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§0. Introduction

The study of 3-manifolds splits nicely into the cases of finite fundamental groups and

infinite fundamental groups. Concerning 3-manifolds with infinite fundamental groups, the

following important conjecture due to Waldhausen [Wa] is well known.

Conjecture 0.1. Any closed, connected, orientable, irreducible 3-manifold W with

infinite fundamental group is virtually Haken, i.e. W has a finite cover which is a Haken

3-manifold.

A stronger conjecture is that any closed, connected, orientable, irreducible 3-manifold

W with infinite fundamental group has a virtually positive first Betti number, i.e. W has a

finite cover which has positive first Betti number.

Conjecture 0.1 becomes more compelling due to the recent work of Gabai-Meyerhoff-

Thurston [GMT]. In fact it follows from [GMT] (as well as [Ga1-2], [Th1], [CJ]) that if a

closed 3-manifold W is virtually Haken, then W is topologically rigid and admits a geometric

decomposition in Thurston’s sense [Th1].

In this paper we consider the conjecture through the Dehn filling construction. Let M be

a compact, connected, orientable, irreducible 3-manifold M such that ∂M is a torus. Recall

that a slope on ∂M is the isotopy class of an unoriented, simple, essential loop in ∂M .

We use ∆(r1, r2) to denote the distance (i.e. the minimal geometric intersection number)

between two slopes r1 and r2 on ∂M and use M(r) to denote the closed 3-manifold obtained

by Dehn filling M along ∂M with slope r.

Call a slope r on ∂M a virtually Haken filling slope if M(r) is a virtually Haken 3-

manifold. According to Thurston [Th1], either M is a Seifert fibred manifold, or it contains

an incompressible, non-boundary parallel torus, or it is hyperbolic, i.e. int(M) admits a

complete hyperbolic structure of finite volume. In the first two cases there is quite a lot

known about the virtually Haken filling slopes on ∂M [He2] so we shall concentrate, for

the most part, on the case where M is hyperbolic. Here work of C. Gordon and J. Luecke

[GL] and S. Boyer and X. Zhang [BZ1] show that there are no more than nine slopes on

∂M whose associated fillings are either reducible or have a finite fundamental group. Hence
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if Conjecture 0.1 holds, we are left with the striking conclusion that the set of slopes on

∂M which are not virtually Haken filling slopes has fewer than ten elements. A measure of

the depth of the conjecture is that to date there has been little empirical evidence which

supports this conclusion. For instance combined work of M. Baker [Ba], J. Hempel [He2],

S. Kojima and D. Long [KL], and A. Nicas [N] has shown that roughly 70% of the fillings

of the exterior of the figure 8 knot are virtually Haken manifolds, though the status of the

remaining cases is open. In this paper we show that certain hypotheses on a filling M(r0)

of M can be used to prove that if ∆(r, r0) is large enough, then M(r) is a virtually Haken

manifold. This work is then combined with a recent result of D. Cooper and D. Long [CL]

to construct manifolds M for which all but finitely many of the fillings are virtually Haken,

but non-Haken manifolds. These appear to be the first such examples known.

By an essential surface in a compact orientable 3-manifold, we mean a properly embedded

orientable surface each component of which is incompressible and non-boundary-parallel. A

slope r on ∂M is called a boundary slope if there is a connected essential surface F in M

such that ∂F is not empty and is of slope r. A strict boundary slope is a slope r for which

there is a connected essential surface F in M satisfying

- ∂F is not empty and is of slope r;

- F is not a fibre of some fibration of M over the circle;

- F does not split M into two twisted I-bundles.

The strict genus of a strict boundary slope r is the minimal genus of all essential surfaces F

in M satisfying the conditions above. The following theorem is proven in [BCSZ].

Theorem 0.2. (Boyer-Culler-Shalen-Zhang) Let M be a compact, connected, orientable,

irreducible 3-manifold such that ∂M is a torus and the interior of M admits a complete

hyperbolic metric of finite volume. Suppose that r0 is a strict boundary slope of strict genus

g on ∂M . If r is any other slope on ∂M which satisfies ∆(r, r0) > 20g + 5, then M(r) is

irreducible and π1(M(r)) contains a free subgroup of rank 2. 2

Conjecture 0.1 together with Theorem 0.2 suggest that the following holds.

Conjecture 0.3. For a compact, connected, orientable, irreducible 3-manifold M whose

boundary is a torus and whose interior admits a complete hyperbolic metric of finite volume,

the distance between a strict boundary slope of genus g and a non-virtually Haken filling

slope on ∂M is less than or equal to 20g + 5.

The condition that one of the slopes be a strict boundary slope can probably be replaced

by the weaker condition that it be a boundary slope, though most results to date require the

stronger condition as a hypothesis. Note that in the more general situation the hyperbolicity

condition is necessary, as can be seen by taking M to be the exterior of a non-trivial torus

2



knot. In this case the longitudinal slope on ∂M is a boundary slope, but not a strict one,

and there are non-virtually Haken filling slopes on ∂M which are of arbitrarily large distance

from it [Mo]. It is interesting to note that there is no universal bound, independent of genus,

for the distance between a boundary slope and a non-virtually Haken filling slope, as is

shown by examples of Bleiler and Hodgson [BH, Proposition 18].

Recently Cooper and Long [CL] have provided the following supporting evidence for the

truth of Conjecture 0.3.

Theorem 0.4. (Cooper-Long [CL]) Suppose that M is a compact, connected, orientable,

irreducible 3-manifold such that ∂M is a torus and that the interior of M admits a complete

hyperbolic metric of finite volume. Suppose that M does not fibre over the circle and that

there is a connected essential surface F of genus g in M such that ∂F is connected of slope

r0 on ∂M . Then any slope r on ∂M satisfying ∆(r, r0) ≥ 12g−4 is a virtually Haken filling

slope. 2

We shall prove several theorems below which provide other supporting evidence for Con-

jecture 0.3. Our results are based on the following theorem and the methods developed in

[BZ2].

Let G and H be groups. We say that G is virtually H-representable if G has a finite

index subgroup which admits a homomorphism onto H.

Theorem 0.5. Suppose that M is a compact, connected, orientable, irreducible 3-

manifold whose boundary is a torus and that there is no closed essential surface in M .

Suppose further that for some slope r0 on ∂M , there is a surjective homomorphism φ :

π1(M(r0)) → Γ where Γ is the orbifold fundamental group of a 2-dimensional hyperbolic

orbifold B of the form B(p1, p2, . . . , pm) 6= S2(p, q, r). Then if r is a slope on ∂M satisfying

∆(r, r0) > 5, π1(M(r)) is virtually Z-representable. Further if ∆(r, r0) > 6, then π1(M(r))

is virtually Z ∗ Z-representable.

Theorem 0.5 can be refined as follows. Recall the orbifold Euler characteristic of a

2-dimensional orbifold of the form B(p1, p2, . . . , pm) is given by

χorb(B) = χ(B) −
m∑

j=1

(1 − 1/pj) (1)

where χ(B) is the usual Euler characteristic of the surface B.

Addendum. Assume the conditions of Theorem 0.5. If r is a slope on ∂M such that

χorb(B) + 1
∆(r,r0)

≤ 0, then π1(M(r)) is virtually Z-representable, and if χorb(B)+ 1
∆(r,r0)

< 0,

then π1(M(r)) is virtually Z ∗ Z-representable.

Remarks. (1) The condition that M be small, i.e. it contains no closed, essential
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surface, gives rise to what is in some ways the most interesting case for investigation. On

the one hand all but finitely many fillings of a small manifold are non-Haken ([Ha]), so

the virtual Haken nature of these manifolds is subtle. On the other hand if M contains a

closed, essential surface S, there is always a slope r0 on ∂M such that S is incompressible in

M(r) for any slope r satisfying ∆(r, r0) > 1 ([Wu1]). Since at most three fillings of M are

reducible [GL], the generic filling of M is Haken. Of course there is in general no a priori

way to determine such an r0, and so identify the slopes which yield Haken manifolds. Hence

it is still of interest to study the fillings of manifolds which are not small.

(2) The conditions of Theorem 0.5 imply that the slope r0 is a strict boundary slope (see

the proof of Theorem 0.5).

(3) If the fundamental group of a 3-manifold W is virtually Z-representable, then its vir-

tual first Betti number bvirt1 (W ) = sup{rank(H1(W̃ )) | there is a finite cover W̃ → W} is

positive.

(4) If the fundamental group of a 3-manifold W is virtually Z ∗ Z-representable, then it is

virtually H-representable for an arbitrary finitely generated group H. Hence bvirt1 (W ) = ∞.

In Theorems 0.6 and 0.7 below we show that the requirement in Theorem 0.5 that M be

small can be removed in various situations (see Remark 1 above).

Theorem 0.6. Suppose that M is a compact, connected, orientable, 3-manifold whose

boundary is a torus and whose interior has a hyperbolic metric of finite volume. Suppose

that r0 is a slope on ∂M such that M(r0) is a reducible manifold which is not S1 × S2 or

RP 3#RP 3.

(i) If M(r) is not virtually Haken, then ∆(r, r0) ≤ 5.

(ii) If π1(M(r)) does not contain a free group of rank 2, then ∆(r, r0) ≤ 6.

(iii) If we assume further that M(r0) is not a connected two lens spaces of orders p, q

where 1/p + 1/q < 1/2, then the distance bounds given in parts (i) and (ii) can be reduced

to 1.

Remark. The conditions of Theorem 0.6 imply that the slope r0 is a strict boundary

slope of genus zero. On the other hand if we add the hypothesis that r0 be a strict boundary

slope, then the condition that M(r0) 6= S1 × S2 can be removed.

Theorem 0.7. Suppose that M is a compact, connected, orientable 3-manifold whose

boundary is a torus and whose interior has a hyperbolic metric of finite volume. Suppose

that for some slope r0 on ∂M , M(r0) admits the structure of a Seifert fibred space whose

base orbifold B is hyperbolic and is not of the form S2(p, q, r). If r is a slope on ∂M such

that ∆(r, r0) > 5, then M(r) is virtually Haken.
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Remarks. (1) The theorem can be refined: if r is a slope on ∂M such that χorb(B) +

1/∆(r, r0) ≤ 0, then a finite cover of M(r) contains an essential surface.

(2) A closed Seifert fibred manifold whose base orbifold is hyperbolic and does not have

the form S2(p, q, r) contains an essential torus. Therefore as M is assumed to be hyperbolic,

r0 is necessarily a strict boundary slope on ∂M of genus less than or equal to 1.

One of the key ingredients in the proofs of Theorems 0.5, 0.6, and 0.7 is a general result,

essentially due to Baumslag, Morgan, and Shalen, on the virtual Z-representability and Z∗Z-

representability of certain quotients of a Fuchsian group Γ [BMS] (though they considered

a special case, their proof applies to a more general situation). This is the focus of the

next section of the paper, where we prove Theorem 1.2 from which Theorem 0.5 will follow

directly. The proof of Theorems 0.6 and 0.7 will depend on Theorem 0.5 and some results

obtained in [BZ2] concerning the incompressibility, after Dehn filling, of certain essential

closed surfaces in M associated to the character varieties of M . The proofs of Theorems

0.5, 0.6, and 0.7 and the Addendum to Theorem 0.5 will be given in §2. In §3 we give

some examples of 3-manifolds M which satisfy the hypotheses of Theorem 0.5 and Theorem

0.6. In particular, we will give an infinite family of small knots in S3 (i.e. knots whose

exteriors are small manifolds) such that each one has a hyperbolic exterior M and except for

at most finitely many slopes, all other slopes on ∂M yield manifolds which are non-Haken

but virtually Haken. Such examples of small knots seem to be the first known.

We work in the smooth category and use the standard 3-manifold and knot theory

terminology as found, for instance, in [He1] and [R].

§1. Virtual representations of Γ/≪ γn ≫

Throughout this section Γ will denote the orbifold fundamental group of a 2-dimensional

hyperbolic orbifold B of the form B(p1, p2, . . . , pm) where 2 ≤ p1, p2, . . . , pm. It is known

that the hyperbolicity of B implies that

χ(Γ)(= χorb(B)) < 0. (2)

Let γ1, γ2, . . . γm ∈ Γ be elements of order p1, p2, . . . , pm corresponding to small loops

about the cone points of B.

Lemma 1.1. A torsion element γ of Γ is conjugate to a power of some γi.

Proof. The group Γ admits a properly discontinous action on H2 with quotient orbifold

B. The point stabilizers of this action are finite subgroups of Γ and if the stabilizer of a
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point p is non-trivial, then p maps to one of the cone points of B. Hence each point stabilizer

conjugates into a subgroup generated by some γi. Now it is well known that any γ ∈ Γ which

has finite order has a fixed point in H2 ([Be, Corollary, pg. 70]), and so in particular lies in

some point stabilizer. The result follows. 2

For an element γ ∈ Γ, we use ≪ γ ≫ to denote the normal subgroup of Γ generated by

γ. Recall that the deficiency of a presentation of a group is the integer equal to the number

of generators minus the number of relators in the presentation.

The method of proof of the following theorem is taken more or less verbatim from the

proof of Theorem B of [BMS] (those authors considered the special case Γ = Z/p ∗ Z/q).

Theorem 1.2. Let γ ∈ Γ and suppose that for some n ≥ 1 there is a representation

ρ : Γ → PSL2(C) for which each ρ(γi) has order pi and ρ(γ) has order n. Then there is an

integer d ≥ 1 and a finite index normal subgroup of Γ/≪ γn ≫ which admits a presentation

P of deficiency

def (P) = 1 − d(χ(Γ) + 1/n).

Proof. As ρ(Γ) is residually finite (being a finitely generated subgroup of PSL2(C) ⊂

SL3(C)), there is a normal subgroup H of finite index in ρ(Γ) such that each ρ(γi) is of

order pi modulo H and ρ(γ) has order n modulo H. Set Γ̃ = ρ−1(H) and observe that

Γ/Γ̃ ∼= ρ(Γ)/H.

In particular Γ̃ has some finite index, say d, in Γ.

We claim that Γ̃ is torsion free. For by Lemma 1.1, if γ̃ ∈ Γ̃ and there is an integer k ≥ 1

such that γ̃k = 1, then γ̃ is conjugate to a power of some γi, say γ̃ is conjugate to γli where

l ≥ 1. But then γli ∈ Γ̃ so that ρ(γli) ∈ H. Thus pi, the order of ρ(γi) modulo H, divides

l. Hence γli = 1 and so γ̃ = 1, i.e. Γ̃ is torsion free. It follows that Γ̃ is the fundamental

group of a compact, connected Euclidean or hyperbolic surface. It is easy to check that the

standard presentation P0 of Γ̃ has deficiency given by

def (P0) = 1 − χ(Γ̃) = 1 − dχ(Γ). (3)

Now we know that γ has order n modulo Γ̃ and so Corollary 3 of [BMS] says that there is

a presentation P of Γ̃/ ≪ γn ≫ obtained from P0 by adding d/n relators. It follows then

from Equation (2) that P has deficiency def (P) = def (P0) − d/n = 1 − dχ(Γ) − d/n =

1 − d(χ(Γ) + 1/n). 2

Corollary 1.3. If χ(Γ) + 1/n ≤ 0, then Γ/ ≪ γn ≫ is virtually Z-representable. If

χ(Γ) + 1/n < 0, then Γ/≪ γn ≫ is virtually Z ∗ Z-representable.

6



Proof. Groups having a presentation of deficiency 1 are virtually Z-representable, while

those admitting a presentation of deficiency at least 2 are virtually Z∗Z-representable [BP].

2

It is a simple matter to determine for which pairs (Γ, n) the conditions of Corollary 1.3

are satisfied. Observe that Equation (1) implies that the following inequality holds

χ(B) −m ≤ χ(Γ) = χ(B) −
m∑

j=1

(1 − 1/pj) ≤ χ(B) −m/2. (4)

Recall that χ(Γ) < 0.

Case 1. χ(B) < −1.

In this case Inequality (4) shows that for each n ≥ 1, χ(Γ)+1/n < 0, so that Γ/≪ γn ≫

is virtually Z ∗ Z-representable.

Case 2. χ(B) = −1.

Here Γ/ ≪ γn ≫ is always virtually Z-representable and is Γ/ ≪ γn ≫ is virtually

Z ∗ Z-representable unless n = 1 and m = 0.

Case 3. χ(B) = 0.

In this case our assumption that χ(Γ) < 0 gives m ≥ 1 (Equation (1)). It then follows

from Inequality (4) that

• when m > 1, Γ/ ≪ γn ≫ is virtually Z-representable for each n ≥ 1, and is virtually

Z ∗ Z-representable unless n = 1,m = 2, and p1 = p2 = 2.

• when m = 1, Γ/ ≪ γn ≫ is virtually Z-representable for each n ≥ 2, and is virtually

Z ∗ Z-representable for each n ≥ 2 unless, perhaps, n = p1 = 2.

Case 4. χ(B) = 1.

Here the assumption that χ(Γ) < 0 gives m ≥ 2 and thus

• Γ/ ≪ γn ≫ is virtually Z-representable unless, perhaps, (i) m = 3, n = 1 and

(p1, p2, p3) is a Platonic triple (i.e. 1/p1 +1/p2 +1/p3 > 1), or (ii) m = 2 and (p1, p2, n)

is a Platonic triple. Note χ(Γ) < 0 precludes the possibility that p1 = p2 = 2.

• Γ/ ≪ γn ≫ is virtually Z ∗ Z-representable unless, perhaps, (i) m = 4, n = 1, and

p1 = p2 = p3 = p4 = 2, or (ii) m = 3, n = 1, and (p1, p2, p3) is a Platonic triple, or (iii)

m = 3, n = 2, and p1 = p2 = p3 = 2, or (iv) m = 2 and (p1, p2, n) is a Euclidean or

Platonic triple (i.e. 1/p1 + 1/p2 + 1/n ≥ 1). Note χ(Γ) < 0 precludes the possibility

that p1 = p2 = 2.
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Case 5. χ(B) = 2.

In this case the assumption that χ(Γ) < 0 gives m ≥ 3. Then

• if m > 6 then Γ/≪ γn ≫ is virtually Z ∗ Z-representable for all n ≥ 1.

• if m = 6 then Γ/ ≪ γn ≫ is virtually Z representable for all n ≥ 1 and virtually

Z ∗ Z-representable unless n = 1 and p1 = p2 = . . . = p6 = 2.

• if m = 5 then Γ/≪ γn ≫ is virtually Z ∗Z-representable for all n ≥ 3 and is virtually

Z-representable for all n ≥ 2.

• if m = 4 then since χ(Γ) < 0 we have p4 ≥ 3 and so Γ/ ≪ γn ≫ is virtually Z ∗ Z-

representable for all n ≥ 7 and is virtually Z-representable for all n ≥ 6.

• if m = 3, then Γ/≪ γn ≫ is virtually Z ∗Z-representable for all (p1, p2, p3) such that

1/p1 + 1/p2 + 1/p3 + 1/n < 1 and is virtually Z-representable for all (p1, p2, p3) such

that 1/p1 + 1/p2 + 1/p3 + 1/n ≤ 1.

As a consequence of these calculations we obtain the following result.

Corollary 1.4. Suppose that B is not of the form S2(p, q, r), γ ∈ Γ, and for some n

there is a representation ρ : Γ → PSL2(C) for which each ρ(γi) has order pi and ρ(γ) has

order n. Then if n > 5, Γ/ ≪ γn ≫ is virtually Z-representable, and if n > 6, Γ/ ≪ γn ≫

is virtually Z ∗ Z-representable.

§2. Proofs of Theorems 0.5, 0.6, and 0.7

First of all we must set the notation to be used and recall some of the results concerning

the relations between the topology of 3-manifolds and the PSL2(C)-character varieties of

3-manifolds. The reader is referred to [BZ2] for more details.

For any finitely generated group G, we use R̄(G) = Hom(G,PSL2(C)) to denote the

PSL2(C)-representation variety of G and use X̄(G) to denote the algebro-geometric quotient

of R̄(G) under the natural PSL2(C)-action. The complex, affine, algebraic set X̄(G) is

called the PSL2(C)-character variety of G. There is a surjective, regular quotient map

t̄ : R̄(G)→X̄(G). For a compact 3-manifold W , we use R̄(W ) and X̄(W ) to denote R̄(π1(W ))

and X̄(π1(W )) respectively.

If X̄(G) is positive dimensional and X0 be a curve in X̄(G), let X̂0 be a projective

completion of X0. Each point of X̂0 \X0 is called an ideal point of X0.
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For each γ ∈ G, the function fγ : X̄(G)→C is defined by fγ(x) = [trace(ρ̃(γ))]2 − 4,

where ρ ∈ t̄−1(x) ⊂ R̄(G) and ρ̃(γ) is an element of Φ−1(ρ(γ)) under the canonical map

Φ : SL2(C)→PSL2(C). Obviously fγ is well defined and it can be shown to be a regular

function.

Let M be a compact, connected, orientable, irreducible 3-manifold with ∂M a torus.

There is an injective homomorphism, well-defined up to conjugation, ψ : H1(∂M) ≡ π1(∂M) →

π1(M). Hence for each α ∈ H1(∂M) we may unambiguously define fα = fψ(α). To each

slope r on ∂M we may associate a class α(r) ∈ H1(∂M), well-defined up to sign, by orienting

one of its representative loops. We shall use the symbol fr to denote the function fα(r).

Suppose that X̄(M) is positive dimensional and suppose that X0 ⊂ X̄(M) is a curve

which contains the character of an irreducible representation. There is a unique 4-dimensional

variety R0 ⊂ R̄(M) such that t̄(R0) = X0 ([BZ2, Lemma 4.1]). The following results from

[BZ2] will be needed in the proofs of Theorems 0.5, 0.6, and 0.7.

(2.1) On X0, either fr is constant for each slope r, or there is a unique slope r0 for which

fr0 is constant, or fr is non-constant for each slope r [BZ2, §5].

(2.2) If at an ideal point of X0, fr has finite limiting value for each slope r, then there is a

closed essential surface in M [BZ2, Proposition 4.7].

(2.3) If r0 is the unique slope with fr0 being constant on X0, then r0 is a boundary slope.

Further if X0 contains the character of a representation in R0 whose image in PSL2(C) has

no index two abelian subgroup, then r0 is a strict boundary slope [BZ2, Proposition 4.7].

(2.4) If ρ(r0) = ±I for each ρ ∈ R0 and if at an ideal point of X0, fr has finite limiting value

for each slope r, then there is a closed essential surface S in M such that if S compresses in

both M(r0) and M(r) for some slope r, then ∆(r, r0) ≤ 1 [BZ2, Proposition 4.10].

Proof of Theorem 0.5 and its Addendum. The homomorphism φ induces an inclusion

X̄(Γ) ⊂ X̄(M(r0)). As we have assumed that B(p1, p2, . . . , pm) is hyperbolic and not of

the form S2(p, q, r), X̄(Γ) is positive dimensional and we may choose a curve X0 ⊂ X̄(Γ) ⊂

X̄(M(r0)) ⊂ X̄(M) which contains the character of a discrete faithful representation ρ0 :

Γ → PSL2(R) ⊂ PSL2(C). Note that ρ0 is an irreducible representation and its image in

PSL2(C) has no finite-index abelian subgroup. By construction, fr0 is constantly zero on

X0 and so by (2.2) above, the smallness of M implies that fr blows up at each ideal point of

X0 for each slope r 6= r0. In particular fr is non-constant if r 6= r0. By (2.3), r0 is a strict

boundary slope.

If γ ∈ Γ is of finite order and ρ ∈ Hom(Γ, PSL2(C)), then trace(ρ̃(γ)) is of the form

±2 cos(2πj/2n) for some integers j, n ≥ 1. In particular the functions fγi
are constant on
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X0 for i = 1, ...,m. Since we have chosen X0 to contain the character of ρ0, it can be shown

that fγi
≡ 4((cos(2πji/2pi))

2 − 1) on X0 for some integer ji relatively prime to 2pi. Thus

ρ(γi) is of order pi for each ρ ∈ t̄−1(X0) and for each of i = 1, ...,m.

Let n ≥ 2 be fixed and consider a slope r on ∂M such that ∆(r, r0) = n. Fix a

dual slope r1 to r0, i.e. a slope which satisfies ∆(r1, r0) = 1. Since fr1 is non-constant

on X0 and blows up at each ideal point of X0, there is some point x1 ∈ X0 such that

fr1(x1) = 4(((cos(2π/2n))2 − 1). It follows that if ρ1 ∈ t̄−1(x1), then ρ1(r1) has order n in

PSL2(C).

Now by construction, ρ1 factors as

π1(M) → π1(M(r0))
φ
→ Γ

ρ
→ PSL2(C)

where ρ is a representation of Γ. If we let γ be any element of Γ obtained by orienting a

representative loop for r1 and attaching the result to the base point by some path, then ρ(γ)

has order n in PSL2(C). In the previous paragraph we observed that ρ(γi) is of order pi

for each of i = 1, ...,m. Applying Corollary 1.4 to ρ implies that Γ/ ≪ γn ≫ is virtually Z

(respectively Z ∗ Z)-representable as long as n > 5 (respectively n > 6).

The identity ∆(r, r0) = n implies that orientations for the slopes may be chosen so

that α(r) = sα(r0) + nα(r1) for some s ∈ Z. It follows that the composition π1(M) →

π1(M(r0))
φ
→ Γ induces a surjection ψ : π1(M(r)) → Γ/ ≪ γn ≫. Thus π1(M(r)) is

virtually Z (respectively Z ∗ Z)-representable as long as n ≥ 6 (respectively n > 7). This

completes the proof of Theorem 0.5. If we apply Corollary 1.3 instead of Corollary 1.4, we

see that the Addendum of Theorem 0.5 holds. 2

Proof of Theorem 0.6. If the first Betti number of M is larger than 1, then M(r) has

a positive first Betti number for each slope r on ∂M . According to [Ga3, Corollary], M(r)

is irreducible for any r 6= r0 and by [Wu3, Theorem 4.1] we may assume that M(r) does

not contain an incompressible torus when ∆(r, r0) > 1. Hence if ∆(r, r0) > 1 then M(r) is

Haken and contains an incompressible surface of genus larger than 1. It therefore contains

a free subgroup of rank 2.

Assume now that the first Betti number of M is 1. The reducibility theorem of Gordon

and Luecke [GL] implies that M(r) is irreducible as long as ∆(r, r0) ≥ 2. Since r0 is

a boundary slope, it follows from [CGLS, Theorem 2.0.3] that one of the following three

possibilities occurs.

(1) M(r0) is a connected sum of two non-trivial lens spaces (here non-trivial means

different from S2 × S1 and S3); or

(2) M contains a closed essential surface S (of genus larger than 1 since M is hyperbolic)
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which remains incompressible in M(r) whenever ∆(r0, r) > 1; or

(3) M(r) = S2 × S1.

By the hypotheses of Theorem 0.6 we may assume that the first possibility arises, though

with at least one of the two nontrivial lens spaces different from the projective 3-space

RP 3. Therefore π1(M(r0)) ∼= Z/p ∗ Z/q with max{p, q} > 2. Let φ denote any isomor-

phism π1(M(r0)) ∼= Z/p ∗ Z/q and observe that Z/p ∗ Z/q ∼= Γ = πorb1 (D2(p, q)). Further

χorb(D2(p, q)) = −1 + (1/p + 1/q) ≤ −1 + (1/2 + 1/3) = −1/6 < 0.

We proceed now as in the proof of Theorem 0.5. Choose a curve X0 ⊂ X̄(Γ) ⊂

X̄(M(r0)) ⊂ X̄(M) which contains the character of a discrete faithful representation ρ0 :

Z/p ∗ Z/q → PSL2(C). By construction fr0(x) = 0 for each ideal point x of X0. If for

any slope r 6= r0 we have fr(x) = ∞ for each ideal point x of X0, then we continue as in

the proof of Theorem 0.5 to see that the parts (i) and (ii) of Theorem 0.6 hold. Further if

1/p+1/q < 1/2 then χorb(D2(p, q))+1/∆(r, r0) < 0 as long as ∆(r, r0) ≥ 2. Hence Corollary

1.3 implies that part (iii) of the theorem also holds.

Assume now that there is some ideal point x of X0 and slope r 6= r0 such that fr has

a finite limiting value at x. Then by (2.4), there is a closed essential surface S in M such

that if r is any slope on ∂M for which ∆(r, r0) > 1, then S remains incompressible in one

of M(r0) or M(r). But clearly S must compress in M(r0), a connected sum of non-trivial

lens spaces, and therefore S remains incompressible in M(r) as long as ∆(r, r0) ≥ 2. Thus

Theorem 0.6 holds in this final case. 2

Proof of Theorem 0.7. Let φ denote the natural surjection from π1(M(r0)) to Γ = πorb1 (B)

and choose a curve X0 ⊂ X̄(Γ) ⊂ X̄(M(r0)) ⊂ X̄(M) which contains the character of a

discrete faithful representation ρ0 : Γ → PSL2(C). By construction fr0(x) = 0 for each

ideal point x of X0. If for any slope r 6= r0 we have fr(x) = ∞ at each ideal point x of X0,

then we continue as in the proof of Theorem 0.5 to see that Theorem 0.7 holds.

Assume now that there is some ideal point x of X0 and slope r 6= r0 such that fr(x) ∈ C.

By (2.4) there is a closed, connected, essential surface S in M such that if S compresses in

both M(r0) and M(r), then ∆(r, r0) ≤ 1. Note that π1(S) lies in an edge stabilizer of the

action of π1(M) on some tree associated to the ideal point x (see [BZ2, §4]). We claim that

S must compress in M(r0). To see this, suppose otherwise. Since M(r0) is Seifert fibred,

the surface S is isotopic in M(r0) to a vertical surface (i.e. consists of fibres) or a horizontal

surface (i.e. intersects transversely to each fibre). But S cannot be vertical, as in this case it

would be an essential torus in M , contradicting the fact that M is hyperbolic. Thus S must

be horizontal and so is either the fibre of a realization of M(r0) as the total space of locally

trivial bundle over the circle, or it splits M(r0) into two twisted I-bundles ([Ja, Lemma
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VI.34]). Hence π1(S) is a normal subgroup of π1(M(r0)) and π1(M(r0))/π1(S) is either Z

or Z/2 ∗ Z/2. Let P : π1(M) → PSL2(C(R0)) be the tautological representation ([BZ2,

§4]) where R0 ⊆ t̄−1(X0) is the unique 4-dimensional variety satisfying t̄(R0) = X0 ([BZ2,

Lemma 4.1]) and C(R0) is the function field over R0. By construction P factors through Γ.

Now according to Proposition 4.4 of [BZ2], either P (π1(S)) = {±I} or there is an index

2 subgroup π0 of π1(M) such that ρ|π0 is reducible for each ρ ∈ t̄−1(X0). Notice that even

if the first case arises, we can still find such a π0 ⊂ π1(M). This is because P would factor

through π1(M)/π1(S) ∼= Z or Z/2 ∗ Z/2 and so there is an index 2 subgroup π0 ⊂ π1(M)

for which P |π0 is reducible. That ρ|π0 is reducible for each ρ ∈ t̄−1(X0) now follows from

Lemma 4.6 (3) of [BZ2]. In either case we see that ρ0 restricts to a reducible representation

on some subgroup of index 2 in π1(M), which is clearly impossible as B is assumed to be a

2-dimensional hyperbolic orbifold. Thus S must compress in M(r0). Then by choice of S, it

is incompressible in M(r) for each slope r for which ∆(r, r0) > 1. Furthermore observe that

as r0 is a toral boundary slope, the work of Y.-Q. Wu [Wu2] and S. Oh [Oh] implies that

M(r) is irreducible as long as ∆(r, r0) ≥ 4. Thus M(r) is Haken when ∆(r, r0) ≥ 4, and so

Theorem 0.7 holds in this final case. 2

§3. Examples

We present several families of examples of virtual Haken Dehn surgery in this section.

Example 3.1. Let K(p, q, 2r) be a pretzel knot in S3 (thus both p and q must be odd)

with gcd(p, q) = d > 1 and let M be the exterior of K in S3. By [Oe, Corollary 4], M is

small and so by the main result of [Ha], all Dehn fillings on M , except possibly for finitely

many, yield non-Haken manifolds. The filling on M with slope 2(p + q) yields a manifold

whose fundamental group surjects onto πorb1 (D2(2, d)) ∼= Z2 ∗ Zd [S, p. 41-46]. By Theorem

0.5, all slopes m/n with |m− 2(p+ q)n| > 6 yield manifolds whose fundamental groups are

virtually Z∗Z-representable. In fact if d ≥ 7, the addendum to Theorem 0.5 implies that this

holds for all slopes m/n with |m− 2(p + q)n| > 2. If K is not fibred, then combining these

observations with Theorem 0.4 implies that there are at most finitely many non virtually

Haken filling slopes on ∂M .

To construct a more specific set of examples, let p ≥ 7 be an odd integer and set

K = K(p, p, 2r) where |r| ≥ 2. Then K is not fibred [Ga4, §6] and so must be hyperbolic

(recall from above that K is simple). Now pretzel knots satisfy the cabling conjecture [LZ,

Proposition], and so all fillings on M yield irreducible manifolds. Consider a slope r of K

corresponding to the rational fraction m/n where without loss of generality n ≥ 0. Since
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d = p ≥ 7, we therefore have that M(m/n) is virtually Haken as long as

|m− 4pn| > 2. (5)

The genus of K, say g, is bounded above by the genus of the spanning surface given by the

Seifert algorithm, so g ≤ p. On the other hand, g is bounded below by 1/2 the degree of

the Alexander polynomial of K, which also evaluates to p (see [Ma, Proposition 14]). Thus

g = p and so Theorem 0.4 shows that K(m/n) is virtually Haken as long as

|m| < 12p− 4. (6)

Inequalities (5) and (6) give 4pn − 2 ≤ m ≤ 4pn + 2, and so we have 1 ≤ n ≤ 2. Now

M(4p) is itself a Haken manifold, so it follows that if M(r) is not virtually Haken, then r is

contained among the seven slopes corresponding to the fractions

{1/0, (4p − 2), (4p − 1), (4p + 1), (4p + 2), (8p − 1)/2, (8p + 1)/2}.

Example 3.2. Another interesting set of examples occurs for the pretzel knots K =

K(p,−p, 2r) where p ≥ 7 is an odd integer and |r| ≥ 2. These knots are fibred [Ga4, §6],

so we cannot apply Theorem 0.4, the result of Cooper and Long. Nevertheless Theorem 0.5

does apply with respect to the longitudinal slope 0 = 2(p + (−p)). As d = p ≥ 7, M(m/n)

are virtually Z ∗ Z-representable as long as |m| > 2. We also observe that M must be

hyperbolic, for longitudinal surgery on a torus knot does not admit a surjection onto the

group Z/2 ∗ Z/p. Therefore M(m/n) is virtually Haken whenever |m| > 2.

Example 3.3. Consider Dehn surgery on the Borromean link in S3. Let N denote

the exterior of the link and let N(m1/n1,m2/n2,m3/n3) denote the manifold obtained

by Dehn filling the three toral boundary components Ti of N with slope mi/ni, i=1,2,3.

(Here the slopes are parameterized by the standard meridian-longitude coordinates.) Then

for all triples (m1/n1;m2/n2;m3/n3) with |m1|, |m2| > 4, |n1|, |n2| > 5 and |n3| > 1,

N(m1/n1,m2/n2,m3/n3) is virtually Haken and contains free subgroup of rank two. Note

that most of these manifolds are hyperbolic and non-Haken.

The justification goes as follows. By [Th2], the complement of the link is hyperbolic.

By [Go, Theorem 1.3], N(m1/n1; ∅; ∅) (where the symbol ∅ means leaving the boundary

torus open with doing filling) is hyperbolic if |n1| > 5 since N(1/0; ∅; ∅) is not hyperbolic.

Likewise, N(m1/n1;m2/n2; ∅) is hyperbolic if |n2| > 5 since N(m1/n1; 1/0; ∅) is not hyper-

bolic. Since N(m1/n1;m2/n2; 1/0) is a connected sum of two lens spaces of orders |m1|

and |m2|, we may apply Theorem 0.6 to deduce that N(m1/n1,m2/n2,m3/n3) is virtually

Haken and contains a free subgroup of rank 2 for all triples (m1/n1;m2/n2;m3/n3) with

|m1|, |m2| > 2, |n1|, |n2| > 5 and |n3| > 1. If we further assume that |n3| > 22, then the
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fillings yield hyperbolic manifolds [BH]. Note that the exterior of the Borromean link con-

tains no closed incompressible non-boundary parallel surface. Hence most of the manifolds

N(m1/n1,m2/n2,m3/n3) are non-Haken by a result of Hatcher [Ha]. One can construct

many more such examples by considering Dehn surgery on Brunnian links.

References

[Ba] M. Baker, On coverings of figure eight knot surgeries, Pac. J. Math. 150 (1991), 215-228.

[BMS] G. Baumslag, J. Morgan and P. Shalen, Generalized triangle group, Math. Proc. Camb.

Phil. Soc. 102 (1987), 25-31.

[BP] B. Baumslag and S. Pride, Groups with two more generators than relators, J. Lond. Math.

Soc. (2) 17 (1978), 425-426.

[Be] A. F. Beardon, The geometry of discrete groups, GTM 91, Springer-Verlag, 1983.

[BH] S. Bleiler and C. Hodgson, Spaces forms and Dehn fillings, Topology 35 (1996), 809-833.

[BCSZ] S. Boyer, M. Culler, P. Shalen and X. Zhang, in preparation.

[BZ1] S. Boyer and X. Zhang, Finite Dehn surgery on knots, J. Amer. Math. Soc. 9 (1996),

1005-1050.

[BZ2] —, On Culler-Shalen seminorms and Dehn filling, to appear in the Ann. of Math.

[CJ] A. Casson and D. Jungreis, Convergence groups and Seifert fibred 3-manifolds, Invent.

Math. 118 (1994), 441-456.

[CL] D. Cooper and D. Long, Virtually Haken Dehn-filling, preprint.

[CGLS] M. Culler, C. Gordon, J. Luecke and P. Shalen, Dehn surgery on knots, Ann. of Math.

125 (1987), 237-300.

[Ga1] D. Gabai, Homotopy hyperbolic 3-manifolds are virtually hyperbolic, J. Amer. Math. Soc.

7 (1994), 193-198.

[Ga2] —, Convergence groups are Fuchsian groups, Ann. Math. 136 (1992), 447-510.

[Ga3] —, Foliations and the topology of 3-manifolds II, J. Diff. Geo. 26 (1987), 461-478.

[Ga4] —, Detecting fibred links in S3, Comm. Math. Helv. 61 (1986), 519-555.

[GMT] D. Gabai, R. Meyerhoff and N. Thurston, Homotopy hyperbolic 3-manifolds are hyperbolic,

preprint.

[Go] C. Gordon, Boundary slopes of punctured tori in 3-manifolds, to appear in the Trans. Amer.

Math. Soc.

[GL] C. Gordon and J. Luecke, Reducible manifolds and Dehn surgery, Topology 35 (1996),

385-409.

[Ha] A. Hatcher, On the boundary curves of incompressible surfaces, Pacific J. Math. 99

(1982), 373-377.

[He1] J. Hempel, 3-Manifolds, Annals of Math. Studies. 86, Princeton University Press,

1976.

[He2] J. Hempel, Coverings of Dehn fillings of surface bundles, Top. Appl. 24 (1986),

157-170.

[Ja] W. Jaco, Lectures on three-manifolds topology, CBMS Regional Conf. Ser. Math. 43,

14



Amer. Math. Soc., 1980.

[KL] S. Kojima and D. Long, Virtual Betti numbers of some hyperbolic 3-manifolds, in

Y. Matsumoto, T. Mizutani, & S. Morita (Eds.), A Fete of Topology, Academic Press,

1988.

[LZ] E. Luft and X. Zhang, Symmetric knots and the cabling conjecture, Math. Ann. 298

(1994), 489-496.

[Ma] N. Maruyama, On Dehn surgery along a certain family of knots, J. Tsuda College 19

(1987), 261-280.

[Mo] L. Moser, Elementary surgery along a torus knot, Pac. J. Math. 38 (1971) 737-745.

[N] A. Nicas, An infinite family of hyperbolic non-Haken 3-manifolds with vanishing White-

head groups, Math. Proc. Camb. Phil. Soc. 99 (1986), 239-246.

[Oe] U. Oertel, Closed incompressible surfaces in complements of star links, Pac. J. Math.

111 (1984), 209-230.

[Oh] S. Oh, Reducible and toroidal 3-manifolds obtained by Dehn filling, Top. Appl., to

appear.

[R] D. Rolfsen, Knots and Links, 2nd edition, Publish or Perish, 1990.

[S] J. Simon, Methods for proving that certain classes of knots have property P , Ph. D.

thesis, University of Wisconsin, 1969.

[Th1] W. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry,

Bull. Amer. Math. Soc. 6 (1982), 357-381.

[Th2] —, The Geometry and Topology of Three Manifolds, Princeton University Lecture

Notes, 1979.

[Wa] F. Waldhausen, The word problem in fundamental groups of sufficiently large 3-manifolds,

Ann. Math. 88 (1968), 272-280.

[Wu1] Y.-Q. Wu, Incompressibility of surfaces in surgered 3-manifolds, Topology 31 (1992),

271-279.

[Wu2] —, Dehn surgeries producing reducible manifold and toroidal manifold, preprint.

[Wu3] —, Dehn surgery and simple manifolds, preprint.

Steven Boyer Xingru Zhang
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