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Abstract:  De Soete (1986, 1988) proposed some years ago a method for optimal variable

weighting for ultrametric and additive tree fitting. This paper extends De Soete’s method to optimal

variable weighting for K-means partitioning. We also describe some new features and

improvements to the algorithm proposed by De Soete. Monte Carlo simulations have been

conducted using different error conditions. In all cases (i.e., ultrametric or additive trees, or K-

means partitioning), the simulation results indicate that the optimal weighting procedure should be

used for analyzing data containing noisy variables that do not contribute relevant information to the

classification structure. However, if the data involve error-perturbed variables that are relevant to

the classification or outliers, it seems better to cluster or partition the entities by using variables with

equal weights. A new computer program, OVW, which is available to researchers as freeware,

implements improved algorithms for optimal variable weighting for ultrametric and additive tree

clustering, and includes a new algorithm for optimal variable weighting for K-means partitioning.
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Résumé: De Soete a proposé il y a quelques années une méthode de pondération optimale des

variables devant servir à la reconstruction d’arbres ultramétriques ou additifs. Notre article propose

d’étendre cette méthode au partitionnement par la méthode des K centroïdes. Nous décrivons

également des améliorations à l’algorithme de De Soete, ainsi que de nouvelles options de calcul.

Des simulations de Monte Carlo ont été réalisées en utilisant différents types d’erreur. Dans tous les

cas (i.e., arbres ultramétriques ou additifs, ou partition par la méthode des K centroïdes), les

résultats des simulations indiquent qu’il est bon d’utiliser la méthode de pondération optimale des

variables lors de l’analyse de tableaux de données susceptibles de contenir des variables-bruit qui

ne contribuent que peu ou pas du tout à la classification. Cependant, si les données contiennent des

variables pertinentes à la classification qui contiennent de l’erreur, ou encore des observations

aberrantes, il est préférable de procéder à la classification en donnant des poids égaux à toutes les

variables. Un nouveau logiciel, OVW, est mis gratuitement à la disposition des chercheurs désireux

d’explorer la méthode. Ce programme met en oeuvre nos algorithmes améliorés pour la pondération

optimale des variables pour la reconstruction d’arbres ultramétriques ou additifs; il permet

également la pondération optimale des variables en vue du partitionnement par la méthode des K

centroïdes.

Keywords: Additive tree; K-means partitioning; Optimal variable weighting; Ultrametric tree.

1. Introduction

In two pioneering papers, De Soete (1986, 1988) proposed a numerical method for

estimating optimal weights for variables intended for ultrametric or additive tree reconstruction. The

present paper extends De Soete’s method to least-squares (K-means; MacQueen 1967) partitioning.

We will also point out some properties of the algorithm proposed by De Soete that seem to have

gone unnoticed; an understanding of these properties leads to improvements in the methods.



3

We carried out Monte Carlo studies for optimal variable weighting applied to additive tree

reconstruction and K-means partitioning. These studies, conducted using different error conditions,

confirmed the ability of the method to identify and reduce the effect of ‘noisy’ variables. We did not

test the ability of the method for recovering clusters in the framework of ultrametric clustering

procedures because a Monte Carlo study had already been carried out and discussed in detail by

Milligan (1989). Considering the complexity of the algorithms that we discuss, a computer

program is made available to the scientific community to encourage researchers to use optimal

variable weighting.

There is an appreciable literature about variable weighting. DeSarbo, Carroll, Clark, and

Green (1984) described SYNCLUS, a program that solves for both variable weights and produces

K-means clustering. Fowlkes, Gnanadesikan, and Kettenring (1988) also proposed a method, here

called FGK, for selecting weights — in that case, binary (0 and 1) weights. These authors

proposed a model that selects subsets of variables from the original data and produces binary

weights for the variables; their procedure was applied to complete linkage hierarchical clustering.

In a later paper, Gnanadesikan, Kettenring, and Tsao (1995) compared Fowlkes et al.’s

(1988) FGK procedure to De Soete’s OVWTRE and to DeSarbo et al.’s (1984) SYNCLUS

models. Gnanadesikan et al. (1995) determined that the FGK forward selection procedure

performed reasonably well compared to its competitors. Subsequent to the FGK algorithm,

Carmone, Kara, and Maxwell (1999) proposed a variable subset selection method based on Hubert

and Arabie’s (1985) adjusted Rand index. Their method was designed for partitioning using

continuous variables. The procedure proposed by Carmone et al. (1999) in the context of

partitioning clustering, called HINoV, was described as a heuristic method based upon the adjusted

Rand statistics. These authors conducted a series of Monte Carlo simulations, using synthetic data

with noise of various kinds added, including masking variables. The results indicated that variables

selected using the HINoV procedure outperformed the all-variable cases in 70 out of 72 different

computer runs. In contrast to the good results found by Carmone et al. (1999), in real data set
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analyses using HINoV, Green, Carmone, and Kim (1990) had earlier found mixed results in the

ability of SYNCLUS to recover the correct variable weights.

Hubert and Arabie (1995) applied a least-squares optimization strategy to fit tree structures to

symmetric proximity matrices among objects, using a heuristic optimization technique based on

iterative projection. They considered extensions of this method beyond the analysis of a single

symmetric proximity matrix.  In this paper, we will explore how least-squares optimization can be

applied to the analysis of two-way data matrices in the context of ultrametric and additive tree

reconstruction as well as K-means partitioning.

2. Description of the Method

Given a rectangular (i.e., object-by-variable, or two-way, two-mode) data matrix Y ,

containing measurements of n objects on m variables, our algorithm computes weights w = {w1,

w2, ... wm} for the m variables such that the resulting matrix of predicted dissimilarities D = [dij ]

among objects, where

d w y yij p ip jp
p

m
= −∑
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optimally satisfies either (a) the ultrametric or (b) the additive inequality, or (c) optimally

corresponds to a K-means partition with a fixed number of groups K . Equation (1) is the weighted

form of the familiar Euclidean distance formula. The weights are constrained to be nonnegative

with their sum equal to one.

The ultrametric inequality which defines dendrograms (Hartigan 1967) is satisfied when:

dij  ≤ max(dik, djk) (2)

for all triplets i, j, and k, whereas the additive-tree inequality (four-point condition: Buneman 1974)

is satisfied when:
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dij + dkl ≤ max (dik + djl, dil  + djk) (3)

for all quadruplets i, j, k, and l. The K-means partitioning problem can be defined as follows: Find

a partition of n objects into K groups, or clusters, such that the sum, over all groups, of the sums

of within-group squared distances to the centroids is minimum.

For each of the three clustering problems, a particular loss function (L) is defined to compute

optimal weights. In the ultrametric case (dendrograms), optimal weights are found by solving the

optimization problem as described by De Soete (1986):

LU (w1, w2, ... wm) = 

( )d d

d

ik jk
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ij
i j
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     →     min, (4)

where ΩΩΩΩU= {( i, j, k) | dij  ≤ min(dik, djk), and dik ≠ djk} denotes the set of ordered triplets for which

the distances violate the ultrametric inequality (De Soete 1986). The minimization is done subject to

the following constraints:

w1, w2, ... , wm ≥ 0, (5)

w1 + w2 + ... + wm = 1. (6)

In the case of additive trees, the optimization problem is also formulated as in De Soete

(1986):
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subject again to constraints (5) and (6); ΩΩΩΩA= {( i, j, k, l) | (dij  + dkl) ≤ min(dik + djl, dil + djk), and dik +

djl ≠ dil + djk } denotes the set of ordered quadruplets for which the distances violate the additive

inequality (De Soete 1986).

In the case of K-means partitioning, the minimization problem can be formulated as follows

for a partition of n objects into a fixed number of clusters K:

LP (w1, w2, ... wm) = d nij
i j

n

k
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k
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subject to constraints (5) and (6); values dij
2  are the squared distances among objects in cluster k,

and nk is the number of objects in cluster k. The function LP consists in the sum of the within-

cluster sums of squared errors (the external sum in Equation 8), each one being computed as the

mean of the squared distances among cluster’s members (the internal sum in Equation 8).

We used the Polak-Ribière optimization procedure (see Press, Flannery, Teukolsky and

Vetterling 1986, p. 303, and later editions, or Polak 1971, p. 53) to carry out the minimization of

LU, LA and LP. First, following De Soete (1986), we reduced the problem, which was originally

formulated with constraints (5) and (6), to an unconstrained form, using the type of transformation

of variables suggested by Gill, Murray, and Wright (1981, p. 270). The Polak-Ribière optimization

method uses first partial derivatives of the functions LU, LA and LP with respect to the introduced

weights. It has proved successful in applications to unconstrained minimization problems; see

Press et al. (1986, p. 277, and later editions).

When optimal variable weights have been obtained using LU or LA, the dissimilarity matrix D

among objects can be computed using Equation 1 and subjected to any of the existing ultrametric or

additive-tree fitting procedures; see, for example, Arabie, Hubert, and De Soete (1996, pp. 65-199)

for an overview of existing fitting algorithms. Alternatively, matrix D can be subjected to K-means

partitioning if optimization has been carried out using loss function LP . K-means partitioning can
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be computed from either a dissimilarity matrix or a rectangular data matrix; see for instance P.

Legendre and L. Legendre (1998, p. 351). The latter option is the most commonly available in

computer programs. There are two ways of passing the weights on to a K-means algorithm: (a) one

can incorporate the weights into the calculation of distances and sums of squares in the K-means

algorithm itself, as was done in Step 2.3 of the simulation procedure for K-means described in

Section 5.3. Or (b), one can transform D into a rectangular object-by-variable matrix, preferably by

metric scaling (also called principal coordinate analysis, Gower 1966), prior to K-means

partitioning. Metric scaling is the only way of totally preserving the distance relationships among

objects in the subsequent K-means procedure; nonmetric scaling would modify the distance

relationships among objects.

The optimization methods described above may sometimes produce a local instead of a global

minimum of LU, LA, or LP. Hence, a good choice of initial weights is essential. While

experimenting with our new program, we realized that making all weights equal to 1/m as an initial

guess (where m is the number of variables), as implemented in the program OVWTRE, does not

guarantee that the global minimum is always going to be reached. An interesting feature of our

optimal variable weighting (OVW) program, compared to OVWTRE, is that it allows users to

restart the optimization procedure any number of times, using different random initial

configurations for the weights. As a consequence, OVW usually obtains better results than

OVWTRE in the case of ultrametric clustering and additive tree reconstruction. Optimization for K-

means partitioning, which is offered in program OVW, is not available in OVWTRE.

An important detail not reported in De Soete (1986, 1988) is that the global minimum of LA or

LU can sometimes be reached with several different sets of optimal weights w . This nonuniqueness

may lead to different dissimilarity matrices D , from which different clustering hierarchies or

additive trees can be inferred.

Moreover, in the optimization for additive tree reconstruction, degenerate solutions, which

are trivial, represent a pervasive problem. Such solutions, which consist in giving a weight of 1 to
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any one of the variables and weights of 0 to all others, are frequently produced by De Soete’s

OVWTRE program. The theorem in Appendix 1 shows that any trivial solution of the type (1, 0,

..., 0), (0, 1, ..., 0), ..., or (0, 0, ..., 1) provides a perfect fit for the additive loss function LA. In

program OVW, we found a way of avoiding, where possible, this trivial solution which leads in

most cases to a sub-optimal additive tree: users of the method can set a maximum value for the

weight permitted for any single variable. This option effectively prevents obtaining a weight of 1

for a variable, which corresponds to a trivial solution. A numerical example in Section 4 illustrates

how the program OVW works in practice.

An extensive Monte Carlo investigation of De Soete’s variable weighting algorithm for

hierarchical cluster analysis, based on results provided by De Soete’s program OVWTRE, can be

found in Milligan (1989). The simulations reported in the present study will focus on additive tree

reconstruction and K-means partitioning.

3. Variants of the Optimization Problems Using Optimal Weights

Weights could be incorporated into distance coefficients other than the Euclidean distance.

For instance, the Minkowski metric, which is a generalization of the Euclidean distance in which

power 2 is replaced by an arbitrary positive power r ≥ 1, and power 1/2 is replaced by 1/r, may be

weighted as for the Euclidean distance (Equation 1) to refine the computation of the dissimilarity

matrix. Another case is Gower’s (1971) general dissimilarity coefficient; weights wp can be

included in the coefficient either to handle the presence or absence of information (wp = 0 when

information about variable p is missing for one or the other object, or both; wp = 1 when

information is present for both objects) or to represent the importance to be given to the variables

when estimating the dissimilarity (Gower 1971, Equation 5, P. Legendre and L. Legendre 1998,

Equation 7.20). The development of an optimal variable weighting algorithm for the Minkowski

metric or Gower’s coefficient is an interesting topic for further investigation. As described above,

partial derivatives of the of LU, LA, and LP with respect to the weights have to be calculated for these

dissimilarity coefficients. In the present paper, only the Euclidean distance is considered.
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Variable weighting is not desirable in all cases. The theoretical foundations of a study may

indicate whether differential weighting is warranted. Least-squares partitioning methods, such as

K-means, consider the positions of the objects in Euclidean space, where they are divided into

groups. If the Euclidean distances between pairs of objects are appropriate measures of the relative

positions of the objects in variable space for the problem at hand, variables should not be

differentially weighted prior to partitioning. For example, in ecological studies, when species

abundance data have been transformed prior to clustering or partitioning using some appropriate

transformation (e.g., those proposed by P. Legendre and Gallagher, in press), the transformed

variables should not be differentially weighted using the present optimal variable weighting

method. But in most other cases, when weighting is not specifically addressed by substantive

theory, one may assume that some of the variables are noisy and should be eliminated or

downweighted.

4. Numerical Example

To demonstrate the effectiveness of the OVW program, we carried out computations on the

synthetic data considered by De Soete (1986) to illustrate the usefulness of his weighting procedure

for ultrametric trees. De Soete’s data, reported in Table 1, possess a clear predefined structure; the

first two variables perfectly determine the separation of the objects into clusters. The three clusters

{1, 2, 3, 4}, {5, 6, 7, 8} and {9, 10, 11, 12} can easily be deduced from the first two variables

which have a clear partitioning structure. The values in variables 3 and 4 are uniform random

deviates, unrelated to the other variables and, thus, should not be taken into account when creating

the cluster structure, which should be based solely on variables 1 and 2. We will apply to this data

set the variable weighting algorithm designed for additive and for ultrametric clustering as

implemented in OVW; note that in his paper, De Soete (1986) only applied the optimal variable

weighting procedure for ultrametric trees to this data set.

***     Table 1     here ***
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First consider the case of the additive tree clustering. Results were produced by OVW using

the following options: (a) the optimization procedure was restarted 10 times with different initial

estimates; (b) to avoid a trivial solution when a weight of 1 was assigned to a single variable, the

maximum allowed weight of a single variable was set to 0.9 (in fact, to force the program to skip a

trivial solution, we could choose any other value smaller than 1). The following vector of optimal

weights w was obtained: w1=0.395, w2=0.605, w3=0.0, w4=0.0; the value of the objective

function LA dropped from 0.329523 (when all weights were equal to 0.25) to 0.000007 (for the

optimum weights). The correct additive tree structure effectively separating the three clusters could

be found from the matrix of weighted distances provided by the program. For the same data set, De

Soete’s OVWTRE program failed to provide relevant results with the additive tree clustering option

and produced only a trivial solution with w1=0.0, w2=0.0, w3=1.0, w4=0.0; the corresponding

value of LA was 0.

However, when OVWTRE was launched with the ultrametric clustering option, it was able to

discover a good classification, finding the following set of optimal weights: w1=0.558, w2=0.439,

w3=0.000, w4=0.003. Running the OVW program with the ultrametric clustering option provided a

different set of optimal weights: w1=0.708, w2=0.292, w3=0.000, w4=0.000, which also led to the

correct classification.

Finally, when OVW was run on the data from Table 1 using the K-means partitioning option,

with a correct partition vector supplied to the program separating the 12 objects into 3 groups as (1,

1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3), our K-means variable weighting procedure detected the ‘noisy’

variables in the data and assigned weights of zero to variables 3 and 4. The optimal weights

assigned to variables 1 and 2 were respectively 0.906 and 0.094, after 10 starts of the optimization

procedure using different initial random configurations for the weights, whereas the minimum

value of the objective function LP dropped from 1.815205 for all weights equal to 0.000000 for the

optimal weights. When an incorrect classification vector (1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3) was

supplied to OVW, the following weights were obtained for the four variables: w1=0.909,
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w2=0.091, w3=0.000, w4=0.000; the minimum value of the objective function LP corresponding to

the solution was 0.937442. This value, which is remote from 0, indicated that the classification

vector supplied to the program was not optimal.

The classification structures obtained for the data of Table 1 using optimal weights computed

by OVW are depicted in Figure 1. The dendrogram is represented in Part A, the additive tree in Part

B, and the K-means clusters in Part C of the Figure. In the dendrogram and the additive tree, the

interior nodes are numbered 13 to 22.

***     Figure 1     here ***

5. Monte Carlo Studies

We carried out Monte Carlo simulations to identify the situations where the variable

weighting algorithms would represent an advantage. We conducted extensive studies for the

variable weighting algorithms in the context of additive tree reconstruction and K-means

partitioning. We did not repeat the simulations published by Milligan (1989) for ultrametric

clustering because the algorithm implemented in our OVW program is merely an improvement over

that proposed by De Soete (1986, 1988) and used by Milligan (1989) for his simulations.

In contrast to additive tree reconstruction, the ultrametric clustering loss function LU is not

impaired by degenerate solutions consisting of assigning a weight of 1 to a single variable.

However, LU may possess several local minima. Milligan (1989) showed that the solutions

obtained when using all equal weights as the starting set of weights in OVWTRE enabled good

detection of ‘noisy’ variables. Unfortunately, the OVWTRE program proposes only one solution to

the user, who receives no information from the program about the number of local minima and the

combinations of weights that correspond to them. Using our OVW program, we conducted a brief

exploration (not presented in detail) of the number and characteristics of the local minima that could

be reached by LU. When analyzing data sets that did not possess a clear cluster separation structure,
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several local minima were usually found by OVW. Interestingly, each of the local minima usually

identified the ‘noisy’ variables by assigning them weights of 0.

5.1 Additive Tree Simulations: Data Generation and Error Conditions

Our simulation study was designed as follows. The objective was to examine the ability of

our additive tree weighting procedure to recover a variety of known underlying structures and to

eliminate noise variables.

1. First, we generated random matrices Y(nxm) containing measurements of n objects on m

variables. These matrices corresponded to an evolutionary process modeled by an additive tree.

Matrices Y were of sizes: 8x4, 8x6, 8x8; 16x4, 16x10, 16x16; and 24x4, 24x14, 24x24. To

obtain these random object-by-variable matrices, we first generated corresponding random additive

binary trees using the algorithm of Pruzansky, Tversky, and Carroll (1982). In these trees, each

leaf, or vertex of degree one, was associated with an object. Each tree was rooted using an internal

vertex located in the center of the longest path of the tree.

Quantitative vectors of length m, where m is the number of variables, were then “evolved”

along the trees, from the root and up, providing random realizations at each level of the tree up to

the level of the leaves (objects). In each tree, we started with a sequence vr of m 0’s associated with

the root. The values in vectors v11 and v12 associated with the root’s two successors were obtained

using the following formula: v11,i and v12,i = vr,i + rani, where ran was a vector of variables drawn

from a random normal generator with mean zero. The standard deviation of each entry “rani” was

equal to 10(1 – Level), where the Level variable showed the level of the vertex under consideration,

relative to the root. Level was equal to 1 in the case of v11 and v12, 2 for their successors, and so

on. Thus proceeding, we attributed a particular sequence vv to each vertex v of the tree. The set of

sequences vL, associated with the set of n leaves L of the tree, formed the object-by-variable matrix

Y of size n by m. This matrix was used in Step 2 (below). When required, different types of noise

were added to Y, as described below.
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Note that the farther we were from the root, the smaller was the difference in the pairs of

sequences located side by side. The greatest amount of variability was generated among the

sequences closest to the root. There were two reasons for using this type of additive trees in our

simulations: first, this structure corresponds to the widely recognized biological fact that there is, in

nature, more variability among higher taxa (e.g., orders and phyla) than among species or genera.

Likewise, in a Euclidean ordination space, there is more variation among the centroids of the major

groups than among the centroids of the smaller groups nested into them. Secondly, after a number

of trials conducted with different types of trees, only the trees possessing the structure described

above were properly reconstructed by the additive tree fitting methods. These methods took as

input distance matrices D obtained from the object-by-variable matrices Y using all equal weights in

Equation 1.

2. Given a rectangular data matrix Y containing a set of vectors corresponding to the leaves of a

true tree TT, we computed optimal variable weights w = {w1, w2, ... wm}, using our algorithm

OVW, such that the weighted matrix of dissimilarities among objects, Dw = [dij], defined by

Equation 1 optimally satisfied the four-point condition. In parallel, we computed the dissimilarity

matrix D1 using all weights equal in Equation 1. Then, we inferred additive trees Tw and T1 from

dissimilarities Dw and D1, respectively, by using each of the following tree fitting methods, as

implemented in the T-REX software (Makarenkov and Casgrain 2000; Makarenkov 2001):

ADDTREE by Sattath and Tversky (1977), Neighbor Joining by Saitou and Nei (1987), and the

Method of Weights by Makarenkov and Leclerc (1999).

To assess the fit provided by each method, we used one topological and one metric criterion.

We computed the value of the Robinson and Foulds (1981) topological distance between the true

tree TT and the inferred trees Tw and T1, as well as the value of the cophenetic correlation

coefficient (Sokal and Rohlf 1962) between the true tree metric matrix TT  associated with the true

tree TT and the values of the tree metric matrices Tw and T 1, associated with the inferred trees Tw

and T1, respectively. TT  was obtained by computing by least squares the edge lengths along the
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true tree TT corresponding to the dissimilarity values in D1; see Makarenkov and Leclerc (1999) for

an overview of this technique.

3. As in Milligan’s (1989) study on ultrametric clustering, we carried out simulations for 100 data

sets with 6 different types of errors added to the initial object-by-variable matrix Y . The following

error conditions (EC) were considered:

• EC1: Error-free data.

The first condition corresponded to the error-free data contained in matrix Y.

• EC2: Inclusion in the data sets of 25% outliers.

The second error condition involved replacing 25% of the real objects in the data set by outliers.

A randomly selected object y from Y was replaced by an outlier whose values, denoted outj (j =

1, ..., m), were obtained using the following formula: outj = yj + ranj, where “ran” is a vector

of variables drawn at random from a normal distribution with mean zero. The standard deviation

of each entry in “ran” was equal to 10(2 – Level) where, as above, Level showed the level of the

object under consideration, relative to the root of the true tree TT. Hence, the standard deviation

of a random variable added to an outlier was 10 times larger than the standard deviation of the

replaced object. The outlier condition used in our study was different from that used by Milligan

(1989) who added additional objects to the observed data matrices. One would expect the

outliers to cause greater perturbation in our strategy than in Milligan’s (1989) work. This

strategy also provides greater comparability of the simulation results because the number of

objects remains the same in all simulations of a series reported in Table 2.

• EC3: Perturbation of the error-free coordinate values.

The third error condition involved perturbing the error-free coordinate values. For yij

representing the error-free coordinate value for object i on variable j, the error-perturbed value eij

was computed as eij = yij + 2ranij where “ranij” was a noise value drawn at random from a

normal distribution with mean zero and standard deviation 10(1 – Level); Level is the level of point i

relative to the root of the true tree TT.

• EC4-EC6: Addition of 1, 2 or 3 random noise dimensions (variables).
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Error conditions 4, 5, and 6 involved the addition of 1, 2, or 3 random noise dimensions to the

basic variables which defined an additive tree structure in 4 to 24-dimensional space. The

coordinates of the noise variables were drawn at random from a normal distribution with mean

zero and the same standard deviation as in the error-free object-by-variable matrix Y.

5.2 Additive Tree Simulations: Results

Tables 2 and 3 report the mean values of the cophenetic correlation coefficients and the

Robinson and Foulds (1981) topological distances obtained after 100 simulations, using the

different types of error conditions described above. The maximum value of the cophenetic

correlation coefficient, indicating maximum fit, is 1. The Robinson and Foulds distance

corresponds to the number of bipartitions of the true tree which are not found in the inferred tree,

plus the number of bipartitions of the inferred tree not found in the true tree. The maximum value of

this distance between two binary trees with n leaves (representing n objects) is 2n–6 in the case of

different topologies, whereas the minimum value corresponding to topologically equivalent trees is

0. Actually, the Robinson and Foulds distances reported in Tables 2 and 3 were divided by the

maximum value, 2n–6, in order to provide a measure bounded in the interval [0, 1]. The cophenetic

correlation (Cor) was computed between matrix TT  and either T1 or Tw, whereas the Robinson and

Foulds distance (RF) was computed between the true tree TT and the inferred trees T1 or Tw. The

recovery values obtained by the tree fitting methods ADDTREE, NJ, and MW were very similar,

according to the cophenetic correlation coefficient and the topological distance. The greatest

difference among the three methods for the average cophenetic correlation, after 100 simulations,

was 0.012 in the unweighted and 0.009 in the weighted case. Turning to the average Robinson and

Foulds topological distance, the greatest difference was 0.071 in the unweighted and 0.066 in the

weighted case. Thus, in Tables 2 and 3 we only report the results provided by NJ which is at the

moment the most popular additive tree fitting algorithm.

***     Table 2     here ***
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The first series of simulations were undertaken using error-free data, data with outliers, and

error-perturbed data (see Table 2). The OVW program was run with the following parameters: the

number of restarts (the number of different input configurations for the weights) of the variable

weighting algorithm for each data set was set to 50, whereas the maximum weight value for any

variable was set to 0.5. In the rare cases when OVW failed to provide a solution fulfilling the latter

condition, we imposed a solution consisting of all weights equal. Examination of columns 3 and 4

of Table 2 shows that recovery of the additive tree structure was almost perfect when equal weights

were assigned to all variables with error-free data. Recovery results in columns 5 and 6 correspond

to the case where the optimal weighting algorithm was used on error-free data. There is a small

decrease in recovery when the number of variables is high and the number of objects is small.

The following four columns of Table 2 provide information about the impact of error on the

reconstruction of additive trees. In the columns corresponding to the presence of outliers, recovery

for optimal weights dropped, compared to the equal-weight case. This finding was especially

important when a large number of variables were considered. The results with the error-perturbed

variables are reported in the last four columns of Table 2 and are similar to the results with outliers:

the larger the number of variables, the worse the OVW results.

***     Table 3     here ***

The next types of data used in the study involved 1, 2, or 3 random noise variables which

contributed no information to the additive tree structure. The mean recovery values for these

conditions are presented in Table 3. There is a dramatic deterioration of the results for both criteria

as the number of noise dimensions increases, compared to the error-free condition (Table 2).

However, the optimal weights found by OVW allowed in most cases a significant improvement

over the results obtained using equal weights. The topological improvement, measured by the

Robinson and Foulds (RF) distance, is the most striking. The average gain in recovery for the

topological distance across numbers of objects and variables in Table 3 obtained using optimal

weights, compared to equal weights, was 0.263 for one noise dimension, 0.233 for two noise
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dimensions, and 0.231 for three random noise dimensions. In most cases, OVW allowed

recognition of noise variables by assigning them weights very close to 0. Of course, the trees

constructed using optimal weights were not perfect, with sometimes as much as half their topology

wrongly reconstructed (RF coefficients near 0.5, as in the results for 16 and 24 objects). However,

the correctly reconstructed parts of the trees mainly comprised the edges located near the tree’s

roots, which is indeed the most informative part of a tree. Improvement from OVW, as measured

by the cophenetic correlation (Cor), was large when the number of noise dimensions was large

compared to the total number of variables; Cor was smaller when the noise dimensions represented

but a small fraction of the number of variables.

The conclusions to be drawn from the results presented in Tables 2 and 3 are similar to those

stated by Milligan (1989) for the ultrametric weighting procedure. First, the additive variable

weighting algorithm should be used for analyzing data susceptible of comprising some noisy or

masking variables. Second, if the data are perfectly error-free or involve lightly error-perturbed

factors or outliers, no weighting should be used in the distance measure (Equation 1) prior to fitting

an additive tree. However, if the data comprise compounded errors, for example outliers with some

noise variables, the variable weighting technique is preferable.

5.3 K-means Simulations: Data Generation and Error Conditions

Another Monte Carlo study was conducted for the optimal weighting algorithm for K-means

partitioning presented in Section 3. As in the case of the additive tree simulations, the presentation

starts with an overview of the data generation strategy.

1. We generated random matrices Y(nxm) containing measurements of n objects on m variables.

Each data matrix defined a number of clusters in m-dimensional space. In the present study,

matrices Y were of sizes: 10x2, 10x4, 10x6; 25x2, 25x4, 25x6; 50x2, 50x4, 50x6; 100x10; and

200x10. To generate the data, we used a modified version of the program developed by Milligan

(1985) and later used by Milligan (1989) for generation of clustered data. We modified the source
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code of Milligan’s program, which is available on the Classification Society of North America’s

WWWeb site at URL <http://www.pitt.edu/~csna/Milligan/readme.html>, to make it possible to

generate data containing the number of objects, variables, and clusters necessary for our

simulations; the modifications did not imply any important change to Milligan’s data generation

procedure. Milligan’s method allows the creation of 2 to 5 clusters in an m-dimensional Euclidean

space. To ensure a minimum of separation, the clusters are designed to be nonoverlapping on the

first dimension. Cluster boundaries can overlap along any or all the other variables of the space. As

such, the generated error-free clusters possessed the properties of internal cohesion and external

isolation and hence satisfied the definition of natural clusters as given by Cormack (1971), Everitt

(1993, Chapter 1) and others.

2. Our optimal variable weighting algorithm applied to K-means partitioning requires as input an

object-by-variable matrix Y as well as a vector of initial assignment of objects to clusters. Because

in real-life situations we only possess the object-by-variable matrix and (usually) not the vector of

object assignments, we imposed the same restriction on the input data in our simulations: we

assumed that the vector of object assignments was unknown. To approach this issue we adopted

the algorithmic strategy described below. Although this strategy does not guarantee optimal results,

it implements the concept comparably to the analysis of real data sets. Partitioning was done using

the program K-MEANS by P. Legendre (2000). This program implements a standard two-step

alternating least-squares K-means algorithm which iterates between calculation of cluster centroids

and assignment of objects to the centroids. At the beginning of an analysis, the objects are assigned

at random to the clusters; the number of random assignments of the objects to clusters was fixed to

5 in the simulations. The programs allows users to search through different values of K in a

cascade, starting with K1 groups and ending with K2 groups, with K1 ≥ K2; K1 = 10 and K2 = 2

were used in the simulations. In the cascade from a larger to the next smaller number of groups, the

two closest groups are identified and fused. Then the alternating least-squares algorithm is run until

convergence, reallocating objects to the groups. For each number of groups (K), the Calinski-

Harabasz (1974) pseudo-F-statistic was computed. We were interested in finding the number of
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groups, K, for which the Calinski-Harabasz criterion was maximum; this value of K corresponded

to the most compact set of groups. In a simulation study involving 30 stopping rules for cluster

analysis, Milligan and Cooper (1985) found that the Calinski-Harabasz criterion was the one most

often recovering the correct number of groups. The K-MEANS program can perform either

unweighted or weighted optimization. In the latter case, the vector of weights associated with the

variables can be supplied by the user. The simulation strategy was the following:

2.1. Run K-means partitioning on Y , as described above, with equal weights for all variables.

Cluster membership for the number of clusters corresponding to the maximum value of the

Calinski-Harabasz criterion is written out to vector P1.

2.2 Using Y and P1 as input parameters to the OVW program, compute the optimal variable

weights w = {w1, w2, ... wm} that minimize the K-means objective function LP.

2.3. Compute a new K-means partition for Y using the vector of optimum weights w found in the

previous step. Vector Pw describes the new group membership.

2.4. Vector P* describes the true cluster partition of the n objects among the K groups. This

partition is specified by the data generation program. To assess the quality of the cluster recovery,

we compare P* to P1, and P* to Pw, using the corrected Rand index (Hubert and Arabie 1985).

The corrected Rand index measuring the agreement between two partitions was used as a

primary numerical evaluation measure in a number of recent studies; see for example Milligan

(1989) or Carmone et al. (1999). This index returns the value 1.0 if the two partitions are identical.

Values near 0.0 correspond to the case where the match between partitions has fallen to chance

level. Hence, larger values of the corrected Rand index point out a better recovery achieved by a

clustering method.

3. We report mean cluster recoveries after 100 simulations, for data generated using six types of

errors similar to those used in the additive tree simulations reported above. Because the error-free
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data as well as the data affected by different types of error were provided by Milligan’s data

generation program, the reader is referred to Milligan (1989) for a detailed description of all error

conditions. The conditions, compared to the additive tree simulations (above), were the following:

3.1. Error-free data. The first condition corresponded to the error-free data contained in matrix Y.

3.2. Inclusion in the data sets of 40% of outliers. The second error condition involved the inclusion

in the data sets of 40% of additional points that were the outliers. An outlier was drawn from a

normal distribution with a standard deviation three times larger than that of the given cluster.

3.3. Perturbation of the error free coordinate value. The third error condition consisted in adding a

random standard normal deviate, multiplied by 2, to the error-free coordinate values.

3.4. Addition of 1, 2, or 3 random noise dimensions. Error conditions 4, 5, and 6 consisted of the

addition of 1, 2, or 3 random noise dimensions to the basic variables which defined an additive tree

structure in 2- to 10-dimensional space. For these dimensions, values were drawn at random from

a standard normal distribution (µ = 0, σ2 = 1). The range of a random noise variable was then made

equal to the range of the first dimension of the space for which cluster overlap was not allowed.

5.4 K-means Simulations: Results

***     Table 4     here ***

Table 4 reports the mean values of the corrected Rand index obtained after 100 simulations,

using the different types of error conditions described above. The maximum value of the corrected

Rand index is 1, indicating maximum fit. Strategies using all equal weights and the optimal weights

found by OVW are compared. For the K-means simulations, OVW was run with the following

parameters: the number of restarts (i.e., the number of different input configurations for weights)

of the variable weighting algorithm for each data set was 10, whereas the maximum weight of any
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single variable was set to 0.75. As in the additive tree simulations, we imposed a solution with all

weights equal in the rare cases where OVW failed to provide a solution meeting the latter condition.

In the simulations carried out with error-free data, recovery was similar to using equal

weights or the optimal weighting strategy (Table 4 and in Figure 2a). In contrast, for outliers and

error-perturbed data, recovery for optimal weights dropped, compared to that for equal weighting.

***     Figure 2     here ***

With 1, 2, or 3 noise dimensions, recovery was much higher using optimal weights,

compared to equal weights (Table 4 and in Figure 2b). The average gain in recovery across all

simulation results presented in Table 4, using OVW optimal weights relative to equal weights, was

0.155 for one noise dimension, 0.152 for two noise dimensions, and 0.163 for three noise

dimensions. In most instances, the optimal variable weighting procedure assigned weights very

close to 0 to the noise variables.

The following important trend in recovery is observed across all six error conditions: the

larger the number of objects or dimensions is in the object-by-variable matrix, the better is the

cluster recovery. This result follows our expectations: each extra object which is not an outlier, and

each extra variable, provide additional information to the clustering method and thus reduce the

possibility of obtaining a wrong solution. This trend is particularly visible in the case of error-free

data.

An interesting trend is found in Table 4: the larger the number of objects or variables in the

data matrix, the better the cluster recovery, using either equal or OVW weights. On the other hand,

putting the simulation results into graphs shows that recovery of partition structure stabilizes for n

≥ 50 (Figure 2a) or n ≥ 100 (Figure 2b), indicating that these simulation results are likely to be

applicable to larger data sets. This result is important because, in most cases, real data sets

comprise more than 100 objects.
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From the results in Tables 4, we recommend using the optimal weighting algorithm for K-

means partitioning for analyzing data that are likely to contain noisy variables not contributing

relevant information about the real partition structure. However, if the data involve error-perturbed

variables or outliers, it seems better to partition them by K-means using equal weights. For error-

free data, equal or OVW weights can be used.

The performance of the variable weighting algorithm for K-means is likely to improve if,

instead of a single classification (one vector of object assignments to the clusters, provided by the

K-MEANS program), several classifications are used as input to OVW. An optimal strategy would

consist in using as many classifications as possible as input to the OVW algorithm and selecting the

solution that minimizes the K-means objective function LP.

6. Discussion

In general, the optimal weighting algorithm should be used prior to ultrametric or additive tree

clustering, or K-means partitioning, if one assumes that the data may contain irrelevant or noisy

variables. When the data mostly include error-perturbed variables or outliers, we suggest

processing such data using equal weights. Equal or optimal OVW weights can be employed when

the data are supposed to be free of errors. The present paper extends to the case of additive trees

and K-means partitioning the trends found by Milligan (1989) for ultrametric clustering.

It is very difficult to handle error-perturbed data, which is the most complicated case of error

condition. As for the outlier condition, we would like to suggest a new strategy which could be

tested through simulations. If the data being analyzed are likely to contain more noisy objects than

noisy variables, the following strategy could be employed: instead of assigning weights to the

variables, weights can be associated with the objects. Using a weighting function that assigns

weights of 0 or 1 to the objects would lead to a new objective function to be minimized for

ultrametric and additive trees as well as for K-means partitioning. Such a strategy may allow one to

detect noisy objects rather than noisy variables; weights of 0 would be assigned to the noisy
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objects. The resulting matrix of predicted dissimilarities D = [dij] among objects would be

computed as follows:

d v y v yij i ip j jp
p

m
= −∑











=

( )2

1

1 2/

, (1’)

where vi and vj are weights associated with the object i and j, respectively. Variants of the objective

functions LU, LA and LP should be considered:  dij should be excluded from the objective function if

vi or vj equal 0. A much more complicated model involving weights for both variables and objects

may also be explored. Although the latter model would contain two sets of weights, it may allow

one to reduce, at the same time, the effect of noisy variables and noisy objects or outliers.

Investigation of weighting strategies implying weights for objects, or for both objects and

variables, would constitute an interesting and relevant topic for future research.
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Appendix 1: A Property of the Additive Loss Function

The following theorem states a property of the additive loss function LA.

Theorem

Any single variable y from an object-by-variable matrix Y having a weight of 1 defines an additive

tree using the transformation described in Equation 1.

Proof   

We have to prove that assigning a weight of 1 to any one of the m variables and weights of 0 to the

others always guarantees a perfect fit of the distance matrix to an additive tree, which means a value

of 0 for the additive-tree loss function LA of Equation (7). For convenience, assume that the weight

corresponding to the first variable of an object-by-variable matrix Y(n x m) is set to 1 and all others

to 0. Let us consider any four entries of Y corresponding to this first variable. They will be denoted

yi, yj, yk, and yl. Without loss of generality, we can suppose that yi ≥ yj ≥ yk ≥ yl. As the weights of

all variables except the first one are 0, then, from Equation 1, the following equations can be

written for the corresponding distances: dij = yi - yj; dil = yi - yl; dik = yi - yk; djl = yj - yl; djk = yj - yk;

dkl = yk - yl. Therefore, the term appearing in the numerator of LA and associated with the quadruple

of objects i, j, k, and l will consist of the difference between the two largest sums of two distances

from among dij, dik, dil, djk, djl, and dlk. This term is the following: ((dil + djk) - (dik + djl))
2 = ((yi -

yk) + (yj - yl) - (yi - yl) - (yj - yk))
 2 = 0. Thus, any quadruple of objects i, j, k, and l of a single

variable of Y will contribute a zero value to the sum appearing in the numerator of LA.

Consequently, any single variable of Y with a weight of 1 defines an additive tree distance using

the loss function described in Equation 1. This tree can be represented graphically by a chain tree,

i.e., a tree with all objects lying on the same axis. ♦♦♦♦

This theorem proves that any trivial solution of the type (1, 0, ..., 0), (0, 1, ..., 0), ..., or (0, 0,

..., 1) provides a perfect fit for the additive loss function LA.
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Appendix 2: A Program for Optimal Variable Weighting (OVW)

Program OVW performs optimal variable weighting for ultrametric and additive tree

clustering, following the method proposed by De Soete (1986, 1988), as well as for least-squares

(K-means) partitioning. The new program, which is available free of charge to academic

researchers, provides improvements and extra options, compared to De Soete's (1988) program

OVWTRE; the latter program only fits ultrametric and additive trees.

Input. The input data file is an ASCII text file which contains a data matrix Y(n x m) as well

as the parameters n (number of objects) and m (number of variables). If the K-means partitioning

option is selected, a vector of group assignments for the objects has to be provided in the same

input file.

Output. The output consists of the weighted Euclidean dissimilarity matrix D of size (n x n)

computed from Y using the optimum weights in Equation 1, the vector of optimal weights w(m)

obtained using the Polak-Ribière minimization procedure, the minimum value of the objective loss

function, and the number of iterations of the Polak-Ribière minimization that were needed to reach

the optimal solution.

Language and computer. The current version of OVW is written in the C programming

language. The program is distributed as freeware in a variety of formats: C source code for PC and

Macintosh (the files are found in the folder “Source”) which can be compiled using a C/C++

compiler; compiled versions of the program for Win32-bit-compatible computers (OVW.exe);

compiled version for PowerPC processors for Macintosh (file OVW_PPC); C source code for

various versions of UNIX as well as the corresponding Make file.

Dimensionality and running time. There are no limitations to the size of matrix Y(nxm)

in the program. The only existing limitation is the size of the random access memory (RAM) of the

user’s computer. However, the Polak and Ribière optimization procedure uses the matrix of partial
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derivatives (Dij par wk). This intermediate matrix, which is repeatedly computed by the program,

requires O(m x n2) bytes for storage. For example, for an input matrix Y of size (100 x 100), the

program requires about 4 MB of memory only to store the auxiliary matrix of partial derivatives.

There are also some other auxiliary matrices and vectors occupying a substantial, but not so huge,

amount of RAM. As to the running time, during the simulations involving a matrix Y with 300

objects and 166 variables, the program ran during approximately 4.5 hours on a Power Macintosh

604 at 350 MHz with 80 MB of RAM before providing a solution for the K-means partitioning

problem; the optimization procedure was run only once for this problem.

Availability.  Program OVW is freeware for researchers1. It is available via Internet on the

WWWeb page of the Laboratory of Numerical Ecology at Université de Montréal:

<http://www.fas.umontreal.ca/biol/legendre/> or

<http://www.fas.umontreal.ca/biol/casgrain/en/labo/ovw.html>.

                                                
1 This program has been developed as part of a university-based research program. Users who

encounter problems with this program may report them to the authors who will be happy to help

solve them. Researchers may use this program for scientific purposes, but the source code remains

the property of Vladimir Makarenkov and Pierre Legendre (© 1999). Commercial users who want

to use the program for profit should get in touch with the authors and pay royalties, or develop their

own computer program based on the description of the method provided in this paper. Publications

should give proper credit to the method by referring to this paper as well as De Soete’s two papers.

Users of program OVW may refer to the user’s manual of Makarenkov and P. Legendre (1999).
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Table 1. Synthetic data used by De Soete (1986, Table 1) illustrating the application of his optimal

variable weighting procedure for ultrametric trees.

________________________________________________________________________________    

Objects Variables
_________________________________________________________________

1 2 3 4
________________________________________________________________________________

1  0.4082  0.000  0.0564 –0.0188

2 0.4082  0.000  0.7104  0.8879

3 0.4082  0.000 –0.5435  0.4931

4  0.4082  0.000 –0.0227 –0.6123

5 –0.2041  0.3536  0.6128  0.9475

6 –0.2041  0.3536 –0.7937 –0.7604

7 –0.2041  0.3536 –0.2072 –0.0368

8 –0.2041  0.3536  0.3818  0.1197

9 –0.2041 –0.3536  0.9152  0.3362

10 –0.2041 –0.3536 –0.6031 –0.9367

11 –0.2041 –0.3536  0.4861  0.2143

12 –0.2041 –0.3536 –0.3770 –0.0060

________________________________________________________________________________
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Table 2. Mean recovery values for error-free, with outliers, and error-perturbed data for additive tree

reconstruction. For each case, the mean values (over 100 simulated data sets) of the cophenetic correlation

(Cor) and the Robinson and Foulds (RF) topological distance are given; Cor = 1 and RF = 0 when there is

perfect recovery. Trees obtained using all equal weights (Equal) for the variables are compared to trees

obtained using the optimal weights found by our algorithm (Weighted).

_____________________________________________________________________________________    

Error-free Outliers Error-perturbed
_____________________________________________________________________________________

No. of      No. of Equal Weighted Equal Weighted Equal Weighted
objects    variables Cor   RF Cor   RF Cor   RF Cor   RF Cor   RF Cor   RF

n m
_____________________________________________________________________________________

8 4 1.0000.010 0.975 0.043 0.844 0.095 0.837 0.126 0.759 0.105 0.768 0.154

8 6 1.0000.015 0.915 0.121 0.847 0.118 0.780 0.181 0.748 0.094 0.739 0.218

8 8 1.0000.005 0.918 0.151 0.881 0.127 0.790 0.228 0.705 0.105 0.680 0.249

16 4 1.0000.011 0.992 0.038 0.940 0.040 0.938 0.063 0.871 0.113 0.876 0.125

16 10 1.0000.003 0.940 0.105 0.906 0.024 0.845 0.134 0.757 0.092 0.681 0.180

16 16 1.0000.002 0.928 0.105 0.918 0.017 0.824 0.146 0.751 0.093 0.685 0.173

24 4 1.0000.004 0.995 0.031 0.970 0.026 0.968 0.049 0.913 0.091 0.905 0.105

24 14 1.0000.002 0.952 0.105 0.970 0.011 0.910 0.128 0.750 0.105 0.689 0.166

24 24 1.0000.000 0.959 0.120 0.976 0.007 0.922 0.125 0.707 0.121 0.651 0.180

_____________________________________________________________________________________
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Table 3. Mean recovery values for error-free data with 1, 2, or 3 added random noise dimensions for

additive tree reconstruction. See Table 2 for the meanings of Equal, Weighted, Cor, and RF.

_____________________________________________________________________________________    

1 noise dimension 2 noise dimensions 3 noise dimensions
_____________________________________________________________________________________

No. of      No. of Equal Weighted Equal Weighted Equal Weighted
objects    variables Cor   RF Cor   RF Cor   RF Cor   RF Cor   RF Cor   RF

n m
_____________________________________________________________________________________

8 4 0.877 0.464 0.920 0.224 0.801 0.544 0.911 0.304 0.755 0.570 0.919 0.265

8 6 0.921 0.466 0.927 0.213 0.859 0.499 0.920 0.240 0.810 0.533 0.923 0.240

8 8 0.935 0.444 0.932 0.252 0.894 0.498 0.917 0.301 0.870 0.531 0.936 0.284

16 4 0.864 0.751 0.921 0.476 0.779 0.799 0.891 0.560 0.741 0.793 0.826 0.629

16 10 0.950 0.742 0.951 0.355 0.922 0.766 0.953 0.452 0.903 0.753 0.949 0.458

16 16 0.964 0.706 0.940 0.459 0.948 0.735 0.944 0.516 0.930 0.744 0.945 0.509

24 4 0.855 0.761 0.930 0.475 0.781 0.772 0.883 0.541 0.742 0.771 0.850 0.595

24 14 0.972 0.713 0.958 0.433 0.957 0.730 0.964 0.506 0.942 0.745 0.968 0.540

24 24 0.981 0.689 0.965 0.478 0.967 0.705 0.968 0.532 0.961 0.712 0.966 0.555

_____________________________________________________________________________________
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Table 4. Mean recovery values expressed using the corrected Rand index by Hubert and Arabie (1985) for

K-means partitioning. The computations were carried out for error-free, with outlier, and error-perturbed

conditions, and error-free data with 1, 2, and 3 added random noise dimensions. Partitions obtained using

all equal weights (Eq.) for the variables are compared to partitions obtained using the optimal weights found

by the OVW algorithm (We.).

________________________________________________________________________________________    

Error-free Outliers Error-perturbed 1 noise dim. 2 noise dim. 3 noise dim.
________________________________________________________________________________________

No. of      No. of Eq. We. Eq. We. Eq. We. Eq. We. Eq. We. Eq. We.
objects    variables

n m
________________________________________________________________________________________

10 2 0.839 0.842 0.776 0.774 0.653 0.652 0.562 0.728 0.443 0.619 0.394 0.534

10 4 0.926 0.904 0.879 0.858 0.772 0.726 0.658 0.774 0.575 0.738 0.518 0.688

10 6 0.962 0.952 0.912 0.873 0.817 0.820 0.723 0.814 0.661 0.750 0.669 0.778

25 2 0.817 0.787 0.835 0.821 0.670 0.648 0.486 0.676 0.391 0.596 0.409 0.573

25 4 0.947 0.895 0.887 0.824 0.801 0.767 0.662 0.829 0.597 0.787 0.452 0.666

25 6 0.937 0.933 0.888 0.790 0.864 0.753 0.752 0.878 0.696 0.803 0.579 0.790

50 2 0.916 0.914 0.850 0.839 0.695 0.689 0.504 0.753 0.432 0.666 0.424 0.653

50 4 0.960 0.937 0.877 0.894 0.837 0.774 0.631 0.871 0.607 0.819 0.542 0.767

50 6 0.979 0.935 0.926 0.853 0.892 0.770 0.759 0.899 0.740 0.843 0.731 0.841

  100 10 0.960 0.975 0.934 0.827 0.942 0.823 0.868 0.935 0.900 0.941 0.806 0.861

200 10 0.979 0.963 0.937 0.886 0.926 0.891 0.851 0.940 0.923 0.935 0.798 0.806

________________________________________________________________________________________



35

Figure caption

Figure 1. Classification structures obtained for the Table 1 data using optimal weights computed by

OVW. (a) Dendrogram from ultrametric clustering; (b) additive tree; (c) K-means partition.

Figure 2. Comparison of results using equal weights to those using the optimal weights found by

OVW: partition recovery, measured by the corrected Rand index, as a function of the number

of objects. The following lines from Table 4, selected because n ≥ 5m, are plotted: (n = 10, m

= 2), (n = 25, m = 4), (n = 50, m = 6), (n = 100, m = 10), and (n = 200, m = 10), where n is

the number of objects and m is the number of variables.
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