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 This paper proposes a statistical model for claims related to climatic events that exhibit 

huge volatility both in frequency and intensity, such these caused by tornadoes hitting the US. 

To duplicate this volatility and the seasonality, we introduce a new claim arrival process 

modeled by a Poisson process of intensity equal to the product of a periodic function with a 

multifractal process. The amplitudes of claims are modeled in a similar way, with gamma 

random variables. We show that this method allows simulation of the peaks of damage. The 

two dimension multifractal model is also investigated. The work concludes with an analysis of 

the impact of the model on spreads of weather  bonds related to claims caused by tornadoes.  
    
Key Words: Multifractal process, Claims process, Poisson, Gamma, Dependence, CAT bonds.   

 

1. Introduction 
 
As mentioned in the work of Barrieu and Scaillet (2008), weather is not only an 

environmental issue but also a key economic factor. W. Daley in 1998, the former US commerce 

secretary stated that at least $1 trillion of the world economy  is weather sensitive. There are 

mainly two solutions to hedge against economic losses caused by weather risk. The first one is 

to contract an insurance policy but it is not always a well suited solution as if could be for 

climatic events such storm or drought, or for events that exhibits a huge volatility in the 

frequency of occurences, such tornadoes. The second way to hedge weather risk is to purchase 

financial contracts depending on weather  conditions. This type of contracts are most of the 

time tailor made transactions, traded on the OTC (other the counter market) market. Some 

basic weather derivatives (mainly designed for the US) are however also traded on the Chicago 

Mercantile Exchange (CME).  The Weather Risk Management Association (WRMA) conducts 

every year a survey of the weather derivatives market. The value of trades in the year to March 

2011 totalled $11.8 billion, nearly 20% up on the previous year, though far below the peak 

reached before the financial crisis took the steam out of the business. In 2005-06 the value of 

contracts had hit $45 billion.  

 

The first weather contract was concluded in 1997 between Enron and Kock Industries 

and was based upon temperature indices. In parallel to the development of futures and 

options, whose the price is mainly related to the evolution of indices, weather and catastrophe 



(cat) bonds have appeared on the market. These bonds deliver coupons that are directly related 

to the occurences of climatic events. The weather or cat-bonds  are interesting tools of 

investment for investors looking for diversifaction, given that they have a very small correlation 

with traditional financial markets. The interested reader may refer to the work of Schmock 

(1999) for a detailed analysis of  the WINCAT bond, a cat bond linked to damages caused by hail 

and storm to motor vehicules insured with Winterthur in Switzerland. A survey of products and 

their applications is available in Barrieu and Dischel (2002). 

 

Physical models for the analysis and forecasting of claims related to recurrent 

meteorological events have a limited tractability for  financial applications such as the pricing of 

climatic products, given their complexity. For this reason, the existing literature on the pricing 

of weather derivatives mainly develop statistical models. For a survey, we recommend the PhD 

dissertation of Lopez  Cabrera (2010). In Vaugirard (2003) or in  Lee and Yub (2007), claims 

caused by weather catastrophes are modelled as a jump diffusion process. In Alaton et al. 

(2002) or Campbell and Diebold (2005), the index of temperatures is modelled by a Brownian 

motion with a seasonal drift. Other climatic indexes are modeled by an Ornstein-Uhlenbeck 

process such as in Dornier and Queruel (2000) and Benth and Benth (2007) and (2009). In 

Hainaut (2010), we have used a similar approach to model the arrival process of seasonal 

claims.   

 

The first purpose of this paper is to propose a new statistical model for the claims arrival 

and cost processes duplicating the seasonality of meteorologic events and the huge volatility 

exhibited by the frequency and amplitude of claims. The second goal is to illustrate how the  

proposed model can be used to price weather derivatives such cat bonds.  The novelty of our 

approach is that it considers that the parameters defining the claims arrival and cost processes 

are stochastic multifractal processes.  The literature about these models in statistics is rather 

sparse, even if multifractals are used since the early sixties in geophysics. The interested reader 

may refer to the survey of Lovejoy and Schertzer (2007) for an overview. Recent applications of 

fractals to meteorology may be found in Sachs et al. (2002) and Tchiguirinskaia and al. (2006).   

The model that we propose is based on Markov-Switching Multifractals processes that have 

been studied by Calvet and Fisher (2008). These are similar to on-off processes used to model 

data transmission (e.g. see Resnick and Samorodnitsky (2003)). Some applications of on-off 

processes in weather prediction have been studied by Mu and Zheng (2005). This  type of 

process is well adapted to duplicate memory effects that are often exhibited by empirical 

observations of weather indexes (see e.g. Brody et al. (2002) for an attempt to model these 

effecs with a fractional brownian).  To illustrate the utility of this model, we show that it is 

particularly efficient to model the volatility claims frequency and damage caused by tornadoes 

in the US. We show next that the fitted model can eventually be used to design a cat bond 

linked to these climatic events. The word "fractal' emerged on the scientific scene with the 

work of Mandelbrot (1982) in the 1960s and 1970s. Subsequently, multifractal processes 

became popular means of modelling financial times series. We refer the interested reader to 

the numerous publications of Mandelbrot, e.g. (1997) and (2001), for applications of these 

processes to finance. In actuarial sciences, apart from the work of Major and Lantsman (2001) 

that proposes methods to fit and simulate multifractal models in the context of two-



dimensional fields, there are very few applications. Our work aims to show that this type of 

models is nonetheless well adapted to introduce volatility in the traditional claims model.  

 
In the first part of this study, the claims arrivals and costs are assumed to be 

independent. We model those processes by a Poisson and a gamma distribution, whose 

parameters depend on a multifractal process and on a periodic function respectively. Those 

models are next calibrated to data related to tornadoes that hit the US. In the second part of 

this work, we propose a multivariate analysis of the claims process. We attempt to apply the 

two-dimensional framework developed by Calvet and Fisher (2008), to eliminate the 

assumption of independence between costs and frequencies. To conclude, we explore the 

influence of model choice on the pricing of catastrophe bonds. 

 

2. The Claims Arrival Process 

 

2.1 The model 
 
The frequency of many natural phenomena such as tornadoes or hurricanes exhibit 

seasonality combined with a huge volatility. Figure 1, presents the monthly numbers of 

tornadoes that hit the US between 1990 and 2008 (data retrieved on Sheldus
i
). It clearly shows 

that most of tornadoes are observed during the second term compared with the remainder of 

the year. Modeling the number of claims by a Poisson process with a constant intensity, as 

usually done for claim arrivals process, is consequently insufficient to capture this trend.  
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Figure 1: number of tornadoes per month from 1/1990 to 12/2008. 

  
The calculation of the smoothed average number of claims per month, on data from 

1990 to 2008, confirms a peak of intensity as illustrated in table 1. Replacing the constant 

intensity of the Poisson process by a constant piecewise intensity partly improves the modeling 

of the claims arrival process. However, we will see in the next section that the volatility of this 

process is still significantly lower than the overdispersion exhibited by real data.  

  



 One way to model overdispersion is to insert a stochastic component in the intensity. 

In a previous work, see Hainaut (2010), the intensity has been modeled as the sum of one 

seasonal function and of one Browian mean reverting process. We have fitted this model to the 

arrival process of tornadoes but the results were not satisfying (the high volatility of the 

Brownian motion leads to a negative intensity with a significant probability). This is why we  

have chosen in this work to multiply the intensity by a simple multifractal process ( a binomial 

cascade). This category of processes have been successfully applied in econometry or in data 

transmissions to model stochastic volatility of time series. In finance, Calvet and Fisher (2008, 

chapter 3) have shown that in many cases, multifractal volatility models outperform the Garch 

model. In the remainder of this section we adapt this theoretical framework  to model the 

claims arrival process. More precisely, the monthly number of tornadoes is modelled by a 

Poisson random variable whose intensity is driven by a multifractal process having some 

persistence properties. As illustrated in  numerical results, this approach  is efficient to generate 

peaks of tornadoes occurences. 
 
The number of claims observed on period t , is noted as tN  in the remainder of this 

work. This process is defined on a filtration tF , in a probability space Ω  coupled with a 

probability measure, noted as P . The intensity of tN  is a stochastic process, noted as tλ , and 

defined on a filtration tH . We note t∆  the length of the period, during which the intensity is 

constant. Conditionally on 0FH ∨t , the process tN  is a Poisson process for which the 

probability of observing k  jumps is given by the formula: 
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Interested readers may refer to Bremaud (1981, chapter 2) and Bielecki & Rutkowski 

(2004, chapter 6) for details on this kind of processes, called doubly stochastic. The intensity of 

our Poisson process is modeled as the product of a constant piecewise function )(tλ , with a 

multifractal process N
tF  that will be defined later. The function )(tλ  will be constructed to 

replicate the seasonality observed in the claims arrival process while the process N
tF  

introduces volatility in the claims frequency:  
 .)(= N

tt Ftλλ  (2) 

 
The function )(tλ  is piecewise constant and periodic. In the remainder of this work, we 

work on a monthly basis. )(tλ  is in this case equal to:  

 12mod=)( tit i ≡λλ  (3) 
 
We set iλ  to the smoothed average of claims observed during the thi  month of the year, 

between 1990 and 2008 (see table 1).  



  
  Month   iλ  

  January  20 

 February  25 

 March  53 

 April  102 

 May  118 

 June  103 

 July  60 

 August  42 

 September  33 

 October  25 

 November  21 

 December  21 

  
 Table 1:   )(tλ  average number of claims per month 

 
The process N

tF , adding volatility in the intensity tλ , is modeled by a multifractal 

process, as in the framework proposed by Calvet and Fisher(2008). This process is defined on 

the filtration tH . We assume that there exists m  climatic factors affecting the frequency of 

tornado occurences. Those climatic factors are unobservable and are modeled by a Markov 

state vector, N
tM , of m  components:  

 ( ) .,= ,2,1,
mN

tm
N

t
N
t

N
t MMMM +∈RK  

The process N
tF  is the product of those climatic factors: 

 12.mod== ,
1=

tiMF N
tk

m

k
i

N
tit ≡∏λλλ  

N
tM  is built in a recursive manner. Let us assume that the vector N

tM  has been built 

until period t . For each },{1,= mk K , the next period multiplier N
tkM ,  is drawn from a fixed 

distribution M  with probability kγ , and is otherwise equal to its previous value N
tk

N
tk MM 1,, = − . 

The distribution of M  is positive and is such that 1=)( ,
N

tkME . This last constraint ensures that 

on average, the intensity tλ  is equal to )(tλ . Calvet and Fisher recommend the following 

distribution for M :  
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which is fully determined by the parameters [0,1]0 ∈m . A Markov process 

N
tiM , , that 

equals 02 m− , increases the intensity. Conversely, if 0, = mM N
ti , the intensity of the claims 



arrival process is reduced. The probabilities mk 1...=γ  depend on two parameters (0,1)1 ∈γ  and 

)(1,∞∈b  as follows: 
 

 mk
kb

k ,1,=)(11
1

1 K

−
−−≡ γγ  (5) 

 
This rule of construction guarantees that 1<1 mγγ ≤≤K . If we note N

tk ,1  the indicator 

function equals 1 if there is a new draw from the distribution M  at time t , for the thk  

components, we have 
 mkP k

N
tk K1==1)=( , γ1  

This means that the last climatic factor 
N

tmM ,  changes value more frequently than the 

first climatic factor N
tM1, . The figure 2 illustrates this. It presents simulated trajectories of three 

climatic factors, involved in the evolution of the claims arrival process (the calibration of these 

factors is detailed in the next section). Clearly, the third component oscillates more frequently 

than the first one. 
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Figure 2: frequencies of fractal components. 

 
The main advantage of this model is its ability to capture low-frequency regime shifts 

and long volatility cycles of the claims arrival process. Furthermore, it allows a parsimonious 

representation (only three parameters) of a high dimensional state space. If we consider that 

there are 8=m  hidden climatic factors, the intensity at time t  can have 256=28  values. 
 
2.2 Calibration  
 
As mentioned in the previous paragraph, the function N

tF  can take md 2=  values. the 

Markov state vector N
tM  then takes finitely many values mdmm +∈RK,1 . The transition matrix 

djijiaA ≤≤ ,1, )(=  is fully determined by the mk 1...=γ . It has the following components:  
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For a given combination jm , the number of tornadoes occurring on the time interval 

],[ ttt ∆+  is distributed as a Poisson random variable with intensity:  

 .,1=12mod)(==
1=

djtikmF j
m

k
i

N
ti

j
t K≡∏λλλ  (7) 

 
where )(km j  is the thk  elements of the vector jm . In this case, the probability of 

observing tn  claims, given j
tλ , during this period is: 
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At time t , the vector of these probabilities for each combination of climatic factors is 

noted as ( ) djtt njtpntp
K1=),,(=),( . The climatic factors ( )

mk

N
tkM

1...=,  are not directly observable, 

but the filtering technique developed by Hamilton (1989) and inspired by Kalman's filter (1960) 

allows us to retrieve the probabilities of being in a state given all the previous observations. Let 

briefly summarize this filter. Let us note as tin ,0,= K

 the number of tornadoes observed in 

previous periods. Let us define the probabilities of presence in a certain state j  as: 
 
 ( )t

jN
t

j
t nnmMP ,,|== 1 KΠ  

 
Hamilton has proved that the vector ( ) mj

j
tt 1...== ΠΠ  can be calculated as a function of 

the probabilities of presence during the previous period: 
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where dR∈,1)(1,= K1  and yx *  is the Hadamard product ),,( 11 dd yxyx K . To start the 

recursion, we assume that the Markov processes have reached their stable distribution. 0Π  are 

then set to the ergodic distribution, which is the eigenvector of the matrix A , coupled to the 

eigenvalue equal to 1. If we observed the claims process on T  months, the loglikelihood is:  

 ( ) .),,(ln=),,|(ln 1
0=

101 AntpbmnnL tt

T

t
T −Π∑γK  (10) 

The most likely parameters are obtained by numerical maximization of ((10)). 
 
2.3 Empirical Illustration 



 
The calibration of the claim arrival process has been performed on monthly data from 

1990 to 2008, comprising 576 observations. We have first fitted a basic Poisson process, with a 

constant intensity, by loglikelihood maximization. We get on average 51 tornadoes per month, 

for a loglikelihood of -5246. Next, the loglikelihood of a Poisson process having a time 

dependent intensity given in table 1 has been computed. The loglikelihood is improved. 

Nonetheless, a comparison of simulated tN  with real number of claims indicates that the 

volatility of this model is significantly lower than the real one. 

 
Table 2 presents the calibrated parameters of multifractal models, counting five to nine 

hidden climatic factors. Calculations have been performed in SAS. The highest likelihood is 

obtained with nine components (512 states). Note that we observe a certain stability of 

parameter values between models. 
  

  m    Parameter   Estimates   Std. Err.   Loglik.  

 9   1γ    0.1247   0.0875   -1110.849  

  b    1.7750   0.5521    

  0m    0.7405   0.0043    

 8   1γ    0.2218   0.1170   -1133.168  

  b    1.5524   0.3532    

  0m    0.7477   0.0059    

 7   1γ    0.2620   0.1558   -1159.252  

  b    1.5696   0.4701    

  0m    0.7448   0.0055    

 6   1γ    0.2300   0.1372   -1150.353  

  b    1.7850   0.6402    

  0m    0.7056   0.0049    

 5   1γ    0.2460   0.1323   -1194.588  

  b    1.7283   0.5362    

  0m    0.6412   0.0055    

 4   1γ    0.1295   0.0617   -1311.508  

  b    4.1602   2.8746    

  0m    0.5784   0.0082    

Table 2 : Parameters of tN  

 
In figure 3, we have plotted 2 simulated trajectories of the claims arrival process, with 

nine fractals, versus the observed number of tornadoes from January 2001 to December 2008. 

This graph reveals that our model is able to generate peaks of activities, similar to real ones. 
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Figure 3: Example of simulated numbers of tornadoes. 

 
In table 3, we compare the first two moments of the observed monthly number of 

tornadoes (from 1990 to 2008), with the moments of a sample of 1000 simulations. These 

figures tend to confirm that the model duplicates the seasonality and volatility of the claims 

arrival process reasonably well. 
 

Month  Historical 

mean 

Historical std Simulated 

mean 

Simulated 

std 

January 26 39 20 17 

February 25 29 25 20 

March 57 27 54 43 

April 86 44 101 81 

May 120 92 121 95 

June 77 39 100 80 

July 48 23 59 50 

August 33 23 42 36 

September 40 43 32 26 

October 38 30 24 20 

November 48 43 22 18 

December 15 15 20 15 

  
Table 3: average number of claims and standard deviations per month 

 

3. The Size of Claims 

 

3.1 The model 
 
Figure 4 presents the mean monthly cost of damage caused by one tornado. The 

amplitude of claims varies considerably between months. An analysis of the smoothed average 

deflated cost of one tornado per month, contained in table 4 (second column), computed on a 

period from 1990 to 2008, shows that damage costs seem higher in April and May. From June 



to October, the average costs exhibit small oscillations. 
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Figure 4: Observed mean monthly cost caused by one tornado. 

 

In the remainder of this work, we denote by tC , the (deflated) cost of damage caused by one 

tornado, during the period ],[ ttt ∆+ . The choice of the probability distribution for claim costs 

should ideally take into account a certain degree of seasonality. Given the observations, the 

damage are more expensive in April and May. Furthermore, costs exhibit huge volatility. To 

capture these trends, the cost process is modeled by a gamma random variable, whose mean 

parameter is the product of a time dependent function and a multifractal process. Note that we 

have tested different laws such as exponential or Pareto to model the costs of tornadoes but 

none of them are satisfactory. 
 

tC  as tN  are defined on the filtration tF . The mean cost of tC  at time t  is noted as tτ  

and is a stochastic process defined on a filtration tE . tτ will be defined later. Conditionally to 

0FE ∨t , the density of costs caused by one tornado tC  occurring in the period ],[ ttt ∆+ , is 

gamma distributed: 
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 where +∈Rν . The mean cost of damage is defined as the product of a piecewise 

constant periodic function )(tτ  with a multifractal process C
tF  : 

 .)(= C
tt Ftττ  (11) 

 As we work by steps t∆  of one month, )(tτ  is in this case equal to:  

 12mod=)( tit i ≡ττ  (12) 

 where the chosen iτ  are provided in the third column of table 4. The values of 1...12=iτ  

differs slightly from the smoothed average cost, presented in the second column of the same 

table. In particular, we have removed the oscillations observed from July to October. 
  



  Month   Observed average 

costs  ($)
 

Model costs 

($) iτ
  

 

  January  673 123 673 123 

 February  673 123 673 123 

 March  1 059 905 1 059 905 

 April  1 351 749 1 351 749 

 May  1 241 208 1 241 208 

 June  840 978 840 978 

 July  676 593 676 593 

 August  645 338 645 338 

 September  645 338 645 338 

 October  645 338 645 338 

 November  645 338 645 338 

 December  645 338 645 338 

  
Table 4:  )(tτ  average claim cost per month in $. 

 
The amplitude of cost is assumed to be independent from the claims arrival process. In 

this setting, the cost of claims is also influenced by Cm  unobservable factors, independent from 

those driving the claims arrival process. These factors are modeled by a Markov state vector, 
C
tM   

 ( ) .,,= ,2,1,
nC

tm
C

t
C

t
C
t MMMM +∈RK  

is built in a similar way to the state vector tM  affecting the number of tornadoes, and is 

fully parametrized by three parameters ),,( 10
CCC bm γ . The multipliers 

C
tkM ,  are drawn from a 

fixed distribution CM , with probability C
kγ  , as defined by equations (4) and (5). Otherwise, the 

multiplier is equal to its previous value C
tk

C
tk MM 1,, = − . The distribution of CM  is also such that 

1=)( ,
C

tkME . The process C
tF  is the product of these factors: 

 12.mod=)(= ,
1=

tiMFt C
tk

Cm

k
i

C
tt ≡∏τττ  

This process is defined on the filtration tE . The calibration is done as for claims arrival 

process by the Hamilton filter (1989). C
tM  can take 

Cmd 2=  values .1..=, djCm  The matrix of 

transition probabilities between these states is noted as CA . The vector of probabilities of 

presence is noted as C
tΠ  and is computed by equation ((9)). If Tcc ,,1 K  are the costs observed 

on the past T  periods, the loglikelihood is given by: 

 ( )CC
tt

C
T

t

CCC
T AcfbmccL 1

0=
101 ),(ln=),,,|(ln −Π∑νγK  

where )( t
C cf  is the vector of density ( )

djjt
C cf

K1=
)|( τ . The parameters CCC bm ,, 10 γ  and ν  

are obtained numerically by maximization of this loglikelihood. 



3.2 Empirical Illustration 
 
As for the claim arrival process, the cost process is fitted on monthly data from 1990 to 

2008, that is 576 observations. We have first fitted a basic gamma distribution to claim costs. In 

this model, a claim caused by one tornado costs on average $1.0314 milliion and has a volatility 

equal to $1.108 million. The loglikelihood is -3264. The next table presents the loglikelihoods 

and parameters of multifractal models with five to nine components. Increasing the number of 

volatility components does not reveal a significant improvement. 
  

  m    Parameter   Estimates   Std. Err.   Loglik.  

 9   1γ    0,1283   0,2132   -3223,746  

  b    4,0087   5,5231    
  0m    0,7181   0,0326    

  ν    2,4828   0,8762    

 8   1γ    0,1491   0,2017   -3223,805  

  b    4,9044   19,0991    

  0m    0,7028   0,0326    

  ν    2,4802   0,8332    

 7   1γ    0,1646   0,1617   -3223,846  

  b    7,3779   13,9051    

  0m    0,6816   0,0368    

  ν    2,5341   0,8875    

 6   1γ    0,1822   0,1545   -3223,898  

  b    8,5550   13,4898    

  0m    0,6602   0,0345    

  ν    2,4658   0,7193    

 5   1γ    0,2094   0,1705   -3224,011  

  b    9,4178   17,9029    

  0m    0,6260   0,0439    

  ν    2,5280   0,9224    

 4   1γ    0,2335   0,1721   -3224,115  

  b    9,9730   20,6153    

  0m    0,5852   0,0383    

  ν    2,4140   0,5996    

Table 5:  Parameters for the claims cost. 
 
In figure 5, we have plotted 2 simulated trajectories of the cost process, versus the 

mean monthly cost of damage caused by one tornado, from January 2001 to December 2008. 

This graph reveals that our model is able to generate peaks of activities, similar to real ones. 
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Figure 5: Example of simulated average costs ( .000$ ). 

 

4. Multivariate analysis 

 

4.1 Two-dimensional Multifractal Process 
 
Instead of modelling frequency and severity independently, as done in the previous two 

sections, it could be interesting to analyze a modelling strategy for simultaneous fitting. We test 

a bivariate model in which the multifractal processes influencing claims costs and numbers are 

dependent. 
 
In this subsection we consider a Poisson-Gamma model whose means depend on 

dependent multifractal processes. As previously, the number of claims tN , observed in the 

period ],[ ttt ∆+  is assumed to be Poisson, and its intensity is modeled as the product of a 

constant piecewise function )(tλ , and of a multifractal process N
tF  :  
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 where iλ  are those presented in table 1. The amplitude of claims, tC , caused by one 

tornado observed in the period ],[ ttt ∆+  is modelled as in section 3 by a Gamma random 

variable. Its shape parameter is noted as ν  and its mean is the product of a piecewise constant 

function and of a multifractal process C
tF  , having as much components, m , as N

tF :  
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 where iτ  are those presented in table 4. N
tkM ,  and C

tkM ,  are characterized by the same 

triplet ),,( 10 bm γ . 

 
In this paragraph, the assumption of independence between frequencies and costs is 



dropped. We use a two-dimensional model allowing dependence between claims and costs 

with  multifractal mean. We suppose the same multifractal structure as in sections 2 and 3. 

However, in the bidimensional multifractal process, not only do the frequency and severity 

models share some parameters, but also another parameter models the unconditional 

correlation between the arrival of C
tkM ,  and N

tkM , .  

 
As previously, the probability of having a new draw from the distribution M , for the 

component N
tkM ,  , is noted as kγ :  

 mkP k
N

tk K1==1)=( , γ1  

Following Fisher and Calvet (2008, chapter 4), we assume that there exists [0,1]∈θ  

such that the condition 
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is satisfied. If 0=θ  or if 1=θ  , N

tkM ,  and C
tkM ,  are respectively independent or 

dependent. Furthermore, it is assumed that the arrivals vector is symmetrically distributed 

( ) ( )C
tk

N
tk

d
N

tk
C

tk ,,,, ,=, 1111 . Its distribution is then defined as follows: 

 

 

( )
( )
( )

( )











−−−
−−
−−
+−

)(11)(1=0)=,0=(=

1)(1=0)=,1=(=

1)(1=1)=,0=(=

)(1=1)=,1=(=

,,00

,,10

,,01

,,11

θγγ
γθγ
γθγ
θγθγ

kk
N

tk
C

tk
k

kk
N

tk
C

tk
k

kk
N

tk
C

tk
k

kk
N

tk
C

tk
k

Pp

Pp

Pp

Pp

11

11

11

11

 (14) 

  

The third equality is a direct consequence of the symmetry of ( )N
tk

C
tk ,, ,11 . The expression 

of kp00  is obtained from the relation .1=0010 k
kk pp γ−+  The marginal distributions of C

tk ,1  is 

identical to the marginal distribution of 
N

tk ,1 :  

 mkP k
C

tk K1==1)=( , γ1  

Furthermore, from ((14)), we can infer the conditionial probabibilities when 0=,
N

tk1 : 
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Let us denote ),(= ,1,,1,
C

tm
C

t
N

tm
N
tt MMMMM KK  the m  vector of volatility components. 

tM  can take md 4=  possible values, mdmm 21 ,, +∈RK . The probabilities of switching from one 

state to another one are given by the transition matrix djijiaA ≤≤ ,1, )(=  where  

 



 ( ) ( )

( ) 


−







++−−+−




 +







++−−++−∏

++

)}(=)()(1)}(=)()(11
2

1
)(1

2

1
)}(=)())(1(1

2

1
)(1=

)=|=(=

{{

{
1=

11,

kmkkmmkm

kmmkm

mMmMPa

ijmkijmkk

kijmkk

m

k

i
t

j
tji

II

I

γγθγθ

γγθθγθ

 
 
 Let us note as tiiiti cno ,0,=,0,= ),(=

KK

 the observed number and costs of tornadoes on the 

past periods. The probabilities of presence in a certain state j  are denoted as in the previous 

section ( )t
j

t
j
t oomMP ,,|== 1 KΠ . The vector ( ) mj

j
tt 1...== ΠΠ  If we observed the arrivals and 

costs processes on T  months, the loglikelihood is: 

 ( )AotpbmooL tt

T

t
T 1

0=
101 ),,(ln=),,,,|(ln −Π∑νθγK  (15) 

 where ),( totp  is the vector of probability density functions of the claim arrivals and 

costs processes. Again, The parameters are obtained numerically by maximization of this 

loglikelihood.  
 
7.2 Empirical Illustration 
 
The next table presents the parameters fitting the bidimension process to frequencies 

and amplitudes of claims caused by tornadoes. With an equivalent number of fractal 

components and fewer parameters, the 2D model has a log-likelihood slightly lower than the 

sum of log-likelihoods of standalone arrivals and claims models. Note that the dependence 

parameter θ  is close to zero for two fractal components and increases with m . In our opinion, 

this reveals a higher degree of dependence between high frequency fractal components than 

between low frequency components. 
  

  m    Parameter   Estimates   Std. Err.   Loglik.  

 6   1γ    0,1934   0,0699   -4364,056  

  b    2,2967   0,4677    

  0m    0,7038   0,0048    

  θ    0,4215   0,7360    

  ν    1.9573   0,2700    

 5   1γ    0,1870   0,0650   -4409,264  

  b    2,3501   0,4241    

  0m    0,6394   0,0052    

  θ    0,5512   0,3485    

  ν    2,1318   0,3201    

 4   1γ    0,1654   0,0596   -4529,002  

  b    3,5859   0,8235    



  0m    0,5796   0,0084    

  θ    0,0692   0,5654    

  ν    2,2928   0,3774    

 3   1γ    0,2827   0,0791   -4671,987  

  b    3,6959   0,9883    
  0m    0,5890   0,0066    

  θ    0,0000   0,5317    

  ν    1,9070   0,2399    

 2   1γ    0.4416   0.0892   -4925.479 

  b    3.8246   2.1702    

  0m    0.5150   0.0080    

  θ    0.0000   0.4331    

  ν    1.5721   0.1802    

Table 6: Calibration of a 2D multifractal process. 
 
It would be interesting to analyze a bimensional multifractal model with 7≥Nbk , but it 

needs a transition matrix of more than 74  rows. Calvet and Fisher propose to use a numerical 

procedure for the inference, via a particle filter. This area of research should be investigated. 
 

9. Pricing of Catastrophe bonds 
 
9.1 Spread calculations 
 
A reinsurer can securitize a portfolio of reinsurance treaties so as to tranfer the risk to 

other potential investors looking for diversification. The reinsurance treaties are transferred to 

a special purpose vehicle (SPV), and in exchange for collateral, investors receive a periodic 

floating payment, linked to the amount of claims covered by treaties. The success of the 

issuance of such weather derivatives depends on the pricing and the specification of the model 

chosen to replicate the costs caused by the natural catastrophes covered by reinsurance.  
 
The aims of this section are twofold. First, we underline the impact of working with 

multifractal models on the pricing of catastrophe bonds linked to claims caused by hurricanes 

hitting the US. Our results are compared with those obtained with a basic Poisson Gamma 

model. The second objective is to exhibit the influence of seasonality on pricing. 
 
In this section, we assume that the risk faced by an insurance bondholder is inherent to 

his exposure to accumulated insured property losses. This process of accumulated losses, which 

is denoted by tX  in the sequel of this work, depends both upon the frequency of claims tN  and 

on the magnitude of claims. The process of aggregated losses is defined by the following 

expression: 
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 The insurance bond priced in this section pays a periodic coupon equal to a constant 

percentage of the nominal reduced by the amount of aggregated losses, exceeding a certain 

trigger level. At maturity, what is left of the nominal is repaid. To compensate for this eventual 

loss of nominal, the coupon rate always exceeds the risk free rate. If few claims occur, the 

bondholder is rewarded at a higher rate than the one obtained by investing in risk-free assets 

with the same maturities. Conversely, in the case of catastrophic losses, the nominal of the 

bond can fall to zero and the payment of coupons can be interrupted. To understand how the 

spread of this bond is priced, we need to introduce some additional mathematical notations. 
 
Let us note as BN the initial nominal of the bond. The level above which the excess of 

aggregated losses is deduced from the nominal, is noted as 1K  and called ``attachment point''. 

If the total insured losses reach the amount of BNKK +12 =  , before maturity, the bond stops 

delivering coupons and the nominal is depleted. The bond, issued at time 0t , pays n  coupons, 

at regular intervals of time, t∆ , ranging from 1t  to nt . The coupon rate is the sum of the 

constant risk free rate of maturity nt  , and of a spread, that are respectively noted as r  and sp . 

The coupons paid at times nit 1...=  are noted as )( itcp  and defined as follows: 
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 The term between brackets is the (stochastic) nominal of bond at time it  and is written 

it
BN  in the sequel of our developments. Note that 

0t
BN  is worth BN . Based upon the 

principle of absence of arbitrage, the spread of the insurance bond is chosen such that the 

expectations of future discounted spreads and of future discounted cutbacks of nominal are 

equal. The expectations of future discounted spreads and reductions of nominal are 

respectively termed the ``spreads leg'' and the ``claims leg'' (this terminology is inspired by that 

of credit derivatives). They are defined by the following expressions: 
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 By making equal equations ((17)) and ((18)), we infer the following fair spread rate that 

will added to the risk free rate, at the issuance of the insurance bond: 
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 Despite the apparent simplicity of this last expression, the expected future nominals are 

not calculable by a closed form equation and we have to rely on numerical methods to appraise 

them. Among the numerical tools available, we have chosen a Monte Carlo method. 
 
9.2 Numerical applications 
 
In this section, we have attempted to price insurance bonds linked to the aggregated 

costs caused by US tornadoes. The exposure of the insurer issuing the insurance bonds is 

assumed to be 1/1000 of the total claims cost. As in Vaugirard (2003), we have computed by 

Monte Carlo simulations the spreads of insurance bonds of maturities ranging from one to five 

years, and paying quarterly, biannual and annual coupons. The risk free rate is constant and set 

to 3%. The nominal, NB  , is 15 million and is reduced if the aggregated losses breach the 

trigger of 5 million.  
 
Two approaches are compared. In the first one, the claims and arrivals are modelled by 

independent multifractal processes, with nine fractal components. Parameters used to simulate 

claims scenarios are those presented in tables 2 and 5. In the second approach, the claims and 

arrivals processes are modeled by a two-dimensional multifractal process, with six components. 

Parameters used in this simulation are those of table 6.  

 
Tables 7 and 8 presents the spreads obtained with 10000 simulations. The spreads 

obtained with the 2D model are clearly higher than those obtained under the assumption of 

independence between claims and costs processes. An analysis of simulations points to positive 

dependence between the number of losses and the amplitude of damage caused by tornadoes. 

We also observe that for long-term bonds, the spreads are very high. This is directly related to 

the fact that the attachement point is breached in most of scenarios after one year. To confirm 

this intuition, we have plotted in figure 6, the average evolution of the nominals, for the two 

considered models. On average, the nominal is reduced of 3 and 5 million after five years, 

depending on the model chosen. This graph reveals the influence of seasonlity on the trajectory 

of the nominal. From July to March, the nominal decreases more slowly than during the spring. 

Note that the volatility of the nominal is high. The 5% percentile of the nominal distribution 

after five years is null. We have also priced the insurance bonds with a simple Poisson Gamma 

process. This method produces quasi null spreads! 
  

    Quarterly   Semi-annual   Annual 

  1 y   1.03%   2.06%   4.11% 

 2 y   2.72%   5.45%   10.89% 

 3 y   5.42%   10.89%   21.77% 



 4 y   8.54%   17.20%   34.40% 

 5 y   11.35%   22.89%   45.84% 

Table 7. Spreads in %, independent fractal models. 
 
  

    Quarterly   Semi-annual   Annual 

  1 y   0.96%   1.92%   3.84% 

 2 y   5.94%   11.94%   23.89% 

 3 y   11.25%   22.69%   45.47% 

 4 y   14.93%   30.19%   60.55% 

 5 y   17.57%   35.55%   71.36% 

Table 8. Spreads in %, bivariate fractal models. 
 
  

0 1 2 3 4 5
4

6

8

10

12

14

Years

00
0.

00
0 

$
Two dimensions Multifractal Model

 

 

Mean

5% percentile

95% percentile

0 1 2 3 4 5
4

6

8

10

12

14

Years

00
0.

00
0 

$

Independent Multifractal Model

 

 

Mean

5% percentile
95% percentile

 
Figure 6: Evolution of nominal. 

 
 

Conclusion 
 

This paper proposes an new statistical model based on fractals able to duplicate the 

seasonality of meteorologic events and the huge volatility exhibited by the frequency and 

amplitude of claims. The innovation of our approach is that it considers a traditional Poisson-

gamma model for claims aggregated costs, in which parameters are Markov switching 

multifractals. To justify the utility of this model, it is fitted to the claims process, caused by 

tornadoes, that hit the US in the last decades. We observe a significant improvement of 

loglikelihoods with our model, compared to traditional Poisson-Gamma models.  
 
In the first part of this study, the claims arrivals and costs are assumed to be 

independent. In the second part of this work, we perform a multivariate analysis of the claim 

process. We attempt to apply the 2-dimensional framework developed by Calvet and Fisher 



(2008), to drop the assumption of independence between costs and frequencies. This last 

model fits the tornado process with fewer parameters much better than previous methods do. 

Apparently, dependence appears when the number of fractals increases. 
 
In the last part of this work, we investigated the impact of adopting a multifractal model 

on the pricing of generic catastrophe bonds, linked to US tornadoes. Our results reveals that 

the two-dimensional multifractal model leads to the highest spreads. This is due to the positive 

dependence between the number and amplitude of claims. We believe that using a multifractal 

model can lead to a better pricing of a wide category of insurance bonds, but this point needs 

further investigations. 
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