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1 Introduction

A well-known combinatorial construction, that has many applications in Com-
puter Science [6)], [15], [8], [18], maps bijectively permutations in S, onto bi-
nary, planary trees, with labels in {1,...,n}, increasing from root to leaves;
see [5], [3], [17]. See [16], p. 23-24, for a formal definition of this bijection
(m +— T(m) in his notation). This construction is illustrated in Figure 1; the
inverse mapping is simply the projection.
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Figure 1

On the other hand, to each Lyndon word is associated a binary, planary com-
plete tree with leaves labelled by the letters of the word; again, the inverse
mapping is the projection. See Section 3 for a formal definition. Motivation
for this construction comes from the theory of groups and Lie algebras; the
tree encodes a nonassociative operation, either a commutator in the free group
[1], or a Lie bracketting [9]; both constructions lead to bases of the free Lie
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algebra consisting of the collection of all Lie polynomials defined by Lyndon
words.

In this note, we show that this second construction reduces to the first: in-
deed, one can associate to each (Lyndon) word a permutation, that we call its
suffiz standard permutation. This permutation then gives a tree, as in the first
construction. This tree, once completed, gives the tree of the Lyndon word,
by writing the letter on the leaves. The whole construction is illustrated in
Figure 2.
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Note that, for the tree associated to a Lyndon word, or equivalently for the
standard bracketting of this word, there is an algorithm in [12], extending
Schiitzenberger’s for Hall sets. It seems that this algorithm is quadradic in
time (but it computes more than the bracketting of a given Lyndon word: it
computes the decomposition of any word in the Poincaré-Birkhoff-Witt basis
of the free associative algebra), and that the algorithm of the present paper is
better: indeed, suffix standardization can be done time 0(n logn), see [10], [2]
p.155; moreover, the tree associated to a permutation is constructed in linear
time; hence the whole construction is in 0(nlogn).

As an application, we derive an algorithm to factorize any word into a decreas-
ing product of Lyndon words see the corollary. In the course of the paper, we
also show that the suffix standard permutation of a Lyndon word corresponds
to the ordering of the infinite words obtained by iterating its conjugates, see
Prop. 2.1; this result is motivated by the bijection of [7] between words and
multisets of primitive circular words.

2 Suffix standardization

Let ! be a word on a totally ordered alphabet, and ! = sy, s9,..., s, its non-
empty right factors, of decreasing length. The suffiz standard permutation of
l is the unique o € S, defined by s,-1(1) < 8g-1(2) < *** < 8g-1(n), Where < is



the alphabetical ordering. In other words, label the n letters of { from 1 to n,
1 being the label of the first letter of the smallest right factor, 2 the label of
the second smallest, and so on. See Figure 2 for an example. Note that o is
not the standard permutation of [13].

When [ is a Lyndon word, [ is the smallest of all its right factors [9], so that
c(1) = 1. A more subtle property of Lyndon words is the following: if w is a
word, let w™ denote the right infinite word obtained by repeating w infinitely
often. Then ordering the right factors of | amounts to (lexicographically) order
the infinite words obtained by iterating the corresponding conjugates of I. In
other words, we have the following result.

Proposition 2.1 Let | be a Lyndon word. For each right factor s; of I, as
above, let p; the corresponding left factor, so that | = p;s;. Let o be the suffiz
standard permutation of l. Theni< j & (S,,—l(,-)pa-l(i))w < (Sa—l(j)pa—l(j))w.

In other words, with evident notations: s < 8’ & (sp)® < (s'p')>.

As an example, take | = aabaacab as in Figure 2. Then we have
o = 14725836 and indeed I*° < (aacabaab)® < (abaabaac)® < (abaacaba)® <
(acabaaba)™ < (baabaaca)™® < (baacabaa)™ < (cabaabaa)™.

Note that the proposition is not true if !/ is not a Lyndon word. Indeed, for
[ = baa, we have o = 321, but (aab)*® < (aba)*® < (baa)>.
Proof

It is enough to show that if s; < s;, then (8;p;)*® < (8;p;)*°. This is clear if
8; is not a left factor of s;. In the opposite case, we have s; = s;z and then

(sip;)® = s8;p;s; ... = 8;l..., which is smaller than s;z... (since z is a right
factor of ! Lyndon word, so that [ < z, see [9]), hence (s;p;)*®° < s;zl® =
Sjloo = (Sjpj)oo. 0

3 Statement of results

Given a complete binary planary tree £ with leaves labelled in an alphabet,
its projection is the word p(t) defined recursively by p(t) = p(t1)p(t2), if t =
(t1,t2). For example, the projection of the tree at the right of Figure 2 is
aabaacab. Clearly, if ¢ has n leaves, their labels are known once p(t) is known.

Given a Lyndon word [, let 0 = 1 7 be its standard suffix permutation;
associate to m (viewed as a permutation of {2,...,n}) the binary increasing



tree obtained by the bijection described in the introduction; complete this tree
into a tree ¢, with leaves labelled so that p(t) = I.

On the other hand, if [ is written [ = I'l", with [” its smallest proper right
factor, then it is known that I, 1" are Lyndon words (see [9]); then the Lyndon
tree t; of | is defined recursively by ¢, = (t/,t"), if t',t” are the Lyndon trees of
U, 1" respectively (if [ is a letter, ¢, = [ is a tree with only one node, labelled

).

With the previous notations, one has the following result.

Theorem 3.1 t = t;.

As an application, we may easily factorize a word into Lyndon words.

Corollary 3.1 Let w be any word and w = [, ...l, its unique decreasing
factorization into Lyndon words: l; > Iy > .-+ > l,. Let o be the suffiz
standard permutation of w and 1 = i) < iy < --- < i the positions of the
left-to-right minima of 0. Then k = n and l; starts at the i; — th letter of w.

Note that this gives another factorization proceduce as the one in [4]; the latter
is however better in time, since it is linear, and since the present algorithm is
in O(nlogn), as noted at the end of the introduction.

4 Proofs

4.1 Let ¢; be a binary, complete, planary tree with leaves labelled in an
alphabet. We have defined the word p(¢,), the projection of ¢;. Now, let
a be a leaf of t,: denote by p(a,t;) the corresponding right factor of
p(t1). Recursively: if t; = (f2,t3) and « is in ¢5 (resp. t3), then p(a,t;) =
p(a, t2) p(ts) (resp. p(a,t3)). For example, for a the leftmost leaf labelled
b in the tree t; at the right of Figure 2, we have p(a, t;) = baacab.

4.2 There is a natural bijection ¢ between the set of internal nodes of a binary
complete planary tree ¢; and the set of its leaves, excluding the leftmost
leaf: if z is an internal node, let {(z) (resp. r(z)) be its left (resp. right)
successor in the tree. Then p(z) = I'r(z) with { maximum. For example,
in Figure 2, internal node 2 is mapped onto the third leaf (from the left)
labelled a.

4.3 Let t; be the Lyndon tree of the Lyndon word I. Let ¢ be the tree obtained
by suppressing in ¢; the leaves, with each node z in ¢’ labelled by the word
p(p(x),%1) (which is a right factor of l). Since binary increasing trees are
in one-to-one correspondence with permutations, and since ¢; is clearly
the tree obtained by completing ¢, in order to prove the theorem, it is



enough to show that t’ is an increasing tree. See Figure 3, which should
be compared to Figure 2.

This amounts to show that for any two internal nodes z, y of ¢;, with
preceding y (that is, ¥ is in the subtree rooted at ), one has p(p(z),t1) <
p((p(y)a tl)’
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Figure 3
It is enough to prove this when y is a successor of z in ?,; so we may
distinguish two cases: y = l(z),y = ().

4.4 Note that if z is an internal node of t;, then p(p(z),t;) is equal to the
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product p(t;)...p(t,), with p(¢;) > --- > p(t,), where ¢,,...,t, are the
subtrees hanging at the right of the unique path form z to the root, in
this order. Indeed, this is seen by geometric inspection of the tree, and
the inequalities follow from the fundamental lemma of Melangon (see [11]
Lemma 2.1, noting that the set of Lyndon words is a particular Hall set).
Suppose that y = [(z). Then, by 4.4, we have p(p(z),t) = l...1,,
ple(y),t1) = Lls...l, for some Lyndon words with I; > Iy > --- > [;
see Figure 4.

This implies that, in the set of sequences of Lyndon words, ordered
alphabetically, the sequence (ly,...,[,) is smaller than (ly,...,l;). But
another result of Melangon ([11] p. 299-300), is that the alphabetical order
on words coincides with the alphabetical order of sequences of Lyndon
words, each word being identified with the unique decreasing sequence
whose product is this word.

Thus p(e(z)(, t1) < p(e(y),t1), what was to be shown.

6 Suppose now that y = r(z). Then by 4.4, we have p(p(z),t1) = Lilz.. . I,

and p(p(y),t1) = i{l,. . .1, for some Lyndon words {{,1y,---,1, with l{ >
Il > --- > 1, (the first inequality since I{ is a right factor of [ ); see Figure

NN <L

Figure 4



This implies that one has the inequality of sequences: (lj,...,1,) <
(#,1,...,1,), and, by the same result as in 4.5, we have p(¢(z),t1) <
p((y), t1). This proves the theorem.

7 We now prove the corollary. Note that if { = aw (a is the first letter of [)

is a Lyndon word, and if ¢1, . .., ¢, are the trees hanging at the right of the
path from the extreme left leaf z of the Lyndon tree ¢; of ! to the root, in
this order, then the p(¢;) are Lyndon words and p(¢;) > -+ - > p(¢,). This
is the ”décomposition normale gauche” of [14] (extended by Melangon in
his lemma quoted in 4.4). See Figure 5.
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Figure 5
Now, if o is a permutation and ¢ its associated increasing tree, then the
left-to-right minima of o lie on the extreme left branch of ¢t (see [16] p.
24).
To conclude, it is enough to apply all this, given an arbitrary word w,
to the Lyndon word [ = aw where a is a letter smaller than any letter in
w.

Remark

Note that Melangon’s lemma, is valid for each Hall set H. Moreover, he has an
order <y which plays the same role as alphabetical order for Lyndon words.
So it seems likely that all our results extend to arbitrary Hall sets.
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