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ABSTRACT

On 15 March 2005, the Meteorological Service of Canada (MSC) proceeded to the implementation of a
four-dimensional variational data assimilation (4DVAR) system, which led to significant improvements in
the quality of global forecasts. This paper describes the different elements of MSC’s 4DVAR assimilation
system, discusses some issues encountered during the development, and reports on the overall results from
the 4DVAR implementation tests. The 4DVAR system adopted an incremental approach with two outer
iterations. The simplified model used in the minimization has a horizontal resolution of 170 km and its
simplified physics includes vertical diffusion, surface drag, orographic blocking, stratiform condensation,
and convection. One important element of the design is its modularity, which has permitted continued
progress on the three-dimensional variational data assimilation (3DVAR) component (e.g., addition of new
observation types) and the model (e.g., computational and numerical changes). This paper discusses some
numerical problems that occur in the vicinity of the Poles where the semi-Lagrangian scheme becomes
unstable when there is a simultaneous occurrence of converging meridians and strong wind gradients. These
could be removed by filtering the winds in the zonal direction before they are used to estimate the upstream
position in the semi-Lagrangian scheme. The results show improvements in all aspects of the forecasts over
all regions. The impact is particularly significant in the Southern Hemisphere where 4DVAR is able to
extract more information from satellite data. In the Northern Hemisphere, 4DVAR accepts more asynoptic
data, in particular coming from profilers and aircrafts. The impact noted is also positive and the short-term
forecasts are particularly improved over the west coast of North America. Finally, the dynamical consis-
tency of the 4DVAR global analyses leads to a significant impact on regional forecasts. Experimentation has
shown that regional forecasts initiated directly from a 4DVAR global analysis are improved with respect to
the regional forecasts resulting from the regional 3DVAR analysis.

1. Introduction

Over the last few years, the variational form of sta-
tistical estimation has been implemented at many op-
erational centers. The motivation originated from the
difficulties associated with the assimilation of satellite
data such as the Television Infrared Observational Sat-
ellite (TIROS-N) Operational Vertical Sounders

(TOVS) radiances. Lorenc (1986) showed that the sta-
tistical estimation problem could be cast in a variational
form [the three-dimensional variational data assimila-
tion (3DVAR)], which is just a different way of solving
the problem that the so-called optimal interpolation at-
tempts to solve directly. Eyre (1989) showed, in a
1DVAR context, that a variational formulation leads to
a more natural framework for the direct assimilation of
radiances instead of retrieved temperature and humid-
ity profiles. This is also true for any indirect measure-
ment of the state of the atmosphere. Talagrand and
Courtier (1987) showed that the use of the adjoint of a
numerical model makes it possible to determine the
initial conditions leading to a forecast that would best
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fit data available over a finite time interval. These two
formulations can be combined to yield what is now
called the four-dimensional variational data assimila-
tion (4DVAR) formulation of the statistical estimation
problem. This approach has been used operationally at
the European Centre for Medium-Range Weather
Forecasts (ECMWF) since 1997 (Rabier et al. 2000)
and at Météo-France since 2000 (Gauthier and Thépaut
2001). Other centers have also recently implemented a
4DVAR global assimilation system (e.g., the Met Of-
fice and the Japan Meteorological Agency).

At the Meteorological Service of Canada (MSC), the
first implementation of a 3DVAR system occurred in
1997 (Gauthier et al. 1999a). The system was then de-
signed to be as close as possible to the previous optimal
interpolation system. Since then, substantial modifica-
tions have been brought to different aspects of the sys-
tem. The 3DVAR was reformulated to define the
analysis increments on the model’s own vertical coor-
dinate and a new formulation of the background error
covariances was introduced (Gauthier et al. 1999b).
This framework was more appropriate to add new data
in the system [e.g., Advanced TOVS (ATOVS) radi-
ance data; Chouinard et al. 2001]. A variational quality
control was also included (Ingleby and Lorenc 1993;
Andersson and Järvinen 1999; Gauthier et al. 2003).

This paper presents the strategy used to couple the
3DVAR and the Global Environmental Multiscale
(GEM) model to obtain an incremental 4DVAR as-
similation system in which the model and the 3DVAR
components are kept as separate entities. The 3DVAR
code includes the observation operators and all that is
required to produce a 3DVAR analysis (e.g., back-
ground error covariances). Then the extension to
4DVAR only requires two more operators: the tangent
linear and adjoint of the forecast model. The approach
retained was then to use coupling mechanisms to link
the model code to that of the 3DVAR. The main ben-
efit of this approach is to considerably simplify the de-
velopment and maintenance of the codes of the mod-
eling assimilation system. On the one hand, work was
going on to add new data types within the 3DVAR
while the tangent-linear and adjoint models were de-
veloped and tested. The development of the tangent-
linear and adjoint models has been developed and these
were first used to perform sensitivity studies (Laroche
et al. 2002b). The 4DVAR was finally implemented in
the operational suite in March 2005.

The paper is organized as follows. Section 2 presents
the formulation of the variational assimilation first in its
3D version and then its extension to 4D. The extension
of a 3DVAR to 4DVAR is presented in section 3 with
some preliminary validation tests and experiments. Sec-

tion 4 discusses some problems associated with the nu-
merics of the tangent-linear and adjoint model formu-
lations that had to be addressed. Section 5 discusses the
choices made for the final configuration of the
4DVAR. This includes the characteristics of the simpli-
fied model used in the incremental 4DVAR and in par-
ticular, the impact of the simplified physics. The role of
the outer iterations is also discussed. Section 6 presents
an overview of the impact of 4DVAR during the two-
month assimilation cycles for summer and winter. The
results clearly show that 4DVAR makes better use of
the satellite data than 3DVAR. In a companion paper,
Laroche et al. (2007) present a more complete analysis
and diagnostics of a complete suite of experiments per-
formed in preparation for the implementation.

2. Incremental formulation of variational
assimilation

The statistical estimation problem can be cast in a
variational form as

J�X� �
1
2

�X � Xb�TB�1�X � Xb�

�
1
2

�H�X� � y�TR�1�H�X� � y�

� Jb�X� � Jo�X�, �1�

where B is the background error covariance matrix,
X � [uT, vT, TT, (ln q)T, pT

s ]T stands for the state vector
(of dimension N), Xb is the background state, H is the
nonlinear observation operator, y is the data vector (of
dimension M), and R is the observation error covari-
ance matrix. Gauthier et al. (1999a) give a detailed de-
scription of the first implementation of 3DVAR at
MSC. In its incremental form (Courtier et al. 1994), the
variable 	X(k) � X � X(k) is introduced as a departure
from a reference state X(k) and the nonlinear operator
H is approximated as

H�X� � H�X�k�� � H��k��X�k�, �2�

where H
(k) � �H/�X is the Jacobian of the nonlinear
observation operator evaluated at X(k): this is referred
to as the tangent linear of H. Provided 	X is sufficiently
small, (1) can be approximated as

J�k���X�k�� �
1
2

�X�k� � Xb
�k��TB�1��X�k� � �Xb

(k)�

�
1
2

�H��k��X�k� � y��TR�1�H��k��X�k� � y��,

�3�
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where 	X(k)
b � X(k) � Xb is the departure of the refer-

ence state X(k) from the background state, while y
 �
y � H[X(k)] represents the observation departure from
the same reference state. In the incremental approach,
the full nonlinear problem can be solved by minimizing
(3) provided the reference state is updated regularly
(Laroche and Gauthier 1998). If H is linear, (3) is then
strictly equivalent to (1).

In 3DVAR, the resolution of the analysis increment
is dictated by the nature of the structure functions in-
troduced in the background error covariances, in which
case (3) can be solved at a lower resolution (Laroche et
al. 1999; Gauthier 2003). Introducing �x(k) � �L	X(k)

in (3) leads to

JL
�k���x�k�� �

1
2

��x�k� � �L�Xb
�k��TB�1��x�k� � �L�Xb

�k��

�
1
2

�H��k��x�k� � y��TR�1�H��k��x�k� � y��,

�4�

where �L is the interpolation from the high- to low-
resolution grid, ��I

L is its generalized inverse and it cor-
responds to the interpolation of the low-resolution in-
crement to a high-resolution grid.1 In this context, the
analysis will only correct the large-scale components of
the background state. Finally, if B � B1/2 B1/2T, we let

��k� � B�1�2�x�k�

�k � B�1�2�L�X�k� � Xb�

to get

JL
�k��� �k�� �

1
2

�� �k� � �k�T�� �k� � �k�

�
1
2

�H��k�G� �k� � y��TR�1�H��k�G� �k� � y��,

�5�

with G � B1/2. The whole minimization procedure then
consists of minimizing (5) by performing a certain num-
ber of inner iterations. The resulting low-resolution in-
crement is then added to the high-resolution reference
state through an outer iteration that updates the refer-
ence state to

X�k�1� � X�k� � �L
�IG�*

�k�. �6�

Given that �L��I
L � , it then follows that �k�1 �

�(k)

* � �k, identically, with �(k)

* being the convergence
point of the previous inner minimization. The role of
the outer iteration is to update the tangent-linear defi-
nition of the observation operator and to reevaluate the
observation departures y
.

As proposed in Courtier (1997), extending 3DVAR
to 4DVAR is best understood by including the model
integration as part of the observation operator. So,
if observations are available within the time interval
t0 � t � tK, the observation operator for any observa-
tion at time tj is H
(k)

j L(t0, tj), where L(t0, tj) is the propa-
gator of the tangent-linear model (TLM) obtained from

1 This operation can be viewed as a generalized inverse repre-
senting the interpolation of a low-resolution increment on the
high-resolution grid. If this is followed by �L, this should recover
exactly the low-resolution increment. This is true if this operation
is done in spectral space for instance.

FIG. 1. Schematic representation of the data flow within a single iteration of 4DVAR. Thin
and thick lines are associated with operators included within the 3DVAR and the GEM
model, respectively. Dashed lines indicate the adjoint of operators. Here �xk � �x(tk).
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a linearization around a trajectory of the nonlinear
model. Figure 1 gives a schematic of the operations
involved in a single inner iteration of 4DVAR, includ-
ing the adjoint of the operators required for the evalu-
ation of the gradient of the observation component of
the cost function. One immediately sees that it is pos-
sible to build a 4DVAR by using coupling mechanisms
through which the 3DVAR component can make re-
quests to the model to obtain a sequence of model
states at observation times in response to a perturba-
tion �x0 defined at the initial time. This is how the
4DVAR has been built at MSC. More details are given
in the next section. For the time being, it is important to
stress that, at each outer iteration, the linearization of
both the observation operators H
 and the TLM (and its
adjoint) are updated.

3. The modular character of assimilation
algorithms

From the discussion of the previous section, the al-
gorithm is made up of basic units that exchange differ-
ent types of objects. This idea is exploited in Lagarde et
al. (2001) to show that by building these basic units, it is
then feasible to obtain a wide range of assimilation al-
gorithms. Table 1 describes in general terms the nature
of the objects involved while Table 2 gives a short sum-
mary of the operators needed within a single inner it-
eration of the minimization. Referring to Fig. 1, the
extension from 3DVAR to 4DVAR can be achieved by

introducing a coupling between the 3DVAR module,
which includes all operations associated with the back-
ground error covariances and the observation opera-
tors: this module will be referred to as the background
and observations (BGOBS) from now on to avoid con-
fusion with 3DVAR. On the other hand, the model
module includes the tangent-linear and adjoint mod-
els.2 In the direct branch, the BGOBS module provides
the initial conditions to the model module that can then
perform its integration from time t0 to time tL. Prior to
this, during the initialization phase, the time and loca-
tion of each observation has been communicated to the
model so that it only has to output profiled model states
�pk at the observation locations, which are then sent
back to BGOBS. These profiles are obtained from a
cubic horizontal interpolation performed within the
model. At this point, BGOBS can initiate the same
treatment as in a 3DVAR analysis because the obser-
vation operators only require profiled model states as
input. It should be said that the tangent linear of the
observation operators is defined here with respect to a
profiled model state obtained from the nonlinear model
with its complete set of parameterizations. Similarly,
the adjoint of the observation operators yields profiled
model states that are sent back to the model. The ad-
joint of the horizontal interpolation is performed first at
the observation time to define the input needed for the
backward integration of the adjoint model. For one it-
eration, the cost of two model 6-h integrations (TLM
and adjoints) takes 61% of the time while the BGOBS
component takes only 30%. There are only two ex-
changes of data between the model and BGOBS and

2 This approach raises scheduling issues with the operating sys-
tem when the same computing resources are shared between two
simultaneously running units. For instance, once the BGOBS
module has sent information to the model module, it immediately
puts itself into I/O wait mode and its resources become available
to the model as the two modules never have to run simulta-
neously. This approach was tested first on the NEC SX-6 com-
puter and then on the IBM-p690. More details on this can be
found in Pellerin et al. (2005).

TABLE 1. Description of the different spaces involved in the
description of the assimilation problem.

Object Definition

� Canonical space
�X(tk) � �Xk Model-state perturbation in physical space at

time tk comprising the horizontal wind
components, u and �; temperature, T;
logarithm of specific humidity, ln q; and
surface pressure, ps.

�pk Profiles of model state at observation locations
and time tk

w Observation space variable

TABLE 2. Summary of the basic operators required to perform an inner iteration of the minimization.

Direct operators Adjoint (*) operators

Input Operator Output Input Operator Output

� G � B1/2 �X0 �X0* G* � B1/2T �*
�Xk L(tk, tk�L) tangent-linear integration

from time tk to tk�L

�Xk�L �X*k�L L*(tk, tk�L) backward adjoint model integration
from time tk�L to tk

�X*k

�Xk h: Horizontal interpolation �pk �pk* h*: Adjoint of the horizontal interpolation �X*k
�pk H (or H
): Observation operator

(or its tangent linear)
wk wk* H
*: Adjoint of the tangent linear of the

observation operator
�pk*
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this takes a negligible amount of time (7%). For a more
detailed discussion of our Multiple Program Multiple
Data (MPMD) implementation, the reader is referred
to Pellerin et al. (2005).

The profiled states offer the advantage of being grid
independent except for the vertical levels that depend
on the vertical coordinate used. However, the observa-
tion operators have all been coded such that they only
require the knowledge of the pressure values at each
level: no assumptions are made about these values. De-
tails are given in the appendix.

As the nonseparable homogeneous and horizontally
isotropic correlations are represented in spectral space
as a block-diagonal matrix (Gauthier et al. 1999b),
BGOBS uses a Gaussian grid in the global analysis,
which is convenient for spectral transforms. The exten-
sion to 4DVAR required that the increment be inter-
polated to the model’s own grid, which differs from the
Gaussian grid. Moreover, the model’s variables do not
correspond to the physical variables as defined in
3DVAR and an additional change of variables is
needed. For example, the model uses specific humidity
and not its logarithm: these changes are introduced in
the model altogether with their tangent-linear and ad-
joint versions.

The schematic of 4DVAR shown in Fig. 1 indicates
that if the TLM integration is replaced by the identity,
then 4DVAR is strictly equivalent to 3DVAR. This test
has been used to validate the coupling between the
model and BGOBS. In particular, it was possible to
determine the impact of a significant change in accu-
racy because the GEM model is hard coded in single
precision accuracy. From the discussion in section 2,
several data exchanges between BGOBS and the model
take place in the evaluation of the 4DVAR cost func-
tion. First, the BGOBS unit sends the analysis incre-
ment defined in physical space to GEM. Second, GEM
integrates over the assimilation period and interpolates
the vertical profiles of analysis increments at prescribed
observation times and locations. Finally, GEM sends
back those profiles to BGOBS to complete the evalu-
ation of the cost function. The adjoint of those opera-
tions are needed to compute the gradient. To validate
those operations, experiments were designed in which
all operations are activated except for the model inte-
gration. This way, the results of a 3DVAR should be
recovered, or at least make little difference. Two ele-
ments make this process not entirely transparent. The
first is linked to the conversion of variables. BGOBS
deals with temperature, logarithm of specific humidity,
surface pressure, and wind components whereas the as-
sociated control variables of GEM are virtual tempera-
ture, specific humidity, logarithm of a scaled surface

pressure, and image winds (i.e., wind components mul-
tiplied by the cosine of the latitude). The second dif-
ference is associated with the grids. As mentioned ear-
lier, BGOBS keeps the analysis increment on a Gaus-
sian grid due to the treatment of the background term
Jb with its associated spectral calculations whereas
GEM uses an Arakawa-C grid in the horizontal with a
uniform resolution (see Fig. 5 in Côté et al. 1998a).

The first change was to use a Gaussian grid in GEM
for the scalar fields, but the staggered winds need to be
obtained from a horizontal interpolation. Figure 2
shows the resulting cost function when cubic interpola-
tion is used to place the winds on the staggered grid and
when a spectral interpolation is used to go directly from
the spectral representation in terms of vorticity and di-
vergence to the winds on the staggered grid. In these
experiments, the full coverage of observations is used.
To emulate what is done in the 3DVAR, the profiled
model states at the observation locations are obtained
here with a linear interpolation by using the grid of the
requested variable.3 The results show that the passage
to the staggered grid with cubic interpolation causes the
minimization to saturate at a level higher than what
comes out from 3DVAR. Using the spectral interpola-
tion manages to validate the 4D-Identity against the
results of 3DVAR. Although close, small differences
still remain. Those come from the change of physical
variables described earlier and also from the lower nu-
merical accuracy used to represent model fields in the
GEM model.

3 The operational implementation and all experiments pre-
sented later in this paper use cubic interpolation to obtain the
profiled model states.

FIG. 2. Representation of the cost function in 4D-Identity ex-
periment compared to a 3DVAR [first guess (background field) at
the appropriate time (FGAT)] when spectral or cubic interpola-
tion to the Arakawa-C staggered grid is used.
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4. The tangent linear and adjoint of a gridpoint
semi-Lagrangian model

The model is the Canadian GEM model (Côté et al.
1998a,b), currently used in operations at the MSC. The
model operates on a 400 � 200 horizontal latitude–
longitude grid with 28 vertical levels up to 10 hPa in a
terrain-following coordinate. A more detailed descrip-
tion can be found in Côté et al. (1998b). It was recently
redesigned for a parallel distributed-memory imple-
mentation with explicit message passing (Qaddouri et
al. 1999; Desgagné et al. 2000). The linearization of the
model and its transposition were done by hand. Numer-
ics of the model and their impact on the tangent-linear
and adjoint counterparts were studied. Polavarapu et
al. (1996) and Tanguay et al. (1997) studied the linear-
ization of the process of interpolation in the semi-
Lagrangian advection scheme while Polavarapu and
Tanguay (1998) examined the linearization of the itera-
tive processes involved in the semi-Lagrangian scheme
and in the solver. Finally, Tanguay and Polavarapu
(1999) presented a complete analysis of the transposi-
tion of the semi-Lagrangian passive tracer equation.
The linearization of a simplified physics package con-
taining parameterizations of vertical diffusion (Laroche
et al. 2002a), subgrid-scale orographic drag, and strati-
form precipitation (Zadra et al. 2004) was developed
and validated.

The GEM model uses a semi-Lagrangian two-time-
level scheme that can become numerically unstable
(Pudykiewicz and Staniforth 1984; Smolarkiewicz and
Pudykiewicz 1992; Durran 1999). The first applications
of the TLM and its adjoint have been for a posteriori
sensitivity studies in which a correction to the initial
conditions is sought to correct the forecast error at a
24-h lead time (Laroche et al. 2002b). Those studies
managed to identify some deficiencies in the model in
the vicinity of the polar regions, particularly the Ant-
arctic, and near the surface. The problems in the polar
regions were associated with the increased horizontal
resolution resulting from the convergence of the merid-
ians in a gridpoint model. Combined with strong winds,
this can lead to situations where the two-time-level
semi-Lagrangian scheme becomes unstable by violating
the Lipschitz condition:

LS � ��t
�u

��
�� 2,

LS being the Lipschitz number. This condition is re-
quired to insure convergence of the iterative process
involved in locating the upstream position. Polavarapu
and Tanguay (1998) showed that this creates problems
in the TLM for the linearized version of this iterative

process. The problem impacts the convergence of the
4DVAR minimization itself, which failed to converge
in a situation where the Lipschitz criterion was not met.
This problem is more acute in the polar regions and, in
a shallow-water model, can be controlled by increasing
locally the horizontal diffusion, applied at the end of
the time step (Tanguay and Polavarapu 1999). This
manages to damp the spurious small scales emerging
due to the convergence of the meridians. However, in
the baroclinic case, this is not sufficient.

A reexamination of the two-time-level scheme
showed that it is necessary to apply horizontal diffusion
on the wind field before they are used to estimate the
upstream position. This has to be done twice in our
two-time-level scheme that employs a Crank–
Nicholson process to estimate the winds at the halftime
step (Côté et al. 1998a). Predictor values are obtained
for the dynamical variables and those are used to com-
pute the different terms associated with the contribu-
tions from the physical parameterizations. As in the
nonlinear model, horizontal diffusion could be applied
on those predictor dynamical variables before they are
used within the physical parameterizations. Figure 3
shows the impact of these changes on the resulting ad-
joint integration over a period of 6 h. The new scheme
leads to a significant reduction in the local value of the
Lipschitz number (not shown). Near the Poles, the re-
duction in grid length occurs only in the zonal direction.
The purpose of the added diffusion is to filter out those
spurious small scales and is therefore designed to act
mostly in the zonal direction in the polar regions. For
the diffusion acting on the wind field before the com-
putation of the upstream position, simplified horizontal
diffusion acting only in the zonal direction was consid-

FIG. 3. Impact of horizontal diffusion on adjoint model integra-
tions over 6 h. The curves represent an adjoint integration without
any diffusion (solid line), with the full 2D diffusion (dot–dashed
line), and the 1D diffusion scheme (dashed line) used in the
4DVAR. These results are shown on the closest latitude circle
surrounding the South Pole near the surface.
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ered. The results are shown in Fig. 3 and identified as
the 1D diffusion scheme. The results agree well with the
full 2D diffusion scheme. The results to be presented
later are all using the 1D diffusion. In fact, it was found
that the inclusion of this diffusion did not make it nec-
essary to have the usual 2D diffusion after the dynami-
cal time step and it was then omitted in all our experi-
ments.

5. Description of the 4DVAR configuration

To establish the final configuration of the 4DVAR
assimilation, a number of experiments were carried out
to determine the number of inner and outer loops in the
incremental scheme and to characterize the simplified
physics. The background error covariances used in the
variational analysis (Gauthier et al. 1999b) act as a filter
on the analysis increments. In 3DVAR, Laroche et al.
(1999) have shown that in the incremental scheme,
there is no gain in increasing the resolution of the varia-
tional analysis beyond what is necessary to represent
the covariances. Given that the 4DVAR is using the
same background error covariances as those of the
3DVAR analysis, the horizontal resolution of the
4DVAR has been kept the same as that of the 3DVAR,
namely, at a triangular spectral truncation of T108 or
170-km horizontal resolution. Although this resolution
is sufficient at the beginning of the assimilation win-
dow, small scales are developed during the 6-h tangent-
linear and adjoint model integrations but can be re-
solved at this resolution. Moreover, as can be seen in
Fig. 4, the energy spectra of the forecast error from 1 to
5 days indicates that 4DVAR is improving the large-
scale components of the forecasts.

The presence of observation error correlation in sat-
ellite data limits the density of observations that can be
assimilated. In Liu and Rabier (2003), if the observa-
tion error correlation is not taken into account in the
assimilation, it is then preferable to thin the data so that
the retained observations can be considered having un-
correlated observation error. At MSC, the satellite data
are thinned at a resolution of 200 km or more, which is
well resolved by the incremental model.

The trajectory used to define the tangent-linear and
adjoint models requires an integration of the nonlinear
model at full resolution and complete physical param-
eterizations. Trémolet (2004) presents a detailed study
of different approaches to define the reference trajec-
tory either by using an integration of the nonlinear
model at a reduced resolution as first proposed by Ra-
bier et al. (2000) or by interpolating the high-resolution
trajectory to the lower resolution of the simplified
model. In MSC’s implementation of 4DVAR, the

coarse resolution (170 km) and the high resolution (100
km) being rather close, for sake of simplicity, the tan-
gent and adjoint model are defined with respect to a
model trajectory generated by the nonlinear model
with full physics being run at the same low resolution.
Finally, the low-resolution increments need to be inter-
polated onto the high resolution of the operational
model. MSC’s GEM model being a gridpoint model, a
cubic Lagrange scheme is used to interpolate the analy-
sis increments from the low- to the high-resolution grid
of the operational model.

The simplified physics used within the inner loop in-
cludes simplified boundary layer dynamics (Laroche et
al. 2002a), orographic blocking and stratiform conden-
sation (Zadra et al. 2004), and convection (Mahfouf
2005). Two outer iterations were considered. The first
inner loop was mostly adiabatic while the other in-
cluded stratiform condensation, convection, and oro-
graphic blocking. The inclusion of stratiform condensa-
tion was motivated by the positive impact already noted
by Mahfouf (1999). Finally, the formulation of a sim-
plified deep convection proposed by Mahfouf (2005) is
also included in the simplified physics. In Laroche et al.
(2007), assimilation cycles over a period of one month
were carried out to assess the impact of the different
components introduced in the 4DVAR. These results
show that, in our 4DVAR, the impact of the simplified
physics improves the quality of the forecasts of 4DVAR
by 7%. This will be further discussed in Laroche et al.
(2007).

FIG. 4. Time evolution of the energy spectra of the forecast
error of 3DVAR (dashed line) and 4DVAR (solid line) at 24, 72,
and 120 h. Forecast error is measured here as the difference be-
tween the forecast and the verifying analysis. Each system is
evaluated against its own analysis.
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The total cost of 4DVAR is directly related to the
number of iterations used to do the minimization. The
minimization uses the quasi-Newton algorithm of Gil-
bert and LeMaréchal (1989). Experimentation was car-
ried out with two outer iterations. The simplified phys-
ics is not adding a significant computer time (per itera-
tion) and the total time is then proportional to the
number of iterations. Figure 5 shows the results with 40
and 30 iterations in the two inner loops, the second
including the full simplified physics. These results are
compared with an experiment with 50 and 20 iterations
in the inner loops. The final value of the cost function
is evaluated after the final outer iteration where obser-
vations are compared against the high-resolution final
analysis. Those final values are indicated in Fig. 5 by a
black square (50–20 iterations) and a black circle (40–
30 iterations). Both give nearly identical results. The
figure also shows that complete convergence has not
been reached in both cases. As the 3D/4DVAR cost
function can be related to the a posteriori probability
distribution, a reduction of the cost function implies
that a more probable state has been found. So even if
3D/4DVAR has not converged, the resulting state is an
improvement with respect to the background state. The
norm of the gradient of the cost function in this par-
ticular case has been reduced by a factor of 10.

In an operational implementation, one is faced with
the time constraint of having the analysis and forecast
produced soon enough for the dissemination of prod-
ucts to the users. To achieve this objective, it has been
necessary to configure the 4DVAR to meet this re-
quirement without reducing the cutoff time for the re-
ception of observations, keeping then the same number
of observations. Therefore, after the first outer itera-
tion, observations received during the 40 min or so that
lasted the first minimization are added. This particu-
larly benefits the TOVS data, at the end of the assimi-
lation window. For the second minimization, the pro-
cessing of all data is redone including the background
check quality control and data thinning. The result
from the first minimization provides a better initial
point for the minimization and an estimate of the Hes-
sian matrix obtained by the quasi-Newton minimizer. It
is important to stress here that observations used in the
first minimization may not be retained in the second
pass but this makes the assimilation perfectly consis-
tent. Finally, a larger number of iterations in the second
loop is beneficial when observations are added at this
stage. This is why the configuration with 40 and 30
iterations was retained instead of the one with 50 and
20 iterations.

Even though the 4DVAR takes approximately 1 h 20
min of wall clock time to run, the important element for

the early cutoff run is the time it takes to do the second
inner loop. In our case, it takes approximately 30 min
and the analysis valid at time T can then be done at
T � 3 h 10 min, and is available at T � 4 h. If the cutoff
time was set with respect to the start of the 4DVAR
analysis, the cutoff would then be set at 2 h 30 min.
Figure 6 compares the volume of data that could be
assimilated with a cutoff time of 2 h 30 min compared to
the 3 h 10 min time used in the 4DVAR implementa-
tion. This shows that it would not be acceptable to fix
the cutoff time at the time when the first inner loop is
started. However, as this time constraint does not apply
to the final analysis, it benefits from a very long cutoff
time and it is this analysis that is used to produce the
background state for the next analysis. This is an im-
portant point to remember because, when cycling
4DVAR, a significant part of the gain comes from the
improvement in the background field that contains all
the a priori information gained from past observations.

The tangent-linear and adjoint model integrations
explain most of the total computing cost of 4DVAR.
However, the wall clock time associated with this com-
ponent can be reduced by the parallel implementation
of the model by adding more CPUs. To achieve the goal
of having completed the second inner loop in less than
20 min, the tangent-linear and adjoint model integra-
tions were done using a total number of 40 CPUs of the
IBM-p690 computer, which has a total number of 860
CPUs.

In 4DVAR, observations can be assimilated at the
appropriate time over the whole assimilation window,
here taken as 6 h, and the thinning algorithm has been

FIG. 5. Convergence of the minimization with different configu-
rations for the inner loops with two outer iterations. The total
number of iterations is 70 in both cases with 40 and 30 iterations
in the first and second loop (solid line), respectively, and 50 and 20
iterations (dashed line). The black square and circle on the ver-
tical axis at 70 iterations indicate the final values of both configu-
rations after the final update in which the observations are com-
pared to the final high-resolution analysis.
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altered as in the 4D screening scheme of Rabier et al.
(2000). This has led to a significant increase in the vol-
ume of data ingested by the assimilation. Table 3 shows
that this benefits the use of wind data from aircrafts and
profilers in particular. In 3DVAR, it has been observed
that wind data only within �1 h 30 min from the analy-
sis time can be kept: extending the window beyond
leads to a degradation of the results. As expected sat-
ellite data, and particularly the atmospheric motion
vectors (AMV), experienced a significant increase of
admissible data. Otherwise, the observation operators
of 4DVAR are the same as those of 3DVAR that act on
profiled model states.

The experimentation and fine-tuning of all elements
presented here have required quite an extensive level
of experimentation because of the intimate relationship
that now exists between the model and the whole as-
similation process. More details on the analysis of the
results obtained will be presented in a subsequent pa-
per by Laroche et al. (2007). In the next section, the
results obtained with the preoperational experimenta-
tion are presented. Those were obtained with the con-
figuration of 4DVAR presented in this section.

To summarize, our implementation of the incremen-
tal 4DVAR comprises two outer iterations and the two

inner loops comprise 40 iterations for the first one and
the simplified physics only consider surface drag and
vertical diffusion. After completion of the outer itera-
tion, the second inner loop performs 30 more iterations
with the stratiform condensation, convection, and oro-
graphic blocking added to the simplified physics. The
simplified model operates at a resolution of 170 km
(120 � 240 latitude–longitude Gaussian grid). The se-
lection of observations is using the 4D screening ap-
proach of Rabier et al. (2000). However, given the
higher computing cost of 4DVAR, it has been neces-
sary to start the first inner loop before the cutoff time.
Observations collected during the time taken to com-
plete the first inner loop were added to the assimilation
in the first outer iteration and the second inner loop.
The background error statistics are the same as those
used in 3DVAR (Gauthier et al. 1999b).

6. Impact of 4DVAR as implemented in March
2005: Results from complete two-month
assimilation cycles

As is customary at MSC, extensive assimilation
cycles were run and the resulting forecasts were evalu-
ated for the boreal winter period (11 December 2003–
11 February 2004) and the boreal summer period (15
July–15 September 2004). A summary of the results are
now presented to show the impact of 4DVAR with
respect to the previously operational 3DVAR analysis.

Figure 7 shows the verification of the analysis against
radiosonde data during the summer period for the op-
erational 3DVAR and 4DVAR. It shows that the
4DVAR analysis deviates more from the radiosonde
data for all variables. However, in Fig. 8, the innovation
error statistics show that 4DVAR is now in better
agreement with the observations. This is a result that
has often been obtained in 3DVAR when new data are
introduced in the system. An analysis with a broader
range of data often degrades the fit to a particular type
of data. Another element is that with the radiosondes
being available at synoptic time, the 3DVAR analysis

FIG. 6. Percentage of observations available as a function of
cutoff time for the different observation types. The early cutoff
(G1) occurs at T � 3 h 10 min while the reference analyses (G2)
occur at T � 6 h at 0600 and 1800 UTC and T � 9 h at 0000 and
1200 UTC. At MSC, the forecasts are produced twice daily at 0000
and 1200 UTC.

TABLE 3. Volumes of data assimilated in 4DVAR with respect
to 3DVAR. The volume of added data is expressed relative to the
number of data assimilated in 3DVAR.

Type 4DVAR 3DVAR
Volume of
added data

Aircrafts 75 707 26 147 �190%
Radiosonde 66 605 66 603 �0%
SATWIND 82 160 41 604 �97%
ATOVS 71 517 46 832 �53%
GOES 3612 1979 �83%
Profilers 13 040 2196 �494%
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can more easily fit radiosonde data than the 4DVAR
analysis, which needs to correct the initial conditions to
fit data valid 3 h later. A 4DVAR analysis is then in fact
the result of a 3-h forecast and this can contribute to the
degradation of the fit to observations. However, the
observation departure from the first guess is the true
criterion as the impact of the analysis is evaluated
against observations that have not been used by the
analysis. Here the results show a positive impact with
4DVAR, particularly for winds.

The impact on the forecast at longer range has been
independently evaluated for both the summer and win-
ter periods. Verification against radiosonde data
showed that the forecasts based on 4DVAR were im-
proved over North America. The improvement was
noted particularly over the west coast of North
America at short ranges. This is illustrated by Fig. 9

showing the verification over this region and the whole
Northern Hemisphere for the winter period. The im-
provement was noted over all regions and for nearly all
objective criteria like rmse with respect to radiosonde
or the verifying analysis. The verification against analy-
ses over the Northern and Southern Hemisphere (Fig.
10) shows an overall improvement for both hemi-
spheres but is more pronounced in the Southern Hemi-
sphere where the analysis relies more on satellite data.
This reflects the ability of 4DVAR to make better use
of asynoptic data. This is also true in the Northern
Hemisphere where 4DVAR is also making better use
not only of satellite data but also of other asynoptic
data from profilers and aircrafts. The interpretation of
these results need to take into account the volume of
data that has been significantly increased in 4DVAR.
However, earlier experiments performed with exactly

FIG. 7. Verification over the whole globe of the 3DVAR (thin line) and 4DVAR (solid
line) analyses against radiosonde data for the summer period.
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the same data (those used in the operational 3DVAR)
have shown a positive impact. These results will be dis-
cussed in more details in Laroche et al. (2007).

In the regional forecast suite, the global analyses are
used to initiate a short 3DVAR assimilation cycle with
the higher-resolution regional model to establish dy-
namical balances proper to this model (Laroche et al.
1999). The GEM regional model configuration has a
variable resolution with a 15-km horizontal resolution
over North America. Significant differences also exist
in the physical parameterizations: a full description can
be found in Bélair et al. (2005). As shown by Gauthier
and Thépaut (2001), a 4DVAR analysis is in better
balance than what can be obtained from a sequential
3DVAR analysis. In particular, they showed that the
4DVAR analyses did not lead to a significant spinup in
the precipitations in the early stages of the integrations.
To assess if the 4DVAR analyses were palatable to the
regional model, experiments were conducted in which

the regional forecasts were initiated directly from the
global 4DVAR analyses. Figure 11 compares the veri-
fications of those forecasts against those from the op-
erational system using its own 3DVAR analyses. As
can be seen here, the 4DVAR analyses interpolated to
the regional grid lead to better forecasts than those
from the regional 3DVAR analyses: improvements in
the synoptic scales of the 4DVAR analyses explain to a
great extent the improvements noted in the regional
forecasts. This also indicates that the 4DVAR global
analyses have a dynamical balance that is more consis-
tent with the dynamics of the regional model. However,
this was not implemented as, in practice, the global
analysis is only available after the regional forecast has
been launched.

The 4DVAR assimilation was successfully imple-
mented on 15 March 2005 in the operational suite of the
Meteorological Service of Canada. Since then the sys-
tem has been working without any problem and the

FIG. 8. Same as in Fig. 7, but for the 6-h forecast background error statistics. Verification
of the geopotential is also shown here.
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improvements noted in the preoperational experimen-
tation were confirmed. The subjective evaluation of the
operational forecasters was positive on all elements
that are regularly examined. Their evaluation paid
more attention to the forecasts over North America
and Canada.

7. Conclusions

This paper gives a description of the 4DVAR data
assimilation system as implemented at the Meteorologi-
cal Service of Canada. The modularity of the architec-
ture has permitted continuous development of both the
observations and background term aspects in 3DVAR
on the one hand and of the global model on the other
hand. This has made it easier to manage the develop-
ment work done by several people. In the end, the sys-
tem succeeded to meet all the operational time con-
straints while at the same time improving the quality of
MSC’s analysis and forecast products. The treatment of
observations (i.e., observation operators) and error sta-
tistics in 4DVAR were kept identical to the previous
3DVAR assimilation system except for the 4D thinning
of data that has led to a significant increase in the vol-
ume of assimilated data. As suggested by Gauthier and
Thépaut (2001), 4DVAR analyses do not lead to inter-
nal dynamical imbalances that can be detrimental to the

forecasts. In MSC’s implementation, there is no penalty
term to control the emergence of gravity waves. It
should be said, however, that the forecasts are never-
theless using the digital filter finalization technique of
Fillion et al. (1995).

The development and implementation of 4DVAR at
the Meteorological Service of Canada is the result of
many years of effort that began in 1994. At that time, a
new gridpoint model was being developed (Côté et al.
1998a) taking into account the specific needs of data
assimilation by including the necessary effort to have its
tangent-linear and adjoint models (Tanguay and Pola-
varapu 1999). At the same time, the development of the
3DVAR was initiated and implemented in 1997 in the
global (Gauthier et al. 1999a) and regional (Laroche et
al. 1999) operational suites. The direct assimilation of
satellite radiances constituted the third line of work
that was started at about the same time. Satellite radi-
ances have been used in the 3DVAR since September
2000. In this paper, the supplementary work required to
obtain a 4DVAR by coupling the BGOBS unit to the
TLM/adjoint models has been described. This approach
has made it possible to pursue the independent devel-
opment of the 3DVAR and the model components.
When the experimentation with 4DVAR began, it then
benefited from all observations available to the
3DVAR and of the numerous changes brought to the

FIG. 9. Verification of 24-h forecasts issued from the operational 3DVAR (thin line) and the 4DVAR (solid line) analyses over (a)
the western part of North America and (b) the whole Northern Hemisphere. The results are shown here for the winter period.
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model itself. This included computing, numerical, and
physical changes required to improve the operational
forecasts and maintain computational efficiency. This
also included modifications due to a significant change
in the computing architecture when MSC changed its
NEC SX-6 computer for an IBM-p690.

All in all, the implementation of 4DVAR, although
arduous, was successful and is now providing the
proper framework to add more satellite data to the
assimilation system. This includes for instance the
SSM/I (Deblonde 1999), the Atmospheric Infrared
Sounder (AIRS; Garand et al. 2005) radiances, and
GPS radio occultations (Aparicio and Deblonde 2007).
These observations should be added to the operational
system in the near future. However, the limited com-
puter resources have required that work be concen-
trated on upgrading the global model by increasing its
resolution from the current 100 to 35 km. This version
will also include a complete revision of the physical
parameterizations (Bélair et al. 2005). It is anticipated
that this version should become operational in 2006.

The modular nature of our system is also being
adapted to obtain a 4DVAR for the limited-area ver-
sion of the GEM model. Preliminary experimentation
is also exploring the inclusion of stratospheric chemis-
try in a fully coupled atmosphere–chemistry system to

study the two-way interactions between dynamics and
atmospheric chemistry (Ménard 2005).
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APPENDIX

Vertical Interpolation for Observation Operators

The fact that the observation operators characterize
the vertical levels only in terms of pressure meant that
it sufficed to modify the computation of these pressures
given as input to the observation operators. To make
this idea more precise, consider a single observation of

temperature defined at p � pobs. The vertical coordi-
nate � of the model being defined as

�k�p� �
�p � pT�

�ps � pT�
,

so that pk � pobs � pk�1 with pk � pT � �k (ps � pT)
with pT � 10 hPa being the prescribed pressure at the
model’s lid (Côté et al. 1998a). Linear interpolation is
performed in terms of ln p and the observation opera-
tor is then

H�Tk, Tk�1, ps� � 	k�ps�Tk � �1 � 	k�ps��Tk�1,

where

	k�ps� �
lnpobs � lnpk

lnpk�1 � lnpk
.

FIG. 11. Verification of regional 48-h forecasts against radiosondes obtained from the re-
gional operational system using its own 3DVAR analysis (thin line) and regional forecasts
initiated directly from the 4DVAR global analyses (thick line). The results shown are based
on 24 winter cases from the winter period extending from 11 Dec 2003 to 11 Feb 2004.
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The dependence on ps makes H nonlinear and its tan-
gent linear then reads as


H

X

�Tk, Tk�1, ps� � �	k �1 � 	k� �Tk�1 � Tk�

	k


ps
�,

where


	k


ps
� �

1
lnpk�1 � lnpk

��1 � 	k�
�k

pk
� 	k

�k�1

pk�1
�.

This implies that changes in ps need to be taken into
account when the vertical coordinate depends on sur-
face pressure and the impact depends on the lapse rate
of the reference state. This simple example shows that
the observation operator can be defined provided the
pressure values associated with each model level is
given at each observation location. This makes it very
easy to change the vertical coordinate in the 3DVAR.
This has been found to be useful for the introduction of
a new hybrid coordinate in the GEM model or to adapt
it for the midatmospheric assimilation system of Pola-
varapu et al. (2005).
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