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Abstract

Given a multiple alignment of orthologous DNA sequences and a phylogenetic

tree for these sequences, we investigate the problem of reconstructing the most

likely scenario of insertions and deletions capable of explaining the gaps observed

in the alignment. This problem, that we called the Indel Maximum Likelihood

Problem (IMLP), is an important step toward the reconstruction of ancestral ge-

nomics sequences, and is important for studying evolutionary processes, genome

function, adaptation and convergence. We solve the IMLP using a new type

of tree hidden Markov model whose states correspond to single-base evolution-

ary scenarios and where transitions model dependencies between neighboring

columns. The standard Viterbi and Forward-backward algorithms are optimized

to produce the most likely ancestral reconstruction and to compute the level

of confidence associated to specific regions of the reconstruction. A heuristic

is presented to make the method practical for large data sets, while retaining

an extremely high degree of accuracy. The methods are illustrated on a 1Mb

alignment of the CFTR regions from 12 mammals.

keywords: Ancestral genome reconstruction; Insertions and

deletions; Tree-HMM; Ancestral mammalian genomes, indel

maximum likelihood problem
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1 Introduction

It has recently been shown that the phylogeny of eutherian mammals is such

that an accurate reconstruction of the genome of an early ancestral mammal

is possible (Blanchette et al., 2004a). This accurate reconstruction will help on

various studies such as adaptation, behavioral changes, functional divergences,

etc. (Krishnan et al., 2004). It is also at the core of experimental paleo-molecular

biochemistry where sequences of extant taxa are used to predict and resurrect

the sequences and functions of ancestral macromolecules (Benner, 2002; Gaucher

et al., 2003; Pauling and Zuckerkandl, 1963). The ancestral genome reconstruc-

tion procedure involves several difficult steps, including the identification of or-

thologous regions in different extant species, ordering of syntenic blocks, multiple

alignment of orthologous sequences within each syntenic block, and reconstruc-

tion of ancestral sequences for each aligned block. This last step involves the

inference of the set of substitutions, insertions, and deletions that may have pro-

duced a given set of multiply-aligned extant sequences. While the problem of

reconstructing substitutions scenarios has been well studied (e.g. (Fitch, 1971)

and (Felsenstein, 1981)), the inference of insertions and deletions scenarios has

received less attention (but see the seminal contribution of Thorne, Kishino and

Felsenstein (Thorne et al., 1991)). Indel evolutionary scenarios are useful for

several other problems such as annotating functional regions of extant genomes,

including protein-coding regions (Siepel and Haussler, 2004), RNA genes (Rivas,

2005), and other types of functional regions (Siepel et al., 2005). The difficulty of

the problem is due in large part to the fact that insertions and deletions (indels)

often affect several consecutive nucleotides, so the columns of the alignment can-

not be treated independently, as opposed to the maximum likelihood problem for

substitutions (Felsenstein, 1981). The reconstruction of the most parsimonious

scenario of indels required to explain a given multiple sequence alignment has

been shown to be NP-Complete (Chindelevitch et al., 2006) but good heuris-
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tics have been developed (Blanchette et al., 2004a; Chindelevitch et al., 2006;

Fredslund et al., 2004).

A maximum likelihood reconstruction would be preferable to a most parsimo-

nious reconstruction because it would provide a way of weighing insertions and

deletions of various lengths against each other. Moreover, provided an accurate

probabilistic model is used, it would be more accurate and would allow to esti-

mate the uncertainty related to certain aspects of the reconstruction. Similarly

to statistical alignment approaches (Lunter et al., 2003) (which unfortunately

remain too slow for genome-wide reconstructions), we seek to gain a richer in-

sight into ancestral sequences and evolutionary processes. In this paper, we thus

focus on the problem we call the Indel Maximum Likelihood Problem (IMLP).

It consists of inferring the set of insertions and deletions that has the maxi-

mal likelihood, according to some fixed evolutionary parameters, and that could

explain the gaps observed in a given multiple alignment. An example of the

input and output of this problem is shown in Figure 1. Kim and Sinha (2006)

have recently proposed an algorithm for a similar problem, although the range of

scenarios handled by their Indelign program is limited to non-overlapping indels.

We emphasize that the problem addressed here assumes that the phylogenetic

tree and multiple sequence alignment given as input are correct. The robustness

of indel scenarios with respect to alignment and tree accuracy has been previ-

ously discussed in (Blanchette et al., 2004a). The more general problem where

the alignment in not given as input but has to be found simultaneously with

the ancestral sequences (Hein, 1989) is clearly of great interest but appears sig-

nificantly more difficult and is not addressed here. We refer the reader to (Kim

and Sinha, 2006) and (Bray and Pachter, 2004) for interesting first steps in that

direction.

Here, we start by giving a formal definition of the Indel Maximum Likelihood

Problem. To solve the problem, we use a special type of tree hidden Markov

model (tree-HMM), which is a combination of a standard hidden Markov model
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and a phylogenetic tree. We show how the most likely path through the tree-

HMM leads to the most likely indel scenario and how a variant of the standard

Viterbi algorithm can solve the problem. Although the size of the HMM is expo-

nential in the number of extant species considered, we show how the knowledge

given by the phylogenetic tree and the aligned sequences allows the state space

of the HMM to be considerably reduced, resulting in a practical, yet exact, al-

gorithm. We also present a heuristic algorithm that almost always gives the

right solution and can compute the most likely indels scenarios for more than

20 taxa. Thus, our implementations are able to solve large problems on a simple

desktop computer and allow for an easy parallelization. Finally, we assess the

complexities and accuracies of the presented algorithms on a multiple alignment

of twelve orthologous mammalian genomic sequences of ∼1Mb each coming from

the CFTR benchmark dataset (ENCODE Project Consortium, 2004).

FIGURE 1 HERE

2 The Indel Maximum Likelihood Problem

In this section we will give a precise definition for the Indel Maximum Likelihood

Problem (IMLP). Consider a rooted binary phylogenetic tree T = (VT , ET ) with

branch lengths λ : VT → R+. If n is the number of leaves of T , there are n − 1

internal nodes and 2n− 2 edges.

Consider a multiple alignment A of n orthologous sequences corresponding

to the leaves of the tree T . Since the only evolutionary events of interest here are

insertions and deletions, A can be transformed into a binary matrix, where gaps

are replaced by 0’s and nucleotides by 1’s. Let Ax be the row of the binarized

alignment corresponding to the sequence at leaf x of T , and let Ax[i] be the

binary character at the i-th position of Ax. Assuming that the alignment A
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contains L columns, we add for convenience two extra columns, A[0] and A[L+1],

consisting exclusively of 1’s.

Definition 1 (Ancestral reconstruction). Given a multiple alignment A of

n extant sequences assigned to the leaves of a tree T , an ancestral reconstruction

A∗ is an extension of A that assigns a sequence A∗
u ∈ {0, 1}L+2 to each node u

of T , and where A∗
u = Au whenever u is a leaf.

The following restriction on the set of possible ancestral reconstructions is

necessary in some contexts.

Definition 2 (Phylogenetically correct ancestral reconstruction). An

ancestral reconstruction A∗ is phylogenetically correct if, for any u, v, w ∈ VT

such that w is located on the path between u and v in T , we have (A∗
u[i] = A∗

v[i] =

1) =⇒ (A∗
w[i] = 1).

Requiring an ancestral reconstruction to be phylogenetically correct corresponds

to assuming that any two nucleotides that are aligned in A have to be derived

from a common ancestor, and thus that all the ancestral nodes between them

have to have been a nucleotide. This prohibits aligned nucleotides to be the result

of two independent insertions. Assuming that this property holds perfectly for a

given alignment A is somewhat unrealistic, but, for mammalian sequences, good

alignment heuristics have been developed (e.g. TBA (Blanchette et al., 2004b),

MAVID (Bray and Pachter, 2004), MLAGAN (Brudno et al., 2003)) and have

been shown to be quite accurate (Blanchette et al., 2004b). In the future, we

plan to relax this assumption, but, for now, we will concentrate only on finding

phylogenetically correct ancestral reconstructions.

Since we are considering insertions and deletions affecting several consecutive

characters, we delimit each operation by the positions s and e in the aligned

sequences where it starts and ends. Let x and y be two nodes of the tree, where

x is the parent of y. The pairwise alignment consisting of rows A∗
x and A∗

y is

divided into a set of regions defined as follows (see Figure 2).
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Definition 3 (Deletions, Insertions, Conservations, and Length). Con-

sider the pairwise alignment of A∗
x and A∗

y, and let 0 ≤ s ≤ e ≤ L+ 1.

– The region (s, e) is a deletion if (a) for all i ∈ {s, . . . , e}, A∗
y[i] = 0, (b)

A∗
x[s] = A∗

x[e] = 1, and (c) no region (s′, e′) ⊃ (s, e) is a deletion (i.e. we

only consider regions that are maximal).

– The region (s, e) is an insertion if (a) for all i ∈ {s, . . . , e}, A∗
x[i] = 0, (b)

A∗
y[s] = A∗

y[e] = 1, and (c) no region (s′, e′) ⊃ (s, e) is an insertion.

– The region (s, e) is a conservation if (a) for all i ∈ {s, . . . , e}, A∗
x[i] = A∗

y[i]

and (b) no region (s′, e′) ⊃ (s, e) is a conservation.

– The length of region (s, e) is the number of non-trivial positions it contains:

l(s, e) = |{s ≤ i ≤ e|A∗
x[i] 6= 0 or A∗

y[i] 6= 0}|.

A pair of binary alignment rows A∗
x and A∗

y can thus be partitioned into a set

of non-overlapping insertions, deletions, and conservations.

FIGURE 2 HERE

Definition 4 (Indel scenario). The indel scenario defined by an ancestral

reconstruction A∗ is the set of insertions and deletions that occurred between the

ancestral reconstructions at adjacent nodes in T .

All that remains is to define an optimization criterion on A∗. Two main

choices are possible: a parsimony criterion or a likelihood criterion.

2.1 The Indel Parsimony Problem (IPP)

The parsimony approach for the indel reconstruction problem has been intro-

duced by Fredslund et al. (2004) and Blanchette et al. (2004a). In its simplest

version, it attempts to find the phylogenetically correct ancestral reconstruction
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A∗ that minimizes the total number of insertions and deletions defined by A∗:

indelParsimony(A∗) =
∑

u,v:(u,v)∈ET

|{(s, e) : (s, e) is a deletion or an insertion from A∗
u to A∗

v}|

The Indel Parsimony Problem is NP-Hard (Chindelevitch et al., 2006). Most

authors have studied a weighted version of the IPP where the cost of indels

depends linearly on their length (affine gap penalty). Blanchette et al. (2004a)

proposed a greedy algorithm, and good exact heuristics have been developed

(Chindelevitch et al., 2006; Fredslund et al., 2004). The limitation of these ap-

proaches is that they only give a single solution as output, and provide no mea-

sure of uncertainty of the various parts of the reconstruction. In contrast, a

likelihood-based approach has the potential of providing a more accurate solu-

tion and a richer description of the set of possible solutions.

2.2 Indel Maximum Likelihood Problem

In this section, we define the indel reconstruction problem in a probabilis-

tic framework similar to the Thorne-Kishino-Felsenstein model (Thorne et al.,

1992). To this end, we need to define the probability of transition between an

alignment row A∗
x and its descendant row A∗

y. This probability will be defined as

a function of the probability of the insertions, deletions, and conservations that

happened from A∗
x to A∗

y.

Let PDelStart(λ(b)) be the probability that a deletion starts at a given posi-

tion in the sequence, along a branch b of length λ(b), and let PInsStart(λ(b)) be

defined similarly for an insertion. We assume that these probabilities only depend

on the length λ(b) of the branch b along which they occur, but not on the position

where the indel occurs. A reasonable choice is PDelStart(λ(b)) = 1 − e−ψDλ(b)

and PInsStart(λ(b)) = 1 − e−ψIλ(b), for some deletion and insertion rate pa-

rameters ψD and ψI , but our algorithm allows for any other choice of these

probabilities. Thus, the probability that none of the two events happens at
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a given position, which we call the probability of a conservation, is given by

PCons(λ(b)) = e−(ψD+ψI)λ(b). We make the standard simplifying assumption

that the length of a deletion follows a geometric distribution, where the proba-

bility of a deletion of length k is αk−1
D (1−αD) and the probability of an insertion

of length k is αk−1
I (1 − αI). One can thus see αD (resp. αI) as the probability

of extending a deletion (resp. insertion). This assumption, necessary to design

a fast algorithm, holds relatively well for short indels, but fails for longer ones

(Kent et al., 2003). Our algorithm allows the parameters αD and αI to depend

on the branch b, but the results reported in Section 5 correspond to the case

where αD and αI were held constant across the tree. The probability that align-

ment row A∗
x was transformed into alignment row A∗

y along branch b can be

defined as follows:

Pr(A∗
y|A∗

x, b) =
∏

(s,e): deletion from A∗
x to A∗

y

PDelStart(λ(b)) · (αl(s,e)−1
D (1− αD)) ·

∏
(s,e): insertion from A∗

x to A∗
y

PInsStart(λ(b)) · (αl(s,e)−1
I (1− αI)) ·

∏
(s,e):conservation from A∗

x to A∗
y

(PCons(λ(b))l(s,e)

This allows us to formulate precisely the problem addressed in this paper:

INDEL MAXIMUM LIKELIHOOD PROBLEM (IMLP):

Given: A multiple sequence alignment A of n orthologous sequences related by

a phylogenetic tree T with branch lengths λ, a probability model for insertions

and deletions specifying the values of ψD, ψI , αD, and αI .

Find: A maximum likelihood phylogenetically correct ancestral reconstruction

A∗ for A, where the likelihood of A∗ is:

L(A∗) =
∏

b=(x,y)∈ET

Pr(A∗
y|A∗

x, b)
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3 A Tree-Hidden Markov Model

In this section, we describe the tree hidden Markov model that is used to solve

the IMLP. A tree-hidden Markov model (tree-HMM) is a probabilistic model

that allows two processes to occur, one in time (related to the sequence history

in a given column of A), and one in space (related to the changes toward the

neighboring columns). Tree HMMs were introduced by Felsenstein and Churchill

(1996) and Yang (1996) to improve the phylogenetic models that allows for

variation among sites in the rate of substitution, and have since then been used

for several other purposes (e.g. detecting conserved regions (Siepel et al., 2005)

and predicting genes (Siepel and Haussler, 2004)). Just as any standard HMM

(Durbin et al., 1998), a tree-HMM is defined by three components: the set of

states, the set of emission probabilities, and the set of transition probabilities.

3.1 States

Intuitively, each state corresponds to a different single-column indel scenario

(although additional complications are described below). Given a rooted binary

tree T = (VT , ET ) with n leaves, each state corresponds to a different labeling of

the edges ET with one of three possible events: I (for insertion), D (for deletion),

or C (for conservation). The set S of possible states of the HMM would then

be S = {I,D,C}2n−2. However, this definition is not sufficient to model certain

biological situations (see Figure 3). We will use the ’*’ symbol to indicate that,

along a certain branch b = (x, y), no event happened because there was a base

neither at node x nor at node y. This will happen in two situations: when edge b is

a descendant of edge b′ that was labeled with D (i.e. the base was deleted higher

up the tree), and when there exists an edge b′ that is not between b and the root

and that is labeled with I (i.e. an insertion happened elsewhere in the tree). The

fact that these extraneous events can potentially interrupt ongoing events along

branch b means that the HMM needs to have a way to remember what event
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was actually going on along that branch. This transmission of memory from

column to column is achieved by three special labels: I∗, D∗, and C∗, depending

on whether the ∗ regions is interrupting an insertion, deletion, or conservation.

Thus, we have S ⊆ {I,D,C, I∗, D∗, C∗}2n−2. Although this state space appears

prohibitively large (62n−2), the reality is that a number of these states cannot

represent actual indel scenarios, and can thus be ignored. The following set of

rules specify what states are valid.

Definition 5 (Valid states). Given a tree T = (VT , ET ), a state s assigning

a label s(b) ∈ {I,D,C, I∗, D∗, C∗} to each branch b ∈ ET is valid if the two

following conditions hold.

– (Phylogenetic correctness condition) There must be at most one branch b

such that s(b) = I.

– (Star condition) Let b ∈ ET , and let anc(b) ⊂ ET be the set of branches

on the path from the root to b. Then s(b) ∈ {I∗, D∗, C∗} if and only if

∃b′ ∈ anc(b) such that s(b′) = D or ∃b′ ∈ (ET \ anc(b)) such that s(b′) = I.

The number of valid states on a complete balanced phylogenetic tree with

n leaves is O(n · 32n) (the number is dominated by states that have a ’I’ on a

branch leading to a leaf, which leaves all other 2n − 3 edges free to be labeled

with either C∗, D∗, or I∗). Although this number remains exponential, it is

significantly better than the 62n−2 valid and invalid states.

3.2 Emission probabilities

In an HMM, each state emits one symbol, according a certain emission proba-

bility distribution. In our tree-HMMs, each state emits a collection of symbols,

corresponding to the set of characters obtained at the leaves of T when indel

scenario s occurs. Intuitively, we can think of a state as emitting an alignment

column. The following definition formalizes this.
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Definition 6. Let s be a valid state for tree T = (VT , ET ) with root r. Then,

we define the output of state s as a function Os : VT → {0, 1} with the following

recursive properties:

1. Os(root) =

0, if ∃x ∈ VT such that s(x) = I

1, otherwise
.

2. Let e = (x, y) ∈ ET , with x being the parent of y. Then,

Os(y) =


0, if s(e) = D

1, if s(e) = I

Os(x), otherwise

Let C be an alignment column (i.e. an assignment of 0 or 1 to each leaf in

T ). We then have the following degenerate emission probability for state s:

Pre(C|s) =

1 if Os(x) = C(x) for all x ∈ leaves(T )

0 otherwise

Thus, each state s can emit a single alignment column C. However, many dif-

ferent states can emit the same column.

Missing data In presence of missing characters among the input sequences,

the emission probability can be adapted such that the equality between Os(x)

and C(x) is assessed according to 0’s and 1’s in C(x) only. It is worth noting

that missing characters are different to gap noted by −. Hence, the presence of

missing data increases the number of states for a given column.

3.3 Transition probabilities

The last component to be defined is the set of transition probabilities of the

tree-HMM. The probability of transition from state s to state s′, Prt(s′|s), is

a function of the set of events that occurred along the edges of T . Intuitively,

Prt(s′|s) describes the probability of the single-column indel scenario s′, given

that scenario s occurred at the previous column. This transition probability is
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a function of insertions and deletions that started between the two columns, of

those that were extended going from one column to the next. Specifically, we

have Prt(s′|s) =
∏
b∈ET

ρ(s′(e)|s(e), b), where ρ is given in Table 1.

[TABLE 1 HERE ]

4 Tree-HMM paths, ancestral reconstruction and

assessing uncertainty

We now show how the tree-HMM described above allows us to solve the IMLP.

Consider a multiple alignment A of length L on a tree T . A path π in the tree-

HMM is a sequence of states π = π0, π1, ..., πL, πL+1. Based on standard HMM

theory, we get:

Pr(π,A) = Pr(π0, A0)
L+1∏
i=1

Pre(A[i]|πi) · Prt(πi|πi−1)

Figure 3 gives an example of an alignment with some of the non-zero proba-

bility paths associated.

FIGURE 3 HERE

Theorem 1. Consider an alignment A on tree T . Then π∗ = argmaxπ Pr(π,A)

yields the most likely indel scenario for A, and a maximum likelihood ancestral

reconstruction A∗ is obtained by setting A∗
u[i] = Oπ∗i (u).

Proof. It is simple to show that for any ancestral reconstruction Â for A, we have

L(Â) = Pr(π,A), where π is the path corresponding to Â. Thus, maximizing

Pr(π,A) maximizes L(Â).
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4.1 Computing the most likely path

To compute the most likely path π∗ through a tree-HMM, we adapted the stan-

dard Viterbi dynamic programming algorithm (Durbin et al., 1998). Let X(i, k)

be the joint likelihood of the most probable path ending at state k for the i first

columns of the alignment. Let c ∈ S be the state made of C’s on all edges of T .

Since the dummy column A[0] consists exclusively of 1’s, c is the only possible

initial state. For any i between 0 and L + 1 and for any valid state s ∈ S, we

can compute X(i, s) as follows:

X(i, s) =


1, if i = 0 and s = c

0, if i = 0 and s 6= c

Pre(A[i]|s) ·maxs′∈S(X(i− 1, s′) · Prt(s|s′)), if i > 0

Finally, π∗ is obtained by tracing back the dynamic programming, starting from

entry X(L+1, c). To ensure numerical stability, we use a log transformation and

scaling of probabilities as described by (Durbin et al., 1998).

The running time of a naive implementation of the Viterbi algorithm is

O(|S|2L), which quickly becomes impractical as the size of the tree T grows.

However, we can make this computation practical for moderately large trees

and for long sequences. Even though the number of states is exponential in

the number of sequences, most alignment columns can only be generated with

non-zero probability by a much more manageable number of states. Given an

alignment A, it is possible to compute, for each column A[i], the set Si of valid

states that can emit A[i] with non-zero probability. For instance, an alignment

column with only 1’s will lead to only one possible state, independently of the

number taxa of n. The set Si can be constructed using a bottom approach pre-

sented in Algorithm 1. More states can be discarded by using the fact that the

transition probability between most pairs of states is zero. We can thus remove

from Si any state s that is such that the transition to s from any state in

Si−1 has probability zero. Proceeding from left to right, we get S′0 = S0, and
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S′i = {s ∈ Si|∃t ∈ S′i−1 s.t. Prt(s|t) > 0}, where S′i ⊆ Si. For instance, if, in

all states of Si−1, an edge e is labeled by deletion D, then none of the states

in Si can have edge e labeled with C∗ or I∗. This yields a large improvement

for alignment regions consisting of a number of adjacent positions with a base

in only one of the n species and ensures that the algorithm will be practical for

relatively large number of sequences (see Section 5).

Algorithm 1 buildValidState(node root, C)
Require: root: a tree node, C: an alignment column.

Ensure: Set of valid, non-zero probability states for C.

1: if root is a leaf then

2: return list of possible operations according to the character at that leaf

3: else

4: leftList = buildValidState(root.left, C)

5: rightList = buildValidState(root.right, C)

6: return mergeSubtrees(leftList, rightList, root)

7: end if

4.2 Assessing uncertainties of the ancestral reconstruction

A significant advantage of the likelihood approach over the parsimony approach

is that it allows evaluating the uncertainty related to certain aspects of the

reconstruction. For example, it is useful to be able to compute the probabil-

ity that a base was present at a given position i of a given ancestral node

u: Pr(A∗
u[i] = 1|A) =

∑
s∈S:Os(u)=1 Pr(πi = s|A). This allows the computa-

tion of the probability of making an incorrect prediction at a given position

of a given ancestor. The forward-backward is a standard HMM algorithm to

compute Pr(πi = s|A) (see (Durbin et al., 1998) for more details). The opti-

mizations developed for the Viterbi algorithm can be trivially adapted to the

Forward-Backward algorithm.



16

Algorithm 2 mergeSubtrees(StateList leftList, StateList rightList, node root)
Require: leftList and rightList: the lists of partial states, root: a tree node.

Ensure: Set of valid, non-zero probability states combining elements in leftList and

rightList.

1: mergedList ← emptyList

2: for all partial states l in leftList do

3: for all partial states r in rightList do

4: if compatible(l, r) == true then

5: m = merge(l, r)

6: if root == initialroot then

7: mergedList.add(m)

8: else

9: for op ∈ {C, D, I, C∗, D∗, I∗} do

10: if isPossibleUpstream(m,op) then

11: mergedList.add(addAncestorBranch(m,op))

12: end if

13: end for

14: end if

15: end if

16: end for

17: end for

18: return mergedList

5 Results of the exact method

Our tree-HMM algorithm was implemented as a C program that is available

upon request. The program was applied to a ∼700kb region of the CFTR lo-

cus on chromosome 7 of human, together with orthologous regions in 11 other

species of mammals: chimp, macaque, baboon, mouse, rat, rabbit, cow, dog,
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Rodrigues fruit bat (rfbat), armadillo, and elephant3 (ENCODE Project Con-

sortium, 2004). This locus is representative of the whole genome, and contains

coding, intergenic regions, and intronic regions. The multiple alignment of these

regions, computed using TBA (Blanchette et al., 2004b; Miller, 2006), contains

1,000,000 columns. To simplify the calculations, consecutive alignment columns

with the same gap structure were assumed to have undergone the same evolu-

tionary scenario and were thus merged into a single ”meta-column” we called an

alignment region. Our alignment consisted of 123,917 such regions. Thus, dur-

ing the execution of the Viterbi or Forward-Backward algorithm, the states are

computed for each region instead of for each individual column, adapting the

transition probabilities as a function of the width of each region. The phyloge-

netic tree used for the alignment and for the reconstruction is shown in Figure 4.

The branch lengths are based on substitution rates estimated on a genome-wide

basis (Miller, 2006). For illustrative purposes, and similarly to the empirical val-

ues obtained by (Kent et al., 2003), the parameters of the indel model were set

as follows: ψD = 0.05, ψI = 0.05, αD = 0.9, and αI = 0.9. However, we find that

the ancestral reconstructions and confidence levels are quite robust with respect

to these parameters (data not shown).

FIGURE 4 HERE

We first compared the maximum likelihood ancestral reconstruction found

using our Viterbi algorithm to the ancestors inferred using the greedy algorithm

of Blanchette et al. (2004a). Table 2 shows the degree of agreement between

the two reconstructed ancestors, for each ancestral node. We observe that both

methods agree to a very large degree, with most ancestors yielding more than

99% agreement. The most disagreement concerns the ancestor at the root of

3 In the case of cow, armadillo, and elephant, the sequence is incomplete and a small

fraction of the bases are missing.
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the eutherian tree, which, in the absence of an outgroup, cannot be reliably

predicted by any method. We expect that in most other cases of disagreement,

the maximum likelihood reconstruction is the most likely to be correct, although

the opposite may be true in case of gross model violations (Hudek and Brown,

2005).

[ TABLE 2 HERE ]

The main strength of the likelihood-based method is its ability to measure

uncertainty, using the forward-backward algorithm, something that no previous

method allowed. Assuming a phylogenetically correct alignment and a correct

indel model, the probability that the maximum posterior probability reconstruc-

tion is correct is simply given by max{Pr(A∗
u[i] = 1|A), 1 − Pr(A∗

u[i] = 1|A)}.

For example, if Pr(A∗
u[i] = 1|A) = 0.3, then the maximum posterior proba-

bility reconstruction would predict A∗
u[i] = 0, and would be right with prob-

ability 0.7. Figure 5 shows the distribution of this probability of correctness,

for each ancestral node in the tree, over all regions of the alignment. We ob-

serve, for example, that 98% of the positions in the Boreoeutherian ancestor

(the human+chimp+baboon+macaque+mouse+rat, cow+dog+rfbat ancestor,

living approximately 75 million years ago), are reconstructed with a confidence

level above 99% 4. The ancestor that is the easiest to reconstruct confidently is

obviously the human-chimp ancestor, where less than 0.14% of the regions have

a confidence level below 99%. Again, the root of the tree is the node that is the

most difficult to reconstruct confidently. Overall, this shows that most positions

of most ancestral nodes can be reconstructed very accurately, and that we can

identify the few positions where the reconstruction is uncertain.

4 We need to keep in mind, though, that these numbers assume the correctness of

the multiple alignment, as well as that of the branch lengths and indel probability

model, so that they do not reflect the true correctness of the reconstructed ancestor.
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FIGURE 5 HERE

A potential drawback of the tree-HMM method is that its running time

is, in the worst case, exponential in the number of sequences being compared.

However, the optimizations described in this paper greatly reduce the number

of states that need to be considered at each position, so the algorithm remains

quite fast. Our optimized Viterbi algorithm produced its maximum likelihood

ancestral predictions on the 12-species, 1,000,000 column alignment in 7 hours on

a Powerbook G5 machine, while the forward-backward algorithm produced an

output after approximately double of that time. Figure 6 shows the distribution

of the number of states that were actually considered, per alignment column.

Most alignment columns are actually associated to less than 100 states. However,

a small number of columns are associated to a very large number of states (15

regions have more than 100,000 states). Fortunately, these columns are rarely

consecutive, so the incurred running time is not catastrophic for small number

of species. However, to be applicable to complete genomes and to scale up to the

more than 20 mammalian genomes that will soon be available, our algorithm

requires further optimizations. These optimizations move away from an exact

algorithm, toward approximation algorithms.

FIGURE 6 HERE

6 Heuristic algorithm for the IMLP

For each region i of the alignment and each possible state s ∈ S′i, the exhaustive

method considers all possible states for the next column, even though the Viterbi

value X(i, s) of some current state s may be far away from the maximal Viterbi
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value at that position, maxs′∈S′
i
X(i, s′) . These states are less likely to be even-

tually chosen in the best path of the tree-HMM. Hence, to reduce the number

of states created and reduce computation time, only states near the maximum

Viterbi value are used to compute states for the next column. Thus, for region

i, we distinguish between created states S′i and used states Ri ⊆ S′i, where only

the second set will be involved in the creation of the states of the next column

and in their Viterbi calculation. For position i, state s ∈ S′i is retained in Ri if

and only if log2(
maxs′ X(i,s′)

X(i,s) ) < t, for some fixed threshold t. We note that this

is equivalent to setting X(i, s) to zero for each s ∈ S−R. A similar heuristic can

easily be applied to the Forward-Backward algorithm. If t is sufficiently large,

the loss in accuracy should be minimal for both algorithms, as will be shown

next.

We computed the indels scenarios of the data sets presented in Section 5 by

using different values for the threshold t. The approximate Viterbi algorithm was

run using t = 0, 1, 3, 5, 7, 9, 10, 20, 100, and +∞. Note that setting t = 0 results

in a ”greedy” algorithm that only considers the maximum Viterbi value at each

position, while t = +∞ give the original, optimal Viterbi algorithm. Figure 7

shows the number of states created (average of |S′i|) and used (average of |Ri|)

for all values of t, as well as the resulting running time. For small values of t, e.g.

t ≤ 3, only a handful of states are used, resulting in a very fast execution (less

than 3 minutes). The average of number of states created increases relatively

quickly with t, while the number of states used remains quite low (44.34 for

t = 100). The average number of states created for t = 20 is about the same as

the average number of states of the exact algorithm (see Figure 7), which shows

that the used states are sufficient to give the necessary information to generate

most valid states for next columns.

FIGURE 7 HERE
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Even though the average number of states created and used for 0 ≤ t ≤ 5

is very low, the indels scenarios produced are very similar to the best scenario

obtained by the exact method (see Table 3). We note that, for t = 5, the agree-

ment with the exact algorithm is more than 99.99% for all the ancestors, while

the running time is reduced by a factor of ten, and by a factor of one hundred

for t = 3. For t ≥ 9, the heuristic gives the optimal scenario, while still yield-

ing a 5-fold speed-up. All values of t tested gave solutions that agreed with the

optimal solution better than the solution produced by the greedy algorithm of

(Blanchette et al., 2004a). Finally, we note that, while our optimal Viterbi and

Forward-Backward algorithms are limited to 12 to 15 species, our heuristic al-

lows the inference of near-optimal solutions for much larger alignments. When

run on a 1,000,000 column alignment of 28 species of vertebrates, our heuristic

with t = 3 produced a solution in less than two hours. Since the exact algorithm

cannot be run on such a large data set, it is difficult to estimate the quality

of the solution obtained but, based on our experience on the smaller data set

(Table 3), we expect a very high accuracy even at such a stringent cutoff.

TABLE 3 HERE

7 Discussion and Future Work

The method developed here allows predicting maximum likelihood indel scenar-

ios and their resulting ancestral sequences for large alignments. Furthermore, it

allows the estimation of the probability of error in any part of the prediction,

using the forward-backward algorithm. Integrated into the pipeline for whole-

genome ancestral reconstruction, it will improve the quality of the predictions

and allow richer analyses. The main weakness of our approach is that it assumes

that a phylogenetically correct alignment and an accurate phylogenetic tree are
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given as input. While many existing multiple alignment programs have been

shown to be quite accurate on mammalian genomic sequences (including non-

functional or repetitive regions) (Blanchette et al., 2004b), it has also been shown

that a sizeable fraction of reconstruction errors is due to incorrect alignments

(Blanchette et al., 2004a). Ideally, one would include the optimization of the

alignment directly in the indel reconstruction problem, as originally suggested

by Hein (1989). However, with the exception of statistical alignment approaches

(Lunter et al., 2003), which remain too slow to be applicable on a genome-wide

scale, genomic multiple alignment methods do not treat indels in a probabilistic

framework. We are thus investigating the possibility of using the method pro-

posed here to detect certain types of small-scale alignment errors, and to suggest

corrections.

When predicting ancestral genomic sequences, it is very important to be able

to quantify the uncertainty with respect to certain aspects of the reconstruction.

Our forward-backward algorithm calculates this probability of error for each

position of each ancestral species. However, errors in adjacent columns are not

independent: if position i is incorrectly reconstructed, it is very likely that po-

sition i+ 1 will be wrong too. We are currently working on models to represent

this type of correlated uncertainties. This new type of representation will play

an important role in the analysis and visualization of ancestral reconstructions.

Finally, it will be important to assess the results given by the heuristic so that

the cutoff value t is chosen appropriately for the data at hand. For example, the

heuristic could be applied iteratively by increasing the cutoff until a stationary

likelihood score is reached. This heuristic will be useful to reconstruct the indel

scenarios for data sets containing more than 20 taxa and could be easily applied

to the large number of mammalian genomes that are about to be completely

sequenced.
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Tree-HMM edge-transition probabilities

s(e) \ s′(e) C D I C∗ D∗ I∗

C PCons(λ(b)) PDelStart(λ(b)) PInsStart(λ(b)) 1 0 0

D (1− αD)PCons(λ(b)) αD (1− αD)PInsStart(λ(b)) 0 1 0

I (1− αI)PCons(λ(b)) (1− αI)PDelStart(λ(b)) αI 0 0 1

C∗ PCons(λ(b)) PDelStart(λ(b)) PInsStart(λ(b)) 1 0 0

D∗ (1− αD)PCons(λ(b)) αD (1− αD)PInsStart(λ(b)) 0 1 0

I∗ (1− αI)PCons(λ(b)) (1− αI)PDelStart(λ(b)) αI 0 0 1

Table 1. Edge transition table ρ(s′(e)|s(e), b). Notice that ρ is not a transition prob-

ability matrix, since its rows sum to more than one.
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Agreement between maximum likelihood and greedy solutions

Ancestor % of agreement

Mou+Rat 99.8181

Hum+Chi 99.9467

Bab+Mac 99.7275

Mou+Rat+Rab 99.8181

Hum+Chi+ Bab+Mac 99.7157

Hum+Chi+Bab+Mac+Mou+Rat+Rab 99.3901

Cow+Dog 99.917

Cow+Dog+Bat 99.8218

Hum+Chi+Bab+Mac+Mou+Rat+Rab+Cow+Dog+Bat 99.0511

Hum+Chi+Bab+Mac+Mou+Rat+Rab+Cow+Dog+Bat+Arm 93.6531

Hum+Chi+Bab+Mac+Mou+Rat+Rab+Cow+Dog+Bat+Arm+Ele 84.9413

Table 2. Percentage of alignment columns where there is agreement between the an-

cestor reconstructed by the greedy algorithm of Blanchette et al. (2004a) and that

predicted by our maximum-likelihood algorithm.
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Accuracy of the heuristic Viterbi algorithm

Ancestor t = 0 t = 1 t = 3 t = 5 t = 7 t > 9

Mou+Rat 0.030 0.012 0.003 0.002 0.001 0

Hum+Chi 0.020 0.004 0.001 0.001 0.001 0

Bab+Mac 0.003 0.003 0.002 0.002 0.002 0

Mou+Rat+Rab 0.160 0.073 0.008 0.003 0.002 0

Hum+Chi+ Bab+Mac 0.060 0.041 0.011 0.002 0.002 0

Hum+Chi+Bab+Mac+Mou+Rat+Rab 0.160 0.070 0.018 0.006 0.004 0

Cow+Dog 0.070 0.032 0.006 0.002 0.001 0

Cow+Dog+Bat 0.080 0.049 0.013 0.002 0.001 0

Hum+Chi+Bab+Mac+Mou+Rat+

Rab+Cow+Dog+Bat

0.170 0.095 0.017 0.005 0.004 0

Hum+Chi+Bab+Mac+Mou+Rat+

Rab+Cow+Dog+Bat+Arm

0.100 0.048 0.010 0.003 0.002 0

Hum+Chi+Bab+Mac+Mou+Rat+

Rab+Cow+Dog+Bat+Arm+Ele

0.010 0.004 0 0 0 0

Table 3. Percentage of alignment columns where there is disagreement between the

ancestor reconstructed by the exact maximum-likelihood algorithm and the heuristic

with different values for the cutoff t. We emphasize that the numbers quoted are per-

centages, so, for example, with t = 0, the Mouse+Rat ancestor agrees with the optimal

solution at 99.97% of the alignment columns.
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The indel maximum likelihood problem - Example

1 2 3 4 5 6 7
0 0 0 0 1 1 1
0 1 0 0 1 0 1 
0 1 1 1 0 0 0
1 0 0 0 0 0 0
1 1 1 1 0 0 0

Ancestral reconstructionMultiple alignment Indel Scenario
del (2,2), ins (6,6)

del (3,4), ins (5,7)

ins (1,1)

del (2,4)

0 1 0 0 1 0 1
0 1 1 1 0 0 0
0 1 1 1 0 0 0
1 1 1 1 0 0 0 

Fig. 1. Example of an input and output to the Indel Maximum Likelihood Problem.

The input (in black) consists of the multiple alignment (shown on the left in binary

format) and the topology and branch lengths of the phylogenetic tree. The output (in

gray and italics) consists of a set of insertions and deletions, placed along the edges of

the tree, explaining the gaps (zeros) in the alignment. The dashed (resp. shaded) boxes

in the alignment indicate the deletions (resp. insertions) of the scenario shown on the

right. This set of operations yields the ancestral reconstruction shown on the right.
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Insertions, deletions, and conservations

Ax: 1  1101  00  1010  1  001

Ay: 1  0000  11  1010  0  001

              C
1

       D
1

          I
1

          C
2

        D
2

      C
3

      l(C1)=1 l(D1)=3  l(I1)=2  l(C2)=2 l(D2)=1 l(C3)=1

*

*

Fig. 2. Example of the partition of a paiwise alignment of A∗
x and A∗

y (where x is the

parent of y) into deletions, insertions, and conservations. The length of each operation

is given below it.
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Tree-HMM - Example
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Fig. 3. The set of valid, non-zero probability states associated to the multiple alignment

given at the top of the figure. When edges are labeled with more than one character

(e.g. C∗, D∗), the tree represents several possible states. For the third column, not

all possible states are shown. Arrows indicate one possible path through the tree-

HMM. This path corresponds to two interleaved insertions, shown by two boxes in the

alignment, illustrating the need for the I∗ character.
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Phylogenetic tree of mammals

Human

Chimp

Mouse

Rat

Dog

Cow

Armadillo

Elephant
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Rfbat
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0.00

0.23
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Macaque

Baboon
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Fig. 4. Phylogenetic tree for the twelve species studied in this paper.
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Ancestral reconstruction confidence levels
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Fig. 5. Distribution of the confidence levels, over all 123,917 alignment regions, for

each ancestor. The vast majority of the ancestral positions are reconstructed with a

probability of correctness above 99% (assuming the correctness of the alignment).
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Number of states considered by the Viterbi algorithm
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Performance of heuristic algorithms
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Fig. 7. Average, over all alignment regions, of the number of states created (S′
i) and

used (Ri), for the different values of the cutoff t. Running times (in seconds) are plotted

with the log-scale shown on the right.


