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Abstract

This paper examines the validity of some stylized statements that can be found in the actuar-
ial literature about random effects models. Specifically, the actual meaning of the estimated
parameters and the nature of the residual heterogeneity are discussed. A numerical illustra-
tion performed on a Belgian motor third party liability portfolio supports this discussion.
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1 Introduction

1.1 Motivation

Risk classification techniques for claim counts have been the topic of many papers appeared
in the actuarial literature. The mixed Poisson distribution is often used in this context. The
randomness of the annual expected claim frequency accounts for unkwown characteristics of
the driver, influencing the number of accidents reported to the company.

When panel data are available, these hidden features can alternatively be captured by
an individual heterogeneity term that is constant over time. This paper aims to confront
the two approaches with emphasis on the actual meaning of the estimated parameters in
a mixed Poisson regression when random effects and covariates are correlated. In such a
case, parameters estimates should be seen has the apparent effects of the covariates on the
frequency. Keeping this in mind allows for a better understanding of the resulting price list.

1.2 Agenda

Two kinds of models can be used with longitudinal data: the fixed effects model and the
random effects model. Both are briefly described in Section 2. In random effects models,
three kinds of heterogeneity distributions are considered in this paper: Gamma, Inverse-
Gaussian and Log-Normal. In Section 3, following the work of Mundlak (1978), we link the
fixed effects model to the random effects model by a regression on the individual heterogeneity
terms. We show that the combination of the fixed effects model with this regression, gives
approximately the same results as the random effects model. The final Section 4 concludes.

1.3 Description of the Data

In this paper, we work with a Belgian motor third party liability insurance portfolio com-
prising 9,894 policies followed for a period of 3 consecutive years (from 1997 to 1999). Thus,
we work with 29,682 observations. For each contract, we have informations about the annual
number of claims together with some characteristics of the insured : sex of the driver (man
or woman), age of the driver (divided in 3 classes : 17-22, 23-30 and more than 30), power of
the vehicle (less than 66kW or more than 66kW) and the size of the city where the insured
was living (big, medium or small, based on the number of residents). Figure 1.1 describes
the observed annual claim frequency and the distribution of the policyholders according to
their characteristics.

2 Panel Data Models

2.1 Presentation

Our portfolio is composed of N = 9, 884 policyholders. Each policyholder i is observed
during T = 3 periods. Let Ni,t be the number of reported claims for insured i during
year t. Such data are called longitudinal data (or panel data). They consist of repeated
observations of individual units that are followed over time. Each individual is assumed
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Figure 1.1: Description of the motor third party liability portfolio.
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to be independent of the others but correlation between observations relating to the same
individual is permitted. Here, we assume that the number of claims per year obeys to
a Poisson distribution with a parameter specific to each policyholder. Specifically, Ni,t is
assumed to be Poisson distributed with mean θiλi,t, i = 1, ..., N , t = 1, ..., T . The expected
annual claim frequency is a product θiλi,t of a static factor θi times a dynamic factor λi,t.
The former accounts for the dependence between observations relating to the same insured.
The latter introduces the observable characteristics (that are allowed to vary in time). In
general, ln λi,t is expressed as a linear combination of the observable characteristics, that is
λi,t = exp(β0 + β′xi,t), where β0 is the intercept, β′ = (β1, . . . , βp) is a vector of regression
parameters for explanatory variables xi,t = (xi,t,1, . . . , xi,t,p)

′.
There are two standard ways of dealing with panel data. In the random effects model,

the heterogeneity parameter is treated as a random variable θRE
i with unit mean. At the

portfolio level, the θRE
i ’s are assumed to be independent and identically distributed. In the

fixed effects model, the heterogeneity parameter θFE
i is treated as a parameter to be estimated

for each individual. In this case, no intercept enters the model (to ensure identifiability).
Conceptually, these two models are quite different. While the fixed effects model makes
inferences conditional on the effects present in the sample, the random effects model draws
conclusion for the population.

A major difference between the two approaches is that the fixed effects model provides
only estimates for the parameters of time varying characteristics, since all the other param-
eters can been seen as part of the individual term θFE

i . Further explanations concerning
differences between these two models are discussed in Section 3. A standard reference for
linear models of panel data is Hsiao (2003), and a good review for count data is provided
in Cameron & Trivedi (1998).

2.2 Random Effects Model

2.2.1 Description

In the random effects model (henceforth, quantities relating to the random effects model will
be indicated by the superscript RE), θRE

i is considered as a positive random variable, with
probability density function g(·). Given θRE

i , the annual claim numbers Ni,1, Ni,2, . . . , Ni,T

are independent. The joint probability function of Ni,1, ..., Ni,T is thus given by

Pr[Ni,1 = ni,1, ..., Ni,T = ni,T ]

=

∫
∞

0

Pr[Ni,1 = ni,1, ..., Ni,T = ni,T |xi,1, ..., xi,T , θRE
i ]g(θRE

i )dθRE
i

=

∫
∞

0

(
T∏

t=1

Pr[Ni,t = ni,t|xi,1, ..., xi,T , θRE
i ]

)
g(θRE

i )dθRE
i

=

∫
∞

0

(
T∏

t=1

exp(−θRE
i λRE

i,t )
(θRE

i λRE
i,t )ni,t

ni,t!

)
g(θRE

i )dθRE
i . (2.1)

Estimation of parameters is performed using maximum likelihood estimators or moment
techniques. The GEE method of Liang & Zeger (1986) can be a solution to account for the
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dependence between each observation of the same insured as shown in Denuit, Pitrebois

& Walhin (2003). However, for this paper, we will restrict ourselves to maximum likelihood
estimates for all models analysed.

2.2.2 Poisson-Gamma Model

If θRE
i follows the Gamma distribution with mean 1 and variance 1

ν
, the joint probability

function of Ni,1, ..., Ni,T writes

Pr[Ni,1 = ni,1, ..., Ni,T = ni,T ]

=

(
T∏

t=1

(λRE
i,t )ni,t

ni,t!

)
Γ(ni,• + ν)

Γ(ν)

(
ν

∑T
i=1

λRE
i,t + ν

)ν ( T∑

i=1

λRE
i,t + ν

)−ni,•

, (2.2)

where ni,• =
∑T

t=1
ni,t. In this case,

E[Ni,t] = λRE
i,t < V[Ni,t] = λRE

i,t + (λRE
i,t )2/ν.

Maximum likelihood estimations of parameters and variances can be obtained as follows.
The first order conditions for parameters βRE

0 , βRE and ν lead to the system

n∑

i=1

T∑

t=1

ni,t − λi,t

∑
t ni,t + ν∑
t λi,t + ν

= 0 (2.3)

n∑

i=1

T∑

t=1

xi,t

(
ni,t − λi,t

∑
t ni,t + ν∑
t λi,t + ν

)
= 0 (2.4)

n∑

i=1

(
ni,•−1∑

j=1

1

j + ν

)

− log

(
1 +

∑
t λi,t

ν

)
+
∑

t

λi,t + ni,t∑
t λi,t + ν

= 0. (2.5)

Numerical procedures can then be used to solve these equations.

2.2.3 Poisson-Inverse Gaussian Model

The Inverse Gaussian distribution is another good candidate to model the heterogeneity
parameter (Willmot (1987), Dean, Lawless & Willmot (1989) and Tremblay (1992)
for an application with insurance data). Shoukri et al. (2004) showed that the Poisson
with Inverse-Gaussian heterogeneity of mean and variance equal to 1 and τ respectively, has
the joint probability function

Pr[Ni,1 = ni,1, ..., Ni,T = ni,T ]

=

(
T∏

t=1

(λRE
i,t )ni,t

ni,t!

)( 2

πτ

)0.5

e1/τ

(
1 + 2τ

T∑

t=1

λRE
i,t

)−si/2

Ksi
(zi) (2.6)
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where Kj(.) is the modified Bessel function of the second kind, si = ni,• − 0.5 and

zi =
1

τ

√√√√1 + 2τ

T∑

t=1

λRE
i,t .

The modified Bessel function of the second kind has some useful properties that can be used
to find the maximum likelihood estimators (for more details, see Shoukri et al. (2004)).

Now, V[Ni,t] = λRE
i,t + τ(λRE

i,t )2. The maximum likelihood estimators of βRE
0 and βRE

solve
n∑

i=1

T∑

t=1

ni,t − λi,tM (ni,•) = 0 (2.7)

n∑

i=1

T∑

t=1

xi,t (ni,t − λi,tM (ni,•)) = 0, (2.8)

where the function M(.) can be expressed as the ratio of the modified Bessel function of the
second kind

Kni,•+1/2(a)

Kni,•−1/2(a)
= M(ni,•)

√√√√1 + 2τ
T∑

t=1

λRE
i,t .

The estimation of the parameter τ can be found by solving

− 1

2τ
− 1

τ 2
− si

∑
t λi,t

1 + 2τ
∑

λi,t
+

∂ log Ksi
(zi)

∂τ
= 0 (2.9)

where the derivative of the function K is equal to :

∂ log Ksi
(zi)

∂zi
= −M(ni,•)

√
1 + 2τ

∑

t

λi,t +
(ni,• − 1

2
)τ

√
1 + 2τ

∑
t λi,t

(2.10)

∂zi

∂τ
=

∑
t λi,t

τ
√

1 + 2τ
∑

t λi,t

−
√

1 + 2τ
∑

t λi,t

τ 2
. (2.11)

Again, numerical procedures are needed to obtain the solutions.

2.2.4 Poisson-Log Normal Model

In biostatistical circles, the Poisson Log-Normal model is often used, after Hinde (1982). In
this case, the error term can be expressed as θRE

i = exp(ǫi) for some Gaussian noise ǫi. From
this, the mean parameter has the form exp(x′

i,tβ
RE + ǫi) = γi,t, with ǫi following a Gaussian

distribution with mean µ = −σ2/2 (a simplifying normalization) and variance σ2. In this
case,

Pr[Ni,1 = ni,1, ..., Ni,T = ni,T ] =

∫
∞

−∞

(
T∏

t=1

e−γi,t(γi,t)
ni,t

ni,t!

)
1√
2πσ

exp

(
− ǫ2

i

2σ2

)
dǫi. (2.12)
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Variable Parameter Gamma Inv. Gaussian Log Normal

Intercept - -2.0059 (0.034) -2.0063 (0.034) -2.0064 (0.034)
Age 17 − 22 0.4009 (0.088) 0.4030 (0.088) 0.4034 (0.088)

23 − 30 0.1964 (0.034) 0.1983 (0.034) 0.1988 (0.034)
> 30 0 0 0

City Big 0.2337 (0.041) 0.2345 (0.041) 0.2346 (0.041)
Medium 0.1106 (0.041) 0.1100 (0.041) 0.1098 (0.041)
Small 0 0 0

ν - 2.6638 (0.314) - -
τ - - 0.3940 (0.048) -
σ2 - - - 0.3363 (0.036)

Log-Likelihood - -12,937.60 -12,936.30 -12,936.02

Table 2.1: Parameter Estimates β̂
RE

of the Poisson Random Effects Models.

Numerical procedures can be used to find maximum likelihood estimates. Routines are
now available in standard statistical packages, such as SAS (with the NLMIXED procedure).
Now, E[Ni,t] = λRE

i,t and V[Ni,t] = λRE
i,t + (eσ2 − 1)(λRE

i,t )2.
The Poisson-Log Normal model is interesting because it has a natural interpretation (see,

e.g., Winkelmann (2003)). The error term ǫi is often considered as a factor that captures
the effects of hidden exogeneous variables. If there are many hidden variables, and if these
variables are independant, then central limit theorems can be invoked in order to establish
the normality of ǫi.

2.2.5 Numerical Example

Estimations of the parameters for the 3 random effects models are displayed in Table 2.1.
Sex of the driver and power of the car have been removed from all models since they were
not statistically significant, with respective p-values of approximately 0.38 and 0.12 for all
models (specifically, p-values of 0.3841 and 0.1163 in the Poisson-Gamma model, 0.3861 and
0.1205 in the Poisson-Inverse Gaussian model, 0.3843 and 0.1205 in the Poisson-LogNormal
model). However, other variables have considerable impact such as the age of the driver or
the size of the city where the insured lives. From Table 2.1, we see that young drivers and
policyholders living in big cities exhibit higher expected claim frequencies. All models seem
to have approximately the same quality of fit since their log-likelihood are almost equal for
the same number of parameters.

2.3 Fixed Effects Model

2.3.1 Description

In the fixed effects model, all characteristics that are not time-varying are captured by the
individual heterogeneity term θFE

i . In our case, the intercept β0 has to be removed (and
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is included in θFE
i ). As sex of the driver has been removed from the model, the remaining

explanatory variables do vary with time and enter the fixed effects model.
The Poisson fixed effects model has been proposed by Palmgren (1981) and Hausman

et al. (1984). The standard way of evaluating the parameters of this model is the condi-
tional maximum likelihood of Andersen (1970). The idea of the conditional method is to
obtain an estimator of βFE without having to estimate each θFE

i .
As proved in Cameron & Trivedi (1998), the maximum likelihood and conditional

maximum likelihood estimation methods always yield identical estimates for covariates pa-
rameter βFE in case of Poisson distribution. Specifically, the estimated parameters solve

n∑

i=1

T∑

t=1

xi,t

(
ni,t − λFE

i,t

∑
t ni,t∑
t λ

FE
i,t

)
= 0. (2.13)

Note that only insureds with varying caracteristics (and at least one claim) are used in the
estimation of βFE. Estimates of θFE

i can then be obtained from

θFE
i =

∑
t ni,t∑
t λ

FE
i,t

. (2.14)

Both estimates of βFE and θFE
i are consistent when T → ∞ and N → ∞, but only the

estimate of βFE is consistent for fixed T and N → ∞, as for insurance data.

2.3.2 Numerical Example

Application of the fixed effects Poisson model to the Belgian motor portfolio leads to the
parameters estimates of βFE displayed in Table 2.2. Some interesting conclusions can be
drawn from the fixed effects model. The results are quite different from those obtained with
the random effects models. Indeed, young drivers can be seen as better drivers than older
ones and insureds coming from big cities now seem to be better drivers. It is worth to stress
that the estimated parameters in Table 2.2 have to be thought in the sense of fixed effects
model, where all individual impacts are removed.

The true effect of young age and living in large cities is thus to decrease the annual
expected claim frequency. The apparent higher risk that is often found to be associated with
these characteristics in empirical studies then results from their association with dangerous
individual characteristics.

The high values of the standard errors suggest that almost all parameter are not sta-
tistically different from zero. This is nevertheless not a problem here, since our aim is to
show that a fixed effects model followed by a regression of the θFE

i ’s on the observable
characteristics produces almost the same results than a random effects model.

2.4 Fixed or Random Effects Model?

Comparaison between equations (2.13) and (2.4) or (2.8) leads to the conclusion that there
are no differences between fixed or random effects when T is large enough. However, for
fixed small T , parameters estimates for these two models can be significantly different (as it
can be seen from Tables 2.1-2.2).
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Variable Parameter Estimate (Std. err.)

Age 17 − 22 −0.4754(0.205)
23 − 30 −0.1603(0.126)
> 30 0

City Big −0.7945(0.523)
Medium −0.3418(0.530)
Small 0

Log-Likelihood -7803.577

Table 2.2: Parameter Estimates β̂
FE

of the Poisson Fixed Effects Model.

A reason for such a difference between parameters estimates comes from the construction
of the random effects model. Indeed, in the developpement of equation (2.1), we have made
the following crucial assumption: the random effects θRE

i are independent and identically
distributed. This means that the conditional probability density function of θRE

i given xi,t

equals g(·), that does not depend on xi,t. If the distribution of θRE
i depends on the xi,t’s,

the parameters estimates β̂
RE

may be inconsistent and should not be used, as shown by
Mundlak (1978).

Figure 2.1 shows us the distribution of the θFE
i (mean and 0 to 95th percentile) according

to the characteristics of the insured. Clearly, we can see that the distribution of the het-
erogeneity term varies with the characteristics of the insured. The dispersion is much more
important in the least dangerous classes, like Age 17-22 and Big cities. On average, the θFE

i ’s
are larger there, which explains the apparent riskiness in Table 2.1. The heterogeneity is not
identically distributed, which can cause an inconsistency in the evaluation of the parameters
βRE of the random effects model.

Application of Hausman test to our data leads, without surprise, to the rejection of the
null hypothesis of uncorrelation between regressors and random effects (p-value of less than
0.01% for a chi-square distribution with 4 degrees of freedom). This result means that the
heterogeneity term is not identically distributed accross insureds.

The fixed effects model is preferred in cases where conclusions have to be made on the
sample, while the interests of random effects model are on the overall population. For insur-
ance data, fixed effects model cannot be used since annual premiums cannot be calculated for
new policyholders. Expected claim frequencies can be computed only for policyholders in the
portfolio for several years. Moreover, estimates for the θFE

i ’s based on just a few observations
must be considered with caution. Additionnaly, fixed effects model are difficultly handled by
insurance companies since too many individual effects had to be considered. Random effects
model should then be preferred, but, as we mentioned, some theorical aspects prohibit its
use since estimates of the parameters are biased when heterogeneity is not independant from
the regressors. The purpose of the next section is to legitimate the use of the random effect
models for insurance ratemaking, provided parameters are estimated and interpreted with
care.
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Figure 2.1: Distribution of the θFE
i ’s according to the observable characteristics.

3 Regression of the θFE
i ’s on the observable character-

istics

3.1 Residual Heterogeneity

As noted by Pinquet (2000), the random effects are often correlated with covariates for
insurance data. Therefore, they relate to some residual heterogeneity, that is, orthogonal to
the observable variables. The aim of this section is to demonstrate on a basis of the Belgian
data set that a fixed effect Poisson regression followed with a regression of the resulting θFE

i ’s
on the observable characteristics gives almost the same values for the regression coefficients
than a random effect Poisson regression. This legitimates the use of random effects techniques
in actuarial science. We also consider mixed effect model with non identically distributed
θRE

i , and we reach a similar conclusion.
Specifically, let us now explain the θ̂FE

i ’s as a function of covariates. To this end, we
consider the θ̂FE

i ’s as realizations from some probability density function h(µi, τ) with mean
µi = exp(x̂′

iδ) and variance τ . The term x̂i is an adaptation of covariates xi,t for t = 1, ..., T ,
since there is only one indivual heterogeneity term for all periods t (here, we took x̂i = xi,2).
We will take for h the Gamma, Inverse Gaussian and LogNormal densities (also considered
in the random effects model).

We saw on Figure 2.1 that the distribution of the θFE
i ’s was influenced by the observable

characteristics. Another way of explaining the random effects model (second approximation)
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is to consider non-equally distributed heterogeneity. In consequence, instead of assuming that
the θRE

i ’s are independent and identically distributed with mean 1 and variance τ , we use
an heterogeneity having a mean of µi = exp(x̂′

iδ). Formally, we now consider that

Pr[Ni,1 = ni,1, ..., Ni,T = ni,T ] =

∫
∞

0

(
T∏

t=1

(λFE
i,t θi)

ni,t exp(−λFE
i,t θi)

ni,t!

)
f(θi|µi, τ)dθi,(3.1)

where f(·|µi, τ) denotes some probability density function with mean µi = exp(x̂′

iδ) and
variance τ . Again, we consider for f the Gamma, Inverse Gaussian and LogNormal densities.

If the two-step procedure based on the θFE
i ’s, or the one-step procedure based on hetero-

geneous θRE
i , is coherent with the random effect model, we expect that

β̂
RE ≈ β̂

FE
+ δ̂. (3.2)

As proved by Mundlak (1978), the fact that it exists a correlation between θRE
i and the

covariates causes a bias on the estimation of the βRE . However, despite the presence of
this bias, it is still possible to use the parameter estimates for the premium calculation if
the heterogeneity term is only considered as residual heterogeneity. In consequence, these
estimates represent the apparent effects on the frequency of claims and not the real effect,

since we must use (β̂
FE

+ δ̂) instead of β̂
FE

. For insurance ratemaking, this distinction does
not really matter since apparent effect is the interest when some important classification
variables are missing.

Remark 3.1. The equation used to construct a regression analysis on the individual fixed
effects is based on equation (2.14). The individual fixed effects are expressed as the ratio
of the sum of the number of claims in the T years on the sum of the λFE

i,t for the same
period. Consequently, there is a significant presence of zero value for the θFE

i , which causes
a problem for a regression analysis. In consequence, weighted regression seems appropriate
for modelling the individual fixed effects. However, weighted observations without claim need
to be removed from the dataset since it is not possible to work with a zero-valued observation
in a regression analysis of heterogeneity. Still because of the weighted regression, it becomes
impossible to have the same dispersion parameter for random effects models and its first
approximation, since some random variations are removed by using average values.

3.2 Gamma Heterogeneity

Let us begin with Gamma distributed θFE
i ’s. The estimation of δ then solves

n∑

i=1

1

ωi
(θFE

i − µi)
∂µi

∂δ
=

n∑

i=1

ν

µi
(θFE

i − µi)x̂i

=

n∑

i=1

ν

µi

( ∑
t ni,t∑
t λFE

i,t

− µi

)
x̂i

=

n∑

i=1

ν∑
t λ

FE
i,t µi

(
∑

t

ni,t −
∑

t

λFE
i,t µi

)

x̂i = 0 (3.3)
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Variable Parameter RE-FE Difference 1st model 2nd model

Intercept - -2.0128 (0.034) -1.9971 (0.044) -2.0062 (0.034)
Age 17 − 22 0.8763 (0.038) 0.9016 (0.132) 0.8625 (0.085)

23 − 30 0.3567 (0.018) 0.3339 (0.047) 0.3533 (0.034)
> 30 0 0 0

City Big 1.0282 (0.234) 1.0223 (0.056) 1.0369 (0.041)
Medium 0.4524 (0.166) 0.425 (0.055) 0.4570 (0.041)
Small 0 0 0

Dispersion ν 2.6638 (0.314) 0.1975 (0.065) 2.6437 (0.310)

Table 3.1: Parameter Estimates for Gamma Heterogeneity

where ωi is the variance of the distribution and µi is the mean function that is expressed
as exp(x̂′

iδ). Since Ni,t is a discrete variable, the resulting first order condition as the form
of a Gamma distribution for

∑
t ni,t, with mean

∑
t λ

FE
i,t µi and variance proportional to the

square of the mean.
If we allow for non identically distributed random effect, we get the following contribution

for policyholder i to the likelihood in the random effects model:

Pr[Ni,1 = ni,1, ..., Ni,T = ni,T ]

=

∫
∞

0

(
T∏

t=1

(λFE
i,t θi)

ni,t exp(−λFE
i,t θi)

ni,t!

)(
θiν

µi

)ν

(θi)
−1

exp(−θiν
µi

)

Γ(ν)
dθi

=

(
T∏

t=1

(λFE
i,t µi)

ni,t

ni,t!

)
νν

Γ(ν)

Γ(ni,• + ν)

(µi

∑T
t=1

λFE
i,t + ν)ni,•+ν

. (3.4)

Only two observations have been removed from the weighted regression. The parameters
of the first model have been found by a two-step procedure. Firstly, the individual hetero-
geneity parameters θFE

i have been evaluated using equation (2.14). Afterwards, a weighted
Gamma regression has been performed to find estimates of δ. For the second model, equation
(3.4) has been applied with λFE

i,t known from application of the fixed effects model.
We can see in Table 3.1 that the parameter estimates of δ for the first and second models

are approximately equal to the difference between the random and the fixed effects model.

3.3 Inverse Gaussian Heterogeneity

Once again, instead of supposing that the heterogeneity term is independant of the covariates,
we suppose that the heterogeneity term has Inverse Gaussian distribution with mean µi and
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a corresponding variance that is equal to µ3
i τ . The estimator of δ solves

n∑

i=1

1

ωi

(θFE
i − µi)

∂µi

∂δ
=

n∑

i=1

ν

µ2
i

(θFE
i − µi)x̂i

=

n∑

i=1

ν

µ2
i

( ∑
t ni,t∑
t λFE

i,t

− µi

)
x̂i

=

n∑

i=1

ν∑
t λFE

i,t µ2
i

(
∑

t

ni,t −
∑

t

λFE
i,t µi

)

x̂i = 0. (3.5)

If we allows for random effects with different means, the contribution of policyholder i
to the likelihood is

Pr[Ni,1 = ni,1, ..., Ni,T = ni,T ]

=

∫
∞

0

(
T∏

t=1

(λFE
i,t θi)

ni,t exp(−λFE
i,t θi)

ni,t!

)
(2πτθ3

i )
−1/2 exp

(−(θi − µi)
2

2µ2
i θiτ

)
dθi

=

(
T∏

t=1

(λFE
i,t µi)

ni,t

ni,t!

)( 2

πτµi

)0.5

exp(
1

τµi
)

×
(

1 + 2(τµi)
T∑

t=1

λi,tµi

)−si/2

Ksi
(zi) (3.6)

where Kj(.) is the modified Bessel function of the second kind, si = ni,• − 0.5 and

zi =
1

τ

√√√√1 + 2(τµi)
T∑

t=1

λFE
i,t µi.

Table 3.2 shows the results of these models on our insurance data. As expected, the
results are quite the same as those obtained with the Gamma heterogeneity models. Even
the intercept of the first approximation model has approximately the same value, due to the
presence of high values in the data.

One difference between models is the parameter τ , which is not equal for the random
effects model and the second approximation model. In our data, the mean of the µi is
0.3326, from what we can link the two estimated parameters τ by a simple approximation :
0.3940 ≈ 1.090 × 0.3326 = 0.3625.
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Variable Parameter RE-FE Difference 1st model 2nd model

Intercept - -2.0127 (0.034) -1.9888 (0.033) -2.0098 (0.033)
Age 17 − 22 0.8784 (0.037) 0.8758 (0.169) 0.8431 (0.090)

23 − 30 0.3585 (0.018) 0.3101 (0.045) 0.3376 (0.034)
> 30 0 0 0

City Big 1.0289 (0.234) 1.0097 (0.059) 1.0271 (0.041)
Medium 0.4517 (0.166) 0.4456 (0.047) 0.4603 (0.040)
Small 0 0 0

Dispersion τ 0.3940 (0.048) 4.2234 (0.704) 1.090 (0.158)

Table 3.2: Parameter Estimates for Inverse Gaussian Heterogeneity.

3.4 Log-Normal Heterogeneity

Let us now assume that θFE
i = exp(ǫi), where ǫi is following a Gaussian distribution with

mean x′

iδ − σ2

2
and variance σ2. In consequence, the estimation of δ solves

n∑

i=1

1

ωi

(
log(θFE

i ) − log(µi)
)∂µi

∂δ
=

n∑

i=1

σ2
(
log(θFE

i ) − log(µi)
)
x̂i

=
n∑

i=1

σ2

(
log(

∑

t

ni,t) − log(
∑

t

λFE
i,t ) − log(µi)

)
x̂i

=
n∑

i=1

σ2

(
log(

∑

t

ni,t) − log(
∑

t

λFE
i,t µi)

)
x̂i = 0. (3.7)

Allowing for non identically distributed random effects, the joint probability density
function of the claim numbers for insured i is

Pr[Ni,1 = ni,1, ..., Ni,T = ni,T ] =

∫
∞

−∞

(
T∏

t=1

e−γiγni

i

ni!

)
1√
2πσ

exp

(
−(ǫi − µi)

2

2σ2

)
dǫi (3.8)

with γi = exp(x′

iβ+ ǫi). Closed form of the Poisson-Log-Normal distribution is not possible.
However, by numerical approximations or by the NLMIXED procedure in SAS, it is possible
to find estimators of δ.

The numerical results are displayed in Table 3.3. Approximation of a weighted regression
gives interesting results that are similar to those obtain with the Gamma and the Inverse-
Gaussian distributions.

4 Concluding Remarks

The results brought here give us the legitimity to use random effects models even if there
exists a correlation between the regressors and the heterogeneity. The parameter estimates
do not identify the impact of these regressors on the premium but only the apparent effects.
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Variable Parameter RE-FE Difference 1st model 2nd model

Intercept - -2.0129 (0.034) -2.0037 (0.044) -2.0210 (0.034)
Age 17 − 22 0.8788 (0.037) 0.8793 (0.132) 0.8668 (0.086)

23 − 30 0.3591 (0.018) 0.3295 (0.047) 0.3560 (0.034)
> 30 0 0 0

City Big 1.0292 (0.234) 1.0209 (0.056) 1.0381 (0.041)
Medium 0.4515 (0.166) 0.4539 (0.055) 0.4562 (0.041)
Small 0 0 0

Dispersion σ2 0.3363 (0.036) 2.2640 (0.3773) 0.3422 (0.036)

Table 3.3: Parameter Estimates for Log-Normal Heterogeneity.

Since it is usually the interest of the actuary in ratemaking, there is no problem with this
interpretation. However, such a correlation indicates clearly that a correction should be done
to obtain a more accurate model. Especially, the apparent high risk of young drivers should
deserve some attention. The analysis conducted in this paper shows that the fixed effects are
very heterogeneous for these individuals. Instead of penalizing these insureds in the a priori
ratemaking, an appropriate bonus-malus scheme could be designed. Merit rating systems
improve the fairness of the tariff in that respect.

We have focused our attention on the Poisson distribution since it is commonly used
in practice for risk classification. However, other count distributions, such as the Negative
Binomial distribution (see Hausman, Hall & Griliches (1984) or Allison & Water-

man (2002) for an alternative fixed effects model) or the Zero-Inflated models also deserve
consideration for the analysis of claim frequencies. A similar analysis could be performed for
these regression models, too. Moreover, continuous probability models, such as the Gamma
or the Log-Normal distributions are routinely used to model the amount of claims. Again,
a study in the vein of the present one could be performed for claim severities.
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