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Abstract. Using Clark-Ocone formula, explicit martingale repre-
sentations for path-dependent Brownian functionals are computed.
As direct consequences, explicit martingale representations of the
extrema of geometric Brownian motion and explicit hedging port-
folios of path-dependent options are obtained.

1. Introduction

The representation of functionals of Brownian motion by stochas-
tic integrals, also known as martingale representation, has been widely
studied over the years. The first proof of what is now known as Itô’s
representation theorem was implicitly provided by Itô (1951) himself.
This theorem states that any square-integrable Brownian functional is
equal to a stochastic integral with respect to Brownian motion. Many
years later, Dellacherie (1974) gave a simple new proof of Itô’s theo-
rem using Hilbert space techniques. Many other articles were written
afterward on this problem and its applications but one of the pioneer
work on explicit descriptions of the integrand is certainly the one by
Clark (1970). Those of Haussmann (1979), Ocone (1984), Ocone and
Karatzas (1991) and Karatzas et al. (1991) were also particularly signif-
icant. A nice survey article on the problem of martingale representation
was written by Davis (2005).

Even though this problem is closely related to important issues in
applications, for example finding hedging portfolios in finance, much
of the work on the subject did not seem to consider explicitness of the
representation as the ultimate goal, at least as it is intended in this
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work. In many papers using Malliavin calculus or some kind of dif-
ferential calculus for stochastic processes, the results are quite general
but unsatisfactory from the explicitness point of view: the integrands in
the stochastic integral representations always involve predictable pro-
jections or conditional expectations and some kind of gradients.

Recently, Shiryaev and Yor (2004) proposed a method based on Itô’s
formula to find explicit martingale representations for Brownian func-
tionals. They mention in their introduction that the search for ex-
plicit representations is an uneasy business. Even though they consider
Clark-Ocone formula as a general way to find stochastic integral repre-
sentations, they raise the question if it is possible to handle it efficiently
even in simple cases.

In the present paper, we show that Clark-Ocone formula is easier
to handle than one might think in the first place. Using this tool
from Malliavin calculus, explicit martingale representations for path-
dependent Brownian functionals, i.e. random variables involving Brow-
nian motion and its running extrema, are computed. No conditional
expectations nor gradients appear in the closed-form representations
obtained.

The method of Shiryaev and Yor (2004) yields in particular the ex-
plicit martingale representation of the running maximum of Brownian
motion. In the following, this representation will be obtained once more
as an easy consequence of our main result. Moreover, the explicit mar-
tingale representations of the maximum and the minimum of geometric
Brownian motion will be computed. Using these representations in fi-
nance, hedging portfolios will be obtained for strongly path-dependent
options such as lookback and spread lookback options, i.e. options on
some measurement of the volatility.

The rest of the paper is organized as follows. In Section 2, the
problem of martingale representation is presented and, in Section 3,
the martingale representations of the maximum and the minimum of
Brownian motion are recalled. Martingale representations for more
general Brownian functionals are given in Section 4 and those for the
extrema of geometric Brownian motion are given in Section 5. Finally,
in Section 6, our main result is applied to the maximum of Brownian
motion and, in Section 7, explicit hedging portfolios of exotic options
are computed.

2. Martingale representation

Let B = (Bt)t∈[0,T ] be a standard Brownian motion defined on a com-
plete probability space (Ω,FT ,P), where (Ft)t∈[0,T ] is the augmented
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Brownian filtration which satisfies les conditions habituelles. If F is a
square-integrable random variable, Itô’s representation theorem tells us
that there exists a unique adapted process (ϕt)t∈[0,T ] in L2 ([0, T ]× Ω)
such that

(1) F = E [F ] +

∫ T

0

ϕt dBt.

In other words, there exists a unique martingale representation or, more
precisely, the integrand ϕ in the representation exists and is unique in
L2([0, T ] × Ω). The expression martingale representation comes from
the fact that Itô’s representation theorem is essentially equivalent to
the representation of Brownian martingales (see Karatzas and Shreve
(1991)). Unfortunately, the problem of finding explicit representations
is still unsolved.

2.1. Clark-Ocone representation formula. When F is Malliavin
differentiable, the process ϕ appearing in Itô’s representation theorem,
i.e. in Equation (1), is given by

ϕt = E [DtF | Ft]

where t 7→ DtF is the Malliavin derivative of F . This is Clark-Ocone
representation formula.

More precisely, let W (h) =
∫ T

0
h(s) dBs be defined for h ∈ L2([0, T ]).

For a smooth Brownian functional F , i.e. a random variable of the form

F = f(W (h1), ..., W (hn))

where f is a smooth bounded function with bounded derivatives of all
orders, the Malliavin derivative is defined by

DtF =
n∑

i=1

∂if(W (h1), ..., W (hn)) hi(t)

where ∂i stands for the ith partial derivative. Note that Dt(
∫ T

0
h(s) dBs) =

h(t) and in particular Ds(Bt) = I{s≤t}.
The operator D being closable, it can be extended to obtain the

Malliavin derivative

D : D1,2 → L2 ([0, T ]× Ω)

where the domain D1,2 is the closure of the set of smooth functionals
under the seminorm

‖F‖1,2 =
{
E [F 2] + E

[
‖DF‖2

L2([0,T ])

]}1/2

.
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Random variables in D1,2 are said to be Malliavin differentiable. An
interesting fact is that D1,2 is dense in L2(Ω). This means that Clark-
Ocone representation formula is not restricted to a small subset of
Brownian functionals.

Fortunately, the Malliavin derivative satisfies some chain rules. First
of all, if g : Rm → R is a continuously differentiable function with
bounded partial derivatives and if F = (F 1, . . . , Fm) ∈ (D1,2)m, then
g(F ) ∈ D1,2 and D(g(F )) =

∑m
i=1 ∂ig(F ) DF i. If g : Rm → R is instead

a Lipschitz function, then g(F ) ∈ D1,2 still holds. If in addition the law
of F is absolutely continuous with respect to Lebesgue measure on Rm,
then D(g(F )) =

∑m
i=1 ∂ig(F ) DF i. These last results will be useful in

the sequel.
For more on Malliavin calculus, a concise presentation is available in

the notes of Øksendal (1996) and a more detailed and general one in
the book of Nualart (1995).

2.2. Hedging portfolios. As mentioned in the introduction, stochas-
tic integral representations appear naturally in mathematical finance.
Since the work of Harrison and Pliska (1983), it is known that the com-
pleteness of a market model and the computation of hedging portfolios,
relies on these representations. One can illustrate this connection by
considering the classical Black-Scholes model. Under the probability
measure P, the price dynamics of the risky and the risk-free assets
follow respectively

{
dSt = µStdt + σStdBt, S0 = s;

dAt = rAtdt, A0 = 1,

where r is the interest rate, µ is the drift and σ is the volatility. Let Q
be the unique equivalent martingale measure of this complete market
model and let BQ be the corresponding Q-Brownian motion. Note that
under the risk neutral measure Q,

dSt = rStdt + σStdBQ
t , S0 = s,

so that for any t ≥ 0,

St = se(r−σ2/2)t+σBQt .

Let G be the payoff of an option on S and (ηt, ξt) the self-financing
trading strategy replicating this option, i.e. a process over the time
interval [0, T ] such that

dVt = ηt dAt + ξt dSt and VT = G

where Vt = ηtAt + ξtSt, where ξt is the number of shares of the risky
asset, ξtSt being the amount invested in it, while ηt is the number of
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shares of the risk-free asset, so ηtAt is the amount invested without
risk. Then, the price of the option at time t is given by Vt. It is clear
that ηt is a linear combination of ξt and Vt. When the price is known,
the problem of finding the hedging portfolio is the same as finding ξt.

It is easily deduced that

(2) ξt = e−r(T−t) (σSt)
−1 ϕt,

where ϕt is the integrand in the martingale representation of EQ [G | Ft],
i.e.,

er(T−t)Vt = EQ [G | Ft] = EQ [G] +

∫ t

0

ϕs dBQ
s .

We will use Equation (2) extensively in the section on financial appli-
cations.

For example, let G = (ST −K)+, where K is a constant. This is the
payoff of a call option. Since ST is a Malliavin differentiable random
variable and since f(x) = (x−K)+ is a Lipschitz function, one obtains
that DtG = σST I{ST >K}. Then

ϕt = EQ
[
σST I{ST >K} | Ft

]
= g(t, St),

where

g(t, a) = σae(r−σ2/2)(T−t)E
[
eσ
√

T−t ZI{
Z>

log (K/a)−(r−σ2/2)(T−t)

σ
√

T−t

}
]

= σaer(T−t)Φ

(
log (a/K) + (r + σ2/2)(T − t)

σ
√

T − t

)
,

with Z ∼ N(0, 1). Therefore

ξt = Φ

(
log (St/K) + (r + σ2/2)(T − t)

σ
√

T − t

)
,

recovering the well-known formula of the Black-Scholes hedging port-
folio for the call option.

Note that even if the payoff of the option involves the non-smooth
function f(x) = (x−K)+, the Malliavin calculus approach is applica-
ble. As mentioned in the preceding subsection, f only needs to be a
continuously differentiable function with bounded derivative, or a Lip-
schitz function if it is applied to a random variable with an absolutely
continuous law with respect to Lebesgue measure. This was the case
for ST .
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3. Maximum and minimum of Brownian motion

Let Bθ = (Bθ
t )t∈[0,T ] be a Brownian motion with drift θ, i.e. Bθ

t =
Bt + θt, where θ ∈ R. Its running maximum and its running minimum
are respectively defined by

M θ
t = sup

0≤s≤t
Bθ

s and mθ
t = inf

0≤s≤t
Bθ

s .

When θ = 0, Mt and mt will be used instead. The range process of Bθ
t

is then defined by Rθ
t = M θ

t −mθ
t and R ≡ Rθ if θ = 0.

A result of Nualart and Vives (1988) leads to the following lemma;
see also Section 2.1.4 in Nualart (1995).

Lemma 3.1. The random variables M θ
T and mθ

T are elements of D1,2

and their Malliavin derivatives are given by

Dt(M
θ
T ) = I[0,τθ

M ](t) and Dt(m
θ
T ) = I[0,τθ

m](t)

for t ∈ [0, T ], where τ θ
M = inf{0 ≤ t ≤ T | M θ

t = M θ
T} and τ θ

m =
inf{0 ≤ t ≤ T | mθ

t = mθ
T} are the almost surely unique random points

where Bθ attains respectively its maximum and its minimum.

This lemma will be of great use in the sequel.

3.1. The case θ = 0. If θ = 0, the martingale representation of the
maximum of Brownian motion is

(3) MT =

√
2T

π
+

∫ T

0

2

[
1− Φ

(
Mt −Bt√

T − t

)]
dBt

where Φ(x) = P {N(0, 1) ≤ x} and E [MT ] =
√

2T
π

because

MT
d
= |BT | d

=
√

T |N(0, 1)| .
This representation can be found in the book of Rogers and Williams
(1987). Their proof uses Clark’s formula (see Clark (1970)), which is
essentially a Clark-Ocone formula on the canonical space of Brownian
motion. As mention in the introduction, it can also be computed using
the completely different method of Shiryaev and Yor (2004). Obviously,
the martingale representation of the minimum of Brownian motion is
a direct consequence:

mT =

√
2T

π
−

∫ T

0

2

[
1− Φ

(
Bt −mt√

T − t

)]
dBt.
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3.2. The general case. If one extends this by adding a drift to Brow-
nian motion, the results are similar. In the papers of Graversen et al.
(2001) and Shiryaev and Yor (2004), the integrand in the martingale
representation of M θ

T is computed. Indeed, the stationary and inde-
pendent increments of Bθ yield

E
[
M θ

T | Ft

]
= M θ

t +

∫ ∞

Mθ
t −Bθ

t

P
{
M θ

T−t > z
}

dz.

Thus, t 7→ M θ
t +

∫∞
Mθ

t −Bθ
t
P{M θ

T−t > z} dz is a martingale and a function
of (Bθ

t ,M
θ
t ). An application of Itô’s formula to this martingale and

coefficients analysis yield the martingale representation of M θ
T . The

integrand in this integral representation is given by

(4) 1− Φ

(
M θ

t −Bθ
t − θ(T − t)√
T − t

)

+ e2θ(Mθ
t −Bθ

t )

[
1− Φ

(
M θ

t −Bθ
t + θ(T − t)√
T − t

)]
.

The integrand in the representation of mθ
T , the minimum of Brownian

motion with drift θ, is then easily deduced and given by

(5) −
[
1− Φ

(
Bθ

t −mθ
t − θ(T − t)√
T − t

)]

− e2θ(Bθ
t−mθ

t )

[
1− Φ

(
Bθ

t −mθ
t + θ(T − t)√
T − t

)]
.

Consequently, the integrand in the martingale representation of Rθ, i.e.
the range process of Bθ, is given by the difference of Equation (4) and
Equation (5).

It is worth mentioning that all these stochastic integral represen-
tations can be easily derived with the main result of this paper, i.e.
Theorem 4.1.

4. Path-dependent Brownian functionals

For a function F : R3 → R with gradient ∇F = (∂xF, ∂yF, ∂zF ),
define Divx,y(F ) = ∂xF + ∂yF , Divx,z(F ) = ∂xF + ∂zF , and so on.
Then, Div(F ) is the divergence of F , i.e. Div(F ) = ∂xF + ∂yF + ∂zF .

Before stating and proving our main result, let’s mention that the
joint law of (Bt,mt,Mt) is absolutely continuous with respect to Lebes-
gue measure. The joint probability density function will be denoted by
gB,m,M(x, y, z; t).
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Theorem 4.1. If F : R3 → R is a continuously differentiable function
with bounded partial derivatives or a Lipschitz function, then the Brow-
nian functional X = F

(
Bθ

T ,mθ
T ,M θ

T

)
admits the following martingale

representation:

X = E [X] +

∫ T

0

f
(
Bθ

t ,m
θ
t ,M

θ
t ; t

)
dBt,

where

f (a, b, c; t) = e−
1
2
θ2τ

× E [
Div F (Bτ + a,mτ + a,Mτ + a)eθBτ I{mτ≤b−a,c−a≤Mτ}

+ Divx,y F (Bτ + a,mτ + a, c)eθBτ I{mτ≤b−a,Mτ≤c−a}

+ Divx,z F (Bτ + a, b, Mτ + a)eθBτ I{b−a≤mτ ,c−a≤Mτ}

+ ∂xF (Bτ + a, b, c)eθBτ I{b−a≤mτ ,Mτ≤c−a}
]

for b < a < c, b < 0, c > 0, and τ = T − t.

Proof. If F is a continuously differentiable function with bounded par-
tial derivatives or if F is a Lipschitz function, then, using one of Malli-
avin calculus chain rules given in Subsection 2.1, the Brownian func-
tional X is an element of the space D1,2 and its Malliavin derivative is
given by

DtX = ∇F
(
Bθ

T ,mθ
T ,M θ

T

) · (Dt(B
θ
T ), Dt(m

θ
T ), Dt(M

θ
T )

)
.

This is true in both cases since the law of
(
Bθ

T ,mθ
T ,M θ

T

)
is absolutely

continuous with respect to Lebesgue measure.
Define an equivalent probability measureQ on FT by dQ

dP = ZT , where
Zt = exp{−θBt − 1

2
θ2t} for t ∈ [0, T ]. Notice that dP

dQ = (ZT )−1. Since
DtX is FT -measurable for each t ∈ [0, T ], using the abstract Bayes rule
(see Lemma 5.3 in Karatzas and Shreve (1991)), one obtains

E [DtX | Ft] = Zt EQ
[
(ZT )−1DtX | Ft

]

= e
1
2
θ2(T−t)EQ

[
eθ(BT−Bt)DtX | Ft

]

= e−
1
2
θ2(T−t)EQ

[
eθ(Bθ

T−Bθ
t )DtX | Ft

]
.

By Girsanov’s theorem, Bθ is a standard Brownian motion under Q
with respect to the filtration generated by B.

Using Lemma 3.1 and the fact that for any random variable Z and
partition (Ai)i of Ω the equality Z =

∑
i Z IAi

holds, one gets

(6) DtX = Div(F ) I[0,τθ
m](t)I[0,τθ

M ](t) + Divx,y(F ) I[0,τθ
m](t)I(τθ

M ,∞)(t)

+ Divx,z(F ) I(τθ
m,∞)(t)I[0,τθ

M ](t) + ∂x(F ) I(τθ
m,∞)(t)I(τθ

M ,∞)(t).
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Next, note that t < τ θ
M if and only if M θ

t < M θ
T and t < τ θ

m if and
only if mθ

t > mθ
T . It can be shown that the random variables τ θ

M and
τ θ
m have absolutely continuous laws. In fact, under Q, τ θ

M/T and τ θ
m/T

both have a Beta(1/2, 1/2) distribution. As a result,

I[0,τθ
M ](t) = I[0,τθ

M )(t) = I{Mθ
t <Mθ

T }(t)

I[0,τθ
m](t) = I[0,τθ

m)(t) = I{mθ
t >mθ

T }(t)

almost surely. Hence, the expression of DtX previously obtained in
Equation (6) becomes

DtX = Div(F ) I{mθ
t >mθ

T ,Mθ
t <Mθ

T }(t) + Divx,y(F ) I{mθ
t >mθ

T ,Mθ
t =Mθ

T }(t)

+ Divx,z(F ) I{mθ
t =mθ

T ,Mθ
t <Mθ

T }(t) + ∂x(F ) I{mθ
t =mθ

T ,Mθ
t =Mθ

T }(t).

Then, using the Markov property of (Bθ,mθ,M θ) under Q, we get that
E [DtX | Ft] e

1
2
θ2τ is equal to

EQ
[
Div F (Bθ

τ + a, mθ
τ + a,M θ

τ + a)eθBθ
τ I{mθ

τ≤b−a,c−a≤Mθ
τ }

]

+ EQ
[
Divx,y F (Bθ

τ + a,mθ
τ + a, c)eθBθ

τ I{mθ
τ≤b−a,Mθ

τ≤c−a}
]

+ EQ
[
Divx,z F (Bθ

τ + a, b, M θ
τ + a)eθBθ

τ I{b−a≤mθ
τ ,c−a≤Mθ

τ }
]

+ EQ
[
∂xF (Bθ

τ + a, b, c)eθBθ
τ I{b−a≤mθ

τ ,Mθ
τ≤c−a}

]

where τ = T − t, a = Bθ
t , b = mθ

t and c = M θ
t . Since the law of

(Bθ, mθ,M θ) under Q and the law of (B,m, M) under P are equal,
E [DtX | Ft] e

1
2
θ2τ is then equal to

E
[
Div F (Bτ + a,mτ + a,Mτ + a)eθBτ I{mτ≤b−a,c−a≤Mτ}

]

+ E
[
Divx,y F (Bτ + a, mτ + a, c)eθBτ I{mτ≤b−a,Mτ≤c−a}

]

+ E
[
Divx,z F (Bτ + a, b, Mτ + a)eθBτ I{b−a≤mτ ,c−a≤Mτ}

]

+ E
[
∂xF (Bτ + a, b, c)eθBτ I{b−a≤mτ ,Mτ≤c−a}

]
.

The statement follows from Clark-Ocone formula. ¤

Using Theorem 4.1, the results of Section 3, i.e. the martingale rep-
resentations of the extrema of Brownian motion, are easily derived. For
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example, one obtains the martingale representation of MT by consid-
ering the function F (x, y, z) = z. Indeed,

f (a, b, c; t) = E
[
I{mT−t≤b−a,c−a≤MT−t} + I{b−a≤mT−t,c−a≤MT−t}

]

= P {c− a ≤ MT−t}

=

∫ ∞

c−a

√
2

π(T − t)
e−

z2

2(T−t) dz

= 2

∫ ∞

c−a√
T−t

1√
2π

e−
z2

2 dz

= 2

[
1− Φ

(
c− a√
T − t

)]

since the density function of Mt is given by z 7→
√

2
πt

e−
z2

2t I{z≥0}.

Remark 4.1. As mentioned before, the expectation appearing in the
integrand of the martingale representation of Theorem 4.1 is a simple
expectation, i.e. it is not a conditional expectation, and the integrand
does not involve any gradient. This expectation can also be written in
the following form:

(7)
∫ ∞

c−a

∫ b−a

−∞

∫ ∞

−∞
Div F (x + a, y + a, z + a)g(dx, dy, dz; τ)

+

∫ c−a

0

∫ b−a

−∞

∫ ∞

−∞
Divx,y F (x + a, y + a, c) g(dx, dy, dz; τ)

+

∫ ∞

c−a

∫ 0

b−a

∫ ∞

−∞
Divx,z F (x + a, b, z + a) g(dx, dy, dz; τ)

+

∫ c−a

0

∫ 0

b−a

∫ ∞

−∞
∂xF (x + a, b, c) g(dx, dy, dz; τ)

where g(dx, dy, dz; s) = eθx+ 1
2
θ2sgB,m,M(x, y, z; s) dxdydz.

Here, ∫

A

∫

B

∫

C

G(x, y, z) g(dx, dy, dz; s)

means ∫

z∈A

∫

y∈B

∫

x∈C

G(x, y, z) g(dx, dy, dz; s).

In order to apply Theorem 4.1, one needs the joint distribution of
the random vector (Bt, mt,Mt). This is recalled next.
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4.1. The joint probability density function. The expression of the
joint law of (Bt,mt,Mt) was obtained by Feller (1951). Let y, z > 0

and −y ≤ a < b ≤ z. If φt(x) = 1√
2πt

e
−x2

2t , then it is known that

P {Bt ∈ (a, b),−y ≤ mt,Mt ≤ z}

=

∫ b

a

(∑

k∈Z
φt (2k(y + z) + x)−

∑

k∈Z
φt (2k(y + z) + 2z − x)

)
dx.

Hence,

gB,m,M(x, y, z; t) = 4
∑

k∈Z

[
k2 φ′′t (2k(y + z) + x)

−n(n− 1)φ′′t (2k(y + z) + 2z − x)]

where φ′′t (x) = (x2−1)
t2

φt(x).
Rearranging terms, one obtains that gB,m,M(x, y, z; t) is also given

by

4
∑

k≥1

k2φ′′t (2k(y + z) + x) + 4
∑

k≥1

k2φ′′t (2k(y + z)− x)

− 4
∑

k≥2

k(k − 1)φ′′t (2k(y + z) + 2z − x)

− 4
∑

k≥1

k(k + 1)φ′′t (2k(y + z)− 2z + x) .

Integrating with respect to z, one obtains the joint PDF of (Bt,mt):

gB,m(x, y; t) =
2(x− 2y)√

2πt3
e−

1
2t

(x−2y)2 I{y≤x} I{y≤0}.

The same work can be done to compute the joint PDF of (Bt,Mt). Its
expression is given in the proof of Proposition 5.1.

5. Maximum and minimum of geometric Brownian motion

In this section, Theorem 4.1 is applied to produce explicit martingale
representations for the maximum and the minimum of geometric Brow-
nian motion. These particular Brownian functionals are important in
finance and fortunately the upcoming representations are plainly ex-
plicit.

For a stochastic process (Xt)t∈[0,T ], let its running extrema be de-
noted respectively by

MX
t = sup

0≤s≤t
Xs and mX

t = inf
0≤s≤t

Xs.
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The range process of X is then given by RX
t = MX

t −mX
t .

Proposition 5.1. If X is a geometric Brownian motion, i.e. Xt =
eµt+σBt for µ ∈ R and σ > 0, its maximum on [0, T ] admits the follow-
ing martingale representation:

MX
T = E

[
MX

T

]
+

∫ T

0

g
(
Bθ

t ,M
θ
t

)
dBt.

Here, θ = µ
σ
and g (a, b) is given by

(8)
σeσa

µ + σ2

2

{
(
µ + σ2

)
e(µ+σ2

2
)(T−t)

×
[
1− Φ

(
σ(b− a)− (µ + σ2)(T − t)

σ
√

T − t

)]

+ µ
(
eσ(b−a)

) 2
σ2 (µ+σ2

2
)
[
1− Φ

(
σ(b− a) + µ(T − t)

σ
√

T − t

)]}
,

for a < b and b > 0.

Proof. Applying Theorem 4.1 with F (x, y, z) = eσz and using the den-
sity function of (Bs,Ms), i.e.

gB,M(x, y; s) =
2(2y − x)√

2πs3
e−

1
2s

(2y−x)2I{y≥x}I{y≥0},

the integrand in the representation of MX
T is given by

(9) 2σeσa− 1
2
θ2τ

∫ ∞

b−a

∫ y

−∞
eσy+θx (2y − x)√

2πτ 3
e−

1
2τ

(2y−x)2 dxdy

where a = Bθ
t , b = M θ

t and τ = T − t. Hopefully, in this case, the
integrand can be greatly simplified and so the rest of the proof involves
only elementary calculations.

For a ≤ b, let I denote only the integral in Equation (9). If z = 2y−x,
then

I = e
1
2
θ2τ

∫ ∞

b−a

e(σ+2θ)y

∫ ∞

y

z√
2πτ 3

e−
1
2τ

(z+θτ)2 dzdy

= e
1
2
θ2τ

∫ ∞

b−a

e(σ+2θ)y 1√
2πτ

e−
1
2τ

(y+θτ)2 dy

− θe
θ2τ
2

∫ ∞

b−a

e(σ+2θ)y

(
1− Φ

(
y + θτ√

τ

))
dy

= e
1
2
θ2τ I1 − θe

1
2
θ2τ I2,
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where the integrals I1 and I2 are obviously defined. If z = y+θτ√
τ

and
β = σ + 2θ, then

I1 = e−βθτe
1
2
β2τ

[
1− Φ

(
b− a− (θ + σ)τ√

τ

)]
,

and

I2 = −eβ(b−a)

β

(
1− Φ

(
b− a + θτ√

τ

))
+

1

β
I1.

Finally,

I = e
1
2
θ2τ

(
1− θ

β

)
I1 +

θ

β
e

1
2
θ2τeβ(b−a)

(
1− Φ

(
b− a + θτ√

τ

))
.

The statement follows. ¤

The martingale representation of the minimum of geometric Brown-
ian motion is not a completely direct consequence of the last corollary
since the exponential function is not linear. However, the proof is al-
most identical to the proof of Proposition 5.1.

Corollary 5.1. If X is a geometric Brownian motion, i.e. Xt =
eµt+σBt for µ ∈ R and σ > 0, its minimum mX

T admits the follow-
ing martingale representation:

mX
T = E

[
mX

T

]
+

∫ T

0

h
(
Bθ

t ,m
θ
t

)
dBt .

Here, θ = µ
σ
and h (a, b) is given by

(10)
σeσa

µ + σ2

2

{
(
µ + σ2

)
e(µ+σ2

2
)(T−t)

×
[
1− Φ

(
σ(a− b) + (µ− σ2)(T − t)

σ
√

T − t

)]

+ µ
(
eσ(b−a)

) 2
σ2 (µ+σ2

2
)
[
1− Φ

(
σ(a− b)− µ(T − t)

σ
√

T − t

)]}
,

for a > b and b < 0.

In Proposition 5.1, the expression of g is not simplified further be-
cause its actual form will be useful to get Black-Scholes like formulas in
the upcoming financial applications. Moreover, it gives this interesting
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other expression of g
(
Bθ

t ,M
θ
t

)
in terms of

(
Xt,M

X
t

)
:

(11)
σXt

µ + σ2

2

{
(
µ + σ2

)
e(µ+σ2

2
)(T−t)

×
[
1− Φ

(
ln(MX

t /Xt)− (µ + σ2)(T − t)

σ
√

T − t

)]

+ µ

(
MX

t

Xt

) 2
σ2 (µ+σ2

2
) [

1− Φ

(
ln(MX

t /Xt) + µ(T − t)

σ
√

T − t

)]}
.

Of course, a similar expression for h
(
Bθ

t ,m
θ
t

)
in terms of

(
Xt,m

X
t

)
is available. The representation of RX

T , the range process of geometric
Brownian motion Xt = exp{µt + σBt} at time T , is now obvious.

Corollary 5.2. The random variable RX
T admits a martingale repre-

sentation with the following integrand:

g(Bθ
t ,M

θ
t )− h(Bθ

t ,m
θ
t ) ≡

σXt

µ + σ2

2

{
(
µ + σ2

)
e(µ+σ2

2
)(T−t)

×
[
Φ

(
ln(Xt/m

X
t ) + (µ− σ2)(T − t)

σ
√

T − t

)

−Φ

(
ln(MX

t /Xt)− (µ + σ2)(T − t)

σ
√

T − t

)]

+ µ

(
MX

t

Xt

) 2
σ2 (µ+σ2

2
) [

1− Φ

(
ln(MX

t /Xt) + µ(T − t)

σ
√

T − t

)]

− µ

(
mX

t

Xt

) 2
σ2 (µ+σ2

2
) [

1− Φ

(
ln(Xt/m

X
t )− µ(T − t)

σ
√

T − t

)]}

the difference of the integrands in Equation (8) and Equation (10), i.e.
the integrands in the representations of MX

T and mX
T respectively.

6. Applications: hedging for path-dependent options

As mentioned earlier, martingale representations results are impor-
tant in mathematical finance for option hedging. With the previous
explicit representations, one can compute explicit hedging portfolios
for some strongly path-dependent options. For example, options in-
volving the maximum and/or the minimum of the risky asset can be
replicated explicitly. To get the complete hedging portfolio of such op-
tions, i.e. (ηt, ξt) (see the introduction), recall that one also needs the
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price of the option. The prices of the options in consideration can be
found in the literature.

Recall from the introduction the classical Black-Scholes risk-neutral
market model: {

dSt = rStdt + σStdBt, S0 = 1;

dAt = rAtdt, A0 = 1,

where P and B stand respectively for the risk-neutral probability mea-
sure and the corresponding P-Brownian motion. In this case, St =
e(r− 1

2
σ2)t+σBt and then all the notation introduced earlier is adapted,

i.e.

µ = r − 1

2
σ2

θ =
µ

σ
=

r − 1
2
σ2

σ
.

From Equation (2), the amount to invest in the risky asset to replicate
an option with payoff G is

(12) ξt = e−r(T−t) (σSt)
−1 ϕt.

6.1. Standard lookback options. Let’s compute the explicit hedg-
ing portfolio of a standard lookback put option. The payoff of a stan-
dard lookback put option is given by G =

[
MS

T − ST

]+
= MS

T − ST .

Corollary 6.1. The number of shares to invest in the risky asset to
replicate a standard lookback put option is

ξt =

(
1− σ2

2r

) {
[1− Φ (d1(t))] + e−r(T−t)

(
MS

t

St

) 2r
σ2

[1− Φ (d2(t))]

}
,

for t ∈ [0, T [, where

d1(t) =
σM θ

t − σBθ
t − (r + σ2

2
)(T − t)

σ
√

T − t
,

d2(t) =
σM θ

t − σBθ
t + (r − σ2

2
)(T − t)

σ
√

T − t
.

Proof. Apply Equation (12) and Proposition 5.1 with the representa-
tion in Equation (11). ¤

The preceding portfolio was computed by Bermin (2000) in a slightly
different manner.

The payoff and the hedging portfolio of a standard lookback call
option are similar to those of the standard lookback put option. The
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prices of these two options are in the article of Conze and Viswanathan
(1991) and in the book of Musiela and Rutkowski (1997).

6.2. Options on the volatility. The range of the risky asset is a
particular measure of the volatility. Payoffs involving the range are
therefore very sensitive to the volatility of the market. First, consider
a contract who gives its owner G = MS

T −mS
T at maturity, i.e. a payoff

equivalent to buying the maximum at the price of the minimum.

Corollary 6.2. The number of shares to invest in the risky asset to
replicate a contingent claim with payoff MS

T −mS
T is

(13) ξt = e−r(T−t)

(
1− σ2

2r

) (
MS

t

St

) 2r
σ2

[1− Φ (d2(t))]

+

(
1 +

σ2

2r

)
[Φ (d3(t))− Φ (d1(t))]

+ e−r(T−t)

(
1− σ2

2r

) (
mS

t

St

) 2r
σ2

[1− Φ (d4(t))] ,

for t ∈ [0, T [, where

d3(t) =
σBθ

t − σmθ
t + (r − 3σ2

2
)(T − t)

σ
√

T − t
,

d4(t) =
σBθ

t − σmθ
t − (r − σ2

2
)(T − t)

σ
√

T − t
.

Proof. Apply Equation (12) with the representation given by Corol-
lary 5.2. ¤

The price of this option is easily derived from those of the standard
lookback put and call options. Since

MS
T −mS

T = (MS
T − ST )− (mS

T − ST )

and since the pricing operator is linear, the price of an option with
payoff MS

T −mS
T is the difference of the prices of the standard lookback

options just considered.
One can generalize the previous payoff by considering a spread look-

back call option, i.e. an option with payoff
[(

MS
T −mS

T

)−K
]+

where K ≥ 0 is the strike price. The amount to invest in the risky asset
will depend if the option is in-the-money or out-of-the-money. Notice
that t 7→ MS

t −mS
t is an increasing function.
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Corollary 6.3. If Ψ(y, z; s) =
∫∞
−∞ eθxgB,m,M(x, y, z; s) dx, τ = T − t

and A = {(y, z) | K ≤ eσz− eσy}, the number of shares to invest in the
risky asset to replicate a spread lookback call option ξt is equal to

∫ ∞

Mθ
t −Bθ

t

∫ mθ
t−Bθ

t

−∞
(eσz − eσy) IA(y + Bθ

t , z + Bθ
t ) Ψ(y, z; τ, θ) dy dz

− I{MS
t ≥K}

∫ Mθ
t −Bθ

t

0

∫ mθ
t−Bθ

t

−∞
eσy IA(y + Bθ

t ,M
θ
t ) Ψ(y, z; τ, θ) dy dz

+ I{ms
t≤1−K}

∫ ∞

Mθ
t −Bθ

t

∫ 0

mθ
t−Bθ

t

eσz IA(mθ
t , z + Bθ

t ) Ψ(y, z; τ, θ) dy dz

times exp{−rτ − 1
2σ2 (r− σ2

2
)2τ} when RS

t = MS
t −mS

t < K, i.e. when
the option is out-of-the-money, and ξt is as in Equation (13) as soon
as RS

t = MS
t −mS

t ≥ K, i.e. as soon as the option is in-the-money.

Proof. Define F
(
Bθ

T ,mθ
T ,M θ

T

)
=

[(
MS

T −mS
T

)−K
]+ where F is the

Lipschitz function F (x, y, z) = (eσz − eσy) I{eσz−eσy≥K}. Clearly, ∂xF ≡
0, ∂yF = −σeσyI{eσz−eσy≥K} and ∂zF = σeσzI{eσz−eσy≥K}. Using Theo-
rem 4.1 and Equation (12), one gets that ξt is equal to

e−rτ (St)
−1eσBθ

t− 1
2
θ2τ

times
∫ ∞

Mθ
t −Bθ

t

∫ mθ
t−Bθ

t

−∞

∫ ∞

−∞
(eσz − eσy) eθxIA(y + Bθ

t , z + Bθ
t )

g(x, y, z; τ) dxdydz

−
∫ Mθ

t −Bθ
t

0

∫ mθ
t−Bθ

t

−∞

∫ ∞

−∞
eσy+θxIA(y + Bθ

t ,M
θ
t )g(x, y, z; τ) dxdydz

+

∫ ∞

Mθ
t −Bθ

t

∫ 0

mθ
t−Bθ

t

∫ ∞

−∞
eσz+θxIA(mθ

t , z + Bθ
t )g(x, y, z; τ) dxdydz ,

since A = {(y, z) | K ≤ eσz − eσy} and where g = gB,m,M . This
completes the proof. ¤

It is possible to simplify the function Ψ. The details are given in
Appendix A.

Of course, the payoff and the hedging portfolio of a spread lookback
put option are similar and the computations of the latter follow the
same steps. Numerical prices of these options can be found in He et al.
(1998).
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In Corollary 6.3, if K = 0 then IA ≡ 1 and the payoff becomes
MS

T − mS
T . Consequently, the hedging portfolio in Corollary 6.2 is

recovered, as one would expect.
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Appendix A. Some integral manipulations

In the way toward computing

Ψ(y, z; s) =

∫

R
eθxgB,m,M(x, y, z; s) dx

where g(·; s) is the joint PDF of (Bs,ms,Ms), one has to compute
integrals of the form:

∫ z

y

eθxφ′′
(

x + a√
s

)
dx ,

for some constant a and where φ(x) = 1√
2π

e
−x2

2 . Integrating by parts
twice yields the following:
∫ z

y

eθxφ′′
(

x + a√
s

)
dx =

√
s

[
eθzφ′

(
z + a√

s

)
− eθyφ′

(
y + a√

s

)]

− s θ

[
eθzφ

(
z + a√

s

)
− eθyφ

(
y + a√

s

)]

+
√

s θ2 es θ2

2
−aθ

[
Φ

(
z + a− sθ√

s

)

− Φ

(
y + a− sθ√

s

)]

=
√

s es θ2

2 e−aθ
{
φ′(z̄)− φ′(ȳ)

+ θ2Φ′(z̄)− θ2Φ′(ȳ)
}

,

where w̄ = w+a−sθ√
s

, for w = y, z. To simplify, define

H(y, z, a; s) = e−aθ
{
φ′(z̄)− φ′(ȳ) + θ2Φ′(z̄)− θ2Φ′(ȳ)

}
.
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Then, ∫ z

y

eθxφ′′
(

x + a√
s

)
dx =

√
s es θ2

2 H(y, z, a; s).

Consequently, Ψ(y, z; s) is given by

4

s
es θ2

2

∞∑
n=1

n2H(y, z, 2ny − 2nz; s)

− 4

s
es θ2

2

∞∑
n=2

n(n− 1)H(y, z,−2ny + 2(n− 1)z; s)

+
4

s
es θ2

2

∞∑
n=1

n2H(y, z,−2ny + 2nz; s)

− 4

s
es θ2

2

∞∑
n=1

n(n + 1)H(y, z, 2ny − 2(n + 1)z; s).
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