Accepted for publication in théournal of Classification

Optimal Variable Weighting for Ultrametriand Additive Trees
andK-means Partitioning: Methods and Software

Vladimir Makarenkov Pierre Legendre
Université de Montréal Université de Montréal
<makarenv@ere.umontreal.ca> <Pierre.Legendre@umontreal.ca>

Abstract: De Soete(1986, 1988) proposedome years ago a methddr optimal variable
weighting for ultrametric and additive tree fitting. This paper extends De Soete’s metbitrial
variable weighting for K-means partitioning. We alsaescribe some new features and
improvements to the algorithrproposed by De Soetévionte Carlo simulations have been
conductedusingdifferent errorconditions. Inall cases(i.e., ultrametric or additiverees, orK-

means partitioning), the simulation resutidicate that the optimaleighting procedure should be
used for analyzing data containing noisy variables that do not contribute relevant information to the
classificationstructure. However, ithe data involveerror-perturbed variablgbat are relevant to

the classification or outliers, it seems better to cluster or partition the entities by using variables with
equalweights. A newcomputerprogram,OVW, which isavailable toresearchers as freeware,
implements improved algorithnfer optimal variableweighting for ultrametricand additivetree

clustering, and includes a new algorithm for optimal variable weighting-foeans partitioning.

Undertaken at thsuggestion of Professor Glenn WMlilligan, this researctwas supported by
NSERC grant number OGP7738 to P. Legendre.

Authors’ AddressesbDépartement dasciences biologiques, Université de MontréalP. 6128,
succ.Centre-ville, MontréalQuébecH3C 3J7, Canada. \WWakarenkov is also associated to the
Institute of Control Sciences, 65 Profsoyuznaya, Moscow 117806, Russia.



Résumé: De Soete proposé il y a quelques années unéthode de pondératiamptimale des
variables devant servir a la reconstruction d’arbres ultramétriques ou additifsaNiotegoropose
d’étendrecette méthode au partitionnement par la méthods K centroides. Nouslécrivons
égalementiesaméliorations a I'algorithme de [Boete,ainsi que de nouvelles options de calcul.

Des simulations de Monte Carlo ont été réalisées en utilisant différents types d’erreur. Dans tous les
cas(i.e., arbres ultramétriques cadditifs, oupartition par la méthodees K centroides), les
résultats des simulatiomsdiquent qu'il estoon d'utiliser la méthode de pondératioptimale des
variableslors del'analyse de tableaux d#onnées susceptibles de contef@svariables-bruit qui

ne contribuent que peu ou pas du tout a la classification. Cependant, si les dontiéesent des
variables pertinentes a la classification qui contiennentedeeur, ou encoredes observations
aberrantes, il est préférable de procéder a la classification en ddesgmbidsgaux a toutes les
variables. Un nouveau logiciel, OVW, est mis gratuitement a la disposition des chercheurs désireux
d’explorer la méthode. Ce programme met en oeuvre nos algorithmes améliorés pour la pondération
optimale des variables pour la reconstruction d’arbresltramétriques ou additifs; il permet
également Igpondératioroptimaledesvariables en vue du partitionnement par la métraeeK

centroides.
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1. Introduction

In two pioneering papers, DeSoete (1986, 1988) proposed aumerical method for
estimating optimal weights for variables intended for ultrametric or additive tree reconstruction. The
present paper extends De Soete’s method to least-sgkiaresafis;MacQueeril967) partitioning.

We will also point out some properties tbe algorithmproposed by D&oete that seem to have

gone unnoticed; an understanding of these properties leads to improvements in the methods.



We carried ouMonte Carlo studiedor optimal variableweighting applied to additivéee
reconstruction and-means partitioning. These studies, conducted using different error conditions,
confirmed the ability of the method to identify and reduce the effect of ‘noisy’ variables. We did not
test the ability of the methofibr recovering clusters ithe framework of ultrametric clustering
procedures becauseMonte Carlo study hadalready been carried out adgscussed irdetail by
Milligan (1989). Consideringhe complexity of the algorithms that waiscuss, acomputer
program ismade available to the scientific community to encounagearchers to useptimal

variable weighting.

There is an appreciable literature about variabéeghting. DeSarbo, Carroll, Clark, and
Green (1984) described SYNCLUS, a program that solves forvaoitibleweights and produces
K-means clustering. Fowlkes, Gnanadesikan, and Kettenring (1988) also proposed a Imeethod,
called FGK, for selectingweights — inthat case,binary (0 and 1l)weights. These authors
proposed anodel that selectsubsets ofvariables fromthe original dataand produces binary

weights for the variables; their procedure was applied to complete linkage hierarchical clustering.

In a laterpaper, Gnanadesikan, Kettenriramd Tsao (1995romparedFowlkes etal.’s
(1988) FGK procedure to De Soete®VWTRE and to DeSarbo ehl.’s (1984) SYNCLUS
models. Gnanadesikan et al. (199%gtermined that thd~GK forward selection procedure
performed reasonably well compared to its competitGughsequent tdhe FGK algorithm,
Carmone, Kara, and Maxwell (1999) proposed a variable subset selection method based on Hubert
and Arabie’'s(1985) adjusted Randdex. Their methodwas designed fopartitioning using
continuous variablesThe procedureproposed byCarmone etal. (1999) inthe context of
partitioning clustering, called HINoV, was described as a heuristic method basethe@djusted
Rand statistics. These authors conducted a serig®mik Carlo simulationsusing syntheticdata
with noise of various kinds added, including masking variables. The regiittated that variables
selectedusingthe HINoV procedure outperformetthe all-variablecases in 70 out of 72 different

computerruns. Incontrast to thegood results found bZarmone etl. (1999), inreal data set



analyses usingliNoV, Green, Carmonegnd Kim (1990) hacarlierfound mixed results in the

ability of SYNCLUS to recover the correct variable weights.

Hubert and Arabie (1995) applied a least-squares optimization strategy to $itriiteres to
symmetric proximity matrices amorapjects, using dneuristic optimization techniqueased on
iterative projection. They considered extensions of this method beffendnalysis of a single
symmetric proximity matrix. In this paper, well explore how least-squaresptimization can be
applied to theanalysis of two-waydata matrices in the context of ultrametand additivetree

reconstruction as well & means partitioning.
2. Description of the Method

Given a rectangulafi.e., object-by-variable, ortwo-way, two-mode) data matrix Y,
containing measurements wfobjects orm variables, oualgorithm computesveightsw = {w,,
W,, ...W,} for the m variablessuchthat theresulting matrix of predicted dissimilariti€s = [d; ]

among objects, where
12

dj = Bgwp(Yip _Yjp)ZD , 1)
Bh=1 8

optimally satisfies either (a) the ultrametric or (b) the additive inequality, or (c) optimally
corresponds to li-means partition with a fixed number of groups Equation(1) is the weighted
form of the familiar Euclidean distandermula. The weightsare constrained to be nonnegative

with their sum equal to one.
The ultrametric inequality which defines dendrograms (Hartigan 1967) is satisfied when:
d, < max@,, d,) (2)

for all tripletsi, j, andk, whereas the additive-tree inequality (four-point condition: Buneh®ad)

is satisfied when:



d; +d, < max @, +d;, d;+d,) 3)

for all quadruplets, j, k, andl. TheK-means partitioning problem can be defined as folldvirsd
a partition ofn objects intdK groups, or clusters, suthat thesum, over all groups, ofthe sums

of within-group squared distances to the centroids is minimum.

For each of the three clustering problems, a particular loss funtjioas (efined to compute
optimal weights. Inthe ultrametric cas@dendrograms)pptimal weightsarefound by solving the

optimization problem as described by De Soete (1986):

> (Cik _djk)z
Ly (Wy, W,y .o, ) = 2U 5 - min, (4)

whereQ = {(i, J, k) | d; < min(d,, d,), andd, # d,} denotes the set of ordered tripléts which
the distances violate the ultrametric inequality (De Soete 1986). The minimization is done subject to
the following constraints:

Wy, Wy, ... ,W,, 20, (5)

w, +w, + ... +w, = 1. (6)

In the case of additiverees,the optimization problem iglso formulated as in De Soete

(1986):

QZ(dik"'djl — dj) _djk)z
Ly (W, w, ...w,) = A

zdijz - min, (7)

i<j



subject again to constraints (5) and @)= {(i, }, k 1) | @, + d,) < min(d, + d,, d, +d,), andd, +
d, # d, +d, } denotes the set of orderegiadruplets for whiclthe distancewiolate the additive

inequality (De Soete 1986).

In the case oK-means patrtitioningthe minimization problem can be formulatedfal$ows
for a partition o objects into a fixed number of clustéfs
K [Ong

O
Lo (W, Wy, oo Wp) = 5 DzdijZDInk - min, (8)
k=1f,j=1"

subject to constraints (5) aifd); values di]2 are thesquared distances among objects in cluster

andn, is the number of objects in cluster The functionL, consists inthe sum of the within-
clustersums of squared errofthe externasum inEquation8), eachone being computed as the

mean of the squared distances among cluster's members (the internal sum in Equation 8).

We usedthe Polak-Ribiére optimization procedufgee Press, FlanneryTeukolsky and
Vetterling 1986, p. 303, and later editions, or Pd8K1, p. 53) tacarry out theminimization of
L,, L, andL,. First, following De Soetg1986), wereduced thgroblem, which wasriginally
formulated with constraints (5) and (6), to an unconstrained form, tientype of transformation
of variables suggested by Gill, Murray, and Wright (1981, p. 270). The Polak-Riptmézation
methoduses firstpartial derivatives of théunctionsL,, L, andL, with respect tahe introduced
weights. It has proved successful applications to unconstrainedinimization problems; see

Press et al. (1986, p. 277, and later editions).

When optimal variable weights have been obtained usjrag L ,, the dissimilarity matrixXD
among objects can be computed using Equation 1 and subjected to any of the @testiggric or
additive-tree fitting procedures; see, for example, Arabie, Hubert, and De Soete (1996, pp. 65-199)
for an overview of existing fitting algorithms. Alternatively, matixcan be subjected &-means

partitioning if optimizationhasbeen carried outsing lossfunctionL, . K-meanspartitioning can



be computed froneither a dissimilarity matrix or a rectangular data masee forinstance P.
Legendre and L. Legend(@998, p. 351).The latteroption is themost commonlyavailable in
computer programs. There are two ways of passing the weights éarteeans algorithm: (a) one
can incorporate theveights intothe calculation oflistances andums of squares ithe K-means
algorithmitself, as was done in Steh3 of the simulation procedurfor K-meansdescribed in
Section 5.3. Or (b), one can transfdininto a rectangular object-by-variable matrix, preferably by
metric scaling (alsocalled principal coordinateanalysis, Gower 1966), prior t&-means
partitioning. Metric scaling is theonly way oftotally preservingthe distance relationships among
objects in thesubsequenK-means procedure; nonmetric scalinggould modify the distance

relationships among objects.

The optimization methods described above may sometimes produce a local instead of a global
minimum of L,, L,, or L,. Hence, a goodchoice of initial weights is essentialWhile
experimenting with our new program, we realized that making all weights equah tsladn initial
guess (wheren is the number ofariables), asmplemented in th@rogram OVWTREdoes not
guarantee that the global minimumabkvays going to be reached. An interestfegture of our
optimal variableweighting (OVW) program,compared to OVWTRE, is that #@llows users to
restart the optimization procedure any number tiofies, using different random initial
configurations forthe weights. As a consequenc®VW usually obtains betteresults than
OVWTRE in the case of ultrametric clustering and additive reeenstructionOptimizationfor K-

means partitioning, which is offered in program OVW, is not available in OVWTRE.

An important detail not reported in De Soete (1986, 1988) is that the global minimynoof
L, can sometimes be reached vadlveral different setsf optimal weightsw. This nonuniqueness
may lead to different dissimilarity matricd3, from which different clustering hierarchies or

additive trees can be inferred.

Moreover, inthe optimizationfor additive treereconstructiondegeneratesolutions, which

are trivial, represent a pervasive problem. Such solutions, which consist in giving a weight of 1 to



any one of the variables ameights of O toall others,are frequentlyproduced by De Soete’s
OVWTRE program. The theorem in Appendixsfiowsthatany trivial solution ofthe type(1, O,
. 0),(©,1,..0),..0r(0,0O0, .., 1) providepeafect fitfor the additivelossfunctionL,. In
program OVW, wefound a way of avoiding, where possible, ttrigial solution which leads in
most cases to a sub-optinalditive treeusers ofthe method can set maximum valuefor the
weight permittedor any single variable. This optiaffectively prevents obtaining a weight of 1
for a variable, which corresponds to a trivial solutiomulnerical example in Section 4 illustrates

how the program OVW works in practice.

An extensive MonteCarlo investigation of De Soetelgriable weighting algorithm for
hierarchical clusteanalysis, based on results provided by De Soete’s proOMWTRE, can be
found in Milligan (1989). The simulations reportedtie presenstudywill focus onadditive tree

reconstruction anl-means partitioning.
3. Variants of the Optimization Problems Using Optimal Weights

Weights could be incorporated into distance coefficients other than the Eudlidéamce.
For instancethe Minkowski metric, which is @eneralization of the Euclidean distancewhich
power 2 is replaced by an arbitrary positive poneil, and power 1/2 igeplaced by ¥/ may be
weighted as fothe Euclidean distance (Equation 1) to refine the computation of the dissimilarity
matrix. Another case isGower’'s (1971)general dissimilarity coefficientyveights w, can be
included in the coefficient either to handle the presence or absence of informgtien0( when
information about variable is missing for one othe otherobject, or bothw, = 1 when
information is present for both objects) or to reprefimtimportance to be given to the variables
whenestimating the dissimilarityGower 1971 Equation 5, P. Legendre and L. Legend@98,
Equation7.20). The development of an optimal variameighting algorithmfor the Minkowski
metric or Gower’scoefficient is an interesting topfor further investigation. As describedove,
partial derivatives of the df, L,, andL, with respect to the weights have to be calculated for these

dissimilarity coefficients. In the present paper, only the Euclidean distance is considered.



Variableweighting is not desirable iall cases.The theoreticafoundations of a study may
indicatewhether differential weighting i&/arranted. Least-squar@artitioning methods, such as
K-means,considerthe positions ofthe objects in Euclideaspace, wherghey are divided into
groups. If the Euclidean distances between pairs of olgeetappropriateneasures othe relative
positions ofthe objects in variable spader the problem athand, variables should not be
differentially weightedprior to partitioning. For example, iacological studies, wherspecies
abundance data have baesmsformed prior to clustering or partitioninging someappropriate
transformation(e.g., those proposed by R.egendre and>allagher, in presskhe transformed
variablesshould not bedifferentially weightedusing the presentoptimal variable weighting
method. But in mosbther cases, whenveighting is not specificallyaddressed by substantive
theory, one mayassumethat some of the variables arenoisy and should beliminated or

downweighted.
4. Numerical Example

To demonstrate the effectiveness of @éW program, wecarried out computations on the
synthetic data considered by De Soete (1986) to illustrate the usefulness of his weighting procedure
for ultrametric trees. De Soete’s data, reportedable 1,possess alearpredefined structure; the
first two variables perfectly determine the separation of the objectslugters.The three clusters
{1, 2, 3, 4}, {5, 6, 7, 8}and{9, 10, 11, 12}can easily be deducdm the first two variables
which have eclear partitioningstructure.The values in variables 3 and 4 are uniform random
deviates, unrelated to the other variables and, thus, should takelpeinto accounwhen creating
the cluster structure, which should be based solely on variables 1 and 2. We will apphdétathis
set the variable weighting algorithmiesigned foradditive and for ultrametric clustering as
implemented inOVW; note that inhis paper, DeSoete(1986) onlyapplied the optimal variable

weighting procedure farltrametric treedo this data set.

*** Table 1here ***
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First consider the case tife additive treelustering. Results were produced ®yW using
the following options: (a)the optimization procedureas restarted 10 times with differemtitial
estimates; (b) to avoid a triviablution when a weight of Was assigned to single variable, the
maximum allowed weight of a single variable was set to 0.9 (in fact, to tteecerogram teskip a
trivial solution, we could choose any othalue smaller thad). The following vector ofoptimal
weights w was obtained:w,=0.395, w,=0.605, w,=0.0, w,=0.0; the value of the objective
function L, dropped fron0.329523 (wherall weights wereequal t00.25) to 0.000007 (for the
optimum weights). The correct additive tree structure effectively separating theltisteses could
be found from the matrix of weighted distances provided by the program. For the saset,dB&a
Soete’s OVWTRE program failed to provide relevant results with the additive tree clustering option
and produced only #ivial solution withw,=0.0, w,=0.0, w,=1.0, w,=0.0; the corresponding

value ofL, was 0.

However, when OVWTRE was launched with the ultrametric clustering option, abl&aso
discover a good classification, finding the following sebpfimal weights:w,=0.558, w,=0.439,
w,=0.000,w,=0.003. Running the OVW program with the ultrametric clustering option provided a
different set of optimal weightsv,=0.708,w,=0.292,w,=0.000,w,=0.000, which also led to the

correct classification.

Finally, when OVW was run on the data from Table 1 usindtheeans partitioningption,
with a correct partition vector supplied to the program separating the 12 objectgintg3 as (1,
1,1,1, 2 2, 2, 2, 3, 3, 3, 3), odrmeansvariable weighting procedurgetected thenoisy’
variables in the datand assigned weights of zero to variables 3 andh& optimalweights
assigned to variables 1 and 2 were respectively 0.906 and af@9410starts ofthe optimization
procedure usinglifferent initial random configurations fothe weights, whereashe minimum
value of the objective functidn, dropped from 1.815205 for all weights equabt600000 for the
optimal weights.When an incorrect classification vec(d, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3) was

supplied to OVW,the following weights were obtainedor the four variables: w,=0.909,
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w,=0.091,w,=0.000,w,=0.000; the minimum value of the objective functigncorresponding to
the solution was0.937442.This value, which igemotefrom 0, indicated that the classification

vector supplied to the program was not optimal.

The classification structures obtained for the daféatile 1usingoptimal weightscomputed
by OVW are depicted in Figure 1. The dendrogram is represented in Part A, the additive tree in Part
B, and theK-means clusters in Part C thie Figure. Inthe dendrogram and the additiree, the

interior nodes are numbered 13 to 22.
*** Figure 1here ***
5. Monte Carlo Studies

We carried outMonte Carlo simulations to identify the situationghere the variable
weighting algorithmswould represent an advantage. \Weanducted extensive studider the
variable weighting algorithms in the context of addititree reconstructionand K-means
partitioning. We did notrepeat the simulationpublished by Milligan (1989) for ultrametric
clustering because the algorithm implemented in our OVW program is merely an improvement over

that proposed by De Soete (1986, 1988) and used by Milligan (1989) for his simulations.

In contrast to additive treeeconstructionthe ultrametric clusteringpss function L, is not
impaired by degeneratsolutions consisting of assigning a weight of 1 to a single variable.
However, L, may possessseveral localminima. Milligan (1989) showedthat the solutions
obtainedwhen usingall equalweights asthe starting set ofveights inOVWTRE enabledgood
detection of ‘noisy’ variables. Unfortunately, the OVWTRE program proposes only one solution to
the user, who receives no information from the program aheutumber ofocal minimaand the
combinations of weights that correspond to them. UsingOMW program, weconducted a brief
exploration (not presented in detail) of the number and characteristicdataheninima that could

be reached bl,. When analyzing data sets that did not possess a clear cluster seanatiome,
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several local minima were usuafigund by OVW. Interestingly,each of the local minimasually

identified the ‘noisy’ variables by assigning them weights of 0.

5.1 Additive Tree Simulations: Data Generation and Error Conditions

Our simulationstudy was designed #sllows. The objectivewas toexamine the ability of
our additive treeweighting procedure to recover a varietykobwn underlying structureand to

eliminate noise variables.

1. First, wegenerated random matric&gnxm) containing measurements of objects onm
variables. Thesenatricescorresponded to an evolutiongoyocessmodeled by an additiveree.
MatricesY were of sizes: 84, 86, 8&a8; 164, 16«10, 1&16; and 244, 2414, 24&24. To
obtain these random object-by-variable matrices, we first generatexbponding randomdditive
binary treeausingthe algorithm ofPruzansky, Tverskyand Carroll(1982). Inthesetrees,each
leaf, or vertex of degree one, was associated with an objecttrigagbas rooted using amnternal

vertex located in the center of the longest path of the tree.

Quantitativevectors of lengthm, wherem is the number ofariables, werghen “evolved”
along the trees, from the root ang, providing random realizations atch level of the tree up to
the level of the leaves (objects). In each tree, we started with a segueino’s associated with
the root. The values in vectors andv,, associated with the root’s two successors vebtained
using the following formulav,,; andv,,; = v,; + ran, where rarwas avector of variablesirawn
from a random normal generator witireanzero. The standard deviation afach entry ran” was
equal to 168 ~9, wherethe Level variableshowedthe level of the vertexinder consideration,
relative to the root_evelwas equal to 1 ithe case of,, andv,,, 2 fortheir successorsand so
on. Thus proceeding, we attributed a particular sequertoeeach vertex of thetree. The set of
sequencesg,, associated with the setmfeaved. of the tree, formethe object-by-variable matrix
Y of sizen by m. This matrix was used in Step 2 (beloWhenrequired,different types of noise

were added t, as described below.
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Note that the farther wevere fromthe root, the smallerwas the difference in thegoairs of
sequencedocated side by side. The greatest amount of variabilityas generated among the
sequences closest tite root. There wergwo reasons for using thtgpe of additive trees in our
simulations: first, this structure corresponds to the widely recognized biological fact thas thiere
nature, more variability among higher tgfeag., orders and phylathan among species genera.
Likewise, in a Euclidean ordination space, there is more variation among the centroidsnajathe
groups than among the centroids of the smaller groapted intdhem. Secondlyafter a number
of trials conducted with different types twees, onlythe treegpossessinghe structure described
above were properly reconstructed thyg additive tree fittingnethods.These methods took as
input distance matricd3 obtained from the object-by-variable matridessing all equal weights in

Equation 1.

2. Given a rectangulatata matrixY containing a set of vectors correspondindhi® leaves of a
true treeT T, we computed optimal variableeightsw = {w,, w,, ... w_}, using ouralgorithm
OVW, suchthat theweighted matrix of dissimilarities amorgpjects,D,, = [d;], defined by
Equation 1 optimally satisfied tHeur-point condition. In parallel, weomputed the dissimilarity
matrix D, usingall weightsequal in Equation 1Then, weinferred additive trees,, and T, from
dissimilaritiesD,, andD,, respectively, by usingach of thefollowing tree fitting methods, as
implemented in thelT-REX software (Makarenkov and Casgrain 2008akarenkov 2001):
ADDTREE by Sattath and'versky (1977), Neighbor Joining I8aitou and Ne{1987), and the
Method of Weights by Makarenkov and Leclerc (1999).

To assess the fit provided by each method, we usetbpalgical and onenetric criterion.
We computed the value of tkobinson androulds (1981}opological distance between the true
tree TT and the inferred tree§, and T,, as well as the value of the cophenetic correlation
coefficient (Sokal and Rohlf 1962) between the tree metric matriXi T associated witlthe true
treeTT andthe values of théree metric matrice$,, andT,, associated witlthe inferred tree3,

andT,, respectivelyTT wasobtained by computing by leastjuareghe edge lengths along the
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true treel T corresponding to the dissimilarity valuedip see Makarenkov and Leclerc (1999) for

an overview of this technique.

3. As in Milligan’s (1989) study onltrametricclustering, wecarried out simulationfor 100 data
sets with 6 different types of errors addedh® initial object-by-variable matriX . Thefollowing
error conditions (EC) were considered:
» ECL1: Error-free data.
The first condition corresponded to the error-free data contained in Matrix
* EC2: Inclusion in the data sets of 25% outliers.
The second error condition involved replacing 25% of the real objects dattheet by outliers.
A randomly selected objegtfromY was replaced by an outlier whose valugeotedout (j =
1, ...,m), were obtained using the followirfgrmula: out =y, + ran, where fan” is a vector
of variables drawn at random from a normal distribution with mean zerostéhdard deviation
of each entry inran” was equal to 16 ~**¥ where, as abové,evel showedthe level of the
object under consideration, relative to the root of the trueTtieeHence,the standard deviation
of a random variable added to an outias 10times larger than thstandard deviation of the
replaced object. The outlier condition used in our study was differentthaimsed byMilligan
(1989) whoadded additional objects to thebserveddata matrices.One would expect the
outliers to cause greater perturbationomr strategythan in Milligan’s (1989) work. This
strategy also providegreater comparability of the simulatioasults becauséhe number of
objects remains the same in all simulations of a series reported in Table 2.
» EC3: Perturbation of the error-free coordinate values.
The third error condition involved perturbinghe error-free coordinatesalues. Fory;
representing the error-free coordinate value for objectvariablg, the error-perturbed valueg
was computed as; = y; + Zan; where tan” was a noisevalue drawn at random from a
normal distribution with mean zero and standard deviatién'1®; Levelis the level ofpoint i
relative to the root of the true tréd.

* EC4-EC6: Addition of 1, 2 or 3 random noise dimensions (variables).
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Error conditions 4, 5, and 6 involved the addition of 1, 2, or 3 random noise dimensions to the
basic variables which defined additive treestructure in 4 to 24-dimensionapace. The
coordinates of the noise variables wdrawn at random from mormal distribution withmean

zero and the same standard deviation as in the error-free object-by-variabléYmatrix
5.2 Additive Tree Simulations: Results

Tables 2 and 3 report threeanvalues of the cophenetic correlation coefficients and the
Robinson andFoulds (1981)topological distances obtained aft#00 simulations, using the
different types of error conditions describalove. The maximum value of the cophenetic
correlation coefficient, indicatingnaximum fit, is 1. The Robinson andFoulds distance
corresponds to the number of bipartitiongte true treavhich are notfound inthe inferredtree,
plus the number of bipartitions of the inferred tree not found in the true tree. The maximum value of
this distance between two binary trees witleaves (representing objects) is 86 in the case of
different topologies, whereas the minimum value corresponditgptogically equivalent trees is
0. Actually, theRobinson androuldsdistances reported in Tables 2 and 3 were divided by the
maximum value, @6, in order to provide a measure bounded in the interval [0, 1]cdpteenetic
correlation (Cor) was computed between maliixand eitheil, or T,,, whereas the Robinson and
Foulds distance (RF) wa®mputed between the true tf€€ and the inferred tre€b, or T,,. The
recovery values obtained by three fitting methodsADDTREE, NJ, and MW were very similar,
according to the cophenetic correlation coefficient and the topolodistnce. The greatest
difference among the three methdds the average cophenetiorrelation, afterl00 simulations,
was 0.012 in the unweighted and 0.009 in the weighted case. TurningateetgeRobinson and
Foulds topological distanc#éje greatest differencgas 0.071 irthe unweighted an@.066 in the
weighted case. Thus, in Tables 2 and 3 we only reaperesults provided by NJ which is at the

moment the most popular additive tree fitting algorithm.

*** Table 2here ***
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The first series of simulations were undertaksing error-free datajatawith outliers, and
error-perturbed data (see Table Bhe OVW program was run witlthe following parameters: the
number of restarts (the number of different input configurationghe weights) ofthe variable
weighting algorithnfor each datsetwas set t050, whereashe maximumweight valuefor any
variable was set to 0.5. In the rare cases when OVW failed to provide a solution fuliditegter
condition, we imposed a solution consisting of all weights edixamination of columns 3 and 4
of Table 2 shows that recovery of the additive tree structure was almost perfecqubabmeights
were assigned to all variables with error-free data. Recovery results in columns 5 and 6 correspond
to the casavherethe optimalweighting algorithmwas used on error-free dafhere is a small

decrease in recovery when the number of variables is high and the number of objects is small.

The following four columns ofrable 2provide information about thienpact oferror on the
reconstruction of additive trees. In the columns corresponditigetpresence adutliers, recovery
for optimal weights droppedcompared to the equal-weigbhase. This finding wagspecially
important when a large number of variables wayesideredThe results withthe error-perturbed
variables are reported in the last four columns of Table 2 and are similarrestiits with outliers:

the larger the number of variables, the worse the OVW results.
*** Table 3here ***

The nexttypes ofdataused inthe study involved 1, 2, or 3 random noigariables which
contributed no information to the additive tregucture.The meanrecovery values fothese
conditions are presented in Table 3. Theredsamatic deterioration of theesults for bottcriteria
as the number ofoise dimensions increasesympared to the error-free condition (Table 2).
However,the optimalweights found byOVW allowed in most cases a significantprovement
over the results obtainedising equalweights. The topologicalimprovement, measured by the
Robinson androulds (RF) distance, ithe most striking.The average gain in recovefyr the
topological distanceacross numbers asbjects and variables ihable 3 obtainedising optimal

weights,compared to equakeights, was 0.263 foone noise dimensior).233 for twonoise
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dimensions, and).231 for three randomnoise dimensions. In mostases, OVW allowed
recognition of noise variables by assignihgm weights very close to 0. Gfourse,the trees
constructed using optimal weights were not perfect, with sometimes as much as half their topology
wrongly reconstructed (RF coefficients near 0.5, as in the results for 16 and 24 objeatsyer,

the correctly reconstructgolrts ofthe trees mainly comprised tleelgeslocated near the tree’s
roots, which isindeed thamost informative part of &ree.Improvement from OVW, as measured

by the cophenetic correlatiqCor), waslarge when the number ooise dimensions waarge
compared to the total number of variables; Cor was smaller thieerise dimensions represented

but a small fraction of the number of variables.

The conclusions to be drawn from the results presented in Tables 2aamdiilar tathose
stated by Milligan(1989) for the ultrametricweighting procedureFirst, the additive variable
weighting algorithmshould be used foanalyzing datesusceptible of comprising some noisy or
masking variablesSecond, ifthe data are perfectigrror-free or involve lightly error-perturbed
factors or outliers, no weighting should be used in the distance measure (Equation 1)fittriay to
an additive tree. However, if the data comprise compounded errors, for example outliers with some

noise variables, the variable weighting technique is preferable.

5.3 K-means Simulations: Data Generation and Error Conditions

Another Monte Carlo study was conducted the optimalweighting algorithmfor K-means
partitioning presented in Section 3. As in the case of the adt®simulations,the presentation

starts with an overview of the data generation strategy.

1. We generated random matriéégixm) containing measurements mfobjects onm variables.
Each data matrix defined mumber of clusters inmrdimensional space. Ithe presentstudy,
matricesY were of sizes: 2, 14, 1Kx6; 252, 254, 256; 5k2, 5k4, 56; 1010; and
20x10. Togenerate thelata, we used modified version othe program developed billigan

(1985) and later used bylilligan (1989) forgeneration of clusterediata. Wemodified thesource
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code of Milligan’sprogram, which isavailable on the Classification Society brth America’s
WWWeb site atURL <http://www.pitt.edu/~csna/Milligan/readme.htm|>, itake itpossible to
generate data containing thumber of objects, variables, and clusters necessary for our
simulations; the modifications did not imply any important change to Milligdata generation
procedure. Milligan’s method allows the creation of 2 to 5 clusters m-dimensionalEuclidean
space. To ensurerainimum of separationthe clustersare designed to be nonoverlapping on the
first dimension. Cluster boundaries can overlap along any or all the other variablespdce. As
such,the generated error-frexusters possessdtie properties of internalohesion andexternal
isolation and hence satisfied the definition of nataladters as given by Corma¢k971), Everitt

(1993, Chapter 1) and others.

2. Our optimal variableveighting algorithm applied t&-meanspartitioning requires as input an
object-by-variable matri¥ as well as a vector anitial assignment of objects wusters.Because

in real-life situations we onlpossesgshe object-by-variable matrix ar{dsually) notthe vector of
object assignments, we imposedlde same restriction on the input dataomr simulations: we
assumedhat the vector of obje@ssignments wasnknown. Toapproach this issue wadopted
the algorithmic strategy described below. Although this strategy does not guanatintesd results,

it implements the concept comparably to the analysigafdatasets.Partitioningwas done using
the program K-MEANS by P. Legend(2000). This program implements a standaveb-step
alternating least-squar&smeans algorithm whichierates between calculation of cluster centroids
and assignment of objects to the centroids. At the beginning of an analysis, theavbjstgyned

at random to the clusters; the number of random assignments of the objects towassfiges] to

5 in thesimulations.The programs allows users &earch through different values &f in a
cascade, starting witk, groupsand ending witfK, groups,with K; = K,; K, = 10 andK, = 2
were used in the simulations. In the cascade from a larger to the next smaller nugnbepsf the
two closest groups are identified and fused. Then the alternating least-squares algorithamtis run
convergencereallocating objects to thgroups. Foreachnumber ofgroups K), the Calinski-

Harabasz (1974) pseudestatistic was computed. We wergerested in finding the number of
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groups K, for which the Calinski-Harabasz criterion was maximum; \thlse ofK corresponded
to themostcompactset ofgroups. In asimulationstudy involving 30 stopping rules fatuster
analysis, Milligan and Cooper (1985) foutidt theCalinski-Harabasz criteriowasthe one most
often recovering the correct number gifoups. The K-MEANS program can performeither
unweighted or weighted optimization. In tlagter case the vector ofweights associated with the

variables can be supplied by the user. The simulation strategy was the following:

2.1. Run K-meanspartitioning onY, as describe@bove, withequalweights forall variables.
Cluster membershifor the number ofclusters corresponding tine maximum value of the

Calinski-Harabasz criterion is written out to veder

2.2 UsingY andP, as input parameters to tf@VW program,compute the optimal variable

weightsw = {w,, w,, ...w,} that minimize theK-means objective functioh,.

2.3. Compute a neW-means partition fo¥ using thevector of optimumweightsw found in the

previous step. Vectd?,, describes the new group membership.

2.4. Vector P* describesthe true cluster partition of the objects among th& groups. This
partition is specified by the data generagwongram. To asseske quality of the clusteecovery,

we compard>* to P,, andP* to P,, using the corrected Rand index (Hubert and Arabie 1985).

The correctedRand index measurintipe agreement betwedwo partitionswas used as a
primary numerical evaluation measure in a number of restewlies; see foexample Milligan
(1989) or Carmone et al. (1999). This index returns the value 1.0 if thpastrions are identical.
Values neaf.0 correspond tthe casewherethe match betweepartitions hasfallen to chance
level. Hence)arger values of the correct&hnd index point out better recovery achieved by a

clustering method.

3. We reportmean cluster recoveries afted0 simulations, fodata generatedsing six types of

errors similar to those used tine additive tree simulations reportedove.Because the error-free
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data as well as the data affected by differgpies of error were provided byiilligan’s data
generation progranthe reader is referred tdilligan (1989) for adetaileddescription ofall error

conditions. The conditions, compared to the additive tree simulations (above), were the following:
3.1.Error-free data.The first condition corresponded to the error-free data contained in Matrix

3.2.Inclusion in the data sets of 40% of outlierae second error condition involvéte inclusion
in the datasets of 40% ofkdditionalpointsthatwere the outliers. Anoutlier was drawn from a

normal distribution with a standard deviation three times larger than that of the given cluster.

3.3.Perturbation of the error free coordinate valughe thirderror condition consisted in adding a

random standard normal deviate, multiplied by 2, to the error-free coordinate values.

3.4.Addition of 1, 2, or 3 random noise dimensidagor conditions 4, 5, and 6 consisted of the
addition of 1, 2, or 3 random noise dimensions to the basic variables which defindditove tree

structure in 2- to 10-dimensional space. For tlseensions, values were drawn at random from

a standard normal distributiop € 0,0° = 1). The range of a random noise variable was itaate

equal to the range of the first dimension of the space for which cluster overlap was not allowed.
5.4 K-means Simulations: Results
*** Table 4here ***

Table 4 reports themeanvalues of the correcteldand index obtained aft&00 simulations,
using the different types of error conditions descri@lbdve.The maximum value of the corrected
Rand index is 1, indicating maximum fit. Strategies using all equal weights aoptimal weights
found by OVW arecompared. Fothe K-means simulationQVW was run withthe following
parameters: the number @starts(i.e., the number of different input configuratiofa weights)

of the variable weighting algorithm for each datavgas 10, whereathe maximumweight of any
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single variable was set to 0.75. Astlre additive tresimulations, we imposed a solution with all

weights equal in the rare cases where OVW failed to provide a solution meeting the latter condition.

In the simulations carried owtith error-free data, recoveryas similar to using equal
weights or theoptimal weighting strategy (Table 4 and kigure 2a). In contrast, fautliers and

error-perturbed data, recovery for optimal weights dropped, compared to that for equal weighting.

*** Figure 2here ***

With 1, 2, or 3noise dimensionstecoverywas much higherusing optimal weights,
compared to equaleights(Table 4 and inFigure 2b).The average gain in recoveagross all
simulation results presented in Table 4, using OVW optimal weigl#ve to equalveights, was
0.155 forone noise dimensior).152 for twonoise dimensions, an@.163 for three noise
dimensions. In most instanceke optimal variableveighting procedure assigned weights very

close to O to the noise variables.

The following important trend in recovery isbserved acrosall six error conditions: the
larger the number of objects dimensions is irthe object-by-variablenatrix, the better is the
cluster recovery. This result follows our expectations: each extra object which is not an outlier, and
each extravariable, provideadditional information to the clustering method ahds reduce the
possibility of obtaining a wrong solution. This trendoeticularly visible in the case of error-free

data.

An interesting trend ifound inTable 4: the larger theumber of objects or variables in the
data matrix, the better the cluster recovery, using either eq@A/\W weights. Ornthe otherhand,
putting the simulation results into grapétsowsthatrecovery of partition structure stabiliz&s n
> 50 (Figure 2a) on = 100 (Figure 2b)jndicating that these simulatiaesultsare likely to be
applicable to larger dataets. This result is importanbecause, in mostases,real datasets

comprise more than 100 objects.
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Fromtheresults in Tables 4, weecommendisingthe optimalweighting algorithmfor K-
means partitioningor analyzing data that are likely to contawoisy variables not contributing
relevant information about the real partitisinucture. However, ithe data involvesrror-perturbed
variables or outliers, it seemhgtter to partition them bi{-means usingqualweights. For error-

free data, equal or OVW weights can be used.

The performance of the variable weighting algoritfon K-means islikely to improve if,
instead of a single classification (one vectoobjectassignments tthe clusters, provided by the
K-MEANS program), several classifications are used as input to OVV¥pamal strategywould
consist in using as many classifications as possible as input to the OVW algorithm and selecting the

solution that minimizes thi€-means objective functidr.
6. Discussion

In general, the optimal weighting algorithm should be used prior to ultrametric or addidve
clustering, orK-means partitioning, ibne assumethat the data may contain irrelevant raisy
variables. When the datamostly include error-perturbed variables outliers, we suggest
processing such data using equal weightpial or optimalOVW weightscan be employedhen
the data arsupposed to biree oferrors. The present paper extends to the case of additive trees

andK-means partitioning the trends found by Milligan (1989) for ultrametric clustering.

It is very difficult to handle error-perturbed data, whiclthismostcomplicated case adrror
condition. As forthe outliercondition, we wouldike to suggest a new strategy whicbuld be
tested through simulations. If the data being analyzedikely to contain moraoisy objects than
noisy variablesthe following strategy could be employed: insteadaskigning weights to the
variables, weightzan be associatedith the objects. Using aweighting functionthat assigns
weights of 0 or 1 tdhe objectswould lead to anew objective function to beminimized for
ultrametric and additive trees as well askemeans patrtitioning. Such a strategy may allow one to

detectnoisy objects rather thanoisy variables; weights of Qvould be assigned tthe noisy
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objects. The resulting matrix of predicted dissimilariti€s = [d;] among objectswould be

computed as follows:

/2
dj = BE(Viyip -viyjp)°0 1)
Bp=1 B

wherey, andy, are weights associated with the objeatd], respectivelyVariants of the objective
functionsL,;, L, andL, should be considered}, should be excluded frothe objective function if
v, orv, equal 0. A muchmore complicated modéhvolving weights for bottvariables and objects
may also be exploredthough the latter modelould containtwo sets of weights, inay allow
one to reduce, ahe sametime, the effect ofnoisy variables andnoisy objects or outliers.
Investigation of weighting strategies implying weighits objects, or for bothobjects and

variables, would constitute an interesting and relevant topic for future research.
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Appendix 1: A Property of the Additive Loss Function
The following theorem states a property of the additive loss funiction

Theorem

Any single variableg from an object-by-variable matrix having aweight of1 defines aradditive
tree using the transformation described in Equation 1.

Proof

We have to prove that assigning a weight of 1 to any one af Wagiables and weights of O to the
others always guarantees a perfect fit of the distance matrix to an additive tree, which vadams a
of O for the additive-tree loss functian of Equation (7). For convenience, assuira the weight
corresponding to the first variable of an object-by-variable m¥{ix m) is set to 1 andll others

to 0. Let us consider any four entriesyo€orresponding to this first variable. They will be denoted
Yi» ¥ Y @ndy,. Without loss of generality, we can suppose thaty, = y, 2 y;. As the weights of
all variables except thérst oneare 0,then, fromEquation 1, thdollowing equationscan be
written for the corresponding distances=Y, -Y;; d; =Y, - Vs d =Y, - Ve & =Y, - V5 G =Y, - Vi

d, =V, - Y- Therefore, the term appearing in the numeratty, @ihd associated witthe quadruple
of objectd, j, k, andl will consist of the difference betwedme two largestsums of twodistances
from amongd,, d,, d,, d,, d;, andd,. Thisterm is thefollowing: ((d, + d,) - (d, + d,))* = ((y; -
YO+ -Y) - -y - - YD) 2 = 0. Thus,any quadruple of objectsj, k, andl of a single
variable of Y will contribute a zero value to theum appearing in the numerator df,.
Consequently, any singlariable ofY with a weight of 1 defines an additite@e distanceising

the loss function described in Equation 1. Tthe® can be represented graphically by a ctrai,

i.e., a tree with all objects lying on the same ais.

This theorem proves that any trivial solution of the type (1, O, ..., 0), (O, 1, ..., 0), ..., or (O, O,

..., 1) provides a perfect fit for the additive loss functign



25
Appendix 2: A Program for Optimal Variable Weighting (OVW)

Program OVW performs optimal variable weighting for ultrametric and additive tree
clustering, following the method proposed by De S¢&886, 1988), asvell asfor least-squares
(K-means) partitioning.The new program, which isavailable free of charge tacademic
researchers, providesiprovements and extraptions, compared to Dé&oete's (1988program

OVWTRE; the latter program only fits ultrametric and additive trees.

Input. The input data file is an ASCII text file which contains a data maftfixx m) as well
as the parameters(number of objects) angh (number of variables). the K-meanspartitioning
option is selected, a vector gfoup assignments fahe objectshas to be provided ithe same

input file.

Output. The output consists of the weighted Euclidean dissimilarity matoxk size ( x n)
computed fromY usingthe optimumweights in Equation 1the vector of optimaiveightsw(m)
obtained using the Polak-Ribiéngnimization procedurethe minimum value of the objectivess
function, and the number of iterationstbé Polak-Ribiereminimization thatwere needed teeach

the optimal solution.

Language and computer. The currentversion ofOVW is written in the C programming
language. The program is distributed as freeware in a variety of formats: C sourd¢erdd@eand
Macintosh (the files aréound in the folder “Source”)which can be compiledusing a C/C++
compiler; compiledversions ofthe programfor Win32-bit-compatible computers (OVW.exe);
compiledversion for PowerPC processors fdacintosh (file OVW_PPC); Gource code for

various versions of UNIX as well as the corresponding Make file.

Dimensionality and running time. There are no limitations to the sizerohtrix Y (nxm)
in the program. The only existing limitation is the size of the random access m@Ewndy of the

user’'s computer. However, the Polak and Ribiere optimization procadesthe matrix of partial
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derivatives D; parw,). Thisintermediatematrix, which isrepeatedly computed by thgrogram,
requiresO(m x ) bytes for storage. For example, foriaput matrixY of size(100x 100), the
program requires about 4 MB of memory only to st auxiliary matrix of partiatierivatives.
There are also some other auxiliary matrices and vectors occupsgulgstantial, but not sbuge,
amount of RAM. As tahe running time, duringhe simulations involving a matriX with 300
objects and 166 variables, the program ran during approxinfateliiours on a Powdvacintosh
604 at 350MHz with 80 MB of RAM before providing a solution fahe K-meanspartitioning

problem; the optimization procedure was run only once for this problem.

Availability. Program OVW is freeware foesearchers It is available via Internet on the
WWWeb page of the Laboratory of Numerical Ecology at Université de Montréal:
<http://www.fas.umontreal.ca/biol/legendre/> or

<http://lwww.fas.umontreal.ca/biol/casgrain/en/labo/ovw.html>.

! This program hadeen developed as part of a university-based resgaogitam. Users who
encounter problems with this programay reporthem to theauthors whowill be happy tohelp
solve them. Researchers may use this program for scientific purpost® $muirce code remains
the property of Vladimir Makarenkov and Pierre Legendrel8©9). Commercialusers whowvant

to use the program for profit should get in touch with the authors and pay royalties, or desielop
own computer program based on the description of the method provided in thisFdyieations
should give proper credit to the method by referring to this paper as well as De Soefgéptnr

Users of program OVW may refer to the user’s manual of Makarenkov and P. Legendre (1999).
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Table 1. Synthetic data used by De S¢@&86, Table 1) illustrating the application bis optimal

variable weighting procedure for ultrametric trees.

Objects Variables
1 2 3 4

1 0.4082 0.000 0.0564 -0.0188
2 0.4082 0.000 0.7104 0.8879
3 0.4082 0.000 —0.5435 0.4931
4 0.4082 0.000 —-0.0227 -0.6123
5 —-0.2041 0.3536 0.6128 0.9475
6 —-0.2041 0.3536 —-0.7937 —-0.7604
7 -0.2041 0.3536 —-0.2072 —0.0368
8 —-0.2041 0.3536 0.3818 0.1197
9 —-0.2041 —0.3536 0.9152 0.3362
10 —-0.2041 —0.3536 -0.6031 —-0.9367
11 -0.2041 —0.3536 0.4861 0.2143
12 -0.2041 —0.3536 —-0.3770 —0.0060
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Table 2. Mearrecovery values for error-free, with outliers, and error-perturded for additive tree

reconstruction. For each case, the mean values (ovesihOlated datsets) ofthe cophenetic correlation

(Cor) and the Robinson and Foulds (RF) topological distance are given; Cor = 1 and RF =tBendhén

perfectrecovery.Trees obtainedising all equalweights (Equal)for the variables are compared to trees

obtained using the optimal weights found by our algorithm (Weighted).

Error-free Outliers Error-perturbed
No. of No. of Equal Weighted Equal Weighted Equal Weighted
objects variables Cor RF Cor RF Cor RF Cor RF Cor RF Cor RF
n m
8 4 1.0000.010  0.975 0.043 0.844 0.095 0.837 0.126 0.759 0.105 0.768 0.154
8 6 1.0000.015 0.915 0.121 0.847 0.118 0.780 0.181 0.748 0.094 0.739 0.218
8 8 1.0000.005  0.918 0.151 0.881 0.127 0.790 0.228 0.705 0.105 0.680 0.249
16 4 1.0000.011  0.992 0.038 0.940 0.040 0.938 0.063 0.871 0.113 0.876 0.125
16 10 1.0000.003  0.940 0.105 0.906 0.024 0.845 0.134 0.757 0.092 0.681 0.180
16 16 1.0000.002  0.928 0.105 0.918 0.017 0.824 0.146 0.751 0.093 0.685 0.173
24 4 1.0000.004  0.995 0.031 0.970 0.026 0.968 0.049 0.913 0.091 0.905 0.105
24 14 1.0000.002  0.952 0.105 0.970 0.011 0.910 0.128 0.750 0.105 0.689 0.166
24 24 1.0000.000  0.959 0.120 0.976 0.007 0.922 0.125 0.707 0.121 0.651 0.180
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Table 3. Mearrecovery values for error-fregatawith 1, 2, or 3 added random noise dimensions for

additive tree reconstruction. See Table 2 for the meanings of Equal, Weighted, Cor, and RF.

1 noise dimension 2 noise dimensions 3 noise dimensions

No. of No. of Equal Weighted Equal Weighted Equal Weighted

objects variables Cor RF Cor RF Cor RF Cor RF Cor RF Cor RF

n m

8 4 0.877 0.464 0.920 0.224 0.801 0.544 0.911 0.304 0.755 0.570 0.919 0.265
8 6 0.921 0.466 0.927 0.213 0.859 0.499 0.920 0.240 0.810 0.533 0.923 0.240
8 8 0.935 0.444 0.932 0.252 0.894 0.498 0.917 0.301 0.870 0.531 0.936 0.284
16 4 0.864 0.751 0.921 0.476 0.779 0.799 0.891 0.560 0.741 0.793 0.826 0.629
16 10 0.950 0.742 0.951 0.355 0.922 0.766 0.953 0.452 0.903 0.753 0.949 0.458
16 16 0.964 0.706 0.940 0.459 0.948 0.735 0.944 0.516 0.930 0.744 0.945 0.509
24 4 0.855 0.761 0.930 0.475 0.781 0.772 0.883 0.541 0.742 0.771 0.850 0.595
24 14 0.972 0.713 0.958 0.433 0.957 0.730 0.964 0.506 0.942 0.745 0.968 0.540

24 24 0.981 0.689 0.965 0.478 0.967 0.705 0.968 0.532 0.961 0.712 0.966 0.555
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Table 4. Mean recovery values expressed using the corrected Rand irdekdny andArabie (1985) for
K-means partitioningThe computationsvere carried outor error-free, with outlier, and error-perturbed
conditions, and error-free data with 1, 2, and 3 added random diois@sions. Partitionsbtainedusing

all equal weights (Eq.) for the variables are compared to partitions obtained using the optimal weights found

by the OVW algorithm (We.).

Error-free Outliers  Error-perturbed 1 noise dim. 2 noise dim. 3 noise dim.

No. of No. of Egq. We. Eg. We. Egq. We. Egq. We. Eq. We. Egq. We.
objects variables

n m

10 2 0.839 0.842 0.776 0.774 0.653 0.652 0.562 0.728 0.443 0.619 0.394 0.534
10 4 0.926 0.904 0.879 0.858 0.772 0.726 0.658 0.774 0.575 0.738 0.518 0.688
10 6 0.962 0.952 0.912 0.873 0.817 0.820 0.723 0.814 0.661 0.750 0.669 0.778
25 2 0.817 0.787 0.835 0.821 0.670 0.648 0.486 0.676 0.391 0.596 0.409 0.573
25 4 0.947 0.895 0.887 0.824 0.801 0.767 0.662 0.829 0.597 0.787 0.452 0.666
25 6 0.937 0.933 0.888 0.790 0.864 0.753 0.752 0.878 0.696 0.803 0.579 0.790
50 2 0.916 0.914 0.850 0.839 0.695 0.689 0.504 0.753 0.432 0.666 0.424 0.653
50 4 0.960 0.937 0.877 0.894 0.837 0.774 0.631 0.871 0.607 0.819 0.542 0.767
50 6 0.979 0.935 0.926 0.853 0.892 0.770 0.759 0.899 0.740 0.843 0.731 0.841
100 10 0.960 0.975 0.934 0.827 0.942 0.823 0.868 0.935 0.900 0.941 0.806 0.861

200 10 0.979 0.963 0.937 0.886 0.926 0.891 0.851 0.940 0.923 0.935 0.798 0.806
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Figure caption

Figure 1. Classification structures obtained for the Table 1 data using optimal weights computed by

OVW. (a) Dendrogram from ultrametric clustering; (b) additive treeék{ejeans partition.

Figure 2. Comparison of results usieqgualweights to those usintpe optimalweights found by
OVW: partition recovery, measured by the corred®ahd index, as fnction of the number
of objects. The following lines from Table 4, selected becaasém, are plotted:r{f = 10, m
=2), h=25m=4), (=50,m=6), (=100,m= 10), andrf = 200,m = 10), wheren is

the number of objects amdis the number of variables.
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