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Abstract. The exceptional Dehn filling conjecture of the second author concerning the re-

lationship between exceptional slopes α, β on the boundary of a hyperbolic knot manifold M

has been verified in all cases other than small Seifert filling slopes. In this paper we verify

it when α is a small Seifert filling slope and β is a toroidal filling slope in the generic case

where M admits no punctured-torus fibre or semi-fibre, and there is no incompressible torus in

M(β) which intersects ∂M in one or two components. Under these hypotheses we show that

∆(α, β) ≤ 5. Our proof is based on an analysis of the relationship between the topology of

M , the combinatorics of the intersection graph of an immersed disk or torus in M(α), and the

two sequences of characteristic subsurfaces associated to an essential punctured torus properly

embedded in M .

1. Introduction

This is the first of four papers concerned with the relationship between Seifert filling slopes and

toroidal filling slopes on the boundary of a hyperbolic knot manifold M . Such results are part

of the exceptional surgery problem, which we describe now.

A hyperbolic knot manifold M is a compact, connected, orientable, hyperbolic 3-manifold whose

boundary is a torus. A slope on ∂M is a ∂M -isotopy class of essential simple closed curves.

Slopes can be visualized by identifying them with ±-classes of primitive elements of H1(∂M)

in the surgery plane H1(∂M ;R). The distance ∆(α1, α2) between slopes α1, α2 is the absolute

value of the algebraic intersection number of their associated classes in H1(∂M). Given a set

of slopes S, set ∆(S) = sup{∆(α, β) : α, β ∈ S}.

To each slope α on ∂M we associate the α-Dehn filling M(α) = (S1 ×D2) ∪f M of M where

f : ∂(S1 ×D2) → ∂M is any homeomorphism such that f({∗} × ∂D2) represents α.

Set E(M) = {α |M(α) is not hyperbolic} and call the elements of E(M) exceptional slopes. It

follows from Thurston’s hyperbolic Dehn surgery theorem that E(M) is finite, while Perelman’s

solution of the geometrisation conjecture implies that

E(M) = {α |M(α) is either reducible, toroidal, or small Seifert}
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Here, a manifold is small Seifert if it admits a Seifert structure with base orbifold of the form

S2(a, b, c), where a, b, c ≥ 1.

Much work has been devoted to understanding the structure of E(M) and describing the topol-

ogy of M when |E(M)| ≥ 2. For instance, sharp upper bounds are known for the distance

between two reducible filling slopes [GL], between two toroidal filling slopes [Go], [GW], and

between a reducible filling slope and a toroidal filling slope [Oh], [Wu1]. More recently, strong

upper bounds were obtained for the distance between a reducible filling slope and a small Seifert

filling slope [BCSZ2], [BGZ2]. In this paper, and its sequel, we examine the distance between

toroidal filling slopes and small Seifert filling slopes.

Let W be the exterior of the right-handed Whitehead link and T one of its boundary compo-

nents. Consider the following hyperbolic knot exteriors obtained by the indicated Dehn filling

of W along T : M1 = W (T ;−1),M2 = W (T ;−2),M3 = W (T ; 5),M4 = W (T ; 52 ). One of the

key conjectures concerning E(M) is the following:

Conjecture 1.1 (C.McA. Gordon). For any hyperbolic knot manifold M , we have #E(M) ≤ 10

and ∆(E(M)) ≤ 8. Moreover, if M 6=M1,M2,M3,M4, then #E(M) ≤ 7 and ∆(E(M)) ≤ 5.

It is shown in [BGZ1] that the conjecture holds if the first Betti number of M is at least 2.

(By duality, it is at least 1.) Lackenby and Meyerhoff have proven that the first statement of

the conjecture holds in general [LM]. See §2 of their paper for a historical survey of results

concerning upper bounds for #E(M) and ∆(E(M)). Agol has shown that there are only finitely

many hyperbolic knot manifolds M with ∆(E(M)) > 5 [Ag], though no practical fashion to

determine this finite set is known.

It follows from [GL], [Oh], [Wu1], [Go] and [GW] that Conjecture 1.1 holds if E(M) is replaced

by E(M) \ {α | M(α) is small Seifert}. It remains, therefore, to consider pairs α, β such that

M(α) is small Seifert and M(β) is either reducible, toroidal or small Seifert. The first case is

treated in [BCSZ2], where it is shown that, generically, ∆(α, β) ≤ 4. (See below for a more

precise statement.) In the present paper we are interested in the second case. (We remark

that if M(α) is toroidal Seifert fibred and M(β) is toroidal then ∆(α, β) ≤ 4 [BGZ3].) Here,

Conjecture 1.1 implies

Conjecture 1.2. Suppose that M is a hyperbolic knot manifold M and α, β are slopes on ∂M

such that M(α) is small Seifert and M(β) toroidal. If ∆(α, β) > 5, then M is the figure eight

knot exterior.

Understanding the relationship between Dehn fillings which yield small Seifert manifolds and

other slopes in E(M) has proven difficult. The techniques used to obtain sharp distance bounds

in other cases either provide realtively weak bounds here or do not apply at all. For instance,

the graph intersection method (see e.g. [CGLS], [GL]) cannot be used as typically, small Seifert

manifolds do not admit closed essential surfaces. On the other hand, they usually do admit

essential immersions of tori, a fact which can be exploited. Suppose that α and β are slopes

on ∂M such that M(α) is small Seifert and M contains an essential surface F of slope β. It
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was shown in [BCSZ1] how to construct an immersion h : Y → M(α) where Y is a disk or

torus, a labeled “intersection” graph ΓF = h−1(F ) ⊂ Y , and, for each sign ǫ = ±, a sequence

of characteristic subsurfaces

F = Φ̇ǫ0 ⊃ Φ̇ǫ2 ⊃ Φ̇ǫ3 ⊃ . . . ⊃ Φ̇ǫn ⊃ . . .

The relationship between the combinatorics of ΓF , the two sequences of characteristic subsur-

faces, and the topology of M was exploited in [BCSZ2] to show that if M(α) is small Seifert,

M(β) is reducible, and the (planar) surface F is neither a fibre nor semi-fibre in M , then

∆(α, β) ≤ 4. (See also [CL], [Li] where a related method is used to study the existence of

immersed essential surfaces in Dehn fillings of knot manifolds.) The main contributions of this

paper are the further refinement of this technique and its application in the investigation of

Conjecture 1.2.

WhenM is the figure eight knot exterior there are (up to orientation-reversing homeomorphism

of M) two pairs (α, β) with ∆(α, β) > 5 such that M(α) is small Seifert and M(β) is toroidal,

namely (−3, 4) and (−2, 4). The toroidal manifold M(4) contains a separating incompressible

torus which intersects ∂M in two components. Moreover the corresponding punctured torus

is not a fibre or semi-fibre in M . We show that if a hyperbolic knot manifold M has a small

Seifert filling M(α) and a toroidal filling M(β) then ∆(α, β) ≤ 5 in the generic case when M

admits no punctured-torus fibre or semi-fibre, and there is no incompressible torus in M(β)

which intersects ∂M in one or two components. Our precise result is stated in §2 where we also

detail our underlying assumptions and provide an outline of the paper. We will examine the

non-generic cases of Conjecture 1.2 in the forthcoming manuscripts [BGZ3], [BGZ4].

We are indebted to Marc Culler and Peter Shalen for their role in the development of the ideas

in this paper.

2. Basic assumptions and statement of main result

Throughout the paper we work under the following assumptions.

Assumption 2.1. M(α) is a small Seifert manifold with base orbifold S2(a, b, c) where a, b, c ≥

1 and M(β) is toroidal.

Assumption 2.2. Among all embedded essential tori in M(β), F̂ is one whose intersection

with ∂M has the least number of components.

Then F = F̂ ∩M is a properly embedded essential punctured torus in M with boundary slope

β. Set m = |∂F | ≥ 1.

Assumption 2.3. If there is an essential separating torus in M(β) satisfying Assumption 2.2,

F̂ has been chosen to be separating.

Assumption 2.4. If there is an essential torus in M(β) satisfying Assumption 2.2 which

bounds a twisted I-bundle over the Klein bottle in M(β), F̂ has been chosen to bound such an

I-bundle.



CHARACTERISTIC SUBMANIFOLD THEORY AND TOROIDAL DEHN FILLING 4

Note that it is possible that there are essential tori F̂1, F̂2 in M(β) which bound twisted I-

bundles over the Klein bottle in M(β), such that F̂1 ∩M is the frontier of a twisted I-bundle

in M but F̂2 ∩M is not.

Assumption 2.5. If there is an essential torus F̂ in M(β) satisfying Assumption 2.2 such that

there is a twisted I-bundle in M with frontier F = F̂ ∩M , F̂ has been chosen so that F is the

frontier of a twisted I-bundle.

Let S be the surface in M which is F when F is separating and is a union of two parallel copies

F1, F2 of F when F is non-separating. Then S splits M into two components X+ and X−.

Let Ŝ be a closed surface in M(β) obtained by attaching disjoint meridian disks of the β-filling

solid torus to S. Then Ŝ splits M(β) into two compact submanifolds X̂+ containing X+ and

X̂− containing X−, each having incompressible boundary Ŝ.

We call F a fibre in M if it is a fibre of a surface bundle map M → S1. Equivalently, the

exterior of F in M is homeomorphic to F × I. We call F a semi-fibre in M if it separates and

splits M into two twisted I-bundles.

Assumption 2.6. Assume that F , chosen as above, is neither a fibre nor a semi-fibre in M .

In particular, assume that X+ is not an I-bundle over a surface.

Here is our main theorem.

Theorem 2.7. Suppose that M is a hyperbolic knot manifold and α, β slopes on ∂M such that

M(α) is a small Seifert manifold and M(β) is toroidal. Let F be an essential genus 1 surface

of slope β which is properly embedded in M and which satisfies the assumptions listed above. If

m ≥ 3, then ∆(α, β) ≤ 5.

When the first Betti number of M is at least 2 or one of M(α) and M(β) is reducible, Theorem

2.7 holds by [Ga], [BGZ1], [BCSZ2], [Oh], [Wu1]. Thus we make the following assumption.

Assumption 2.8. The first Betti number of M is 1 and both M(α) and M(β) are irreducible.

The paper is organised as follows. Section 3 contains background information on characteristic

submanifolds associated to the pair (Xǫ, S) (ǫ = ±). Sections 4 and 5 are devoted to exploring

the restrictions forced on essential annuli in (Xǫ, S) by our assumptions on F . These results

will be applied in §7 to the study the structure of the characteristic submanifolds of (Xǫ, S)

and the topology of X̂ǫ. An analysis of the existence and numbers of certain characteristic

subsurfaces of S is made in §6, §8, and §9. The relation between the number of such surfaces

and the length of essential homotopies in (M,S) is determined in §10. Section 11 introduces the

intersection graphs associated with certain immersions in M(α) and relates their structure to

lengths of essential homotopies, leading to bounds on ∆(α, β). Conditions which guarantee the

existence of faces of the graph with few edges are investigated in §12, while the relations in the

fundamental groups of X+ and X− associated to these faces are considered in §15. Theorem

2.7 is proved when F is non-separating in §13 and in the presence of “tight” characteristic
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subsurfaces in §14 and §16. The implications of certain combinatorial configurations in the

intersection graph are examined in §17. The proof of Theorem 2.7 in the absence of tight

components is achieved in the last two sections.
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8. Ŝ-essential annuli in Φ̇ǫ
j 23

9. The existence of tight components in Φ̆ǫ
j for small values of j 25

10. Lengths of essential homotopies 28

11. The intersection graph of an immersed disk or torus 29

12. Counting faces in ΓS 34

13. Proof of Theorem 2.7 when F is non-separating 36

14. Proof of Theorem 2.7 when F is separating and t+1 + t−1 ≥ 4 37

15. The relation associated to a face of ΓS 37

16. Proof of Theorem 2.7 when F is separating and t+1 + t−1 = 2 39

17. Extended S-cycles in ΓS 42

18. Proof of Theorem 2.7 when X− is not an I-bundle and t+1 = t−1 = 0 44

18.1. Background results 44

18.2. Proof 46

19. Proof of Theorem 2.7 when X− is a twisted I-bundle and t+1 = 0 47

19.1. Background results 47

19.2. Proof when Φ̇+

3 is a union of tight components 49



CHARACTERISTIC SUBMANIFOLD THEORY AND TOROIDAL DEHN FILLING 6

19.3. Proof when Φ̇+

3 is not a union of tight components 68

References 74

3. Characteristic submanifolds of (Xǫ, S)

3.1. General subsurfaces of S. A surface is called large if each of its components has negative

Euler characteristic.

A connected subsurface S0 of S is called neat if it is either a collar on a boundary component

of S or it is large and each boundary component of S that can be isotoped into S0 is contained

in S0. A subsurface of S is neat if each of its components has this property.

For each boundary component b of S, let b̂ denote a meridian disk which it bounds in the β-

filling solid torus ofM(β). The completion of a neat subsurface S0 of S is the surface Ŝ0 ⊆M(β)

obtained by attaching the disks b̂ to S0 for each boundary component b of S contained in S0.

A simple closed curve c ⊆ S is called outer if it is parallel in S to a component of ∂S. Otherwise

it is called inner.

A boundary component of a subsurface is called an inner boundary component if it is an inner

curve, and an outer boundary component otherwise.

A neat subsurface S0 of S is called tight if Ŝ0 is a disk. Equivalently, S0 is a connected, planar,

neat subsurface of S with at most one inner boundary component.

A simple closed curve c ⊆ S which is essential in Ŝ will be called Ŝ-essential.

We call a subsurface S0 of S an Ŝ-essential annulus if Ŝ0 is an essential annulus in Ŝ.

Two essential annuli in Ŝ are called parallel if their core circles are parallel in Ŝ.

3.2. Characteristic subsurfaces of S. For the rest of the paper we use ǫ to denote either of

the signs {±}.

A map f of a path-connected space Y to S is called large if f#(π1(Y )) contains a non-abelian

free group.

A map of pairs f : (Y,Z) → (Xǫ, S) is called essential if it is not homotopic, as a map of pairs,

to a map f ′ : (Y,Z) → (Xǫ, S) where f ′(Y ) ⊆ S.

An essential annulus in (Xǫ, S) is the image of an essential proper embedding (S1×I, S1×∂I) →

(Xǫ, S).

An essential homotopy of length n in (M,S) of f : Y → S which starts on the ǫ-side of S is a

homotopy

H : (Y × [a, a+ n], Y × {a, a+ 1, . . . , a+ n}) → (M,S)
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such that

(1) H(y, a) = f(y) for each y ∈ Y ;

(2) H−1(S) = Y × {a, a+ 1, . . . , a+ n};

(3) for each i ∈ {1, 2, . . . , n}, H|Y × [a+ i− 1, a+ i] is an essential map in (X(−1)i−1ǫ, S).

Let (Σǫ,Φǫ) ⊆ (Xǫ, S) be the characteristic I-bundle pair of (Xǫ, S) [JS], [Jo]. We shall use τǫ
to denote the free involution on Φǫ which interchanges the endpoints of the I-fibres of Σǫ.

The union of the components P of Σǫ for which P ∩ S is large is denoted by Σǫ1. Set

Φǫ0 = S

and

Φǫ1 = Σǫ1 ∩ S

More generally, for j ≥ 0 we define Φǫj ⊆ S to be the j-th characteristic subsurface with respect

to the pair (M,S) as defined in §5 of [BCSZ1]. We shall assume throughout the paper that Φǫj
is neatly embedded in S. It is characterised up to ambient isotopy by the following property:

(∗)

{
a large function f0 : Y → S admits an essential homotopy of length j which starts

on the ǫ-side of S if and only if it is homotopic in S to a map with image in Φǫj

See [BCSZ1, Proposition 5.2.8].

A compact connected 3-dimensional submanifold P of Xǫ is called neat if

(1) ∂P ∩ S is a neat subsurface of S;

(2) each component of ∂P \ S is an essential annulus in (Xǫ, S);

(3) some component of ∂M ∩Xǫ is isotopic in (Xǫ, S) into P , then it is contained in P .

A compact 3-dimensional submanifold P of Xǫ is called neat if each of its components has this

property.

Given a neat submanifold P of Xǫ, we use P̂ to denote the submanifold of X̂ǫ obtained by

attaching to P those components H of X̂ǫ \ int(M) for which H ∩ ∂M ⊆ P .

For convenience we describe some properties of the characteristic I-bundle pair (Σǫ,Φǫ) which

hold under the assumptions on F listed in §2, even though their justification will only be

addressed in §4.

It follows from Proposition 4.9 that if c and τǫ(c) are two outer boundary components of Φǫ1,

then Φǫ1 can be isotoped so that the annulus component in ∂M ∩Xǫ bounded by c and τǫ(c) is

contained in Σǫ1. We will therefore assume from §5 on that Σǫ1 is neatly embedded in S.

Let Φ̇ǫj denote the union of the components of Φǫj which contain some outer boundary com-

ponents. We will see in Proposition 4.4 that τǫ preserves the set of outer, respectively inner,

essential simple closed curves in Φǫ1. Hence, it restricts to a free involution on Φ̇ǫ1, which we

continue to denote τǫ. Let Σ̇
ǫ
1 denote the corresponding I-bundle.
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Let Φ̆ǫj be the neat subsurface in S obtained from the union of Φ̇ǫj and a closed collar neighbour-

hood of ∂S \ ∂Φ̇ǫj in S \ Φ̇ǫj. It follows from the previous paragraph that there is an I-bundle

pair (Σ̆ǫ1, Φ̆
ǫ
1) properly embedded in (Xǫ, S) where Σ̆ǫ1 is the union of Σ̇ǫ1 and closed collar neigh-

bourhoods of the annular components of ∂M ∩Xǫ cobounded by components of ∂S \∂Φ̇ǫ1. Thus

τǫ : Φ̇
ǫ
1 → Φ̇ǫ1 extends to an involution τǫ : Φ̆

ǫ
1 → Φ̆ǫ1.

A properly embedded annulus in (Xǫ, S) is called vertical if it is a union of I-fibres of Σ̆ǫ1. A

subsurface of Φ̆ǫ1 is called horizontal.

It follows from the defining property (∗) of the surfaces Φ̇ǫj that if (X
−, S) is an I-bundle pair,

then for each j ≥ 0,

(Φ̆−
2j , Φ̇

−
2j) = (Φ̆−

2j+1, Φ̇
−
2j+1)

(Φ̆+
2j+1, Φ̇

+
2j+1) = (Φ̆+

2j+2, Φ̇
+
2j+2)

(Φ̆−
2j+2, Φ̇

−
2j+2) = (τ−(Φ̆

+
2j+1), τ−(Φ̇

+
2j+1))

Recall from [BCSZ1, Proposition 5.3.1] that for each ǫ and j ≥ 0 there is a homeomorphism

hǫj : (Φ̆
ǫ
j , Φ̇

ǫ
j) → (Φ̆

(−1)j+1ǫ
j , Φ̇

(−1)j+1ǫ
j )

obtained by concatenating alternately restrictions of τ+ and τ−. These homeomorphisms satisfy

some useful properties:

hǫ1 = τǫ

hǫ2j : (Φ̆
ǫ
2j , Φ̇

ǫ
2j)

∼=
−→ (Φ̆−ǫ

2j , Φ̇
−ǫ
2j )

hǫ2j+1 : (Φ̆
ǫ
2j+1, Φ̇

ǫ
2j+1)

∼=
−→ (Φ̆ǫ2j+1, Φ̇

ǫ
2j+1) is a free involution

Finally, consider two large subsurfaces S0, S1 of S. Their large essential intersection is a large,

possibly empty, subsurface S0 ∧ S1 of S characterised up to isotopy in S by the property:

(∗∗)

{
a large function f : Y → S is homotopic into both

S0 and S1 if and only if it is homotopic into S0 ∧ S1

See [BCSZ1, Proposition 4.2]. It follows from the defining property (∗) of the surfaces Φ̇ǫj that

(3.2.1) hǫj(Φ̇
ǫ
j+k) = Φ̇

(−1)j+1ǫ
j ∧ Φ̇

(−1)jǫ
k

4. Essential embedded annuli in (Xǫ, S)

The next two sections are devoted to exploring the restrictions forced on essential annuli in

(Xǫ, S) by our assumptions on F . These results will be applied in §7 to the study of the

structure of Φ̇+
1 and Φ̇−

1 .

Lemma 4.1. Let U be a submanifold of M(β) which is homeomorphic to a Seifert fibred space

over the disk with two cone points. If U contains a closed curve which is non-null homotopic

in M(β), then either

(i) ∂U is an incompressible torus in M(β), or
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(ii) M(β) \ U is a solid torus and M(β) is a torus bundle over the circle which admits a Seifert

structure with base orbifold of the form S2(a, b, c) where 1
a +

1
b +

1
c = 1.

Proof. Suppose that ∂U is compressible in M(β). Then it is compressible in M(β) \ U . The

surgery of the torus ∂U using a compressing disk produces a separating 2-sphere. Since M(β)

is irreducible, this 2-sphere bounds a 3-ball B in M(β). By hypothesis, U is not contained in

B. Thus M(β) \ U is a solid torus. As M(β) is irreducible (Assumption 2.8) and a Dehn filling

of U , it is a Seifert fibred manifold over the 2-sphere with at most three cone points. But if

such manifold contains an incompressible torus, it is a torus bundle over the circle and admits

a Seifert structure of the type described in (ii). ♦

Lemma 4.2. Suppose that (A, ∂A) ⊆ (Xǫ, S) is an embedded essential annulus. Let c1, c2 be

the two boundary components of A.

(1) c1 is essential in Ŝ if and only if c2 is essential in Ŝ.

(2) If c1 and c2 cobound an annulus E in Ŝ, then A is not parallel in X̂ǫ to E. Furthermore E

is essential in Ŝ.

(3) If one of c1 and c2 is not essential in Ŝ, then c1 and c2 bound disjoint disks D1 and D2 in

Ŝ such that |D1 ∩ ∂M | = |D2 ∩ ∂M |.

Proof. (1) This follows from the incompressibility of Ŝ in X̂ǫ.

(2) Suppose otherwise that A is parallel to E in X̂ǫ. Since A is essential in Xǫ, E ∩ ∂M is not

empty. But then we may consider E as an annulus in F̂ , and if we replace E in F̂ by A, we

get a torus in M(β) which is incompressible (since it is isotopic to F̂ ) but has fewer than m

components of intersection with ∂M . This contradicts Assumption 2.2.

Now we show that E is essential in Ŝ. Suppose otherwise. Then one of c1 and c2, say c1,

bounds a disk D in Ŝ with interior disjoint from E. If A is non-separating in X̂ǫ then A∪E is

a non-separating Klein bottle or torus with compressing disk D with non-separating boundary.

Compression of A∪E along D yields a non-separating 2-sphere in X̂ǫ, which is impossible since

X̂ǫ is irreducible (Assumption 2.8). Thus A is separating in X̂ǫ and therefore T = E ∪ A is a

torus. Denote by W1 and W2 the two components of X̂ǫ cut open along A and assume that W1

is the component whose boundary is T . Assumption 2.8 shows that a regular neighborhood Y

of W1 ∪D in X̂ǫ is a 3-ball. Hence the disk E ∪D is isotopic in Y to the disk A ∪D. So by

Assumption 2.2 we have |E ∩ ∂M | = 0. Therefore W1 is contained in Xǫ.

Since F is not contained in a regular neighborhood of ∂M , T = ∂W1 is not parallel to ∂M .

The hyperbolicity of M then implies that T is compressible in M . Since F is essential, we

may assume that a compressing disk D∗ for T in M is contained in Xǫ. If the interior of D∗ is

disjoint from W1, then W1 is contained in a 3-ball in M contrary to the fact that c1 is essential

in S. Thus D∗ ⊂ W1. The 2-sphere obtained by compressing T along D∗ bounds a 3-ball

contained in W1. (Otherwise ∂M would be contained in W1 ⊆ Xǫ.) Hence W1 is a solid torus.
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But A is not parallel to E in W1. Therefore Y is once-punctured lens space with non-trivial

fundamental group and not a 3-ball. This contradiction completes the proof of (2).

(3) By part (1) of this lemma, ci bounds a disk Di in Ŝ for each of i = 1, 2. If D1 and D2 are

not disjoint, then one is contained in the other, say D1 ⊆ D2. Thus c1 and c2 bound an annulus

E in D2. This contradicts part (2) of this theorem.

So D1 and D2 are disjoint. Let di = |Di ∩ ∂M |, i = 1, 2. Suppose otherwise that d1 6= d2, say

d1 < d2. Since X̂ǫ is irreducible, A ∪D1 ∪D2 bounds a 3-ball B in X̂ǫ with the interior of B

disjoint from Ŝ. Then it is not hard to see that the disk D2 can be isotoped rel its boundary in

B to have at most d1 intersection components with ∂M . This implies that the incompressible

torus F̂ can be isotoped in M(β) to have less than m intersection components with ∂M , which

again contradicts our minimality assumption on m = |∂F |. ♦

A root torus in (Xǫ, S) is a solid torus Θ ⊆ Xǫ such that Θ ∩ S is an incompressible annulus

in ∂Θ whose winding number in Θ is at least 2 in absolute value. For instance, a regular

neighbourhood of an embedded Möbius band (B, ∂B) ⊆ (Xǫ, S) is a root torus. Note that for

such a Θ, ∂Θ \ (Θ ∩ F ) is an essential annulus in (Xǫ, F ).

Lemma 4.2(2) yields the following lemma.

Proposition 4.3. If Θ is a root torus in (Xǫ, S), then Θ ∩ S is an essential annulus in Ŝ. In

particular, the boundary of a Möbius band properly embedded in Xǫ is essential in Ŝ. ♦

Proposition 4.4. A simple closed curve c ⊆ Φ̆ǫ1 is inner, respectively outer, if and only if τǫ(c)

is inner, respectively outer. In particular, the image by τǫ of a tight subsurface of Φ̆ǫ1 is a tight

subsurface of Φ̆ǫ1.

Proof. Suppose that c is inner. It suffices to see that τǫ(c) is inner as well. If c is Ŝ-essential,

so is τǫ(c) since they cobound a singular annulus. Thus τǫ(c) is inner. Otherwise, c bounds a

disk D in Ŝ containing at least two components of ∂S. If c cobounds an annulus with τǫ(c)

in Xǫ, for instance if c is contained in a product bundle component of Σ̆ǫ1, then Lemma 4.2(3)

shows that τǫ(c) is inner. In general, let φ be the component of Φ̆ǫ1 which contains c and Σ the

component of Σ̆ǫ1 which contains φ. Each boundary component of φ cobounds a vertical annulus

in Σ with its image under τǫ, so if c is boundary-parallel in φ, we are done. On the other hand,

if it is not boundary-parallel in φ, τǫ(c) is not boundary-parallel in τǫ(φ) and therefore cannot

be boundary-parallel in S. Thus τǫ(c) is inner. ♦

Proposition 4.5. If φ is a tight component of Φ̆ǫ2j+1, then h
ǫ
2j+1(φ) ∩ φ = ∅.

Proof. If hǫ2j+1(φ) ∩ φ 6= ∅, then hǫ2j+1(φ) = φ. Hence as hǫ2j+1 = gj ◦ τǫ ◦ g
−1
j where gj =

τ(−1)jǫ ◦ τ(−1)j−1ǫ ◦ . . . ◦ τ−ǫ, we have τǫ(φ
′) = φ′ where φ′ is the the tight subsurface gj(φ) of Φ̆

ǫ
1.

It follows from Proposition 4.4 that if c is the inner boundary component of φ′, then τǫ(c) = c.

Thus c bounds a Möbius band properly embedded in Xǫ. But then Proposition 4.3 implies that

c is Ŝ-essential, contrary to the tightness of φ′. Thus hǫ2j+1(φ) ∩ φ = ∅. ♦
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Proposition 4.6. Let P be a component of Σǫ1 and suppose that c is an inner boundary com-

ponent of P ∩ S which is inessential in Ŝ. Let D ⊂ Ŝ be the disk with boundary c and sup-

pose that the component of P ∩ S containing c is disjoint from int(D). Then P ∩ D = c

and if H is the component of X̂ǫ \ P which contains D and A is the annulus P ∩ H, then

(H,A) ∼= (D2 × I, (∂D2)× I). In particular, the I-bundle structure on P extends over P ∪H.

Proof. Lemma 4.2(3) implies that there is a diskD′ ⊂ Ŝ disjoint fromD such that ∂D′ = τǫ(c).

Thus P ∩ D = c. Note that ∂A = c ∪ τǫ(c). Then D ∪ A ∪ D′ is a 2-sphere which bounds a

3-ball B ⊆ X̂ǫ such that B ∩ P = A. The desired conclusions follow from this. ♦

Lemma 4.7. Suppose that (A, ∂A) ⊆ (Xǫ, S) is a non-separating essential annulus with bound-

ary components c1, c2. Then c1 and c2 are essential in Ŝ. Further, either

(i) S = F , X− is a twisted I-bundle, and ∂A splits F̂ into two annuli E1, E2 such that |Ej ∩

∂M | = m/2 and A ∪ Ej is a Klein bottle for j = 1, 2; or

(ii) S = F1 ∪ F2 has two components where cj is contained in Fj .

Proof. The components of ∂A are either both inessential in Ŝ or both essential (Lemma 4.2(1)).

In the former case, Lemma 4.2(3) implies that there are disjoint disks D1,D2 in Ŝ such that

cj = ∂Dj . Then D1 ∪ A ∪ D2 is a 2-sphere in the irreducible manifold X̂ǫ, which therefore

bounds a 3-ball. This is impossible since A in non-separating. Thus the components of ∂A are

essential in Ŝ.

If conclusion (ii) does not hold, there is a component S0 of S such that ∂A splits Ŝ0 into

two annuli: Ŝ0 = E1 ∪∂A E2. We assume, without loss of generality, that |E1 ∩ ∂M | ≤ m/2.

Since Ej ∪ A is non-separating and intersects ∂M in fewer than m components, E1 ∪ A is a

Klein bottle. A regular neighbourhood U of E1 ∪ A is a twisted I-bundle over E1 ∪ A and

contains a loop which is not null-homotopic in M . Since Ŝ is isotopic into M(β) \ U , the

latter cannot be a solid torus. Thus Lemma 4.1 implies that ∂U is an incompressible torus

in M(β). Hence m ≤ |∂U ∩ ∂M | = 2|(E1 ∪ A) ∩ ∂M | = 2|E1 ∩ ∂M | ≤ m. It follows that

|E1 ∩ ∂M | = |E2 ∩ ∂M | = m/2 and |∂U ∩ ∂M | = m. In particular, (E1 ∪ A) ∩M is an m
2 -

punctured Klein bottle properly embedded in M with twisted I-bundle neighbourhood U ∩M .

Assumptions 2.3 and 2.5 then imply that S = F and X− is a twisted I-bundle. Hence situation

(i) holds. ♦

Lemma 4.8. Suppose that (Aj , ∂Aj) (j = 1, 2) are disjoint essential annuli contained in

(Xǫ, S). If a boundary component c1 of A1 cobounds an annulus E ⊆ S with a boundary

component c2 of A2 and c1 is Ŝ-inessential, then A1 is isotopic to A2 in Xǫ.

Proof. Let ∂Aj = cj ∪ c
′
j (j = 1, 2). We can suppose that cj bounds a disk Dj in Ŝ (j = 1, 2)

such that D2 = D1 ∪ E. According to Lemma 4.2(3), c′j bounds a disk D′
j in Ŝ such that

Dj ∩D
′
j = ∅ (j = 1, 2). Since M(β) is irreducible, the 2-sphere Π2 = D2 ∪ A2 ∪D

′
2 bounds a

3-ball B2 ⊆ X̂ǫ.
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Since c1 ⊆ int(D2) and int(A1) is disjoint from Π2, A1 is contained in B2. If D′
1 ∩ D2 6= ∅,

then D′
1 ⊆ int(E) ⊆ S. But this is impossible as c′1 is essential in S. Thus D′

1 ⊆ int(D′
2) and

therefore c′1 and c′2 cobound an annulus E′ ⊆ D′
2 ⊆ Ŝ. It then follows from Lemma 4.2(3) that

E′ ⊂ S.

The torus T = E ∪A1 ∪ E
′ ∪A2 ⊂ Xǫ is not boundary-parallel in the hyperbolic manifold M ,

so must compress in Xǫ. It cannot be contained in a 3-ball in M since ∂A1 is essential in S.

Hence it bounds a solid torus Θ in Xǫ. Proposition 4.3 shows that Θ is not a root torus, so A1

must be parallel to A2 in Xǫ. ♦

Proposition 4.9. Let (A, ∂A) be an essential annulus in (Xǫ, S) such that a component c of

∂A cobounds an annulus E ⊆ S with a component c′ of ∂S. Then (A, ∂A) is isotopic in (Xǫ, S)

to a component of ∂M ∩Xǫ.

Proof. Let A′ be the component of ∂M∩Xǫ which contains c′. Then A′ is a properly embedded

essential annulus in (Xǫ, S). Since c is inessential in Ŝ, Lemma 4.8 implies that A is isotopic

to A′ in Xǫ. ♦

As mentioned in §3.2, this corollary allows us to assume that Σǫ1 is neatly embedded in Xǫ.

Lemma 4.10. Let φ1 and φ2 be components of Φǫ1, possibly equal, and suppose that there are a

component c1 of ∂φ1, a component c2 of ∂φ2, and an annulus E ⊆ S \ Φǫ1 such that ∂E = c1∪c2.

Then E is essential in Ŝ.

Proof. There are I-bundles Σj ⊆ Xǫ such that φj ⊆ Σj ∩ S is a component of the associated

S0-bundle (j = 1, 2). Let (Aj , ∂Aj) ⊆ (Xǫ, S) be the essential annulus in the frontier of Σj in

Xǫ which contains cj (j = 1, 2).

If A1 = A2, then A1 ∪ E is a torus in Xǫ ⊆ M and so is either contained in a 3-ball in Xǫ or

bounds a solid torus Θ ⊆ Xǫ. Since c1 is essential in S, the latter must occur, and since A1 is

an essential annulus in (Xǫ, S), the winding number of E in Θ is at least 2. Thus Θ is a root

torus of the type described. Proposition 4.3 now implies that E is essential in Ŝ.

Next suppose that A1 6= A2, so these two annuli are disjoint. Note that they cannot be

parallel as otherwise the I-bundle structures on Σ1 and Σ2 can be extended across an embedded

(E × I,E × ∂I) ⊆ (Xǫ, S), which contradicts the defining properties of Φǫ1. Hence Lemma 4.8

implies that E is essential in Ŝ. ♦

Proposition 4.11. Let φ1 and φ2 be components of Φ̆ǫj , possibly equal, and suppose that there

are a component c1 of ∂φ1, a component c2 of ∂φ2, and an annulus E ⊆ S \ Φ̆ǫj such that

∂E = c1 ∪ c2. Then E is essential in Ŝ.

Proof. As Φ̆ǫ0 = S, there is an integer k such that 1 ≤ k ≤ j and E is contained in Φ̆ǫk−1 but

not in Φ̆ǫk. Then φ1 ∪ φ2 ⊆ Φ̆ǫj ⊆ Φ̆ǫk. Further, as E is not contained in Φ̆ǫk, there must be inner

boundary component of Φ̆ǫk, call it c0, contained in E. If there is an arc a in E ∩ Φ̆ǫk connecting

c1 and c2, then c0 ⊂ (E \ a) and therefore c0 is contained in a disk in E ⊂ S, which contradicts
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the essentiality of the inner components of ∂Φ̆ǫk in S. Hence (E, ∂E) ⊆ (Φ̆ǫk−1 \ Φ̆
ǫ
k, ∂Φ̆

ǫ
k).

When k = 1 set E0 = E and when k > 1 set E0 = (Πk−1
i=1 τ(−1)k−i−1ǫ)(E) so that (E0, ∂E0) ⊆

(S \Φ
(−1)k−1ǫ
1 , ∂Φ

(−1)k−1ǫ
1 ). By Lemma 4.10, E0 is Ŝ-essential, and therefore E is as well. ♦

5. Pairs of embedded essential annuli in (M,S)

In this section we consider pairs of essential annuli lying on either side of S in M .

Lemma 5.1. Suppose that S = F and that there are embedded, separating, essential annuli

(A+, ∂A+) ⊆ (X+, F ) and (A−, ∂A−) ⊆ (X−, F ) such that ∂A+ and ∂A− are four parallel

essential mutually disjoint curves in F̂ . Then

(1) ∂Aǫ does not separate ∂A−ǫ in F̂ .

(2) Let E be an annulus in F̂ bounded by a component of ∂A+ and a component ∂A−, with the

interior of E disjoint from A+ ∪A−. Then |E ∩ ∂M | = m/2.

Proof. For each ǫ, the boundary ∂Aǫ of Aǫ separates F̂ into two parallel essential annuli, Eǫ1
and Eǫ2, in F̂ .

In order to prove the first assertion of the lemma, assume that ∂Aǫ separates ∂A−ǫ in F̂ , that

is, ∂A− is not contained in E+
1 or E+

2 . Then |E+
j ∩∂A−| = 1 for j = 1, 2. Hence ∂A− splits E+

1

and E+
2 into four annuli, which we denote by A1, A2, A3, A4 with A1 = E+

1 ∩E−
1 , A2 = E+

1 ∩E−
2 ,

A3 = E+
2 ∩E−

2 , A4 = E+
2 ∩E−

1 . Note that A1, ..., A4 are four parallel essential annuli in F̂ with

disjoint interiors and with A1 ∪ ... ∪A4 = F̂ .

Suppose that |A1 ∩ ∂M | > 0. Then the torus A+ ∪ E+
2 bounds a solid torus V + in X̂+

(since it intersects ∂M in fewer than m components) such that A+ is not parallel to E+
2 in

V + (Lemma 4.2). Similarly the torus A− ∪ E−
2 bounds a solid torus V − in X̂− such that A−

is not parallel to E−
2 in V −. Hence U = V + ∪A3

V − is a submanifold of M(β) which is a

Seifert fibred space over the disk with two cone points. Also a core circle of A3 is non-null

homotopic in M(β). If ∂U compresses in M(β), then Lemma 4.1 implies that V = M(β) \ U

is a solid torus. Hence A1 is ∂-parallel in V and therefore is isotopic to either A+ ∪ A2 or

to A− ∪ A4 in V , contrary to construction. Thus ∂U is an incompressible torus in M(β).

But ∂U = A2 ∪ A
+ ∪ A4 ∪ A

− intersects ∂M in fewer than m components, which contradicts

Assumption 2.2. Thus |A1 ∩ ∂M | = 0, and similarly |Aj ∩ ∂M | = 0 for j = 2, 3, 4, which is

impossible. This proves (1).

Next we prove the lemma’s second assertion. By (1), we can suppose that ∂A− is contained

in E+
1 or E+

2 , say, E
+
1 . Then we may assume that E−

1 is contained in E+
1 and that E+

2 is

contained in E−
2 . Let E,E∗ be the two annulus components of E−

2 ∩E+
1 . We need to show that

|E ∩ ∂M | = |E∗ ∩ ∂M | = m/2.

First we show that |E−
1 ∩ ∂M | = |E+

2 ∩ ∂M | = 0. Suppose otherwise that |E−
1 ∩ ∂M | 6= 0, say.

Then the torus A+ ∪E+
2 bounds a solid torus V + in X̂+ such that A+ is not parallel to E+

2 in

V +, and the torus A− ∪E−
2 bounds a solid torus V − in X̂− such that A− is not parallel to E−

2
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in V −. Hence U = V + ∪E+

2

V − is a submanifold of M(β) which is a Seifert fibred space over

the disk with two cone points. Also the center circle of E2 is non-null homotopic in M(β). As

in the proof of assertion (1), we can use Lemma 4.1 to see that ∂U is an incompressible torus in

M(β). But ∂U = A− ∪E ∪A+ ∪E∗ intersects ∂M in fewer than m components, contradicting

Assumption 2.2. Thus |E−
1 ∩ ∂M | = 0 and a similar argument yields |E+

2 ∩ ∂M | = 0. Hence

∂F ⊆ E ∪ E∗.

Next we prove |E ∩ ∂M | = |E∗ ∩ ∂M | = m/2. Suppose otherwise, say |E ∩ ∂M | < m/2 and

|E∗ ∩ ∂M | > m/2. By the previous paragraph, the torus A+ ∪ E+
2 bounds a solid torus V + in

X̂+ such that A+ is not parallel to E+
2 in V +, and the torus A− ∪ E−

1 bounds a solid torus

V − in X̂− such that A− is not parallel to E−
1 in V −. Hence a regular neighborhood U of

V + ∪ E ∪ V − in M(β) is a submanifold of M(β) which is a Seifert fibred space over the disk

with two cone points, and the core circle of E, which is contained in U , is non-null homotopic in

M(β). As above, Lemma 4.1 implies that ∂U is incompressible in M(β). But by construction,

|∂U ∩ ∂M | < m, contradicting Assumption 2.2. Thus |E ∩ ∂M | = |E∗ ∩ ∂M | = m/2, which

completes the proof of the lemma. ♦

Proposition 5.2. Suppose that S = F and that there are embedded, separating, essential

annuli (A+, ∂A+) ⊆ (X+, F ) and (A−, ∂A−) ⊆ (X−, F ) such that ∂A+ and ∂A− are four

parallel essential mutually disjoint curves in F̂ . Then no component of ∂A+ is isotopic in F to

a component of ∂A−.

Proof. Otherwise we may isotope Aǫ in Xǫ, so that ∂A+ and ∂A− remain disjoint but ∂A+

separates ∂A− in F̂ . This is impossible by Lemma 5.1. ♦

Proposition 5.3. Suppose that S = F and that there is an embedded Möbius band (B, ∂B) ⊆

(Xǫ, F ). Then ∂B cannot be isotopic in F to a boundary component of an embedded, separating,

essential annulus (A, ∂A) ⊆ (X−ǫ, F ).

Proof. Suppose otherwise. By Proposition 4.3, ∂B is essential in F̂ . Let P be a regular

neighborhood of B in Xǫ. Then the frontier A∗ of P in Xǫ is an essential annulus in Xǫ. Also

∂A and ∂A∗ are essential curves in F̂ which can be assumed to be mutually disjoint since ∂B

is isotopic in F to a component of ∂A and each component of ∂A∗ is isotopic to ∂B in F . But

such a situation is impossible by Proposition 5.2. ♦

Lemma 5.4. Suppose that S = F and that there are disjoint embedded, essential annuli

(A+, ∂A+) ⊆ (X+, F ) and (A−, ∂A−) ⊆ (X−, F ) such that A+ is separating, A− is non-

separating, and ∂A+ and ∂A− are four parallel essential mutually disjoint curves in F̂ which

split it into four annuli E1, E2, E3, E4 where Ei ∩ Ei+1 6= ∅ for all i (mod 4).

(1) Suppose that ∂A+ does not separate ∂A− in F̂ and that the annuli Ei are numbered so that

∂A+ = ∂E1 and ∂A− = ∂E3. Then |E1 ∩ ∂F | = 0.

(2) Suppose that ∂A+ separates ∂A− in F̂ and that the annuli Ei are numbered so that the

components of ∂A+ are E1∩E2 and E3∩E4. Then |E1∩∂F | = |E4∩∂F |, |E2∩∂F | = |E3∩∂F |,

and |E1 ∩ ∂F |+ |E2 ∩ ∂F | = m/2.
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Proof. The proof is based on Lemma 4.7. Since we have assumed that S = F , conclusion (i)

of this lemma holds.

Assume first that ∂A+ does not separate ∂A− in F̂ . Then Lemma 4.7 implies that |E3 ∩∂F | =

|E1 ∩ ∂F | + |E2 ∩ ∂F | + |E4 ∩ ∂F | = m/2. Since A+ ∪ E2 ∪ A− ∪ E4 is a Klein bottle,

|E2 ∩ ∂F |+ |E4 ∩ ∂F | ≥ m/2 and therefore |E1 ∩ ∂F | = 0.

Next assume that ∂A+ separates ∂A− in F̂ . A tubular neighbourhood U of the Klein bottle

A+ ∪ E1 ∪ A− ∪ E3 is a twisted I-bundle over the Klein bottle, and as no Dehn filling of

U is toroidal, the torus ∂U must be incompressible in M(β) (cf. Assumption 2.8). Hence

m ≤ |∂U ∩∂M | ≤ 2(|E1∩∂F |+ |E3∩∂F |) and therefore |E1∩∂F |+ |E3∩∂F | ≥ m/2. Similarly,

consideration of the Klein bottle A+∪E2∪A
−∪E4 shows that |E2∩∂F |+ |E4∩∂F | ≥ m/2. On

the other hand, Lemma 4.7 implies that |E1 ∩ ∂F |+ |E2 ∩ ∂F | = |E3 ∩ ∂F |+ |E4 ∩ ∂F | = m/2,

from which we deduce the desired conclusion. ♦

6. The dependence of the number of tight components of Φ̆ǫj on j

Let T ǫ
j be the union of the tight components of Φ̆ǫj and set

tǫj = |T ǫ
j |

If j is odd, the free involution hj : Φ̆ǫj → Φ̆ǫj preserves T ǫ
j but none of its components (cf.

Proposition 4.5). Thus tǫj is even for j odd. Further, as Φ̆ǫj
∼= Φ̆−ǫ

j for j even, t+2k = t−2k for all k.

Lemma 6.1. Suppose that C ⊆ (S \ Φ̆ǫj) is an essential simple closed curve which bounds a

disk D ⊆ Ŝ. Then D contains a tight component of Φ̆ǫj . Further, if C is not isotopic in S into

the boundary of a tight component of Φ̆ǫj (i.e. D ∩ S is not isotopic in S to a tight component

of Φ̆ǫj), then D contains at least two tight components of Φ̆ǫj.

Proof. Since C is essential, D contains at least one boundary component of S and hence

at least one component of Φ̆ǫj. Amongst all the inner boundary components of Φ̆ǫj which are

contained in D, choose one, C1 say, which is innermost in D. It is easy to see that this circle is

the inner boundary component of a tight component φ1 of Φ̆ǫj. This proves the first assertion

of the lemma.

Next suppose that C is not isotopic in S into the boundary of a tight component of Φ̆ǫj. Then

C and C1 do not cobound an annulus in D ∩ S, so there is a component of ∂S contained in

D \ φ1. Hence if φ1, φ2, . . . , φn are the components of Φ̆ǫj contained in D ∩ S, then n ≥ 2. If

every inner boundary component of φ2 ∪ φ3 ∪ . . . ∪ φn is essential in the annulus ̂D \ φ1, some

such boundary component cobounds an annulus E ⊆ S with C1. Without loss of generality we

may suppose ∂E = C1 ∪ C2 where C2 ⊆ ∂φ2. But this is impossible as Proposition 4.11 would

then imply that E is essential in Ŝ. Hence some inner boundary component of φ2∪φ3∪ . . .∪φn
bounds a subdisk D′ of D which is disjoint from φ1, the argument of the first paragraph of this

proof shows that D contains another tight component of Φ̆ǫj, so we are done. ♦
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An immediate consequence of the lemma is the following corollary.

Corollary 6.2.

(1) If Φ̆ǫj has a component φ which is contained in a disk D ⊆ Ŝ, then either φ is tight or D

contains at least two tight components of Φ̆ǫj.

(2)(a) If φ0 is a tight component of Φ̆ǫj , there is a tight component φ1 of Φ̆ǫj+1 contained in φ0.

(b) If φ1 is not isotopic to φ0 in S, there are at least two tight components of Φ̆ǫj+1 contained

in φ0. ♦

Proposition 6.3.

(1)(a) tǫj ≤ tǫj+1 with equality if and only if T ǫ
j is isotopic to T ǫ

j+1 in S.

(b) tǫj ≤ t−ǫj+1

(2) If 0 < tǫj = tǫj+2, then t
ǫ
j = |∂S|, so T ǫ

j is a regular neighbourhood of ∂S.

Proof. Part (1)(a) follows immediately from Corollary 6.2. For part (1)(b), note that if j is

odd then tǫj ≤ tǫj+1 = t−ǫj+1, while if j is even, tǫj = t−ǫj ≤ t−ǫj+1.

Next we prove part (2). Suppose that 0 < tǫj = tǫj+2. Then Lemma 6.1 implies that up to isotopy,

T ǫ
j = T ǫ

j+2. We claim that (τ−ǫτǫ)(T
ǫ
j+2) = T ǫ

j , at least up to isotopy fixed on ∂S. To see this,

first note that (τ−ǫτǫ)(Φ̆
ǫ
j+2) ⊆ Φ̆ǫj. Fix a tight component φ0 of Φ̆ǫj and let φ1, φ2, . . . , φn be

the components of Φ̆ǫj+2 such that for each i = 1, 2, . . . , n, φ′i = (τ−ǫτǫ)(φi) ⊆ φ0. Since each

component of ∂S ∩ φ0 is contained in some φ′i, the argument of the first paragraph of the

proof of Lemma 6.1 shows that at least one of the φ′i, or equivalently φi, is tight. Since φ0 is

an arbitrary tight component of Φ̆ǫj and t
ǫ
j = tǫj+2, it follows that (τ−ǫτǫ)(T

ǫ
j+2) ⊆ T ǫ

j and each

component of T ǫ
j contains a unique component of (τ−ǫτǫ)(T

ǫ
j+2). Note as well that as T

ǫ
j = T ǫ

j+2,

we have |∂S ∩ T ǫ
j | = |∂S ∩ T ǫ

j+2| = |∂S ∩ (τ−ǫτǫ)(T
ǫ
j+2)|, so if φ1 is a tight component of T ǫ

j+2

and φ0 the tight component of T ǫ
j containing φ′1 = (τ−ǫτǫ)(φ1), then |∂S ∩ φ′1| = |∂S ∩ φ0|.

But then as φ0 and φ′1 are tight, φ′1 is isotopic to φ0 by an isotopy fixed on ∂S. Hence we

can assume that (τ−ǫτǫ)(T
ǫ
j+2) = T ǫ

j , or in other words, (τ−ǫτǫ)(T
ǫ
j ) = T ǫ

j . It follows that

(τ−ǫτǫ)
k(T ǫ

j ) = T ǫ
j ⊆ Φ̆ǫj, and so T ǫ

j ⊆ Φ̆ǫj+2k for all k. But since F is neither a fibre nor a

semi-fibre, Φ̆ǫj+2k is a regular neighbourhood of ∂S for large k (cf. [BCSZ1, proof of Theorem

5.4.1]). Thus T ǫ
j is a union of annuli.

The boundary components of S can be numbered b1, b2, . . . , b|∂S| so that they arise successively

around ∂M and (τ−ǫτǫ)(bi) = bi+(−1)i2, where the indices are considered (mod |∂S|). Hence

as (τ−ǫτǫ)(T
ǫ
j ) = (τ−ǫτǫ)(T

ǫ
j+2) = T ǫ

j , ∂T
ǫ
j ∩ ∂S is the union of either all even-indexed bi, or

all odd-indexed bi, or all the bi (recall that we have assumed tǫj > 0). In particular, for either

all even i or all odd i, the component of Φ̆ǫj containing bi is an annulus. If j is odd, we have

a free involution h̆ǫj : Φ̆ǫj → Φ̆ǫj which the reader will verify preserves T ǫ
j and exchanges the

even-indexed bi with the odd-indexed bi. Hence for any i, the component of Φ̆ǫj containing bi is

an annulus. Thus tǫj = m, so T ǫ
j is a regular neighbourhood of ∂S.
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Next suppose that j is even. After possibly adding 1 (mod |∂S|) to the indices of the labels

of the components of ∂S, we can assume that ∂T ǫ
j ∩ ∂S contains the union of all even-indexed

bi. Then as Φ̆−ǫ
j+1 = τ−ǫ(Φ̆

ǫ
j ∧ Φ̆−ǫ

1 ) ⊇ τ−ǫ(T
ǫ
j ∧ Φ̆−ǫ

1 ), the component of T −ǫ
j+1 containing an

odd-indexed bi is an annulus. Consideration of the free involution h̆−ǫj+1 : Φ̆−ǫ
j+1 → Φ̆−ǫ

j+1 shows

that the same is true for the even-indexed bi. Thus m = t−ǫj+1 ≤ tǫj+2 = tǫj. It follows that T
ǫ
j is

a regular neighbourhood of ∂S. ♦

Corollary 6.4.

(1) If some non-tight component of Φ̆ǫ1 has an Ŝ-inessential inner boundary component, then

tǫ1 ≥ 4.

(2) If genus(Φ̆ǫ1) = 1 but Φ̆ǫ1 6= S, then tǫ1 ≥ 4.

Proof. Let φ be a non-tight component of Φ̆ǫ1 and c an Ŝ-inessential inner boundary component

of φ. Let D ⊆ Ŝ be the disk with boundary c. Lemma 6.1 implies that D contains a tight

component φ0. By Lemma 4.10, c is not isotopic in S into the boundary of φ0, so D contains

at least two tight components (Lemma 6.1). It follows from Lemma 4.2(3) that τǫ(c) bounds

a disk D′ ⊆ Ŝ disjoint from D and as above, D′ contains at least two tight components of Φ̆ǫ1.

Thus tǫ1 ≥ 4, which proves (1).

Next suppose that genus(Φ̆ǫ1) = 1 but Φ̆ǫ1 6= S. Then there is a component φ 6= S of Φ̆ǫ1 of

genus 1. In particular, φ is not tight. Since φ 6= S, it has inner boundary components. Since

genus(φ) = 1, each such inner boundary component is Ŝ-inessential. Hence part (2) of the

corollary follows from part (1). ♦

7. The structure of Φ̇ǫ1 and the topology of Xǫ

In this section we study how the existence of a component φ of Φ̇ǫ1 such that φ̂ contains an

Ŝ-essential annulus constrains Φ̇ǫ1 and the topology of X̂ǫ. The following construction will be

useful to our analysis.

Let P be a component of Σ̇ǫ1. For each Ŝ-inessential inner component of c of P ∩S let Dc ⊂ Ŝ be

the disk with boundary c and suppose that the component of P ∩S containing c is disjoint from

int(Dc). The component Hc of X̂ǫ \ P containing c satisfies (Hc,Hc ∩P ) ∼= (D2× I, (∂D2)× I)

(cf. Proposition 4.6). Let

(7.0.1) QP = P̂ ∪ (∪cHc)

where c ranges over all Ŝ-inessential inner components of P ∩S such that P ∩ int(Dc) = ∅. The

I-fibre structure on P extends over QP .

We prove the following results.

Proposition 7.1. Suppose that F is separating in M , so S = F is connected.

(1) There is at most one component P of Σ̇ǫ1 such that P̂ ∩ F contains an F̂ -essential annulus.
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(2) There is exactly one such component if Σ̇ǫ1 contains a twisted I-bundle.

(3) Suppose that P is a component of Σ̇ǫ1 such that P̂ ∩ F contains an F̂ -essential annulus.

Then X̂ǫ admits a Seifert structure and if

(a) genus(P̂ ∩ F ) = 1, then X̂ǫ is a twisted I-bundle over the Klein bottle.

(b) genus(P̂ ∩ F ) = 0, then an F̂ -essential annulus in P̂ ∩ F is vertical in the Seifert structure

and QP splits X̂ǫ into a union of solid tori. Moreover, if

(i) P is a twisted I-bundle, then X̂ǫ has base orbifold a disk with two cone points, at

least one of which has order 2.

(ii) P is a product I-bundle and QP separates X̂ǫ, then X̂ǫ has base orbifold a disk with

two cone points.

(iii) P is a product I-bundle and QP does not separate X̂ǫ, then X− is a twisted I-bundle

and X̂ǫ has base orbifold a Möbius band with at most one cone point.

Proposition 7.2. Suppose that F is non-separating in M , so S = F1 ∪ F2 is not connected.

(1) Σ̇+
1 is a (possibly empty) product bundle and for each j = 1, 2 and component P of Σ̇+

1 ,

genus(P ∩ Fj) = 0.

(2) If P is a component of Σ̇+
1 such that P ∩ S ⊆ P ∩ Fj for some j, then P̂ ∩ Fj contains no

Ŝ-essential annulus.

(3) If t+1 = 0, then Σ̇+
1 has exactly one component P and for each j = 1, 2, P̂ ∩ Fj is an annulus

which is essential in F̂j . Further, X̂+ admits a Seifert structure with base orbifold an annulus

with exactly one cone point.

We consider the cases S connected and S disconnected separately.

7.1. S is connected. In this subsection we prove Proposition 7.1.

Lemma 7.3. Suppose that F is separating in M and (A, ∂A) ⊆ (Xǫ, F ) is an essential sepa-

rating annulus whose boundary separates F̂ into two annuli E1 and E2. If |E1 ∩∂M | < m then

A ∪ E1 bounds a solid torus in X̂ǫ in which A has winding number at least 2. Hence if either

(a) |E1 ∩ ∂M | < m and |E2 ∩ ∂M | < m; or

(b) |E1 ∩ ∂M | = m and E1 ∪A bounds a solid torus in X̂ǫ,

then A splits X̂ǫ into two solid tori in each of which A has winding number at least 2. In

particular, X̂ǫ admits a Seifert structure with base orbifold a disk with two cone points in which

A is vertical.

Proof. If |E1∩∂M | < m, then A∪E1 is a torus which compresses inM(β) but is not contained

in a 3-ball. Hence it bounds a solid torus V which is necessarily contained in X̂ǫ. Lemma 4.2(2)

shows that A has winding number at least 2 in V . It follows that if condition (a) holds, X̂ǫ
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admits a Seifert structure with base orbifold a 2-disk with two cone points. Note that A is

vertical in this structure and splits X̂ǫ into two solid tori. A similar argument yields the same

conclusion under condition (b). ♦

Proof of part (3) of Proposition 7.1. First suppose that genus(P̂ ∩ F ) = 1. Then P is

necessarily a twisted I-bundle and φ = P̂ ∩ F is connected. Further, each inner boundary

component of P ∩ F is inessential in F̂ . Thus X̂ǫ = QP is a twisted I-bundle over the Klein

bottle. Hence part (3)(a) of Proposition 7.1 holds.

Next suppose that genus(P̂ ∩ F ) = 0 and φ is a component of P ∩ F . Then φ has two inner

boundary components, c1, c2 say, which are F̂ -essential. Any other inner boundary component

c of φ is inessential in F̂ so QP is either a twisted I-bundle over a Möbius band or product

I-bundle over an annulus.

Let A1, A2 be the vertical annuli in the frontier of P , possibly equal, that contain c1, c2 respec-

tively There are three cases to consider.

Case 1. P is a twisted I-bundle.

In this case, A1 = A2 and QP is a twisted I-bundle over a Möbius band. In particular QP is

a solid torus in which a core of φ̂ has winding number 2. Lemma 7.3 shows that Proposition

7.1(3)(b)(i) holds.

Case 2. P is a product I-bundle and QP separates Xǫ.

Then A1 6= A2 where A1 is separating in Xǫ and QP is a product I-bundle over an annulus. Let

V andW be the components of the exterior of QP in X̂ǫ and define E1, E2 to be the F̂ -essential

annuli V ∩ F̂ ,W ∩ F̂ . Since |P ∩ ∂F | > 0, we have |E1 ∩ ∂F | < m and |E2 ∩ ∂F | < m. Then

Lemma 7.3 implies that both V andW are solid tori and therefore that Proposition 7.1(3)(b)(ii)

holds.

Case 3. P is a product I-bundle and QP does not separate Xǫ.

Here A1 6= A2 where A1 is non-separating and X− is a twisted I-bundle by Lemma 4.7. Also

the boundary of the complement of the interior of QP in Xǫ is a torus which intersects ∂M in

fewer than m components but is not contained in any 3-ball in M(β). Thus it bounds a solid

torus V in X̂ǫ, from which we can see that Proposition 7.1(3)(b)(iii) holds. ♦

Proof of parts (1) and (2) of Proposition 7.1. If Σ̇ǫ1 contains a twisted I-bundle P , then

P contains a subbundle homeomorphic to a Möbius band. Proposition 4.3 then shows that

P ∩ F contains an F̂ -essential annulus. Thus part (1) implies part (2). We prove part (1) by

contradiction.

Suppose that Σ̇ǫ1 has at least two components P1, P2 such that P̂i ∩ F contains an F̂ -essential

annulus for i = 1, 2. Let φi = Pi ∩ F be the horizontal boundary of Pi (i = 1, 2). Clearly, both

φ1 and φ2 have genus 0. Since each properly embedded incompressible annulus in a solid torus

is separating, Proposition 7.1(3), which we proved above, implies that both QP1
and QP2

are

separating in X̂ǫ and split it into a union of solid tori. We have three cases to consider.
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Case 1. φi is connected for i = 1, 2.

Then QPi
is a twisted I-bundle over a Möbius band whose frontier in X̂ǫ is an essential annulus

Ai in X
ǫ which is not parallel to the annulus ψi = QPi

∩F̂ in QPi
. Let E1, E2 be the components

of the closure of the complement of ψ1 ∪ ψ2 in F̂ . Then the torus E1 ∪ A1 ∪ E2 ∪ A2 bounds

a solid torus V in X̂ǫ in which A1 is not parallel to A2. Therefore U = V ∪ P̂1 satisfies the

hypotheses of Lemma 4.1. Since F̂ is isotopic into M(β) \ U , the latter cannot be a solid torus.

Thus ∂U = ψ1 ∪E1 ∪A2 ∪E2 is incompressible in M(β). But this torus intersects ∂M in fewer

than m components, which contradicts Assumption 2.2.

Case 2. φ1 is connected but φ2 is not.

Then QP1
is a twisted I-bundle over a Möbius band and the frontier of QP1

in X̂ǫ is an essential

annulus A1 ⊆ Xǫ which is not parallel to the annulus ψ1 = QP1
∩ F̂ in QP1

. Further, φ2 has

two components, φ21, φ22 say, and P2 is a product I-bundle over φ21. The frontier of QP2
is a

pair of essential annuli A21, A22 ⊆ Xǫ. We noted above that QP2
is separating in Xǫ, and so

the same is true for A21 and A22.

We may suppose that A21 is adjacent to A1. That is, ∂A1 ∪ ∂A21 cobounds the union of two

disjoint annuli E1, E2 ⊆ F̂ whose interiors are disjoint from φ1, φ2. Then the torus A1 ∪ E1 ∪

A21 ∪ E2 bounds a solid torus V in X̂ǫ such that A1 is not parallel to A21 in V . Therefore

U = V ∪ P̂1 is a submanifold of M(β) satisfying the hypotheses of Lemma 4.1. As in case 1,

this lemma implies that ∂U = ψ1 ∪ E1 ∪ A21 ∪ E2 is incompressible in M(β). But this torus

intersects ∂M in fewer than m components, contrary to Assumption 2.2.

Case 3. Neither φ1 nor φ2 is connected.

The frontier of QPi
in X̂ǫ is a pair of annuli Ai1, Ai2 contained in Xǫ. We may assume that

∂A12 and ∂A21 cobound two annuli E1, E2 in F̂ whose interiors are disjoint from φ1 ∪ φ2. The

torus A12 ∪ E1 ∪ A21 ∪ E2 bounds a solid torus V in X̂ǫ in which A12 is not parallel to A21.

Let E∗ be the annulus in F̂ with ∂E∗ = ∂A11 and whose interior is disjoint from φ1 ∪ φ2. The

torus A11 ∪ E∗ bounds a solid torus V∗ in X̂ǫ in which A11 is not parallel to E∗. Therefore

U = V∗ ∪ QP1
∪ V is a submanifold of M(β) satisfying the hypotheses of Lemma 4.1 and as

above, this lemma implies that ∂U = E∗∪ (QP1
∩ F̂ )∪E1∪E2∪A21 is incompressible in M(β).

But this is impossible as |∂U ∩ ∂M | < m. ♦

We can refine Proposition 7.1 somewhat in the absence of tight components of Φ̆ǫ1.

Lemma 7.4. If Σ̇ǫ1 = ∅, then tǫ1 = |∂S|.

Proof. If Σ̇ǫ1 is empty, then so is Φ̇ǫ1 and therefore Φ̆ǫ1 is a collar on ∂S, so tǫ1 = |∂S|. ♦

Proposition 7.5. When F is separating and tǫ1 = 0, then Σ̇ǫ1 has a unique component P and

either P = Xǫ or each component of Φ̇ǫ1 = P ∩ F completes to an essential annulus in F̂ .

Further, the base orbifold of the Seifert structure on X̂ǫ described in Proposition 7.1 has

(1) no cone points of order 2 if P is a product I-bundle,
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(2) one cone point of order 2 if P is a twisted I-bundle and Φ̇ǫ1 6= F ,

(3) two cone points of order 2 if P = Xǫ, i.e. Xǫ is a twisted I-bundle so ǫ = −.

Proof. Since tǫ1 = 0, Σ̇ǫ1 has at least one component (Lemma 7.4) and each inner boundary

component of Φ̇ǫ1 is F̂ -essential (Corollary 6.4). Proposition 7.1 then shows that Σ̇ǫ1 has exactly

one component. Call it P . Proposition 7.1 also shows that either P = Xǫ or Xǫ \ P is a union

of solid tori. Since the I-bundle structure on P does not extend over these solid tori, the result

follows. ♦

Corollary 7.6. If F is separating and t+1 = 0, the base orbifold of the Seifert structure on X̂+

described in Proposition 7.1 is D2(a, b) where (a, b) 6= (2, 2). Further, M(β) is not a union of

two twisted I-bundles over the Klein bottle.

Proof. The first assertion follows from part (3) of the previous proposition. Suppose that

M(β) is a union of two twisted I-bundles over the Klein bottle along their common boundary

T . Then T is not isotopic to F̂ by the first assertion. Hence as T splits M(β) into two atoroidal

Seifert manifolds, M(β) must be Seifert. If F̂ is horizontal, it splits M(β) into two twisted I-

bundles, necessarily over the Klein bottle, which contradicts Assumption 2.6. Thus it is vertical

and T is horizontal. It follows that the base orbifold B of M(β) is Euclidean. Further, B is

non-orientable as T separates. Thus B is either a Klein bottle or P 2(2, 2). In either case F̂

splits M(β) into the union of two twisted I-bundles over the Klein bottle, contrary to the first

assertion of the corollary. This completes the proof. ♦

7.2. S is not connected. In this subsection we prove Proposition 7.2. It will follow from the

four lemmas below.

Lemma 7.7. When F is non-separating, Σ̇+
1 is a (possibly empty) product I-bundle.

Proof. Suppose that Φ̇+
1 has a τ+-invariant component, φ say. Then there is a Möbius band

(B, ∂B) ⊆ (X+, φ). According to Proposition 4.3, ∂B is essential in Ŝ. Our hypotheses imply

that φ/τ+ contains a once-punctured Möbius band. Its inverse image in Ŝ is a τ+-invariant

twice-punctured annulus φ0 ⊆ φ such that φ̂0 is essential in Ŝ. Without loss of generality we

can suppose that φ̂0 ⊆ F̂1.

Now φ0 has at least two outer boundary components and two inner ones. We denote the

latter by c1, c2. By construction c2 = τ+(c1) and c1 and c2 cobound an essential annulus A

in (X+, F1). Note that E = F̂1 \ φ̂0 is an annulus and A ∪ E a non-separating torus in M(β)

which intersects ∂M in fewer than m components. Hence it is compressible. But then M(β)

contains a non-separating 2-sphere, which is impossible by Assumption 2.8. Thus there is no

τ+-invariant component of Φ̇+
1 . ♦

Lemma 7.8. Suppose F is non-separating. Let P be a component of Σ̇+
1 and let φ1, φ2 ⊆ S be

the two horizontal boundary components of P . If φ1 contains an Ŝ-essential annulus, then φ1
and φ2 are contained in different components of S.
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Proof. Suppose that both φ1 and φ2 are contained in F1, say. Choose a neat subsurface φ1,0
of φ1 such that φ̂1,0 is an Ŝ-essential annulus and |φ1,0 ∩ ∂M | > 0. Set φ2,0 = τ+(φ1,0). Then

φ̂1,0 and φ̂2,0 are disjoint essential annuli in F̂1. The frontier of P in X+ is a set of two essential

annuli in (X+, F1), which we denote by A1 and A2. According to Lemma 4.7, each Ai is

separating in X+. For i = 1, 2, ∂Ai bounds an annulus Ei in F̂1 whose interior is disjoint from

φ1,0 ∪ φ2,0.

The annulus A1 splits X̂+ into two components, which we denote by W1 and W2. We may

suppose that the torus A1∪E1 is a boundary component of W1. Now F̂2 ⊆ ∂Wi for some i, and

in this case Ai ∪ Ei is a non-separating torus in M(β) whose intersection with ∂M has fewer

than m components, contrary to Assumption 2.2. Thus the conclusion of the lemma holds. ♦

Lemma 7.9. If there is a component P of Σ̇+
1 and j ∈ {1, 2} such that |P ∩ Fj | = 2, then

t+1 ≥ 4.

Proof. Without loss of generality, we can suppose that j = 1. Lemma 7.8 implies that no

component φ of P ∩F1 contains an Ŝ-essential annulus. Thus there is a disk in F̂1 containing φ

and this disk must contain a tight component of Φ̆ǫ1. The same is true for the other component

of P ∩ F1, so the number of tight components of Φ̆+
1 contained in F1 is at least 2. To see

that the same is true for F2, it suffices to show that there is a component P ′ of Σ̇+
1 such that

|P ′ ∩ F2| = 2. But it is clear that such a component exists since Lemma 7.7 implies that the

number of boundary components of F1 contained in a component of Σ̇+
1 which intersects both

F1 and F2 equals the number of such boundary components of F2. ♦

Lemma 7.10. Suppose F is non-separating and t+1 = 0. Then there is a unique component

P of Σ̇+
1 such that P̂ ∩ F1 contains an F̂1-essential annulus. Further, X̂+ admits a Seifert

structure in which ̂̇Φ+
1 is vertical and whose base orbifold is an annulus with exactly one cone

point.

Proof. First observe that Σ̇+
1 has at least one component, P say, since t+1 = 0. By Lemma

7.9, |P ∩ Fj | = 1 for each j. Set φj = P ∩ Fj . Corollary 6.4 implies that each inner boundary

component of φj is F̂j-essential. There must be such boundary components since X+ is not a

product. Thus φ̂j is an F̂j-essential annulus.

Let P1, ..., Pk be the components of Σ̇+
1 and set φ1i = Pi ∩ F1 and φ2i = Pi ∩ F2. Then each

φ̂j,i is an F̂j-essential annulus. The closure of the complement of ∪iφ̂ji in F̂j is a set of annuli

which we denote by Eji, i = 1, ..., k. We may assume that φ̂j1, Ej1, φ̂j2, Ej2, ..., φ̂jk, Ejk appear

consecutively in F̂j .

Let di = |φ1i∩∂M | = |φ2i∩∂M |. Since Φ̇+
1 has no tight components, d1+ ...+dk = m. We will

assume that k > 1 in order to derive a contradiction. Then without loss of generality, 2d1 ≤ m.

For each i = 1, ..., k, let Ai, A
′
i be the two components of the frontier of Pi in X

+. Then each of

Ai and A
′
i is an essential annulus in (X+, S). We may assume that ∂A′

i ∪ ∂Ai+1 = ∂E1i ∪ ∂E2i,

so A1, A
′
1, A2, A

′
2, ..., Ak , A

′
k appear consecutively in X+.
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Now A′
i∪E1i∪Ai+1∪E2i is a torus in X+ which contains a curve which is null-homotopic inM .

(Here the indices are defined (mod k).) It therefore bounds a solid torus Vi in X
+. Note that

A′
i is not parallel in V to Ai+1 as otherwise Pi and Pi+1 would be contained in a component of

Σ̇+
1 . Then Ui = Vi−1 ∪ P̂i ∪ Vi is a submanifold of M(β) which is a Seifert fibred space over the

disk with two cone points. Since Ŝ can be isotoped into M(β) \ Ui, Lemma 4.1 implies that

∂Ui is an incompressible torus in M(β). By construction, ∂U1 contains 2d1 ≤ m components

of ∂M . Assumption 2.2 then implies that 2d1 = m. But this is impossible by Assumption 2.3.

Thus k = 1.

Finally note that the closure of the complement of Σ̇+
1 in X+ is a solid torus V such that

Σ̇+
1 ∩ V = A1 ∪ A

′
1, in X

+. Hence X̂+ is homeomorphic to the manifold obtained from V by

identifying A1 with A′
1. It is therefore a Seifert fibred space over the annulus with at most one

cone point. If there is no cone point, then F is a fibre in M , contrary to Assumption 2.6. This

completes the proof. ♦

Corollary 7.11. If F is non-separating and t+1 = 0, then M(β) does not fibre over the circle

with torus fibre.

Proof. Suppose otherwise and let T be the fibre. Isotope F̂ so that it intersects T transversally

and in a minimal number of components. Since T is a fibre, the previous lemma shows that

T ∩ F̂ 6= ∅ and so T cuts F̂ into a finite collection of incompressible annuli which run from one

side of T to the other. It follows that M(β) admits a Seifert structure in which T is horizontal.

If F̂ is horizontal it is a fibre in M(β), which contradicts Assumption 2.6. Thus it is vertical.

It follows that the base orbifold B of M(β) is Euclidean. Further, the projection image of F̂ in

B is a non-separating two-sided curve. Thus B is either a torus or Klein bottle. In either case

F̂ splits M(β) into the product of a torus and an interval, which is impossible by Lemma 7.10.

This completes the proof. ♦

8. Ŝ-essential annuli in Φ̇ǫj

Proposition 8.1. Suppose that F is separating. If Φ̇+
2 or Φ̇−

2 contains an F̂ -essential annulus,

then X̂ǫ admits a Seifert structure with base orbifold of the form D2(a, b) for some a, b ≥ 2 for

both ǫ. Further, one of the following situations arises:

(i) t+1 + t−1 ≥ 4.

(ii) X− is a twisted I-bundle.

(iii) M(β) admits a Seifert structure with base orbifold S2(a, b, c, d). Further, if tǫ1 = 0 for

some ǫ, then (a, b, c, d) 6= (2, 2, 2, 2).

Proof. As h+2 : Φ̇+
2

∼=
−→ Φ̇−

2 , we can suppose that Φ̇−
2 contains an F̂ -essential annulus. Since

Φ̇−
2 = τ−(Φ̇

−
1 ∧Φ̇+

1 ), if Φ̇
−
2 contains an F̂ -essential annulus, so do Φ̇+

1 and Φ̇−
1 . Hence Proposition

7.1 implies that X̂ǫ admits a Seifert structure with base orbifold of the form D2(a, b) for some

a, b ≥ 2 for both ǫ.
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If genus(Φ̇ǫ1) = 1 for some ǫ, then either X− is a twisted I-bundle or tǫ1 ≥ 4 (Corollary 6.4).

Thus (i) or (ii) holds. Assume that genus(Φ̇ǫ1) = 0 for both ǫ, so X− is not a twisted I-bundle,

and let ϕǫ be the slope on F̂ of an F̂ -essential annulus contained in Φ̇ǫ1. Then ϕǫ is the fibre

slope of the Seifert structure on X̂ǫ given by Proposition 7.1. As Φ̇−
2 = τ−(Φ̇

−
1 ∧ Φ̇+

1 ), we see

that Φ̇−
1 contains curves of slope ϕ+ and ϕ−. Hence if these slopes are distinct, genus(Φ̇

−
1 ) = 1,

contrary to our assumptions. Thus ϕ+ = ϕ− so M(β) admits a Seifert structure with base

orbifold of the form S2(a, b, c, d). Finally if tǫ1 = 0 for some ǫ, Proposition 7.5 shows that

(a, b, c, d) 6= (2, 2, 2, 2). ♦

Proposition 8.2. Suppose that F is separating. If Φ̇+
3 contains an F̂ -essential annulus then

either

(i) t+1 ≥ 4, or

(ii) X− is a twisted I-bundle and M(β) is Seifert with base orbifold P 2(2, n) for some n > 2.

Further, t+1 = 0, Φ̇+
1 is an F̂ -essential annulus, Φ̇+

3 is the union of two F̂ -essential annuli, and

there are disjoint, non-separating annuli A−
1 , A

−
2 properly embedded in X− such that ∂A−

1 ∪

∂A−
2 ⊆ Φ̇+

1 and for each j, ∂Φ̇+
1 ∩ ∂A−

j is a boundary component of Φ̇+
1 .

Proof. Assume that t+1 ≤ 2. We will show that (ii) holds.

Suppose that some component φ0 of Φ̇+
3 contains an F̂ -essential annulus and let ψ0 be the

component of Φ̇+
1 containing φ0. By Assumption 2.6, ψ0 6= F . Corollary 6.4 then shows that

genus(ψ0) = 0 and ψ̂0 completes to an F̂ -essential annulus.

We can suppose that φ0 ⊆ int(ψ0). Set φ1 = τ+(φ0) ⊆ Φ̇+
1 ∧ Φ̇−

2 . Now h+3 = τ+ ◦ τ− ◦ τ+|Φ̇
+
3 is a

free involution of Φ̇+
3 . In particular, either h+3 (φ0) = φ0 or h

+
3 (φ0)∩φ0 = ∅. Equivalently, either

τ−(φ1) = φ1 or τ−(φ1) ∩ φ1 = ∅. In the first case there are an essential annulus A− properly

embedded in (X−, φ1) such that ∂A− = ∂φ̂1 and a Möbius band B properly embedded in

(X−, int(φ1)). Proposition 5.3 then implies that ψ0 is τ+-invariant. Hence there is an annulus

A+ properly embedded in (X+, ψ0) with ∂A
+ = ∂ψ̂0. Lemma 5.1 implies that φ1, and therefore

φ0, has no outer boundary components, which is impossible.

Next suppose that τ−(φ1)∩ φ1 = ∅. Then there is an embedding (φ1 × I, φ1 ×{0}, φ1 ×{1}) →

(X−, φ1, τ−(φ1)). First suppose that the components A−
1 , A

−
2 of the image of ∂φ̂1 × I are

separating annuli in X−. Let A+ be a properly embedded annulus in (X+, ψ0) such that at

least one boundary component of A+ is contained in ∂ψ̂0. According to Lemma 5.1(1), ∂A+

does not separate ∂A−
j for j = 1, 2. Lemma 5.1(2) then implies that φ1 has no outer boundary

components, which is impossible. Thus A−
1 and A−

2 are non-separating in X−. In particular,

X− is a twisted I-bundle (Lemma 4.7).

Let P be the unique component of Σ̇+
1 whose intersection with F contains an F̂ -essential annulus

(Proposition 7.1). Then ψ0 is a component of P ∩ F and φ0 ∪ φ1 ⊆ P ∩ F . If P is a product

I-bundle, let A+
1 , A

+
2 be the annuli in its frontier in X+, and consider the torus T obtained

from the union of A+
1 , A

−
1 , A

+
2 , A

−
2 and four annuli in F̂ disjoint from int(φ1)∪ int(τ−(φ1)). The

reader will verify that T bounds a twisted I-bundle over the Klein bottle in M(β) and so is
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essential in M(β) by Lemma 4.1. Hence it intersects ∂M in at least m components. But this

implies |φ1 ∩ ∂F | = 0, which is impossible. Thus P is a twisted I-bundle. It follows from

Proposition 7.1 that X̂+ is Seifert with base orbifold D2(2, n) with ∂A−
1 vertical. ThusM(β) is

Seifert with base orbifold P 2(2, n). Let A+ be the frontier of P in X+. By construction, ∂A+

does not separate ∂A−
1 or ∂A−

2 in F̂ . Lemma 5.4 then shows that |(F̂ \ ψ0) ∩ ∂F | = 0. Hence,

t+1 = 0. This implies that n > 2 (Corollary 7.6) and τ− is defined on F̂ \ ψ0 and sends it into

the interior of Φ̇+
1 . Thus, there are disjoint, non-separating annuli E−

1 , E
−
2 properly embedded

in X− such that ∂E−
1 ∪ ∂E−

2 ⊆ Φ̇+
1 and for each j, ∂Φ̇+

1 ∩ ∂E−
j is a boundary component of

Φ̇+
1 . Write ∂E−

j = cj ∪ c
′
j where ∂Φ̇

+
1 = c1 ∪ c2. Since F \ ψ0 is an annulus, it follows from our

constructions that the disjoint subsurfaces of Φ̇+
1 with inner boundaries c1 ∪ c

′
2 and c2 ∪ c

′
1 lie

in Φ̇+
3 and contain ∂F . Thus their union is Φ̇+

3 . This proves the proposition. ♦

Definition 8.3. ([BGZ1, page 266]) Given a closed, essential surface G in M, we let C(G)

denote the set of slopes δ on ∂M such that S compresses in M(δ). A slope η on ∂M is called

a singular slope for G if η ∈ C(G) and ∆(δ, η) ≤ 1 for each δ ∈ C(G).

A fundamental result of Wu [Wu1] states that if C(G) 6= ∅, then there is at least one singular

slope for G.

Proposition 8.4. Let η and δ be slopes on the boundary of a hyperbolic knot manifold M .

(1) ([BGZ1, Theorem 1.5]) If η is a singular slope for some closed essential surface in M and

M(δ) is not hyperbolic, then ∆(δ, η) ≤ 3.

(2) ([BGZ1, Theorem 1.7]) If M(η) is a Seifert fibred manifold whose base orbifold is hyperbolic

but a 2-sphere with three cone points, then η is a singular slope for some closed essential surface

in M . ♦

Proposition 8.5. Suppose that F is non-separating. If Φ̇+
3 contains an Ŝ-essential annulus

and t+1 = 0, then M(β) is Seifert fibred with base orbifold a torus or a Klein bottle with exactly

one cone point. In particular, β is a singular slope for a closed essential surface in M and thus,

∆(α, β) ≤ 3.

Proof. Since t+1 = 0, Proposition 7.2 implies that Φ̇+
1 = φ1 ∪ φ2 where φ1, φ2 lie in different

components of S and complete to Ŝ-essential annuli. This proposition also implies that X̂+

admits a Seifert fibred structure with base orbifold an annulus with one cone point. Further,

φ̂j is vertical in this structure for both j. To see that M(β) is Seifert with base orbifold as

claimed, it suffices to show that the slope of τ̂−(φj) coincides with that of φ̂3−j . But this is

an immediate consequence of the fact that τ+(Φ̇
+
3 ) = Φ̇+

1 ∧ Φ̇−
2 = Φ̇+

1 ∧ τ−(Φ̇
+
1 ) contains an

Ŝ-essential annulus. ♦

9. The existence of tight components in Φ̆ǫj for small values of j

In this section we examine the existence of tight components in Φ̆ǫj for small values of j. Note

that if tǫ1 6= 0 for some ǫ, then Proposition 6.3 implies that t−ǫ2 = tǫ2 ≥ tǫ1 > 0. Thus we examine
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the case t+1 = t−1 = 0. Recall that under this hypothesis, Φ̇+
1 and Φ̇−

1 are non-empty (Lemma

7.4).

Lemma 9.1. Suppose that t+1 = t−1 = 0. If ∆(α, β) > 3 and M(β) is Seifert fibred, then its

base orbifold is of the form P 2(a, b) for some (a, b) 6= (2, 2) and X− is a twisted I-bundle.

Proof. Since ∆(α, β) > 3, β is not a singular slope of a closed essential surface in M ([BGZ1,

Theorem 1.5]). Hence, as M(β) is toroidal, Seifert but not the union of two twisted I-bundles

over the Klein bottle (Corollary 7.6), its base orbifold is of the form P 2(a, b) ([BGZ1, Theorem

1.7]) where (a, b) 6= (2, 2). Each essential torus in M(β) splits it into the union of a twisted

I-bundle over the Klein bottle and a Seifert manifold with base orbifold D2(a, b). Since t+1 =

t−1 = 0, Proposition 7.5(3) implies that X− is a twisted I-bundle. ♦

Lemma 9.2. Let S1, S2 be large, neat, connected surfaces contained in the same component of

S. Suppose, for each j, that either Sj is tight or Ŝj is an Ŝ-essential annulus.

(1) Each component of S1 ∧ S2 is either tight or an Ŝ-essential annulus.

(2) If we further assume that when both Ŝ1 and Ŝ2 are Ŝ-essential annuli, their slopes are

distinct, then each component of S1 ∧ S2 is tight.

Proof. Let S0 be a component of S1 ∧ S2.

First suppose that S0 is contained in a disk D in Ŝ. If S0 is not tight, it has at least two inner

boundary components. Let C be an inner boundary component of S0 which is innermost in D

amongst all the other inner boundary components of S0. Let D0 ⊆ D ⊆ Ŝ be the disk with

boundary C. By construction, D0 ∩ S0 = C. Further, the neatness of S1 and S2 implies that

D0 ∩ S is large. Since Ŝj is either a disk or an Ŝ-essential annulus, D0 ∩ S ⊆ Sj for each j.

Hence it is contained in S1 ∧ S2 and therefore S0, contrary to our construction. Thus S0 must

be tight. In particular, this proves (2).

Next suppose that S0 contains an Ŝ-essential annulus but S0 is not itself an Ŝ-essential annulus.

Then S0 has at least three inner boundary components and all but exactly two of them are

inessential in Ŝ. Fix an inessential inner boundary component C of S0. The argument of the

previous paragraph is easily adapted to this case and leads to a contradiction. Thus Ŝ0 must

be an Ŝ-essential annulus. ♦

Proposition 9.3. If t+1 = t−1 = 0, then one of the following three scenarios arises.

(i) Φ̆+
3 is a union of tight components.

(ii) t+3 = 0, X− is a twisted I-bundle, and M(β) is Seifert with base orbifold P 2(2, n) for some

n > 2. Further, Φ̇+
1 completes to an F̂ -essential annulus, Φ̇+

3 completes to the union of two

F̂ -essential annuli, and there are disjoint, non-separating annuli A−
1 , A

−
2 properly embedded in

(X−, F ) such that ∂A−
1 ∪ ∂A−

2 ⊆ Φ̇+
1 and for each j, ∂Φ̇+

1 ∩ ∂A−
j is a boundary component of

Φ̇+
1 .



CHARACTERISTIC SUBMANIFOLD THEORY AND TOROIDAL DEHN FILLING 27

(iii) X− is a product I-bundle and M(β) is Seifert fibred with base orbifold a torus or a Klein

bottle with exactly one cone point. In particular, β is a singular slope for a closed essential

surface in M and thus, ∆(α, β) ≤ 3.

Proof. Propositions 7.1 and 7.2 imply that Φ̆ǫ1 = Φ̇ǫ1 is either S or a union of subsurfaces whose

completions are Ŝ-essential annuli. If no component of Φ̆+
3 contains an Ŝ-essential annulus,

Lemma 9.2 shows that (i) holds. If some component of Φ̆+
3 does contain an Ŝ-essential annulus,

Propositions 8.2 and 8.5 show that (ii) and (iii) hold. ♦

Proposition 9.4. Suppose that t+1 = t−1 = 0 and ∆(α, β) > 3.

(1) If X− is not an I-bundle, each component of Φ̆ǫj is tight for all j ≥ 2 and both ǫ.

(2) If X− is a product I-bundle, or X− is a twisted I-bundle and Φ̆+
3 does not contain an

Ŝ-essential annulus, each component of Φ̆+
j is tight for all j ≥ 3.

(3) If X− is a twisted I-bundle and Φ̆+
3 contains an Ŝ-essential annulus, then t+3 = 0, M(β) is

Seifert with base orbifold P 2(2, n) for some n > 2, Φ̇+
1 and Φ̇+

3 are as described in Proposition

9.3(ii), and each component of Φ̆+
j is tight for all j ≥ 5.

Proof. Propositions 7.1 and 7.2 show that for each ǫ, Φ̆ǫ1 = Φ̇ǫ1 is either S or a union of

subsurfaces whose completions are Ŝ-essential annuli.

First note that in order to prove assertion (1), it suffices to show that each component of Φ̇+
2

is tight. For if this holds, the same is true of Φ̇−
2 = h+2 (Φ̇

+
2 ). Suppose inductively that each

component of Φ̇ǫj is tight for some j ≥ 2 and both ǫ. Lemma 9.2 combines with the identity

Φ̇ǫj+1 = τǫ(Φ̇
ǫ
1 ∧ Φ̇−ǫ

j ) to show that each component of Φ̇ǫj+1 is tight.

Consider Φ̇+
2 then. Since t+1 = t−1 = 0 and X− is not an I-bundle, S = F is separating.

Proposition 7.1 implies that for each ǫ and component φ of Φ̇ǫ1, φ̂ is an F̂ -essential annulus.

Lemma 9.1 implies that M(β) is not Seifert, so the slopes of an F̂ -essential annulus in ̂̇Φ+
1 and

an F̂ -essential annulus in ̂̇Φ−
1 are distinct. Hence Lemma 9.2 implies that each component of

Φ̇+
2 = τ+(Φ̇

+
1 ∧ Φ̇−

1 ) is tight.

Next consider the hypotheses of assertion (2). Proposition 9.3 implies that each component of

Φ̇+
3 is tight. Since X− is an I-bundle, Φ̇+

3 = Φ̇+
4 , so the lemma holds when j = 3, 4. But when

j ≥ 5, we have Φ̇+
j+1 = τǫ(Φ̇

ǫ
1 ∧ τ−(Φ̇

+
j−1), so Lemma 9.2 combines with an inductive argument

to show that (2) holds for all j ≥ 3.

Finally consider assertion (3). Now τ−τ+(Φ̆
+
5 ) = Φ̆+

3 ∧ Φ̆−
2 = Φ̆+

3 ∧ τ−(Φ̆
+
1 ) = Φ̆+

3 ∧ τ+(Φ̆
+
3 )

where the latter identity follows from Proposition 9.3(ii). Now τ+(Φ̆
+
3 ) = φ1 ∪ φ2 where φ̂j is

an F̂ -essential annulus and φ2 = τ−(φ1). Hence

Φ̆+
3 ∧ τ+(Φ̆

+
3 ) = φ1 ∧ τ+(φ1) ⊔ φ1 ∧ τ+(φ2) ⊔ φ2 ∧ τ+(φ1) ⊔ φ2 ∧ τ+(φ2)

By construction, φj ∩ τ+(φ3−j) contains an inner boundary component of Φ̇+
1 for both j. If

φj ∧ τ+(φ3−j) = φj for some j, then φj ∧ τ+(φ3−j) = φj and φj ∧ τ+(φj) = ∅ for both j.
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Hence τ−τ+(Φ̆
+
5 ) = Φ̆+

3 from which it follows that Φ̆+
3 = Φ̆+

5 , which is impossible. Hence

φj ∧ τ+(φ3−j) 6= φj for both j. It follows that φj ∧ τ+(φj) 6= ∅ is a non-empty union of tight

components for each j.

Next consider φj ∧τ+(φ3−j). By Lemma 9.2, each of its components is either tight or completes

to an Ŝ-essential annulus. Since τ+(φ3−j) contains the inner component cj of Φ̇
+
1 contained in

φj , there is exactly one component of φj ∧ τ+(φ3−j), Ej say, which completes to an Ŝ-essential

annulus. To complete the proof we need only show that Ej ∩ ∂S = ∅.

By construction, τ+(E1) = E2 and τ+(E2) = E1. Let E0 = Φ̇+
1 \ (E1 ∪ E2). Then E0 completes

to an F̂ -essential annulus Ê0 which is invariant under τ+. Hence the associated I-bundle over

Ê0 is a solid torus V1 whose frontier in X̂+ is an essential annulus in X+ which has winding

number 2 in V1.

Next consider the solid torus V2 = X+ \ Σ̇+
1 . The frontier of V2 in X

+ is an essential annulus in

X+ cobounded by c1 and c2. Let A be the other annulus in ∂V2 cobounded by c1 and c2. Then

τ−(A) = Φ̇+
1 \ (φ1 ∪ φ2) is a core annulus in Ê0. The I-bundle in X− over A is a solid torus in

which A has winding number 1. It follows that W = V1 ∪ V2 ∪ V3 ⊂ M(β) is a Seifert fibered

space over a disk with two cone points. In particular, ∂W is incompressible in W . The exterior

of W in M(β) is a Seifert fibered space over a Möbius band so ∂W is also incompressible in

M(β). If Ej ∩∂S 6= ∅ for some j then ∂W intersects ∂M in fewer than m components contrary

to Assumption 2.2. Thus we must have Ej ∩ ∂S = ∅ for both j, which completes that proof of

(3). ♦

10. Lengths of essential homotopies

It is clear that χ(Φ̆ǫj) = 0 if and only if χ(Φ̆ǫj) is a regular neighbourhood of ∂S. Thus if we set

lǫ = max{j : χ(Φ̆ǫj) 6= 0}

then lǫ is the maximal length of an essential homotopy in (M,S) of a large function which

begins on the ǫ-side of S. Hence

lS = max{l+, l−}

is the maximal length of an essential homotopy in (M,S) of a large function. It is evident that

|l+ − l−| ≤ 1 and therefore |lǫ − lS | ≤ 1 for each ǫ.

Proposition 10.1. Suppose that ∆(α, β) > 3 if F is non-separating.

(1) l+ ≤ |∂S| − t+1 if t+3 > 0 and l+ ≤ |∂S| − t+1 + 2 otherwise. Hence,

lS ≤

{
|∂S| − t+1 + 1 if t+3 > 0

|∂S| − t+1 + 3 otherwise
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(2) If X− is not an I-bundle, then l− ≤ |∂S| − t−1 . Hence,

lS ≤ |∂S| −





max{t+1 , t
−
1 } if t+1 = t−1

max{t+1 , t
−
1 } − 1 if t+1 6= t−1

Proof. For each ǫ we know that T ǫ
lǫ+1 is a regular neighbourhood of ∂S while T ǫ

lǫ
isn’t, so

tlǫ < tlǫ+1 = |∂S|. If t+3 > 0, Proposition 6.3 implies that if 2k + 1 ≤ l+, then t
+
1 < t+3 < . . . <

t+2k+1 < |∂S|. As each of these numbers is even, |∂S| > t+2k+1 ≥ 2k+t+1 . Hence 2k+2 ≤ |∂S|−t+1 .

It follows that l+ ≤ |∂S| − t+1 and therefore lS ≤ |∂S| − t+1 + 1. In general, Proposition 9.4

implies that t+5 > 0, which yields l+ ≤ |∂S| − t+1 + 2. Thus assertion (1) holds.

If X− is not an I-bundle, then Proposition 9.4 implies that t−3 > 0, so the argument of the

previous paragraph shows that l− ≤ |∂S| − t−1 and therefore

• lS ≤ |∂S| − t−1 + 1; and

• lS = max{l+, l−} ≤ max{|∂S| − t+1 , |∂S| − t−1 } = |∂S| −min{t+1 , t
−
1 }.

Part (1) of the proposition combines with the first inequality to show that lS ≤ min{|∂S| −

t+1 +1, |∂S|− t−1 +1} = |∂S|−max{t+1 , t
−
1 }+1. The latter combines with the second inequality

to yield the upper bound for lS described in (2). ♦

Proposition 9.4 and Proposition 10.1 imply the following corollary.

Corollary 10.2. Suppose that ∆(α, β) > 3 if F is non-separating. Then

lS ≤





|∂S| if X− is not an I-bundle

|∂S|+ 1 if X− is an I-bundle and Φ̇+
3 contains no Ŝ-essential annulus when it is twisted

|∂S|+ 3 if X− is a twisted I-bundle and Φ̇+
3 contains an Ŝ-essential annulus ♦

11. The intersection graph of an immersed disk or torus

We recall some of the set up from [BCSZ2, §12].

A 3-manifold is very small if its fundamental group does not contain a non-abelian free group.

By Assumption 2.1,M(α) is a small Seifert manifold with base orbifold S2(a, b, c) where a, b, c ≥

1. It is well-known that M(α) is very small if and only if 1
a + 1

b +
1
c ≥ 1. In this case, the

non-abelian free group π1(F ) cannot inject into π1(M(α)). Hence for either ǫ we can find maps

h : D2 →M(α) such that the loop h(∂D2) is contained in Xǫ \ F and represents a non-trivial

element of π1(X
ǫ). This won’t necessarily be possible when 1

a + 1
b +

1
c < 1 since M(α) is not

very small. Nevertheless, the inverse image in M(α) of an essential immersed loop contained in

the exterior of the cone points of S2(a, b, c) will be an essential immersed torus in M(α). Hence

we can find π1-injective immersions h : T →M(α) where T is a torus.

Let Vα be the filling solid torus used in forming M(α). It is shown in [BCSZ2, §12] that we can

choose an immersion h : Y→M(α), where Y is a disk D if M(α) is very small or a torus T if

M(α) otherwise, such that
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(1) When Y is a disk D, h(∂D) ⊆M \ F ⊆M ⊆M(α);

(2) h−1(Vα) is a non-empty set of embedded disks in the interior of Y and h is an embedding

when restricted on h−1(Vα);

(3) h−1(F ) is a set of arcs or circles properly embedded in the punctured surface Y0 =

Y \ int(h−1(Vα));

(4) If e is an arc component of h−1(F ), then h| : e→F is an essential (immersed) arc;

(5) If c is a circle component of h−1(F ), then h| : c→F is an essential (immersed) 1-sphere.

For any subset s of Y , we use s∗ to denote its image under the map h. Denote the components

of ∂(h−1(Vα)) by a1, ..., an so that a∗1, ..., a
∗
n appear consecutively on ∂M . Note again that

h| : ai→a∗i ⊆ ∂M is an embedding and that a∗i has slope α in ∂M , for each i = 1, ..., n. We

fix an orientation on Y0 and let each component ai of ∂Y0 have the induced orientation. Two

components ai and aj are said to have the same orientation if a∗i and a
∗
j are homologous in ∂M .

Otherwise, they are said to have different orientations.

Denote the components of ∂F by b1, ..., bm so that they appear consecutively in ∂M . Similar

definitions apply to the components of ∂F . Since Y0, F and M are all orientable, one has the

following

Parity rule: An arc component e of h−1(F ) in Y0 connects components of ∂Y0 with the same

orientation (respectively opposite orientations) if and only if the corresponding e∗ in F connects

components of ∂F with opposite orientations (respectively the same orientation).

We define an intersection graph ΓF on the surface Y by taking h−1(Vα) as (fat) vertices and

taking arc components of h−1(F ) as edges. Note that ΓF has no trivial loops, i.e. no 1-edge

disk faces. Also note that we can assume that each a∗i intersects each component bj in ∂M

in exactly ∆(α, β) points. If e is an edge in ΓF with an endpoint at the vertex ai, then the

corresponding endpoint of e∗ is in a∗i ∩ bj for some bj, and the endpoint of e is thus given the

label j. So when we travel around ai in some direction, we see the labels of the endpoints of

edges appearing in the order 1, ...,m, ..., 1, ...,m (repeated ∆(α, β) times). It also follows that

each vertex of ΓF has valency m∆(α, β).

Define the double of ΓF to be the graph D(ΓF ) in Y as follows: the vertices of D(ΓF ) are the

vertices of ΓF ; the edges of D(ΓF ) are obtained by doubling the edges of ΓF (i.e. each edge e

is replaced by two parallel copies of e). Finally we set

ΓS =

{
ΓF if F separates

D(ΓF ) if F does not separate

It is clear that

(1) ΓS is a graph in Y determined by the intersection of an immersed disk or torus with S.

(2) each vertex of ΓS has valency |∂S|∆(α, β).

(3) if two faces of ΓS share a common edge, then they lie on different sides of S.
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(4) if F does not separate, then a face of ΓS which is sent by h into X− is a bigon bounded

by parallel edges.

Suppose that e and e′ are two adjacent parallel edges of ΓS. Let R be the bigon face between

them, realizing the parallelism. Then (R, e∪ e′) is mapped into (Xǫ, S) by the map h for some

ǫ. Moreover h|R provides a basic essential homotopy between the essential paths h|e and h|e′ .

We may and shall assume that R∗ = h(R) is contained in the characteristic I-bundle pair

(Σ̇ǫ1, Φ̇
ǫ
1) of (X

ǫ, S). We may consider R as e× I and assume that the map h : R→Σ̇ǫ1 is I-fibre

preserving.

Let ΓS be the reduced graph of ΓS obtained from ΓS by amalgamating each maximal family

of parallel edges into a single edge. It is evident that ΓS coincides with the similarly defined

graph ΓF . The following lemma is a simple consequence of the construction of ΓS.

Lemma 11.1.

(1) There is at most one 1-edge face of ΓS and if one, it is a collar on ∂Y when Y is a disk

and a once-punctured torus when Y is a torus.

(2) A 2-edge face of ΓS is either

(a) a collar on ∂Y bounded by a circuit of two edges and two vertices when Y is a disk;

(b) a once-punctured torus bounded by a circuit of two edges and two vertices;

(c) an annulus cobounded by two circuits, each with one edge and one vertex;

(d) a twice-punctured torus bounded by a circuit of one edge and one vertex. ♦

The weight of an edge ē of ΓS is the number of parallel edges in ΓS that ē represents.

Call the vertex of ΓS (or ΓS) with boundary ai positive if ai and a1 are like-oriented on ∂M .

Otherwise call it negative.

Call an edge e, respectively ē, of ΓS, respectively ΓS , positive if it connects two positive vertices

or two negative vertices. Otherwise it is said to be negative.

Proposition 11.2. If Y is a torus, the number of positive vertices of ΓS equals the number of

negative vertices.

Proof. Up to taking absolute value, the difference between the number of positive vertices

and the number of negative vertices is the intersection number between a class in H1(M(α))

carried by the core of the α-filling torus and h∗([Y ]) ∈ H2(M(α)). Thus the lemma holds as

long as H2(M(α)) = 0. Suppose then that H2(M(α)) 6= 0. Since M(α) is small Seifert, we

have H2(M(α)) ∼= Z and is generated by an embedded horizontal surface, G say, which is a

fibre in a locally trivial surface bundle M(α) → S1. Thus h∗([Y ]) is a non-zero multiple of [G].

In particular, the Thurston norm of [G] is zero. Hence G is a torus (cf. Assumption 2.8). Thus

M(α) is toroidal small Seifert. But then M(α) is very small contrary to our assumption that

Y is a torus. This completes the proof. ♦
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To each oriention of an edge ē of ΓS of weight |∂S| or more we can associate a permutation σ

of the labels as follows: if e is an edge of ΓS in the ē-family and j is the label of its tail, then

σ(j) is the label of its head. The parity rules implies that there is an integer k such that

σ(j) ≡

{
j + 2k (mod m) if e is negative

−j + 2k + 1 (mod m) if e is positive

We say that a face of ΓS or ΓS lies on the ǫ-side of F if it is mapped to Xǫ by h.

The discussion in [BCSZ1, §3.4] implies the conclusion of the following proposition.

Proposition 11.3. If ΓS has an edge of weight k, then there is an essential homotopy in

(M,S) of length k − 1 of a large map with image in S. ♦

This result combines with Corollary 10.2 to yield the following corollary.

Corollary 11.4. Suppose that ∆(α, β) > 3.

(1) If X− is not an I-bundle, the weight of an edge of ΓS is at most |∂S|+ 1.

(2) If X− is a product I-bundle, or a twisted I-bundle and Φ+
3 does not contain an F̂ -essential

annulus, the weight of an edge of ΓS is at most |∂S|+ 2.

(3) If X− is a twisted I-bundle and Φ+
3 contains an F̂ -essential annulus, the weight of an edge

of ΓS is at most |∂S|+ 4. ♦

We call a graph hexagonal if it is contained in a torus, each vertex has valency 6, and each face

is a triangle. We call it rectangular if it is contained in a torus, each vertex has valency 4, and

each face is a rectangle. Such graphs are connected.

The following proposition follows from simple Euler characteristic calculations.

Proposition 11.5.

(1) If each vertex of ΓS has valency 6 or more, then it is hexagonal, so Y is a torus. Moreover

there is a vertex of ΓS incident to at least two positive edges.

(2) If ΓS has no triangle faces, it has a vertex of valency at most 4. If it has no vertices of

valency less than 4, then it is rectangular, so Y is a torus. ♦

Proof. We have

0 ≤ χ(Y ) =
∑

faces f of ΓS

{χ(f)−
∑

v∈∂f

(
1

2
−

1

valencyΓS
(v)

)}

Set χf = χ(f)−
∑

v∈∂f (
1
2 −

1
valency

ΓS
(v)

). Lemma 11.1 implies that χf ≤ 0 for each monogon

and bigon f in ΓS . The hypotheses of assertions (1) and (2) of the lemma imply that χf ≤ 0

for faces with three or more sides. Thus under either set of hypotheses, χ(Y ) ≤ 0, so Y is a

torus. Then χ(Y ) = 0 so χf = 0 for all faces f . It follows that ΓS is hexagonal under the
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conditions of (1) and rectangular under those of (2). Finally, it is easy to check that when ΓS
is hexagonal, it has a vertex incident to at least two positive edges. ♦

Lemma 11.6. Suppose that F is non-separating and each component of Σ̆+
1 intersects both F1

and F2. Then every edge of ΓS is negative. Hence every face of ΓS has an even number of

edges. In particular this is true if t+1 ≤ 2.

Proof. If each component of Σ̆+
1 intersects both F1 and F2, all the boundary components

b1, ..., bm of F have the same orientation. Hence by the parity rule, every edge of ΓS is negative.

The second assertion follows from the first, while the third is a consequence of Lemma 7.9 and

the others. ♦

A disk face of k-edges in the graph ΓS is call a Scharlemann k-gon with label pair {j, j + 1} if

each edge of the face is positive with the fixed label pair {j, j + 1} at its two endpoints. The

set of edges of a Scharlemann k-gon is called a Scharlemann k-cycle. A Scharlemann 2-cycle

is also called an S-cycle. An S-cycle {e1, e2} is called an extended S-cycle if m ≥ 4 and the

two edges e1 and e2 are the middle edges in a family of four adjacent parallel edges of ΓS . An

S-cycle {e1, e2} is called a doubly-extended S-cycle if m ≥ 6 and the two edges e1 and e2 are

the middle edges in a family of six adjacent parallel edges of ΓS.

The method of proof of [BCSZ2, Lemma 12.3] yields the following proposition.

Proposition 11.7. Suppose that two vertices v and v′ of ΓS have the same orientation and

are connected by a family of n parallel consecutive edges e1, ..., en.

(1) If n > m/2, then there is an S-cycle in this family of edges.

(2)(a) If m ≥ 4 and n > m
2 + 1, then either there is an extended S-cycle in this family of edges

or both {e1, e2} and {en−1, en} are S-cycles.

(b) If m ≥ 4 and n > m
2 + 2, then there is an extended S-cycle in this family of edges.

(3)(a) If m ≥ 6 and n > m
2 + 3, then either there is a doubly-extended S-cycle in this family of

edges or both {e2, e3} and {en−2, en−1} are extended S-cycles.

(b) If m ≥ 6 and n > m
2 + 4, there is a doubly-extended S-cycle in this family of edges. ♦

Lemma 11.8. Suppose that {e1, e2} is an S-cycle in ΓS and R the associated bigon face of ΓS.

If R lies on the ǫ-side of F , then Φ̇ǫ1 contains a τǫ-invariant component, so F is separating.

Further, this component contains an Ŝ-essential annulus and X̂ǫ admits a Seifert structure with

base orbifold a disk with two cone points, at least one of which has order 2.

Proof. Suppose that the S-cycle has label pair {j, j+1}. Then τǫ(bj∪e
∗
1∪bj+1) = bj+1∪e

∗
2∪bj.

Hence bj ∪ e
∗
1 ∪ bj+1 and bj+1 ∪ e

∗
2 ∪ bj are contained in the same component φ of Φ̇ǫ and this

component is τǫ-invariant. Proposition 7.7 implies that S is connected and φ contains an Ŝ-

essential annulus. Proposition 7.1 shows that φ is the unique component of Φ̇ǫ to contain such

an annulus. Finally, Proposition 7.1(3) implies that X̂ǫ is of the form described in (4). ♦
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12. Counting faces in ΓS

In this section we examine the existence of triangle faces of ΓS incident to vertices of small

valency.

For each vertex v of ΓS let ϕj(v) be the number of corners of j-gons incident to v. Then

valencyΓS
(v) = |∂S|∆(α, β) − ϕ2(v)

Set

ψ3(v) = valencyΓS
(v)− ϕ3(v) ≥ 0,

µ(v) = ϕ2(v) +
ϕ3(v)

3
∈ {

k

3
: k ∈ Z}

Lemma 12.1. Suppose that v is a vertex of ΓS and set µ(v) = |∂S|∆(α, β) − 4 + x. Then

valencyΓS
(v) = 6−

1

2
(3x+ ψ3(v))

and

ϕ3(v) = 3(valencyΓS
(v)− 4 + x)

Proof. We noted above that valencyΓS
(v) = |∂S|∆(α, β) − ϕ2(v). Thus

valencyΓS
(v) = |∂S|∆(α, β) − µ(v) +

ϕ3(v)

3
= 4− x+

valencyΓS
(v)

3
−
ψ3(v)

3
,

and therefore

valencyΓS
(v) =

3

2
(4 − x−

ψ3(v)

3
) = 6−

1

2
(3x+ ψ3(v)).

On the other hand,

ϕ3(v) = 3(µ(v) − ϕ2(v)) = 3(|∂S|∆(α, β) − 4 + x− ϕ2(v)) = 3(valencyΓS
(v)− 4 + x).

Thus the lemma holds. ♦

Proposition 12.2. Suppose that v is a vertex of ΓS.

(1) If µ(v) > |∂S|∆(α, β) − 4, then valencyΓS
(v) ≤ 5. Further,

(a) if valencyΓS
(v) = 3, then ϕ3(v) ≥ 0.

(b) if valencyΓS
(v) = 4, then ϕ3(v) ≥ 1.

(c) if valencyΓS
(v) = 5, then ϕ3(v) ≥ 4.

(2) If µ(v) = |∂S|∆(α, β) − 4, then 4 ≤ valencyΓS
(v) ≤ 6. Further,

(a) if valencyΓS
(v) = 4 then ϕ3(v) = 0.

(b) if valencyΓS
(v) = 5 then ϕ3(v) = 3.

(c) if valencyΓS
(v) = 6 then ϕ3(v) = 6.
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Proof. Write µ(v) = |∂S|∆(α, β)−4+x where x ≥ 0 is an element of {k3 : k ∈ Z}. By Lemma

12.1 we have valencyΓS
(v) ≤ 6 − 3x

2 . Thus valencyΓS
(v) ≤

{
6 if x = 0

5 if x > 0
. Further, if x = 0,

the same lemma implies that valencyΓS
(v) = 6− ψ3(v)

2 . Since ψ3(v) = valencyΓS
(v)−ϕ3(v), this

is equivalent to valencyΓS
(v) = 4 + ϕ3(v)

3 . Thus valencyΓS
(v) ≥ 4. The remaining conclusions

follow from the identity ϕ3(v) = 3(valencyΓS
(v)− 4 + x) of Lemma 12.1. ♦

Let V,E, F be the number of vertices, edges, and faces of ΓS .

Proposition 12.3.

(1) If the immersion surface is a disk, then
∑

v µ(v) ≥ (|∂S|∆(α, β) − 4)V + 4.

(2) If the immersion surface is a torus,
∑

v µ(v) ≥ (|∂S|∆(α, β) − 4)V .

Proof. First assume that ΓS has no monogon faces. Since its vertices each have valency

|∂S|∆(α, β) we have 2E = |∂S|∆(α, β)V . Let Fi be the number of i-faces so F =
∑

i Fi and

2E =
∑

i iFi. Then

(|∂S|∆(α, β) − 4)V = 2E − 4V = 4(E − V )− 2E = 4((
∑

faces f

χ(f))− χ(Y ))− 2E

Since χ(f) ≤ 1 for each face f , we have

(|∂S|∆(α, β) − 4)V ≤ 4(F − χ(Y ))− 2E =
∑

(4− i)Fi − 4χ(Y )

≤ 2F2 + F3 − 4χ(Y )

=
∑

v

(ϕ2(v) +
ϕ3(v)

3
)− 4χ(Y )

=
∑

v

µ(v)− 4χ(Y )

Thus the lemma holds when there are no monogons.

If there are monogons, it is easily verified that there is only one, f say, and that it is a collar on

∂Y when Y is a disk and a once-punctured torus when Y is a torus. In either case, Y \ f is a disk

containing ΓS without monogons. The first case implies that
∑

v µ(v) ≥ (|∂S|∆(α, β)−4)V +4,

which implies the result. ♦

Corollary 12.4.

(1) If the immersion surface is a disk there is a vertex v of ΓS such that µ(v) > |∂S|∆(α, β)−4.

(2) If the immersion surface is a torus, then either there is a vertex v of ΓS such that µ(v) >

|∂S|∆(α, β) − 4 or µ(v) = |∂S|∆(α, β) − 4 for each vertex. ♦

Proposition 12.5. Suppose that µ(v) = |∂S|∆(α, β) − 4 for each vertex v of ΓS. Then each

face of ΓS is a disk. Further, if v is a vertex of ΓS and

(1) valencyΓS
(v) = 4, then ϕ4(v) = 4.
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(2) valencyΓS
(v) = 5, then ϕ3(v) = 3 and ϕ4(v) = 2.

(3) valencyΓS
(v) = 6, then ϕ3(v) = 6.

Proof. Corollary 12.4 shows that Y is a torus. Thus 0 = χ(Y ) =
∑

v χ(v) where

χ(v) = 1−
valencyΓS

(v)

2
+

∑

v∈∂f

χ(f)

|∂f |

and f ranges over the faces of ΓS containing v. From Proposition 12.2(2) we see that χ(v) ≤ 0

for all v. Hence χ(v) = 0 for all v. This is only possible if the proposition holds. ♦

13. Proof of Theorem 2.7 when F is non-separating

We show that when F is non-separating and m ≥ 3, ∆(α, β) ≤ 4 if M(α) is very small and

∆(α, β) ≤ 5 otherwise. This follows from the two propositions below. Recall that |∂S| = 2m

when F is non-separating.

Proposition 10.1 shows that lS ≤ 2m−t+1 +1, so the weight of each edge in the reduced graph ΓS
of ΓS is at most 2m−t+1 +2. Hence if v is a vertex of ΓS , 2m∆(α, β)/valencyΓS

(v) ≤ 2m−t+1 +2,

so

(13.0.1) ∆(α, β) ≤
(2m− t+1 + 2

2m

)
valencyΓS

(v)

Proposition 13.1. Suppose that F is non-separating and t+1 > 0. Then

∆(α, β) ≤

{
4 if m ≤ 5 or M(α) is very small

5 if m ≥ 6

Proof. If there is a vertex of ΓS of valency 3 or less, Inequality 13.0.1 yields ∆(α, β) ≤ 3, so

we are done. Suppose then that all vertices are of valency 4 or more.

If t+1 = 2, then by Lemma 11.6 there are no triangle faces of ΓS and therefore Lemma 11.5(2)

implies that ΓS is quadrilateral. Thus Y is a torus, so M(α) is not very small. Further, as all

vertices have valency 4, Inequality 13.0.1 implies that ∆(α, β) ≤ 4. Thus we are done.

If t+1 > 2, then 2m ≥ t+1 ≥ 4, so m ≥ 2. Corollary 12.4 and Proposition 12.2 imply that there

is a vertex v of ΓS of valency at most 5 if Y is a disk (e.g. if M(α) is very small) and at most

6 if it is a torus. Inequality 13.0.1 then shows that the proposition holds. ♦

Proposition 13.2. Suppose that F is non-separating and t+1 = 0.

(1) If M(α) is very small, then ∆(α, β) ≤

{
4 if m ≥ 2

6 if m = 1

(2) If M(α) is not very small, then ∆(α, β) ≤





5 if m ≥ 3

6 if m = 2

8 if m = 1
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Proof. Suppose that t+1 = 0. By Lemma 11.6, ΓS has no triangle face, so ϕ3(v) = 0 for each

vertex of ΓS . Hence ΓS has a vertex v of valency at most 4 by Proposition 11.5(2). If there is a

vertex of valency 3 or less, then Inequality 13.0.1 shows ∆(α, β) ≤ 4 for m ≥ 2 and ∆(α, β) ≤ 6

for m = 1. If there are no vertices of valency less than 4, Proposition 11.5(2) implies that ΓS is

rectangular, so Y is a torus andM(α) is not very small. Thus assertion (1) of the lemma holds.

By Inequality 13.0.1, ∆(α, β) ≤ 4 + 4/m. It follows that ∆(α, β) ≤ 5 if m ≥ 3, ∆(α, β) ≤ 6 if

m = 2, and ∆(α, β) ≤ 8 if m = 1. ♦

14. Proof of Theorem 2.7 when F is separating and t+1 + t−1 ≥ 4

Proposition 14.1. Suppose that F is separating and t+1 + t−1 ≥ 4. Then

∆(α, β) ≤

{
4 if M(α) is very small

5 otherwise.

Proof. Since F is separating, S = F and |∂S| = m.

If tǫ1 ≥ 4 for some ǫ then Proposition 10.1 shows that lS ≤ m− 3. Thus the weight of each edge

in ΓS is at most m − 2. If tǫ1 = 2 for both ǫ, then l+, l− ≤ m − 2, so lS ≤ m − 2. Thus the

weight of each edge in ΓS is at most m− 1. In either case, it follows that for each vertex v of

ΓS ,
m∆(α,β)

valency
ΓS

(v)
≤ m− 1. Hence

(14.0.1) ∆(α, β) ≤
(m− 1

m

)
valencyΓS

(v) < valencyΓS
(v)

Corollary 12.4 and Proposition 12.2 imply that there is a vertex v of valency 5 or less if Y is a

disk, in particular if M(α) is very small, and of valency at most 6 otherwise. Inequality 14.0.1

then shows that the conclusion of the proposition hold. ♦

15. The relation associated to a face of ΓS

The proof of Theorem 2.7 when F is separating and t+1 + t−1 ≤ 2 necessitates a deeper use of the

properties of the intersection graph ΓS . We begin with a description of the relations associated

to its faces.

Recall that the boundary components of F have been indexed (mod m): b1, b2, . . . , bm so that

they appear successively around ∂M . For each ǫ we use τǫ(j)(= j ± 1) to be the index such

that τǫ(bj) = bτǫ(j). Let σj be a path which runs from bj to bτǫ(j) in the annular component of

∂M ∩Xǫ containing bj ∪ bτǫ(j). Fix a base point x0 ∈ F and for each j a path ηj in F from x0

to bj. The loop ηj ∗ σj ∗ η
−1
τǫ(j)

determines a class xj ∈ π1(X̂
ǫ;x0) well-defined up to our choice

of the ηj . Clearly xjxτǫ(j) = 1. (The use of xj to describe this class is ambiguous in that it

does not specify which value ǫ takes on. Nevertheless, whenever we use it the value of ǫ will be

understood from the context.)

Recall that if tǫ1 = 0, X̂ǫ admits a Seifert structure with base orbifold D2(p, q). There is

a projection homomorphism π1(X̂
ǫ) → π1(D

2(p, q)) obtained by quotienting out the normal
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cyclic subgroup of π1(X̂
ǫ) determined by the class of a regular Seifert fibre. We denote the

image in π1(D
2(p, q)) of an element x ∈ π1(X̂

ǫ) by x̄. Fix generators a, b of Z/p,Z/q such that

ab represents the class of the boundary circle of D2(p, q) in π1(D
2(p, q)) ∼= Z/p ∗ Z/q.

Proposition 15.1. If tǫ1 = 0, then no xj is peripheral in X̂ǫ. Indeed, there are integers k, l

and δ ∈ {±1} such that xj is sent to an element x̄j of the form (ab)kaδ(ab)l in π1(D
2(p, q)).

Proof. It follows from the method of proof of Proposition 7.5 that X̂ǫ = V ∪W where V and

W are solid tori whose intersection is an essential annulus (A, ∂A) ⊂ (X̂ǫ, F̂ ). Further, if Kβ is

the core of the β filling solid torus, we can assume that Kβ∩X
ǫ is a finite union of arcs properly

embedded in A. Consideration of the Seifert structure on X̂ǫ then shows that the image of the

projection of σj to D2(p, q) is a properly embedded arc which separates the two cone points.

Thus there are integers k, l and δ ∈ {±1} such that x̄j = (ab)kaδ(ab)l ∈ π1(D
2(p, q)). Such an

element is peripheral if and only if it equals (ab)n for some n. But then a = (ab)±(n−k−l) would

be peripheral, which is false. ♦

Consider an n-gon face f of ΓS lying to the ǫ-side of F with boundary c1 ∪ e1∪ c2∪ . . .∪ cn∪ en
where each ci is a corner of f , ei an edge of f , and they are indexed as they arise around ∂f .

In this ordering, let bji be the boundary component of F at ci corresponding to ci ∩ ei and bj′i
that corresponding to ci+1 ∩ ei. (See Figure 1.)

4

1

2

1

2

3

13

4 1

4

1

e

c

e

c

e

c

Figure 1.

The relation

Πni=1wixj′i = 1

holds in π1(X̂
ǫ) where wi is represented by the loop ηji ∗ e

∗
i ∗ η

−1
j′i

.

For each boundary component bj of F , let b̂j denote the meridional disk it bounds in F̂ .

Corollary 15.2. Suppose that e1 is a negative edge of ΓS whose end labels are the same.

Suppose as well that e1 is a boundary edge of a triangle face lying on the ǫ-side of F where

tǫ1 = 0. If the boundary label of e is j, then the loop b̂j ∪ e
∗
1 is essential in F̂ .

Proof. The relation from the given face reads x−1
j w1xjw2xkw3 = 1 where k ∈ {1, 2, . . . ,m}

and w1, w2, w3 are the peripheral elements of π1(X̂
ǫ) defined above. If b̂j ∪e

∗
1 is inessential in F̂ ,
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then w1 = 1, so the relation gives xk = (w3w2)
−1 is peripheral, which contradicts Proposition

15.1. Thus the corollary holds. ♦

As an immediate consequence of this corollary we have:

Corollary 15.3. Suppose that e is a negative edge of ΓS whose end labels are the same. Suppose

as well that e is a boundary edge of a triangle face lying on the ǫ-side of F where tǫ1 = 0. If the

weight of e in the reduced graph Γ is k + 1, then e∗ is contained in a component of Φ̇−ǫ
k which

contains an F̂ -essential annulus. ♦

16. Proof of Theorem 2.7 when F is separating and t+1 + t−1 = 2

We assume that F is separating and t+1 + t−1 = 2 in this section. There is an ǫ such that tǫ1 = 2

and t−ǫ1 = 0. Without loss of generality we can suppose that ǫ = +.

Proposition 16.1. If F is separating and t+1 = 2, t−1 = 0, then

∆(α, β) ≤

{
5 if m ≥ 4

6 if m = 2

Proof. Proposition 10.1 shows that l+ ≤ m− 2 and lS ≤ m− 1. Thus the weight of each edge

in ΓS is at most m. Hence if there is a vertex of ΓS of valency k, then m∆(α, β) ≤ km, so

∆(α, β) ≤ k. In the case that µ(v) > m∆(α, β)−4 for some vertex v of ΓS, Proposition 12.2(1)

implies that ∆(α, β) ≤ 5. In particular this is true whenM(α) is very small by Corollary 12.4(1).

By Corollary 12.4(2) we can therefore suppose that Y is a torus and µ(v) = m∆(α, β) − 4 for

all vertices v of ΓS . Then ∆(α, β) ≤ 6 by Proposition 12.2(2).

To complete the proof we shall suppose that ∆(α, β) = 6 and show that m = 2. In this case

ΓS has no vertices of valency 5 or less. Thus it is hexagonal (Proposition 11.5). As no edge of

ΓS has weight larger than m, each of its edges has weight m. It follows that l+ ≥ m− 2, and

since we noted above that l+ ≤ m − 2, we have l+ = m − 2. Thus each face of ΓS lies on the

+-side of F .

Note that t+m−3 < m since l+ = m−2. The fact that t+2j+1 is even couples with Proposition 6.3 to

show that t+m−3 = m−2. Thus Φ̆+
m−3 has at least m−2 components. If some such component φ0

contains at least three boundary components of F , Φ̆+
m−3 has at most m− 3 other components.

But then φ0 is tight, so there must be another component of Φ̆+
m−3 containing at least three

boundary components and therefore m − 2 ≤ |Φ̆+
m−3| ≤ m − 4, a contradiction. Thus each

component of Φ̆+
m−3 contains at most two boundary components of F .

Let b1, b2, . . . , bm be the boundary components of F numbered in successive fashion around

∂M . Fix a triangle face f of ΓS and let v1, v2 be two of its vertices. They are connected by a

family e1, e2, . . . , em of mutually parallel edges of ΓS successively numbered around v1 so that

e1 is the boundary edge of f thought of as a face in ΓS.

We can suppose that the tail of each ei lies on v1 and is labeled i. Let j be the label of the head

of e2. If v1 and v2 are like-oriented, then j is odd and b2∪ e
∗
2∪ bj is contained in a component φ
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of Φ̇+
m−3. From above, b2 and bj are the only boundary components of F φ contains. Similarly

bm−1 ∪ e∗m−1 ∪ bj+3 is contained in a component of Φ̇+
m−3 and bm−1 and bj+3 are the only

boundary components of F it contains. Let v3 be the third vertex of f and consider the family

of m edges of ΓS parallel to the edge of f connecting v1 and v3. The second edge from f in this

family has label m− 1 at v1 and its label at v3 must be j +3 if v1 and v3 are like-oriented and

m−1 otherwise. Similarly, the second edge from f in the family of parallel edges corresponding

to the edge of f connecting v2 and v3 has label m− 1 at v3 if v2 and v3 are like-oriented and

j − 3 otherwise. Since the orientations of v1 and v3 coincide if and only if those of v2 and v3
do, it follows that j = m− 1 whatever the relative orientations of v1 and v3. This implies that

the head of each ei has label m+ 1− i.

A similar argument shows that the head of ei is labeled i if v1 and v2 are oppositely-oriented.

Suppose that m ≥ 4 and fix a triangle face f of ΓS with one positive boundary edge and two

negative ones (Proposition 11.2). Let v1, v2, v3 be the vertices of f chosen so that the edge

between v1 and v2 is positive. Number the family of m parallel edges of ΓS connecting v1 and

v2 as in the previous paragraph. In particular e1 is an edge of f . Let φ be the component

of Φ̇+
m−3 containing b2 ∪ bm−1. Consideration of the m − 2 successive bigons connected by

e3, e4, . . . , em−2 shows that h+m−3(φ) = φ (cf. the end of §3.2). Equivalently, if ǫ = (−1)
m
2 and

φ′ = (τ−ǫ ◦ τǫ ◦ τ−ǫ ◦ . . . ◦ τ+)(φ) (a composition of m
2 − 2 factors), then τǫ(φ

′) = φ′. Hence

φ′, and therefore φ ⊂ Φ̇+
m−3 contains an F̂ -essential annulus. It follows that the same is true

for Φ̇+
j for each j ≤ m− 3. (See 3.2.1.) Proposition 7.1 now implies that X̂+ admits a Seifert

structure with base orbifold of the form D2(a, b) where a, b ≥ 2. Furthermore, Proposition 8.2

implies that m− 3 ≤ 2. Thus m ≤ 4. We assume now that m = 4 and show that this leads to

a contradiction. This will complete the proof.

Consideration of the family of parallel positive edges adjacent to f shows that there is an S-cycle

in ΓS lying on the +-side of F . Hence Lemma 11.8 implies that X̂+ admits a Seifert structure

with base orbifold D2(2, b) and Φ̇+
1 has a unique component which completes to an F̂ -essential

annulus. It’s not hard to see then that Φ̆+
1 has three components: two boundary parallel annuli

and a 4-punctured sphere with two inner boundary components and two outer ones. If ϕ+

denotes the slope on F̂ of the latter component, it is the slope of the Seifert structure on X̂+.

Since ∆(α, β) > 3, β is not a singular slope and therefore M(β) is not Seifert with base

orbifold S2(a, b, c, d) where (a, b, c, d) 6= (2, 2, 2, 2). Hence as Φ̇−
3 contains an F̂ -essential annulus,

Proposition 8.1 implies that X− is a twisted I-bundle. In particular, Φ̆−
3 = τ−(Φ̆

+
1 ). Hence if

A is an F̂ -essential annulus containing Φ̆−
3 , its slope ϕ− is given by (τ−)∗(ϕ+). It follows that

∆(ϕ+, ϕ−) ≡ 0 (mod 2). Thus either ∆(ϕ+, ϕ−) = 0 and X̂+(ϕ−) is the connected sum of two

non-trivial lens spaces or ∆(ϕ+, ϕ−) ≥ 2 and X̂+(ϕ−) is a Seifert manifold with base orbifold

S2(2, b,∆(ϕ+, ϕ−)). In either case, π1(X̂
+(ϕ−)) is non-abelian.

Let H(14) be the component of (M(β) \M) ∩ X̂+ containing b1 ∪ b4 and ∂0H(14) the annulus

H(14) ∩ X+. Then the image in X+ of ∂f lies in A ∪ ∂0H(14). Moreover, once oriented, ∂f

intersects ∂0H(14) in three disjoint arcs exactly two of which are like-oriented. By an application

of the Loop Theorem (see [He, Theorem 4.1]), there is a properly embedded disk (D, ∂D) ⊆
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(X+, A∪∂0H(14)) such that ∂D∩∂0H(14) ⊆ ∂f ∩∂0H(14) and ∂D algebraically intersects a core

of ∂0H(14) a non-zero number of times (mod 3). There are two possibilities,

(1) ∂D ∩ ∂0H(14) consists of two like-oriented arcs, or

(2) ∂D ∩ ∂0H(14) consists of three arcs, two like-oriented and one oppositely-oriented.

Suppose that (1) arises. Then ∂D = e1 ∪ a1 ∪ e2 ∪ a2 where a1, e1, a2, e2 are arcs arising

successively around ∂D and a1, a2 are properly embedded in H(14) while e1, e2 are properly

embedded in F . Let b̂i be the disk in F̂ with boundary bi and fix a (fat) basepoint in X̂+ to be

b̂1∪e1∪ b̂4. We take η1, η4 to be constant paths (see §15). The “loop” e2 carries a generator t of

π1(A) as otherwiseM(β) would contain a P 3 connected summand. Thus the relation associated

to D is x21 = t. Further, there is a Möbius band B properly embedded in X+ whose core carries

the class x1. Consequently, t represents the class of the slope ϕ+. But by construction, it

represents the class of ϕ−. It follows that ϕ+ = ϕ− so that X̂+(ϕ−) is the connected sum of

lens spaces L(2, 1) and L(n,m) for some n,m. Note that x1 represents a non-trivial class in

H1(X̂
+(ϕ−)). But the relation associated to f is of the form tax1t

bx1t
cx−1

1 = 1. In particular,

x1 is trivial in H1(X̂
+)/〈t〉 = H1(X̂

+(ϕ−)). Thus possibility (1) cannot occur.

Suppose that (2) arises. Then ∂D = e1 ∪ a1∪ e2 ∪ a2∪ e3 ∪ a3 where a1, e1, a2, e2, a3, e3 are arcs

arising successively around ∂D and a1, a2, a3 are properly embedded in H(14) while e1, e2, e3 are

properly embedded in F . We can suppose that the indices are chosen so that e1 connects b1 to

b4, e2 is a loop based at b4 and e3 is a loop based at b1. These loops are essential as otherwise

we could isotope ∂D so that it intersects a core of ∂0H(14) once transverselly. This would imply

that we could isotope F̂ in M(β) to remove two points of intersection with the core of the

β-filling solid torus contrary to Assumption 2.2. Fix the basepoint in X̂+ to be b̂1 ∪ e1 ∪ b̂4 and

take η1, η4 to be constant paths. The arcs a1, a2, a3 determine triples of distinct points, one on

b1 and one on b4, which we denote 1, 2, 3. The reader will verify that these triples are oppositely

orientated on A. From this it follows an orientation on ∂D determines the same orientation

on the loops b1 ∪ e2 and b4 ∪ e3. In particular they yield the same generator t of π1(A). (See

Figure 2.)

Hence the relation associated to D is

1 = x21tx
−1
1 t = x31(x

−1
1 t)2

Let N(A) be a collar of A in X̂+ and N(D) a tubular neighbourhood of D in X+. Set

Q = N(A) ∪H(14) ∪ N(D). Then the boundary of Q is a torus and its fundamental group is

presented by 〈x1, t : x
3(x−1t)2〉. It follows that Q is a trefoil complement contained in X̂+.

Since the latter has a Seifert structure with base orbifold D2(2, n), Q must be isotopic in M(β)

to X̂+. It follows from the presentation that t normally generates π1(X̂
+). Since the slope

of A is ϕ− we have X̂+(ϕ−) is simply connected, contrary to our observation that it has a

non-abelian fundamental group. Thus possibility (2) is also impossible. Therefore ∆(α, β) ≤ 5

when m = 4. ♦



CHARACTERISTIC SUBMANIFOLD THEORY AND TOROIDAL DEHN FILLING 42

A
1 4

e

2

3

e

e

1

Figure 2.

17. Extended S-cycles in ΓS

In this section we examine the implications of the existence of extended and doubly-extended

S-cycles in ΓS when t+1 = t−1 = 0. (See §11.)

Proposition 17.1. Suppose that t+1 = t−1 = 0 and {e0, e1, e2, e3} is an extended S-cycle in ΓS
where {e1, e2} is an S-cycle. Let R be the bigon face between e1 and e2 and suppose that R lies

on the ǫ-side of Ŝ. Then either

(i) β is a singular slope so ∆(α, β) ≤ 3.

(ii) ǫ = +, X− is a twisted I-bundle, and X̂+ admits a Seifert structure with base orbifold a

disk with two cone points, exactly one of which has order 2.

Proof. Suppose that the S-cycle {e1, e2} has label pair {j, j + 1}. By Lemma 11.8, S = F is

connected and Φ̇ǫ1 has a unique component φ which contains an Ŝ-essential annulus. Further,

φ is also τǫ-invariant and X̂
ǫ admits a Seifert structure with base orbifold a disk with two cone

points, at least one of which has order 2. The proof of Lemma 11.8 also shows that a regular

neighbourhood N of bj ∪ e
∗
1 ∪ bj+1 ∪ e

∗
2 in S is also τǫ-invariant, at least up to isotopy in S, and

so there is a Möbius band B properly embedded in (X̂ǫ, N). Thus N contains an Ŝ-essential

annulus with core ∂B which is vertical in X̂ǫ.

Since {e0, e1, e2, e3} is an extended S-cycle, bj ∪ e
∗
1 ∪ bj+1 ∪ e

∗
2, and therefore N , is contained in

Φ̇−ǫ
1 . Let φ′ be the component of Φ̇−ǫ

1 which contains N and Σ′ the component of Σ̇−ǫ
1 which

contains φ′. The genera of φ and φ′ cannot both be 1 as otherwise, Proposition 7.1 implies that

both X̂+ and X̂− are twisted I-bundles over the Klein bottle, contrary to Corollary 7.6.

Suppose first that genus(φ) = genus(φ′) = 0. Then Φ−
1 6= S, so X− cannot be a twisted

I-bundle. In particular, X−ǫ does not admit a properly embedded non-separating annulus

(cf. Lemma 4.7). Proposition 7.1(3) then shows that X̂− admits a Seifert structure with base
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orbifold a disk with two cone points in which ∂B ⊆ N ⊆ φ′ is vertical. Thus M(β) admits

a Seifert structure with base orbifold the 2-sphere with four cone points. Their orders cannot

all be 2 by Corollary 7.6. Hence β is a singular slope ([BGZ1, Theorem 1.7]) so ∆(α, β) ≤ 3

([BGZ1, Theorem 1.5]).

Suppose next that genus(φ) = 1 and genus(φ′) = 0. Then Corollary 6.4 implies that φ = S.

Thus Xǫ is a twisted I-bundle, so ǫ = −. If Σ′ is either a product I-bundle which separates

X−ǫ = X+ or a twisted I-bundle, then by Proposition 7.1(3), X̂+ admits a Seifert structure

with base orbifold a disk with two cone points in which ∂B ⊆ N ⊆ φ′ is vertical. Corollary

7.6 shows that at least one of the cone points has order larger than 2. Thus M(β) admits a

Seifert structure with base orbifold the 2-sphere with four cone points, at least one of which

has order larger than 2. Thus (i) occurs. If, on the other hand, Σ′ is a product I-bundle which

does not separate X+, Proposition 7.1(3) implies that there is a Seifert structure on X̂+ for

which ∂B ⊆ φ′ contains a fibre and whose base orbifold is a Möbius band with at most one

cone point. Since X̂+ is not a twisted I-bundle over the Klein bottle (Corollary 7.6), there is

exactly one cone point. It follows that M(β) admits a Seifert structure with base orbifold a

projective plane with three cone points. Thus (i) holds.

Finally suppose that genus(φ) = 0 and genus(φ′) = 1. Then Corollary 6.4 implies that X−ǫ is

a twisted I-bundle, so ǫ = +. From above, X̂+ admits a Seifert structure with base orbifold a

disk with two cone points, at least one of which has order 2. They cannot both have order 2

by Corollary 7.6. This is case (ii). ♦

Proposition 17.2. Suppose that t+1 = t−1 = 0. If ΓS contains a doubly-extended S-cycle, then

∆(α, β) ≤ 3.

Proof. Suppose that ∆(α, β) > 3. Proposition 17.1 implies that X− is a twisted I-bundle, the

image of the S-cycle rectangle is contained in X+, and X̂+ admits a Seifert structure with base

orbifold a disk with two cone points, exactly one of which has order 2.

Suppose that the S-cycle {e1, e2} has label pair {j, j + 1}. It follows from the proof of Lemma

11.8 that there is a τ+-invariant regular neighbourhood N of e∗1 ∪ bj ∪ e
∗
2 ∪ bj+1 contained in

a τ+-invariant component φ0 of Φ̇+
1 such that φ̂0 is an F̂ -essential annulus. Further, φ0 is the

unique component of Φ̇+
1 to contain an F̂ -essential annulus. Since {e1, e2} is a doubly-extended

S-cycle, τ−(N) ⊆ Φ̇+
1 . But τ−(N) contains an F̂ -essential annulus, so τ−(N) ⊆ φ0. Since N

contains a core of φ̂0, it follows that τ̂−(φ0) is isotopic to φ̂0 in F̂ . In particular, φ̂0 is vertical

in some Seifert structure on X̂−. Thus M(β) is Seifert with base orbifold either P 2(2, n) or

S2(2, 2, 2, n) where n > 2. Since ∆(α, β) > 3, β is not a singular slope ([BGZ1, Theorem 1.5]),

so M(β) has base orbifold P 2(2, n) ([BGZ1, Theorem 1.7]).

Since N is τ+-invariant and connected, it contains a τ+-invariant simple closed curve C which

is necessarily a core of φ̂0. There is a Möbius band B properly embedded in X+ with boundary

C. First suppose that C ∩ τ−(C) = ∅. Then there is an annulus A− properly embedded in

X− with ∂A− = C ∪ τ−(C). Since C is vertical in M(β), A− is non-separating in X−. Hence

C∪τ−(C) splits F̂ into two annuli, each containing m/2 boundary components of F . Let A+ be
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the properly embedded annulus in X+ which is the frontier of the component of Σ̇+
1 containing

φ0. Since C and τ−(C) are disjoint curves in φ0, each isotopic to a core of φ̂0, F̂ is the union

of four annuli B1, B2, B3, B4 with disjoint interiors such that φ̂0 = B1 ∪B2 ∪B3, B4 = F̂ \ φ̂0,

and ∂B2 = C ∪ τ−(C). Let bj = |Bj ∩ ∂F |. By construction, b2 = b1 + b3 + b4 = m/2. Since C

is a τ+-invariant curve in φ0, m/2 ≥ b1 = b2 + b3 = m/2 + b3. Hence b3 = 0. There are solid

tori V1, V2 ⊆ X+ where V1 is a regular neighbourhood of B and V2 has boundary A+ ∪B4. By

Lemma 4.2, B4 has winding number at least 2 in V2. It follows that a regular neighbourhood

of V1 ∪ A− ∪ B3 ∪ V2 in M is Seifert with incompressible boundary (Lemma 4.1), which is

impossible.

Next suppose that C∩τ−(C) 6= ∅. Since C∪τ−(C) is connected, τ−-invariant, and contained in

φ0, there is a τ−-invariant simple closed curve C ′ in φ0, necessarily a core of φ̂0. In particular

C ′ is vertical in X̂+. It follows that there is a Möbius band B′ properly embedded in X−

with boundary C ′. Since C ′ is vertical in the Seifert structure on X̂− with base orbifold

D2(2, 2), M(β) admits a Seifert structure with base orbifold S2(2, 2, 2, n), contrary to our

previous deductions. This final contradiction completes the proof. ♦

18. Proof of Theorem 2.7 when X− is not an I-bundle and t+1 = t−1 = 0

Throughout this section we assume

(18.0.1) F is separating, ∆(α, β) > 3, t+1 = t−1 = 0,X− is not a twisted I-bundle, and m ≥ 4

By Proposition 9.4 there is a disk Dǫ ⊆ F̂ containing Φ̆ǫ2. We choose our base point and the

images of the paths ηj to lie in Dǫ ∩F (cf. §15) when we are interested in a relation associated

to a face lying to the −ǫ-side of F .

18.1. Background results.

Lemma 18.1. Suppose that conditions 18.0.1 hold and e is a negative edge of ΓS whose end

labels are the same. Suppose as well that e is a boundary edge of a triangle face f of ΓS. Then

the weight of the corresponding edge ē in ΓS is at most 2.

Proof. Suppose that f lies on the ǫ-side of F . Then if the weight of ē is at least 3, the image

of e in F is contained in ̂̇Φ−ǫ
2 ⊆ D−ǫ. Corollary 15.3 then shows the labels at the ends of j are

different. ♦

Proposition 11.7 combines with the fact that ΓS contains no extended S-cycles (Proposition

17.1) to imply the following lemma.

Lemma 18.2. Suppose that conditions 18.0.1 hold. Then the weight of a positive edge of ΓS
is at most m

2 + 2. In particular, its weight is less than m if m ≥ 6 and less than or equal to m

if m = 4. ♦
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Lemma 18.3. Suppose that conditions 18.0.1 hold and that ΓS has a triangle face f with edges

ē, ē′ where wt(ē′) > 2. Then wt(ē) ≤ m. Further, if ē is negative of weight m, the permutation

associated to the corresponding family of edges has order m
2 .

Proof. Let v be the common vertex of ē and ē′, and let v′ be the other vertex of ē. Let e′ be

the lead edge of ē′ incident to f . Suppose that f lies on the ǫ-side of F .

Suppose otherwise that wt(ē) > m and let e1, e2, ..., em, em+1 be them+1 consecutive edges in ē-

family with e1 as the lead edge incident to f . We may assume that the labels of e1, e2, ..., em, em+1

at v are 1, 2, ...,m, 1 respectively. So the label of e′ at v is m.

Lemma 18.2 implies that ē is a negative edge so the parity rule implies that the labels of

e1, e2, ..., em, em+1 at v′ are 1+2k, 2+2k, ...,m, 1, 2, ..., 2k, 1+2k respectively, for some 0 < k <

m/2 (Lemma 18.1).

As both e1 and e′ are contained in ̂̇Φ−ǫ
2 and f is on the ǫ-side of F , f gives the relation

(18.1.1) x2kx
−1
m xj ∈ π1(F̂ )

for some j. Let Bi be the bigon face between ei and ei+1 for i = 1, ...,m. Note that Bi is on

the ǫ-side of F if and only if i is even. Also note that for each even i with 2 < i < m, the

images in F of the two edges of Bi both lie in ̂̇Φ−ǫ
2 . Also e∗3 is contained in ̂̇Φ−ǫ

2 . So for each

2 < i = 2p < m, Bi gives the relation x2px
−1
2p+2k = 1, so

(18.1.2) x2p = x2p+2k for 2 < 2p < m

Similarly B2 gives the relation

(18.1.3) x2x
−1
2+2k = u ∈ π1(F̂ )

Now consider the permutation given by the first m edges e1, ..., em. The orbit of the label 2k is

{2k, 4k, 6k, . . . ,m} where we consider the labels (mod m). Applying 18.1.2 successively shows

that if 2 is not in this orbit (i.e. the permutation has order less than m/2), then

x2k = x4k = . . . = xm

Thus x2kx
−1
m = 1. But comparing with 18.1.1 shows that xj ∈ P , which contradicts Proposition

15.1. On the other hand, if 2 is in this orbit then by 18.1.3,

x2k = x4k = . . . = x2 = ux2k+2 = ux4k+2 = . . . = uxm

Thus x2kx
−1
m = u ∈ π1(F̂ ) which combines with 18.1.1 to yield a similar contradiction. This

proves the first assertion of the lemma.

Next suppose that ē is negative of weight m and let e1, e2, ..., em be the m consecutive edges in

ē-family with e1 as the lead edge incident to f . As above we take the labels of e1, e2, ..., em at

v to be 1, 2, ...,m respectively and those at v′ to be 1+ 2k, 2 + 2k, ...,m, 1, 2, ..., 2k respectively,

for some 0 < k < m/2 (Lemma 18.1). Similar to identity 18.1.2 we have x2p = x2p+2k for

2 < 2p < m − 2 and x2x
−1
2+2k = u ∈ π1(F̂ ). If the permutation j 7→ j + 2k (mod m) does not

have order m
2 then neither 2 nor m− 2 lie in the orbit {2k, 4k, 6k, . . . ,m} of the label 2k. Thus
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x2k = x4k = . . . = xm so plugging x2kx
−1
m = 1 into 18.1.1 yields the contradiction xj ∈ π1(F̂ ).

This completes the proof of the lemma. ♦

Lemma 18.4. Suppose that conditions 18.0.1 hold. If ∆(α, β) > 5, then ΓS is hexagonal.

Proof. By Proposition 11.5, it suffices to show that there is no vertex of valency 5 or less.

Suppose otherwise that v is a vertex of ΓS of valency 5 or less. Since m∆(α, β)/valencyΓS
(v) ≤

m+ 1 (Proposition 10.1), we have

(18.1.4) 6 ≤ ∆(α, β) ≤ valencyΓS
(v) +

valencyΓS
(v)

m

Hence valencyΓS
(v) = 5,m = 4, and ∆(α, β) = 6. It follows that the weights of the edges

incident to v are 4, 5, 5, 5, 5. Lemma 18.3 implies that there can be no triangle faces incident to

v. In other words, ϕ3(v) = 0. Then

µ(v) = ϕ2(v) = m∆(α, β) − valencyΓS
(v) = m∆(α, β)− 5

Hence by Corollary 12.4 there is a vertex v0 of ΓS with µ(v0) > m∆(α, β)−4. Then Proposition

12.2 shows that v0 has valency 5 or less. As above we have valencyΓS
(v0) = 5 and the weights

of the edges incident to v0 are 4, 5, 5, 5, 5. By Corollary 12.2, ϕ3(v0) ≥ 4, so in particular there

is a triangle face of ΓS with two edges of weight 5, which is impossible by Lemma 18.3. Thus

there is no vertex v of ΓS of valency 5 or less, so the lemma holds. ♦

18.2. Proof. We prove Theorem 2.7 under conditions 18.0.1.

Assume that ∆(α, β) > 5 in order to derive a contradiction. Recall that Γ̄S is hexagonal by

Lemma 18.4. In particular Y is a torus.

Since X− is not a twisted I-bundle, Proposition 7.1 implies that for each ǫ, Σ̇ǫ1 has a unique

component and Φ̆ǫ1 is the union of at most two components, each an F̂ -essential annulus.

Suppose that there is an edge ē of weight m + 1 incident to a vertex v of ΓS . Since ΓS is

hexagonal, Lemma 18.3 implies that the two edges of ΓS incident to v which are adjacent to ē

have weights at most 2. Then the sum of the weights of the six edges incident to v is at most

4m+ 5. On the other hand, this is m∆(α, β) ≥ 6m. Hence 6m ≤ 4m+ 5, which is impossible

for m ≥ 4. Thus the weight of each edge in ΓS is at most m. But then 6m ≤ m∆(α, β) ≤ 6m,

so each edge of ΓS has weight m and ∆(α, β) = 6.

As ΓS is hexagonal, it has positive edges. Then Lemma 18.2 implies that m ≤ m
2 + 2. Thus

m = 4 and the weight of any edge in ΓS is 4. Proposition 11.2 implies that there is a triangle

face f with one positive edge ē1 and two negative edges ē2, ē3. Let v1, v2, v3 be its vertices

where v1 is determined by ē1 and ē2, v2 is determined by ē2 and ē3, and v3 is determined by ē2
and ē3. Let e1, e2, e3 denote the lead edges of ē1, ē2, ē3 at f . Without loss of generality we can

take the label of e1 at v1 to be 1 and that of e2 to be 4. Lemma 18.1 shows that e2 has label

2 at v2, so e3 has label 3 there. Lemma 18.1 then shows that the label of e3 at v3 is 1, so the

label of e1 at v3 is 4. But then the four edges of ΓS parallel to ē1 form an extended S-cycle,
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which contradicts Proposition 17.1. This final contradiction completes the proof of Theorem

2.7 when X− is not a twisted I-bundle. ♦

19. Proof of Theorem 2.7 when X− is a twisted I-bundle and t+1 = 0

We assume throughout this section that

(19.0.1) F is separating, ∆(α, β) > 3, t+1 = 0,X− is a twisted I-bundle, and m ≥ 4

Note that t−1 = 0 when X− is a twisted I-bundle.

19.1. Background results. As X+ is not a twisted I-bundle, Proposition 7.1 implies that Σ̇+
1

has a unique component and Φ̆+
1 = Φ̇+

1 is the union of one or two components each of which

completes to an F̂ -essential annulus. Let φ+ be the slope on F̂ of these annuli and note that

it is the slope of the Seifert structure on X̂+ (Proposition 7.1). Set α− = τ̂−(φ+), the slope

on F̂ determined by Φ̇−
3 = τ−(Φ̇

+
1 ). As τ̂− is a fixed-point free orientation reversing involution,

∆(φ+, α−) is even.

For the rest of this section we take A− = Φ̇−
3 = Φ̇−

2 = τ−(Φ̇
+
1 ) ⊂ F . Also we take a disk D in

Â− containing all b̂j , choose the paths ηj (defined in Section 15) in D, and define the elements

xj of π1(X̂
+) as in Section 15. It follows that if e is an edge of a face f of ΓS lying on the +-side

of F and the image of e in F lies in Φ̇−
2 , then the associated element of π1(F̂ ) determined by e

is a power of t, the element determined by a core of Â−.

Lemma 19.1. Suppose that conditions 19.0.1 hold. Then π1(X̂
+(α−)) is not abelian.

Proof. The base orbifold of X̂+ has the form D2(p, q) for some p, q ≥ 2. Since ∆(φ+, α−)

is even, it can’t be 1. Thus X̂+(α−) is either Lp#Lq or is Seifert fibred with base orbifold

S2(p, q,∆(φ+, α−)) having three cone points. In either case, its fundamental group is not

abelian. ♦

For each y ∈ π1(X̂
+) we use ȳ to denote its image in π1(X̂

+(α−)).

Definition 19.2. Define P ≤ π1(X̂
+(α−)) to be the subgroup generated by π1(F̂ ).

Lemma 19.3. Suppose that conditions 19.0.1 hold. For no j is the image of xj in π1(X̂
+(α−))

contained in P .

Proof. We noted in §15 that there are generators a, b of π1(D
2(p, q)) ∼= Z/p ∗ Z/q such that

ab generates its peripheral subgroup and the image of each xj in π1(D
2(p, q)) is of the form

(ab)rjaǫj (ab)sj where rj, sj ∈ Z and ǫj ∈ {±1}. Thus if the image of some xj in π1(X̂
+(α−))

is contained in P , the image of each xj in π1(X̂
+(α−)) is contained in P , contrary to Lemma

19.1. ♦
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Lemma 19.4. Suppose that conditions 19.0.1 hold. Each face of ΓS which lies on the −-side

of F has an even number of edges. In particular, each triangle face lies on the +-side of F .

Proof. The boundary of the face intersects the Klein bottle core of X̂− transversely in k points

where k is the number of edges of the face. Since this curve is homologically trivial, k is even.

♦

Given this lemma, the fact that ΓS contains no doubly-extended S-cycles (Proposition 17.2),

and the fact that the S-cycle bigon in an extended S-cycles lies to the +-side of F (Proposition

17.1) we deduce the following lemma.

Lemma 19.5. Suppose that conditions 19.0.1 hold. The weight of a positive edge of ΓS is at

most m
2 +3 if m is not divisible by 4 and m

2 +4 otherwise. In particular, its weight is less than

m if m ≥ 10 and less than or equal to m if m ≥ 6. ♦

Lemma 19.6. Suppose that conditions 19.0.1 hold. Suppose that e is a negative edge of ΓS
whose end labels are the same. Suppose as well that e is a boundary edge of a triangle face f

of ΓS. Then the weight of the corresponding edge ē in ΓS is at most 2.

Proof. Suppose otherwise that the weight of ē is at least 3. Then e∗ is contained in ̂̇Φ−
2 . Let

j be the label of e at its two end points. The triangle face f is on the +-side of F and the

associated relation is

x−1
j taxjw2xkw3 = 1

in π1(X̂
+), where t is the class of a loop in the annulus ̂̇Φ−

2 corresponding to the slope α−,

and w1, w2 ∈ π1(F̂ ). Hence the relation implies that the image of xk is contained in P ≤

π1(X̂
+(α−)), contrary to Lemma 19.3. Thus the lemma holds. ♦

Lemma 19.7. Suppose that conditions 19.0.1 hold and that ΓS has a triangle face f with edges

ē, ē′ where wt(ē′) > 2.

(1) If ē is negative, then wt(ē) ≤ m. Further, if wt(ē) = m, then the permutation associated to

the ē-family of parallel edges in ΓS has order m
2 .

(2) If ē is positive, then wt(ē) ≤ m− 1 for m > 6 and wt(ē) ≤ m for m = 4, 6.

Proof. Let v be the common vertex of ē and ē′, and let v′ be the other vertex of ē. Let e′ be

the lead edge of ē′ incident to f .

The proof of assertion (1) mirrors that of Lemma 18.3. The only difference is that we work

with the images x̄j ∈ π1(X̂
+(α−)) rather than the xj ∈ π1(X̂

+) and replace the contradiction

to Proposition 15.1 with one to Lemma 19.3.

Next we consider assertion (2). Suppose that ē is a positive edge of ΓS with wt(ē) > m − 1.

First we show that m ≤ 6.

Let e1, e2, ..., em be the m consecutive edges in the ē-family with e1 as the lead edge incident

to f . We may assume that the labels of e1, e2, ..., em at v are 1, 2, ...,m respectively. The label

of e′ at v is then m.
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By the parity rule, the labels of e1, e2, ..., em at v′ are 2k, 2k − 1, ..., 1,m,m − 1, ..., 2k + 1

respectively, for some 0 < k ≤ m/2. So the triangle face f gives the relation

(19.1.1) x̄2k+1x̄1x̄j ∈ P

Again let Bi be the bigon face between ei and ei+1 for i = 1, ...,m− 1. If 2 < 2k < m, then the

image of e2k in F is contained in ̂̇Φ−
2 and so the bigon face B2k gives the relation

(19.1.2) x̄2k+1x̄1 ∈ P

Equations 19.1.1 and 19.1.2 imply that x̄j is peripheral, a contradiction. Thus 2k = 2 or

2k = m.

Ifm > 6 and 2k = 2, then {em/2+1, em/2+2} is a doubly extended S-cycle, giving a contradiction.

If m > 4 and 2k = m, then {em/2, em/2+1} is a doubly extended S-cycle, giving a contradiction

again.

If m = 6, wt(ē) > 6, and 2k = 2, then {e4, e5} is a doubly extended S-cycle, giving a contra-

diction.

Finally suppose m = 4 and wt(ē) > m = 4. The label of e at v′ is either 2 or 4. If it is 2,

{e3, e4} is an extended S-cycle lying on the −-side of F , giving a contradiction. If it is 4, then

the face f shows x̄21x̄j ∈ P for some j while the bigon between e4 and e5 gives x̄21 ∈ P . But

then x̄j ∈ P , which contradicts Lemma 19.3. ♦

19.2. Proof when Φ̇+
3 is a union of tight components. The hypothesis Φ̇+

3 is a union of

tight components implies that the edges of ΓS have weight bounded above by m+2 (Corollary

11.4). Thus, as in the proof of Lemma 18.4 we have

(19.2.1) 6 ≤ ∆(α, β) ≤ valencyΓS
(v) + 2

(valencyΓS
(v)

m

)

Lemma 19.8. Suppose that conditions 19.0.1 hold and Φ̇+
3 is a union of tight components. If

∆(α, β) > 5, then µ(v) = m∆(α, β)− 4 for all vertices v of ΓS.

Proof. Assume that there is some vertex v with µ(v) > m∆(α, β)−4. Proposition 12.2 implies

that valencyΓS
(v) is at most 5 while inequality 19.2.1 shows that valencyΓS

(v) is at least 4 and

if it is 4, then m = 4,∆(α, β) = 6, and each edge incident to v has weight 6. Since Proposition

12.2 implies ϕ3(v) ≥ 1, Lemma 19.7 shows that this case is impossible. Assume then that

valencyΓS
(v) = 5. Proposition 12.2 implies ϕ3(v) ≥ 4 and therefore the sum of the weights

of the edges incident to v is at most 5m + 2 by Lemma 19.7. But this sum is bounded below

by ∆(α, β)m ≥ 6m, which is impossible for m ≥ 4. Corollary 12.4 then implies the desired

conclusion. ♦
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Lemma 19.9. Suppose that conditions 19.0.1 hold and Φ̇+
3 is a union of tight components. If

∆(α, β) > 5, then ∆(α, β) = 6. Further, one of the following two situations occurs.

(i) ΓS is hexagonal and its edges have weight m.

(ii) m = 4, ΓS is rectangular and its edges have weight 6.

Proof. Since µ(v) = m∆(α, β) − 4 for each vertex v of ΓS (Lemma 19.8), Proposition 12.2

implies that the valency of each vertex of ΓS is at most 6. First we show that the vertices of

ΓS have valency 4 or 6.

Let v be a vertex of ΓS. Inequality 19.2.1 shows that valencyΓS
(v) ≥ 4. Suppose that

valencyΓS
(v) = 5. By Proposition 12.2, ϕ3(v) = 3. Then Lemma 19.7 implies that the sum of

the weights of the edges incident to v is at most 5m + 2. As this sum is the valency of v in

ΓS , we have 6m ≤ ∆(α, β) ≤ 5m + 2, which is impossible since m ≥ 4. Thus no vertex of ΓS
has valency 5, so each vertex v either has valency 4 and ϕ3(v) = 0 or valency 6 and ϕ3(v) = 6

(Proposition 12.2). In particular, no edge connects a vertex of valency 4 with one of valency

6. It follows that the union of the open star neighbourhoods of the vertices of valency 6 equals

the union of the closed star neighbourhoods of these vertices. Thus this union is either F̂ or

empty. It follows that either each vertex of ΓS has valency 6, so ΓS is hexagonal (Proposition

11.5), or each has valency 4. In the latter case there are no triangle faces so ΓS is rectangular

by Proposition 11.5.

Suppose that ΓS is rectangular. Then inequality 19.2.1 shows that m = 4,∆(α, β) = 6, and

therefore each edge of ΓS has weight 6. This is case (ii) of the lemma.

Suppose next that ΓS is hexagonal. As each of its faces is a triangle, they lie on the +-side

of F (Lemma 19.4). Hence each edge of ΓS has even weight. Suppose that some such edge

ē has weight m + 2. Lemma 19.7 implies that if f is a face of ΓS incident to ē, then each of

the two edges of ∂f \ ē has weight 2. Thus there is a vertex of ΓS having successive edges

of weight 2 incident to it. But then the remaining four edges have weights adding to at least

m∆(α, β)−4 ≥ 6m−4. On the other hand, Proposition 12.2 shows that the maximal weights of

these four edges are either m,m,m,m, or 2,m,m,m+2, or 2, 2,m+2,m+2. Each possibility

implies that m < 4. Thus each edge of ΓS has weight m or less. Then 6m ≤ m∆(α, β) ≤ 6m.

It follows that each edge of ΓS has weight m and ∆(α, β) = 6. This is case (i). ♦

Lemma 19.10. Suppose that conditions 19.0.1 hold and Φ̇+
3 is a union of tight components. If

∆(α, β) = 6, then m = 4.

Proof. By Lemma 19.9 we can suppose that ΓS is hexagonal and each of its edges has weight

m. Proposition 11.5 implies that it has positive edges. Thus m ≤ m
2 + 4 (Lemma 19.5), so

m ≤ 8.

There are negative edges in ΓS (Proposition 11.2) so we can choose a triangle face f of ΓS with

edges ē1, ē2, ē3 where ē1 is positive and ē2, ē3 are negative. Let e1, e2, e3 be the edges of ΓS
incident to f and contained, respectively, in ē1, ē2, ē3. Let v1 be the vertex of ΓS determined
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by e1 and e2, v2 that determined by e1 and e3, and v3 that determined by e2 and e3. We can

suppose that e1 has label 1 at the vertex v1 and e2 has label m there.

Supposem = 8. Since there are no doubly-extended S-cycles in ΓS , the permutation associated

to any positive edge is of the form i 7→ 5 − i (mod 8). As ē1 is positive, e1 has label 4 at v2,

so e3 has label 5 there. Then f yields the relation x̄5x̄1x̄j = 1. But the fourth bigon from f in

the ē1 family of edges implies that x̄5x̄1 = 1. Thus x̄j = 1, which is impossible. Thus m 6= 8.

Suppose then that m = 6. As ē1 is positive and ΓS has no doubly-extended S-cycles, e1 has

label 2 or 4 at v2. We will deal with the first case as the second is similar. Thus e1 has label 2

at v2 so e3 has label 3 there. The label of e2 at v3 cannot be 6 by Lemma 19.6 and the same

lemma shows that it cannot be 2 as otherwise the label of e3 at v3 would be 3. Hence this label

must be 4. Examination of the labels of the ΓS-edges in ē2, ē3 at v3 shows that b1 ∪ b3 ∪ b5
and b2 ∪ b4 ∪ b8 lie in components of Φ̇−

5 . But consideration of the lead edge of ē1 at f shows

that b1 ∪ b2 lie in the same component of Φ̇−
5 . Thus Φ̇−

5 = τ−(Φ̇
+
3 ) is connected, contrary to

Proposition 9.4. Thus m 6= 6, which completes the proof of the lemma. ♦

The previous two lemmas reduce the proof of Theorem 2.7 under assumption 19.0.1 to the cases

described in the following two subsections.

19.2.1. The case m = 4, ∆(α, β) = 6 and ΓS hexagonal with edges of weight 4. We consider

singular disks D in X+, with D ∩ ∂X+ = ∂D. We can assume the components of ∂F are

labeled so that ∂X+ = F ∪A23∪A41, where A23 and A41 are annuli running between boundary

components 2,3 and boundary components 4,1 of F , respectively. By a homotopy we may

assume that ∂D meets each of A23 and A41 in a finite disjoint union of essential embedded arcs.

We will refer to these arcs as the corners of D. More precisely, if we go around ∂D in some

direction we get a cyclic sequence of X±1
2 and X±1

4 -corners, where X2,X
−1
2 indicate that ∂D

is running across A23 from 2 to 3 or from 3 to 2, respectively, and X4,X
−1
4 indicate that ∂D is

running across A41 from 4 to 1 or 1 to 4, respectively. In this way D determines a cyclic word

W =W (X±1
2 ,X±1

4 ), well-defined up to inversion, and we say that D is of type W . (Thus D is

of type W if and only if it is of type W−1.) We emphasize that W is an unreduced word; for

example X2 and X2X4X
−1
4 are distinct.

Let Â− ⊆ F̂ be the annulus defined at the beginning of §19.1. If ∂D ∩ F ⊆ A− we say that D

is an A−-disk .

Recall the elements x2, x4 of π1(X̂
+) as defined at the beginning of §19.1. We use xj , respectively

x̄j, to denote the image of xj in π1(X̂
+), respectively π1(X̂

+(α−)). Clearly, if D is an A−-disk

of type W (X±1
2 ,X±1

4 ) then D gives the relation W (x̄±1
2 , x̄±1

4 ) in π1(X̂
+(α−)).

Note that a triangle face of ΓS defines an A−-disk. Note also that there is a one-one correspon-

dence between triangle faces of ΓS and faces of the reduced graph ΓS . We therefore say that a

face of ΓS has type W if and only if the corresponding triangle face of ΓS has type W .

Let v be a vertex of ΓS . An endpoint at v of an edge of the reduced graph ΓS corresponds to

four endpoints of edges of ΓS, and we can assume that the label sequence (reading around v
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anticlockwise if v is positive and clockwise if v is negative) is either 3 4 1 2 or 1 2 3 4. We say

that v is of type I or II, respectively. If v is a positive vertex of type I we will say v is a (+, I)

vertex, and so on.

1
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41
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3
4
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2
34

1
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4 1
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+ +
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Figure 4.

Lemma 19.7(1) implies

Lemma 19.11. No edge of ΓS connects vertices of the same type and opposite sign.
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By Proposition 11.2 ΓS has the same number of positive and negative vertices. In particular,

ΓS has a face f̄1 in which not all vertices have the same sign; without loss of generality we may

assume that two of the vertices are positive and one negative, and that the negative vertex is

of type I. It follows from Lemma 19.11 that the two positive vertices are of type II. Thus the

face f̄1 has type X−1
2 X2

4 . The configuration C1 of ΓS corresponding to f̄1 is shown in Figure 3.

Lemma 19.12. ΓS has a face of at most one of the types X3
4 , X2X

2
4 , X

2
2X4.

Proof. We consider the relations in π1(X̂
+(α−)) coming from the corresponding triangle faces

of ΓS. A face of type X3
4 , X2X

2
4 or X2

2X4 would give the relation x̄34 = 1, x̄2x̄
2
4 = 1 or x̄22x̄4 = 1,

respectively. It is easy to see that any two of these, together with the relation x̄2 = x̄24 coming

from f1, imply x̄2 = x̄4 = 1, contradicting Lemma 19.3. ♦

Let C2 be the configuration shown in Figure 4.

Proposition 19.13. ΓS contains the configuration C2.

We will assume that ΓS does not contain such a configuration, and show that this leads to a

contradiction. Equivalently, we make the following assumption:

(19.2.2) ΓS contains no face with two (−, I) vertices and one (+, II) vertex.

Let F1 be the set of faces of ΓS with two (+, II) vertices and one (−, I) vertex, and let F2

be the set of faces with three positive vertices, at least two of which are of type II. Note that

f̄1 ∈ F1. Let F = F1 ∪ F2.

Lemma 19.14. Every face of ΓS that shares an edge with a face in F belongs to F .

Proof. Let f̄ be a face in F , let ḡ be a face of ΓS that shares an edge ē with f̄ , and let v be

the vertex of ḡ that is not a vertex of f̄ .

Case (1). f̄ ∈ F1.

First suppose that the vertices at the endpoints of ē are (+, II) and (−, I). If v is negative

then by Lemma 19.11 it is a (−, I) vertex, contradicting assumption (19.2.2). Therefore v is

positive. By Lemma 19.11 it is a (+, II) vertex. Hence ḡ ∈ F1.

Now suppose that ē connects the two (+, II) vertices of f̄ . If v is negative then by Lemma 19.11

it is of type I, and hence ḡ ∈ F1. If v is positive then ḡ ∈ F2.

Case (2). f̄ ∈ F2.

First suppose that ē connects two vertices of type II. If v is negative then by Lemma 19.11 it

is of type I so ḡ ∈ F1. If v is positive then ḡ ∈ F2.

If ē connects a (+, I) vertex and a (+, II) vertex then v is positive by Lemma 19.11. Also, f̄

is of type X2X
2
4 , so by Lemma 19.12 ḡ is also of type X2X

2
4 , and hence ḡ ∈ F2. ♦
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Now we prove Proposition 19.13. Lemma 19.14 implies that every face of ΓS has at least

two positive vertices. But this is easily seen to contradict the fact that ΓS has the same

number of positive and negative vertices. We conclude that assumption (19.2.2) is false, i.e.

Proposition 19.13 holds. ♦

If W is a word in X±1
2 and X±1

4 we denote by εX2
(W ) and εX4

(W ) the exponent sum in W of

X2 and X4 respectively, and if D is a disk in X+ of type W then we define εX2
(D) = εX2

(W ),

εX4
(D) = εX4

(W ).

A disk in X+ with 1, 2 or 3 corners will be called a monogon, bigon or trigon, respectively.

Lemma 19.15. There are no monogons.

Proof. Let D be a monogon. Applying the Loop Theorem to D, among disks with εX2
+εX4

6=

0, we get an embedded monogon D′ of the same type as D. Then D′ is a boundary compressing

disk for F in M , contradicting the fact that F is essential. ♦

D D

u
u

1
2

α β γ δ

Figure 5.

Lemma 19.16. There is no A−-trigon of type W with |εX2
(W )|+ |εX4

(W )| = 1.

Proof. Such a disk would give rise to the relation x̄2 = 1 or x̄4 = 1 in π1(X̂
+(α−)), contra-

dicting Lemma 19.3. ♦

Let D be a singular disk in X+. We say that an embedded disk E is nearby D if ∂E is contained

in a small regular neighborhood of ∂D in ∂X+.

Lemma 19.17. If there is an A−-trigon of type W then there is a nearby embedded A−-trigon

of type W if W = X±3
2 or X±3

4 and of type W or W ∗ =W (X−1
2 ,X4) otherwise.

Proof. After possibly interchanging X2 and X4 we may assume without loss of generality that

εX2
(W ) 6≡ 0 (mod 2). Let D be an A−-trigon of typeW . The Loop Theorem gives an embedded

A−-disk D
′ with εX2

(D′) 6≡ 0 (mod 2). Lemmas 19.15 and 19.16 now show that D′ is of the

desired type. ♦
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u
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β
γ

δ

Figure 6.

Let D1,D2 be properly embedded disks in X+. Putting D1 and D2 in general position, D1∩D2

will be a compact 1-manifold. A standard cutting and pasting argument allows us to eliminate

the circle components of D1 ∩D2, without changing ∂D1 and ∂D2. So suppose that D1 ∩D2

consists of n ≥ 1 arcs. Let u be one of these arcs. Then u cuts Di into disksD′
i, D

′′
i , i = 1, 2, and

the endpoints of u cut ∂D1 and ∂D2 into pairs of arcs α, β and γ, δ respectively; see Figure 5.

Cutting and pasting D1 and D2 along u we get four disks D′
1 ∪ D

′
2, D

′
1 ∪ D

′′
2 , D

′′
1 ∪ D′

2, and

D′′
1 ∪D

′′
2 , with boundaries αγ−1, αδ, βγ and βδ−1 respectively. See Figure 6.

After a small perturbation, each of these disks E meets each of D1 and D2 in less than n double

arcs, disjoint from the singularities of E.

The arc u is trivial in D1 if either α or β contains no corner of D1, and similarly for D2. If

u is trivial in D1 and in D2 then without loss of generality α contains no corner of D1 and γ

contains no corner of D2. Then D′′
1 ∪D′

2 has the same type as D1 and D′
1 ∪D

′′
2 has the same

type as D2. If u is trivial in D1 but not in D2, and D2 is a bigon or trigon, then at least one

of D′
1 ∪D

′
2,D

′
1 ∪D

′′
2 ,D

′′
1 ∪D′

2, or D
′′
1 ∪D

′′
2 is a monogon, contradicting Lemma 19.15.

Lemma 19.18. If there is no A−-disk of type X3
4 then there are disjoint embedded A−-disks of

types X−1
2 X2

4 and X−2
2 X4.

Proof. The faces f1 and f2 of ΓS in Figures 3 and 4 are A−-disks of types X
−1
2 X2

4 and X−2
2 X4

respectively. Since x̄−1
2 x̄24 = x̄−2

2 x̄4 = 1 in π1(X̂
+(α−)), Lemma 19.3 implies that neither

relation x̄2x̄
2
4 = 1 nor x̄22x̄4 = 1 can hold. Lemma 19.17 then gives embedded A−-disks D1 and

D2 of type X−1
2 X2

4 and X−2
2 X4 respectively, which we may assume intersect in double arcs,

none of which is trivial in D1 or D2. Let u be a double arc. Ignoring orientations, there are

two possibilities for u in each of D1 and D2, shown in Figures 7 and 8 respectively.

Orient u as shown in Figures 7 and 8, so in case (1), (α, β) = (X2
4 ,X

−1
2 ), and in case (2),

(α, β) = (X4,X4X
−1
2 ). (Here, we are using the natural convention of labeling the oriented arc

α or β by the sequence of corners it contains.) If u is oriented on D2 as shown in Figure 5,
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then in case (1), (γ, δ) = (X−2
2 ,X4), and in case (2), (γ, δ) = (X−1

2 ,X−1
2 X4). Note that if u

on D2 is oriented in the opposite direction to that shown then γ and δ are interchanged, so

that in case (1), (γ, δ) = (X4,X
−2
2 ), and in case (2), (γ, δ) = (X−1

2 X4,X
−1
2 ). This gives eight

possibilities (i, j), where i denotes case (i) for D1, i = 1, 2, and j denotes case (j) for D2,

j = 1, 2, 1 or 2. In each case we choose one of the four disks obtained by cutting and pasting
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along u. Below we indicate the chosen disk by the arcs in its boundary and record its type:

(1, 1) : αδ X3
4

(1, 2) : βδ−1 X−1
2 X−1

4 X2

(2, 1) : βδ−1 X4X
−1
2 X−1

4

(2, 2) : αδ X−1
2 X2

4

(1, 1) : αγ−1 X2
4X

−1
4

(1, 2) : αδ X−1
2 X2

4

(2, 1) : βγ X−1
2 X2

4

(2, 2) : αγ−1 X4X
−1
4 X2

In case (1, 1) we get an A−-disk of type X3
4 , contradicting our assumption.

Cases (1, 2), (2, 1), (1, 1) and (2, 2̄) contradict Lemma 19.16.

In the remaining three cases, (2, 2), (1, 2) and (2, 1) we get an A−-disk E of type X−1
2 X2

4 .

By Lemma 19.17 there is a nearby embedded A−-disk E′ of type X2X
2
4 or X−1

2 X2
4 . The

former is impossible as otherwise we would have x̄2x̄
2
4 = x̄−1

2 x̄24 = x̄−2
2 x̄4 = 1 in π1(X̂

+(α−)),

which implies x̄2 = x̄4 = 1, contrary to Lemma 19.3. Thus E′ has type X−1
2 X2

4 . Noting that

|E′ ∩D2| ≤ |E ∩D2| < |D1 ∩D2|, if we continue in this manner we eventually get an embedded

A−-disk of type X−1
2 X2

4 disjoint from D2. ♦

Note. It is easy to see that in cases (2, 2), (1, 2) and (2, 1) we also get a disk of type X−2
2 X4, so

we could equally well have fixed D1 and obtained an embedded A−-disk of type X−2
2 X4 disjoint

from D1.

Let D be an embedded disk in X+. Recall that the corners of D are the components of

∂D ∩ (A23 ∪ A41). We will refer to the components of ∂D ∩ F as the edges of D. We label

the endpoints of the edges of D with the label of the corresponding corner. Thus, if we have

a disjoint union ∆ of embedded disks whose X±1
2 -corners are labeled so that reading clockwise

around boundary component 2 of F they appear in the order a, b, c, . . ., then they appear in

the same order a, b, c, . . . reading anticlockwise around boundary component 3 of F . Similarly,

the clockwise order of the X±1
4 -corners of ∆ at boundary component 4 is the same as their

anticlockwise order at boundary component 1. This ordering condition puts constraints on the

existence of the disjoint embedded arcs in F that are the edges of ∆.

Lemma 19.19. If there is an A−-disk of type X3
4 then α− = ϕ+.

Proof. If there is an A−-disk of type X3
4 then there is an embedded A−-disk D of type X3

4 by

Lemma 19.17. Let the corners of D be a, b and c; see Figure 9.

Then without loss of generality the edges of D appear in Â− as shown in Figure 10.

Let V = Â− × I ∪H(41) ∪N(D) ⊆ X̂+. Then, taking as “base-point” a disk in Â− containing

the two left-hand edges in Figure 10 together with fat vertices v1 and v4, we get π1(V ) ∼= 〈x4, t :

x34 = t〉 ∼= Z, where t is represented by α−, the core of Â−. Hence V is a solid torus and α−

has winding number 3 in V . Let A′ be the annulus ∂V − int Â−. By Assumption 2.2, the torus
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(F̂ − Â−)∪A
′ bounds a solid torus V ′ in X̂+. Therefore X̂+ = V ∪A′ V ′ is a Seifert fibre space

with base orbifold D2(3, b), and α− is the slope of the Seifert fibre ϕ+. ♦

Lemma 19.20. If there are disjoint embedded A−-disks of types X−1
2 X2

4 and X−2
2 X4 then

α− = ϕ+.

Proof. Let D1,D2 be disjoint embedded A−-disks of types X
−1
2 X2

4 and X−2
2 X4 respectively.

First note that the union of the edges of D1 and D2 and the fat vertices v1, v2, v3, v4 cannot be

contained in a disk in Â−. For this would give relations x2 = x24, x4 = x22 in π1(X̂
+), implying

x32 = x34 = 1. But x2 and x4 are non-trivial (Lemma 19.3), so π1(X̂
+) would have non-trivial

torsion, contradicting the fact that X̂+ is a Seifert fibre space with base orbifold D2(2, b).

Let the corners of D1 and D2 be a, b, c and p, q, r respectively; see Figure 11.
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Without loss of generality the labels c, p, q appear in this order anticlockwise around v3. The

possible arrangements of the edges of D1 and D2 in Â− are then shown in Figure 12 (1)–(6).

(For simplicity we have labeled the corners a, b, c, p, q, r only in Figure 12 (1).)
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Let V = Â− × I ∪H(23) ∪H(41) ∪N(D1)∪N(D2) ⊆ X̂+. Then π1(V ) is generated by x2, x4, t,

where t is represented by α−, the core of Â−. We take as “base-point” a disk in Â− containing

the edges of D1 together with the vertices v1, v2, v3, v4. Then the disk D1 gives the relation

x2 = x24 in π1(V ). The relation determined by D2 is as follows in cases (1)–(6):

(1) x−1
2 tx−1

2 x4 = 1

(2) x−1
2 tx−1

2 x4t = 1

(3) x−1
2 tx−1

2 tx4 = 1

(4) x−1
2 tx−1

2 tx4t = 1

(5) x−2
2 tx4 = 1

(6) x−2
2 x4t = 1

In case (1) we get x4 = x2t
−1x2 = x24t

−1x24, and hence t = x34. Therefore π1(V ) ∼= Z, generated

by x4. It follows that V is a solid torus and α− has winding number 3 in V . Hence (see the

proof of Lemma 19.19) α− = ϕ+.

In case (2) x4 = (x2t
−1)2 = z2, where z = x2t

−1. Thus π1(V ) is generated by x2, x4, z with

relations x2 = x24, x4 = z2. Therefore π1(V ) ∼= Z, generated by z. Also t = z−1x2 = z−1z4 = z3.

Hence again α− = ϕ+, as in case (1).

Cases (3), (5) and (6) are similar and are left to the reader.

In case (4) we have x4 = t−1x2t
−1x2t

−1, so x4x2 = z3, where z = t−1x2. Since x2 = x24, π1(V )

has presentation 〈x4, z : x34 = z3〉. But this contradicts the fact that X̂+ is a Seifert fibre space

with base orbifold D2(2, b). ♦

Corollary 19.21. α− = ϕ+.

Proof. This follows from Lemmas 19.18, 19.19 and 19.20. ♦

We complete the analysis by showing that Corollary 19.21 implies that Φ̇+
3 contains an F̂ -

essential annulus, contrary to our assumptions.

Lemma 19.22. There is no pair of disjoint embedded A−-disks of types X−1
2 X2

4 and X−2
2 X4.

Proof. The manifold V given in the proof of Lemma 19.20 is a solid torus such that Â− is

contained in ∂V with winding number 3 and thus the annulus A = ∂V \ Â− is a vertical

annulus in the Seifert fibred structure of X̂+. But A is contained in X+ and thus it is an

essential annulus in X+. So ∂A = ∂Â− can be isotoped in F into the interior of Φ̇+
1 . Therefore

Φ̇+
1 ∩ A− = Φ̇+

1 ∩ τ−(Φ̇
+
1 ) = Φ̇+

1 ∩ Φ̇−
2 is a pair of F̂ -essential annulus components. Hence Φ̇+

3

is a pair of F̂ -essential annulus components. But this contradicts our assumption that Φ̇+
3 is a

set of tight components. Thus there is no such pair of embedded disks. ♦

Thus the situation given by Lemma 19.20 cannot arise. Then by Lemma 19.18, there is an

A−-disk of type X3
4 . We also have a A− disk of type X−1

2 X2
4 given by configuration C1. By

Lemma 19.17, there is an embedded A−-disks D1 of type X3
4 and another D2 of type X−1

2 X2
4
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or X2X
2
4 . In the latter case, we have the relations x̄34 = x̄−1

2 x̄24 = x̄2x̄
2
4 = 1 in π1(X̂

+(α−)),

which imply that x̄2 = x̄4 = 1, contrary to Lemma 19.3. Thus D2 has type X−1
2 X2

4 .

Lemma 19.23. There are disjoint embedded A−-disks D1 and D2 of types X3
4 and X−1

2 X2
4

respectively.

Proof. The proof is similar to that of Lemma 19.18. We may assume that among all such

pairs of embedded A−-disks of types X
3
4 and X−1

2 X2
4 respectively, D1 and D2 have been chosen

to have the minimal number of intersection components. If the disks D1 and D2 are disjoint

then we are done. So suppose they intersect. We may assume that they intersect transversely

in double arcs, none of which is trivial in D1 or D2.

Let u be an oriented double arc which is outermost in D1 with respect to the corner it cuts off

(i.e. the interior of the corner is disjoint from D2) as shown in Figure 13 (a). Then there are

six possibilities for the oriented arc u in D2, as shown in Figure 13 (b1)-(b6) respectively.

If case (b1) of Figure 13 occurs, then cutting and pasting D1 and D2 will produce an em-

bedded A−-disk of type X−1
2 X2

4 having fewer intersection components with D1 than does D2,

contradicting our assumption on D1 and D2.

If case (b2) of Figure 13 occurs, then cutting and pasting will produce an A−-disk of type

X2
4 . So in π1(X̂

+(α−) we have the relation x̄24 = 1. Together with the relations x̄34 = 1 and

x̄−1
2 x̄24 = 1 this implies that x̄2 = x̄4 = 1 in π1(X̂

+(α−)), a contradiction.

Cases (b3) and (b4) of Figure 13 can be treated similarly to the cases (b1) and (b2) respectively.

If case (b5) of Figure 13 occurs, then cutting and pasting D1 and D2 will produce an A−-disk

of type X−1
2 X4. Thus in π1(X̂

+(α−) we have x̄−1
2 x̄4 = 1. Since x̄34 = 1 and x̄−1

2 x̄24 = 1, we

deduce x̄2 = x̄4 = 1 in π1(X̂
+(α−)), a contradiction.

Finally, if case (b6) of Figure 13 occurs, then cutting and pasting will produce an embedded

A−-disk of type X3
4 which is disjoint from D2, giving an obvious contradiction. ♦

Now let V be a regular neighborhood in X̂+ of the set Â− ∪H(23) ∪H(41) ∪D1 ∪D2. As in the

proof of Lemma 19.20, the union of the edges of D1 and the fat vertices v1 and v4 cannot lie

in a disk in Â− and can be assumed to appear as shown in Figure 10. Thus two edges of D1

connect the fat vertices v1 and v4 from the left hand side and one edge of D1 connects v1 and

v4 from the right hand side.

Let e1 be the edge of D2 connecting v1 and v4, e2 the edge of D2 connecting v1 and v3, and e3
the edge of D2 connecting v2 and v4.

Now take as “base-point” a disk in Â− containing the union of the two left-hand side edges of

D1, the fat vertices v1, v2, v3, v4, and the edges e2, e3. Then the disk D1 will give the relation

x34 = t,

and the disk D2 will give either the relation

x−1
2 x24 = 1
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(when e1 connects v1 and v4 from the left hand side, cf. Figure 10) or the relation

x−1
2 x4t

−1x4 = 1

(when e1 connects v1 and v4 from the right hand side, cf. Figure 10), where t is represented by

α−. In either case we see that V has the fundamental group

π1(V ) = 〈x4, t : x
3
4 = t〉.

So the manifold V is a solid torus such that Â− is contained in ∂V with winding number 3.

Now argue as in the proof of Lemma 19.22 to see that Φ+
3 cannot be a set of tight components,

yielding the final contradiction. ♦

19.2.2. The case m = 4, ∆(α, β) = 6 and ΓS rectangular with edges of weight 6. As m = 4, we

may assume:

• both Φ̇+
3 and Φ̇−

5 consist of a pair of tight components, each a twice-punctured disk;

• Φ̇+
5 is a collar on ∂F , and so contains no large components.
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Recall that b1, ..., b4 denote the four boundary components ∂F appearing successively along

∂M . These four circles cut ∂M into four annuli Ai,i+1, i = 1, ..., 4, such that ∂Ai,i+1 = bi ∪ bi+1

(indexed mod (4)). We may assume that ∂X+ = F ∪A2,3 ∪A4,1.

As in §19.2.1, an n-gon (disk) in X+ means a singular disk D with ∂D ⊆ ∂X+ such that

∂D ∩ (A2,3 ∪A4,1) is a set of n embedded essential arcs in A2,3 ∪A4,1, called the corners of D,

and ∂D ∩ F is a set of n singular arcs, called the edges of D. Recall that a 1-gon, 2-gon or

3-gon will be called a monogon, bigon or trigon.

There are no monogons in X+ (cf. Lemma 19.15).

Lemma 19.24. There is no bigon D in X+ whose edges e1, e2 are essential paths in (Φ̇−
5 , ∂F )

and for which the inclusion (D, e1 ∪ e2) → (X+, Φ̇−
5 ) is essential as a map of pairs.

Proof. Suppose otherwise that such a bigon D exists. Then D gives rise to an essential

homotopy between its two edges and thus the edges of D can be homotoped, relative to their

end points, into Φ̇+
1 . Then the essential intersection Φ̇−

5 ∧ Φ̇+
1 contains a large component

and therefore so does Φ̇+
6 = τ+(Φ̇

−
5 ∧ Φ̇+

1 ), contrary to our assumption that Φ̇+
5 has no large

components. ♦

Recall that h is the π1-injective map from the torus T into M(α) which induces the graph ΓS
in T . For a subset s of T we use s∗ to denote its image under the map h.

The image under h of every edge of a rectangular face of ΓS is contained in Φ̇−
5 . The images of

the middle two edges of every family of six parallel edges of ΓS are contained in A−.

As before the classes xj ∈ π1(X̂
+) are defined and we use x̄j to denote their images in

π1(X̂
+(α−)).

For notational simplicity, let us write Φ̇−
5 = Q, a pair of twice-punctured disks. A singular

disk D ⊂ X+ whose edges are contained in Q will be called a Q-disk . An essential Q-disk is a

Q-disk D such that ∂D is essential in ∂X+. The following two lemmas are key to our analysis.

Lemma 19.25. An essential Q-n-gon, n ≤ 4, is a 4-gon of type X2X
−1
4 X4X

−1
4 or X4X

−1
2 X2X

−1
2 .

Lemma 19.26. There cannot be essential Q-4-gons of both types X2X
−1
4 X4X

−1
4 and

X4X
−1
2 X2X

−1
2 .

The proofs of these two lemmas will be given after we develop several necessary background

results.

All the edges of Γ̄S have weight 6. We may assume without loss of generality that there is a

family of parallel edges of ΓS at one end of which the label sequence is 1 2 3 4 1 2.

Lemma 19.27. b1 and b2 belong to different components of Q.

Proof. Suppose otherwise so that there is a rectangle face of ΓS as depicted in Figure 14.
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Here e1, e2, e3, e4, e5, e6 is a family of six successive parallel edges which connect vertices v1 and

v2 and whose label-permutation is the identity. Let Ri be the bigon face between ei, ei+1 for

i = 1, ..., 5 and R the disk R1 ∪ ... ∪R5. We know R∗
2, R

∗
4, f

∗ ⊆ X+ while R∗
1, R

∗
3, R

∗
5 ⊆ X−.

There is a product structure (Ri, ei, ei+1) = (ei× I, ei×{0}, ei×{1}) such that for each x ∈ ei,

({x} × I)∗ is an I-fibre of Σ
(−1)i

1 . Thus τ(−1)i(e
∗
i ) = e∗i+1, so the free involution h−5 : Φ̇−

5 → Φ̇−
5

(see the end of §3.2) sends e∗1 ∪ b1 to e∗6 ∪ b2. Proposition 4.5 then shows that b1 and b2 lie in

different components of Φ̇−
5 . Hence b3 and b4 also lie in different components of Φ̇−

5 . ♦

It follows that b3 and b4 also belong to different components of Q.

If (D, ∂D) ⊂ (X+, ∂X+), we will denote the type of D (see §19.2.1) by W (D). Recall that

W (D) is defined up to cyclic permutation and inversion.

Corollary 19.28. Let D be a Q-disk. Then W (D) does not contain the syllable X2X4 or

X4X2.

Proof. These give rise to a 34- or 12-edge in ∂D, respectively. ♦

Lemma 19.29. Let D be a Q-disk. Then in W (D) no Z ∈ {X±1
2 ,X±1

4 } can be followed or

preceded by two distinct letters 6= Z−1.

Proof. If Z were followed by two distinct letters 6= Z−1 the same component of Q would contain

three boundary components bi. For example, if W (D) contained syllables X2X2 and X2X
−1
4

then ∂D would contain a 32-edge and a 31-edge, implying that b1, b2 and b3 belong to the same

component of Q. ♦

Proof of Lemma 19.25. Let E be an essential Q-n-gon, n ≤ 4. By the Loop Theorem we get

an essential embedded Q-disk D, with {corners of D} ⊂ {corners of E}.

Lemma 19.30. D is a 4-gon.
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Proof. D cannot be a monogon, since then D would be a boundary-compressing disk for F .

D cannot be a bigon by Lemma 19.24.

So suppose D is a trigon. It is easy to see that Corollary 19.28 and Lemma 19.29 imply that

D contains only, say, X2-corners. By Lemma 19.18 |εX2
(D)| 6= 1, so W (D) = X3

2 .

Let U = F̂ × I ∪H(23) ∪N(D) ⊂ X̂+. Then π1(U) ∼= π1(F̂ ) ∗Z/3. It follows that U , and hence

X̂+, has a closed summand with fundamental group Z/3, a contradiction. ♦

There are three possibilities: D has either

(A) all X2-corners (or all X4-corners);

(B) two X2-corners and two X4-corners;

(C) one X2-corner and three X4-corners (or vice versa).

Lemma 19.31. Case (A) is impossible.

Proof. We may suppose that D has all X2-corners. Note that |εX2
(D)| is not 1 by Lemma 19.18

and if it is > 1 then we get a contradiction as in the last part of the proof of Lemma 19.30.

Hence εX2
(D) = 0. Thus W (D) = X2

2X
−2
2 or X2X

−1
2 X2X

−1
2 .

In the first case, ∂D contains a 23-edge, and hence b2 and b3 belong to the same component of

Q. But ∂D also contains a 2-loop and a 3-loop, which clearly must intersect, contradicting the

fact that D is embedded.

In the second case, label the corners of D a, b, c, d as shown in Figure 15.

2

3

a b

cd

D
2

3

2

3

2

3

Figure 15.

Then ∂D is as shown in Figure 16. Let V = F̂ × I ∪H(23). Note that ∂V = F̂ ×{0}
∐
G, where

G is a surface of genus 2. We see from Figure 16 that ∂D is isotopic in G to a meridian of

H(23), and so bounds a non-separating disk D′ ⊂ V . Then D ∪D′ is a non-separating 2-sphere

⊂ V ∪N(D) ⊂ X̂+, a contradiction. ♦

Lemma 19.32. Case (B) is impossible.

Proof. By Corollary 19.28 and Lemma 19.29, the only possibilities forW (D) are X2X
−1
2 X4X

−1
4

and X2X
−1
4 X2X

−1
4 .
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In the first case, ∂D contains a 24-edge. Therefore b2 and b4 belong to the same component

of Q, and hence b1 and b3 belong to the same component of Q. But ∂D also contains a 1-loop

and a 3-loop, which must intersect.

In the second case, let U = F̂ × I ∪H(23) ∪H(41) ∪N(D) ⊂ X̂+. Then π1(U) ∼= π1(F̂ ) ∗Z ∗Z/2,

implying that X̂+ has a closed summand with fundamental group Z/2, a contradiction. ♦

By Lemmas 19.31 and 19.32, Case (C) must hold; so suppose that D has one X2-corner and

three X4-corners. Since {corners of D} ⊂ {corners of E}, E is also a 4-gon with one X2-corner

and three X4 corners. Corollary 19.28 rules out all possibilities for W (E) except X2X
−3
4 and

X2X
−1
4 X4X

−1
4 , and the first is ruled out by Lemma 19.29.

This completes the proof of Lemma 19.25. ♦

Lemma 19.33. There do not exist disjoint Q-disks of types X2X
−1
4 X4X

−1
4 and X4X

−1
2 X2X

−1
2 .

Proof. Let D1,D2 be Q-disks of types X2X
−1
4 X4X

−1
4 and X4X

−1
2 X2X

−1
2 , respectively. Since

∂D1 contains a 31-edge, b1 and b3 must belong to the same component of Q. But ∂D1 contains

a 1-loop and ∂D2 contains a 3-loop, and these must intersect. ♦

Proof of Lemma 19.26. Let E1, E2 be Q-disks of types X2X
−1
4 X4X

−1
4 and X4X

−1
2 X2X

−1
2 re-

spectively. By the Loop Theorem and Lemma 19.25 we get embedded Q-disks D1 and D2

of these types. By Lemma 19.33, D1 and D2 must intersect; consider an arc of intersection,

coming from the identification of arcs ui ⊂ Di, i = 1, 2. We may assume that the endpoints of

ui lie on distinct edges of Di, i = 1, 2. Then ui separates Di into two disks, D′
i and D

′′
i , say,

where D′
i contains either one or two corners of Di.
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If D′
1 and D′

2 each contain a single corner, and these corners are distinct, then D′
1 ∪ D

′
2 is a

Q-bigon with one X2- and one X4-corner, contradicting Lemma 19.24.

If D′
1 and D′

2 both contain, say, a single X2-corner, then u1 is as shown in Figure 17, which

also shows one of the three possibilities for u2. Since b1 and b3 lie in one component of Q,

say Q1, and b2 and b4 lie in the other component, say Q2, and each of the arcs u1 and u2 has

one endpoint in Q1 and one in Q2, u1 and u2 must be identified as shown in Figure 17. Then

D∗
1 = D′′

1 ∪D′
2 is a Q-disk of type X2X

−1
4 X4X

−1
4 having fewer intersections than D1 with D2.
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Figure 18.

If each of D′
i and D′′

i contains two corners, i = 1, 2, the two possibilities for u1 and u2 are

illustrated in Figure 18, (a) and (b). In both cases, D∗
1 = D′′

1 ∪ D′
2 is again a Q-disk of type

X2X
−1
4 X4X

−1
4 having fewer intersections with D2.

Applying the Loop Theorem to the disk D∗
1 constructed above, and using Lemma 19.25, we get

an embeddedQ-disk of typeX2X
−1
4 X4X

−1
4 having fewer intersections withD2 thanD1. Contin-

uing, we eventually get disjoint embedded Q-disks of types X2X
−1
4 X4X

−1
4 and X4X

−1
2 X2X

−1
2 ,

contradicting Lemma 19.33 .

This completes the proof of Lemma 19.26. ♦
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Since each edge of Γ̄S has weight 6, consecutive 4-gon corners of ΓS at a given vertex are

distinct. Hence the total number of X2-corners in the 4-gon faces of ΓS is the same as the total

number of X4-corners. Since a 4-gon face of ΓS is an essential Q-disk, this contradicts Lemmas

19.25 and 19.26.

This completes the proof for the case where Γ̄S is rectangular.

19.3. Proof when Φ̇+
3 is not a union of tight components. In this section we suppose

that X− is a twisted I-bundle and Φ̇+
3 is not a union of tight components. Proposition 8.2

implies that

• M(β) is Seifert with base orbifold P 2(2, n) for some n > 2;

• F̂ is vertical in M(β);

• Φ̆+
1 is connected and completes to an F̂ -essential annulus;

• Φ̆+
3 completes to the union of two F̂ -essential annuli.

By Corollary 11.4, the edges of ΓS have weight bounded above by m+4. Hence for any vertex

v of ΓS we have

(19.3.1) ∆(α, β) ≤ valencyΓS
(v) + 4

(valencyΓS
(v)

m

)

As the Seifert structure on X̂+ is unique, it is the restriction of the Seifert structure of M(β)

and therefore its base orbifold is D2(2, n). Recall from §19.1 that φ+ is the fibre slope on F̂ of

this structure. By hypothesis, it is also the fibre slope of the Seifert structure on X̂−, a twisted

I-bundle over the Klein bottle with base orbifold a Möbius band. Hence φ+ = τ−(φ+) = α−,

so the class t ∈ π1(F̂ ) ≤ π1(X̂
+) is the fibre class.

Proposition 19.34. Suppose that conditions 19.0.1 hold and Φ̇+
3 is not a union of tight com-

ponents. If m = 4 there is a presentation 〈a, b, z : a2, bn, abz−2〉 of Γ = π1(P
2(2, n)) such

that the image in Γ of the core Kβ of the β-filling solid torus in M(β) represents the element

κ = az−1b−1z ∈ Γ, at least up to conjugation and taking inverse.

Proof. Let E0 be the F̂ -essential annulus
̂̆
Φ+
1 . Then ∂E0 is a pair of F̂ -essential curves c1, c2.

By Proposition 8.2, Φ̇+
3 is the union of two F̂ -essential annuli, and there are disjoint, non-

separating annuli A−
1 , A

−
2 properly embedded in X− such that ∂A−

1 ∪ ∂A−
2 ⊆ Φ̇+

1 and for each

j, ∂Φ̇+
1 ∩ ∂A−

j is a boundary component of Φ̇+
1 which we can take to be cj .

We can assume that each A−
j is τ−-invariant. Then A−

1 ∪ A−
2 splits X̂− into two τ−-invariant

solid tori V1, V2 where V1 ∩M ⊃ ∂M ∩X− and V2 ⊂ M . The reader will verify that
̂̆
Φ+
1 ∩ V1

is the union of disjoint F̂ -essential annuli E1, E2 where τ−(E1) = E2 while F ∩ V2 is the union

of disjoint F̂ -essential annuli E3, E4 such that τ−(E3) = E4. Without loss of generality we can

suppose that cj ⊂ Ej (j = 1, 2) and
̂̆
Φ+
1 = E1 ∪ E2 ∪ E3. Then Φ̆−

3 = τ−(
̂̆
Φ+
1 ) = E1 ∪ E2 ∪ E4.
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Number the components of ∂F so that ∂M∩X+ consists of two annuli, one with boundary b1∪b4,

the other with boundary b2∪b3. Let x = x4 and y = x2 be the elements of π1(X̂
+) ≤ π1(M(β))

defined using the disk D ⊂ A− = Φ̆−
3 .

The intersection of ∂M with X− consists of two annuli, one with boundary b1 ∪ b2 and the

other with boundary b3 ∪ b4. Let w1, w3 be the associated elements of π1(X̂
−) ≤ π1(M(β))

determined by D. Since V1 ∩ M is a twice-punctured annulus cross an interval we see that

w1 = w±1
3 . We claim that w1 = w−1

3 . To see this, exchange E1 and E2, if necessary, so that

bj ⊂ Ej for j = 1, 2. We will be done if b4 ∈ E1 and b3 ∈ E2. Suppose otherwise that b3 ∈ E1

and b4 ∈ E2. Then τ+(E1) is an F̂ -essential annulus in E0 containing c2∪b2∪b4 while τ+(E2) is

an F̂ -essential annulus in E0 containing c1∪b1∪b3. It follows that ∂τ+(E1)\c2 is an F̂ -essential

curve in Φ̆+
1 which separates b2 ∪ b4 from b1 ∪ b3. A similar conclusion holds for ∂τ+(E2) \ c1.

It follows that up to isotopy we can assume τ+(E1 ∩ F ) = E2 ∩ F . On the other hand, by

construction we have τ−(E1 ∩ F ) = E2 ∩ F and therefore (τ− ◦ τ+)(E1 ∩ F ) = E1 ∩ F . Hence

the inclusion of E2 ∩ F in F admits essential homotopies of arbitrarily large length, contrary

to the results of §10. Thus w1 = w−1
3 . Let z be the image of w1 in Γ.

The class of π1(M(β)) carried by Kβ is given by xw1yw
−1
1 . Let κ be its image in Γ.

The base orbifold of X̂+ is D2(2, n) with fundamental group π1(D
2(2, n)) = 〈a, b : a2 = 1, bn =

1〉. Here a, b are chosen to be represented by oriented simple closed curves in the complement

P of the cone points of D2(2, n).

We can assume that the Ei are vertical in the Seifert structure onM(β). Since D ⊂ E1∪E2∪E4,

it projects to a proper subarc of the circle in P 2(2, n) given by the image of the vertical torus

F̂ . Thus the images of x and y in π1(D
2(2, n)) lie in {a±1, b±1} (cf. the proof of Proposition

15.1). Further z2 ∈ {ab, ab−1, ba, b−1a} ⊂ Γ. By construction b1∪ b4 ⊂ E1 and b2∪ b3 ⊂ E2 and

so as w1 is obtained by contenating an arc in ∂M ∩X− from b1 to b2 with an arc in D from b2
to b1, it follows that one of the following four possibilities arises:

(1) x 7→ a, y 7→ b, z2 = ba and κ = azbz−1.

(2) x 7→ a, y 7→ b−1, z2 = b−1a and κ = azb−1z−1.

(3) x 7→ b, y 7→ a, z2 = ab and κ = bzaz−1.

(4) x 7→ b−1, y 7→ a, z2 = ab−1 and κ = b−1zaz−1.

In case (3) we have Γ = 〈a, b, z : a2, bn, ab = z2〉 where κ = bzaz−1 = z(az−1b−1z)−1z−1. In

case (4) we have Γ = 〈a, b, z : a2, bn, ab−1 = z2〉 where κ = b−1zaz−1. Replacing b by b−1 gives

the presentation stated in the proposition and κ = bzaz−1 = z(az−1b−1z)−1z−1 as before. In

case (2) we replace z by z−1 and note that then κ = az−1b−1z. Finally in case (1) we replace

b by b−1 and z by z−1 after which again we have κ = az−1b−1z. ♦

Proposition 19.35. Suppose that conditions 19.0.1 hold and Φ̇+
3 is not a union of tight com-

ponents. If m ≡ 2 (mod 4) and ∆(α, β) is even, then ∆(α, β) = 2.

Proof. Suppose otherwise. Consider the 2-fold cover of M̃ → M which restricts to the cover

F × I → X− on the −-side of F and the trivial double cover on the +-side of F . Since m ≡ 2
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(mod 4) the boundary of M̃ is connected. Now β lifts to a slope β′ on ∂M̃ with associated

filling a Seifert manifold with base orbifold S2(2, n, 2, n) 6= S2(2, 2, 2, 2). Hence β′ is a singular

slope of some closed essential surface S ⊆ M̃ . Since the distance of α to β is even, α also lifts

to a slope α′ on ∂M̃ with the associated filling Seifert with base orbifold a 2-sphere with three

or four cone points. It’s easy to see that the distance between α′ and β′ is ∆(α, β)/2. Hence as

β′ is a singular slope for S, S is incompressible in M̃(α′). As M̃ is hyperbolic, S cannot be a

torus and therefore must be horizontal in M̃(α′). It cannot be separating as the base orbifold

of M̃(α′) is orientable. Thus it is non-separating. But then [BGZ1, Theorem 1.5] implies the

distance between α′ and β′ is at most 1, so ∆(α, β) = 2. ♦

19.3.1. M(α) is very small. We assume that M(α) is very small in this subsection and prove

∆(α, β) ≤ 3.

Lemma 19.36. M(β) contains no horizontal essential surfaces. Thus every closed orientable

incompressible surface in M(β) is a vertical torus.

Proof. Suppose M(β) contains a horizontal essential surface G. Then for each ǫ, the compo-

nents of G∩ X̂ǫ are horizontal incompressible surfaces in X̂ǫ. Hence if λ denotes the slope on F̂

of the curves G ∩ F̂ , then λ is the fibre slope of the Seifert structure on X̂− with base orbifold

D2(2, 2). In particular, ∆(λ, φ+) = ∆(λ, α−) = 1. Then X̂+(λ) is a Seifert manifold with base

orbifold S2(2, n) which admits a horizontal surface. Thus it must be S1 × S2. But then n = 2

and therefore X+ is a twisted I-bundle (Proposition 7.5), contrary to our assumptions. ♦

Note that closed, essential surfaces in M have genus 2 or larger. Hence we deduce the following

corollary.

Corollary 19.37. If M contains a closed orientable essential surface, then the surface must

compress in M(β). ♦

Lemma 19.38. If β is not a singular slope, then any orientable essential surface H in M with

boundary slope β has at least 4 boundary components.

Proof. We may assume that |∂H| is minimal among all such surfaces. Then by [CGLS, The-

orem 2.0.3], either β is a singular slope or Ĥ is incompressible in M(β). So by our assumption

Ĥ is incompressible in M(β). Thus by Lemma 19.36, Ĥ is an incompressible torus in M(β).

Hence |∂H| ≥ m and so is at least 4. ♦

We complete this part of the proof of Theorem 2.7 using PSL2(C)-character variety methods.

We refer the reader to §6 of [BCSZ2] for the explanations of the relevant notation, background

results, and references.

Now let X0 ⊆ XPSL2
(M(β)) ⊆ XPSL2

(M) be an irreducible curve which contains a character

of a non-virtually-reducible representation. Let x be any ideal point of X̃0. If f̃α has finite

value at x, then [BZ1, Proposition 4.10] and Corollary 19.37 imply that β is a singular slope, in

which case we would have ∆(α, β) ≤ 1. So every ideal point of X̃0 is a pole of f̃α. In particular
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X0 provides a non-zero Culler-Shalen seminorm ‖ · ‖X0
on H1(∂M ;R) with β the unique slope

with ‖β‖X0
= 0.

By [BCSZ2, Proposition 10.2] and [BZ1] we have

‖α‖X0
≤ sX0

+ 5

Let H be an essential surface associated to an ideal point x of X̃0. As x is a pole of f̃α, H has

boundary slope β. By Lemma 19.38, |∂H| ≥ 4. This implies, by the arguments in [BCSZ2,

Proposition 6.6], that sX0
≥ 2. Thus

∆(α, β) =
‖α‖X0

sX0

≤ 1 + 5/2 = 3.5

Thus ∆(α, β) ≤ 3, which completes the proof when M(α) is very small.

19.3.2. M(α) is not very small. We suppose thatM(α) is not very small in this subsection and

that Y is a torus.

Lemma 19.39. Suppose that conditions 19.0.1 hold and Φ̇+
3 is not a union of tight components.

If ∆(α, β) > 5 then and there is a vertex v of ΓS such that µ(v) > m∆(α, β) − 4, then m = 4.

Proof. Proposition 12.2 and Inequality 19.3.1 show that 3 ≤ valencyΓS
(v) ≤ 5 and if v has

valency 3, then ∆(α, β) ≤ 6 with equality only if m = 4. If it has valency 4, Proposition 12.2

shows that ϕ3(v) ≥ 1. Lemma 19.7 then implies that ∆(α, β)m, the sum of the weights of the

edges incident to v, is bounded above by max{3m + 14, 4m + 4}. Hence if ∆(α, β) > 5, then

m = 4 and ∆(α, β) = 6. Finally suppose that v has valency 5. In this case ϕ3(v) ≥ 4 (cf.

Corollary 12.2) so Lemma 19.7 implies that ∆(α, β)m ≤ max{3m + 16, 4m + 6, 5m}. Hence if

∆(α, β) > 5, then m = 4. ♦

In the absence of vertices v of ΓS for which µ(v) > m∆(α, β) − 4, Corollary 12.4 implies that

µ(v) = m∆(α, β) − 4 for all vertices.

Lemma 19.40. Suppose that conditions 19.0.1 hold and Φ̇+
3 is not a union of tight components.

Assume moreover that µ(v) = m∆(α, β)−4 for all vertices v of ΓS. If ∆(α, β) > 5, then either

(i) m = 4, or

(ii) m = 8,∆(α, β) = 6, each edge has weight 12, and ΓS is rectangular.

Proof. Proposition 12.2 shows that 4 ≤ valencyΓS
(v) ≤ 6 for all vertices of ΓS. Further,

Proposition 12.5 shows that if

(19.40.1)





valencyΓS
(v) = 4, then ϕ3(v) = 0, ϕ4(v) = 4, and ϕj(v) = 0 for j > 4

valencyΓS
(v) = 5, then ϕ3(v) = 3 and ϕ4(v) = 2, and ϕj(v) = 0 for j > 4

valencyΓS
(v) = 6, then ϕ3(v) = 6, and ϕj(v) = 0 for j > 3
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Let v be a vertex of valency 6. Since the weight of each edge of ΓS is at most m+ 4, Lemma

19.7 implies that if some edge incident to v has weight larger than m then ∆(α, β)m, the sum

of the weights of the edges incident to the vertex, is bounded above by max{3m+18, 4m+8}.

Hence Proposition 19.35 implies that m = 4 and ∆(α, β) = 6. If, on the other hand, each edge

incident to v has weight m or less, then Inequality 19.3.1 shows that ∆(α, β) = 6 and each such

edge has weight m. If some edge incident to v connects it to a vertex v1 of valency less than 6,

19.40.1 implies that the valency of v1 is 5 and ϕ3(v1) = 3. Then Lemma 19.7 shows that 6m,

the sum of the weights of the edges incident to v1, is bounded above by max{4m+10, 5m+4}.

In either case, m = 4. Assume then that each edge incident to v connects it to a vertex v1 of

valency 6. Proceeding inductively we see that if m > 4, then each vertex in the component of

ΓS containing v has valency 6. It follows that ΓS is hexagonal (cf. the proof of Lemma 19.9)

and each edge of ΓS has weight m. Since ΓS must have a positive edge, Lemma 19.5 shows

that m = 6. But this is impossible by Proposition 19.35. Thus m = 4.

Next let v be a vertex of valency 5. Then ∆(α, β)m, the sum of the weights of the edges incident

to v, is bounded above by max{3m+ 16, 4m+ 10, 5m}. Since ∆(α, β) > 5, the only possibility

is for m = 4.

Finally if there are no vertices of valency 5 or 6, each vertex of ΓS has valency 4 and thus

Identities 19.40.1 implies that it has no triangle faces. Lemma 11.5 then shows that ΓS is

rectangular. Inequality 19.3.1 shows that m ≤ 8 and

∆(α, β) ≤

{
8 if m = 4

6 if m = 6, 8

Since ∆(α, β) ≥ 6, Proposition 19.35 implies that m 6= 6. If m = 8, it is easy to see that each

edge of ΓS has weight 12. This completes the proof. ♦

By the last two results, the proof of Theorem 2.7 when Φ̇+
3 is not a union of tight components

reduces to proving the following two propositions.

Proposition 19.41. If m = 8,∆(α, β) = 6, ΓS is rectangular, each of its edges has weight 12,

and Φ̇+
3 is not a union of tight components, then ∆(α, β) ≤ 5.

Proposition 19.42. If m = 4 and Φ̇+
3 is not a union of tight components, then ∆(α, β) ≤ 5.

Proof of Proposition 19.41. Each component of Φ̇−
j is tight for j ≥ 5 (Proposition 9.4) and

so Φ̇−
11 has at least six tight components (Proposition 6.3(2)). On the other hand, since the

weight of each edge of ΓS is 12, at least two components of Φ̇−
11 have two or more outer

boundary components. It follows that Φ̇−
11 has two components, each having two outer boundary

components. We shall call the union of these two large components Q. By Lemma 19.5 each

edge of ΓS is negative. Without loss of generality we may assume that there is a parallel family of

edges ē of ΓS whose label sequence at one of the vertices v adjacent to ē is 1 2 3 4 5 6 7 8 1 2 3 4.

Therefore b1 and b4 belong to Q, and by looking at the corners of the 4-gons of ΓS contiguous

to ē at v we see that b5 and b8 also belong to Q. As in Lemma 19.27, b1 and b4 belong to

different components of Q, as do b5 and b8.
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This case is now ruled out exactly as in §19.2.2, with the corners (45) and (81) replacing (23)

and (41). ♦

The proof of Proposition 19.42 requires a certain amount of preparatory work. We use ∆ to

denote ∆(α, β) and assume it is at least 6.

Let γβ ∈ π1(M(β)) be the element represented by the core Kβ of the Dehn filling solid torus.

Then [α] ∈ π1(M) is sent to γ∆β ∈ π1(M(β)) = π1(M)/〈〈[β]〉〉. Hence π1(M)/〈〈[α], [β]〉〉 ∼=

π1(M(β))/〈〈γ∆β 〉〉. Note that this group is a quotient of π1(M)/〈〈[α]〉〉 ∼= π1(M(α)).

The quotient of π1(M(β)) by the fibre-class is Γ = π1(P
2(2, n)). As before, denote the image

of γβ in Γ by κ. By Proposition 19.34 Γ admits a presentation 〈a, b, z : a2, bn, abz−2〉 such that

up to conjugation and taking inverse, κ = az−1b−1z. Thus if we set G = Γ/〈〈κ∆〉〉, then G has

a presentation

G = 〈a, b, z : a2, bn, abz−2, (az−1b−1z)∆〉

Since π1(M(β))/〈〈γ∆β 〉〉 is a quotient of π1(M(α)), the same is true for G. We will show that

this is impossible when ∆ ≥ 6.

First we give an alternate presentation of G which will be useful in the sequel.

Lemma 19.43. G ∼= 〈a, d, z : a2, dn, (ad)∆, az3dz−1〉.

Proof. Let d = z−1b−1z and eliminate b = zd−1z−1. This gives the stated presentation. ♦

Lemma 19.43 shows that G is obtained from the triangle group T = T (2, n,∆) by adding a new

generator z and the relation az3dz−1 = 1. Such relative presentations ([BP]) have been studied

extensively. In particular, since T is residually finite, a result of Gerstenhaber and Rothaus

[GR] implies

Lemma 19.44. The natural map T → G is injective. ♦

The specific relation az3dz−1 is analysed by Edjvet and Howie in [EH], in the more general

setting where T is replaced by an arbitrary group H generated by a and d. They show, using

the method of Dehn (or Van Kampen) diagrams, that the natural map H → G is injective

[EH, Proposition 1]. Combining this proof with a result of Bogley and Pride [BP] gives us the

following.

Lemma 19.45. Any finite subgroup of G is contained in a conjugate of T .

Proof. Proposition 1 in [EH] is proved by showing that the relative presentation in question

admits no non-empty spherical diagram, except for some special cases where the group H

generated by a and d is small. We observe that these do not arise in our situation where

H = T (2, n,∆). The part of the proof of Proposition 1 that is relevant there is Case 2 ([EH,

page 353]). In the exceptional cases that arise either H is finite, or there is a relation in H,

other than a2, which contains at most three occurrences each of a and d, or a relation which is

a product of between one and five words of the form (ad±1)±1. Since none of these hold in our



CHARACTERISTIC SUBMANIFOLD THEORY AND TOROIDAL DEHN FILLING 74

case (H = T (2, n,∆) where n ≥ 3 and ∆ ≥ 6), we conclude that our relative presentation of

G admits no non-empty spherical diagram. In the dual language of pictures, this says that it

admits no reduced spherical picture [BP]. Since the element az3dz−1 ∈ T ∗ 〈z〉 is not a proper

power, Lemma 19.45 follows from [BP, (0.4)]. ♦

Lemma 19.46. The centre of G is finite.

Proof. The orbifold Euler characteristic

χ(Γ) = χorb(P 2(2, n)) = 1− (
1

2
+
n− 1

n
) =

1

n
−

1

2

Hence, unless n = 3 and ∆ = 6, χ(Γ) + 1
∆ < 0, and so by [BZ2, Theorem 1.2] G has a normal

subgroup G0 of finite index with deficiency def(G0) ≥ 2 as long as there is a representation

ρ : Γ → PSL2(C) which preserves the orders of the torsion elements of Γ and which sends ad

to an element of order ∆. This is easy to do by hand in our case, but we can also appeal to

[DT, Lemma 8.1] where the result is proven in a broader context. By [Hil2, Corollaries 2.3.1

and 2.4.1], the centre Z(G0), and hence Z(G), is finite.

Suppose then that n = 3 and ∆ = 6. In this case χ(Γ) + 1
∆ = 0 and by [BZ2, Theorem 1.2]

and [DT, Lemma 8.1] G has a normal subgroup G0 of finite index with deficiency def(G0) ≥ 1.

If def(G0) > 1 we argue as above. If def(G0) = 1, [Hil1, Corollary 1, page 38] implies that if

Z(G0) is infinite then the commutator subgroup [G0, G0] is free. But [G,G] contains [T, T ] (by

Lemma 19.44), which is isomorphic to Z ⊕ Z, and hence [G0, G0] contains a copy of Z ⊕ Z. It

follows that Z(G0), and therefore Z(G), is finite in this case also. ♦

Since the triangle group T has trivial centre, Lemmas 19.45 and 19.46 give

Proposition 19.47. The centre of G is trivial. ♦

Proof of Proposition 19.42. Suppose that ∆(α, β) > 5 and let ϕ : π1(M(α)) → G be the epi-

morphism described above. Recall that M(α) is a small Seifert fibred manifold with hyperbolic

base orbifold S2(a, b, c). Let Z be the (infinite cyclic) center of π1(M(α)). By Proposition 19.47

ϕ(Z) = {1}, and hence ϕ factors through π1(M(α))/Z ∼= T (a, b, c) = T ′. Since T ′ is generated

by elements of finite order, its image under the induced homomorphism is contained in 〈〈T 〉〉

by Lemma 19.45 . Since G/〈〈T 〉〉 ∼= Z/2, this is a contradiction. ♦
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