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Abstract Regional Climate Models (RCMs) have been

developed in the last two decades in order to produce high-

resolution climate information by downscaling Atmo-

sphere-Ocean General Circulation Models (AOGCMs)

simulations or analyses of observed data. A crucial eval-

uation of RCMs worth is given by the assessment of the

value added compared to the driving data. This evaluation

is usually very complex due to the manifold circumstances

that can preclude a fair assessment. In order to circumvent

these issues, here we limit ourselves to estimating the

potential of RCMs to add value over coarse-resolution

data. We do this by quantifying the importance of fine-

scale RCM-resolved features in the near-surface tempera-

ture, but disregarding their skill. The Reynolds decompo-

sition technique is used to separate the variance of the

time-varying RCM-simulated temperature field according

to the contribution of large and small spatial scales and of

stationary and transient processes. The temperature vari-

ance is then approximated by the contribution of four

terms, two of them associated with coarse-scales (e.g.,

corresponding to the scales that can be simulated by

AOGCMs) and two of them describing the original con-

tribution of RCM simulations. Results show that the

potential added value (PAV) emerges almost exclusively in

regions characterised by important surface forcings either

due to the presence of fine-scale topography or land-water

contrasts. Moreover, some of the processes leading to

small-scale variability appear to be related with relatively

simple mechanisms such as the distinct physical properties

of the Earth surface and the general variation of tempera-

ture with altitude in the Earth atmosphere. Finally, the

article includes some results of the application of the PAV

framework to the future temperature change signal due to

anthropogenic greenhouse gasses. Here, contrary to previ-

ous studies centred on precipitation, findings suggest for

surface temperature a relatively low potential of RCMs to

add value over coarser resolution models, with the greatest

potential located in coastline regions due to the differential

warming occurring in land and water surfaces.

Keywords Regional climate model � Temperature �
Surface forcings � Potential added value � Variance

decomposition

1 Introduction

Regional climate modelling consists of using time-depen-

dent large-scale atmospheric fields and ocean surface

boundary conditions to drive a high-resolution atmospheric

model integrated over a limited-area domain (Giorgi et al.

2001). The models used for this purpose, usually called

nested Regional Climate Models (RCMs), have been

developed in order to simulate fine-scale climate processes

and variability that cannot be resolved by lower resolu-

tion Atmosphere-Ocean General Circulation Models

(AOGCMs) (Dickinson et al. 1989; Giorgi and Bates

1989). A major motivation in their development was, and

A. Di Luca (&) � R. Laprise
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still is, the need of detailed climate information at regional,

and even local scales, in order to assess the possible

impacts of climate changes in the next decades.

Most state-of-the-art RCMs include a land surface

model representing mass, momentum and energy exchan-

ges between the land surface and the atmosphere. Some of

them are also coupled with other components of the climate

system such as lakes, vegetation and ocean. Atmospheric

variables (winds, temperature, pressure and water vapour)

at the lateral boundaries and sea surface temperatures

(SSTs) and sea ice (SI) concentrations at the surface

boundaries are either derived from coarse-resolution

AOGCMs or the analyses of observations (reanalyses).

Actual horizontal grid spacing used to run multi-decadal

RCM simulations varies between 10 and 50 km (e.g.,

Giorgi et al. 2009) thus implying a jump in resolution of

2–10 compared to AOGCMs. For a detailed discussion

about technical issues related with the nesting RCM tech-

nique and its potential merits and limitations, readers may

refer to one of the several review articles than have been

published (Giorgi and Mearns 1991; Wang et al. 2004;

Laprise et al. 2008; Rummukainen 2010).

A crucial element in the development of any numerical

model trying to describe some aspect of the natural world is

its evaluation. That is, in order to quantify how reliable a

numerical model is and how confident we can be about its

simulations and forecast, model results should be compared

with observations in the real world (Randall et al. 2007).

For instance, the evaluation of AOGCMs generally proceed

by testing their ability to simulate the climate statistics of

the recent past. A similar approach can, in principle, be

used to test the behaviour of RCMs assuming that high-

resolution reliable observations are available (see Prömmel

et al. (2010) and references therein).

However, because RCMs are not self-contained tools for

climate simulation (i.e., they need boundary conditions from

other models or historical analyses), their evaluation must

also consider a comparison against the driving data. That is,

as pointed out by Prömmel et al. (2010), the key question in

RCMs evaluation is not simply whether the RCM-simulated

climate compares well with the observed climate, but whe-

ther the RCM-simulated climate constitutes a better

approximation of the observed climate, at least for some

particular aspect, than the driving data, i.e., if the RCM

produces some added value (AV) over the driving data.

Various articles have been published about the AV issue

in the last years (see, for example, Prömmel et al. (2010),

Di Luca et al. (2012), Feser et al. (2011) and references

therein). Several conclusions can be drawn from the

existing literature about AV. First, that RCMs do not seem

to add value to the driving data in a consistent and sys-

tematic way, but rather suggest that the generation of AV is

conditional to a number of factors such as the variable and

the climatic statistics of interest, the specific performance

of an RCM and the driving data used in the comparison, the

characteristics of the region, etc.

An example that illustrates this assertion can be taken

from the study of Prömmel et al. (2010). They evaluated

the added value in the 2-m temperature field as simulated

by the REMO RCM compared to the driving European

Centre for Medium-Range Weather Forecasts 40-years

reanalysis (ERA40) by using a dense station dataset over

the Greater Alpine Region (GAR, 0�–20�E and 40�–50�N).

Temporal correlations between observed and ERA40

monthly-mean time series are generally slightly higher than

between observations and REMO in most of the GAR with

only the exception of the more complex topography sub-

regions where REMO shows higher correlations. When

looking at 2-m temperature root mean square error, results

showed that REMO tends to slightly outperform ERA40 in

regions of complex topography but showing little

improvement or even degradation of results in flatter sub-

regions surrounding the Alps, particularly during the warm

season. Hence, the question is still open regarding in which

particular cases (i.e., where, when, for which metric, etc.)

an RCM will produce an improvement in the representation

of the climate compared to the driving data.

A second point is that most of the articles concentrate on

an individual pair of RCM results and driving data, thus

precluding the generalisation of results. Particularly, AV

results derived from a single pair of RCM-GCM could be

strongly dependent on the climate models themselves,

reflecting differences due to the models’ performance

instead of general conclusions about the advantages/dis-

advantages of the RCM technique.

As noted by Feser et al. (2011), most AV studies are

based on the comparison between RCMs output and their

driving data. The AV arising from this kind of analysis can

be considered as a minimum requirement to justify the

additional computational effort of RCMs simulations. As

pointed out by Laprise et al. (2002), a more complete

evaluation of RCMs should be done also in terms of their

improvements compared to other statistical and/or empir-

ical downscaling method, generally more affordable and

cheaper in terms of computational resources.

With the aim of contributing to the discussion about AV

issues, Di Luca et al. (2012) developed a framework

nicknamed potential added value (PAV) based on the

assumption that RCMs can add value in small scales if and

only if they add variance at these fine scales. This meth-

odology is well suited at clarifying the sources of added

value in small scales, although the switch from AV to PAV

is not without drawbacks. In Di Luca et al. (2012), this

framework was used to evaluate the potential of RCMs to

add value in a variety of precipitation climate statistics

using an ensemble of RCM simulations.
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The objective of the present article is threefold: first, to

describe a modified version of the PAV framework and a

new set of statistics particularly useful for the study of the

PAV in near-surface temperature; second, to apply this

methodology in order to point out which seasons and

regions of North America could benefit from dynamical

downscaling of present climate; third, to briefly discuss the

difference between added value in present climate and in

the climate-change signal. We are aware that, while near-

surface temperature is a key variable because it is widely

used in climate studies and in climate change projections, it

is not necessarily the best variable to assess the benefits of

using high-resolution climate models. Indication about the

PAV associated with temperature statistics, however, can

be of great interest to those using it in climate and climate

change studies.

The paper is structured as follows. The next section

presents a brief description of the data used. Section 3

describes the general framework used to evaluate the PAV

together with the variance decomposition used to separate

large- and fine-scale contributions. Section 4 presents

temperature results separated in three parts: the potential

added value in present climate simulations, some discus-

sion of the complexity of this AV, and the PAV in the

temperature climate-change signal for future projections.

Lastly, concluding remarks are given in Sect. 5.

2 Data

The RCM simulations used in this study were provided by

the North American Regional Climate Change Assessment

Program (NARCCAP; http://www.narccap.ucar.edu/;

Mearns et al. 2009). In NARCCAP, six RCMs were run

with a horizontal grid spacing of about 50 km over similar

North American domains covering Canada, United States

and most of Mexico. Acronyms, full names and a refer-

ence, and the modelling group of each RCM are presented,

respectively, in the first three columns in Table 1.

The NARCCAP experiments include simulations of

contemporary climate using lateral boundary conditions

(LBCs) derived from the National Centers for Environ-

mental Prediction (NCEP) Department of Energy (DOE)

global reanalysis (Kanamitsu et al. 2002) for the 25-year

period between 1980 and 2004. NARCCAP also comprises

RCM simulations driven at the lateral and lower boundary

conditions by AOGCM simulations for present

(1971–2000) and future climate (2041–2070) using the A2

scenario (Mearns et al. 2009). Four AOGCMs are used to

drive the RCMs: the Canadian Global Climate Model

version 3 (CGCM3, Flato 2005), the NCAR Community

Climate Model version 3 (CCSM3, Collins et al. 2006), the

Geophysical Fluid Dynamics Laboratory Climate Model

version 2.1 (GFDL, GFDL Global Atmospheric Model

Development Team 2004) and the United Kingdom Hadley

Centre Coupled Climate Model version 3 (HadCM3, Gor-

don et al. 2000). The fourth column in Table 1 provides the

LBCs used to drive each RCM. A total of six RCM-

AOGCM pairs are used here to analyze the climate change

signal, with two RCMs (CRCM and RCM3) driven by two

AOGCMs and two RCMs (WRFG and HRM3) driven by

only one AOGCM. Simulations using the ECP2 RCM

driven by AOGCMs were not available at the time this

research was carried out. Similarly, due to technical

problems we could not process the output from the MM5I-

CCSM simulation and so these results are not included in

the analysis.

For each RCM simulation, several 3-hourly variables are

available in their original map projection; but in this article

we will concentrate only on 2-m temperature. Reanalysis

driven RCM simulations use AMIP II sea surface tem-

perature (SST) and sea ice (SI) concentration observations

as lower boundary conditions (Kanamitsu et al. 2002).

AOGCM driven RCM simulations use SST and SI from the

AOCGM data. In both reanalysis- and AOGCM-driven

simulations, SST and SI surface boundary conditions are

updated every 6 hours by using a linear interpolation

between consecutive monthly-mean values. Similarly,

boundary conditions are interpolated from the low resolu-

tion to the *50-km grid meshes by using a linear inter-

polation in the horizontal.

3 Methodology

3.1 Potential added value framework

The general conceptual framework used to study the PAV

in the temperature field simulated by an ensemble of RCMs

is described in Di Luca et al. (2012); but in the present

work some important methodological modifications are

introduced. In that article, two types of AV were defined

according to the spatial scales in which the AV would be

produced. Small-scales AV (AVss) refers to those RCM

improvements occurring in scales that are not explicitly

resolved by the driving data. Large-scales AV (AVls)

denotes improvements in those scales that are common to

both RCMs and the lower resolution driving data.

Given that the main objective of RCMs is to add fine-

scale features to the coarser AOGCMs, there is a general

consensus in the RCM community (e.g., Feser 2006;

Prömmel et al. 2010) that the primary added value of

RCMs is related with AVss. Much less agreement exists

about whether or not RCMs can generate AV at large

scales. Although some authors [e.g., Mesinger et al. (2002)

and Veljovic et al. (2010)] sustain a potential improvement
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of large-scale features through the use of RCMs, a large

part of the RCM community (e.g., Castro et al. (2005) and

Laprise et al. (2008)) seems to promote the use of large-

scale nudging thus reducing large-scale differences

between the RCM and the driving data.

As in Di Luca et al. (2012), the experimental design

used here to study the PAV is explicitly conceived to

investigate AVss, that is, whether RCMs can add value in

small scales. Since no attempt will be made here to identify

AVls, the failure of a given RCM to potentially generate

AVss should not be taken to imply that the RCM is inca-

pable of producing some AV through AVls.

The PAV framework is based on the idea that a pre-

requisite condition for an RCM to produce AVss is that the

RCM must be able to generate non-negligible variability in

spatial scales finer than the smallest scale represented by the

lower resolution driving data (i.e., fine scales). The contri-

bution of fine-scale processes in the description of given

climate statistics can then be used to quantify the PAV of a

given RCM simulation. The term potential in this definition

accounts for the fact that the presence of small scales is not a

sufficient condition to have AVss because RCM-simulated

fine scales may not necessarily resemble the observed ones.

Instead of directly comparing RCM simulations and

driving data statistics, a perfect-model approach is used

here to determine the relative importance of fine-scale

features. It is assumed that the statistics of the driving data

can be approximated by aggregating the high-resolution

(e.g., *50-km grid spacing) field simulated by an RCM

into a coarse grid mesh with an horizontal spacing similar

to that used by the driving reanalysis or model. That is, we

consider that a high-resolution field upscaled into a 300-km

grid (i.e., a jump in resolution of around six in the linear

horizontal dimension compared to RCMs) generates what

we call a virtual GCM (VGCM) field whose statistics

behave as those from a real GCM (i.e., as a model with

300-km grid spacing). For a detailed discussion of the

consequences of using this approximation the reader is

referred to Di Luca et al. (2012).

Differences between an RCM and its corresponding

VGCM can be expressed using the Reynolds decomposition

technique (Stull 1988). Let us consider an RCM-simulated

time-varying field Ti,k, with index i identifying the spatial

dimension and k the temporal dimension, within 300-km side

regions containing about 36 RCM grid points. By applying

Reynolds decomposition we can separate the quantity Ti,k in its

spatial average and fluctuations around this average as follows,

Ti;k ¼ Tkh i þ bTi;k; ð1Þ

where Tkh i is the 300-km spatial average temperature, at

each time step, representing a low-resolution version of the

RCM (i.e., the virtual GCM time series), and bTi;k represents

the time series departures of the 50-km grid spacing field

from the 300-km average field. Figure 1a shows the loca-

tion of MM5I RCM grid points in its original grid mesh

(blue light squares) and the resulting VGCM grid point

(black cross) in an individual region centred on -118.3� of

longitude and 32.8� of latitude.

In a similar way as done with the spatial dimension of

the Ti,k field, Reynolds decomposition can be applied over

the temporal dimension of both terms in Eq. (1) to obtain,

Ti;k ¼ Th i þ Tkh i0 þ bTi þ bT
0
i;k; ð2Þ

with Th i the spatio-temporal mean, Tkh i0 the temporal

fluctuation of the spatial mean, bTi the temporal mean of

Table 1 Acronyms, full names

(reference) and modelling group

of RCMs involved in the

NARCCAP project. Column 4

indicates the LBCs used to drive

each RCM

RCM Full name (Reference) Modelling group LBCs

CRCM Canadian Regional Climate Model

(version 4.2.0)

(Caya and Laprise 1999)

Ouranos / UQAM NCEP-DOE

CGCM3

CCSM

ECP2 Experimental Climate

Prediction Center

Regional Spectral Model

(Juang et al. 1997)

UC San Diego Scripps NCEP-DOE

HRM3 Hadley Regional Model (version 3)

(Jones et al. 2004)

Hadley Centre NCEP-DOE

HadCM3

MM5I MM5 - PSU/NCAR mesoscale model

(Grell and Stauffer 1993)

Iowa State University NCEP-DOE

RCM3 Regional climate model (version 3)

(Giorgi et al. 1993)

University of of

California at Santa Cruz

NCEP-DOE

GFDL

CGCM3

WRFG Weather research and forecasting model

(Leung et al. 2005)

Pacific Northwest National

Laboratory

NCEP-DOE

CCSM
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spatial deviations and bT
0
i;k the spatio-temporal fluctuations

of temperature. The Reynolds decomposition is performed

in each individual VGCM grid box and so the spatial

average is computed over 300-km side regions. Time-

averaged values are computed using 20 (19) summer

(winter) 3-hourly time series between 1981 and 2000.

Winter season is defined as the three months between

December and February and summer season is defined by

the months between June and August.

3.2 Variance decomposition analysis and PAV

quantities

By using properties of the variance operator and assuming

that the temporal fluctuations of the spatial mean are

independent of the spatio-temporal fluctutations (see

Appendix A for more details), the variance of Eq. (2) can

be expressed as,

r2 ¼ VarðTi;kÞ ¼ VarðhTki0 þ bTi þdTi;k
0Þ

� VarðhTki0Þ þ Varð bTiÞ þ VarðcTi;k
0Þ

� r2
tVGCMk

þ r2
sRCMi

þ r2
tRCMi;k

;

ð3Þ

with r2
tVGCMk

denoting the temporal variance of the spatial-

mean term, r2
sRCMi

the spatial variance of the RCM time-

averaged temperature in each VGCM grid box and r2
tRCMi;k

the variance of the residual fluctuations. The approximation

in Eq. (3) results from the assumption that the covariance

term between Tkh i0 and bT
0
i;k is much smaller than the other

contributions. In practice, when applied to temperature, the

covariance term is at least one order of magnitude smaller

than the sum of the RCM variance contributions.

The term r2
tVGCMk

is assumed to represent what a low-

resolution GCM can produce. The others two terms are the

stationary ðr2
sRCMi
Þ and transient ðr2

tRCMi;k
Þ components of

the RCM original contributions to the total variance. They

represent the PAV of the RCM over the virtual GCM:

PAV ¼ r2
sRCMi

þ r2
tRCMi;k

: ð4Þ

A negligible value of the PAV quantity would suggest that

the total variance is not affected by the high-resolution

information but completely determined by its low

resolution part. A normalized form of Eq. (4) can be

defined in order to quantify the relative influence of RCM

components in the total variance:

rPAV ¼
r2

sRCMi
þ r2

tRCMi;k

r2
; ð5Þ

with rPAV varying between 0 and 1, thus allowing for a

more proper comparison of PAV results across different

regions and seasons. Again, rPAV * 0 would suggest that

no RCM information is needed to determine the total

variance in that region, while rPAV*1 would mean that all

the variance comes solely from the fine-scale information

simulated by the RCM with no influence from the VGCM

term.

In order to evaluate the regional dependence of PAV

quantities, the variance analysis is performed over 300-

km side, non-overlaped, regions that are common to all

RCM domains (see Fig. 1b). The VGCM grid mesh

contains a total of 288 such grid boxes. The number of

RCM grid points inside any given VGCM grid box

depends on the specific map projection and the horizontal

grid spacing of each RCM. For example, WRFG and

MM5I have 36 grid points in every region at all latitudes

because they use a 50-km Lambert conformal projection

that conserves the distance between two consecutive grid

points. ECP2 and CRCM models’ regions contain a

varying number of grid points with a minimum of 25 and

a maximum of 66 in the northern and southern parts of

the domain respectively.

In this paper results are showed only for the variance

decomposition of the 3-hourly RCM time series, but the

analysis was conducted also for daily and 16-day time

series.

Fig. 1 a Individual 300-km

side region centred on -118.3�
of longitude and 32.8� of

latitude and b the 288 regions

use in the analysis. The total

domain of analysis is common

to all 6 RCM domains and each

sub region has the same

dimensions (i.e., 300 km by

300 km)
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4 Results

4.1 PAV in current climate

Figure 2 shows the RCM ensemble-mean total variance of

the temperature field in cold season together with the three

terms derived using Reynolds decomposition as explained

in Sect. 3.2. Ensemble-mean variance terms are obtained

by simply computing the arithmetic average over each

variance term in Eq. (3) as estimated from the individual

RCMs. For example, in order to get the ensemble-mean of

the r2
tVGCMk

term, we computed r2
tVGCMk

for each RCM

simulation and then averaged over the six RCM variance

estimations.

The ensemble-mean total variance term (see Fig. 2a)

shows values between*2 K2 (*1 K as standard deviation),

in some subtropical oceanic regions, and*130 K2 (*11 K)

in continental and high-latitude regions with a domain aver-

age of 54 K2. As is clear by comparing Fig. 2a and b, most of

the temperature variance is generated by the temporal fluc-

tuation of the spatial-mean term (i.e., the tVGCM term). The

tVGCM term is influenced by a wide range of processes with

time scales larger than 3 hours and up to decadal variability.

Inspection of variance terms resulting from the variance

decomposition analysis shows similar spatial patterns in the

3-hourly, the daily and the 16-days total variance fields. This

suggests that that the general spatial pattern of variability seen

in Figs. 2a and 2b is largely induced by intraseasonal and

interannual variability, that is those wavelengths not filtered

out by 16-day average or less. Particularly in the south part of

the domain, there is an important influence of sub-daily scale

variability evidenced by a reduction of variance values from

the 3-hourly total variance field to the daily one. Also, par-

ticularly in the north part, synoptic variability seems to play

an important role by showing an increase on the total variance

between the daily and the 16-days analysis.

It is also clear in Fig. 2a that 2-m temperature shows

weak temporal variability over oceanic regions with values

generally smaller than 10 K2 due to the relatively weak

temporal and spatial variability of SSTs, compounded by

the fact that SSTs are updated only on a monthly basis in

NARCCAP RCM simulations.

Figure 3a, b and c show an 8-day period of the tVGCMk

time series in January of 1981 for three different regions

located in the West Coast (centred on -118.3� of longitude

and 32.8� of latitude), the Rocky Mountains (centred on -

106.1� of longitude and 40.3� of latitude) and in northern

Canada (centred on -127.3� of longitude and 59.9� of

latitude). All three regions are designated with black

squares in Fig. 1b. Because most grid points in the West

Coast region are water grid points, this region shows rel-

atively weak temporal variability, mainly dominated by the

Fig. 2 Ensemble-mean

variance decomposition applied

to the 3-hourly temperature field

in cold season for a the total

variance, b the virtual GCM

variance, c the RCM stationary

variance and d the RCM

transient variance
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land diurnal cycle. The other two regions show stronger

day-to-day variability (they contain only land grid points),

mainly related with the passage of synoptic-scale systems.

Figure 2c and d show the ensemble-mean temperature

spatial variances of the temporal mean (i.e., r2
sRCMk

sta-

tionary term) and the spatio-temporal fluctuation (i.e.,

r2
tRCMi;k

transient term) terms in cold season (note that the

colour scale is different from Fig. 2a and b). Both terms are

of the same order of magnitude, with domain-average

variances of about 4 K2, but spatial patterns show signifi-

cant differences.

The ensemble-mean spatial variance of the RCM sta-

tionary term tends to maximize in regions where the

topographic and/or the land-water contrast forcings are

important. The topographic forcing creates stationary

temperature differences across grid points mainly due to

the general variation of mean temperature with altitude. A

more detailed example of the topographic source of sta-

tionary variance is given in Fig. 3e (see central United

States black square in Fig. 1b). This figure shows the cold-

season 20-year time-averaged temperature in MM5I grid

points inside the Rocky Mountains’ region characterised by

significant fine-scale topography. The altitude effect indu-

ces mean horizontal temperature gradients of the order of

10 K / 250 km that result in relative large r2
sRCMi

values of

the order of 8 K2.

Land-sea contrast also induces stationary temperature

gradients simply because the time-averaged temperature in

sea/lakes can be different from the mean temperature over

land surfaces. Figure 3d shows the cold-season temporal-

mean temperature in MM5I grid points for the region

located in the West Coast (see southernmost black square

Fig. 3 8-day period spatial-mean time series (VGCM term; top

panels), 20-years time-averaged 2-m temperature (sRCM term;

middle panels) and 8-day period fine-scale transient term (tRCM

term; bottom panels) in cold season. Left panels correspond to a

region located in the West Coast of United States; centre panels

correspond to a region with important topographic forcing, and right

panels correspond to a flat region in northern Canada. Results

correspond to the MM5I RCM and the several lines in bottom panels

represent the 2-m temperature evolution in individual grid points with

colours given by the colorbar scale in middle panels. All three regions

are shown in Fig. 1b
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in Fig. 1b). Relatively large values of r2
sRCMi

appear in this

region due to the differences between the warm tempera-

tures in MM5I grid points located over the Pacific Ocean

and those grid points in the colder land. This effect is even

more pronounced in some regions located along the East

Coast due to the stronger land-sea contrast induced by the

warmer SSTs over the Gulf Stream (see Fig. 2c).

Figure 4 shows the fine-scale stationary variance term

for each RCM in cold season. The more important inter-

model differences appear over the Great Lakes, the Hudson

Bay and the Labrador Sea. The absence of continental

contrast in the RCM3 stationary term (see Fig. 4e) simply

results from its land-sea mask that does not contain any

lake. In some regions (e.g., Great Lakes), differences

across RCMs appear to be related with differences in the

land-water fraction masks used by each RCM (see

Appendix B for more details). In other regions (e.g., Lab-

rador Sea), differences across RCMs seem to be related

with more fundamental aspects such as the representation

of latent and sensible heat fluxes in each RCM.

Over oceanic and relatively flat regions (in the central

eastern part of United States and most of Canada), the

variance of the fine-scale stationary term is very small,

with values smaller than 1 K2. The MM5I RCM time-

averaged temperature field in the region located in northern

Canada (see Fig. 3f) shows that, in flat continental regions,

horizontal temperature gradients are weaker than in

mountainous or coastal regions with a south-north gradient

of about 5 K / 400 km due to the general increase of

temperature to the Equator (note that the scale range is the

same in Fig. 3d, e and f). Interestingly, values larger than

1 K2 appear in some oceanic regions near the East Coast of

US and Canada, a feature that arises in the ensemble-mean

variance (see Fig. 2c) and in individual RCM simulations

(see Fig. 4). This signature is related with the strong sta-

tionary SST gradients across the Gulf Stream in these lat-

itudes since all RCMs share the same SSTs, with changes

in the time-averaged temperature of about 10 K / 300 km in

some of these regions.

The ensemble-mean variance of the RCM transient term

is shown in Fig. 2d and individual RCM transient terms are

shown in Fig. 5. In general, several mechanisms can produce

transient PAV. By its definition, there will be some transient

PAV if there exists 50-km spatial differences in the temporal

variability of the 2-m temperature. The comparison of the

transient term variance derived using 3-hourly and daily time

series shows that, particularly in the southern part of the

domain, most transient variability comes from temporal

scales shorter than 24 h. The process that seems to dominate

sub diurnal variability arises from the different diurnal cycle

across RCM grid points in a given region. This effect tends to

be larger in coastal regions where land grid points have a

much more intense diurnal cycle than water grid points

explaining the relative maxima of transient PAV in the West

Coast (e.g., Baja California coast), the south US coast and

Great Lakes regions.

Fig. 4 RCM stationary variance term computed from individual RCM simulations in cold season
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In order to better understand the diurnal cycle spatial

variability and the sub-daily transient term, Fig. 3g–i show

the transient term tRCMi,k for an 8-day period (similar as

that used in Fig. 3a–c) in the same three regions as before.

In the West Coast region (Fig. 3g), it is clear that the

transient variability (at least in the first 6 days) is domi-

nated by the different diurnal cycle in oceanic and land grid

points. Differences between land (ocean) grid points and

the spatial-mean term (tVGCMk) appear as a positive

(negative) anomaly during day-time and as a negative

(positive) anomaly during night-time respectively. The

diurnal cycle is, as expected, stronger over land than over

ocean grid points.

Figure 3h shows that the topographic forcing induces

little sub diurnal transient variability because, even if time-

averaged temperatures are different across grid points, their

diurnal cycle is very similar. In the northern Canada region

(see Fig. 3i), the influence of the diurnal cycle is very small

due to the weak solar forcing in high latitudes in this time

of the year.

In cold season, the ensemble-mean fine-scale transient

term (see Fig. 2d) systematically shows higher values in

continental compared to oceanic regions. This continental

transient component of PAV is a robust feature that appears

in any single model experiment as shown in Fig. 5. The

inspection of the fine-scale transient term computed using

daily and 16-day time series (not shown) reveals that dif-

ferences between oceanic and continental regions are

present when looking at daily time series but do not appear

when considering 16-days transient variability term, which

seems to imply that the continental-oceanic feature is

probably related to synoptic variability.

A process that can be important to explain continental-

oceanic differences relates to middle-latitude synoptic

systems and their associated surface fronts. The passage of

a synoptic-scale perturbation over a given region (generally

from west to east in middle latitudes) induces a spatial

gradient of temperature that varies in time (as the system

moves) and in space (relative position compared to the

front). The spatial gradient induced by the perturbation is

larger over continental compared to oceanic regions simply

because of the important damping from the ocean.

The passage of synoptic-scale systems is also probably

related to the general increase of the transient term to the

northern part of the domain in cold season. This north-

south gradient of the transient term is seen in the ensemble-

mean term (see Fig. 2d) and in most of individual RCM

terms, particularly in the north- western and eastern parts

of the domain (see Fig. 5). Figure 3h and i illustrate the

influence of synoptic variability in the transient term over

continental regions. The range of transient variability is of

the order of *10 K in the Rocky Mountains region and of

the order of *20 K in the northern Canada region.

Figure 6 shows the RCM ensemble-mean total variance

and its decomposition terms as in Fig. 2 for the warm

season. In this season, the ensemble-mean total variance

(standard deviation) shows values varying from *1 K2

in subtropical oceanic regions, to *75 K2 (*9 K) in

Fig. 5 RCM transient variance term computed from individual RCM simulations in cold season
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continental mid-latitude regions, with a domain-average

value of 29 K2. Again, most of the total variance is con-

tained in the temporal fluctuation of the spatial-mean term.

In this case, the virtual-GCM term shows maximum values

in the central eastern part of the conterminous United

States, at approximately 40� of latitude, as a result of a

combination of intraseasonal and interannual variability,

synoptic variability and the very large diurnal cycle in this

region as a product of the large solar forcing and the rel-

atively dry soils. A secondary maximum appears to the

west of the Hudson Bay mainly due to interannual and

synoptic variability. Figure 7a–c show an 8-day period of

the VGCM time series for the same regions as in Fig. 3.

Comparing with cold season results, the most outstanding

feature is that the diurnal cycle tends to dominate temporal

variability everywhere, although modulated by longer time

scale processes.

Figure 6c and d show respectively the ensemble-mean

stationary and transient variance terms in warm season. As

in cold season, the stationary and the transient terms show

domain-average values of 2 and 3 K2 respectively. The

most important differences between the ensemble-mean

stationary term in warm compared to cold season are the

lower values in the North American East Coast and the

higher values over the Hudson Bay coast: these two fea-

tures appear in every RCM simulation (see Figs. 4 and 8).

As in cold season, the transient term in warm season

(see Fig. 9) shows higher values in continental compared to

oceanic regions and maximum values occur in some

regions where the land-water contrast forcing is important

such as the West Coast and the Great Lakes regions.

However, particularly on northern regions and in flat

regions with little land-sea contrast, the fine-scale transient

term is generally smaller than in cold season probably due

to the weaker synoptic-scale variability (see Fig. 3h and i).

When looking at the ensemble-mean and individual

RCM transient terms, important differences between cold

and warm seasons appear in regions with significant

influence of lakes. In particular, warm-season transient

variances show higher values than cold-season ones prob-

ably due to the stronger contrast between water and land in

this season compared to the contrast between ice and snow/

permafrost in cold season. That is, in cold season, the land-

water contrast forcing associated with the presence of lakes

is partially hidden due to the presence of snow-ice layers in

both land and water. The more important land-sea contrasts

together with the much stronger diurnal cycle in warm

season tend to increase transient term values.

Fig. 6 As in Fig. 2 but for

warm season computations
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4.2 Stationary and transient components of relative

PAV

As defined in Sect. 3, the relative PAV measure [rPAV; see

Eq. (5)] is given by the fraction of the total variance that is

accounted by the sum of the stationary and the transient

RCM terms (i.e., the original, genuine contribution of the

RCM field) to the total variance. Figure 10 shows the RCM

ensemble-mean rPAV in cold (Fig. 10a) and warm

(Fig. 10b) seasons. Qualitatively, results are quite different

from those derived using the absolute variance terms. For

example, some oceanic regions (e.g., south Pacific regions)

show higher rPAV values than flat continental regions even

if PAV terms were higher in the later regions because the

total variance in the denominator in Eq. (5) tends to be

larger over land than over ocean. Similarly, some moun-

tainous regions with relatively large stationary variance

values show very little rPAV due to the large total variance

in these regions.

In both seasons, ensemble-mean rPAV values are gen-

erally smaller than 15 % and relative maxima are related

with regions strongly influenced by land-sea contrast

forcing. The RCM contributions to the total variance are

higher in warm compared to cold season with a domain

average of 16 and 5 % respectively. At least in part, sea-

sonal differences seem to be related to the general inten-

sification of the diurnal cycle of the land-sea contrast

forcing in warm season, particularly in mid-latitude and

northern regions (e.g., Great Lake regions).

In cold season, relative maxima are found all along the

North American West Coast and the south-east coast of the

United States. In warm season, relative maxima are related

mostly with coastline regions either near the sea or due to

the presence of lakes.

Figure 10c and d show the fraction of rPAV that is

explained by the stationary and the transient terms computed as

2r2
sRCMi

=ðr2
sRCMi

þ r2
tRCMi;k

Þ � 1. Positive (negative) values

denote those regions where the stationary (transient) term tends

Fig. 7 As in Fig. 3 but for warm season computations
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to be dominant with values equal to 1 (-1) denoting that all the

rPAV comes from the stationary (transient) term. Black

asterisks denote those regions where rPAV is larger than 15 %.

In both seasons, ensemble-mean rPAV values larger than

15 % are only found in regions where surface forcings are

important, either due to complex topography or land-water

contrasts. The number of regions with rPAV larger than

15 % is larger in warm (131 regions out of 288) than in

cold (107 regions) season. Most of these regions appear in

the northern part of the domain mainly due to the lower

Fig. 8 As in Fig. 4 but for warm season computations

Fig. 9 As in Fig. 5 but for warm season computations
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total variances in this season and the land-sea contrast

intensification.

Cold season results show that regions with rPAV C 15 %

are dominated by the stationary term with only some

exceptions in the West Coast and the Labrador Sea where the

transient variance term tends to be more important. It is

evident from Fig. 10c that rPAV values in the Atlantic Ocean

regions are induced by the permanent and relatively strong

temperature gradients across the Gulf Stream and not as a

result of a transient mechanism. Similar results are found in

warm season with only a marked dominance of the transient

term in the Gulf of Mexico.

rPAV values derived from individual RCM simulations

generally show similar results to the ensemble-mean rPAV

although differences can appear over the Canadian Archi-

pelago, the Great Lakes and other lakes in Canada. A more

detailed analysis of the uncertainties arising in the com-

putation of rPAV terms is presented in Appendix B.

4.3 Simple and more complex rPAV in mountainous

regions

As discussed in the previous section, the PAV of high-

resolution fields is mostly confined to those regions with

significant influence of surface forcings. A fair question to

ask is whether this PAV arises as a result of the influence of

complex surface mechanisms (e.g., land-sea breezes or

terrain-enhanced triggering of hydrodynamics instabilities)

or results from simple, maybe linear, interactions between

the fine-scale forcing and the variable of interest.

One such a simple mechanism that seems to be impor-

tant to explain rPAV in mountainous regions is related with

the general relation between temperature and terrain ele-

vation. The more detailed representation of terrain eleva-

tion gradients will create stationary temperature gradients

even when no fine-scale atmospheric processes occur.

In order to test the influence of this last effect, the rPAV

measure has been computed from a synthetic high-resolu-

tion 2-m temperature field derived using a linear relation-

ship between the low-resolution VGCM temperature field

and the high-resolution 50-km surface elevation field in the

following way:

Torog
RCM ¼ TVGCM þ C � hRCM; ð6Þ

with TVGCM the virtual GCM time series (in K), hRCM the

high-resolution topography (in km) of the RCM and C ¼
�6:5 K/km the middle-latitude standard atmosphere (SA)

lapse rate (see Dutton 1976 for a brief description).

Equation (6) constitutes a crude way of taking into account

the effects of changes in terrain-elevations when interpo-

lating the temperature field into a higher resolution grid

mesh. Several and important differences would appear

Fig. 10 Ensemble-mean rPAV
in (a) cold and (b) warm

seasons and the fraction of

rPAV coming from the

stationary and transient terms in

(c) cold and (b) warm seasons.

Black crosses in bottom panels

denote those regions where the

ensemble-mean rPAV signal is

larger 10 %
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between the actual 2-m temperature topographic lapse rate

and the free air SA lapse-rate approximation, starting from

the fact that the effects of the surface in the adjacent

temperature (e.g., sensible and latent heat fluxes) are not

taken into account in the SA lapse rate. As shown by

Prömmel et al. (2010), the use of the constant SA lapse rate

along the year may lead to biases not caused by the models

themselves, particularly in winter months where the

atmosphere can be much more stable with mean lapse rates

of the order of C ¼ �3:0 K/km.

In order to assess the similarity between the real sta-

tionary rPAV field and the artificial one, spatial correla-

tions are computed using:

r ¼ covðrPAVstationary; rPAVorogÞ
rðrPAVstationaryÞrðrPAVorogÞ

; ð7Þ

with rPAVstationary the original stationary RCM rPAV and

rPAVorog the rPAV derived using Eq. (6) as input temper-

ature. The linear correlation is computed only for those

regions with relatively complex topography but with no

influence of the land-water contrast forcing. Complex ter-

rain regions are defined by a standard deviation of the

elevation field within the region larger than 250 m. For

each RCM, the land-sea mask is defined by the fraction of

land inside each grid box with values varying between 0

and 1. Regions with important influence of land-water

contrast are then defined as those with a water fraction

standard deviation larger than 0.2. The total number of

regions considered in correlation calculations depends on

the RCM due to the different representation of both surface

fields and grid location and varies between 37 (ECP2

model) and 51 (CRCM model) across models.

Table 2 shows the 90 % confidence interval of the linear

correlations between rPAVorog and the stationary part of the

rPAV term. Correlation confidence intervals are estimated

using a Monte Carlo approach by sampling 1,000 times

randomly with replacement over both spatial series. The

90 % confidence interval is then computed by calculating

the 5th and the 95th percentiles of the 1,000-elements

correlation distribution.

In both seasons and for every single RCM, correlations

between the rPAVorog and the stationary rPAV are very

high with an RCM-mean 5th (95th) percentile value of

0.84 (0.96) and 0.67 (0.90) in cold and warm seasons

respectively. This suggests that about 80 and 65 % of the

RCM rPAV variance is linearly explained by the oro-

graphically-induced field in cold and warm seasons,

respectively.

Inter-model differences are generally small, of the order

of 10 % of the mean correlations, and contained within the

sampling errors as estimated from the 5th and 95th per-

centile differences, which are generally of the order of 15–

20 %, but can be as high as 40 %.

5 PAV in the climate change signal (AOGCM driven

simulations): preliminary results

So far, we have analyzed the potential of RCMs to add

value over their associated virtual-GCMs in the simulation

of temperature in present-climate conditions (i.e., driven by

NCEP reanalyses). This information can be useful in a

broad spectrum of RCM applications such as the recon-

struction of recent-past climate on the regional scale (e.g.,

Mesinger et al. 2006; Kanamitsu and Kanamaru 2007), the

downscaling of low-resolution global simulations in sea-

sonal-prediction investigations (e.g., Rauscher et al. 2007;

Seth et al. 2007; De Sales and Xue 2011) and the study of

processes and mechanisms in the regional scale (Pielke

et al. 1999; Roebber and Gyakum 2003).

One of the main applications of RCMs in the last decade

has been its use to downscale future-climate projections

produced by coupled GCMs. In order to account for sys-

tematic biases in RCM projections, a popular approach

used to estimate high-resolution future climate is through

the ‘‘delta method‘‘ (e.g., see Rummukainen 2010). The

delta method consists of modifying the observed high-

resolution climate data with the RCM climate change (CC)

signal to obtain an unbiased version of the future projec-

tion. This suggests that the RCM’s added value in climate

projections may not come directly from the simulation of

future scenario periods but from the climate-change signal

itself. While the problem of looking for PAV in the CC

signal is intimately related with that of PAV in present

climate, some differences appear.

The CC signal of the time-averaged temperature field is

defined in the usual way by computing the difference

between the time-mean field in present and future condi-

tions. Using the same notation as in Sect. 3 we have:

Table 2 90 % confidence interval of the linear correlation coefficient

between the stationary part of the rPAV measure computed using

RCM simulations and the rPAV derived using the low-resolution

VGCM temperature field and the high-resolution topographic field

(see Sect. 4.3 for a detailed explanation)

Cold season Warm season

CRCM [ 0.82; 0.96] [ 0.72; 0.94]

MM5I [ 0.87; 0.97] [ 0.72; 0.94]

ECP2 [ 0.81; 0.93] [ 0.35; 0.78]

RCM3 [ 0.88; 0.97] [ 0.68; 0.92]

WRFG [ 0.83; 0.96] [ 0.71; 0.92]

HRM3 [ 0.81; 0.96] [ 0.81; 0.92]

RCMs-MEAN [ 0.84; 0.96] [ 0.67; 0.90]

Only those regions characterized by complex topography (see the text

for its definition) with no land-sea contrasts are included in the

calculation
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CCRCMi
� CCi ¼ TiðfutureÞ � TiðpresentÞ; ð8Þ

with CCRCMi
the high-resolution CC signal over the ith

300-km side region. Following the ideas used for the

present-climate PAV framework, we can aggregate CCRCMi

over 300-km side regions in order to produce a low-reso-

lution version of the CC signal that we denote by CCVGCM.

A question that arises naturally in the context of the

PAV framework is whether the high-resolution CC field

contains fine-scale information that is absent in the low-

resolution part. Given that some of the most important

sources of climate change are large scale in nature (e.g.,

CO2 concentration changes, water vapor feedback, etc), it

is unclear whether the CC signal should contain a large

high-resolution component. A simple way to quantify the

relative importance of fine and large scales in the high-

resolution CC signal can be done by defining:

rPAVCC ¼ rðCCRCMi
Þ

meanðCCRCMi
Þ ¼

rðCCRCMi
Þ

CCVGCM
; ð9Þ

where rðCCRCMi
Þ denotes the spatial standard deviation of

the high-resolution CC signal field ðCCRCMi
Þ and CCVGCM

the mean temperature change between future and present

periods over the region of interest. With this definition

rPAVCC * 0 would suggest that the high-resolution esti-

mation does not add extra information over the coarse-

resolution one and, rPAVCC * 1 would suggest that the

fine-scale contributions can be as large as the large-scale

mean temperature change.

Again, it should be emphasised that the PAV measure as

defined in Eq. (9) only accounts for the PAV small scales

(PAVss), that is, the PAV arising from the simulation of

fine-scale features that are absent in GCM fields. The ratio

rPAVCC is mute about the potential of RCMs to add value

in large scale variables (i.e., PAVls).

Figure 11a and b show the CCRCMi
field for the CRCM-

CGCM3 simulation in cold and warm seasons respectively.

In both seasons, results show warmer conditions in the

future with a stronger signal in continental compared to

oceanic regions. In cold season, the spatial pattern of

CCRCMi
shows a general increase to the north and to the

interior of the continent that attains almost 7 K in the centre

of the Hudson Bay (2041–2065 minus 1971–1995). In

warm season the spatial pattern of CCRCMi
shows maxi-

mum values in continental-middle latitudes with changes

as large as 4 K in central United States. Other RCM-

AOGCM couples show similar spatial patterns of mean-

temperature changes in cold season (not shown).

Figure 11c and d show the rPAVCC measure for the

CRCM-CGCM3 simulation in cold and warm seasons,

respectively. In both seasons, rPAVCC values are generally

smaller than 10 % with values somewhat higher in warm

compared to cold season, particularly in coastline regions.

Fig. 11 High-resolution

climate change signal (top
panels) and the rPAVCC

measure (bottom panels) in cold

(left panels) and warm (right
panels) seasons. Results

correspond to the CRCM-

CGCM3 simulation. Only

values smaller than 0.6 are

shown in c and d

Potential for added value in temperature 457

123



The largest values in coastline regions result from the

differential warming observed in land and water surfaces.

Figures 12 and 13 show the rPAVCC measure for the other

individual RCM-AOGCM simulations (Figs. 12a–e and

13a–e) and for the ensemble-mean (Figs. 12f and 13f) results

in cold and warm seasons respectively. Most models show

similar results to the CRCM-CGCM3 simulation, with rel-

atively small rPAVCC values everywhere, maxima in coast-

line regions and somewhat larger values in warm compared

to cold season results. The WRFG-CCSM simulation shows

very large rPAVCC values over lake regions in warm season

(see Fig. 13) but this seems to be related with a different

representation of lakes in present and future conditions.

Maybe the most interesting feature is related with the

robustness of the rPAVCC results. Black squares in

Figs. 12f and 13f denote regions in which rPAVCC satisfies

two conditions: that the RCM ensemble-mean rPAVCC is

larger than twice the inter-model standard deviation, and

larger than 5 %. That is, black squares identify those

regions in which a significant rPAVCC signal is robust

across the different RCM simulations.

In cold season, robust regions (59 out of 288) appear

along the North American West Coast, in most coastline

regions in the Hudson Bay and in some regions with

important fine scale topography in the Rocky Mountains. In

warm season, robust regions (60 out of 288) appear along

the East and West Coasts with coastline regions over the

Hudson Bay appearing as non-robusts.

6 Discussion

The use of RCMs to dynamically downscale large-scale

atmospheric fields in present and future climate conditions

has gained popularity as a way to circumvent the spatial

scale gap that exists between the climate information

provided by AOGCMs and the input needed in impact and

adaptation studies. There is still a need, however, to

objectively quantify the gains arising from the use of

RCMs as climate downscaling tools.

In this article we use the ‘‘potential added value‘‘

framework proposed in Di Luca et al. (2012) with the aim

of detecting the regions and seasons where RCMs show

potential to improve the simulation of temperature statistics

compared to the driving models. This detection is per-

formed by looking for regions and seasons showing a large

contribution of fine-scale details on the climate statistics of

interest. The presence of fine-scale variance is interpreted

as a necessary condition for a RCM simulation to add

value. It should be clear, however, that the actual added

value will depend on how the simulated climate compares

with the observed one and will always be smaller or equal

than the PAV.

The methodological approach used in this paper can be

summarised through three main steps:

1. 20-year 3-hourly time series of near-surface tempera-

ture fields simulated by 6 RCMs are decomposed using

Fig. 12 The rPAVCC measure in cold season as computed from individual RCM simulations (a–e) and from the ensemble-mean field (f)
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Reynolds averaging rules. The temperature field over

300 km by 300 km regions (i.e., approximately equiv-

alent to GCM grid boxes and containing several RCM

grid points) is separated in four terms: the spatio-

temporal mean, a time series describing the temporal

fluctuations of the spatial mean, a time-averaged field

of the spatial-mean deviations and a residual time

varying field containing the spatio-temporal

fluctuations.

2. In each 300-km side regions, the variance of the high-

resolution temperature field is then described by three

terms that result from the Reynolds decomposition.

The first is the temporal variance of the spatial-mean

field that is assumed to represent the GCM contribu-

tion to the total variance. The other two terms depend

on the spatial deviations and are related with the

stationary (time mean) and transient RCM contribu-

tions to the total variance.

3. The PAV is then defined as sum of the fine-scale

stationary and transient RCM variances. A normalised

quantity (rPAV) is defined by computing the fraction

of the total variance that is explained by RCM

variances.

Our results indicate that, independently of the season

considered, the high-resolution near-surface temperature

variance is mostly explained by the virtual-GCM term,

with a contribution from the RCM terms that is generally

smaller than 15 % but can attain 60–70 % in some regions.

The contribution from the fine-scale stationary and tran-

sient terms is roughly of the same order of magnitude but

they are induced by different mechanisms and therefore

they show distinct spatial patterns of variability.

The fine-scale stationary spatial variance term is sensi-

tive to time-averaged temperature gradients and is hence

important in regions where surface forcings are important

either due to complex topography or land-sea contrast (i.e.,

with coastlines or lakes). The stationary term can also arise

due to the presence of strong stationary gradients from

other sources such as the strong SSTs variation over the

Gulf Stream.

The fine-scale transient variance term is associated with

spatial differences in the temporal variability of 2-m tem-

perature and seems to be dominated by two mechanisms. A

first mechanism is related with the presence of land-sea

contrast and describes the differential temporal variability

of temperature in land and water grid points. A clear

example of this mechanism is given by the different diurnal

cycle over land and water grid points. The second mech-

anism is independent of the fine-scale surface forcings and

describes the spatial variability induced by the passage of

weather disturbances, mainly of synoptic scale. This last

term appears to be more important in winter and over high-

latitudes due to the stronger intensity and variability of

synoptic-scale systems. In addition, due to the dominant

thermal-inertia effect of ocean waters on 2-m temperature,

this term is also stronger over the continent.

Fig. 13 As in Fig. 12 but for warm season computations
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When computing the fraction of the total variance

explained by RCM terms, we find that relatively large

values of rPAV are essentially confined to regions with

important surface forcings mainly due to land-sea con-

trasts. In general, but particularly in coastline high-latitude

regions, rPAV tends to be larger in warm than in cold

season due to an intensification of the land-sea contrast

forcing related with ice/snow cover in cold season and a

much stronger diurnal cycle in warm season.

In Sect. 5, the potential of RCMs to add value over

lower resolution models in reproducing the climate-change

(CC) signal is discussed. It is stressed that the existence of

PAV in present climate does not imply that PAV will be

present in the CC signal. Our results show that the fine-

scale spatial variability in the high-resolution CC temper-

ature over the 300-km side regions is generally one order of

magnitude smaller than the mean CC signal itself. The

analysis indicates that the largest potential AV appears in

coastline regions due to the differential warming in land

and water surfaces. This effect tends to be more pro-

nounced in warm than in cold season. It is seen that, in

mountainous regions, the PAV present in present climate is

almost lost in the CC signal; this results mainly from the

fact that, as shown in Sect. 4, the PAV in mountainous

regions is dominated by quasi-linear stationary processes

that are very similar in present and future climate and

hence tend to be cancelled out when computing the CC

signal.

In general, results point out that the potential of RCMs

to add value in near-surface temperature is rather limited

in oceanic and flat regions with little land-sea contrast and

fine-scale topography. This result agrees with previous

studies of Winterfeldt and Weisse (2009) and Winterfeldt

et al. (2011) who showed similar results for the study of

marine near-surface winds over oceanic and coastal

regions. Also, our results are in agreement with those

from Prömmel et al. (2010) who found that over the

Greater Alpine Region their RCM adds value over the

ERA40 reanalysis only in the more complex topography

subregions. Furthermore, even for those regions showing

relatively large rPAV values, it remains to be seen whe-

ther this added value could not be obtained using simple,

maybe even linear, relationships between the high-reso-

lution surface forcing and the low-resolution variable of

interest. An example of such a simple relation was shown

in Sect. 4.3.

Feser (2006) indicated that the AV can be strongly

dependent on the variable used in the analysis by showing

much higher AV in the 2-m temperature field compared to

the sea level pressure field. Similarly, we applied the var-

iance decomposition methodology to the time-varying

precipitation and results (not shown) suggest that the rel-

ative influence of RCM contributions to the total variance

is larger in precipitation than in 2-m temperature. For

example, for 3-hourly time varying fields, the ensemble-

mean domain average rPAV in cold (warm) season is

5 % (16 %) for temperature and 23 % (40 %) for precipi-

tation. These results together with those from Di Luca et al.

(2012) suggest that efforts aiming to show the benefits of

using RCMs over lower resolution GCMs should concen-

trate on moist processes or in climate statistics with sig-

nificant fine-scale variability such as high-order statistics

variables with large spectral power at high temporal

frequencies.

Finally, two important caveats should be discussed

regarding our results. First, as discussed in the methodol-

ogy Section, this work and the previous study by Di Luca

et al. (2012), concentrated on the potential added value on

the small spatial scales, disregarding the possible impact of

high-resolution simulations on larger scales. It was

assumed that spatial average of RCM quantities within an

area equivalent to the driving model grid-box is identical to

the driving model grid-box value. This necessarily pre-

cludes any analysis of possible improvements at that scale.

The second caveat relates to the fact that our methodology

may be badly suited to detect potential added value of

complex characteristics. For example, phenomena such as

downslope winds near mountain ranges or lake-effect

snowfall may need a methodology tailored to that partic-

ular objective.
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Appendix A: Variance decomposition

The high-resolution temperature field as simulated by any

RCM can be decomposed in its spatial-mean and spatial-

fluctuations as:
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Ti;k ¼ Ti;k
i þ bTi;k

¼ VGCMk þ RCMi;k;
ð10Þ

where ð:Þ denotes the arithmetic average over grid points

(i) or time (k). VGCMk is the virtual GCM term given by

the time series of the spatial mean and RCMi,k the RCM

term representing the time series of the spatial deviations:

RCMi;k ¼ Ti;k � Ti;k
i
: ð11Þ

Similarly, each time varying term in Eq. (10) can be

decomposed into a stationary and a transient part as:

VGCMk ¼ Ti;k ¼ Ti;k
i

� �k

þ Ti;k
i

� �0

¼ sVGCM þ tVGCMk;

ð12Þ

and

RCMi;k ¼ Ti;k � Ti;k
i ¼ bTi;k

� �k

þ bTi;k

� �0

¼ sRCMi þ tRCMi;k;

ð13Þ

where

tVGCMk ¼ Ti;k
i � Ti;k

i
� �k

¼ VGCMk � VGCMk
k

ð14Þ

and

tRCMi;k ¼ Ti;k � Ti;k
i � bTi;k

k

¼ RCMi;k � RCMi;k
k
:

ð15Þ

From Eqs. (10), (12) and (13) we obtain,

Ti;k ¼ sVGCM þ tVGCMk þ sRCMi þ tRCMi;k: ð16Þ

The sample variance of Eq. (16) is given by,

r2 ¼ ðTi;k � sVGCMÞ2
k

i

¼ ðtVGCMk þ sRCMi þ tRCMi;kÞ2
k

i

¼ ðtVGCMkÞ2
k

i

þ ðsRCMiÞ2
k

i

þ ðtRCMi;kÞ2
k

i

þ 2ðtVGCMk
k
sRCMi

iÞ

þ 2ðtVGCMktRCMi;k
iÞ

k

ð17Þ

From Eqs. (14) and (15) it follows that tVGCMk
k ¼ 0 and

tRCMi;k
k ¼ 0. Hence, without any approximation, Eq. (16)

can be writen as:

r2 ¼ r2
tVGCMk

þ r2
sRCMi

þ r2
tRCMi;k

þ 2ðtVGCMktRCMi;k
iÞ

k

:

ð18Þ

The PAV term can then be defined by the sum of those

terms that include any contribution from the RCM. In

practice, the covariance term 2ðtVGCMktRCMi;k
iÞ

k

is at

least 10 times smaller (not shown) than the sum of other

two contributions so it is neglected in the analysis.

The variance decomposition can be applied indepen-

dently to each RCM dataset. That is, for each model m we

obtain:

r2jm ¼ r2
tVGCMk

jm þ r2
sRCMi
jm þ r2

tRCMi;k
jm: ð19Þ

The ensemble-mean for each variance term is then obtained

by computing the arithmetic mean over all models. For the

total variance the expression is given by:

r2jm
m ¼ 1

M

X

m

r2jm; ð20Þ

and similar expressions for the other variance terms.

Appendix B: Uncertainties in rPAV estimations

In order to examine how robust are the PAV results, we

consider some of the uncertainties arising in the estimation

of variances from the RCM simulated temperature time

series. Two types of uncertainties are partially (roughly)

assessed: uncertainty due to the natural variability of the

climate system and the RCM structural uncertainty due to

our incomplete knowledge of the climate system and the

resulting differences in the representation of some pro-

cesses in the several RCMs.

Inherent to the process of computing a climate statistics

from a finite lengh time series (i.e., 20 years periods in our

case) there is an uncertainty related with sampling vari-

ability. In order to get a quantitative measure of this

uncertainty, variances in Eq. (3) have been estimated using

a Monte Carlo approach. That is, each variance term is

computed 500 times by sampling randomly with replace-

ment over the original time varying field Ti,k. Traditional

bootstrapping methods (Efron and Tibshirani 1993) rest on

the assumption that the data of analysis are composed of

independent samples, an hypothesis that is evidently not

true in the case of the 3-hourly and 50-km temperature

fields used to estimate variance terms. In order to account

for the serial (or auto-) correlation in the temporal

dimension, the temporal sampling is performed by ran-

domly selecting a subset of the total data assuming that

temperature values are independent every three days. This

is equivalent to use a variance inflation factor as described

in Wilks (2010). In the spatial dimension, the bootstrapping

is performed assuming that adjacent grid points are inde-

pendent, an hypothesis that we know is not adequate.
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For each RCM, an estimation of the uncertainty can then

be obtained by computing, for example, the standard

deviation of the distribution of each variance term con-

taining the 500 samples. The PAV sampling uncertainty

can then be defined as the sum of the stationary and tran-

sient sampling standard deviations. In a similar way, the

rPAV sampling uncertainty for each RCM can be obtained

by computing the standard deviation of the rPAV Monte

Carlo distribution. Figure 14a and b show the ratio between

the inter-model mean rPAV sampling standard deviation

and RCM ensemble-mean rPAV for cold and warm seasons

respectively. In both seasons, the sampling uncertainty

pattern resembles the ensemble-mean rPAV pattern

showing relatively uniform fields for the ratio between

both. Inter-model mean values, but also individual model

results (not shown), show domain-mean values of about

*15 % in both seasons, with values that can attain up to

50 % in some regions. As clear from Fig. 14a and b, the

largest values of the sampling ratio arise in those regions

that have the borders near the coast (i.e., with maybe only

one grid point that differs from all the others).

A simple measure of the RCMs’ uncertainty can be

obtained by quantifying the spread between RCMs through

the multi-model standard deviation. The unbiased formula

of the standard deviation (von Storch and Zwiers 1999) is

desirable because of the small number of simulations

available for the analysis (in what follows, we use always

the unbiased formula when computing the inter-model

spread). Figure 14c and d show the ratio between the inter-

model standard deviation and RCM ensemble-mean rPAV

for cold and warm seasons respectively. Values of the ratio

are larger than in the sampling uncertainty case particularly

Fig. 14 Inter-model mean

sampling uncertainty in (a) cold

and (b) warm seasons. RCMs

uncertainty in (c) cold and

(d) warm seasons. e shows the

inter-model standard-deviation

of the standard deviation of the

surface-fraction field
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in some oceanic and coastline regions. In general, however,

the standard deviation represents less than 20–30 % of the

signal showing that there is a relative large agreement

between RCM simulations.

Assuming that robust features across RCMs are those for

which the signal (i.e., the RCM ensemble-mean) is at least

two times larger than the RCM spread, some regions can be

pointed out to be non robust (not shown). In cold season,

non-robust regions appear in the Atlantic Ocean in the

southern part of the domain, in some high-latitude regions

and near the Great Lakes. Models’ uncertainties in some of

these regions appear to be related with differences in the

land-water fraction masks used by each RCM. For exam-

ple, the RCM3 model does not contain any lake and WRFG

contains only the largest lakes. Figure 14e shows the multi-

model standard deviation of the land-fraction standard

deviation in each 300-km side region. The largest differ-

ences across RCMs arise near the Canadian Archipelago,

the Great Lakes and others lakes in Canada, and in the

Atlantic Ocean near Florida due to the presence of some

islands.
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