M are not boundary slopes. Hence the canonical norm of a finite filling class is subject

to the constraints imposed by Proposition 9.3 and so in particular if {µ, λ} denotes the

standard meridian-longitude basis of H1(∂M), ‖µ‖M = sM and µ is not a vertex of BM.

Consider a non-meridinal finite filling class on ∂M . According to Proposition 9.3 we have

‖α‖M ≤ max{2sM, sM + 8}. Therefore











α ∈ 3BM if sM = 4

α ∈ 7
3BM if sM = 6

α ∈ 2BM if sM ≥ 8.

We also know that the absolute value of the λ-coordinate of α is strictly less than than 2

(Theorem 1.2). Set

h(BM) = sup {y | there is an x such that xµ+ yλ ∈ BM}.
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Proposition 18.1 Suppose that K ⊂ S3 is a small hyperbolic knot with exterior M , and

that α is a non-meridinal finite filling class on ∂M .

(1) The inequality h(BM) ≥ 1
2 holds.

(2) If α = mµ+ 2λ for some odd integer m, then α is of type T (3), I(3) or I(5). Further

sM ≥ 8 and h(BM) ≥ 1.

Proof. (1) We observed above that if sM ≥ 8 then α ∈ 2BM, and so h(BM) ≥ 1
2 . If sM = 4,

then α ∈ 3BM so that h(BM) ≥ 1
3 . But since µ is not a vertex, Subcase I.1 of §13 implies

that there is an integer n ≥ 1 such that h(BM) = 1
2n . Hence we must have h(BM) = 1

2 .

Finally assume that sM = 6. Then α ∈ 7
3BM and so h(BM) ≥ 3

7 . According to Subcase

II.1 of §13, either h(BM) = 3
k

for some integer k ≥ 3 (Subcase II.1.b), or h(BM) = 3
j+q for

some even integers j, q ≥ 2 (Subcase II.1.c). In the latter case the inequality h(BM) ≥ 3
7

implies that j + q ∈ {4, 6} and therefore h(BM) ≥ 1
2 . In the former we see that k ∈

{3, 4, 5, 6, 7}. But if k ≤ 6, then h(BM) ≥ 1
2 , while the case k = 7 cannot arise because

otherwise it follows from Subcase II.1.b of §13 that the only non-meridinal primitive class

in 7
3BM is a vertex of BM, and so α would be a boundary class.

(2) If α = mµ+ 2λ is a finite filling class of K, the cyclic surgery theorem [11] implies

that it is not of C-type. Thus since m is odd, it must be either T -type or I-type (see §2).
Since α is not a boundary class, α 6∈ ∂BM (Proposition 4.5), and therefore ‖α‖M > sM. It

follows that α has type T (3), I(3) or I(5) (Proposition 9.3).

We observed above that if sM ≥ 8, then α ∈ 2BM, and so h(BM) ≥ 1. To complete the

proof we note that under our hypotheses, sM 6= 4 or 6. For instance if sM = 4, then α ∈ 3BM

so that h(BM) ≥ 2
3 . But this contradicts Subcase II.1 of §13 which implies that h(BM) ≤ 1

2 .

Finally if sM = 6, consideration of Subcase II.1 of §13 shows that the only possibility is for

BM to be a parallelogram with vertices ±(m, 1) and ±((m+ k)/2, 1/2), for some integer m

and α to be (2m + 1)µ + 2λ. In this case ‖α‖M = 14 = sM + 8 and so α has type I. But

this cannot be as the shape of BM implies that α does not have type I(q) for any q ∈ {3, 5}
(Proposition 9.3). Hence the case sM = 6 does not arise either. ♦

The 2-bridge knots are an interesting collection of knots in the 3-sphere (see, for instance,

[7]). According to [18], they are small knots and further their boundary classes are even

integer classes, i.e. they have the form 2pµ+ λ for some integer p.

Theorem 18.2 A hyperbolic 2-bridge knot admits no nontrivial finite surgery slope.

Proof. Let K be a hyperbolic 2-bridge knot in S3 with exterior M . The result will follow

from the previous proposition if we can show that h(BM) < 1
2 , a fact due to Tanguay [32].
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Let p : M̃→M be the (unique) 2-fold cover and {µ̃, λ̃} the basis for H1(∂M̃ ) correspond-

ing to {µ, λ}. Then M̃ is hyperbolic and M̃(µ̃) is the double branched cover of S3 branched

over K, which is known to be a lens space (see [7]). Thus µ̃ is a cyclic filling class of M̃ .

By the discussion proceeding Proposition 9.6 (cf. also [2, Section 3]), the cover p : M̃→M

induces a regular map p∗ : X(M)→X(M̃ ) and EM = p∗(CM) is a norm curve in X(M̃ ) with

norm ‖ · ‖ẼM
. Moreover for every δ̃ in H1(∂M̃) it can be shown that if p# : H1(∂M̃ ) →

H1(∂M) is the homomorphism induced by p|∂M̃ , then

‖p#(δ̃)‖M = 2‖δ̃‖ẼM
.

Now µ̃ cannot be associated to an ideal point of y ∈ ẼM as otherwise µ would be associated

to each of the ideal points of (p̃∗)−1(y) ⊂ C̃M, which is impossible as it is not a boundary

class. Thus ‖µ̃‖ẼM
≤ ‖β̃‖ẼM

for each non-zero β̃ ∈ H1(∂M̃ ) (see Theorem 6.1 of [3]). Since

even integer classes in H1(∂M) lift to classes in H1(∂M̃ ), it follows that

‖β‖M ≥ ‖2µ‖M = 2‖µ‖M

for every even integer slope β on ∂M . We now show that this inequality holds strictly for

all primitive classes β 6= ±µ, and so h(BM) < 1
2 .

Let β be a boundary slope of M associated to a vertex of BM, i.e. there is an ideal

point x ∈ C̃M for which fβ(x) is finite but fµ(x) = ∞. According to Theorem 5.4 of [28],

the components of the essential surfaces in M associated to x have one or two boundary

components. This fact implies, by §5 of [8], that fβ(x) = 0. If Iµ : X(M) → C denotes the

evaluation map, then fµ = I2
µ − 4 and fµ2 = I2

µfµ. Hence fµ2(x) = ∞. Therefore the norm

of β is strictly larger than that of 2µ. It follows that the norm polygon BM lies strictly

below the horizontal half-integer line. Hence Proposition 18.1 implies that K admits no

non-meridinal finite filling slope. ♦

Appendix

The goal of this appendix is to prove the following result.

Proposition Let θ ∈ {±1}. The polynomial Aθ(u, v) = u3 + (θ − u − θu2 − θu4 − u5 +

θu6)v2 + u3v4 is not the canonical polynomial of a hyperbolic knot exterior.

Proof. Let M be a compact, connected, orientable 3-manifold whose interior admits a

complete hyperbolic structure of finite volume. Suppose further that the boundary of M is

a torus. In [8] it is described how work of C. Hodgson implies that the real 1-form

ω = ln|u|d(arg(v)) − ln|v|d(arg(u))
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is exact on the smooth part of DM. In particular its integral over any closed, piecewise-

smooth loop in DM is zero. We’ll show that this condition does not hold for the zero sets of

the polynomials under consideration in the proposition. Arguments of this type were first

used by D. Cooper and D. Long in [9, §10].

First observe that we may assume that θ = 1. For if ψ : A−1
1 (0) → A−1

−1(0) is the

isomorphism given by (u, v) 7→ (−u, v) and C ⊂ A−1
1 (0) is a piecewise-smooth curve, then

∫

C
ω =

∫

ψ(C) ω. Consider then

A(u, v) = u3 + (1 − u− u2 − u4 − u5 + u6)v2 + u3v4

and set

D = A−1(0).

The singular set of D consists of the simultaneous solutions of the equations

A = 0,
∂A

∂u
= 0,

∂A

∂v
= 0

and is readily calculated to be Σ = {(u, v) | u2 = v4 = 1}. The projection induced map

π : D → C, π : (u, v) 7→ u

has degree 4 and is branched at the points of B = ∂A
∂v

−1
(0) \ Σ. The automorphism φ :

(u, v) 7→ (u,−v) of D satisfies π◦φ = π, so the branching at a point (u, v) ∈ D is necessarily

of order 2 if v 6= 0. Set u0 = 1
4 (1−

√
17)− i

2

√

2
√

17 − 2 and u1 = i. It is easy to verify that

(u0, i), (u0,−i), (u1, i), (u1,−i) ∈ B.

The path u(t) = (1− t)u0 + tu1 in the u-plane lifts to four smooth paths σj(t) = (u(t), vj(t))

(j = 1, 2, 3, 4) in D which we can determine as follows. Any lift v(t) of u(t) satisfies the

identity

1 + g(t)v(t)2 + v(t)4

where

g(t) = u−3(t) − u−2(t) − u−1(t) − u(t) − u2(t) + u3(t).

Solving for v(t) shows that

v(t) = ±

√

−g(t) ±
√

g(t)2 − 4

2
.

The reader may verify that g(t) = ±2 if and only if t ∈ {0, 1}, and so there are precisely

two smooth functions r1(t) and r2(t) whose square is g(t)2 − 4. They are unambiguously

determined by requiring that Re(r1(t)) ≥ 0 and Re(r2(t)) ≤ 0 when t is close to zero.

Evidently r2 = −r1. Next note that since −g(t) + r1(t) 6= 0, there are exactly two smooth
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functions v1, v3 satisfying v2
1 = v2

3 = 1
2 (−g + r1). They are determined by requiring that

v1(0) = i while v3(0) = −i. Similarly there are exactly two smooth functions v2, v4 satisy-

fying v2
2 = v2

4 = 1
2 (−g + r2) and they are determined by requiring that v2(0) = i while

v4(0) = −i. Evidently v3 = −v1 and v4 = −v2. We take

σj(t) = (u(t), vj(t)).

It follows from our choices that

v2
1v

2
2 =

1

4
(−g + r1)(−g + r2) − 1 =

1

4
(−g + r1)(−g − r1) =

1

4
(g2 − r21) = 1.

and hence for each t ∈ [0, 1], we have v1(t)v2(t) = v1(0)v2(0) = −1. In particular since

v1(1) = ǫi for some ǫ ∈ {±1}, we must have v2(1) = ǫi as well. It follows that C = σ1 ∗ σ−1
2

is a closed, piecewise-smooth curve in D. Now

∫

C

ω =

∫

σ1

ω −
∫

σ2

ω

while from the relation v1v2 = −1 and the form of the integrand we see that

∫

σ1

ω = −
∫

σ2

ω.

Hence
∫

C

ω = 2

∫

σ1

ω.

To compute the latter we proceed as follows. One can verify that if w(t) is a smooth path

in the complex plane, then d
dt
arg(w(t)) = Im(w

′(t)
w(t) ). It follows that

2

∫

σ1

ω = −
∫ 1

0
{ln(|u(t)|2)Im(

g′(t)

2r1(t)
) − ln(|v1(t)|2)Im(

u′(t)

u(t)
)}dt.

Let f(t) be the integrand of this integral. Its graph is depicted in Figure 13.

Now with n = 10, 000 we have

|
∫ 1

0
f(t)dt−

n
∑

j=1

f( j
n
)

n
| ≤ |

∫ 1
n

0
f(t)dt| + |f( 1

n
)

n
| + |

∫ n−1
n

1
n

f(t)dt−
n−1
∑

j=2

f( j
n
)

n
|

+ |
∫ 1

n−1
n

f(t)dt| + |f(1)

n
|

≤ 4K

n
+

(n− 2)L

n2

<
4K + L

10, 000
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Figure 13: The graph of f(t)

where K = sup{|f(t)| | t ∈ [0, 1
n
] ∪ [n−1

n
, 1]} and L = sup{|f ′(t)| | t ∈ [ 1

n
, n−1

n
]}. Crude

estimates show that K < 2 while L < 1, 700. Thus

|
∫ 1

0
f(t)dt−

n
∑

j=1

f( j
n
)

n
| < 1, 708

10, 000
< 0.2

and so

|
∫ 1

0
f(t)dt| ≥ |

n
∑

j=1

f( j
n
)

n
| − 0.2.

Computer assisted calculation shows |∑n
j=1

f( j

n
)

n
| > 0.94 so that we conclude

∫

C

ω = 2

∫

σ1

ω = −
∫ 1

0
f(t)dt 6= 0.

This completes the proof of the proposition. ♦
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