
UNCORRECTED P
ROOF

An experiment in software component retrieval

Hafedh Mili*, Estelle Ah-Ki, Robert Godin, Hamid Mcheick

Département d’Informatique, Université du Québec à Montréal, Case Postale 8888 (A), Montréal, Que., PQ, Canada H3C 3P8

Received 29 September 2002; revised 11 November 2002; accepted 30 December 2002

Abstract

Our research centers around exploring methodologies for developing reusable software, and developing methods and tools for building

inter-enterprise information systems with reusable components. In this paper, we focus on an experiment in which different component

indexing and retrieval methods were tested. The results are surprising. Earlier work had often shown that controlled vocabulary indexing and

retrieval performed better than full-text indexing and retrieval [IEEE Trans. Software Engng (1994) 1, IEEE Trans. Software Engng 17

(1991) 800], but the differences in performance were often so small that some questioned whether those differences were worth the much

greater cost of controlled vocabulary indexing and retrieval [Commun. Assoc. Comput. Mach. 28 (1985) 289, Commun. Assoc. Comput.

Mach. 29 (1986) 648]. In our experiment, we found that full-text indexing and retrieval of software components provided comparable

precision but much better recall than controlled vocabulary indexing and retrieval of components. There are a number of explanations for this

somewhat counter-intuitive result, including the nature of software artifacts, and the notion of relevance that was used in our experiment. We

bring to the fore some fundamental questions related to reuse repositories.

q 2003 Elsevier Science B.V. All rights reserved.

Keywords: Software reuse; Multi-faceted classification; Boolean retrieval; Plain-text retrieval; Retrieval evaluation; Approximate retrieval

1. Introduction

1.1. Component retrieval: do we still care?

Software reuse is seen by many as an important factor in

improving software development productivity and software

products quality [2,13]. It is customary in the software reuse

literature to make the distinction between the generative

approach whereby developers reuse development pro-

cessors such as code generators or high-level specification

language interpreters, and the building blocks approach,

whereby developers reuse the product of previous software

development efforts in the process of building new ones.

The building blocks approach modifies the traditional,

analytical, divide and conquer approach to system specifi-

cation and design by introducing three reuse tasks that must

be performed before one falls back on analytical methods:

(1) searching and retrieving reusable components based on

partial specifications, (2) assessing the reuse worth of the

retrieved components, and, possibly, (3) tailoring the

reusable components to the specifics of the problem at

hand [22]. In this paper, we focus on computer support for

software component search and retrieval.

The problem of component retrieval has been widely

addressed in the software reuse literature. A number of

developments have rendered this problem somewhat

uninteresting. From a technical point of view, research in

the area has hit the formal methods cost barrier: the

investment needed to get the next level of performance—to

get beyond signature matching or multi-faceted classifi-

cation—overshadowed the anticipated productivity gains.

Second, there was a widespread recognition in the object-

oriented reuse community that classes are too small units of

reuse, for two reasons. First, classes cannot be reused in

isolation. Second, considering that more is gained by

reusing designs than by reusing code, individual classes

embody mostly code, but little design. Finally, empirical

evidence from reuse repositories had shown that small

components may account for a good fraction of reuse

instances, but in the end, account for little reuse volume,1

and thus little benefit [12]. The underlying lesson was ‘focus

0950-5849/03/$ - see front matter q 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0950-5849(03)00002-8

Information and Software Technology xx (0000) 1–17

www.elsevier.com/locate/infsof

* Corresponding author. Tel.: þ1-514-987-3943; fax: þ1-514-987-8477.

E-mail address: hafedh.mili@uqam.ca (H. Mili).
1 Isoda reported on an experimental reuse program at NTT where they

found that components of 50 lines or less accounted for 48% of the reuse

instances and 6% of the reuse volume, while modules 1000 lines or larger

accounted for only 6% of the reuse instances, but of 56% of the reuse

volume [12].

INFSOF 4328—6/3/2003—17:48—UMASHANKAR—64990— MODEL 5

ARTICLE IN PRESS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

http://www.elsevier.com/locate/infsof


UNCORRECTED P
ROOF

on a small number of large components embodying design

as well as code’, i.e. application frameworks.

Interestingly, the Internet has brought repository issues

back to the forefront. First, it has enabled a virtual market

for software components: developers have been searching

the web for software components, both free and for-fee, for

the past decade. Second, inter-enterprise (B2B) electronic

commerce relies on enterprises ability to ‘plug-in’ each

other’s systems to be able to complete transactions, end to

end. The ability to plug systems together has become a

major factor in entering into business relationships [2],

some times the overriding one [26]. The pluggability of

information systems for the purposes of entering into

electronic commerce starts with the lookup of industry-wide

registries of APIs exported by potential partners. Standards

are emerging to represent such APIs in a technology

independent way (see e.g. ebXML [26]), but the issue of

conceptual appropriateness remains whole. Notwithstand-

ing things such as ebXML registries or software vendor-

specific web sites, it seems that much reuse is taking place in

the unstructured world of the world wide web, as opposed to

a corporate managed reuse repository with dedicated

personnel and strict quality control. This paper explores

component classification and retrieval methods with an

overriding concern for automation.

1.2. The component retrieval problem

A wide range of component categorization and searching

methods have been proposed in the literature, from the

simple string search (see e.g. Ref. [21]), to faceted

classification and retrieval (e.g. Refs. [27,28]) to signature

matching (see e.g. Ref. [37]) to behavioral matching (see

e.g. Refs. [10,17,38]). Different methods rely on more or

less complex descriptions for both software components and

search queries, and strike different trade-offs between

performance and cost of implementation [22]; the cost of

implementation involves both initial set-up costs, and the

cost associated with formulating, executing and refining

queries. In the context of our research, we developed four

classes of retrieval algorithms (1) retrieval using full-text

search on software documents and program files, (2) multi-

faceted classification and retrieval of components, (3)

navigation through the structure of components, and (4)

signature matching. The first two use the documentation or

the meta-data that accompanies software components, and

thus rely on its existence, its quality, and some pre-

processing. The last two focus on the structure of the

software components themselves, and thus depend on the

availability of that structure in some form—source code,

interface—and the availability of (computer) language

processors.

An age-old debate, first in the information retrieval

literature [4,31], and later in the context of reuse repositories

[6,8,16,23], has opposed the free-text classification and

retrieval of components to the so-called controlled vocabu-

lary, multi-faceted classification and retrieval of com-

ponents. The conventional wisdom is that free-text

retrieval costs nothing—no manual labour—but produces

many false positives (matches words taken out of context)

and false negatives (misses out relevant components

because of the use of a non-standard terminology).

Controlled-vocabulary indexing and retrieval is supposed

to solve both problems by providing a common vocabulary

for classification and retrieval, and by having actual human

beings classify documents/components. However, it

involves a major cost in building and maintaining such

vocabularies and in classifying/indexing components.

Research in the area has traditionally attempted to bridge

the gap between the two approaches in terms of cost and

performance. From the free-text end, research has aimed at

making the matching more intelligent and less dependent on

surface-level similarity, but keeping humans out of the

loop—e.g. using associations between terms instead of term

matching or identity, as in latent semantic analysis methods

[6,11,16]. From the controlled vocabulary end, research has

aimed at automating or assisting the manual steps, but

hopefully without losing much in terms of quality of

retrieval. Our own work has covered both approaches, and

this paper reports on a number of experiments trying out

different ideas and comparing approaches.

Our first experiment dealt with the construction of

domain vocabularies. Much of the earlier work on

automated indexing of textual documents had relied on

the statistics of the occurrences (and co-occurrences) of key

terms or phrases within document collections to infer

content indicators for documents and relations between key

terms [15,30]. Our work furthers these ideas to build

concept hierarchies based on statistics of (co)occurrences

alone. A technique that worked well in previous exper-

iments was less successful with software documentation.

The experiment is described, and the results are analyzed in

Section 3. The second experiment dealt with the automatic

indexing of software components (their documentation)

using a controlled vocabulary: the basic idea is that an index

term (say ‘Database Management Systems’) is assigned to a

component if ‘most’ of its constituent words appear ‘close’

to each other within the documentation of the component;

most and close are both tunable parameters of the method.

In principle, the automatic assignment of index terms suffers

from the same problems as free text search: matching words

out of context (false positives), and missing out on relevant

components because of choice of terminology (false

negatives). However, we felt that the use of compound

terms would reduce the chances of false positives, and the

use of inexact matches (most, close) would reduce the

chances of false negatives. The results bear this out, and are

discussed in Section 4.

Our third experiment consisted of comparing an all-

manual controlled vocabulary indexing and retrieval

method with an all-automatic free-text indexing and

retrieval method, using a variant of the traditional

INFSOF 4328—6/3/2003—17:48—UMASHANKAR—64990— MODEL 5

H. Mili et al. / Information and Software Technology xx (0000) 1–172

ARTICLE IN PRESS

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224



UNCORRECTED P
ROOF

information retrieval measures, recall and precision. Instead

of computing recall and precision based on some abstract

measure of ‘relevance’, as is done in information retrieval

and in most reuse library experiments, we adapted the

measure to take into account the true utility of the retrieved

components to solve the problem at hand. Further, we used a

realistic experimental protocol, one that is closer to the way

such tools would be used in practice. Here the results were

surprising. Full-text retrieval yielded significantly better

recall and somewhat better precision—although the differ-

ence is statistically insignificant. The experiment is

described in Section 5. We analyze the results in light of

new evidence about the behavior of users in an information

retrieval setting. We conjecture that multi-faceted retrieval

requires more information than the user is able to provide in

the early stages of problem solving, and fails to capture a

faithful expression of users’ needs at the later stages.

Section 2 provides a brief introduction to our tool set. We

conclude in Section 6.

2. ClassServer: an experimental component repository

2.1. Overview

This work is part of ongoing research at the University of

Québec at Montréal aiming at developing methods and tools

for developing reusable software, and for developing with

reusable software. The work described in this paper centers

around a tool kit called ClassServer that consists of various

tools for classifying, retrieving, navigating, and presenting

reusable components (see Fig. 1). Reusable components

consist essentially of object-oriented source code com-

ponents, occasionally with the accompanying textual

documentation. Raw input source files are put through

various tools—called extractors—which extract the rel-

evant pieces of information, and package them into

ClassServer’s internal representation format for the pur-

poses of supporting the various reuse tasks. So far, we have

developed extractors for Smalltalk and Cþþ . The infor-

mation extracted by these tools consists of built-in language

structures, such as classes, variables, functions, and function

parameters. To these, we added a representation for object

frameworks, which are class-like object aggregates that are

used to represent application frameworks and design

patterns [24]; unlike the built-in language structures,

which are extracted by parsers, object frameworks need to

be manually encoded. Fig. 1 shows a very schematic view of

the ClassServer tool set. The tool set may be seen as

consisting of three subsystems. The first subsystem, labeled

‘Full-text retrieval’ supports the required functionalities for

full-text retrieval of source code files, namely, the ‘Full-text

indexer’, and the ‘Full-text search tool’. Their functional-

ities are explained in Section 2.3.1.

The component browser and the keyword retrieval

subsystems use the structured representation of the

components that is extracted by the tool referred to as

‘semantic/structural parser’ in Fig. 1. Typically, the parsing

produces a trace of the traversal of the abstract syntax tree.

The trace consists of a batch of component creation

commands (in Smalltalk), which are executed when we

‘load’ the trace; that is the structured component loader.

Each kind of component is defined by a descriptive template

that includes: (1) structural information describing the kind

of subcomponents a component can or must have (e.g. a

class has variables and methods, a framework has

participants, message sequences, etc.), (2) code, which is

a string containing the definition or declaration of the

component in the implementing language, and (3) descrip-

tive attributes, which are used for search purposes; for

Fig. 1. Overall architecture of ClassServer.

INFSOF 4328—6/3/2003—17:48—UMASHANKAR—64990— MODEL 5

H. Mili et al. / Information and Software Technology xx (0000) 1–17 3

ARTICLE IN PRESS

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336



UNCORRECTED P
ROOF

example, a class has an author and an application domain, a

method has a purpose, etc. Descriptive attributes, or simply,

attributes, represent non-structural, non-intrinsic properties

of software components, and are often derived from non-

code information such as documentation, or entered

explicitly by the person(s) responsible for managing the

component library. Attributes will be described in more

detail in Section 2.2.

2.2. A multi-faceted classification of components

Attributes are used in ClassServer to represent categor-

ization/classification facets, as in Prieto-Diaz’s multi-

faceted categorization of components [28]. Attributes are

themselves objects with two properties of their own: (1) text,

which is a (natural language) textual description, and (2)

values, which is a collection of key words or phrases, taken

from a predefined set referred to as the vocabulary of the

attribute. The text is used mainly for human consumption

and for documentation generation [21]. Filling in the values

property is referred to as classification, categorization or

indexing. When human experts assign those key words or

phrases from a predefined list, we talk about manual

controlled-vocabulary indexing [30]. In our case, we used

automatic controlled-vocabulary indexing whereby a key

word or phrase is assigned to an attribute if it occurs within

the text field. More on this in Section 4.

For a given attribute multiple values are considered to be

alternative values (ORed), rather than partial values

(ANDed). For example, for the attribute ‘Purpose’ of a

component, several values mean that the component has

many purposes, and not a single purpose defined by the

conjunction of several terms. For a given vocabulary, the

terms of the vocabulary (key words and phrases) may be

organized along a conceptual hierarchy. Fig. 2 shows

excerpts of the conceptual hierarchies of key phrases for the

attributes ‘Application Domain’ (Fig. 2a) and Purpose

(Fig. 2b). Notice that the Application Domain hierarchy of

key phrases is inspired from the (ACM) Computing

Reviews’s classification structure [1]. The hierarchical

relationship between key phrases is a loose form of

generalization, commonly referred to in information

retrieval as ‘Broader-Term’ [30]. Attribute values (key

words and phrases) are used in boolean retrieval whereby

component attribute values are matched against required

attribute values (queries, see below). The hierarchical

relationships within an indexing vocabulary are used to

extend the basic retrieval algorithms, as explained in

Section 2.3.2.

2.3. Software component retrieval in ClassServer

As mentioned earlier, ClassServer provides two methods

of classifying (and retrieving) software components,

namely, free-text indexing and search of software com-

ponents (source code and documentation), and multi-

faceted classification and retrieval of components. We

describe them both briefly below.

2.3.1. Free text indexing and search

By free-text indexing, we refer to the class of methods

whereby the contents of a document are described by a

weighted set of words or lexical units occurring in the

document. Different methods use different selection mech-

anisms to restrict the set of eligible content indicators, and

different weighting schemes [30]; the algorithm we used

does not use a weighting scheme. Let us assume for the

moment that all the words found in a document are used as

potential content indicators. Given a natural language query

Q; the free-text retrieval algorithm returns the set of

components S computed as follows:

(0) Break the query Q into its component words

w1;…;wn;

(1) S ˆ set of components whose documentation

included w1;

(2) For i ¼ 2 To n Do

(2.1) Si ˆ set of components whose documentation

included wi;

(2.2) S ˆ S > Si

Fig. 2. Hierarchies of key phrases for the attributes Application Domain and Purpose.

INFSOF 4328—6/3/2003—17:48—UMASHANKAR—64990— MODEL 5

H. Mili et al. / Information and Software Technology xx (0000) 1–174

ARTICLE IN PRESS

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448



UNCORRECTED P
ROOF

When we break a query into its component words, we

exclude all the words that are not significant in the

application domain. This includes common language

words such as ‘the’, ‘an’, ‘before’, and so forth. It also

includes domain specific words that are likely to be found in

every document—software component documentation in

this case. For example, we would expect the word

‘computer’ to appear everywhere in a computer science

collection. These are called stop words. In order to account

for lexical variations when matching words of the query to

words of the documents, we reduce both to their roots, as in

mapping ‘Managing’ and ‘Management’ to ‘Manag’.

Algorithms to perform this mapping are called word

stemmers, and we used one published in Ref. [9]. Finally,

to speed search, we pre-process the entire document

collection by creating an inverted list which is a table

whose keys are unique words stems such as Manag, and

whose values are lists of the documents in which the word

occurred in one lexical form or another (e.g. as Managing or

Management). This reduces the step (2.1) above to a simple

table look-up.

2.3.2. Multi-faceted controlled-vocabulary retrieval

Our choice for the representation of queries involved a

trade-off between flexibility and expressiveness, on the one

hand, and allowing users to specify the most common

queries most easily and most efficiently, on the other. The

simplest form of a query is a list of so called attribute query

terms (AQTs), considered to be ANDed. In its simplest

form, an AQT consists of an attribute, and a list of key

phrases, considered to be ORed. In the actual implemen-

tation, each AQT is assigned a weight and cut-off point,

used for weighted boolean retrieval and conceptual distance,

respectively (see below). Symbolically:

p Query < ¼ AQTlAQT AND Query

p AQT < ¼ Attribute Weight CutOff ListOfKey-

Phrases

p ListOfKeyPhrases < ¼ KeyPhraselKeyPhrase OR

ListOfKeyPhrases

A single AQT retrieves the components whose attribute

kAttributel has at least one value in common with

kListOfKeyPhrasesl. Viewing attributes as functions, an

AQT denoted by the four-tuple kAttribute, Weight, Cut Off,

ListOfKeyPhrasesl retrieves the components C such that

Attribute(C) > ListOfKeyPhrases – F: The query denoted

by the tuple (AQT1,…,AQTk), returns the intersection of

sets of components that would have been returned by the

individual AQTs.

With weighted boolean retrieval, components are

assigned numerical scores that measure the extent to

which they satisfy the query, instead of being either ‘in’

or ‘out’. Let Q be a query with terms (AQT1,…,AQTk),

where AQTi ¼ kAttributei, Weighti, CutOffi,

ListOfKeyPhrasesil. The score of a component C is

computed as follows:

ScoreðQ;CÞ ;

Xk

i¼1
Weighti £ ScoreðAQTi;CÞXk

i¼1
Weighti

ð1Þ

where Score(AQTi,C) equals 1.0 if ListOfKeyPhrasesi >
Attributei(C) – F; and 0 otherwise.

Another extension meant to handle approximate matches

is based on the number of edges separating the key terms of

the query from the key terms of the attribute of the

component in the conceptual hierarchies that enclose them

(as in Fig. 2). If, for some i; ListOfKeyPhrasesi >
Attributei(C) – F; we look at some aggregate of the path

lengths that separate elements of ListOfKeyPhrasesi from

elements of Attributei(C) and use that to assign a score

between 0 and 1 for the query term; the higher the average

distance, the lower the score. The mathematical properties

of the resulting similarity metric—called DISTANCE—and

its effectiveness at emulating human relevance judgements

have been thoroughly documented in Ref. [29]. In

ClassServer, the cut-off value puts an upper limit on the

path lengths to be considered in the computation; key

phrases that are separated by more than ‘cut-off’ edges are

considered totally unrelated.2 A third extension uses the

hierarchical relationships between key terms to ‘classify’

the query within a virtual classification structure of

components that is based on the relationships between

their attribute values, returning the most ‘specific’ com-

ponents that are more ‘general’ than the query. The

‘specialization’ relationship has a formal meaning in this

case [17]. Neither of the last two extensions was used in the

experiments of Section 5, and will not be discussed further.

2.4. The component library

For the purposes of the experiment described in Section

5, we loaded the ClassServer repository with the OSE

library [7] which contained some 200 classes and 2000

methods distributed across some 230 *.h files with,

typically, one class per file. For the purposes of supporting

plain-text indexing and retrieval, the 230 files were put

through the plain text indexing tool, which generated an

inverted list of unique word stems (see Section 2.3.1).

Further, a shell script put the files through a Cþþ pre-

processor before they were input into the Cþþ extractor

(see Section 2.1). Because of the good quality and format

consistency of the in-line documentation (comparable to

Javadoc), we were able to automatically assign Cþþ

comments as text values for the ‘Description’ attribute of

various components (classes, methods, variables). Overall,

we classified components using two attributes Application-

Domain, and Description. ApplicationDomain was indexed

manually, but in a fairly systematic fashion, using the on-

2 This ‘sunsetting’ is used to fix some singularities in the otherwise well-

behaved similarity metric [29].

INFSOF 4328—6/3/2003—17:48—UMASHANKAR—64990— MODEL 5

H. Mili et al. / Information and Software Technology xx (0000) 1–17 5

ARTICLE IN PRESS

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560



UNCORRECTED P
ROOF

line documentation of the library. In fact, the section

headers of the documentation were themselves used as

index terms (see Ref. [20] for a justification). The

documentation grouped the various classes by application

area. Further, each class was first described by a general

statement about what the class does, followed by a more

detailed description of its services, which mapped closely to

methods. Some utility methods were not documented, and

we could not assign those an ApplicationDomain; however,

all classes were properly classified.

For the Description attribute (telling what a component

does and how it does it, rather than ‘what it is used for’), we

did not have a ready-made indexing vocabulary. We

considered using available classification structures that

include computer science concepts, including the 1200 þ

terms Computing Reviews classification structure [1].

However, the classification terms were too general to be

of any use to our library of components. For example,

whereas we needed terms that corresponded to the different

sorting algorithms (‘MergeSort’, ‘RadixSort’), the term

‘Sorting’ was a leaf node of the ACM hierarchy. Accord-

ingly, we decided to develop our own vocabulary by

analyzing the available software documentation; the process

of building the vocabulary is described next. Further, we

decided to perform the actual indexing of the attribute (the

assignment of key terms to attribute values) automatically.

The algorithm and the results are discussed in Section 4.

3. Constructing domain vocabulary

A hierarchy of the important concepts in a domain has

many uses in the context of software component retrieval. In

addition to the advantages of having a standard vocabulary,

its hierarchical structure helps ‘librarians’ locate the most

appropriate term to describe a component, and ‘re-users’

find the closest term to their need to use in a search query.

Those same relations may also be used to extend boolean

retrieval methods to account for ‘close’ matches, as shown

in Section 2.3.2 (see also Refs. [11,27]). Constructing a

hierarchy of the important concepts in a domain (or

thesaurus) involves identifying those important concepts

and their preferred terminology (Section 3.1), and organiz-

ing them into a hierarchy (Section 3.2). We discuss these

issues in turn.

3.1. Extracting a set of concepts

A good place to look for the important computer science

concepts that are germane to a library of reusable

components is the documentation of the library itself. By

looking only at the documentation, we run the risk of getting

a partial and narrow view of the underlying domain, and of

depending too much on the terminology used by the

documenter. At the same time, we are assured that we will

not miss any concepts that are important to the particular

library (or libraries) at hand.

The next question is one of identifying the right lexical

unit that corresponds to key concepts, and extracting such

units from the text. Computer science being a relatively new

field, most of the important concepts are described by noun

phrases, as in ‘Software Engineering’ ‘Bubble Sort’,

‘Printing Monitor’, and so forth, rather than single words

as is the case for more mature fields such as medicine.3 In

order to extract those higher level lexical units, to which we

will abusively refer as noun phrases, we used Xerox Part Of

Speech Tagger (XPost) [5]. XPost is a program that takes as

input a natural language text and produces the syntactic

(‘part of speech’) category or tag for each word or token for

the text. For example, it assigns to the phrase ‘The common

memory pool’ the tag sequence ‘at jj nn nn’, where ‘at’

stands for article, ‘jj’ for adjective, and ‘nn’ for noun. XPost

uses two major sources of information to assign tags to

words of a sentence: (1) a ‘tag table’, giving the set of tags

that correspond to a given token, and (2) a probabilistic

(markovian) model of the allowable sequences of tags. For

example, the word ‘book’ can be a noun (‘nn’) or a verb

(‘vb’). If we also know that ‘the’ is an article and that only

nouns can follow articles, we know that ‘book’ in the phrase

‘the book’ is a noun. XPost falls within the category of parts

of speech taggers that derive the probabilistic model using

unsupervised learning [5].

One of the typical uses of XPost is to extract phrases that

follow a given pattern. We used XPost to extract ‘noun

phrases’ that are likely to represent important domain

concepts. To this end, we ran XPost on a training sample, we

identified the tag sequences for the noun phrases in which

we were interested, and then looked for a set of regular

expressions that would have extracted those phrases. Those

regular expression were then used to filter the output of

XPost to extract noun phrases. The first set of regular

expressions (a grammar) accepted far too many phrases, and

we had to refine the grammar through trial and error, with a

bias towards minimizing false positive phrases, at the

expense of missing out some valid phrases. Fig. 3 shows the

regular expressions in an awk-like format.

In case a sentence matched several expressions, we take

the longest running expression. For example, if we analyze

the sentence ‘Memory management of event based

systems’, we produce a single noun phrase consisting of

the entire sentence, rather than the two phrases ‘Memory

management’ and ‘event based systems’, both of which

matching the pattern BASIC.

We used this approach on the on-line documentation of

the library. The documentation consisted of 13 html files,

one of which giving an overview of the library, and the

remaining 12 describing specific subsets of the library. The

13 files contained a total of 37,777 words (244 Kbytes). The

3 See Ref. [39] for a discussion on the evolution of languages and

terminology.

INFSOF 4328—6/3/2003—17:48—UMASHANKAR—64990— MODEL 5

H. Mili et al. / Information and Software Technology xx (0000) 1–176

ARTICLE IN PRESS

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672



UNCORRECTED P
ROOF

extraction process identified 2616 unique noun phrases,

with overall occurrences ranging from 163 (for the word

‘function’) to 1, with 1,765 phrases occurring just once,

including phrases such as ‘command line options’ or

‘Conversion operator to a standard pointer’. Typically,

phrases that occur too often are not good discriminators

[30]. Further, phrases that occur rarely may not be important

for the domain at hand. We found 8 ‘phrases’ that occurred

more than a 100 times, and discarded them: OTC (the name

of the library, 267 times), ‘Function’ (163), ‘String’ (134),

‘Member function’ (114), ‘Object’ (114), ‘Class’ (113),

‘Example’ (105), and ‘Program’ (104). We also discarded

the phrases that occurred less than five times. Overall, we

used 229 phrases. These include Cþþ identifiers that may

have appeared in the code examples, and possibly referred

to thereafter in the running text. We could have removed

them from the vocabulary that was fed into the hierarchy

builder, but we chose to exclude any manual processing or

decisions that cannot be systematized or automated.

3.2. Constructing a hierarchy of important domain concepts

Having identified a set of the important concepts in a

domain, we need to organize those concepts in a conceptual

hierarchy. We present a simple algorithm that does just that

based on statistics of occurrences of these concepts in

documents. Next, we describe an earlier experiment with the

algorithm that provided encouraging results. We conclude

with the results of the algorithm on the set of concepts

extracted with the method described in Section 3.1.

3.2.1. Principles

Given a set of terms T ¼ {t1;…; tm}; a set of documents

D ¼ {d1;…; dm} with manually assigned indices IdxðdiÞ ¼

{ti1
; ti2

;…}; we argued that [18]:

H1 Terms that co-occurred often in document indices

were related in a way that is important to the

domain of discourse,

H2 The more frequently occurring a term, the more

general its conceptual scope, and

H3 If two terms co-occur often in document indices

(and thus are related, according to H1), and if one

has a more general scope than the other, than there

is a good chance that the relationship between them

is a generalization/specialization-like relationship.

The H1 hypothesis is based on fact that documents tend

to exhibit conceptual cohesion and logic, and because index

terms reflect the important concepts within a document, they

tend to be related. The second hypothesis is based on

observations made about both terms occurring in free-

format natural language [14] as well as index terms [34].

We developed an algorithm that generates an acyclic

graph with a single node with in-degree 0 (root) based on the

above hypotheses [18]. Given m index terms t1;…; tm; the

algorithm operates as follows:

(1) Rank the index terms by decreasing order of

frequency,

(2) Build a matrix of co-occurrences (call it M) where the

ith row (column) corresponds to the ith most frequent

term,

(3) Normalize the elements of the matrix M by dividing

Mði; jÞ by the square root of Mði; iÞ £ Mðj; jÞ; note that

after this normalization, Mði; jÞ # 1;

(4) Choose terms to include in the first level of the

hierarchy; assume that the terms t1 through t1i
were

chosen to be included in the first level,

(5) For i ¼ l1 þ 1 through m

5.1 Find the maximum of the elements Mði; 1Þ through

Mði; i 2 1Þ: Note that because of the ordering of rows

and columns (step 2), these are the frequencies of co-

occurrences of ti with the terms whose occurrences

are higher than that of ti;

5.2 Create a link between the term ti and all the terms

tj such that j , i and Mði; jÞ ¼ maximum found in

5.1.

The choice of the first level nodes is quite arbitrary

although, ultimately, it has a very little impact on the overall

hierarchy.

3.2.2. A case-study: the Genbank experiment

In one experiment, we used the GenBank genetic

sequences database (databank). The GenBank Genetic

Sequence DataBank serves as a repository for genetic

sequences [3]. The entry for each sequence includes, among

Fig. 3. Grammar for noun phrases.

INFSOF 4328—6/3/2003—17:48—UMASHANKAR—64990— MODEL 5

H. Mili et al. / Information and Software Technology xx (0000) 1–17 7

ARTICLE IN PRESS

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784



UNCORRECTED P
ROOF

other things, the article that reported the discovery of the

sequence, and a set of keywords that describe the sequence,

including names of components or processes that are

involved either in the composition and transformation of

the sequence, or it is discovery. For our purposes, each entry

corresponded to a document. We ran the experiment on

5700 such ‘documents’. The co-occurrences matrix was

limited to those keywords that occurred more than 10 times,

and there were 274 of those. The resulting hierarchy was

evaluated both qualitatively and quantitatively. The quali-

tative evaluation had to do with whether the parent-child

links that were created were meaningful in general

(hypothesis H2), and whether they were generalization/

specialization-like in particular (hypothesis H3). Experts

found that 50% of the links were indeed ‘generalization/

specialization’ (G/S), as in the link between ‘Heavy Chain

Immunoglobulins’ and ‘Immunoglobulins’. Another 15% of

the links were deemed meaningful as when the two terms

represent a chemical component, and the process that

creates it. The remaining 35% could not be characterized.

Clearly, the resulting hierarchy was by far not as ‘coherent’

or ‘enlightening’ as manually built hierarchies such as the

Computing Reviews Classification Structure, for example.

The quantitative evaluation had to do with the extent to

which the resulting hierarchy supported extended boolean

retrieval (DISTANCE-based, see Section 2.3.2) of docu-

ments any better or worse than a manually built hierarchy4

that contained the same terms. For a given hierarchy H, the

evaluation consists of: (1) using DISTANCE on H to rank a

set of documents by order of relevance with respect to a set

of queries, (2) asking human subjects to do the same, and (3)

computing the correlation between the two rankings; the

higher the correlation, the more faithful is distance to human

evaluation, and the more useful is the hierarchy. Our

experiments showed that the automatically constructed

hierarchy performed as well, if not better than the manually

built one [18].

Overall, the experiments showed that while the hierarchy

may not be ‘user-friendly’ or make as much sense as a

manually built one, it can perform useful retrieval tasks

equally well. We had observed that the keywords did not

belong to a single conceptual domain, and that across-

domain relationships could dominate within-domain ones.

An algorithm that focuses on the strongest relationships

would miss potential generalization relationships. For

example, we had chemicals as well as chemical processes,

and we had hypothesized (but not tested) that, had we

separated them and applied the algorithm to the separate

sets, we might have gotten more consistent hierarchies [18].

In other words, we felt that there was room for

improvement.

3.2.3. Constructing the graph based on OSEs on-line

documentation

The construction of the hierarchy requires co-occurrence

data between phrases within relatively coherent text units.

We can break the documentation different ways, where a

‘document’ may be either, an entire file, a major section

within a file, a subsection within a file, or even a paragraph.

Whatever the document, we have to make sure that: (1) the

phrases are good content indicators for that document, and

(2) the co-occurrence of two phrases within the same

document is not fortuitous and does reflect a significant

relationship. The first constraint may suggest that we use

documents that are big enough that phrase occurrence

statistics become significant. The second constraint suggests

that we use documents that are small enough that phrase co-

occurrence be confined to a coherent textual unit. We

decided to use subsections in files (an average of 10

subsections per file) as documents. Further, for each

document, if a phrase P1 occurred m times and a phrase P2

occurred n; we consider that the phrases co-occurred

minimumðm; nÞ times.

The first run of the algorithm generated a hierarchy with

291 relations between 291 phrases, including the dummy

root node. Because we had no other hierarchy to which to

compare it on a specific task, as was the case for the

experiment described in Section 4.1, we could only evaluate

the hierarchy qualitatively. To this end, we presented six

subjects with the hierarchy and asked them to mark, for each

node, whether the node represented a valid concept from the

domain of discourse, and in case it did, to label the node’s

relationship to its parent as one of (a) has broader-term [33],

which is a loose form of generalization, (b) related, to

indicate any relationship other than has broader term, and

(c) unrelated. Unrelated was used when there was no

apparent relationship between a node and its parent. We

show below excerpts from the hierarchy to illustrate the

three kinds of relations. The relationship between LENGTH

OF THE STRING and LENGTH is has-broader-term. That

between RANGE and LENGTH is related.

· · ·

0.2.1.1.2.1 LENGTH

0.2.1.1.2.1.1 LENGTH OF THE STRING

0.2.1.1.2.1.2 CAPACITY

0.2.1.1.2.1.2.1 CAPACITY OF THE STRING

0.2.1.1.2.1.3 RANGE

· · ·

0.2.1.1.2.3.2 B

0.2.1.1.2.3.2.1 CONVERSION

0.2.1.1.2.3.2.1.1 SOBJECT

0.2.1.1.2.3.2.1.2 CONVERSION OPERATOR

We note the ‘term’ B, which is a Cþþ identifier that was

tagged by XPost as a noun, because it is not a known verb or

noun, and because it occurred in the text where a

subject/object was expected. B occurred enough times to

4 The Medical Subject Headings hierarchy, maintained by the National

Library of Medicine, and used to support its on-line bibliographic retrieval

system MEDLINE [32].

INFSOF 4328—6/3/2003—17:48—UMASHANKAR—64990— MODEL 5

H. Mili et al. / Information and Software Technology xx (0000) 1–178

ARTICLE IN PRESS

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896



UNCORRECTED P
ROOF

make it into the vocabulary. As mentioned earlier, we

decided to leave such terms in to get an idea about what the

hierarchy would look like without any manual filtering. In

this case, not only B should not have been there, but all of

the relationships between B and its children (CONVER-

SION) are non-significant. Such relationships are labeled as

unrelated. The relationship between CONVERSION and

SOBJECT is an interesting one. SOBJECT is the name of

the class representing strings. This class supports several

conversion operations, and hence the association. Some-

body thinking of CONVERSION in general, would not

think of strings. However, in the context of this library, the

association is important and useful. This is similar to the

kind of indirect associations between keywords exploited by

the CODEFINDER system [11], which reflect the structure

of the library as much as it reflects the structure of the

semantic domain.

The evaluation of the six subjects are summarized in

Table 1. The second line shows the results obtained by

rederiving the hierarchy after we have removed the

invalid terms (26 of them). Notice that because not all 26

terms were leaf nodes, by removing them we needed to

reassign parents to 18 valid terms.

These results are disappointing compared to those

obtained in the GenBank experiment [18], even after we

remove manually the invalid terms from the input. The

reasons are easy to identify. In the GenBank experiment the

terms of the hierarchy did indeed describe important

concepts in the domain, as opposed to the indiscriminate

noun phrases extracted from our software documentation.

We attempted a number of refinements using statistical

measures to eliminate ‘spurious’ terms. Our first attempt

was to eliminate the terms with the lowest frequency (5).

This reduced the number of terms from 291 to 194, but

ironically, only one non-applicable term was eliminated,

and the distribution of the remaining relationships (has-

broader-term, related, and unrelated) remained about the

same. We used another measure of the information value

carried by a given term, i.e. the extent to which it

differentiates a specific and relatively small subgroup of

the document set. Let T be a term, and d a document, we

define FREQðT ; dÞ as the number of occurrences of T in d;

and FREQðTÞ as the total number of occurrences of T : The

entropy of a term T is defined as follows:

ENTROPYðTÞ ¼
X

d[Documents

FREQðT ; dÞ

FREQðTÞ
£ log

FREQðTÞ

FREQðT ; dÞ

For a given number of occurrences FREQðTÞ ¼ N; the

entropy is maximal if N are evenly spread across the

document collection. If there are N documents, that entropy

is logðNÞ; and it correspond to T occurring exactly once in

each of N documents. Let MAXENTROPYðTÞ be that

maximum. Generally speaking, good terms are the ones

with the smallest spread possible, i.e. whose entropy is

closest to zero. Accordingly, we filtered the terms based on

the ratio ENTROPYðTÞ=MAXENTROPYðTÞ : among the

terms that occurred more than a threshold frequency5 F0; we

rejected the ones for which the above ratio is above a certain

threshold r: We tried several values of F0; and several

values of r: For F0 ¼ 20; and r ¼ 0:75; 0.666, and 0.5, we

eliminated 14, 22, and 37 terms, respectively, from the

initial set of 194 terms. Table 2 shows an evaluation of the

relationships within the generated hierarchy when F0 ¼ 20;

and r ¼ 0:5:

By looking at the remaining list of terms, a considerable

number remain that should not be there. Hence, this test is

not very effective at filtering invalid terms.

The second explanation for these results is related to the

size of the document set. The GenBank experiment used

5700 documents, while this one used 120 documents. This

makes statistical inferences unreliable. Finally, because we

are dealing with software documentation, the terms tend to

be rather specific, and their common ancestors are less likely

to appear within the document set. We hypothesized that the

higher level relationships cut across branches of a ‘virtual

hierarchy’. This is consistent with the earlier observation

that, from a conceptual scope point of view, the concepts we

need to describe software components tend to be at the

lowest levels of the ACM classification structure, or even

lower. This means that, potentially, most of the second level

relationships are invalid since the software documentation is

not likely to contain general computer science terms, or if it

does, those will appear infrequently. Table 3 shows a level

by level breakdown of relationships. The overall degra-

Table 1

Evaluating the individual links created by the statistical algorithm

Hierarchy Percentage

of invalid

terms

Percentage of

has-broader-

term

Percentage

of related

Percentage

of unrelated

With invalid terms 9 20 37 34

Without invalid

terms

0 27 39 34

Links removed 26 8 19 28

Links added 0 17 13 18

Table 2

Evaluating the hierarchy after filtering the terms that occurred more than 20

times, and whose entropy is more than half of the maximum possible

entropy

Percentage of

non-app. term

Percentage of

has-broader-term

Percentage

of related

Percentage

of unrelated

7 19 36 38

5 If a term occurred only a handful of times, its ENTROPY will be close

to the maximum even in those cases where it identifies a narrow subset of

documents.Fo is the overall frequency over which we start ‘demanding’

focussed occurrences. We used thresholds that were close to 1/5th the size

of the document set, which here means around 24.

INFSOF 4328—6/3/2003—17:48—UMASHANKAR—64990— MODEL 5

H. Mili et al. / Information and Software Technology xx (0000) 1–17 9

ARTICLE IN PRESS

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008



UNCORRECTED P
ROOF

dation of the quality of the links within the hierarchy as we

go down is consistent with the unreliability of the results for

the less frequent terms; we cannot make much of the fact

that the level links are of a lesser quality than the level 3

terms, but the above hypothesis is worth exploring.

We considered merging the resulting hierarchy with the

ACM hierarchy (see e.g. Ref. [19]) whereby, if a term T

appears in both ACM and the automatically generated

hierarchy, we carry over the subtree from the automatically

generated tree to the ACM subtree. We found only eight

such common terms between the ACM tree (1200 þ nodes)

and the automatically generated hierarchy (190 þ nodes).

We made several other refinements that improved the

quality of the hierarchy only marginally, if at all. Ways to

improve the results include using larger data sets in general,

but also using a document collection that covers a broad

spectrum of conceptual depth and precision. For the

purposes of the retrieval experiment, the automatically

generated hierarchy was used as a flat set of terms, since we

could not rely on the quality of relationships.

4. Automatic indexing from controlled vocabulary

4.1. The algorithm

Traditionally, controlled-vocabulary indexing is done

manually, which is a labor-intensive task. We attempted to

automate it, at the cost of losing some, but hopefully not all

of the advantages of controlled vocabulary indexing. Simply

put, our approach works as follows: a document D is

assigned a term T ¼ w1w2· · ·;wn if it contains (most of) its

component words, consecutively (‘…w1w2· · ·wn…’), or in

close proximity (‘…w1n1n2w2w3· · ·wn…’). In our

implementation, we reduced the words of both the terms

of the vocabulary and the documents to their word stem by

removing suffixes and word endings. Also, we used two

tunable parameters for indexing, (1) proximity, and (2)

threshold for the fraction of the number of words found in a

document, to the total number of words of a term; a term

was assigned if that fraction is above the threshold. Assume

that the vocabulary contains the term (key phrase) Database

Management Systems. A threshold of 2/3 would assign the

term to any document that contained two or more words out

of three. The proximity parameter indicates how many

words apart should words appear to be considered part of the

same noun phrase (term). Maarek et al. had found that five

worked well for two-word phrases in English [16]. It has

been our experience that indexing works best when both

parameters depend on the size of the term. A threshold that

is an increasing function of the number of words in a term

seems to yield a balanced mix of short and long terms, with

reasonably few false-positive assignments. Similarly, what

seems to work best for proximity is to use an m-word

distance between any two neighboring words, but a smaller

overall spread than n £ m; where n is the number of words in

the term.

At first glance, this approach seems to suffer from similar

problems to automatic plain-text indexing because of its

potential for false positives—still matching words regard-

less of semantic context—and false negatives—still relying

on the terminology used by technical writers or developers.

We felt, however, that because we are dealing mostly with

compound terms, the proximity and threshold parameters

provide both some context for the matching, thereby

reducing the chances of false positives, and some flexibility

in matching, thereby reducing the chances of false

negatives. Further, notwithstanding the quality of indexing,

the fact that searchers are constrained to use the same

vocabulary that was used for indexing can eliminate a good

many sources of retrieval errors.

4.2. Results

The indexing algorithm was used to index the Descrip-

tion attribute of the library components. In particular, we

used a threshold of 2/3 and a proximity of 5, meaning that

we assign a term when at least two thirds of the words of the

term occurred in the textual part of the attribute, with no two

words more than five words apart. The results of the

indexing were somewhat difficult to analyze directly

because the quality of indexing is related as much to the

quality of the vocabulary as it is to the indexing algorithm.

For example, we know that names of classes, methods, or

variables should not have been included in the indexing

vocabulary in the first place—about 26 terms. Another

factor came into play: terms that make sense in the context

of other terms, make little sense when taken alone. For

example, the hierarchy contained the path ‘Size’ ! ‘

Allocation’ ! ‘Block of Memory’, and one intuitively

reads Size as Size of Block of Memory or Size of Allocation

of Block of Memory. Suppose, however, that the term Size

alone were assigned to the description of a component; it

means very little in this context. This problem is not unique

to the automatically generated hierarchy: the ACM

Computing Reviews classification structure has several

Table 3

Distribution of links across the levels of the hierarchy

No. of

terms

Percentage

of invalid

terms

Percentage of

has-broader-

term

Percentage

of related

Percentage

of unrelated

Level 2 10 10.0 20.0 60.0 10.0

Level 3 24 0.0 37.5 50.0 12.5

Level 4 36 13.0 22.0 47.0 16.67

Level 5 53 9.0 21.0 41.0 28.0

Level 6 65 6.0 20.0 35.0 38.0

Level 7 47 6.0 17.0 30.0 46.0

Level 8 28 11.0 21.0 29.0 39.0

Level 9 14 14.0 0.0 36.0 50.0

Level 10 6 0 16.67 16.67 66.67

INFSOF 4328—6/3/2003—17:48—UMASHANKAR—64990— MODEL 5

H. Mili et al. / Information and Software Technology xx (0000) 1–1710

ARTICLE IN PRESS

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120



UNCORRECTED P
ROOF

instances of nodes which should be ‘read’ in conjunction

with their ancestors to be meaningful.6

In order to separate the issue of vocabulary control from

the performance of automatic indexing per se, we indexed the

in-line textual documentation of classes with the Applica-

tionDomain vocabulary. While we did not expect to find the

same term assignment as the manual indexing, we wanted to

get an idea about ‘how often’ terminology issues miss some

important term assignments, and about the appropriateness

of the indexing parameters (threshold and maximum word

distance). Our evaluation takes into account what is in the

vocabulary, and what is in the text, and the question was, given

the same limited vocabulary and limited textual description,

would a human being have done it any differently?

We studied 80 textual descriptions ranging in size from a

single sentence such as ‘Do not define an implementation

for this’, to half a page of text. The results are summarized

in the table below.

Exact Related Extraneous

terms

Missing

because

termin.

differences

Missing

because

words

missing

Number

of terms

42 3 6 11 24

Percentage

among

assigned

82 6 12

Coverage 52 4 14 30

The extraneous terms are terms that should not have been

assigned (false-positive). Examples include the indexer

mistaking the verb [this method] ‘sets’ for the word ‘Sets’

(as in collections). Some of these cases can be resolved if we

combine word matching with part-of-speech tag matching

so that names match names, and verbs match verbs. Other

examples of extraneous terms include a case where the

indexer assigned the term ‘Copying Strings’ to the sentence

‘This class does not make copies of the character strings it is

given…’.

The missing terms are terms that a human indexer would

have assigned if they had the same text, and fall into two

categories, (a) a synonym for the actual word(s) was used

instead of the actual words, or (b) the concept does not

appear ‘verbally’ altogether, but is implicit. An example of

(a) is the use of the word ‘Array’ in the text, and the word

‘Vector’ in the on-line documentation.7 Examples of (b)

include the sentence ‘matches upper case character’ missing

the term ‘Pattern Matching’ or ‘String comparison’. It also

includes a number of cases where a term is a conjunction as

in ‘Strings and Symbols’, and only one of the two words

appearing in the text, coming short of the 2/3 threshold. This

happened quite a few times, and can be easily resolved by

tagging conjunctive terms to tell the indexer to assign the

whole term if it matches one or the other. This may involve,

among other things, rewriting terms such as ‘Information

Storage and Retrieval’ as ‘(Information Storage) and

(Information Retrieval)’.

In summary, only 6% of the assigned terms were wrong,

which should only minimally affect retrieval precision.

However, the indexer seems to have missed a significant

number of terms (44%), although that number can be

reduced using minor refinements. We cannot estimate what

the effect of these ‘false-negative’ term assignments will be

on retrieval recall. For instance, on any given document or

component, the effect of removing an index term on the

retrievability of the document or component will depend on

the other terms already assigned (are there any, are they

related to the removed term), and on the retrieval algorithm

used (does it use exact retrieval, does it measure ‘conceptual

distance’ between related terms, etc).

5. Retrieval experiments

5.1. Experimental design

We were as concerned with establishing the usefulness

of the library tool in a production setting as we were with

performing comparisons between the various retrieval

methods. It is our belief that such comparisons do not

mean much if a developer will not use ANY of the

methods in a real production setting. The decision for a

developer to use or not use a tool has to do with, (1) his/her

estimate of the effort it takes to build the components from

scratch [35], (2) the cost of using the library tool, including

formulating the queries and looking at the results, and (3)

the perceived track record of the tool and the library in

terms of either finding the right components, or quickly

‘convincing’ the developer that none could be found that

satisfy the query. By contrast, comparative studies between

the retrieval methods focus on the retrieval performance,

regardless of the cost factors. Further, to obtain a fair and

finely detailed comparison, the format of the queries is

often restricted in those experiments to reduce the number

of variables, to the point that they no longer reflect normal

usage of the library.

With these considerations in mind, we made the

following choices:

(1) We only controlled the search method that the users

could use to answer each of the queries, without

giving a time limit on each query, or a limit on

6 Such terms are sometimes called minor descriptors, i.e. property names

attached to their parent concepts; obviously the property name alone does

not mean much as several concepts may share the same property.
7 This is an interesting discrepancy because it illustrates a fundamental

difficulty in software component retrieval. The on-line documentation

rightly focuses on abstractions, and hence used the word ‘Vector’. The in-

line documentation (within program code, like javadoc comments)

describes the implementation. Developers will be querying based on

abstractions, and not on implementations. Actually, ideally, we should let

them query based on problems, altogether, but that is another story.

INFSOF 4328—6/3/2003—17:48—UMASHANKAR—64990— MODEL 5

H. Mili et al. / Information and Software Technology xx (0000) 1–17 11

ARTICLE IN PRESS

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232



UNCORRECTED P
ROOF

the number of trials made for each query; we assumed

that users will stop when they are convinced that they

have found all that is relevant,

(2) We logged the actions of the subjects with the

tool. This provided us with finer experimental data

without interfering with the subjects’ workflow.

By giving users this much freedom, we run the risk that

user bias will skew the data in one direction, preventing us

from performing reliable analyses. For example, with

boolean retrieval, subjects could search on two search

attributes, separately or in combination. Recall that one

attribute, Application Domain, was indexed manually with a

manually built vocabulary, while the other, Description, was

indexed automatically with the automatically generated

hierarchy (see Section 4). We did not ask the subjects to use

one or the other, or both in combination. When we studied

the traces, it turned out that the Description attribute was

used only twice out of a possible 43 keyword queries, and

neither query returned a relevant document, which makes

any formal comparison of the two attributes impossible.

However the fact that the Description attribute was used

only twice tells us that subjects did not feel it provided

useful information, and that, in and of itself, is a valuable

data.

The experimental data set consisted of about 200 classes

and 2000 methods from the OSE library. We used 11

queries, whose format is discussed Section 5.2. Seven

subjects participated in the experiment, although only the

data from 5 subjects was usable. All subjects were

experienced Cþþ programmers. They included two

professors, three graduate students, and two professional

developers working for the industrial partners of the project.

The subjects were given a questionnaire which included the

statements of the queries, and blank spaces to enter the

answer as a list of component names. For each of the initial

77 (subject,query) pairs, we randomly assigned a search

method (keyword-based versus plain text). For each

(subject,query,search method) triplet, the subject could

issue as many search statements as s/he wishes using the

designated search, with no limitation on the time or on the

number of search statements. The experiment started with a

general presentation of the functionality of the tool set

(about 45 mn), followed by a hands-on tutorial with the tool

set (about 1 h), providing the subjects with an understanding

of the theoretical underpinnings of the functionalities, as

well as some practical know-how. Before leaving, the

subjects were asked to fill out a questionnaire to collect their

qualitative appreciation of the tool set.

In order to analyze the results, we used the query

questionnaires to compare the subjects’ answers to ours,

which were based on a thorough study of the library’s user

manual and some code inspection, where warranted. The log

traces provided more detailed information and were used to

support finer analyses.

5.2. Queries

Information retrieval systems suffer from the difficulty

users have in translating their needs into searchable queries.

The issue is one of translating the description of a problem

(their needs) into a description of the solution (relevant

documents). With document retrieval systems, problems

may be stated as ‘I need to know more about kXl’, and

solutions as ‘A document that talks about kYl’. For a given

problem, the challenge is one of making sure that kXl and

kYl are the same, and in systems that use controlled

vocabulary indexing, trained librarians interact with naive

users to help them use the proper search terms.

With software component retrieval, the gap between

problem statement (a requirement) and solution description

(a specification) is not only terminological, but also

conceptual. In an effort to minimize the effect of the

expertise of subjects in an application, and their familiarity

with a given library, controlled experiments in component

retrieval usually use queries that correspond closely to

component specifications. This does not reflect normal

usage for a reusable components library tool. For instance,

users typically do not know how the solution to their

problem is structured, and for the case of a Cþþ

component library, e.g. the answer could be a class, a

method, a function, or any combination thereof. It has

generally been observed that developers need to know the

underlying structure or architecture of a library to search for

components effectively [22]. Accordingly, in an effort to get

a realistic experiment, we formulated our queries as

problems to be solved. Each query was preceded by a

problem description setting up the context, followed by a

statement ‘Find a way of kperforming a given taskl’. The

problem description is also used to familiarize the subjects

with the terminology of the application domain using

textbook-like language.

5.3. Component relevance: a performance-based evaluation

The difference between traditional bibliographic docu-

ment retrieval and reusable component retrieval manifests

itself in the retrieval evaluation process as well. The concept

of relevance, which serves as the basis for recall and

precision measures, is notoriously difficult to define. With

bibliographic document retrieval, a search query for a

concept X is understood as meaning ‘I want documents that

talk about X’, and hence, a document is relevant if it ‘talks

about’ X. This definition is different from pertinence which

reflects a document’s usefulness to the user [30]. The

usefulness of a document to the user depends, among other

things, on the user’s prior knowledge, or on the pertinence of

the other documents shown to them. Recall, which measures

the number of relevant documents returned by a query to the

total number of relevant documents in the document set,

implicitly assumes that all the relevant documents are

equally pertinent and irreplaceable: the user needs all of

INFSOF 4328—6/3/2003—17:48—UMASHANKAR—64990— MODEL 5

H. Mili et al. / Information and Software Technology xx (0000) 1–1712

ARTICLE IN PRESS

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344



UNCORRECTED P
ROOF

them. In other words, with traditional document retrieval,

assuming that a query Q has N relevant documents, and

retrieved a set of documents S ¼ {D1;…;Dm};we can define

pertinence, and recall as follows:

PERTðDiÞ ¼

1

N
; if Di is relevant

0; if Di is not relevant

8><
>:

and PERTðSÞ

¼ RECALLðSÞ ¼
Xm

j¼1

PERTðDjÞ

With software component retrieval, the notions of pertinence

(usefulness) and substitutability are much easier to define as

both relate to a developer’s ability to solve a problem with

the components at hand. Symbolically, we view query as a

requirement Q; which may be satisfied by several, possibly

overlapping, sets of components S1;…; Sk; where Si ¼

{ðDi1
;Di2

;…;Dik
}: As a first approximation, we define as

follows:

PERTðSiÞ ¼ PERTðDi1
;Di2

;…;Dikj
Þ ¼

Xki

j¼1

PERTðDij
=SiÞ ¼ 1

ð2Þ

where PERTðD=SiÞ is the usefulness or pertinence of the

component D in the context of the solution set Si: This

illustrates the fact that a retrieved component D is useful

‘only if’ the other components required to build a solution

are retrieved with it. Further, this definition of PERT means

that total user satisfaction can be achieved with a subset of

the set of relevant components, which is not the case for

recall. We illustrate the properties of PERT through an

example.

Consider two solutions sets S1 ¼ {D1;D2} and S2 ¼

{D1;D3;D4} and assume that D1; D2 and D3 have the sizes

30, 20, 40, and 30, respectively, giving S1 and S2 the sizes

50, and 100, respectively. We can use the relative sizes of

the components with respect to the enclosing solution as

their contextual/conditional pertinence, i.e. PERTðDi=SjÞ ¼

sizeðDiÞ=sizeðSjÞ: In this case PERTðD1=S1Þ ¼ 0:6; PERT

ðD2=S1Þ ¼ 0:4; PERTðD1=S2Þ ¼ 0:3; PERTðD3=S2Þ ¼ 0:4;

and PERTðD4=S2Þ ¼ 0:3: Assume that a query retrieves the

component D1: In this case, PERTðD1Þ ¼ MaxðPERT

ðD1=S1Þ; PERTðD1=S2ÞÞ ¼ 0:6: If the query retrieved D1

and D3; instead, PERTð{D1;D3}Þ ¼ MaxðPERTð{D1;D3}=

S1Þ; PERTð{D1;D3}=S2ÞÞ ¼ MaxðPERTðD1=S1Þ þ PERT

ðD3=S1Þ; PERTðD1=S2Þ þ PERTðD3=S2ÞÞ ¼ Maxð0:6 þ 0:0;

0:3 þ 0:4Þ ¼ 0:7: This illustrates the fact that when several

partial solutions are returned by the system, we take into

account the one that is most complete, and the value of

individual components is relative to that solution. Symbo-

lically, given the solution sets Si;…; Sk; a query that returns

a set of components S has the pertinence:

PERTðSÞ ¼ Max
j¼1;…;k

PERTðS > Sj=SjÞ ð3Þ

Finally, we add another refinement which takes into account

the overlap of two components within the same solution set.

Consider the solution S1 above, and assume that the system

retrieves D1 and D0
2; where D0

2 is a superclass of D2 that

implements only part of the functionality required of D2: In

this case, we could take PERTðD1=D
0
2Þ ¼ 0:6 þ 0:3 ¼ 0:9: If

the query retrieved D0
2 AND D2; then we discard the weaker

component. This is similar to viewing solutions sets as role

fillers and, for each role, take the component that most

closely matches the role. Within the context of reusable OO

components, roles may be seen as class interfaces, and role

fillers as class implementations.

For our experiments, some of the 11 queries were

straightforward in the sense that there was a single

component (a method or a class) that answered the query,

and both component relevance and recall were straightfor-

ward to compute. Queries whose answers involved several

classes collaborating together (e.g. an object framework)

were more complex to evaluate and involved all of the

refinements discussed above.

For the case of precision, we used the traditional

measure, i.e. the ratio of the retrieved components that

were relevant (i.e. had a non-zero PERT(·)) to the total

number of retrieved components. We can also imagine

refining the definition of precision to take into account the

effective usefulness of the individual components, and

factor that in with the cost of retrieving and examining a

useless component. The cost of examining a useless

component is a function of its complexity, and size could

be used as a very first approximation of that complexity.

5.4. Performance results

Table 4 shows recall and precision for the 11 queries.

For each query, we randomly selected three subjects out

of the initial seven to perform the query using full-text

retrieval, and the remaining four subjects to perform

keyword retrieval, or vice versa, while making sure that

Table 4

Summary of retrieval results

Query Full-text retrieval Keyword retrieval

Subjects %

Recall

%

Precision

Subjects %

Recall

%

Precision

1 3 100 88.666 2 50 50

2 4 50 100 1 50 100

3 1 100 100 4 100 100

4 1 100 80 4 50 100

5 4 25 12.5 1 0 0

6 3 33.333 33.333 2 12.5 25

7 2 65 75 3 66.333 50

8 2 30 75 3 30 83.333

9 3 53.333 100 2 30 78

10 3 78.333 80.333 1 35 100

Average (26) 63.49 74.47 (23) 42.41 68.33

INFSOF 4328—6/3/2003—17:48—UMASHANKAR—64990— MODEL 5

H. Mili et al. / Information and Software Technology xx (0000) 1–17 13

ARTICLE IN PRESS

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456



UNCORRECTED P
ROOF

each subject had a balanced load of full-text and keyword

queries (6 and 5, respectively, or vice-versa). Because the

results of two subjects could not be used, we ended up with

some queries answered by four subjects using full-text

retrieval, say, and only once using keyword retrieval (see

e.g. query 2). The 11th query was rejected because the three

keyword-based answers were all rejected for one reason or

another. Hence, comparisons between the two methods for

the individual queries are not reliable.

At first glance, it appears that plain-text retrieval yielded

significantly better recall and somewhat better precision. It

also appears that it has done consistently so for the 10

queries, with a couple of exception. In order to validate

these two results statistically, we have to ascertain that none

of this happened by chance. We performed a number of

ANOVA tests, to check whether recall and precision were

random variables of the pair (query, search method), and

both tests were rejected. Next, we isolated the effect of the

search type to see if the difference in recall and precision

performance is significant. The results are shown in Table 5.

The ‘Pr . F’ shows the probability that such a difference

in performance could have been obtained by chance. It is

generally accepted that a threshold of 5 percent is required

to affirm that the differences are significant. Thus, we

conclude that:

† Full-text retrieval yields provably/significantly better

recall than controlled vocabulary-based retrieval

† Full-text retrieval yields comparable precision per-

formance to that of controlled vocabulary-based

retrieval.

Our results seem to run counter to the available

experimental evidence. Document retrieval experiments

have consistently shown that controlled vocabulary-based

indexing and retrieval yielded better recall and precision

than plain-text search [4,30,31], although the difference was

judged by many as being too small to justify the extra costs

involved in controlled vocabulary-based indexing and

retrieval [31]. Similarly, a comparative retrieval experiment

for reusable components conducted by Frakes and Pole8 at

the SPC showed that recall values were comparable, and a

superior precision for controlled vocabulary-based retrieval

[8]. Most surprising in our results is the significant

difference is recall performance. We analyze these results

in more detail below.

To explain these results, we formulated and tested a

number of hypotheses. We first note that out of the 11

queries, some were supposed to retrieve single components

(often methods), as in Query 7, formulated as ‘getting the

length of a string’, and the others were supposed to retrieve a

collection of components with complex interactions, often a

mix of classes and methods. With full-text search, queries

retrieve indiscriminately methods and classes. With con-

trolled-vocabulary search, users have to instantiate different

query templates, depending on the kind of components they

are seeking (a class or a method). We hypothesize that this

makes the search more tedious and users may give up search

easily, yielding lower recall. For this hypothesis to hold,

there has to be a marked difference between the perform-

ance for the single-component queries (queries 1, 7, 8, 9)

and the queries whose answers consisted of collections of

components (queries 2, 3, 4, 5, 6, 10). Table 6 compares the

two kinds of queries.

Our hypothesis that plain-text retrieval favors component

collection queries is not validated. Along the same lines, we

hypothesized that plain-text retrieval favored queries whose

answers involved a mix of methods and classes, or just

classes, since the same query would retrieve both kinds of

components. Table 7 shows recall and precision values for

the two retrieval methods, separated into the two kinds of

queries.

This hypothesis is not validated: in both cases, plain-text

retrieval is markedly superior to controlled-vocabulary

retrieval with regard to recall—and somewhat with regard

to precision for the case of queries whose answers included

both classes and methods. Note, however, that there is a

marked difference in performance between the two groups

of queries.

Could the quality of indexing be to blame for the

lower performance of controlled-vocabulary based retrie-

val? Recall that we indexed two attributes, Application

Domain and Description. The Application Domain

attribute was indexed manually and fairly systematically,

thanks to the quality of on-line documentation. There are

two potential weakness of this indexing, but none can

account for the observed difference in performance

Table 5

Significance of differences between plain-text retrieval and keyword

retrieval

Effect of search method Recall Precision

F value 4.1 0.93

Pr . F 0.0500 0.3404

Table 6

Comparing the two sets of queries

Query set Full-text retrieval Keyword retrieval

% Recall % Precision % Recall % Precision

Single comp. queries 62.08 84.67 44.08 65.333

Comp. coll. queries 64.43 68.17 41.30 70.33

8 Frakes and Pole compared four methods, and their test of statistical

significance was based on variance analysis of the precision averages for

the four methods, which was inconclusive [8]. However, we are quasi-

certain that by performing pairwise comparison between plain-text search

(50%) and controlled vocabulary search (what appears to be 100% on the

plot [8]), they would have established, statistically, the superiority of

controlled-vocabulary retrieval.

INFSOF 4328—6/3/2003—17:48—UMASHANKAR—64990— MODEL 5

H. Mili et al. / Information and Software Technology xx (0000) 1–1714

ARTICLE IN PRESS

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568



UNCORRECTED P
ROOF

between the two retrieval methods. First, some methods

were left unindexed because the on-line documentation

said nothing about these methods—such as constructors.

The results of Table 7 bear this out: keyword retrieval

performed better on queries whose answers involved only

classes than on queries whose answers involved a

combination of classes of methods. However, this does

not explain the fact that free-text retrieval performed

better than keyword retrieval for both types of queries.

The second potential weakness of the indexing of the

ApplicationDomain is the fact that index terms are

sometimes perceived as too general. Indexing that is too

general results in poor precision, but is known to produce

better recall, which is not what we observed.

The attribute Description was indexed automatically (see

Section 4) with the vocabulary that was generated

automatically (see Section 3). Notwithstanding the quality

of indexing of this attribute, the experiment logs showed

that this attribute was actually used only three times, and in

all three cases, it was used in conjunction with Applica-

tionDomain, but failed to match any component. Accord-

ingly, even in those cases where it was used, it did not affect

the ranking of components returned by weighted boolean

retrieval (see Section 2.3.2). The fact that the attribute

Description was not used as often as ApplicationDomain

could be explained by the nature of queries: the queries were

presented as programming problems or tasks to solve, rather

than a look-up for components given a set of specifications.

Because ApplicationDomain talks about problems that

components help solve whereas Description talks about

how these components are implemented, it makes sense that

the former be used more often than the latter in the queries.

We continue to analyze the results of this experiment, as

the logs provide us with a wealth of information and

hypotheses that we could validate. We do not expect this

experiment to reverse the long-held consensus that con-

trolled vocabulary performs better than free-text retrieval;

more experiments that target narrower retrieval tasks, and

that involve fewer operational parameters would be needed

for that. We can view it in light of another emerging

consensus according to which, whichever performance

benefits controlled vocabulary indexing and retrieval

might have—in our case none, quite the contrary—they

hardly justify the added cost. Perhaps more importantly,

four subjects out of five preferred plain-text search.

More importantly, we believe that this experiment

contributes to a needed rethinking of reusable component

retrieval paradigms and tools. Such implications are

discussed next.

6. Conclusion and directions

We set out to develop, evaluate, and compare two classes

of component retrieval methods which, supposedly, strike

different balances along the costs/benefits spectrum,

namely, the (quasi-) zero-investment free text classification

and retrieval versus the ‘up-front investment-laden’ but

presumably superior controlled vocabulary faceted indexing

and retrieval. Recent experiments with software component

repositories have put into question the cost-effectiveness of

the controlled vocabulary approach, but not its superior or

at least equally good retrieval performance [8]. We

attempted to bring the two kinds of methods to a level-

playing field by: (1) addressing the costs issue by

automating as much as possible of the pre-processing

involved in controlled vocabulary-based methods, and (2)

using a realistic experimental setting and realistic evaluation

measures. Our experiments showed that: (1) those aspects of

the pre-processing involved in controlled vocabulary

methods that we automated were of poor enough quality

that they were not used (the Description attribute), and (2)

the fully automatic free text search performed better than the

fully manual controlled-vocabulary based indexing and

retrieval of components.

Because these results are somewhat counter-intuitive, we

continue to analyze them, along with the log data, and to

design new experiments that are better targeted towards

validating the various hypotheses discussed in Section 5.4.

However, they give legitimacy and some urgency to some of

the questions we and others have raised about the retrieval

of reusable software components [22,23,36].

From an organizational issues point of view, there was

wide recognition in the late eighties that reuse will not

happen at a large scale within organizations without the

proper structuring and management. It was possible, in that

context, to conceive of centralized reuse repositories with

well-defined roles and quality control criteria and mechan-

isms [25]. Nowadays, a lot more reuse happens in the

unstructured and decentralized world of the Internet and

open source software, and any ‘virtual reuse repository’ can

only rely on automated indexing and retrieval methods,

regardless of differences in performance.

Reuse repositories are also facing a number of paradig-

matic issues. First, there exist qualitative differences

between bibliographic document retrieval and software

component retrieval [22], which make some of the

document retrieval analogies inappropriate. Document

library users who do not find the documents they are

looking for will look even harder because they cannot

perform the tasks for which they needed the information

Table 7

Comparing the two sets of queries depending on whether they retrieve

methods or not

Query set Full-text retrieval Keyword retrieval

% Recall % Precision % Recall % Precision

Answer ¼ classes and

methods

41.333 59.17 27.77 47.27

Answer ¼ classes only 85.65 89.77 57.05 89.40

INFSOF 4328—6/3/2003—17:48—UMASHANKAR—64990— MODEL 5

H. Mili et al. / Information and Software Technology xx (0000) 1–17 15

ARTICLE IN PRESS

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680



UNCORRECTED P
ROOF

otherwise. A software developer will more easily give up

and get on with developing the software component from

scratch. As reuse repository designers, we need to account

for the fact that software developers are not our captive

users, which puts more pressure on us to provide more

useful and less intrusive tools. It is important that the use of

the repository integrates well into the workflow of

developers; this has led some people to suggest that reuse

repositories should be active in the sense of presenting

potentially relevant information to users before they ask for

it [36]. It also means that issues of usability are paramount;

if developers prefer a particular search method, then that is

the one we should focus on. Our tool set does not address

this issue specifically, but we take seriously the fact that four

out of five users preferred free text search, which confirms

earlier studies. In our case, it even performed better.

Surely, our experiments suggest that there is ample room

for improvement in several areas (see Sections 3.2.3, 4.2,

and 5.4). However, we believe that there is something more

fundamental at play. We believe that multi-faceted

classification and retrieval of reusable components to be at

the wrong level of formality for the typical workflow of

developers using a library of reusable components. We

identify two very distinct search stages. The first stage

coincides with analysis, and is fairly exploratory, as

developers do not yet know which form (specification?)

the solution to their problem will take. During this stage, a

free-format search technique such as plain-text search is

appropriate, as multi-faceted search may be too rigid and

constraining. After contemplating several designs, a devel-

oper may then start searching for components that would

play a given role within a design, and multi-faceted

classification may be too poor for this stage. The format

of our queries (problems to be solved), and the fact that

experimental subjects used mostly the ApplicationDomain

attribute, setting aside the more implementation-oriented

Description attribute seem to point in this direction. A

combination of free-text search and active reuse repositories

[36] may be worth exploring.

Acknowledgements

This work was supported by grants from Canada’s

Natural Sciences and Engineering Research Council

(NSERC), TANDEM Computers, Québec’s Fonds pour la

Création et l’Aide á la Recherche (FCAR), and Québec’s

Ministére de l’Enseignement Supérieur et de la Science

(MESS) under the IGLOO project organized by the Centre

de Recherche Informatique de Montréal.

Bertrand Fournier, a statistician with the Service de

Consultation en Analyse de Données (SCAD, http://www.

scad.uqam.ca), and Professor Manzour Ahmad, director of

SCAD, provided us with invaluable assistance in measuring

and interpreting the results.

References

[1] ACM, An introduction to the CR classification system, Computing

Reviews January (1985) 45–57.

[2] P. Allen, Reuse in the component marketplace, Component Devel-

opment Strategies 11 (8) (2001).

[3] H. Bilofsky, C. Burks, J.W. Fickett, W.B. Goad, F.I. Lewitter, W.P.

Rindone, C.D. Swindell, C. Tung, The GenBank genetic sequence

databank, Nucleic Acids Research 14 (1986) 1–4.

[4] D. Blair, M.E. Maron, An evaluation of retrieval effectiveness for a

full-text document-retrieval system, Communications of the Associ-

ation for Computing Machinery 28 (3) (1985) 289–299.

[5] D. Cutting, J. Kupiec, J. Pedersen, P. Sibun, A practical part-of-speech

tagger, Proceedings of the Applied Natural Language Processing

Conference (1992).

[6] E. Damiani, M.G. Fugini, C. Bellettini, A hierarchy-aware approach

to faceted classification of object-oriented components, ACM

Transactions on Software Engineering and Methodology 8 (3)

(1999) 215–262.

[7] G. Dumpleton, OSE—Cþþ Library User Guide, Dumpleton Soft-

ware Consulting Pty Limited, Parramatta, 2124, New South Wales,

Australia, 1994, 124 pp.

[8] W.B. Frakes, T. Pole, An empirical study of representation methods

for reusable software components, IEEE Transactions on Software

Engineering August (1994) 1–23.

[9] W.B. Frakes, R. Baeza-Yates, Information Retrieval: Data Structures

and Algorithms, Prentice-Hall, Englewood Cliffs, NJ, 1994.

[10] R.J. Hall, Generalized Behavior-based Retrieval, Proceedings of the

15th International Conference on Software Engineering, ACM Press,

Baltimore, MD, 1993, pp. 371–380.

[11] S. Henninger, Using iterative refinement to find reusable software,

IEEE Software 11 (5) (1994) 48–59.

[12] S. Isoda, Experience report on a software reuse project: its structure,

activities, and statistical results, Proceedings of the 14th International

Conference on Software Engineering, Melbourne, Australia May

(1992) 320–326.

[13] I. Jacobson, M. Griss, P. Jonsson, Software Reuse: Architecture,

Process and Organization for Business Success, Addison-Wesley,

Reading, MA, 1997.

[14] K.S. Jones, A statistical interpretation of term specificity and its

application in retrieval, in: B.C. Griffith (Ed.), Key Papers in

Information Science, Knowledge Industry Publications, Inc, White

Plains, NY, 1980, pp. 305–315.

[15] M.E. Lesk, Word–word associations in document retrieval systems,

American Documentation 20 (1) (1969) 27–38.

[16] Y.S. Maarek, D.M. Berry, G.E. Kaiser, An information retrieval

approach for automatically constructing software libraries, IEEE

Transactions on Software Engineering 17 (8) (1991) 800–813.

[17] A. Mili, R. Mili, R. Mittermeir, Storing and retrieving software

components: a refinement-based approach, Proceedings of the 16th

International Conference on Software Engineering, Sorrento, Italy

May (1994).

[18] H. Mili, R. Rada, Building a knowledge base for information retrieval,

Proceedings of the Third Annual Expert Systems in Government

Conference October (1987) 12–18.

[19] H. Mili, R. Rada, Merging Thesauri: principles and evaluation, IEEE

Transactions on Pattern Analysis and Machine Intelligence 10 (2)

(1988) 204–220.

[20] H. Mili, R. Rada, Medical expertext as regularity in semantic nets,

Artificial Intelligence in Medicine 2 (1990) 217–229. Elsevier

Science Publishers.

[21] H. Mili, R. Rada, W. Wang, K. Strickland, C. Boldyreff, L. Olsen, J.

Witt, J. Heger, W. Scherr, P. Elzer, Practitioner and SoftClass: a

comparative study of two software reuse research projects, Journal of

Systems and Software 27 (1994).

INFSOF 4328—6/3/2003—17:48—UMASHANKAR—64990— MODEL 5

H. Mili et al. / Information and Software Technology xx (0000) 1–1716

ARTICLE IN PRESS

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

http://www.scad.uqam.ca
http://www.scad.uqam.ca


UNCORRECTED P
ROOF

[22] H. Mili, F. Mili, A. Mili, Reusing software: issues and research

directions, IEEE Transactions on Software Engineering 21 (6) (1995)

528–562.

[23] H. Mili, E. Ah-Ki, R. Godin, H. Mcheick, Another nail to the coffin of

faceted controlled-vocabulary component classification and retrieval,

Proceedings of the ’97 Symposium on Software Reuse, Boston, MA

May (1997) 89–98.

[24] H. Mili, H. Sahraoui, Describing and using frameworks, in: R.E.

Johnson (Ed.), Building Application Frameworks: Object-oriented

Foundations of Framework Design, Wiley, New York, 1999, pp.

523–561.

[25] H. Mili, A. Mili, S. Yacoub, E. Addy, Reuse-based Software

Engineering: Techniques, Organization, and Control, Wiley, New

York, 2002, ISBN 0-471-39819-5.

[26] OASIS, Business Process, Business Information Analysis Overview

(ebXML), Organization for the Advancement of Structured Infor-

mation Standards, May 11, 2001, http://www.ebxml.org/specs/

bpOVER.pdf.

[27] E. Ostertag, J. Hendler, R. Prieto-Diaz, C. Braun, Computing

similarity in a reuse library system: an AI-based approach, ACM

Transactions on Software Engineering and Methodology 1 (3) (1992)

205–228.

[28] R. Prieto-Diaz, P. Freeman, Classifying software for reusability, IEEE

Software January (1987) 6–16.

[29] R. Rada, H. Mili, E. Bicknell, M. Blettner, Development and

application of a metric on semantic nets, IEEE Transactions on

Systems, Man, and Cybernetics 19 (1) (1989) 17–30.

[30] G. Salton, M. McGill, Introduction to Modern Information Retrieval,

McGraw-Hill, New York, 1983.

[31] G. Salton, Another look at automatic text-retrieval systems,

Communications of the Association of Computing Machinery 29

(7) (1986) 648–656.

[32] C. Smith, MEDLINE Queries and Distances in MeSH, Internal

Report, National Library of Medicine, 1985.

[33] D. Soergel, Organizing Information: Principles of Data Base and

Retrieval Systems, Academic Press, Orlando, FL, 1985.

[34] B.H. Weinberg, J.A. Cunningham, The relationship between term

specificity in MeSH and online postings in MEDLINE, Bulletin

Medical Library Association 73 (4) (1985) 365–372.

[35] S.N. Woodfield, D.W. Embley, D.T. Scott, Can programmers reuse

software, IEEE Software July (1987) 52–59.

[36] Y. Ye, G. Fischer, Promoting Reuse with Active Reuse Repository

Systems, Proceedings of the Sixth International Conference on

Software Reuse, Lecture Notes in Computer Science, vol. 1844,

Springer, Berlin, 2000, pp. 302–317.

[37] A.M. Zaremski, J.M. Wing, Signature matching: a key to reuse,

Software Engineering Notes 18 (5) (1993) 182–190. First ACM

SIGSOFT Symposium on the Foundations of Software Engineering.

[38] A.M. Zaremski, J.M. Wing, Specification matching: a key to reuse,

Software Engineering Notes 21 (5) (1995) Third ACM SIGSOFT

Symposium on the Foundations of Software Engineering.

[39] G.K. Zipf, The Psycho-Biology of Language, MIT Press, Cambridge,

MA, 1965.

INFSOF 4328—6/3/2003—17:49—UMASHANKAR—64990— MODEL 5

H. Mili et al. / Information and Software Technology xx (0000) 1–17 17

ARTICLE IN PRESS

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

http://www.ebxml.org/specs/bpOVER.pdf
http://www.ebxml.org/specs/bpOVER.pdf

	An experiment in software component retrieval
	Introduction
	Component retrieval: do we still care?
	The component retrieval problem

	ClassServer: an experimental component repository
	Overview
	A multi-faceted classification of components
	Software component retrieval in ClassServer
	The component library

	Constructing domain vocabulary
	Extracting a set of concepts
	Constructing a hierarchy of important domain concepts

	Automatic indexing from controlled vocabulary
	The algorithm
	Results

	Retrieval experiments
	Experimental design
	Queries
	Component relevance: a performance-based evaluation
	Performance results

	Conclusion and directions
	Acknowledgements
	References


