JUNE 1993

LI ET AL.

1759

Variational Data Assimilation with a Semi-Lagrangian Semi-implicit
Global Shallow-Water Equation Model and Its Adjoint

Y.Lr*

Supercomputer Computations Research Institute, The Florida State University, Tallahassee, Florida

I. M. NAVON

Department of Mathematics and Supercomputer Computations Research Institute, The Florida State University, Tallahassee, Florida

P. COURTIER
European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, Berkshire, United Kingdom

P. GAUTHIER

Aerospace Meteorology Division, Atmospheric Environment Service, Dorval, Quebec, Canada

(Manuscript received 16 September 1992, in final form 12 December 1992)

ABSTRACT

An adjoint model is developed for variational data assimilation using the 2D semi-Lagrangian semi-implicit
(SLSI) shallow-water equation global model of Bates et al. with special attention being paid to the linearization
of the interpolation routines. It is demonstrated that with larger time steps the limit of the validity of the tangent
linear model will be curtailed due to the interpolations, especially in regions where sharp gradients in the
interpolated variables coupled with strong advective wind occur, a synoptic situation common in the high
latitudes. This effect is particularly evident near the pole in the Northern Hemisphere during the winter season.
Variational data assimilation experiments of “identical twin” type with observations available only at the end
of the assimilation period perform well with this adjoint model. It is confirmed that the computational efficiency
of the semi-Lagrangian scheme is preserved during the minimization process, related to the variational data

assimilation procedure.

1. Introduction

The variational data assimilation method using the
adjoint technique was implemented by Courtier
(1985), Derber (1985), Lewis and Derber (1985), Le
Dimet and Talagrand (1986), Thacker and Long
(1988), and Courtier and Talagrand (1990) on simple
models such as the shallow-water equation models.
Recently this method has been extended and applied
to various three-dimensional operational multilevel
primitive equation models such as at National Mete-
orological Center (NMC), European Centre for Me-
dium-Range Weather Forecasts (ECMWF), as well as
to the National Aeronautics and Space Administration
(NASA) Goddard Laboratory for Atmospheres (GLA)
fourth-order A-grid finite-difference model by Navon
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etal. (1990, 1992), Thépaut and Courtier (1991), and
Chao and Chang (1992), respectively.

Due to the iterative nature of the large-scale uncon-
strained minimization process required by this method,
the computational efficiency of integrating the models
turns out to be a crucial factor when operational ap-
plication is concerned. One way to improve the com-
putational efficiency is to seek a temporal discretization
scheme that allows the use of large time steps without
introducing computational instability. After the early
work of Krishnamurti (1962), a vast amount of re-
search efforts (Bates and McDonald 1982; McDonald
and Bates 1987, 1989; Ritchie 1988; C6té and Stani-
forth 1988; Staniforth and C6té 1991; Bates et al. 1992)
has been directed toward employing the Lagrangian
approach for treating the advection terms while retain-
ing a regular discretization in space, this approach being
known as the semi-Lagrangian scheme. By doing so,
one may obtain practically unconditional stability
(Robert 1981, 1982) for the time integration. It is,
therefore, natural to attempt to perform variational
data assimilation using semi-Lagrangian models.

However, many problems need to be tackled in this
line of research. As an initial effort in this direction,
we have derived the adjoint model for the semi-La-
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grangian semi-implicit (SLSI ) two-time-level finite-dif-
ference shallow-water equation model of Bates et al.
(1990) (referred to as the BSHB model hereafter) using
a direct solver of Moorthi and Higgins (1993). In sec-
tion 2, we discuss the model development and the for-
mulation of the data assimilation problem after a brief
description of the forward model. Section 3 is dedicated
to the examination of the validity of the tangent linear
model, including a theoretical analysis and some nu-
merical results. We present results of variational as-
similation experiments in section 4 and discuss various
related issues. Finally in section 5 conclusions are
drawn.

2. Model developments and assimilation formulation

The BSHB model consists of the shallow-water mo-
mentum and continuity equations, which are written

as
(ﬂ) =-V(®—cD)—fkXV (2.1)
),
ad - ,
i —®D - &'D, (2.2)

where V is the horizontal velocity vector (=ui + vj);
k is the unit vector in the vertical direction; V is the
horizontal gradient operator; & is the geopotential; f
is the Coriolis parameter; c is the coefficient of diver-
gence damping; D is the divergence; (d/ dt )y is the hor-
izontal component of the Lagrangian derivative; & is
a constant mean geopotential; and ¢'is the perturbation
of geopotential from the mean. The readers are referred
to Bates et al. (1990) for details.

The variational data assimilation approach using the
adjoint technique aims to minimize a cost function J
consisting of a weighted lack of fit between model and
observations, which can be written as .

R
JIX(10)] =5 2 [HX (1) = Z(2)]"W(z,)

r=0

X [HX(z,) — Z(t)], (2.3)
where X (¢,) is a vector of dimension N containing all
model variables, which consist of two horizontal ve-
locity components and the geopotential, over all grid
points at time ¢,. Here R is the number of time levels
for the analyzed fields in the assimilation window; Z(¢,)
represents observational data used for the assimilation
purposes; H is a transformation matrix that maps the
model variables to the observations. In this study, the
observational data are model outputs defined at model
grid points, so H is an identity matrix. Here W(¢,) is
an N X N diagonal matrix of weighting coefficients.
The values for its elements are usually determined by
a dimensional scaling of the various variables, relative
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importance, and quality of the dataset and other con-
siderations. In its most general form, W(¢,) can be taken
as the inverse covariance matrix of the observation er-
rors. There are other choices for the inner product used
in the cost function, such as an energy norm inner
product used by Courtier and Talagrand (1990) and
Thépaut and Courtier (1991).

The gradient of the cost function with respect to the
control variables (in our case the initial condition) is
obtained by integrating the adjoint model backward in
time. The derivation of the adjoint model consists of
first linearizing the model about some basic state and
then finding the adjoint operators of the tangent linear
model, as described in Navon et al. (1992) and Li et
al. (1991). The correctness of both the tangent linear
model and its adjoint needs to be checked. The tangent
linear model check is performed by comparing the dif-
ference between two model integrations started from
two slightly different initial states with the perturbations
predicted by the tangent linear model. These should
be very close to each other, with the differences de-
creasing with the size of the initial perturbations ( Thé-
paut and Courtier 1991). An observed rule in the check
of correctness of adjoint operators is that the acceptable
inaccuracy be limited to machine round-off errors. Fi-
nally, the correctness of the gradient obtained with the
adjoint model needs to be checked before it is used in
the minimization procedure. Such a gradient check is
formulated using a Taylor expansion of the cost func-
tion

J(X + ah) — J(X)
ahTVJ(X)

=1+ O(a).

(o) =

(2.4)

Here « is a small scalar and h is a vector of unit length
in an arbitrary direction. Usually h is taken to be (h
= VJ|VJ|™"), a vector in the gradient direction, so
that the variation of the variables yields a consistent
scaling and the check is not shifted to certain model
variables due to computer precision. For values of «
that are small but not too close to the machine zero,
one should obtain a value of (« ), which linearly ap-
proaches 1 as a decreases (Navon et al. 1992). Due to
the characteristics of the Taylor expansion, the residual
of the above formula should linearly approach 0 (Thé-
paut and Courtier 1991).

We used a limited memory quasi-Newton algorithm
for the unconstrained minimization described in No-
cedal (1980) and Liu and Nocedal (1989), which was
also used in Navon et al. (1992), hereafter called the
L-BFGS method. It was concluded in Zou et al. (1993)
that the L-BFGS algorithm is one of the best candidates
for robust large-scale unconstrained minimization
problems typically arising in meteorological models
(see also Navon and Legler 1987). Due to the different
physical dimensions, the values for the geopotential
and velocity fields in the BSHB model span a range of
six orders of magnitude. The components of the gra-
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dient of the cost function with respect to the geopo-
tential field could be three orders of magnitude smaller
than those with respect to the horizontal velocity field.
A rough scaling (Navon and de Villiers 1983; Courtier
and Talagrand 1990) is applied to precondition the
gradient and the control variables. The scaling factors
in this study are 1.0 for the velocity field components
and 3.0 X 102 for the geopotential field.

It is important to point out that interpolation rou-~
tines are used for the estimation of model variables at
departure points and midtrajectory points in the SLSI
model. In order to determine which grid points should
be used as the surrounding points for the interpolation,
one needs to take the integers of the variables defining
a nongridpoint location, and these integers then be-
come the subscripts of the arrays storing the model
variables at the surrounding grid points. The location
of such a particular nongridpoint location is a function
of the velocity at grid points. Such operations appear
at first to be “discontinuous” and thus nondifferenti-
able. A more in-depth analysis actually shows that the
dependency relation between the model variables in
such operations is actually continuous despite the fact
that discontinuous algebraic steps are introduced. In
other words, the nongridpoint location is a continuous
function of the velocity field and the interpolated model
variables at the nongridpoint location continuously
depend on its location as well as on the values for model
variables at surrounding grid points. Such operations
should be differentiable. Therefore, it is justifiable to
perform the linearization and the adjoint derivation.
This point will be presented in more detail in the next
section when we discuss the validity of the tangent lin-
ear model. As a simple illustration, we can consider a
linear interpolation problem in one dimension. The
description of the problem, the interpolation program,
the linearization program, and the corresponding ad-
joint code are presented in the Appendix.

3. Validity of the tangent linear model

For time intervals greater than the limit of validity
of the tangent linear model, the validity of the use of
the adjoint model technique in variational data assim-
ilation can be questioned (Lacarra and Talagrand 1988;
Rabier and Courtier 1992; Errico and Vukicevic 1992).
Therefore, it is very important to examine the extent
of the validity of the tangent linear model and also to
demonstrate how interpolation routines employed by
the semi-Lagrangian scheme affect the validity prop-
erty.

a. Theoretical aspects

Consider the following 1D problem,

du
E = O, (3.18)
ax
5= U, (3.1b)
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which we wish to solve with the semi-Lagrangian
method. If X; stands for a grid point, (3.1a) and (3.1b)
imply that

U(X;, t + At) = U(X(1), 1), (3.2)

with Xj(¢) = X, — [/" U[X ('), t1dt'. Approximating
the integral in a crude manner, one may write

X,(1) = X; — U(X;, 1) At (3.3)

This expression can be made more realistic in order
to correspond to the discretized formulation actually
employed in the semi-Lagrangian method. Using (3.3),
(3.2) is seen to assume the form

U(X;, t + At) = B;[U(X;, H]1U(X;, 8). (3.4)

The subscript j denotes an arrival point and i a depar-

ture point. If X; < X;(¢) < X;+1, the elements of the

interpolation matrix B, in a linear interpolation case,
are such that

0, if i#1i,

Bj,‘ = Bjil =1- o,

and i#i+1

Bji,+1 =a,

with a = [Xj(¢) — X;,1/(X;+1 — X;,). This is similar
to the example presented in the Appendix. Even though
cubic interpolations are used in the model along with
linear ones, the discussion here is based on this simple
upstream linear interpolation formulation without loss
of generality.

Equation (3.3) is nonlinear and the tangent linear
model is obtained from it by linearization. Considering
an infinitesimal perturbation 6 U of the control variable
U at time ¢, (3.4) implies that, to first order,

BU(X;, t + A1) = By UX;, D18U(X;, 1)
+ Bi[8U(X;, D1Us(Xi, 1), (3.5)

where the subscript s refers to the trajectory obtained
by integrating the direct model (3.4). The first term
of (3.5) is the same interpolation matrix defined in the
forward model integration; therefore, it can be consid-
ered known. In practice, however, one recovers the in-
terval from the stored value of Us.

The second term in (3.5) is associated with variations
in the interpolated value of U, due to an infinitesimal
change in U. If ¢ = X; — Uy(X], t)At is the location
used in the direct integration, this variation is

8¢, = —dU(X;, 1)At. (3.6)

This change being infinitesimal implies that & + 8¢
will remain in the same interval as £ unless o = 0, an
event that can occur with zero probability. The second
term in (3.5) is also associated with the U; field, the
advective velocity itself. Therefore, it is in regions with
sharp gradients in the interpolated fields coupled with
strong advective winds that the tangent linear model
approximation is likely to break down due to the in-
terpolation effect.
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It follows that B;[6U(X;, t)] will be such that

O, if l?éll and l?ell'i‘l
Bj,‘ = —5(1,
da,
with
SU(X;, 1) At
b = — =
Xi,+1 - Xi

The most significant point about (3.6) is that since
the size of the 8¢ is related to the time step Af, one
can expect this limit to vary with the magnitude of the
time step. Moreover, for a finite-difference model, the
zonal grid size becomes smaller toward higher latitudes.
It is then expected that it is more probable to have &,
+ 0£; lie outside of the interval where £ is located, that
is, when approaching the polar regions.

As is well known, higher-order interpolations involve
a larger number of grid points as well as larger intervals,
making it more likely for &; + §£, to remain in the same
interval as &, compared with the linear interpolations.
We expect that use of higher-order interpolations may
extend the limit of the validity of the tangent linear
model.

b. Numerical results

Following Rabier and Courtier (1992), let us write
the atmospheric state vector at the initial time ¢ as

x(fo) = xo(to) + 0x(to),

where xo(Zo) stands for the basic state and éx(¢y) for
the perturbation. The initial basic state, of which the
geopotential field is shown in Fig. 6a, is chosen as a
model state predicted from an ECMWF analysis. More
details concerning how this initial field is constructed
can be found in section 4a. The perturbations are taken
to be random fields over all the model’s grid points,
with the magnitude of the two velocity components
ranging from —3.0 to 3.0 m s™', and the geopotential
from —300.0 to 300.0 m? s 2. The magnitude of such
initial perturbations is far from being negligible. An-
other property of these initial perturbations is that they
focus on the smallest resolvable scale by the model grid
resolution. Since the zonal grid size becomes smaller
toward the polar regions, we have sharper gradients or
larger variations of the interpolated variables in those
regions.

The evolution of x is given by the integration of the
model M between times 7, and ¢, as

X(tn) = M(2,, t0)[x(2%)]
= M(tn, to)[x0(t0) + 0x(%0)1,

whereas the first-order evolution of the perturbation
0x(1o) is the result of the integration of the tangent
linear model R obtained by linearization of the non-
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linear model M in the vicinity of the trajectory whose
initial condition is the basic state xy(#o):

0x(tn) = R(s, 10)0x (o).

In order to check the validity of the tangent linear
model, we compare the total perturbation

N[ox(t0)] = M(ty, to)[x0(t0) + 0x(20)]
— M(t4, 10)[x0(%)]
to its linear component
L[6x(2)] = R(tn, t0)0x(%).
The difference between the two is denoted as
D[6x(10)] = N[6x(%)] — L[6x()].

In order to quantify this comparison, we defined the
square of the norm to be

Ix1? = xTWwx

in accordance with what is used in the cost function
for the data assimilation problem. The relative error
of the tangent linear model is then defined as the ratio.
DY /1LY

We consider here the sensitivity of this relative error
to the size of the time step used for the integration.
Figure 1 presents the evolution of the relative errors
for different time steps as the model is integrated. The
tangent linear model remains quite accurate with time
steps equal to 10 and 30 min; the value of the error
reaches a level of only about 10% after 96 h. These
results confirm the correctness of the coding of the tan-
gent linear model. It is interesting to note that after 48
h, the error with a time step of 30 min becomes slightly
smaller than that with a time step of 10 min. Such a
marginal difference can be attributed to round-off er-
rors that accumulate faster due to the higher number
of operations involved in the integration with a smaller
time step. As the time step increases to 1, 1.5, and

8o L DT=2 hours

60 1.5 hours

40

10 mins 30 mins i
)/3"'

1 L 1 1 1

Relative Error of TLM (%)

20

0 24 48 72 96
Integration Period

FI1G. 1. Evolution of relative error of the tangent linear model
for model integrations with various time-step sites.
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2 h, the relative error increases monotonically and
somewhat dramatically. With a time step of 2 h, the
relative error becomes as large as 100% after 24 h of
integration. The relative error, with a time step of 1.5
h, attains more than 40% after 48 h. The theoretical
expectation as discussed previously is thus confirmed;
that is, when the time step for integration is too large,
the limit of validity of the tangent linear model is
shortened.

As mentioned before, the random initial perturba-
tions we used created sharp variations near the polar
regions. We would expect that the error of the tangent
linear model compared with the full model arises
mainly due to differences occurring at high latitudes.
Figure 2 presents the geopotential part of the difference
field D after 48 h for the case with a time step equal
to 1.5 h. It can be clearly seen that the errors are located
mainly near the poles. However, the error distribution
displays an asymmetric pattern, with the errors located
near the North Pole being much larger than those near
the South Pole. Since the initial perturbations are ran-
domly and uniformly generated and the model grids
are symmetric about the equator, one should expect
other reasons for this asymmetric behavior. Figure 3
shows the zonal mean of the zonal wind of the initial
basic state. The magnitude of the mean zonal wind
near the southern pole is much smaller than that near
the northern pole, which is not surprising since this
dataset was collected during the Northern Hemisphere
winter. As illustrated before, the errors are amplified
by the advective velocity. This provides an explanation
for the presence of larger errors near the northern pole.

So far, we have demonstrated the variability of the
validity of the tangent linear model with various sizes
of the time step used in the SLSI model. This suggests
that when performing variational data assimilation with
semi-Lagrangian models, the time step used for the
model integration should also be constrained by the
limit of validity of the tangent linear model due to
interpolations as well as due to the particular grid ge-
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ometry employed in the model. Even though it is not
possible at this point to provide a universally and
quantitatively optimal time step for variational data
assimilation with the SLSI model, the results presented
here do shed some light on the way the choice of time
step should be carried out. This result is also likely to
be valid in a baroclinic model, if not more important,
since baroclinic instability induces sharp gradients in
frontal structures.

4. Data assimilation experiments
a. General description

Numerical experiments of variational data assimi-
lation with the SLSI shallow-water equation model on
the sphere were carried out using a resolution of (A6,
AN) = (7.5°, 7.5°), respectively. The model was ini-
tialized with the 500-mb geopotential and horizontal
velocity fields of the ECMWF analysis fields of 0000
UTC 15 January 1979. A 12-h forecast was made and
the model output at the end of this forecast period was
used as the initial condition for a model integration
used to generate “observations,” of which the geopo-
tential field is shown in Fig. 6a. The end of this 12-h
period constitutes the initial time for the data assimi-
lation experiments, and the reason for having such a
12-h preparatory integration is to ensure a more con-
sistent initial condition to avoid the spinup effect. A
3-h integration is made from this initial condition, and
the predicted fields are used as the first guess of the
initial condition for all the following assimilation ex-
periments. Such a first guess bears a typical error on
the order of magnitude of difference between two con-
secutive atmospheric states separated by 3 h. The error
field for the geopotential, for illustration purposes, is
presented in Fig. 6b. For all numerical experiments,
unless indicated otherwise, the divergence damping
coefficient ¢ is chosen to be 5.0 X 10 m? 57!,

The cost function has the form described by (2.3).
The weights are selected to be 10 =3 for the geopotential

<

L

2 An-

90°s
aow o

FIG. 2. The geopotential of the difference field between the perturbations calculated from the
full mode! and the perturbations calculated from the tangent linear model (contour interval is
2.0 m?s72).
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FIG. 3. Zonal average of the zonal velocity (m s™').

and 1.0 for the two horizontal velocity components,
respectively. All the experiments performed in this
study are of “identical twin” type; that is, the “obser-
vations” are generated by the same model.

b. Test of the model

A gradient check as shown in Fig. 4a indicates good
behavior. We have also checked the residual of ®(«)
in (2.4), and the criterion that the residual approaches
zero linearly is satisfied, as shown in Fig. 4b. However,
in case of localized errors, most likely to occur at special
points such as the boundary points and the poles in
our model, the gradient checks may not be able to de-
tect them. Such errors could negatively impact the be-
havior of the minimization and the retrieval of the ini-
tial fields. Hence, additional examinations must be
carried out.

A crucial test of the overall performance of the vari-
ational data assimilation consists of examining the be-

,101 AL SR ELLL N AL e AL AL | T T T

(o)

10
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havior of the minimization and the retrieval of the ini-
tial state by inserting data only at the end of the assim-
ilation period. An experiment with an assimilation
period of 3 h is carried out. Figure 5 displays the evo-
lution of the cost function and the gradient norm nor-
malized by their respective initial values versus the
number of minimization iterations. The values of the
cost function and its gradient norm are reduced by
four orders and three orders of magnitude after 40
minimization iterations, respectively, and results after
more iterations show further reduction. The reduction
of the initial distance function is smaller (about 2.5
orders of magnitude), as indicated in Fig. 7. In other
words, the rate of convergence of the initial distance
function lagged behind that of the cost function itself.
As explained by Thépaut and Courtier (1991), the dy-
namics of the model is the reason for this loss of con-
ditioning. However, the reduction of distance function
after 40 iterations is significant and the retrieved initial
field is acceptable; the difference field for the retrieved
geopotential as compared to the reference field is shown
in Fig. 6c¢.

¢. Length of assimilation interval

The loss of the conditioning of the initial distance
function, caused by the dynamics of the model as dis-
cussed earlier, is expected to be enhanced by the length
of an assimilation interval. Producing experiments with
observations available only at the end of the assimi-
lation interval of 3, 6, and 9 h, respectively, should
enable us to demonstrate the presence of the condi-
tioning problem. Figure 7 displays the initial distance
function (X (o) — Xres(t0), X(20) — Xref(Z0) ) versus the
number of iterations as the minimization proceeds. The
loss of conditioning, as the length of the assimilation
interval increases, becomes very evident. For the ex-
periments with a 6-h interval, the retrieved initial field
is acceptable after 40 minimization iterations, while a

LOG( | 1.0 - @(@)|)

10

FI1G. 4. Gradient check of the adjoint model: (a) $(a), (b) log[]1.0 — ®(a)|].
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F1G. 5. Cost function and gradient norm normalized by their re-
spective initial values for the experiment with observations available
only at the end of the 3-h assimilation interval.

significant degradation in the quality of the retrieval is
detected for the experiment with a 9-h interval. A much
higher number of iterations in the minimization is re-
quired for the 9-h interval experiment to attain the
same rms level as that obtained by the experiment with
a 3-h interval after 40 iterations. These results are con-
sistent with Thépaut and Courtier (1991) and Zou et
al. (1992).

An examination of the consecutive retrieved initial
fields (not shown here) indicates that the major dif-
ferences related to the retrieved initial fields with dif-
ferent assimilation intervals are mainly evident on the
small scales of motion, which makes sense dynamically.
The time scale is smaller for the small-scale features,
which, being governed by the dynamics, then experi-
ence a larger change over a given period of time and
are therefore subject to more loss of conditioning.

d. Impact of the divergence damping coefficient

It was found in Bates et al. (1990) that in the absence
of an initialized start it was necessary to use an appre-
ciable value of the divergence damping coefficient ¢ in
order to suppress short-wave gravity waves. Since the
initial state used by us for the variational data assim-
ilation experiments is well balanced, the damping coef-
ficient could be smaller than the one used in Bates et
al. (1990), but a nontrivial value of ¢ is, however, nec-
essary. It is interesting to examine how the magnitude
of the divergence coefficient will impact upon the re-
trieval of the initial state.

With observations inserted only at the end of a 3-h
assimilation interval but with different values of the
divergence damping coefficient ¢ ranging from 1.0
X 10%t0 5.0 X 10" m? s™!, which correspond to an e-
folding time ranging from 5 to 0.1 h for the shortest
wave resolved for divergence, the corresponding initial
distance functions for these experiments are displayed
in Fig. 8. It is clearly seen that the convergence rate
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becomes slower as the damping coefficient increases.
This can be easily explained by noting that the diver-
gence damping acts as a dissipation mechanism that
remains dissipative in the backward adjoint integration.
Information contained in the initial fields, especially
in the small-scale features, will be damped so that the
retrieval of this part of the initial state from the infor-
mation at some later time becomes more difficult. This
result confirms the results of Thépaut and Courtier
(1991) where they examined the impact of horizontal
diffusion. A thorough analysis on the impact of diffu-
sion on the adjoint variational data assimilation
method can be found in Li and Droegemeier (1993).

e. Impact of the time-step size

The major advantage of semi-Lagrangian models
over Eulerian ones is their computational efficiency
due to their not being subject to the CFL computational
stability criterion. This is also the justification of our
motivation in using semi-Lagrangian models in order
to ease the computational cost involved in adjoint data
assimilation. However, the question of whether the
computational efficiency can be preserved during the
iterative minimization is worth investigating, though
the answer is obviously expected to be positive.

Two experiments are carried out, both being of
identical-twin type. The assimilation window is 12 h
and data are inserted every hour. The first guesses be-
tween the initial state are also identical. The only dif-
ference between the two experiments is that a time step
of 1 h is used for one and a time step of 10 min is used
for the other; hence, data are inserted every time step
during the adjoint integration in the first experiment
and every six time steps in the second experiment. Fig-
ure 9 shows the respective normalized cost functions
for these two experiments versus the number of iter-
ations. The two cost functions evolve similarly but not
in an identical way. A positive feature is that the ex-
periment with the 1-h time step converges slightly faster
than the corresponding experiment with the 10-min
time step. This could be explained as follows. First, the
information of the forcing term where data were in-
serted every time step is passed to the gradient more
directly. Second, a smaller number of computational
operations is required for the integration with the larger
time step, which results in less round-off error accu-
mulation. Both factors contribute to a gradient of
higher quality for the experiment with larger time step,
a fact that slightly improves the minimization efficiency
in terms of the number of iterations.

However, since the experiments are of identical-twin
type and highly idealized, this result should not be gen-
eralized beyond computational aspect. It is only in-
tended here to confirm the speculation that the com-
putational efficiency in the forward integration by using
semi-Lagrangian schemes is well preserved during the
iterative minimization process related to variational
data assimilation.
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FIG. 6. (a) Initial condition of the reference geopotential. (b) Difference between the initial
geopotential field and the reference before minimization (contour interval is 6.0 dam). (¢) Dif-
ference between the initial geopotential field and the reference after 40 iterations of minimization
(contour interval is 6.0 dam). Results are from the experiment where observations are available
only at the end of the 3-h assimilation interval.
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intervals equal to 3, 6, and 9 h.

5. Concluding remarks

Adjoint model development and its application to
variational data assimilation with a semi-Lagrangian
semi-impilicit model of the shallow-water equation on
the sphere are found to be feasible. The seemingly
“discontinuous” operations in the interpolation routine
required in order to estimate the model variables at
midtrajectory and departure points did not affect the
adjoint model derivation. A special treatment was,
however, required during the linearization process.

Due to the interpolations related to the semi-La-
grangian approach, the tangent linear model is more
likely to break down in regions where sharp gradients
prevail in the interpolated fields coupled with strong
advective wind; such a situation is likely to occur in
high latitudes near the pole, especially in the winter
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F1G. 8. Initial distance function with different values of the diver-
gence damping coefficient ¢ (m? s2). The assimilation interval is
3h.

with two different time-step sizes.

hemisphere. These effects increase, in a linear sense,
as the temporal step size utilized in the model integra-
tion becomes larger. Since the validity of the adjoint
approach is in question when the length of the assim-
ilation interval exceeds the validity limit of the tangent
linear model, these results impose a constraint on the
choice of the temporal step size to be used in the adjoint
variational data assimilation with semi-Lagrangian
models.

Data assimilation experiments with observations in-
serted only at the end of the assimilation period whose
length is 3, 6, and 9 h, with the time step for integration
being 1 h, all perform well in the minimization of the
cost function and the retrieval of the initial state. Loss
of conditioning in the initial distance function, as the
assimilation interval increases, is identified. Numerical
experiments have shown the impact of the magnitude
of the divergence damping coefficient on the retrieval
of the initial state, especially what concerns small-scale
features. Two experiments were carried out for com-
parison purposes, both being of identical-twin type,
with observations being inserted every hour, one with
a time step of 1 h and the other with a time step of 10
min. It was found that the convergence rate of the min-
imization for the experiment with 1-h time step was
slightly faster. This confirms the obvious expectation
that the computational efficiency of semi-Lagrangian
models is preserved in the large-scale unconstrained
minimization process.

The results in this study are encouraging, illustrating
the potential of semi-Lagrangian models for performing
variational data assimilation. However, the impact of
the interpolation on the limit of the validity of the tan-
gent linear model, in the case of a baroclinic model
with real data assimilation, needs to be further exam-
ined in order to ascertain whether large time steps al-
lowed by semi-Lagrangian schemes have to be con-
strained by limits on the validity of the tangent linear
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model to the extent that computational efficiency of
semi-Lagrangian schemes may be lost. This first adjoint
model development for variational data assimilation
with a semi-Lagrangian semi-implicit model is the pre-
cursor of the development of a variational data assim-
ilation system for a 3D semi-Lagrangian semi-implicit
numerical weather prediction model (Bates et al.
1992), which is now in its final stages of implemen-
tation. These results will be reported in a forthcoming
paper.
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APPENDIX
Adjoint Derivation of Interpolation Routines

Let us conceptually construct the following problem.
For some model variable Y, we have gridpoint values
Y () at gridpoint locations X (), where [X([]) = I,
for’=1,2,3, - - -, N], that are uniformly distributed
with spacings of unit grid interval. Consider a location
at Xp that is also a model product, that is, a function
of the control variables. Point X is located somewhere
between two grid points X (J) and X (J + 1). Now, we
wish to linearly interpolate Y (J)and Y (J + 1), which
are defined at the gridpoint locations to Xp, a nongrid-
point location. The interpolated value Yp will then be-
come a model quantity,

The program for this operation is as follows:
Xp = C (some value)

J = integer (Xp)

JPL=J+1
a=Xp_J
BzJPI—XP

Y = aY(JP1) + Y (J).

The purpose of taking the integer of a model variable
and using this integer as the index of some array whose
elements are also model variables is to keep track of
those model variables that are used for the interpola-
tion. As long as the one-to-one variable correspondence
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order is preserved, the coding should remain correct.
Therefore, the important issue here is to save the model
variables and the integers and to use these quantities
in the adjoint coding. This idea can be implemented
in the tangent linear model.

If we denote the basic-state variable with overbars,
the tangent linear model operation becomes

Xp=C
J = integer (Xp)
JPL=J+1
a=Xp—J
3=J 1 —-Xp
B'=-Xp

Y’»=aY'(JP1) + « Y(JP1) + BY'(J) + B'Y(J).

The corresponding adjoint program then becomes

Xp=C
J = integer (Xp)
JPL=J+1
a=Xp—J
g =1JPl - X,

B' = Yp¥(J)
Y'(J)=B8Yr+ Y'(J)
o« = YY(JP1)
Y'(JP1) = aY %+ Y'(JP1)
Xp=-B'+Xp
Xp=d + X5
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