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ABSTRACT

The degrees of freedom for signal (DFS) is used in data assimilation applications to measure the self-

sensitivity of analysis to different observation types. This paper describes a practical method to estimate the

DFS of observations from a posteriori statistics. The method does not require the consistency of the error

statistics in the analysis system and it is shown that the observational impact on analyses can be estimated

from observation departures with respect to analysis or the forecast. This method is first introduced to in-

vestigate the impact of a complete set, or subsets, of observations on the analysis for idealized one-

dimensional variational data assimilation (1D-Var) analysis experiments and then applied in the framework

of the three dimensional (3D)- and four-dimensional (4D)-Var schemes developed at Environment Canada.

1. Introduction

Recently, new methods have been developed to quan-

tify the impact of the observations on the assimilation

and on the ensuing forecast. For the analysis, this can be

achieved by evaluating the information content expressed

in terms of degrees of freedom for signal (DFS; Purser and

Huang 1993; Rodgers 2000; Rabier et al. 2002). For any

data assimilation system, this diagnostic quantifies infor-

mation brought by any given type of observations and is

useful to assess the relative impact of the different types

of observations being assimilated. With the increasing

number of datasets used by modern data assimilation

systems, such as the hyperspectral infrared sounders,

Atmospheric Infrared Sounder (AIRS) and Infrared At-

mospheric Sounding Interferometer (IASI), it is important

to know the information content associated with the

radiance measurements which permits us to reduce the

volume of data associated with these new instruments.

An example of how this diagnostic was applied for the

channel selection procedure is presented in Rabier

et al. (2002) in the context of IASI-simulated data by

evaluating the impact of the different channels on the

analysis.

Proposed by Cardinali et al. (2004), the influence matrix

gives a measure of how much any given observation im-

pacted the analysis. They used this approach to estimate

the information content supplied by different types of

observational data to analyses produced by the European

Centre for Medium-Range Weather Forecasts (ECMWF)

four-dimensional variational data assimilation (4D-Var)

system. The sensitivity of the analysis to observations then

showed that about 25% of the information was provided

by ground-based observing systems and 75% by satellite

systems. This approach also allows the partial influence of

observational subsets to be examined based on geograph-

ical area and observation type. Another method was ap-

plied with the Action de Recherche Petite Echelle Grande

Echelle (ARPEGE) 4D-Var system of Météo-France

(Chapnik et al. 2006). It is based on a method proposed in

Girard (1987) in which perturbations to both the back-

ground and the observations are introduced to measure

the sensitivity of the resulting analysis given the uncer-

tainty in both the observations and the background. In any

data assimilation system, the impact on the analysis
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depends critically on the observation and background

error statistics used in the assimilation.

In numerical weather prediction, one is interested in

knowing the impact of the observation on the forecast

made from the analysis. Traditionally, the observation im-

pact on forecasts has been obtained from Observing Sys-

tem Experiments (OSEs) in which selected datasets are

systematically added or removed from the assimilation

system (e.g., Kelly et al. 2007). Using the OSEs, the impact

of various observation network configurations can be as-

sessed by comparing forecast scores from experiments that

use different observation scenarios. This approach is ex-

pensive and only provides a global view of the impact of

observations. Recently, adjoint-based sensitivities with re-

spect to observations have also been proposed to assess the

observation impact on short-range forecasts without car-

rying out data-denial experiments (Baker and Daley 2000;

Langland and Baker 2004; Zhu and Gelaro 2008; Cardinali

2009). Zhu and Gelaro (2008) showed that the adjoint-

based method provides accurate assessments of the fore-

cast sensitivity with respect to most of the observations

assimilated. Gelaro and Zhu (2009) and Cardinali (2009)

have recently applied adjoint-based impact calculations to

results from OSEs to show that the two methods provide

complementary information.

The objective of this paper is to propose a simple ap-

proach that permits to easily evaluate the information

content associated with observations used in any data as-

similation system directly from observation departures

from the analysis and forecast, a natural by-product of the

assimilation process. The emphasis is then on the impact

of observations on the analysis only, not the forecasts.

Following Desroziers et al. (2005), observation departures

from analyses and forecasts can be used to make diagnos-

tics about the consistency of the observation and back-

ground error statistics used in the assimilation. If these

error statistics are suboptimal, they showed that this in-

formation can be used to recalibrate the error statistics to

meet the x2 optimality criteria. The methods are presented

in Desroziers and Ivanov (2001) and Chapnik et al. (2006).

What they show is that observation departures with re-

spect to the background and the analysis are directly re-

lated to the observation, background, and analysis error

covariances. Based on this, they showed that any in-

consistency between those diagnostics and the a priori

error statistics used in the assimilation can be used to re-

calibrate the observation and background error statistics.

As pointed out in Chapnik et al. (2006), these relationships

show that they can provide an estimate of the information

content, provided the error statistics are consistent. What

we show in this paper is that these relationships provide

a reliable estimate of the information content as evaluated

with the perturbation method of Girard (1987).

An analytic derivation is presented to show how the

DFS can be evaluated from the a posteriori statistics.

Section 2 describes the methodology for computing the

information content brought by the observations. Based

on the results of Desroziers et al. (2005), it is shown that

the information content brought in by the data assimila-

tion system can be estimated from observation departures

from the analysis and forecast, even when the expected

statistics of innovation vector differ from those specified in

the assimilation system. A unique aspect of the method

proposed here is that it does not require the consistency

of the error statistics in the analysis system. In section 3,

results obtained with the simplified one-dimensional

(1D)-Var scheme are presented and discussed. In sec-

tion 4, this is applied to results from three-dimensional

(3D)- and 4D-Var to show how the impact of observa-

tions depends on the assimilation method. Those results

were obtained from analyses produced with the 3D- and

4D-Var systems of Environment Canada (Gauthier et al.

1999, 2007). Finally, the summary and conclusions are

given in section 5.

2. Estimation of information content brought
by the observations

Consider a data assimilation scheme that provides an

optimal analysis xa:

x
a

5 x
b

1 K(y�Hx
b
), (1)

where xb is the background state, y is a vector of obser-

vational data, and H is the nonlinear observation opera-

tor, while

K 5BHT(R 1HBHT)�1 (2)

is the optimal Kalman gain matrix expressed in terms of

the background error covariance matrix B, the observa-

tion error covariance matrix R, and H the tangent linear

model of H, linearized in the vicinity of xb.

The DFS is used in data assimilation applications to

measure the self-sensitivity of analysis to different ob-

servation types (Rodgers 2000). The DFS is the image in

observation space of the trace of the derivative of the

analysis with respect to observations:

DFS 5 tr
›(Hx

a
)

›y

� �
, (3)

where trf�g denotes trace of f�g. In the linear case, (1)

and (3) imply that

MARCH 2011 L U P U E T A L . 727



DFS 5 tr
›(Hx

a
)

›y

� �
5 tr(KTHT) 5 tr(HK). (4)

Because of the size of the matrices involved, the evalua-

tion of the DFS using (4) is not straightforward. Moreover,

because the Kalman gain matrix is not readily available in

a variational scheme, Cardinali et al. (2004) compute an

estimate of tr(HK) using the leading singular vectors of the

Hessian of the cost function provided by the Lanczos’s

conjugate gradient algorithm while Fisher (2003) applied

numerical methods for directly calculating the trace of

large sparse matrix. Another approach is based on a ran-

domization technique proposed by Chapnik et al. (2006).

In their study, the trace of HK is evaluated from simple

consistency diagnostics introduced by Desroziers et al.

(2005).

Desroziers et al. (2005) developed a set of diagnostics in

observation space based on combinations of differences

between observation and background [db
o 5 y 2 H(xb)],

observation and analysis [da
o 5 y 2 H(xa)], and back-

ground and analysis [db
a 5 H(xa) 2 H(xb) [ db

o 2 da
o], the

last being the image of the analysis increment in obser-

vation space. From these quantities, it is possible to di-

agnose a posteriori observation, background, and analysis

error statistics in observation space. The mean diagnostics

are the following:

E[do
a(do

b)T] 5 ~R 5 RD�1 ~D, (5a)

E[da
b(do

b)T] 5 ~HBHT 5 HBHTD�1 ~D, (5b)

E[da
b(do

a)T] 5 ~HAHT 5 HK~DD�1R, and (5c)

E[do
b(do

b)T] 5 ~D 5 ~HBHT 1 ~R, (5d)

where E[�] is the statistical expectation operator, D 5

HBHT 1 R is the a priori innovation covariance, ~D 5
~HBHT 1 ~R is the estimated covariance from innovations,

and A is the analysis error covariance. The diagnosed

observation and background error covariance in observa-

tion space are ~R 5 E[do
a(do

b)T] and ~HBHT 5 E[da
b(do

b)T],

respectively.

It is important to stress that db
a and da

o are related to

the innovation vector by

da
b 5 H(x

a
)�H(x

b
) ffi Hdx

a
5 HKdo

b, (6a)

do
a 5 y�H(x

b
1 dx

a
) ffi (I� HK)do

b 5 RD�1do
b. (6b)

An expression for the DFS can also be derived from

these two expressions. The statistical expectation of the

outer product of d̂a
b 5 R�1/2da

b with d̂o
a 5 R�1/2do

a is

E[d̂o
a(d̂a

b)T] 5 E[R�1/2do
a(da

b)T R�T/2]

5 E[R�1/2RD�1do
b(do

b)TKTHTR�T/2]

5 E[RT/2D�1 ~DKTHTR�T/2], (7)

and therefore,

trfE[d̂o
a(d̂a

b)T]g5 trfE[RT/2D�1 ~DKTHTR�T/2]g. (8)

By using the property that the statistical expectation and

the trace operator commute, that is, trfE[�]g5 Eftr[�]g and

tr(abT) 5 bTa for any two vectors a and b, (8) reduces to

trfE[d̂o
a(d̂a

b)T]g5 E[tr(d̂o
a d̂

aT

b )] 5 E[da
b

TR�1do
a]

5 Eftr[D�1 ~DKTHT]g. (9)

a. Case with consistent error statistics

When the sample covariance matches the prescribed

innovation covariance (~D 5 D), (9) provides an estima-

tion of the information content relative to an analysis

scheme (3D-/4D-Var). The globally estimated trace of HK

for all observation types is the total DFS then given by

DFSGlobe 5 tr(HK) 5 E[da
b
TR�1do

a]. (10)

Equation (10) gives a simple and efficient way to estimate

the DFS for an optimal assimilation scheme because only

by-products of the data assimilation scheme are necessary.

For many observation types, the observation error

covariance matrix R can be reasonably assumed to be

diagonal, and that the observation error variance is not

correlated. There are of course limitations to this assump-

tion but it remains reasonable to a certain extent. Reliable

estimates of the information content can be obtained for

any subset of data with uncorrelated observation error

variance with respect to the other subsets. In that case, the

partial DFS of the kth subset (yk 5 Pk
oy) extracted from the

full observation vector by means of the projection operator

Pk
o, is given by

DFSGlobe
k 5 tr(Po

kHKPo
k

T) 5 E[(da
b)T

k R�1
k (do

a)
k
]. (11)

b. Case with inconsistent error statistics

These results hold insofar as the innovation error sta-

tistics ~D are consistent with those specified in the assimi-

lation, namely, that ~D 5 E[do
bdo

b
T] 5 D 5 R 1 HBHT,

so the a priori D and a posteriori ~D terms in (9) cancel each

other out. However, as pointed out by Desroziers et al.

(2005), if they differ, the diagnosed covariance matrices in

(5a) and (5b) may be seen as some adjusted covariance
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estimates. The a posteriori Kalman gain matrix is now

defined as

~K 5 ~BHT(~R 1 ~HBHT)�1
5 ~BHT ~D�1. (12)

Therefore, the estimate of tr(~HK) from the a posteriori

statistics is

D~FS 5 tr(~HK) 5 tr[ ~HBHT ~D�1] 5 tr[HBHTD�1]

5 tr(HK) 5 DFS, (13)

where ~D�1 denotes the pseudoinverse of ~D. A general-

ization of the usual inverse matrix (Golub and van Loan

1996) must be used here because ~D may be singular. It

follows that the information content can be determined

either from the a posteriori statistics or from the a priori

statistics.

A more interesting form can be obtained by intro-

ducing (5b) in (13). Using the properties that the trace

and expectation operators commute and that XE[(�)] 5

E[X(�)] for any nonrandom matrix X, then leads to the

following result:

~DFS 5 tr[ ~HBHT ~D�1] 5 tr[Efda
bdo

b
Tg~D�1]

5 Eftr[da
bdoT

b
~D�1]g5 EfdoT

b
~D�1da

bg: (14)

In other words, the DFS associated with any assimilation

system can be directly obtained from ~D 5 E[do
b(do

b)T]

and (14).

The equivalence established here states that the DFS

evaluated using diagnostics of E[da
b(do

b)T] 5 ~HBHT and

E[do
b(do

b)T] 5 ~D yields the same results as if a perturba-

tion method was used to evaluate the DFS associated

with the a priori error statistics. This is the method

proposed by Chapnik et al. (2006). Inspection of (5a)

and (5b) indicates that ~R 5 RD�1 ~D and ~HBHT 5

HBHTD�1 ~D differs from their a priori definition by the

same factor, D�1 ~D. When using those a posteriori defi-

nitions, those factors cancel out to retrieve the same

DFS as would be obtained using the a priori error sta-

tistics.

A difficulty remains however, since (14) requires that
~D be inverted, which is not immediate as it embeds both

the observation error and the background error. The

latter cannot be assumed to be uncorrelated, which makes
~D nondiagonal. However, an alternative approach can

be taken to simplify the computation. The analysis

sensitivity matrix, introduced in Cardinali et al. (2004),

being S 5 KTHT, can also can be defined with respect to

the a posteriori statistics. Using (5a) and (5c), it is easily

shown that

~R�1( ~HAHT)T
5 ~R�1(HK~DD�1R)T

5 KTHT 5 S,

and consequently,

D~FS 5 tr(~KTHT) 5 tr[~R�1( ~HAHT)T] 5 tr(KTHT) 5 DFS.

(15)

Substituting (5c) into (15), the a posteriori D~FS can be

rewritten as

D~FS 5 tr(~KTHT) 5 trf~R�1E[da
bdo

a
T]Tg

5 trfE[~R�1do
ada

b
T]g5 Eftr[~R�1do

ada
b

T]g

5 Efda
b

T ~R�1do
ag. (16)

This has the same form as (10), but that the estimated

observation error covariance matrix ~R is to be used. This

matrix is possibly nondiagonal full matrix and, in gen-

eral, may not be symmetric and contain cross correla-

tions due to the presence of background error in its

estimate, as indicated by (5a). To calculate the gener-

alized inverse, ~R�1, a singular value decomposition

(SVD) of the matrix ~R can be used by decomposing
~R 5 ULVT, where U and V denotes the matrices formed

by the left (U) and right (V) singular vectors while L is

a diagonal matrix defined by the singular values. In that

case, ~R�1 5 VL�1UT and the DFS in (16) can be eval-

uated at the cost of a few dot products. This would also

be the approach to take to evaluate ~D�1 to compute the

DFS using (14).

For many observation types like radiosondes and

ground-based instruments, the observation error is un-

correlated between distinct observations. We then in-

troduce the assumption that ~R can be approximated

as a block-diagonal matrix, each being of the form
~R

k
ffi ~s2

o(k)I
k
, where ~s2

o(k) is the diagnosed observation

error variance associated with the kth observation type.

This is justified when the observation error is expected

to be uncorrelated for observations coming from in-

dependent instruments. This is the case for several ob-

servation types such as radiosondes and ground-based

instruments but may not be valid for measurements

from satellite instruments. As stated in Talagrand (1999),

the approach for computing the a posteriori covariances

cannot provide any new information about R and B

without imposing an external hypothesis to disentangle

the observation and background error embedded within

the innovation error statistics. An important fact is that

only the observation error variances are extracted from

the diagnosed statistics ~R by assuming that the observa-

tion error is uncorrelated. This is where the evaluation of

the DFS using (16) shows a clear advantage over (14): the
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matrix to be inverted can be assumed to be diagonal.

However, this remains to be verified.

In the next section a simple system 1D-Var is used to

investigate the extent to which this assumption is a rea-

sonable one in an idealized context in which ensemble of

analyses can be generated.

3. Application to 1D-Var system

Using the methodology presented in the previous sec-

tion we discuss the estimation of the DFS with a simpli-

fied 1D-Var scheme. The 1D domain contains N 5 256

points uniformly distributed over a circle of latitude (ap-

proximately at 418 latitude) with perimeter of 30 000 km.

The true background error covariance matrix Bt in phys-

ical space assumes isotropic error correlations is de-

fined as

B
t
(i, j) 5 s

(i)
b(t)s

( j)
b(t) exp(�r2

ij/2L2
t ), (17)

where sb
(i) and sb

( j) are the true background standard

deviation of component i and j of Bt, respectively

[s2
b(t) 5 1]; rij is the Euclidean distance between points i

and j; and Lt is the true horizontal length scale taken to

be 300 km. In our experiments, we consider three dif-

ferent values of the background correlation length (300,

500, and 1000 km) in the a priori background error

statistics. The observing system is fixed to be 60 obser-

vations at every other three-grid point. The observations

are simulated by adding Gaussian random noise to the

truth and the innovation vector y9 is defined as y9 5 y 2

H(xb)ffi eo 2 Heb, where eb and eo represent the errors in

the background state and the observations, respectively.

Every observation is taken directly as a value at a grid

point and all the observations have the same error var-

iance. Therefore, Rt is defined as Rt 5 s2
o(t)I, with I, the

identity matrix, and s2
o(t) 5 4, the true observation error

variance. In this context, it is possible to repeat the

analysis for a number of realizations based on the true

observation and background error, which may differ

from the a priori statistics used in the assimilation. Based

on the true error statistics, an ensemble of 2000 analyses

was produced to estimate the a posteriori error statistics.

a. Estimation of the off-diagonal terms in the
observation error covariance

The first experiment is to examine whether the a pos-

teriori estimate of observation error covariance can be

assumed to be diagonal and their importance for the

definition of ~R is discussed in this section.

The nondiagonal elements of ~R were estimated using

(5a) assuming the observation error variance to be the

same for all the 60 observations used in this experiments.

Moreover, the error covariance is assumed to be iden-

tical when the distance between the observations is the

same. The observation error covariance ~R(i, j) between

components i and j as a sample mean is given by

~R(i, j) 5 (do
a)

i
(do

b)T
j , (18)

where the overbar represent the sample mean for the

whole ensemble of 2000 analyses. With consistent error

statistics, the observation and background error vari-

ances are perfectly known, that is, the specified values

are s2
o 5 s2

o(t) 5 4 and s2
b 5 s2

b(t) 5 1, but different

values for the horizontal length scale Lc 5 300, 500, and

1000 km were used. For all cases, the magnitude of

the off-diagonal elements in the observation error co-

variances is very small compared with those of the di-

agonal components of each element of ~R. Figure 1 shows

a representation of ~R(i, j) as a function of distance rij

between points i and j. The examination of the off-

diagonal elements in the observation error covariance

matrix reveals small values (below 10%). This shows

that the diagnosed observation error covariance matrix
~R may be considered diagonal (~R ffi ~s2

oI).

b. Degrees of freedom for signal

In a second set of experiments, the DFS is evaluated

using the a posteriori statistics and compared with that

obtained using the perturbation method (Girard 1987).

Results are also shown when the a posteriori diagnostics

are evaluated using either (14) or (16). Finally, the DFS

is estimated using (16), but retaining only the estimated

diagonal elements of ~R. The objective of this experiment

FIG. 1. Off-diagonal terms in the observation error covariance as

function of distance rij between points i and j.
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is to show that the information content estimated from

the a posteriori and a priori statistics concur. One has to

keep in mind that the DFS estimated is a reflection of

the error statistics used in the assimilation. The DFS

estimated from the true statistics gives what would be

obtained if the error statistics of the assimilation were

consistent with the estimation based on observation

departures from the background state and the analysis.

In general, the direct evaluation of tr(HK) is not

straightforward because the Kalman gain matrix is not ex-

plicitly available in a variational data assimilation system.

However, the calculation of this trace can be accomplished

in the simplified 1D-Var model here considered. In par-

ticular, assuming that R and B are the covariances used in

the assimilation, the theoretical DFS can be evaluated as

DFS
ANALYTIC

5 tr(HK) 5 tr[HBHT(R 1 HBHT)�1]

(19)

in which K is the gain matrix.

For more complex systems, Girard (1987) proposed

a randomization method to approximate the trace of

a matrix only known as a composition of operators. A

practical method that requires a random perturbation of

the vector of observations was introduced in Desroziers

and Ivanov (2001) and was employed in Chapnik et al.

(2006). It can be shown that a randomized estimation of

tr(HK) where K is based on the specified R and B co-

variances, that were used in the analysis is given by

DFS
GIRARD

5 tr(HK) 5 (y*� y)TR�1(Hx
a
*� Hx

a
),

(20)

where Hx*a and Hxa contain the analysis increments ob-

tained from perturbed and unperturbed observations,

respectively. The observations are perturbed by adding

small perturbations eo 5 R1/2j to the original set of ob-

servations y* 5 y 1 R1/2j, where j is a vector of random

numbers with zero mean and unit variance.

In our study, the argument we propose is that the DFS

can be computed directly from observation departures

from the analysis and forecast. Relying on expressions

(13) and (15), the DFS can be also evaluated from (14)

using the a posteriori statistics:

D~FS
(1)
APOSTERIORI 5 tr[H~BHT ~D�1] 5 E[doT

b
~D�1da

b] (21)

or, equivalently, using (16):

D~FS
(2)
APOSTERIORI 5 tr[~R�1(H~AHT)

T
] 5 E[da

bT~R�1do
a].

(22)

The question then becomes which a posteriori relation

should be used? In particular, for (21), the inversion of ~D

may be complicated by the fact that ~D may be singular.

By replacing the a posteriori observation error co-

variance matrix ~R by a diagonal matrix ~R ffi ~s2
o I, in this

case, (22) simplifies to

D~FS
DIAG

5 E[da
b

T ~R�1do
a] ffi E

da
b

Tdo
a

~s2
o

" #
. (23)

In the following experiment, the DFS has been esti-

mated from 2000 analyses. This is compared with the

DFS computed with Girard’s method in (20) and the

DFS calculated using the a posteriori statistics as in-

troduced in (21)–(23).

Table 1 shows the estimates of DFS obtained with the

true background and observation errors. In this case, the

estimated K is equal to the true Kalman gain matrix.

The a posteriori estimate of DFS is similar (within 0.1%

accuracy) with that found from Girard’s method and in

good agreement with the analytic value. Since the DFS

is a function of B, the horizontal model correlations af-

fect the DFS: when the correlation length increases the

DFS tends to decrease. This can be seen in the results of

Table 1 that illustrate the influence of the background

correlation length on the DFS.

The second set of experiments is similar to the pre-

vious one except that the observation error variance is

now underestimated and taken to be so
2 5 2.25. The

results, shown in Table 2, are similar to that of Table 1.

Similarly, Table 3 presents the results obtained when

both the background and observation error variances

are underestimated (sb
2 5 0.25 and so

2 5 2.25, re-

spectively). In both experiments, the DFS calculations

using the full estimate of the a posteriori observation

TABLE 1. DFS estimate values as a function of background correlation length scale Lc. DFSANALYTIC as calculated from the prescribed

statistics; DFSGIRARD as computed with Girard’s method; and DFS
(1)
APOST, DFS

(2)
APOST, and D~FS

DIAG
as obtained from (21)–(23). The

a priori values are perfectly known: s2
o 5 s2

o(t) 5 4, s2
b 5 s2

b(t) 5 1.

L(km) DFSANALYTIC DFSGIRARD D~FS
(1)
APOST D~FS

(2)
APOST D~FS

DIAG

300 11.03 10.88 10.81 10.80 10.70

500 9.50 9.37 9.21 9.20 9.07

1000 7.34 7.08 6.79 6.79 6.75
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error covariance matrix ~R give similar results to that

obtained using the randomized Girard method. Still

a good approximation is achieved when only the di-

agonal elements are considered. The relative difference

between the values of the DFS calculated as in (20) and

(23) is around 3% when the background correlation

length was assumed to be 300 km.

The conclusions from these experiments are now

summarized. When the a priori error statistics differ

from those estimated from observation departures, the

estimated observation error covariance matrix might

show cross correlations due in part to the presence

of background error in its estimate. In this study, the

nondiagonal elements of ~R were shown to be small, so

that the diagnosed ~R matrix can be approximated as

a diagonal matrix. The idealized experiments with the

1D-Var show that it is possible to obtain the appropriate

value for the DFS from a posteriori statistics. The results

indicate in all experiments that the information content

estimated from the a posteriori and a priori statistics

provide quite similar results. A simple method has been

introduced in which the estimated observation error

covariances are assumed to be diagonal. The results

obtained are also found to be in good agreement with

the method proposed by Girard (1987), Chapnik et al.

(2006), and the provided analytical solution.

4. Evaluation of the information content in 3D-Var
and 4D-Var

In this section, the diagnostics introduced in the pre-

vious section are used to evaluate the DFS from the

3D- and 4D-Var systems of the Meteorological Service

of Canada (MSC). The 3D- and 4D-Var experiments

used in this study are those described in Laroche and

Sarrazin (2010a,b). The 3D- and 4D-Var systems have

been cycled over the period 21 December 2006 to

28 February 2007 using a 6-h assimilation window. All

diagnostics exclude the first 11 days, the spinup period of

the analysis. The incremental 4D-Var is used (Gauthier

et al. 2007) in which the analysis increment is calculated

at a lower horizontal resolution (;170 km). The 4D-Var

analysis is obtained after two outer loops by interpo-

lating this lower-resolution analysis increment to the

same grid (;35 km) as the background state before

adding the two. The subsets of observations assimilated

in either 3D- or 4D-Var during winter 2006–07 include

radiosondes (RAOB), aircraft data (AI), surface and

ship data (SF), wind profiler data (PR), atmospheric mo-

tion vectors (AMVs) from geostationary satellites and

those from Moderate Resolution Imaging Spectror-

adiometer (MODIS AMVs), and radiances from polar-

orbiting satellites [Advanced Microwave Sounding Unit

(AMSU-A/B)] and from geostationary satellites [Geo-

stationary Operational Environmental Satellite (GOES-

East) and (GOES-West)]. A summary is given in Table 4.

a. A posteriori diagnostics and consistency checks

The variational data assimilation formulation relies

on a number of hypotheses on the background and ob-

servation error statistics. The validity of these hypoth-

eses is an important factor in determining the optimality

of the analysis. The chi-square x2 diagnostic can be used

to check if the sample covariances of innovations in

a region, or for a given observing system, are very dif-

ferent from what has been prescribed. For data assimi-

lation x2 is defined as

x2 5 db
o

TD�1db
o,

and its expected value is E[x2] 5 tr(D�1 ~D). Assuming

that D 5 ~D, then E[x2] 5 p, where p is the total number

of observations used in the analysis. In 3D-/4D-Var, x2

TABLE 2. As in Table 1, but for the experiment with s2
b 5 s2

b(t) 5 1 and an underestimated value of the observation error

variance (so
2 5 2.25).

L(km) DFSANALYTIC DFSGIRARD D~FS
(1)
APOST D~FS

(2)
APOST D~FS

DIAG

300 16.44 16.21 16.11 16.21 15.18

500 13.39 13.19 12.99 13.01 11.25

1000 9.75 9.24 8.89 8.88 7.01

TABLE 3. As in Table 1, but for the experiment with both the observation and background error variances underestimated (so
2 5 2.25

and sb
2 5 0.25, respectively).

L(km) DFSANALYTIC DFSGIRARD D~FS
(1)
APOST D~FS

(2)
APOST D~FSDIAG

300 5.73 5.65 5.61 5.65 5.84

500 5.26 5.19 5.10 5.11 5.70

1000 4.43 4.36 4.17 4.17 5.35
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can be obtained from the value of the cost function at

minimum, which is

E[J
min

] 5 E[J(x
a
)] 5

1

2
E[dbT

o D�1db
o] 5

1

2
E[x2] 5

p

2
.

(24)

Equation (24) provides a simple diagnostic to check

the global consistency of an assimilation algorithm. In

Table 5, the average over January and February 2007 of

the estimated values of x2 in 3D- and 4D-Var systems

are shown and compared to the number of observations.

The expected value of x2/p is less than 1, which implies

that either the background or observation error vari-

ances, or both, have been overestimated.

The consistency diagnostic has been calculated for the

observation and background error covariances as in (5a)

and (5b). Results confirm the overestimation of the er-

ror statistics for most observation types and conse-

quently the suboptimality of the system here considered.

However, as previously shown, the DFS calculation is

not affected by any degree of the system suboptimality.

b. Computation of DFS in MSC’s 3D-Var and
4D-Var

The DFS for different data types and regions can be

computed. Let indicate with DFSk
Region the DFS of the

kth observation subset over that region. For instance, if

the region is the whole globe, the DFS is defined as

DFSGlobe
k (%) 5 100 3

DFSGlobe
k

DFSGlobe

and represents the ratio of the DFSk
Globe obtained from

a particular subset of observations to the total DFSGlobe

extracted from all observations. Expressed as a per-

centage, it then represents the relative contribution of

any subset of observations to the global DFS. More

generally, for a particular region, DFSk
Region of different

observation types can be written as

DFS
Region
k (%) 5 100 3

DFS
Region
k

DFSGlobe
.

Figure 2 presents estimates of the total DFS averaged

over January–February 2007 in the MSC 3D- and

4D-Var systems for the following regions: the globe,

Northern Hemisphere (208–908N), tropics (208S–208N),

and Southern Hemisphere (908–208S). These results in-

dicate that the DFS for 3D-Var is larger than for 4D-Var

over all regions.

Figure 3 shows the DFS percentage in the 3D- and

4D-Var for different observation type over the globe.

Results show that the most important observations in

terms of information content in the analyses are radio-

sonde and brightness temperature data types (AMSU-

A/B) followed by aircraft data. Different results have

been obtained at the ECMWF (Cardinali et al. 2004)

where satellite observations [AMSU-A, High Resolu-

tion Infrared Radiation Sounder (HIRS), and Special

Sensor Microwave Imager (SSM/I)] contribute more to

the DFS than conventional observations. The MSC 3D/

4D-Var relies on a smaller number of satellite data as

compared to ECMWF. It is also observed that radio-

sonde, wind profiler, aircraft, and AMSU-B data have

more relative impact in 4D-Var than in 3D-Var. In the

Northern Hemisphere, the largest DFS is obtained for

radiosonde and aircraft data while satellite radiances are

TABLE 4. List of observations assimilated in 3D- and 4D-Var systems of the Environment Canada during the winter of 2006–07.

Variables retain their standard definitions.

Observing network Variables Thinning

Radiosonde/dropsonde U, V, T, (T 2 Td), Ps 28 levels

Surface report T, (T 2 Td), Ps, (U, V over water) 1 report per 6 h

Aircraft U, V, T 18 3 18 3 50 hPa

ATOVS Ocean Land 250 km 3 250 km

AMSU-A Channels 3–10 Channels 6–10

AMSU-B Channels 2–5 Channels 3–4

Water vapor channel Channel 3 (6.7 mm) 28 3 28

Geostationary AMV U, V [IR, water vapor (WV), visible (VI) channels] 1.58 3 1.58

MODIS AMV U, V 1.58 3 1.58

Wind profiler U, V 750 m (vertical)

TABLE 5. Comparison between estimated values of x2 and the

number of observation p in 3D- and 4D-Var averaged for

a 2-month winter period (1 Jan–28 Feb 2007).

Assimilation method x2 5 2E[Jmin] p x2/p

3D-Var 149 899.34 265 412 0.56

4D-Var 148 744.75 265 538 0.56
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dominant in the Southern Hemisphere. The fact that for

satellite data the DFS is smaller in 4D-Var than in

3D-Var and that, in general, the DFS is larger for con-

ventional observations than for satellite data, indicates

a need for model error covariance recalibration.

For any selected subset of data, the observation in-

fluence (OI), is defined as the DFS normalized by the

number of observations:

OI(%) 5 100 3
DFS

Region
k

p
k

.

Figure 4 shows the impact of individual observations in

both 3D- and 4D-Var. We note that the observation

influence is larger for the radiosonde data in both data

assimilation systems. All other data types show a much

smaller impact per observation. We also note that the

AMSU-B data have a mean influence larger than the

AMSU-A data. Information in AMSU-B data is with

respect to humidity while the AMSU-A’s channels

are sensitive to high-tropospheric and low-stratospheric

temperature variations.

Figure 5 shows the DFSk
Globe(%) for different AMSU-

A/B channels. The number of assimilated radiance

channels in our system is 7 from an AMSU-A in-

strument (channels 4–10) and 4 from an AMSU-B in-

strument (channels 2–5). In particular, the weighting

functions of channels 9 and 10 from AMSU-A peak

around 50–100 hPa and a fraction of their weighting

function is above the model top. We note that a large

part of the DFS is coming from stratospheric AMSU-A

channel 10. However, 4D-Var AMSU-A channel 9

(lower stratosphere) shows a negative DFS, which is

difficult to interpret. The method proposed in this paper

assumes that observation departures are unbiased, which

may not be exactly verified in the results obtained from an

operational system.

Figure 6 shows the information content, for the main

data types in the 3D- and 4D-Var as a function of the

observation time within the assimilation window. The

regions represented here are the Northern and Southern

Hemispheres. The results suggest that radiosonde and

surface pressure data have the largest DFS near the mid-

dle of the assimilation window as most of the data are

available at the synoptic time. On the other hand, the

satellite data are roughly evenly spread across the as-

similation window but have the largest DFS at the end

of the assimilation window. The DFS is expected to be

larger at the end of the assimilation window for the evo-

lution of the covariance matrices in the window. The DFS

comparisons as a function of time in the assimilation

FIG. 2. The total DFS 2-month average (January–February 2007)

in the MSC 3D- and 4D-Var analysis over the 4 regions: the entire

globe, the Northern Hemisphere (208–908N), the tropics (208S–

208N), and the Southern Hemisphere (908–208S).

FIG. 3. DFS 2-month average (January–February 2007) in the MSC

3D- and 4D-Var analysis for the 8 data types over the globe.

FIG. 4. Observation influence in the MSC 3D- and 4D-Var analysis

for the 8 data types over the globe.
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window indicate not significant difference between

3D- and 4D-Var systems.

5. Conclusions

As described in this paper, there are a number of

approaches that have recently been used to evaluate the

value of observations in data assimilation systems. The

DFS is used in data assimilation applications to indicate

the self-sensitivity of analysis to different observation

types. In this paper, a new method to assess the in-

formation content of observation on analyses is pre-

sented and applied to calculate the DFS of a complete

set, or subsets, of observations in the MSC’s 3D- and

4D-Var systems. Based on the results of Desroziers et al.

(2005), it is shown that the information content brought

FIG. 5. DFS 2-month average over the globe in the MSC 3D- and 4D-Var analysis for each channel of (a) AMSU-A

and (b) AMSU-B.

FIG. 6. DFS for the main data types in the 3D- and 4D-Var systems as a function of observation time relative to the

assimilation window. The observing platforms are color coded and given in the legend.
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in by the data assimilation system can be estimated

from observation departures from the analysis and the

background state. The main point made in this paper is

that even though the error statistics may not be consis-

tent, the observation departures can still be used to

measure the information content in observations asso-

ciated with the a priori error statistics used in the as-

similation. These a posteriori estimates were inspired by

the results of Desroziers et al. (2005). It was shown here

that by introducing the additional assumption that the

observation error is uncorrelated, the method is easily

applicable as a diagnostic of the results produced by any

data assimilation system. One has to be aware that it is

implicitly assumed that the observation departures are

unbiased which may not be verified. A simplified 1D-Var

system was used to test the validity of the method and

the results confirmed that the estimates obtained agree

with a method proposed by Girard (1987). With error

statistics differing from the true ones, it was shown that

the a posteriori estimates of the observation error is

reasonably diagonal, which justifies the hypothesis made

on the a posteriori estimate of the observation error co-

variances.

The DFS method calculation was also applied in

the MSC’s 3D- and 4D-Var systems. The partition by

observation types allows diagnosing the relative in-

fluence on the analysis of different observing systems.

The results suggest that radiosondes are the most influ-

ential data type of the global observing system, followed

by brightness temperature data types (AMSU-A/B) and

aircraft data. It is worth mentioning that the largest

observation influence is provided by radiosonde and

AMSU-B data. It has already been shown that the DFS

is useful to evaluate the sensitivity of the analysis to dif-

ferent channels for a particular radiometer. The estima-

tion of the a posteriori error standard deviations for

satellite radiances indicate that the errors are generally

overestimated in the MSC’s 3D- and 4D-Var schemes.

It is, however, planned to more carefully investigate the

a posteriori estimation of the observation error var-

iance for radiometers channels sounding in the high

atmosphere.

The results shown in the paper indicate some de-

ficiencies in the current estimate of the error statistics

used in the assimilation. Future work will have to be

done to recalibrate the error statistics to reflect changes

brought to the system. These diagnostics will be used to

evaluate the information content of a complete set, or

subsets, of observations on the 4D-Var scheme that was

implemented operationally in 2008. Since then, the num-

ber of the Advanced Television and Infrared Obser-

vation Satellite (TIROS) Operational Vertical Sounder

(ATOVS) and AMVs observations was increased in the

new system and new observation types as AIRS, SSM/I

(clear-sky radiances), and QuikSCAT Seawinds are now

assimilated. It is worth mentioning that among the dif-

ferent applications, the DFS can be used to map the

evolution of the model covariance matrix.
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