
IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION 1

Performance Comparison between
Adaptive and Fixed Transmit Power in

Underlay Cognitive Radio Networks
Hela Hakim, Student Member, IEEE, Hatem Boujemaa, Member, IEEE, and Wessam Ajib, Member, IEEE

Abstract—In this paper, we compare the performance in terms
of symbol error probability, data rate and power consumption
of the use of fixed transmit power (FTP) and adaptive transmit
power (ATP) in underlay cognitive radio networks. The use of
FTP alleviates the signaling requirements of underlay cognitive
radio networks compared to the ATP. Nevertheless, the use
of FTP influences the performances of the underlay cognitive
radio networks. To study this influence, we consider three relay
selection schemes using FTP: opportunistic decode and forward
with FTP (O-DF with FTP), opportunistic amplify and forward
with FTP (O-AF with FTP) and partial relay selection with
FTP (PR with FTP). We compare the performances of these
schemes in terms of symbol error probability, data rate and
power consumption with three relay selection schemes using
ATP: opportunistic decode and forward with ATP (O-DF with
ATP), opportunistic amplify and forward with ATP (O-AF with
ATP) and partial relay selection with ATP (PR with ATP). We
provide exact and/or lower bound expressions of the symbol error
probabilities of O-DF, O-AF and PR with FTP. The analytical
study for the data rate and the power consumption is also
provided. Our comparison study shows that FTP has a positive
impact on the data rate and power consumption performance
while it deteriorates the symbol error probability performance.

Index Terms—Cognitive radio, relaying, fixed transmit power,
adaptive transmit power, symbol error probability, data rate,
power consumption.

I. INTRODUCTION

EVER increasing demand for high data rate wireless
services burdens the available spectrum resources which

become unable to satisfy this demand and suffer from se-
vere scarcity. Cognitive radio has emerged as a promising
technology to optimize spectrum resources exploitation by
using the licensed spectrum in an opportunistic fashion [1].
In this technology, any cognitive secondary user may share
the spectrum with a licensed primary user as long as the
latter fulfills its Quality of Service (QoS) requirement. The
protocols settling the coexistence of primary and secondary
users are classified into three approaches [2]: (i) interweave
approach where the secondary user can operate as long as the
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primary user is idle and must switch off whenever this latter
becomes active; (ii) overlay approach where the secondary
and primary users share simultaneously the spectrum whereas
the secondary nodes must implement and perform some tech-
niques in order to assist the primary communications; (iii)
finally, an underlay approach where secondary users share the
spectrum with the primary one but have to adjust their transmit
power to keep the induced interference always below a given
allowable threshold. To fulfill the interference constraint, the
secondary transmitter uses generally low transmit power which
limits largely the performances of the cognitive radio network
and hence this network may suffer from low data rate and
high symbol error probability (SEP). A way to ameliorate the
performances of the secondary network is the use of relaying.
Recently, several works have focused on relaying techniques
in cognitive radio network [3]-[9]. In [3], Zou et al. have
proposed to select the relay with the largest signal-to-noise
ratio (SNR) in relay-destination link under the constraint of
satisfying a required primary outage probability. In [4], Chen
et al. have proposed a distributed relay selection scheme while
considering adaptive modulation and coding and energy states
of relay nodes. The same authors have proposed in [5] a
relay selection scheme that maximizes the secondary data rate
whilst ensuring a minimum required primary data rate. In
[6], a distributed relay selection concurrently considering the
channel states of all related links and residual energy state
of the relay nodes have been proposed. In [7], krishna et
al. have proposed that relays use beam steering capability to
impose a target signal to interference plus noise ratio (SINR)
whilst fulfilling the primary requirement. In [8], Lin et al. have
used the pricing function in game theory to propose a novel
low-interference relay selection derived from the conventional
max-min relay selection. In [9], amplify-and-forward relay
selection scheme is investigated in the presence of interference
from primary transmitter.

All previous works assume that secondary transmitters
can adjust their transmit power. Recently, some efforts have
focused on the use of secondary transmitter nodes using fixed
transmit power (FTP) [10]-[13]. In these works, several re-
laying schemes are investigated where secondary transmitters
(source and relay) use their maximum available power when
the primary interference constraint is verified and remain silent
otherwise. This approach is solely proposed in [10]-[13] and
is different from the approach where the relay remains silent
when the direct link is of high quality [14].

In this paper, we consider a secondary network composed
by simple nodes transmitting with FTP. The secondary net-
work consists of a source, a destination and several available
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relays. We investigate the use of FTP which requires less
signaling than the use of ATP. We investigate and compare the
performances of three relay selection schemes: opportunistic
DF relaying with FTP (O-DF with FTP), Opportunistic AF
relaying with FTP (O-AF with FTP) and partial relay selection
with FTP (PR with FTP). We study the performances of the
considered relay selection schemes in terms of SEP, data rate
and power consumption. Using FTP in underlay cognitive
radio network alleviates the signaling requirements compared
to the ATP nodes. But, it influences the performance of the
cognitive radio system. The target of our work is to study this
by comparing the performances of FTP and ATP in terms of
symbol error probability, data rate and power consumption.
This gives insights to cognitive network architectures if using
ATP or FTP is worthy. The relaying schemes when ATP is
used are called: O-DF with ATP, O-AF with ATP and PR
with ATP. Our comparison study shows that FTP has a positive
impact on the data rate and power consumption performance
while it deteriorates the symbol error probability performance.

In [10]-[13], authors have considered only the FTP and
have not provided a performance comparison between FTP
and ATP. Also they have considered only amplify and forward
(AF) relaying and have omitted the interference caused by the
primary transmitter to the secondary receivers. Moreover, they
have analysed only the SEP and the outage probability perfor-
mances. In addition, in these works, all relays are assumed to
be equidistant from primary receiver. The contribution of our
work compared to [10]-[13] consists in providing performance
comparison between the FTP and ATP in terms of SEP, data
rate and power consumption. Moreover, we have considered
both decode and forward (DF) and AF relaying modes. In
addition, we have provided analytical study and simulation
results of SEP, data rate and power consumption of the
secondary network in the presence and absence of interference
from the primary transmitter. The relays positions in our work
are uniformly generated in a square 3x3 and simulation and
numerical results are averaged over many topologies.

The remainder of this paper is organized as follows. In
section II, we describe our system model. In section III, we
present the new relaying schemes. Section IV is dedicated
to present the SEP analysis of each relaying scheme using
FTP. Section V is dedicated for the data rate and power
consumption analysis. Section VI shows and discusses with
theoretical and simulation results. Finally, section VII draws
some concluding remarks.

II. SYSTEM MODEL

We consider an underlay cognitive radio network operating
near a primary network. The primary network consists of
a primary transmitter (PT) communicating with a primary
destination (PD). The cognitive radio network consists of a
source S communicating with a destination D simultaneously
with the primary communication. We assume that Mr relays
are available to assist S. The system model is depicted in
Fig.1. We denote the set of the Mr available relays by R. We
assume that each transmission is subject to an additive white
Gaussian noise (AWGN) with zero mean and variance N0. The
channel coefficient of the link X-Y is denoted by hX,Y and is
assumed to consist of path loss and independent fading effect

D

R1

Ri

RM

S

Direct transmission

Cooperative transmission

Primary transmitter (PT) Primary destination (PD)

Interference caused to PD

Fig. 1. System model.

as hX,Y = XX,Y d
−α

2

X,Y , where dX,Y is the distance between
X and Y and α is the path loss exponent. XX,Y is the fading
coefficient modeled as a circular symmetric complex Gaussian
random variable with variance 1. We assume that the channels
coefficients are invariant during two time slots and may change
independently each two time slots. Nodes are assumed to be
half duplex.

The communication time is divided into two time slots. In
the first time slot, S sends its signal while the M relays listen
as shown by bold arrows in Fig. 1. The transmitted signal is
also perceived by PD and hence causes some interference. In
underlay cognitive radio network, the interference level at PD
caused by the secondary transmitters (source and relays) must
be below an interference threshold noted Ith. The interference
caused by a transmitter X , noted IX using a fixed transmit
power PF

X is as follows

IX = PF
X | hX,PD |2≤ Ith, (1)

where PF
X denotes the FTP used by the transmitter X . If the

secondary transmitter X (S or Ri) finds that the constraint (1)
is satisfied, then it transmits with PF

X . Hence, the SINR of the
link X-Y is given by

ΓX,Y =
PF
X |hX,Y |2

Pp|hPT,Y |2 +N0
. (2)

If the secondary transmitter is unable to satisfy the primary
interference constraint, then it remains silent. This implies
that the transmission process starts only if S satisfies the
interference constraint in (1). S transmits with a fixed power
noted PF

S and each relay Ri ∈ R, transmits with a fixed power
noted PF

Ri
. The values of PF

S and PF
Ri

are set at the activation
of the cognitive radio network and remains fixed during all the
transmissions.

The relays and D receive useful data from S and interference
from PT as shown in Fig. 1. Thereby, the received signal at
D during the first time slot can be written as follows.

yD =
√
PF
S hS,Dxs +

√
PPhPT,Dx1

p + n1
D, (3)

where xs is the secondary symbol, x1
p and n1

D are the primary
transmitted symbol and the noise at D during the first time
slot. Some relays, with the use of their FTP, will fall short of
the interference constraint and thus they can not be selected
to forward the secondary signal. The set of relays satisfying
the interference constraint is denoted by U .

In the second time slot, one relay belonging to U is selected
to forward the received signal. Two relaying modes can be
used: DF and AF.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://www.researchgate.net/publication/252032096_Performance_analysis_of_selective_cooperation_in_underlay_cognitive_networks_over_Rayleigh_channels?el=1_x_8&enrichId=rgreq-befee001-bc49-4227-a8fc-ad7d73fbfa57&enrichSource=Y292ZXJQYWdlOzI2NDc4OTQ0NDtBUzoxMzEyNzA5MzE2NTI2MDhAMTQwODMwODgzNzY0MQ==
https://www.researchgate.net/publication/252032096_Performance_analysis_of_selective_cooperation_in_underlay_cognitive_networks_over_Rayleigh_channels?el=1_x_8&enrichId=rgreq-befee001-bc49-4227-a8fc-ad7d73fbfa57&enrichSource=Y292ZXJQYWdlOzI2NDc4OTQ0NDtBUzoxMzEyNzA5MzE2NTI2MDhAMTQwODMwODgzNzY0MQ==


HAKIM et al.: PERFORMANCE COMPARISON BETWEEN ADAPTIVE AND FIXED TRANSMIT POWER IN UNDERLAY COGNITIVE RADIO NETWORKS 3

If DF relaying is used, a subset from U , denoted by
C gathering decoding relays is formed, i.e., the relays that
have correctly decoded the received signal. The selected relay
from C, denoted by RO-DF

s , decodes the received signal then
regenerates and forwards it. The received signal at D during
the second time slot is given by

yO-DF,2
D =

√
PF
RO-DF

s
hRO-DF

s ,Dxs +
√
PPhPT,Dx2

p + n2
D. (4)

where x2
p and n2

D are the primary transmitted symbol and the
noise at D during the second time slot.

If AF relaying is used, the selected relay from U , denoted by
RO-AF

s , amplifies the received signal using an amplification fac-

tor G =

√
PF

RO-AF
s

PF
S |hS,RO-AF

s
|2+Pp|hPT,RO-AF

s
|2+N0

. Then, the selected

relay forwards the amplified signal to D. The received signal
at D during the first and second time slots are respectively
given by

yO-AF,2
D = GhRO-AF

S ,Dy1RO-AF
s

+
√
PPhPT,Dx2

p + n22
D ,

where y1RO-AF
s

=
√PShS,RO-AF

s
xs +

√PPhPT,RO-AF
s

x1
p + nRO-AF

s
,

is the signal received by the selected relay during the first time
slot.

The transmission during the second time slot is shown by
a dashed arrow in Fig.1.

III. RELAYING SCHEMES IN UNDERLAY COGNITIVE

RADIO NETWORK

The relay selection process must respect the end-to-end
SINR as well as the interference constraint imposed by the
primary system. In the following, we present the three relaying
schemes using FTP: namely the O-DF with FTP, O-AF with
FTP and PR with FTP. Then, we present the corresponding
relaying schemes using ATP: namely O-DF with ATP, O-AF
with ATP and PR with ATP.

A. Opportunistic DF Relaying with FTP (O-DF with FTP)

In underlay cognitive radio network operating in DF mode,
the selected relay must respect the three following constraints:

• Interference constraint: the level of the interference
caused by the selected relay should be below the thresh-
old allowed by the primary receiver.

• Decoding constraint: the selected relay should correctly
decode the secondary signal.

• Finally, the selected relay should maximize the SINR of
the relay-destination link.

To select a relay, we first determine the set U , then, the
subset C (C ⊂ U ). Finally, the selected relay is the one in
C maximizing the SINR of the relay-destination link. Hence
RO-DF

s = argmax
Ri∈C

ΓRiD, where ΓRiD is defined in (2).

B. Opportunistic AF Relaying with FTP (O-AF with FTP)

When the network operates in AF mode, the selected relay
must respect two constraints:

• Interference constraint: the interference perceived by the
primary receiver is lower than Ith.

• The selected relay maximizes the SINR of the source-
relay-destination link.

The SINR of the relaying link source-relay-destination is given
by

ΓSRiD =
ΓSRiΓRiD

ΓSRi + ΓRiD + 1
. (5)

For the relay selection, we first determine the set U . Then,
the selected relay for O-AF with FTP, denoted by RO-AF

s , is
chosen as RO-AF

s = argmax
Ri∈U

ΓSRiD.

C. Partial relay selection with FTP (PR with FTP)

The proposed O-AF scheme requires knowing the state of
source-relay and relay-destination channels. When the number
of available relays increases, the amount of required signaling
becomes important. This increases the complexity and may
constitute an implementation bottleneck. An alternative so-
lution is to rely only on the SINR of source-relay link to
moderate signaling requirement. This idea was first proposed
for non-cognitive radio network in [15]. The new scheme is
called partial relay selection. Consequently, the selected relay
should

• Satisfy the interference constraint imposed by the primary
user.

• Maximize the SINR of the source-relay link.
Hence, the selected relay for PR with FTP, denoted by RPR

s ,
is chosen as RPR

s = argmax
Ri∈U

ΓSRi .

D. Opportunistic DF relaying with adjustable transmit power
(O-DF with ATP)

In this scheme, in order to maximize the system perfor-
mance while respecting the interference constraint, each trans-
mitter adjusts its power before each transmission as follows

PA
X = min(

Ith
|hX,PD|2 , P

max
X ), (6)

where PA
X denotes the ATP used by the transmitter X , Pmax

X is
the maximum available power for the transmitter X . To select
a relay, the decoding set of relays C is first formed. Then, each
relay Ri in C adjusts its power as in (6). The selected relay,
denoted by RO-DF, ATP

s , is the one that maximizes the SINR of
the relay-destination link such as: RO-DF, ATP

s = argmax
Ri∈C

ΓRiD.

E. Opportunistic AF relaying with adjustable transmit power
(O-AF with ATP)

In this scheme, each relay Ri ∈ R, adjusts its power as in
(6). Then, the relay maximizing the SINR of the relaying link
source-relay-destination denoted by RO-AF, ATP

s is selected as
follows RO-AF, ATP

s = argmax
Ri∈U

ΓSRiD, where ΓSRiD is defined

in (5).

F. Partial relay selection with adjustable transmit power (PR
with ATP)

In this scheme, each relay Ri ∈ R, adjusts its power as in
(6). Then, the relay which maximizes the SINR of the relaying
link source-relay is selected. The selected relay is denoted by
RPR, ATP

s and is given by RPR, ATP
s = argmax

Ri∈R
ΓSRi .
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Relay node Id CSI of Ri-D link

Fig. 2. Signaling overhead structure used by fixed transmit power relays.

Relay node Id CSI of Ri-D link value of PA
Ri

Fig. 3. Signaling overhead structure used by adaptive transmit power relays.

G. Signaling requirements comparison

We compare the signaling requirements of FTP and ATP
and we show that FTP requires less signaling than ATP. When
the signaling requirements increases, extra resources must be
provided to carry more signaling information. This increases
the practical implementation complexity of the designed wire-
less system. We assume that S is the central scheduler that
collects information and selects the relay.

1) Fixed Transmit Power: If FTP nodes are used, each
relay Ri compares the amount PF

Ri
|hRi,PD|2 to the interference

threshold Ith. If Ri finds that PF
Ri
|hRi,PD|2 < Ith, then it sends

its identity and the value of hRi,D to S. The signaling overhead
structure used by FTP relays is shown in Fig. 2. S then collects
the identities of the relays verifying the interference constraint
and since it is assumed to have a prior knowledge about the
values of PF

Ri
, ∀ Ri ∈ R, it can selects the best relay.

2) Adaptive transmit Power: If ATP nodes are used, to se-
lect the best relays, each relay Ri verifying PA

Ri
|hRi,PR|2 < Ith,

has to send its identity, the value of hRi,D and the value of its
transmit power PA

Ri
to S. The signaling overhead structure of

ATP is shown in Fig. 3.
In Table. 1, we compare the signaling requirements of the

use of FTP and ATP. We can easily see that comparing to
FTP, in ATP, relays have to further send the values of their
adapted transmit powers to S. Obviously, when the number
of relays increases. the signaling amount required to transmit
this information becomes huge.

IV. SEP ANALYSIS OF THE RELAYING PROTOCOLS

In this section, we derive the exact form expression of the
SEP of O-DF with FTP and exact and lower bound form of the
SEP of O-AF and PR with FTP in the absence of interference
from PT. The exact SEP expression of the O-DF with FTP
in the presence of interference from PT is also derived while
for O-AF and PR with FTP, only lower bound expressions are
given, due to the intractability of the exact form expressions.

To derive the SEP at a node X , we use the moment
generating function (MGF) of the SINR at X , ΓX , defined
as follows

MΓX (s) = E(e−sΓX ), (7)

where E(.) is the expectation operator. For M-PSK modula-
tion, the SEP at X can be deduced from the MGF of ΓX as
follows [16]

Ps,X =
1

π

∫ πM−1
M

0

MΓX

(
gpsk

sin2(θ)

)
dθ, (8)

TABLE I
REQUIRED CSI FOR THE DIFFERENT RS SCHEMES

Fixed transmit Power nodes Adaptive Transmit Power nodes

• Identity of Ri

• The CSI of Ri-SR link

• Identity of Ri

• The CSI of Ri-D link
• The transmit power PA

Ri

where gpsk = sin2( π
M ). Similar expressions can be obtained

for M-QAM modulations.

A. SEP analysis of the O-DF with FTP

For the O-DF, the SEP at D can be written as

P
O-DF
s,D =

∑
Θ⊂R

P
O-DF
s,D|U=ΘP(U = Θ). (9)

The probability P(U = Θ) is given by

P(U = Θ) =
∏

Ri∈Θ

P(IRi,PD ≤ Ith)
∏

Rj∈Θ

P(IRj,PD > Ith),

(10)

where Θ = R\Θ and

P(IRi,PD ≤ Ith) = 1− exp(− Ith

IRi,PD

), (11)

where IRi,PD = PRiE(|hRi,PD|2). To derive P
O-DF
s,D|U=Θ, two

cases arise.
Case 1: if U = ∅, then the conditional probability PO-DF

s,D|U=Θ
is given by

P
O-DF
s,D|U=Θ =

1

π

∫ πM−1
M

0

MΓS,D

(
gpsk

sin2(θ)

)
dθ, (12)

where MΓS,D(s) can be obtained by using the probability
density function (PDF) of the SINR ΓS,D given in (38) in
Appendix A and equation (7). In the absence of interference
(i.e., the interference from PT is negligible and could be
approximated by 0, MΓS,D(s), can simply be written as

MΓS,D (s) =
1

1+λ2
S,Ds

, where λ2
XY =

PF
X

dα
xyN0

.

Case 2: if U �= ∅, then given that in O-DF with FTP, only
relays belonging to U and having correctly decoded the signal
are retained as candidate relays, PO-DF

s,D|U=Θ can be written as

P
O-DF
s,D|U=Θ =

∑
J⊂U

P
O-DF
s,D|U=Θ,C=JP(C = J |U = Θ). (13)

Next, we derive each term of (13).
P

O-DF
s,D|U=Θ,C=J , is given by (12), if C = ∅. Otherwise, it is

given by

P
O-DF
s,D|U=Θ,C=J =

1

π

∫ πM−1
M

0

MΓS,D

(
gpsk

sin2(θ)

)

×MΓ
RO-DF

s D

(
gpsk

sin2(θ)

)
dθ, (14)

where the expression of MΓ
RO-DF

s D
(s) is derived in Appendix

A. In the absence of interference, MΓ
RO-DF

s D
(s) is derived in

Appendix B.
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P(C = J |U = Θ), is given by

P(C = J |U = Θ) =
∏
Ri∈J

(1− Ps,Ri)
∏

Rj∈J

(Ps,Rj ), (15)

where J = U\J and Ps,X is the SEP at X given by (12) by
replacing D by node X.

B. SEP Analysis of the O-AF with FTP

In this subsection, we provide an exact form and a lower
bound expression of the SEP for the O-AF with FTP in the
absence of primary interference. The lower bound expression
is derived to provide which is simpler than the exact one since
this latter is given in the form of double integral. Due to
the intractability of the exact form expression of the SEP in
the presence of interference from PT, only the lower bound
expression is derived.

1) Exact form expression: The SEP at D can be written as

P
O-AF
s,D =

∑
θ⊂R

P
O-AF
s,D|U=θP(U = θ), (16)

where P(U = θ) is given by (10). Next, we derive the exact
form expression of the first term of (16). To derive P

O-AF
s,D|U=θ ,

two cases arise.
Case 1: if U = ∅, then P

O-AF
s,D|U=θ is given by (12), where

MΓS,D(s) =
1

1+λ2
S,Ds

.

Case 2: if U �= ∅, then we have

P
O-AF
s,D|U=θ =

1

π

∫ πM−1
M

0

MΓS,D

(
gpsk

sin2(θ)

)
MΓ

SRO-AF
s D

(
gpsk

sin2(θ)

)
dθ,

(17)

where MΓ
SRO-AF

s D
(s) can be computed as in (7) using the PDF

of ΓSRO-AF
s D which can be written as [17]

fΓ
SRO-AF

s D
(γ) =

∑
Ri∈U

fΓSRiD
(γ)

∏
Rj∈U
Rj �=Ri

FΓSRjD
(γ), (18)

where fΓSRiD
(γ) and FΓSRiD

(γ) are the PDF and the cumu-
lative distribution function (CDF) of ΓSRiD .

fΓSRiD
(γ) and FΓSRiD

(γ) are given respectively by [18](19)
and (20), where νRi = 1

λ2
SRi

, μRi = 1
λ2
RiD

and Kv(.) is the

v-th order modified Bessel function of the second kind.
2) Lower Bound expression: ΓSRiD can be upper-bounded

as follows

ΓSRiD < min(ΓSRi ,ΓRiD)
�
= ΓRi

up . (21)

Next, we derive the lower bound expression in the absence
and in the presence of interference from PT.

a) Absence of interference from PT: When the interfer-
ence from PT is not considered, we have ΓSRi and ΓRiD are
two exponential random variables with mean λ2

SRi
and λ2

RiD
,

respectively. Thus, ΓRi
up is an exponential random variable with

mean
λ2
SRi

λ2
RiD

λ2
SRi

+λ2
RiD

.

Let ΓSel
up denotes the maximum of ΓRi

up , Ri ∈ U . Hence, the
MGF of ΓSel

up can be deduced from (41) as follows

MΓSel
up

(s) =
∑
i∈U

2|U|−1−1∑
p=0

(−1)ξ(p)

ωRis+ 1 +
|U|−1∑
k=1

ωRi
ξp(k)

ωRlRi,k

, (22)

where ωRi =
λ2
SRi

λ2
RiD

λ2
SRi

+λ2
RiD

and {lRi,k}|U|−1
k=1 is the set of relays

indices in U\{Ri}.
b) Presence of interference from PT: In the presence of

interference from PT, the CDF of ΓRi
up can be written as

F
Γ
Ri
up
(γ) = 1−

(
σ2
S,Ri

σ2
S,Ri

+ σ2
PT,Ri

γ
exp(− N0γ

σ2
S,Ri

)

)

×
(

σ2
Ri.D

σ2
Ri,D

+ σ2
PT,Dγ

exp(− N0γ

σ2
Ri,D

)

)
,

(23)

where σ2
X,Y = PF

Xd−α
X,Y . The PDF of ΓRi

up denoted by f
Γ
Ri
up

can be found by deriving the CDF of ΓRi
up given above. Finally,

the PDF of ΓSel
up can be computed as

fΓSel
up

(γ) =
∑
Ri∈U

f
Γ
Ri
up
(γ)

∏
Rj∈U
Rj �=Ri

F
Γ
Ri
up
(γ), (24)

and the MΓSel
up

(s) can be deduced from (24) as in (7).
Using these results, a lower bound of PO-AF

s,D|U=Θ is given by

BO-AF
low =

1

π

∫ πM−1
M

0

MΓS,D

(
gpsk

sin2(θ)

)
MγSel

up

(
gpsk

sin2(θ)

)
dθ.

(25)

Substituting the lower bound of P
O-AF
s,D|U=Θ given in (25) and

(10) in (16), we obtain a lower bound for the SEP of O-AF
with FTP.

C. SEP Analysis of the PR with FTP

We first give the exact form expression of the SEP of PR
with FTP in the absence of interference from PT. Lower bound
expressions are derived in the presence and in the absence of
interference from PT.

1) Exact form expression: Considering the PR with FTP
scheme, the SEP at D can be written as

P
PR
s,D =

∑
Θ⊂R

P
PR
s,D|U=ΘP(U = Θ), (26)

where P(U = Θ) is given by (10). To derive P
PR
s,D|U=Θ, two

cases arise.
If U = ∅, then P PR

s,D|J=U is given by (12). Otherwise, if
U = ∅, then, P PR

s,D|J=U is given by

P
PR
s,D|J=U =

1

π

∫ πM−1
M

0

MΓS,D

(
gpsk

sin2(θ)

)

×MΓSRPR
s D

(
gpsk

sin2(θ)

)
dθ, (27)

where MΓSRPR
s D

(s) is derived in appendix C.
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fΓSRiD
(γ) = 2e−(νRi

+μRi
)γ
[
νRiμRi(2γ + 1)K0

(
2
√
νRiμRiγ(γ + 1)

)
+(νRi + μRi)

√
νRiμRiγ(γ + 1)K1

(
2
√
νRiμRiγ(γ + 1)

)]
, (19)

FΓSRiD
(γ) = 1− 2e−(νRi

+μRi
)γ
√
νRiμRiγ(γ + 1)K1

(
2
√
νRiμRiγ(γ + 1)

)
, (20)

2) Lower Bound expression: ΓSRiD can be upper-bounded
as (21). Let the upper bound of ΓSRiD be denoted by ΓSel

up .
The MGF of ΓSel

up , can be expressed as follows

MΓSel
up

(s) =
∑
Ri∈U

M
Γ
Ri
up
(s)P(RPR

s = Ri), (28)

where P (RPR
s = Ri) is given by (44) and M

Γ
Ri
up
(s) is the MGF

of ΓRi
up . In the presence of interference from PT, the expression

of ΓRi
up is computed similar to the previous section while in

the absence of interference it is given by M
Γ
Ri
up
(s) = 1

1+ωRi
s .

Hence, a lower bound of P PR
s,D|J=U is given by

BPR
low =

∑
Ri∈U

P(RPR
s = Ri)

1

π

∫ πM−1
M

0

1

1 + ωRi

(
gpsk

sin2(θ)

)dθ.
(29)

Substituting the lower bound of P PR
s,D|J=U given in (29) and

(10) in (26), we obtain a lower bound for the SEP of PR with
FTP.

V. DATA RATE AND POWER CONSUMPTION ANALYSIS

We derive the data rate and power consumption expressions
for the three relaying protocols, O-DF with FTP, O-AF with
FTP and PR with FTP.

A. Data rate Analysis

The data rate is defined to be the amount of data success-
fully delivered per time unit. For the direct transmission, the
data rate can be written as

thx =
ρ(1− P

x
s,D)

E(T )
, (30)

where ρ (bits/s/Hz) is the target transmission rate, x ∈ {’O-
DF’,’O-AF’,’PR’, ’d’}, where x = ’d’ stands for the direct
transmission, P

x
s,D is the SEP of the relaying scheme ′x′.

The exact form expression of P
O-DF
s,D is derived in IV-A, in

the presence and absence of primary interference. The exact
form expressions of PO-AF

s,D and P
O-PR
s,D in the absence of primary

interference are derived in IV-B and IV-C, respectively. The
upper bounds of the data rate expressions of O-AF and PR
with FTP in the presence of interference are also given in
IV-B2 and IV-C2, respectively. Pd

s,D is given in (12).
E(T ) is the expected number of time slots to transmit one

symbol. According to our system setup, E(T ) for O-DF with
FTP can be computed as follows

E(T ) = P(IS,PD > Ith) + P(IS,PD ≤ Ith)

× [(1− P(C = ∅)) (P(U = ∅) + 2(1− P(U = ∅)))
+P(C = ∅)] . (31)

For O-AF and PR with FTP, E(T ) can be computed as follows

E(T ) = P(IS,PD > Ith) + P(IS,PD ≤ Ith

× [P(U = ∅) + 2(1− P(U = ∅))] .
(32)

B. Power Consumption Analysis

The power consumption is the power consumed by the
source and the selected relay to transmit one symbol. For O-
DF with FTP, the power consumption can be computed as
follows

PO-DF
Consumed = P(IS,PD ≤ Ith)

×

⎡
⎢⎢⎣Ps +

∑
Θ⊂R
Θ �=∅

P(U = Θ)

⎡
⎢⎢⎣∑
J⊂U
J �=∅

P(C = J |U = Θ)

×
(∑

Ri∈C

P(Ri = Rx
s |U = Θ, C = J)PRi

)]]
, (33)

where P(Ri = RO-DF
s |U = Θ, C = J) is given by (34). For O-

AF and PR with FTP, the power consumption can be computed
as follows

Px
Consumed =

P(IS,PD ≤ Ith)×

⎡
⎢⎢⎣Ps +

∑
Θ⊂R
Θ �=∅

P(U = Θ)

×
[ ∑
Ri∈U

P(Ri = Rx
s |U = Θ)× PRi

]]
, (35)

where x ∈ {’O-AF’, ’PR’}; P(RPR
s = Ri) is given in (44) in

appendix C and the expression of P(Ri = RO-AF
s |U = Θ) is

given by

P(Ri = RO-AF
s |U = Θ) =

∏
Rk∈C
Rk �=Ri

∫ ∞

0

(1 − FΓSRiD
(γ))

×fΓSRkD (γ)dγ. (36)

VI. NUMERICAL RESULTS

In this section, we present theoretical and simulation results
carried out in order to compare the performance of relaying
schemes using FTP nodes with those using ATP nodes.
Simulation results are averaged over many random topologies
generated in a square 3 × 3. The path loss exponent is set
to 3. Without loss of generality, we have considered a simple
binary phase shift keying (BPSK) modulation. The maximum
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P(Ri = RO-DF
s |U = Θ, C = J) =

∏
Rk∈C
Rk �=Ri

∫ ∞

0

σ2
RO-DF

s ,D

σ2
RO-DF

s ,D
+ σ2

PT,Dγ
exp(− N0γ

σ2
RO-DF

s ,D

)

×
[

N0

σ2
Rk,D

+ σ2
PT,Dγ

exp(− N0γ

σ2
Rk,D

) +
σ2
Rk,D

σ2
PT,D

(σ2
Rk,D

+ σ2
PT,Dγ)2

exp(− N0γ

σ2
Rk,D

)

]
dγ.

(34)

transmit power of the secondary source is Pmax
S = 0.5 watt.

The same value is used for relays, Pmax
Ri

= 0.5 watt, ∀Ri ∈
R. We assume that all relays use the same fixed transmit
power denoted PF . For each given primary transmit power,
we choose the fixed transmit powers PS and PF at the
beginning of simulations. To do so, we may find numerically
the FTP values that minimize the secondary SEP or the
ones that maximize the secondary data rate. Without loss of
generality, we choose the ones that minimize the secondary
SEP assuming that applications require low error rates. The
primary transmit power Pp is set to 0.5 watt. Our simulations
are carried out to compare the SEP , the data rate and the
power consumption of the investigated relaying scheme using
FTP nodes over relaying schemes using ATP nodes. For the
direct transmission, the source transmits only when it is able
to respect the interference constraint. The value of Ith is set
to 0.05 watt. In the Figures, we denote by Ip the interference
caused by PT.

In Fig. 4, Fig.5 and Fig.6, we compare the SEP, the data
rate and the power consumed to transmit one symbol of the O-
DF with FTP and O-DF with ATP, respectively for a number
of relays Mr = 2 and Mr = 4. In the presence of primary
interference, the deterioration of SEP performance due to the
use of FTP nodes is by about 0.4× 10−1 at 30 dB. Moreover,
Fig. 6 shows that O-DF with ATP consumes more power
than O-DF with FTP. This is because, in O-DF with FTP the
cooperation is not always performed and hence the power that
may be used by the selected relay is saved.

In the absence of interference, the difference between the
SEP of O-DF with FTP and O-DF with ATP becomes more
important. In high SNR, O-DF with ATP significantly outper-
forms the SEP of O-DF with FTP. This is mainly because
at high SNR, transmitting with low power is more efficient
mainly in the absence of primary interference. Besides, in
O-DF with FTP, cooperation is not performed when relays
disrespect the primary interference constraint while in O-DF
with ATP, the cooperation is always performed. Hence, the
SEP of O-DF with ATP is significantly better than that of
O-DF with FTP. We observe that the presence of primary
interference largely deteriorates the SEP performances of
the secondary network. For the same consumed power, the
performance of O-DF with FTP are deteriorated by about
0.5× 10−1 at 20 dB.

In terms of data rate, Fig. 5 shows that O-DF with FTP
slightly outperforms O-DF with ATP. This is due to the fact
that in O-DF with FTP, the cooperation is not always per-
formed. We observe that when the number of relays increases
the SEP performances of the secondary systems improve. This
is because, when the number of relays increases, the central
schedular S may have better choices to select the best relay.
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Fig. 4. SEP comparison of O-DF with FTP and O-DF with ATP (a) Mr=4
relays, (b) Mr=2 relays.

Moreover, when the number of relays increases the probability
that all the relay do not respect the interference constraint
decrease and hence cooperation will often be performed. In
terms of data rate, the performances decreases when the
number of relay increases. This is because, as explained earlier
when the number of relay increases, the cooperation is often
performed which deteriorates the data rate. Obviously, when
the cooperation is always performed, the secondary system
will dispense more power (power allocated for the relay).
Finally, we observe that analytical and simulation curves are in
perfect accordance which validates the presented performances
analysis.

In Fig. 7, Fig. 8 and Fig. 9, we compare the SEP, the data
rate and the power consumed to transmit one symbol of the O-
AF with FTP and O-AF with ATP, respectively for a number
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Fig. 5. Data rate comparison of O-DF with FTP and O-DF with ATP for
Mr=4 relays and Mr=2 relays.
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Fig. 6. Power consumption comparison of O-DF with FTP and O-DF with
ATP for Mr=4 relays and Mr=2 relays.

of relays Mr = 4. In the presence of primary interference,
we observe that the deterioration in SEP of O-AF with FTP
compared to O-AF with ATP is not significant. Fig. 9 indicates
that O-AF with ATP requires more power than O-AF with FTP.
In the absence of interference, the deterioration in performance

becomes a little important that in the presence of primary
interference. This is expected since the primary interference
has a great impact on the SEP performances of the secondary
network. For data rate performance, Fig. 8 shows that O-AF
with FTP slightly outperforms O-AF with ATP. This is because
in O-AF with FTP, the cooperation is not always performed
contrarily to O-AF with ATP where cooperation is always
performed. Form Fig.7-Fig.9, we conclude that O-AF with
FTP requires less power than O-AF with ATP while preserving
close SEP performance to this latter and so, in this case it is
more interesting for practical implementation than O-AF with
ATP. The theoretical curves in Fig. 7-Fig. 9 match well with
the simulation curves. Moreover, the lower bound curves are
very close to the exact curves.

In Fig .10, Fig .11 and Fig. 12, we compare the SEP, data
rate and the average power consumed to transmit one symbol
of the PR with FTP and the PR with ATP, respectively for
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Fig. 7. SEP comparison of O-AF with FTP and O-AF with ATP for Mr=4
relays.
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Fig. 8. Data rate comparison of O-AF with FTP and O-AF with ATP for
Mr=4 relays.

a number of relays Mr = 4. Like other schemes, we note
that the SEP performances of both PR with FTP and PR with
ATP are close. Meanwhile, a difference in power consumption
is observed in Fig. 12. In the absence of interference, the
deterioration in SEP performance of PR with FTP compared
to PR with ATP is more important due to the improvement
of the channels qualities. In terms of data rate, Fig. 10 shows
that the data rate of PR with FTP is a little higher than that of
PR with ATP. The data rate of both schemes remain close in
the absence of interference. We observe that the exact curves
matches well with the simulation ones. Moreover, the provided
lower bound curves are close to the exact ones.

We conclude that in the presence of interference, which is
a practical case, the deterioration in performances due to the
use of FTP nodes is slight. These results can be exploited
to have insights in designing simple and efficient cognitive
radio networks. Also, for O-DF relaying, Figures show that
the deterioration of SEP performance compared to O-DF with
ATP is more important than O-AF with FTP and PR with
FTP relaying. This is due to the efficiency of cooperation
in DF relaying compared to AF relaying. Since in FTP the
cooperation is not always performed, this influences the SEP
performance when using DF relaying more that AF relaying.
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Fig. 9. Power consumption comparison of O-AF with FTP and O-AF with
ATP for Mr=4 relays.
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Fig. 10. SEP comparison of PR with FTP and PR with ATP for Mr ==4
relays.

VII. CONCLUSION

In this paper, we have showed that FTP needs less sig-
naling than the ATP and we have evaluated the performance
degradation incurred by the FTP nodes compared to the ATP.
We have investigated three relaying schemes using FTP for
an underlay radio cognitive network operating near a primary
receiver: O-DF with FTP, O-AF with FTP and PR with FTP.
Our proposed relaying schemes work by selecting a relay that
is able to satisfy the interference constraint imposed by pri-
mary receiver. The corresponding relaying schemes with ATP
are also presented in order to compare the performances of
relaying schemes with FTP: O-DF with ATP, O-AF with ATP
and PR with ATP. In these schemes, relays adjust their transmit
power in order to respect the primary interference constraint.
Exact form expressions in the absence and presence of primary
interference of the SEP, the data rate and power consumption
of O-DF are presented in order to validate simulation results.
For simplification reasons, exact form expressions for the SEP,
the data rate and the power consumption of O-AF with FTP
and PR with FTP are provided in the absence of primary
interference. Bounds of the performances of O-AF with FTP
and PR with FTP are given in both the absence and the
presence of primary interference. We proved that the use of
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Fig. 11. Data rate comparison of PR with FTP and PR with ATP for Mr =4
relays.
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Fig. 12. Power consumption comparison of PR with FTP and PR with ATP
for Mr =4 relays.

O-AF with FTP and PR with FTP consumes less power than
O-AF with ATP and PR with ATP, respectively. But, O-AF
with FTP and PR with FTP incurs a slight deterioration in SEP
performances compared to O-AF with FTP and PR with ATP.
For O-DF with FTP relaying, we found that the deterioration
of SEP performance compared to O-DF with ATP is more
important than O-AF with FTP and PR with FTP relaying.

APPENDIX A
EXPRESSION OF MΓS,D(s) AND MΓ

RO-DF
s D

(s) IN THE

PRESENCE OF PRIMARY INTERFERENCE

To derive the expression of MΓSD(s), we need to derive
the PDF and CDF of ΓSD.

We have ΓSD =
PS |hS,D|2

Pp|hPT,Y |2+N0
. Let Z = PS |hS,D|2

and Y = N0 + Pp|hPT,D|2. |hS,D|2 and |hPT,D|2 are two
exponential random variable with means 1

dα
S,D

and 1
dα
PT,D

,

respectively. The CDF of ΓSD = Z
Y is given by

FΓSD (γ) =

∫ ∞

N0

(
1− exp(− z

σ2
S,D

)
1

σ2
PT,Dγ

)

× exp(− t−N0

σ2
PT,Dγ

)dt, for γ ≥ 0, (37)
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where σ2
X,Y = PX

dα
X,Y

and σ2
PT,Y =

Pp

dα
PT,Y

. Solving this integral
yields to the following expression

FΓS,D (γ) = 1− σ2
S,D

σ2
S,D + σ2

PT,Dγ
exp(−N0γ

σ2
S,D

).

The PDF of ΓS,D can be obtained by making the derivative
of this expression with respect to γ. The obtained expression
is given by

fΓS,D (γ) =
N0

σ2
S,D + σ2

PT,Dγ
exp(−N0γ

σ2
S,D

)

+
σ2
S,Dσ2

PT,D

(σ2
S,D + σ2

PT,Dγ)2
exp(−N0γ

σ2
S,D

), for γ ≥ 0

The expression of MΓS,D(s) can be obtained by using the
expression of fΓS,D (γ) as in (7). For the derivation of
MΓ

RO-DF
s D

(s), we need the PDF of ΓRO-DF
s D. This is can be

determined as follows

fΓ
RO-DF

s D
(γ) =

∑
i∈U

fΓi,D (γ)
∏

k∈U,k �=i

FΓi,D (γ).

This can be yet expressed as (38) [19], where {lRi,k}|C|−1
k=1 is

the set of relays indices in C\{Ri}, [ξp(1), . . . , ξp(|C| − 1)]
is the binary representation of 0 ≤ p ≤ 2|C|−1 − 1, ξ(p) =
|C|−1∑
k=1

ξp(k) and

Λ1(γ) =
N0

σ2
Ri,D

+ σ2
PT,Dγ

and

Λ2(γ) =
σ2
Ri,D

σ2
PT,D

(σ2
Ri,D

+ σ2
PT,Dγ)2

. (39)

Finally, the expression of MΓ
RO-DF

s D
(s) can be obtained by

using the expression of fΓ
RO-DF

s D
(γ) as in (7).

APPENDIX B
EXPRESSION OF MΓ

RO-DF
s D

(s) IN THE ABSENCE OF

PRIMARY INTERFERENCE

If we ignore the interference from PT, then the PDF of
ΓRO-DF

s D when C �= ∅ is given by [19]

pΓ
RO-DF

s D
(γ) =

∑
Ri∈C

2|C|−1−1∑
p=0

(−1)ξ(p)

λ2
RiD

× exp

⎛
⎝−γ

⎛
⎝ 1

λ2
RiD

+

|C|−1∑
k=1

ξp(k)

λ2
RlRi,k

D

⎞
⎠
⎞
⎠ , (40)

where {lRi,k}|C|−1
k=1 is the set of relays indices in C\{Ri},

[ξp(1), . . . , ξp(|C| − 1)] is the binary representation of 0 ≤
p ≤ 2|C|−1 − 1 and ξ(p) =

|C|−1∑
n=1

ξp(n).

Using the PDF of ΓRO-DF
s D in (38), we can deduce its MGF,

MΓ
RO-DF

s D
(s) =

∑
Ri∈C

2|C|−1−1∑
p=0

(−1)ξ(p)

λ2
RiD

s+ 1 +
|C|−1∑
k=1

λ2
RiD

ξp(k)

λ2
RlRi,k

D

. (41)

APPENDIX C
EXPRESSION OF MγSRPR WITH FTP

s D
(s)

The expression of MΓ
SRPR with FTP

s D
(s) can be written as

MΓ
SRPR with FTP

s D
(s) =

∑
Ri∈U

MΓ
SRPR with FTP

s D
|RPR with FTP

s =Ri
(s)

×P(RPR with FTP
s = Ri). (43)

The probability P(RPR with FTP
s = Ri) is given by [20]

P(RPR with FTP
s = Ri) =

∑
Rk∈U
Rk �=Ri

2|U|−2−1∑
p=0

(−1)ξ(p)

1 +
λ2
SRk

λ2
SRi

+ λ2
SRk

|U|−2∑
n=1

ξp(n)

λ2
SRlRi,Rk,n

, (44)

where {lRi,Rk,n}|U|−2
n=1 = U\{Ri, Rk} is the set of relays

indices except Ri and Rk.
The conditional MGF MD|RPR with FTP

s =Ri
=

MΓS,D (s)MΓSRiD
(s), where, the expression of MΓSRiD

(s) is
given by (42) [18], where Ψ(a, b; z) is the Tricomi’s confluent
hypergeometric function [21] and

ϕ±
ν,μ(s) �

1

2
[s+ ν + μ±

√
(s+ ν + μ)2 − 4νμ].

Using (43) and (44), we obtain the MGF of Mγ
SRPR with FTP

s D
(s)

when U �= ∅.
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fΓ
RO-DF

s D
(γ) =

∑
Ri∈C
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n=1

Λn(γ)
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p=0
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⎞
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1 +
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](
1 +
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1
2 [ϕ

+
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)
− νRi + μRi

[ϕ+
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[
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