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MINIMIZATION OF RATIONAL WORD FUNCTIONS*

CHRISTOPHE REUTENAUERY AND MARCEL-PAUL SCHUTZENBERGER#

Abstract. Rational functions from a free monoid into another are characterized by the finiteness of the
index of some congruence naturally associated with the function. A sequential bimachine is constructed
computing the function, which is completely canonical, and in some sense minimal. This generalizes the
Nerode criterion and the minimal automaton of a rational language, and similar results for sequential
functions.
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1. Introduction. Sequential machines appear as a ubiquitous tool in data process-
ing and in basic software, since they constitute the most general algorithm between
words that can be executed in real time by a finite device. Their theory is one of the
earliest well-developed chapters of Automata Theory [8], and their natural generaliza-
tion, i.e., the rational functions from a free monoid A* (set of input words) to another
B* (output words) plays a basic role in the study of context-free languages and
compilation [1]. The present paper is a contribution to the understanding of rational
functions.

Here and in the sequel, we follow Eilenberg’s terminology as used in his treatise
[7]. In particular, by function we mean a partial mapping, and we recall that a rational
function « from a semigroup S into a semigroup T is a function such that its graph
{(s, @(s))|sedom (@)} is a rational subset of the product semigroup Sx T. This
definition is not the most convenient for our present purposes, and we shall use other
equivalent definitions, by means of automata and machines. In order to understand
the concepts which motivate the study of these objects, we begin with an informal
presentation of the topic.

Recall that a sequential automaton is a two-tape machine reading the input tape
from left to right, and writing on the output tape from left to right; no left move, nor
e-move, is allowed. A sequential function is by definition a function a: A* > B* which
is realized by some sequential automaton. Sequential functions are closed under
functional composition.

Strictly speaking, what we have just described are left sequential objects and one
could consider right sequential ones in a symmetric way (read and write from right to
left). However, the associated functions are quite different. For instance, in a fixed
integer base, multiplication by a given integer can be carried out by a sequential
automaton if and only if it reads from right to left, while it is the reverse that is true
for the division.

This leads to a more intuitive definition of rational function as the closure under
composition of left and right sequential functions. An early theorem of Elgot and
Mezei on general rational relations (see [1, Chap. 4, Thm. 5.2]) shows that any rational
function can be obtained by composing one left and one right sequential function.
This is expressed in more compact fashion by the concept of a bimachine [12] according
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670 C. REUTENAUER AND M. P. SCHUTZENBERGER

to Eilenberg’s terminology [7]. A further basic property that we shall make use of is
that if o is an injective rational function of its domain, its inverse a™' is again a
rational function. For instance, morphisms ¢ : A* > B* may be the simplest rational
functions. They are both left and right sequential functions. Another way of stating
that a morphism ¢ is injective is the condition that the image ¢(A) of the input
alphabet is a code, and in this case the decoding function ¢ ' has been intensively
studied (see [2]).

The main result of this paper is a characterization of rational functions, which
extends to functions the classical definition of recognizable languages in terms of
finiteness of the index of a certain congruence (Theorem 1). As a byproduct, this
shortens considerably the proof of a Hankel-like characterization of rational functions
[13]. The second main result (Theorem 2) shows that it is possible to associate to a
rational function a a bimachine that is completely canonical, up to the choice of a
certain left congruence on A* which must be compatible with the left adjacency relation
of a. Among these congruences, there is one, the syntactic congruence, which is
canonical. When «a is a total function, the bimachine that we construct is minimal in
the following sense: it has the minimum number of left states among all bimachines
computing a and having the set of right states corresponding to the given congruence.
In general, it is not true that o has a unique minimal device realizing it (see, for
instance, [3] for the case of decoding functions) but our result is the first step in this
direction. The existence of a canonical machine is far from being trivial because, in
view of the two-sided action, there is an unbounded number of ways by which one
can realize the necessary trade-off between the spaces of left and right states.

Of course, the construction of a canonical bimachine gives a decision procedure
for the equivalence of two rational functions (the fact that this is decidable was already
known, see [1]). One can expect that, similar to the close relation between combinatorial
aspects of rational languages and algebraic properties of their syntactic monoid, there
should exist connections between properties of a rational function and its canonical
bimachine (see the open problems at the end of this paper).

2. Preliminary results. Recall that a subset of a monoid M is called rational if it
may be obtained from the finite subsets of M by a finite sequence of the following
three operations: union KU L, product KL, star K* = U ,~, K" = the submonoid gener-
ated by K (see [1], [6]).

We prefer the terminology ‘“‘rational” to “‘regular,” because the former emphasizes
the analogy with the theory of rational functions of classical analysis and of rational
power series in noncommuting variables.

We consider here partial functions from a finitely generated free monoid into
another. If a:A*-> B* is such a function, then it is called rational if its graph
#a={(u, v)e A*x B*|uedom (a), v=a(u)} is a rational subset of the product
monoid A* x B*.

In the sequel, we identify each word w and the subset {w}. We write a(w)=,
if w is not in the domain of a.

A more effective characterization is the following: the function « is rational if
and only if there exists a matrix representation (monoid homomorphism) u:A*->
(25" where 2% is the boolean semiring of subsets of B* (with union and product),
a row vector A, and a column vector p of length n with entries in the same semiring,
such that for any word w, one has a(w) = Au(w)p ((see [1, Chap. 3, Prop. 7.3]); the
fact that a is a function forces each entry of u, A, p to be empty or a singleton, once
the unnecessary states have been removed). The latter characterization shows that a
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rational function has the following property, which is called the Hankel property,
because it concerns the Hankel matrix (a(uv)), ,ca*-

LemMA 1 (Hankel property). For any rational function a, there exists an integer
n and 2n functions By, -+, Bn, Y1, * * 5 ¥u: A*¥ > B* such that for any words x, y in A*

ab)= U B(%().
Here and in the sequel, we consider each word, and J, to be embedded in the boolean
semiring 2%", with union and product; thus the previous equation means that for each
i with xedom (B;), y € dom (y;), one has a(xy)=B:;(x)y;(y), and that a(xy)=O if
for no i one has x € dom (B;) and y e dom (1;).
Proof. Let u, A, p be as in the characterization before the lemma. Then
a(xy) =Au(xy)p = Auxuyp = 1<U< (Apx)i(pyp)i = U Bi(x) y:(y).

To conclude, note that if |8;(x)|= 2 for some x (in case B; is not a function), one must
have y; = J, because a is a function; so this index i can be omitted (the case is similar
if some 7; is not a function). 0

A result of Schiitzenberger shows that the converse also holds [13]. We shall give
a new proof of it in the next section. For the moment, let us point out what this Hankel
property means in the case of characteristic functions, i.e., functions whose image is
contained in {J, 1} (we denote by 1 the empty word).

LEMMA 2. Let a:A*—> B* be the characteristic function of its domain L. The
Jollowing conditions are equivalent:

(i) a« has the Hankel property.
(ii) ¢(L) is a finite union U H; x K;, where c(w)=U ,,_,, (x, y) © A* x A*.

(iii) L is a rational language.

Note that (ii) is a Hopf-algebra-like characterization of rational languages.

Proof. (i)=(ii): Let H;=dom (B;) and K;=dom (y;), where B; and v, satisfy
a(xy) =U =iz Bi(x)v:(y). Then clearly c¢(L)=U H; x K.

(ii)=>(iii): this is evident by “Nerode’s criterion™: if the set {x ' L|x € A*} is finite,
then L is rational, where x 'L ={y|xy e L}. Now, x 'L is the union of the K,’s for
which x € H;. Hence the x 'L are finite in number.

(iii)=>(i) is a particular case of Lemma 1. O
The next lemma shows the functorial properties of the Hankel property.

LeEMMA 3. (i) If @ and o' satisfy the Hankel property, then so does a'° a.

(ii) If a satisfies the Hankel property, then dom () is rational.

(iii) If « satisfies the Hankel property, then a™" preserves rationality.

Proof. (i) We have

aratm) = (U BEIN0)) =U B0
= U U Bi(Bi(x))yi(vi(y)) = U (Bire B)(x)(vire vi)(¥)-

(ii) In this case, the characteristic function of dom (a) satisfies the Hankel
property, so it is rational by Lemma 2.

(iii) Let L be a rational language in B*, and let a: A* > B* satisfy the Hankel
property. Let a’ be the characteristic function of L. Then by Lemma 2 and (i), a’'c «
satisfies the Hankel property, hence by (ii), dom (a'° «) is rational. But dom (a'c a) =
a '(L). O
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This lemma will enable us to prove the following implication: if a has the Hankel
property, then « is a rational function. Proving it is much more difficult than in the
case of characteristic functions (Lemma 2). It depends on a Nerode-like characterization
of rational functions (the main result of §3), and on Choffrut’s theorem, which
characterizes subsequential functions, and which is itself a generalization of the
Ginsburg-Rose theorem on sequential functions. In order to state this theorem, define
the left distance between two words by

llu, o]l = |ul+ o] —2[u r 0],

where |u| is the length of u and u A v the longest common left factor of u and v. In
other words, |u, v| =|s|+|t| where u=ps, v=pt, and p=unrv. This can also be
expressed by the equality ||u, v|| = length of the reduced word (in the free group) u™'v,
or equivalently v~ 'u. From this last fact, it is immediate that ||u, v|| satisfies the triangular
inequality. Hence, it is a distance (see also [1, Chap. 4, § 2, p. 104]).

A function a: A*-> B* will be said to be uniformly bounded if for any integer k,
there exists an integer K such that for all x, y e dom (a), || x, y| = k= | a(x), a(y)| = K
The terminology stems from the fact that such a function maps each bounded subset
of dom () into a bounded subset of B¥, in a uniform way. Thus we do not use the
terminology ‘‘bounded variation” of [4].

We shall give a formal definition of subsequential functions in § 4, but it seems
advisable to recall now the following result.

TueoreM (Choffrut [4] or [1, Chap. 4, Thm. 2.7]). A function « is subsequential
if and only if it is uniformly bounded and o' preserves rationality.

We say that two functions «, B: A*—> B* are adjacent if

sup {[|la(f), B(f)|, fedom () Ndom (B)} <co.

The next result is a decidability result, which will imply that every construction in this
paper is effective.

ProPOSITION 1. Ifa, a': A* > B* are rational functions, then one can decide if they
are adjacent. In this case, the function a A o' defined by: (a A a')(f) equals the longest
common left factor of a(f) and o'(f) when fedom (a)Ndom (a'), and otherwise,
(arna)f)=a(f)Ua’'(f), is rational and can be computed effectively.

Remark 1. If a,, a, are rational but not adjacent, then «; A a, is not rational, in
general. Define them, indeed, to be the homomorphisms {a,, a,}* > t* such that
ai(a;)=t a;(a)=1forj#i

Then (a, A a,)(f) is equal to "/, where n(f)=inf (|f],,,|fla,), which implies
that @, A a, is not rational (indeed, the inverse image of (#°)*, by the pumping lemma
for finite automata, is not rational).

We shall need the following lemma, which is an easy consequence of a theorem
of Fine and Wilf (see [9, Chap. 1, Prop. 3.5]).

LEMMA 4. Letu, v, w,u’, v', w' be words such that sup {||uv"w, u'v'"w’||, n e N} <co,
Then one has:

(1) For some word t, either u'=ut and tv'=1vt, or u=u't and tv="'t.

One of the referees pointed out that the lemma easily follows from the preliminary
remark that |v|=|v’].

Proof of Proposition 1. (1) Without loss of generality, we may assume that o and
o' have the same domain and that a(1) = a'(1) = . Indeed, we may restrict a and a’
to dom () Ndom (a’)\{1} and test the adjacency of these new functions. In this case,
there exist transducers T and T’ for @ and «', with set of states Q, Q’, initial states
90, 90, and unique final states gy, q; (see [1, Chap. 3, Thm. 7.1]).
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Define the “Kronecker product” of T and T': it is the “transducer” T, with set
of states Q=QxQ’, inputs in A*, and outputs in B* X B*; there is a path
(p, p') 2L (g, @) in T if and only if there is a path p 2“> q in T and p’ > ¢’ in
T’; moreover, all the unnecessary states of T are removed, so that all states of T are
accessible and coaccessible, with initial state g, =(qo, g0) and final state g, = (qy, q5).

A simple path is a path without repetition of states, and a simple circuit is a closed
path with no repetition of internal states.

We show that « and a' are adjacent if and only if T satisfies the following condition:
(C) For any s1mple path (go, g5) Z2“*% (g, q') and any simple circuit

(g, ¢') 22225 (g4, q'), we have equation (1) of Lemma 4.
Clearly, if a, a’ are adjacent, and with the notations of (C), there exists a path

,) /( ,w')

(g.9 (qr, q5)-

Then a(xy"z)=uv"w and a'(xy"z) =u'v""w'. As a, a’ are adjacent, Lemma 4 shows
that (1) holds.

Conversely, suppose that (C) holds. Then, for each long enough word m in
dom (a) =dom (a’), there is a factonzatlon m = xyz, a simple path and a simple circuit

as in (C) above, and a path (q, q') 2/ (g5, 7).
Then a(m) = uvw, a’'(m)=u'v'w’. By (1), we have, e.g., u' = ut and tv' = vt. Then

u'v'w' = utv'w’' = uvtw’, hence ||a(m), a'(m)| = ||uow, uvtw'|| = ||w, tw'|| = |uw, utw'|| =
[|luw, u'w’| = ||a(xz), a’(xz)|, which allows us to conclude by induction on the length
of m.

Clearly, condition (C) is decidable, which completes the first part of the proof.

(2) We construct now a transducer for a A a’, which will imply that it is a rational
function. This construction is a rather classical covering construction, so we shall not
be very formal.

We call a path in T elementary if it starts from (qo, g4) and if only the last vertex
is allowed to appear more than once, and in this case, only twice. Hence, such a path
is either a simple path, or the concatenation of a simple path with a simple circuit, as
in condition (C).

Denote by u A v the longest common left factor of the words u and v. We construct
a tree T* having the set of elementary paths in T as a set of nodes; there is an edge
from 7 to 7' in T* if 7' = e, with e an edge in T. Note that m, ' correspond to paths
(9o, qb) 2L (p, p') and (qo, qb) =L (g, ), with u (respectively, u’) a left factor
of v (respectively, v'); so we have an equation v A v'=(u A u')s, for some word s in
B*: then the previously created edge in T* will be labelled by a/s.

Call an elementary path complete if its last state is repeated. Now, in T*, merge
the node corresponding to such a state with its first occurrence in the path: in this
way, we obtain a transducer S; let B be the function computed by S.

We show that B =a A a'. Clearly, B(m)=(a A a')(m) for any word m such that
there is in T an elementary path (qo, q5) 25> (g5, 9p)-

It follows that this equality is true for each short enough word m. Now, let m be
such that there is a nonelementary path (go, g5) 25> (g5, ;). Then this path may be
decomposed as

x/(u,u’) y/(v,v") Z/(WW)

(90, 90) (9, 9" (¢, 9)— (g5, 9)),

where the first two factors form an elementary path, for some factorizations m = xyz,
a(m)=uvw, a’'(m)=u'v'w'. Moreover, a(xz)=uw and a'(xz)=u'w'.
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This corresponds in S to a path

x/a y/o

(90, 45) =% (4, 4) 255 (g, 4) 25 (g1 q)).

By construction, we have i =u A u’, @ = uv A u’v'. By induction on |m|, we also have
(a A a')(xz) = B(xz) =aw. Now, condition (C) holds, so we have, e.g., u'=ut and
tw'=ot. Hence, aw=uwaru'w =uwautw'=u(watw’). As i =unAu’'=u, we obtain
w=wA tw'. Moreover, a(m) A a’'(m)=uvw A u'v'w' = uow A uvtw’ = uv(w A tw') = uow.
Now, we have also ad=uvAu'v'=uvAuvt=uv, so that a(m)aa’'(m)=1daow=
B(xyz) = B(m), which had to be shown. O

3. A characterization of rational functions. We give a characterization of rational
functions, which has some formal analogy with the Nerode criterion for rational
languages and which is related to Choffrut’s theorem (see § 2).

As we consider partial functions, it will be convenient to use symbol J, and the
distance will be extended by setting

1,21=0, S, ull=u S| =co

for any word u. By convention, we have n <o for any number n and n+00=o00. Then,
the triangular inequality remains valid. Now, let « be a fixed (partial) function A* > B*,
where A, B are finite alphabets. Define a relation

u~v
on A* by the condition

sup {[|la(fu), a(fo)|, fe A*} <oco.

Note that, by the above conventions, u ~ v implies that a(fu) = if and only if
a(fv) =. This implies, by the triangular inequality, that ~ is transitive. Moreover,
it is clearly reflexive and symmetric and it is not difficult to show that ~ is left
compatible, i.e., u ~ v=>xu ~ xv for any word x. Hence ~ is a left congruence of A*.

We call it the syntatic left congruence of a. The terminology is justified by the
following observation: if a is the characteristic partial function of a language L (i.e.,
a(w)=1if w= L, = if wg L), then its syntactic left congruence is the usual syntactic
left congruence of L. One could, of course, also define the right syntactic congruence
in a symmetric way.

The main result of this section is given in the following theorem.

THEOREM 1. A partial function a : A*-> B* is rational if and only if its syntactic
left congruence is of finite index and if « "' (L) is rational for any rational language L = B*.

A consequence of this result is a new proof of the Hankel-like characterization
of [13].

COROLLARY. A partial function a : A* > B* is rational if and only if there exists an
integer n and partial functions B;, v;: A*~> B*, 1=i=n, such that for any words x, y
(2) a(xy)= 1<l_J< Bi(x)i(y).

Proof. We prove the theorem and its corollary at the same time by showing that
a rational=>a satisfies the Hankel property =>~ of finite index and a ' preserves
rationality=> « rational. The first implication is Lemma 1 and one-half of the second
is Lemma 3. So, assuming (2), we show that the syntactic congruence ~ of « is of finite
index.

We show that the condition

(3) Vi, 1sisny(uw)# iff y,(v)# D
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implies u ~ v: this will imply that the index of ~ is less than or equal to 2". So, let
(3) be satisfied and define N to be some integer greater than the lengths of the words
vi(u), y:(v)#D, 1=i=n. Let f be any word; we show that |a(fu), a(fv)]|<2N.
Indeed, if a(fu) =, then by (2), for any i, either B;(f) = or v,(u) =. By (3) we
obtain: for all i, B;(f) or y,(v)=, and again by (2), a(fv)=. In this case,
la(fu), a(fv)|| =0<2N. On the other hand, if a(fu)# &, then there exists by (2) an
i such that a(fu) = B;(f)v:(u) and B:(f) # & # v;(u). Hence, by (3), we have y;(v) # &,
which implies by (2) that a(fv) = B;(f)y:(v). Hence

e (fu), a(fo)ll = 1B: () yi(u), B:i(f) ()| = |l y:(w), %i(v)|| <2N.

Finally, we have sup {||a(fu), a(fv)|, f€ A*} <oo and thus u~ v.

We now show the last implication: if ~ is of finite index and if a™' preserves
rationality, then « is a rational function.

Since ~ is a left congruence of finite index on A*, the set

Q=A*/~

is a finite set with a left action (w, q) — wq of A* on Q. Consider the finite alphabet
A X Q and define a length-preserving function

y:A*> (AX Q)*
by
Y(an e al):‘ (an, qn—l) e ((12, ql)(al’ %),

where a; € A, q, is the class of 1 mod ~ and where ¢q;=a,q;_, fori=1,---,n—1. This
function vy is clearly sequential from right to left, and hence a rational function (see
[1, Chap. 4, Cor. 2.3]). Clearly, v is injective, hence y~' is a partial function. Actually,
vy '=7|Im (y), where = is the canonical projection

m:(AX Q)*> A*,

Define B=a -y ':(AXx Q)*~> B*. We have a = o y since ¥y is a total function. We
show that B is a subsequential function, hence it is rational (see [1, Chap. 4, Prop.
2.4]); this will imply that a is rational, as a product of rational functions. (See [1,
Chap. 3, Thm. 4.4 and Def., § 1].)

We use Choffrut’s theorem, stated in §2. As B~' clearly preserves rationality
(because B '=yoa "' and y and a ! both preserve rationality), it is enough to show
that B is uniformly bounded.

CraM. If FU € Im(y) with F # 1, then the last letter of F is of the form (a, uq,)
where u= 7 (U).

This is immediate from the definition of ¥.

Let k be an integer. Define K to be some integer greater than | a(fu), a(fv)| for
any word f and any words u, v such that u~v and |u|+|v|=k, and greater than
1B(X), B(Y)|| for | X|+|Y|=k and X, Y € dom (B).

This is possible by the definition of ~ and the fact that the words u, v with
|u|+|v|= k (respectively, the words X, Y with | X|+|Y|=k) are finite in number.

We show that

(4) VX,Yedom(B), [|X Y|=k=>|B(X),B(Y)|=K,

which will imply that B is uniformly bounded. By the definition of K, it is enough to
prove (4) for | X|+|Y|> k.
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So, let X, Y with X, Y edom (8), |X|+|Y|> k, || X, Y| = k. We may write X = FU,
Y = FV, where F is the longest common left factor of X and Y. Since | X, Y| =k, we
have |U|+|V|= k. Since |X|+]|Y|> k, we also have F# 1.

Let u=w(U), v=m(V), f=m(F). Since X, Y edom (B), we have X, Y € Im (y);
hence, by the claim, the last letter of F is (a, uq,) = (a, vq,), and thus ug, = vq,, which
implies u ~ v. By the definition of B, we have B(X) = a(fu) and B(Y) = a(fv). Since
|u|+|v|=|U|+|V|=k, we have by the definition of K, |a(fu), a(fv)|=K, i.e.,
|B(X), B(Y)|| =K, which proves (4). DO

4. A canonical bimachine. We modify slightly the definition of a generalized
bimachine, as given in [1] and [7]. One of the reasons for this is that we want to give
an arbitrary image to the empty word under the function computed by the bimachine.

A bimachine is given by

® A finite set L of left states, with right action Lx A*- L, (I, w)—Iw, and a left
initial state I,.

® A finite set R of right states, with a left action A* x R > R, (w, r)~wr, and with
a right initial state r,.

® An output function w :Lx AXR-> B*.

® A final left function A :R~ B* and a final right function p : L-> B*.

The output function is extended to L x A* X R by the formula

(5) o(lLuv,r)=w(l,u, vr)w(lu,v,r).

In particular, w(l, 1, r)=1. The function computed by the bimachine is a:A*-> B*
defined by

(6) a(w)=A(wro)w(ly, w, r0) p(low).

If w=a, - - a,(a;€ A), this may be written more algorithmically (using (5)) as

n
a(a; - a,)=Aa, - aywro) - Il allba, - ai_y, a;, a;yy -+ - ary)
i=1

(7

xp(ha, - - a,).

When R is reduced to a single element, then a bimachine is simply a subsequential
transducer, as in [1] (a subsequential transducer is sometimes called a generalized
sequential machine with endmarker, see [5, Thm. 2.2]). A bimachine in the sense of
[1], [7] is a bimachine as above, where A and p are constant functions equal to 1.

Let a : A¥> B* be a function. We define on A* a relation, which will be reflexive,
symmetric, compatible with left multiplication, but not transitive in general. We call
it the (left) syntactic adjacency relation of a, denoted by

u < .
It is defined by
(8) sup {la(fu), a(fo)l, fe A*, a(fu) # D # a(fv)} <.

Note that, in view of the definition of adjacent functions (§ 2), one has u < v if and
only if the two functions f— a(fu) and f—a(fv) are adjacent. It is also easy to see
that a is uniformly bounded if and only if u < v for any words u and v. Note,
moreover, that if dom (a) = A*, then <« is transitive and equal to the left syntactic
congruence of a.

We call a left congruence ~ on A* compatible with < if for any words u, v,

U~v=UuU < 0.
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In terms of their graphs, this means that #(~) is contained in # (<>). Recall that when
~ is a left congruence, then R=A*/~ is naturally equipped with a left action
A*XR->R.

THEOREM 2. Let a: A*~> B* be a rational function. Let ~ be a left congruence of
finite index on A* and R = A*/~ and r, the class of 1 mod ~. The following conditions
are equivalent:

(i) ~ is compatible with the syntactic adjacency relation of a.

(ii) R, together with the natural left action and r, as initial right state, is the set of

right states of some bimachine computing c.
It will turn out that the bimachine that we obtain in the proof is completely canonical,
once ~ is given. Moreover, one may choose for ~ the congruence considered in the
previous section, thus obtaining a completely canonical bimachine. On the other hand,
we shall verify that this bimachine is minimal, in the sense stated in the introduction,
when «a is a total function.

Proof of Theorem 2 (first part). (ii)=>(i): Let R be the set of right states of a
bimachine computing «. We have, by the definition of R,

Uu~v & uryg=r,.

We have to show that u ~ v implies (8). Suppose that u ~ v, that is, ury=vr,=r, for
some r in R. Let N be some integer greater than the lengths of the words (if defined)
o(lu, re)p(l') and w(l, v, re)p(l'), for I, I’ in L. We have, by (5) and (6),

a(fu) = A(furo)w(lo, fu, ro) p(lo fu)
= A(furo)w(lo, f; uro)w (Lo f; u, ro)p(lofu)
=A(fr)w(l, £, r)o(lf, u, ro)p(lofu).
Similarly,
a(fo)=Ar(fr)e(l, f, N (lf, v, r)p(lfo).

If a(fu)# O # a(fv), then a(fu) and a(fv) have A(fr)w(ly, f,r) as a common left
factor, hence

la(fu), a(fv)|| <2N.

This shows (8), and thus ~ is compatible with the left adjacency of a. 0

Before continuing the proof, we need several lemmas.

LEMMA 5. If a is a rational function and ~ is a left congruence on A* of finite
index, then there exist nonempty rational functions B;, v;, 1= i = n, such that

(i) Yu,ve A*, a(uv) =U <=, Bi(u) vi(v).

(ii) Each set dom (vy;) is contained in a single class mod ~.

Proof. (i) follows from Lemma 1 and its proof, which show that B;, y; may be
chosen rational. Now, note that each class mod ~ is a rational language, and that the
restriction of a rational function to a rational language is still rational. So, replacing
in (i) each vy; by the union of its restrictions to each class mod ~, we obtain (ii). a

Remark 2. Using this lemma, it is easy to prove that the graph of the syntactic
adjacency relation of a rational function is a recognizable subset of A* x A* (in the sense
of [1, Chap. 3, Thm. 1.5] and [7], i.e., a finite union of sets K x L, where K, L are
rational languages).

Indeed, define i <> j if the functions B;, B; are adjacent. Now, for I, J= {1, - - -, n},
define I < Jif forany i in I, j in J, one has i <> j. Finally, let I(u)={i|u € dom (¥;)}.
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Then one shows that u < v if and only if I(u) <> I(v). This implies that the graph
of « is equal to
U {ue A*|I(u) =1} x{ve A*|I(v)=J},
I<J
which is recognizable.

We need to define the operator “longest common left factor” for sets of words
rather than only pairs of words. For technical reasons, it should also be defined on
the empty set. Each singleton set will be identified with its element. So, for a nonempty
language L, let A L denote the longest common left factor of the words in L equal to
g if L=¢.

For x,,--:,x,€ A¥*U{J}, we define x;A:-AX, to be A\ L, where L is the
underlying set of the sequence. So x; A - - - A x, # J if and only if at least one Xx; is not
equal to . Note that if L is a language, then A\ L= A L' for some sublanguage L' of
cardinality less than or equal to 2 (indeed, if |L| =2, there exist words u, v in L such
thatuanv=AL).If oy, ' - -, a, are functions A*~> B*, then the function a =a; A* - - A
a, willbe defined by a(f)=a,(f)A- - - A a,(f). Notethatdom (a) = U, <;=, dom («;),
in view of the definitions.

We shall use the easily verified identities

A (Sz L.~> =A(AL)

iel
for any languages L;, i€ I, and

A (gL)=g(A L)
for any language L and g in A*U {Z}.
LEMMA 6. Let a,,- -, a,: A*—> B* be pairwise adjacent functions such that each
a7 preserves rationality.
(i) For any words g,, g, in B*, the language

{f|3W€ B*, a,(f) = wgy, ax(f) = wg,}
is rational.

(ii) If the functions a; are, moreover, rational, then a, A - - - A a,, is rational.

Note that this gives an alternative proof of the following: a, o’ rational and adjacent
implies a A a’ rational (see Proposition 1).

Remark 3. Let a,, a,be asin Remark 1. Then the language { f € A*|a,(f) = a,(f)}
(this is the case g;=1=g, of the lemma) is equal to {fe A*,|f]|, =|f|.,}, and hence
is not rational. This shows that the adjacency hypothesis is not superfluous in Lemma 6.

Proof. (i) Let p be an integer such that |g,|, |g2| < p and that for any f in A*, a,(f)
and a,(f), if defined, differ only by a right factor of length less than p.

We show that for f in A*, the condition

(@ 3weB* |wlzp, a(f)=wg and a)f)=wg,

is equivalent to the condition

(b) Jie{0,---,2p—1}, Jue B” suchthat «,(f)e B'(B*)*ug,
and a,(f)e B'(B*)*ug,.

Suppose that this is proved. Then the language L of the lemma is equalto L, U L,,
where L, ={f e A*|f satisfies (a)} and L,={f e L, |a;(f)|=2p or |a,(f)|=2p}. By the
hypothesis that the a;' preserve rationality and by (b), L, is rational. Moreover, if
a,(f) is short, then so is a,(f) and vice versa. Hence, L, is contained in a finite union
of languages of the form L, ={fe A*|a,(f)=wg, and a,(f)= wg,}, which are also
rational; since each L, is contained in L, we conclude that L is rational.
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It is clear that (a) implies (b). Suppose that (b) holds, that is, a,(f)= s ug;,
a(f) = s,ug, with |s|, |s,]=i mod 2p. We must show that s, =s,. By adjacency, we
have a,(f) = thy, a,(f) = th, with |hy|, |h,|<p. As |gi|, |g.| <p, the difference between
|s,u| and [t| is less than p. The case is similar for |s,u| and |t|. Thus ||s,|—|s,| =
l|s10] —|su| <2p=>|s)|=|s,).

Now, |hy| = p =|ug,|, which implies, by s,ug, = th,, that |s,|<|t|, hence s, is a left
factor of t. Similarly, s, is a left factor of t. As they are of equal length, they are equal.

(ii) We have, by a previous formula,

ay A ha,=(agAa) AasAt A ay,
hence we may assume that n =2, because each «; is adjacent to a; A ;.

Without loss of generality, we may assume that dom (a;) =dom (a,) = D. Then
D is a finite union of languages D(g,,g,), where D(g,,g,)=
{fe A*|3we B*, a,(f) = wg,, ax(f) = wg,} and where g, and g, have no common left
factor. Each of these languages is rational by (i), and if f€ D(g,, g,), then (a;, A a,)(f) =
a,(f)g:". Hence, the restriction of a, A a, to D(g,, g,) is rational, and finally a, A a,
is rational, as the union of a finite number of rational functions. 0

LeMMA 7. Let a:A*-> B* be a rational function, and ~ a left congruence on A*
of finite index that is compatible with the left syntactic adjacency relation of a. Let
R = A*/~ and define for each r in R a function a, by

o (f) = Ma(fu)|ue A% uro=r},
where r, is the class of 1 mod ~. Then there exists a finite language L, such that
(i) ueL=>ury=r,
(ll) a,(f) = /\ueL, a(fu)-
As a consequence, the function a, is rational.

The point of the lemma is that L, does not depend on f (otherwise, it is immediate,
using a previous remark on A L).

Proof. Suppose there exists a finite language L, such that (i) and (ii) are satisfied.
By (i) and compatibility of ~, the words in L, are pairwise in relation <>, that is, the
functions f+~>a(fu) are, for u in L,, pairwise adjacent. Since these functions are
rational, we obtain by (ii) and Lemma 6(ii) that «, is a rational function.

In order to prove that there exists a finite language L, satisfying (i) and (ii), take
B, v: as in Lemma 5. By condition (ii) of this lemma, there exists for each i a unique
r(i) such that u € dom (y;)=ury,=r(i). We know that for each i, there exists a finite
language L; = dom (;) such that A y;(A*)= A y:(L;). Let L, = U ,;,-, L;. We thus have
A {7:(u)|u e dom (y;)} = A {7:(u)|u € L,}. Moreover, (i) holds by definition. We have
also

a,(f) = A {a(fu)|ur,=r}
= A{B:(f)vi(u)|uro=r,1=i=n and u e dom (y,)}
= A {B:(f)y:(u)|r(i)=r, ue dom (¥,)}
= Ariy=r (A {Bi(f) v:(u) |u € dom (;)})
= Avtiy=r Bi( ) {yi(u)|u e dom (v:)})
= Ariy=r Bi(S YA {7i(u)|ueL})
= Ariy=r AAB:(f)vi(u) l uel,})
=A{B:(f)vi(w)|r(i)=r,ueL,}
=A{a(fu)|lueL,} (because uc L, and uedom (y,)=>r(i)=r)
= Auer, a(fu). 0
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LeMMA 8 (Notations of Lemma 7). There exist a function w : A*x A*x R > B*
and a function p : A* > B* such that
(i) For any words f, g in A* and state r in R

a,(fg) = a,(fw(f g r);
(ii) For any word f in A*
a(f)=a,(f)p(f).

Proof. The second assertion is immediate, because by definition, a, (f) is a left
factor of a(f). If a(f)#J, we define p(f)=(a,(f))'a(f). If a(f) =D, we pose
p(f)=J. Note that the set

{a(fgu)|ue A*, ur,=r}
is contained in the set
{a(fo)|ve A*, vry=gr}.

Hence, by definition, a,(f) is a left factor of a,(fg). If «,(fg)#J, we define

o(f, 8 1) =(agn(f) " a(fg). If e(fg) =3, we pose once again w(f,g,r)=. 0O
LEMMA 9 (Notations of Lemma 7). Define a relation= on A* by

f=g
if and only if
o(fu,a,r)=w(gu,a,r)

for any word u € A*, letter ac A, and state r in R, and if

p(fu)=p(gu)

for any word u. Then = is a right congruence of finite index.

Proof. Recall that when §,, - - -, §, are functions A*~> B* such that

(i) Each §;(A*) is finite;

(ii) For each g in B* and i, §;'(g) is a rational language;
then by Nerode’s criterion, the right congruence on A*, defined by f= g if and only
if 8;(fu)=6;(gu) for any i and u, is of finite index.

Hence, it is enough to show that the functions w(-, a, r):f—w(/f, a, r) and p have
finite image and that for any a, r, g in B*, the languages {f€ A*|w(f, a, r) =g} and
{fe A*|p(f) =g} are rational.

For this, it is enough, in view of Lemma 6(i) and Lemma 7, to show that the
functions f+> «,(fa) and f—a,(f) are adjacent for any a € A and r € R, and that the
functions @ and «,, are adjacent.

By Lemma 7, we have a,(fa) = A<, a(fau) and o, (f) = AL, a(fv).

Note that u€ L, and v € L,, implies that ury=r=>aur,= ar, and vr,= ar. Hence
au ~ v, which implies au <> v and the functions f+— a( fau) and f— a( fv) are adjacent.
Moreover, for w, w' € L,, one has w~ w' (by Lemma 7 (i)), hence w <> w’ (by compati-
bility of ~), hence the functions f+~> a(fw) and f—> a(fw') are adjacent. This shows
that the functions f— a,(fa) and f+ a,(f) are adjacent, because of the following
easily verified fact: if @,, - * -, a, (respectively, B,, * - +, B,) are pairwise adjacent, and
if each «; is adjacent to each B;, then a; A - - - A e, is adjacent to By A- - - A B,.

Moreover, a,(f)=Auc1, a(fu) and a similar proof shows that this function is
adjacent to a. 0 °
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Proof of Theorem 2 (Second part). Let L= A*/=, where = is the right congruence
of Lemma 9. Then L is finite, and equipped with a right action Lx A*- L. For [ in
L, ain A, and r in R, we may define w(l, a, r) = w(f, a, r) and p(I) = p(f), where f is
a representative of / mod =.

Let I, be the class of 1 mod =. Define a function A: R~ B* by A(r) = a,(1).

With these pointed sets (L, ), (R, r,) and functions w, A, p, we obtain a bimachine
for which we have only to verify that it computes «, that is, formulas (5) and (6). For
this, it is enough to show that the functions @ and p of Lemma 8 satisfy

9) o(f, gh,r)=w(f, g hr)o(fg, h,r)
and
(10) a(f)=A(fro)w(1, f, r)p(f).

But we have, by Lemma 8,

a,(fgh) = agn(f)w(f, gh,r)
and
ar(fgh) = ahr(fg)w(fg’ h, r)
= aghr(f)w(f; g’ hr)w(fg, h, r)'A
So (9) is true as soon as a,,(f) # . When a,,.(f) =, then «,(fgh) =, and by the
definition of w, we have w(fg, h, r) == w(f, gh, r). So, (9) is also true.
For (10), we have, by Lemma 8,
a(f)=a,(p(f)=a,(1-fp(f)=as(De,f, r)p(f)=A(fr)o(l, £, r)p(f),

which proves (10). 0
Remark 4. (1) Note that when r, in R is replaced by r, and p by the constant
function p’ equal to 1, then this new bimachine computes «,. Indeed, by Lemma 8,

a,(f)=a,(1-f)=az(M(, £ r)=A(fr)o(lb, f,1)p'(Lf).

(2) When « is a subsequential function, then its left syntactic adjacency is universal
(i.e., u © v for any word u, v), hence a left congruence. If one takes this congruence
for ~ in Theorem 2, then the bimachine constructed in the proof is exactly the minimal
subsequential transducer of «, as constructed by Choffrut [4] (see also [11]).

5. Example, remarks, and open problems. (a) Let A={a, b} and a:A*-> A* be
the function which removes odd runs in a word. More formally, if

w= ailbjl DY aikbjk
where the exponents are greater than or equal to 1, except possibly i, and ji, then define
- {is if i, is even
* |0 otherwise;
. {js if j, is even
Js=10 otherwise.

Then a(w)=a’b’ - - - a’vb’x. Moreover, a(1)=1.
We leave to the reader the verification of the following facts.
(1) The left syntactic congruence ~ of a is generated by the relations

a’~1, b’~1, ab~a, ba~b.
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(2) Identify R=A*/~ with {1, a, b}. The functions a,, a,, @, are defined by
oy =a, a,(f) = a(fa), ay(f)=a(fb).
(3) The function p is constant and equal to 1, and
o(fal)=w(f,bl)=w(fab)=w(fba)=1
Moreover,
a® if the last run of f is an even run of a’s or if
w(f,a,a)= f does not end with a.
1  otherwise;
b? if the last run of f is an even run of b’s or if
o(f, b, b)= f does not end with b.
1  otherwise.
(4) The right congruence =is generated by the relations
a’=1, b’=1, ab=b, ba=a.
Actually, it is the right syntactic congruence of « (this is not a general fact, even
for everywhere-defined functions).

(5) The function A is constant equal to 1 and if L=A*/= is identified with
{1, a, b}, then w is described by the following tables

! ¢ 1 a b ! ¢ 1 a b

1 [1]a®| 1 1 |1 |1 ]|b

a | 1] 1] 1 a [1 |1 ]|d

b1 ]|a]| 1 b |1 |1 |1
w(l, a,r) w(l, b, r)

5.1. Minimization. We verify that, when « is a total function, then the bimachine
constructed in the proof of Theorem 2 has the minimum number of left states among
all bimachines computing «, with R as a set of right states (with its natural left action),
with r, as initial right state.

So let a be computed by the bimachine B’ with a set of left states L', initial left
state I, set of right states R, initial right state r,, output function w’, final left function
A’, and final right function p'.

We show that for any words g, f in A*, the equality Iy f = lpg implies f= g (where
= is the right congruence of Lemma 9). This will imply that L= A*/= has fewer
elements than [,A*, hence fewer than L' (because I(A*< L).

We work in the free group generated by A. With the notations of Lemma 7, we have

(11) a,(f)=N{a(fu)|ue A*, ur,=r}.
By (5) and (6) applied to bimachine B’, we have
a(fu) = A'(furg)w'(I, £, ur))w'(lof, u, ro)p'(lofu).
This, along with (11), implies that
(12) a.(f)=N(fr)e'(lo, f, B(Lf, 1)
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where B: L' X R B* is the function defined by
B, r)=N{o'(I', u, ro)p'(I'u) |uro=r}.
From (12) we deduce
a,(fg)=A'(fgr)w'(lo, fg, r)B(lofg, 1)
=X (fgr)o'(lo, f, gr)w'(lof, g r)B(lofg, 1),
where we have used (5) again. From (12) again, we deduce
(14) ag (fo(f, & r) =N (fgr)w'(l, £, gr)B(Iof, gr)w(f, 8, ).
Recall that we have, by Lemma 8(i),
a.(fg) = ag (flo(f g r).
Using this and comparing (13) and (14), we therefore deduce that
(15) o(f, 8 r)=Bf, gr)"'w'(lof, & r)B(lof8, ).

Indeed, a is a total function, so @, and a,, are total functions as well, and every factor
in (13) and (14) is defined; we thus may simplify by A'(fgr)ew'(lg, £, gr), and multiply
(in the free group) by B(I4f, gr)™".

By Lemma 8(ii), we have

(13)

a(f)=a,(f)p(f).
As a is computed by ', and by (12), we thus obtain
X' (fro)o'(Io, £, ro)p'(lof) = X' (fro)®'(Ls, £, 1) B(Lof, ro) p(f)-
Thus, we deduce
(16) p(f)=BUsf, ro)"'p'(Lf).

Now, let f, g, u, a, r be as in Lemma 9, and suppose that Iy f = lyg. Then by (15), used
twice (with - fu, g a, and after f- gu, g > a), we obtain

w(fu, a, r)=B(lsfu, ar) " o'} fu, a, r)B(I} fua, r)
= B(logu, ar)''(logu, a, r)B(logua, r) = w(gu, a, r).
Moreover, by (16), we have
p(fu) =Bl fu, 1)~ p'(lo fu)
= B(lsgu, r0) ' p'(logu) = p(gu).
This shows, by Lemma 9, that f= g, which was to be shown.

5.2. Counterexample. We show that when a is not a total function, then the
minimization result of § 5.1 is no longer valid. This is a mystery which should be
elucidated elsewhere.
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Let a:a* - a* be defined by a(a’") =a*", a(a®"*')=. Take R=a*/a’*~1 (~
is the syntactic left congruence) and identify R with {1, a}. Then

a,(1)=A{a(u),u1=1}
=A{a(a®),neN}=1
a,(a)=A{a(au), u.1=1}
=A{a(aa®),neN}=Q
az(a®) =\ {a(a’u), ul=a}
=A{a(a’a®*"),neN}=Q
az(a)=A\{a(au), ul=a}
= N a(aa®"*"), neN}=a>.

Using Lemma 8, we have a,(a)=a,(1) w(1,a,a) and a,(a’)=a,(a) o(a, a, a).
Hence, w(1, a, a) = a*, and w(a, a, a) = (see the proof of Lemma 8). We deduce, by
Lemma 9, that a # 1.
However, the function is subsequential in both directions, hence, it may be
computed with R as a set of right states, and a trivial set of left states (i.e., a singleton).
The reader may find it instructive to compare the previous example to the two
following ones:

2n+1

{a2n_)a2n {(12”—)1
a"'sa’

a2n+l > b2n+l

The first function is not subsequential, in either direction, while the second is subsequen-
tial in both directions.

5.3. Open problem. A theory of morphisms between bimachines computing the
same function a should be developed, keeping in mind the following possible conjec-
ture: there are only a finite number of minimal bimachines computing a (minimal
would mean universally attractive in the category of these bimachines).

One cannot expect a single minimal bimachine: evidence for this is given by the
rational languages; there is no “morphic” relation between the left and the right
minimal automaton.

5.4. Open problem. A bimachine has two sets of states, hence there are two finite
monoids attached to it. Call a bimachine aperiodic such that these monoids are aperiodic
(i.e., with trivial subgroups, or period equal to 1). Characterize the rational functions
a, which are computed by some aperiodic bimachine. A tentative conjecture could be:
a is as above if and only if for any rational language L, the period of a (L) divides
that of L (recall that p is a period of L if the cardinality of each cyclic subgroup of
the syntactic monoid of L divides p).

More generally,. a theory of varieties of rational functions could be made, as has
been done for rational languages and finite monoids [10]. A first step would be to
study sequential and subsequential functions.

5.5. Open problem. Characterize rational functions which are both left-to-right
and right-to-left subsequential. These functions simultaneously generalize rational
languages (by their characteristic function) and biprefix codes (by their decoding
functions).
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An answer in the case of numerical functions (i.e., with image in a cyclic free
monoid) has been given by Choffrut and Schiitzenberger [6].
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