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Abstract. In this article, we investigate the existence of joins in the weak

order of an infinite Coxeter group W . We give a geometric characterization

of the existence of a join for a subset X in W in terms of the inversion sets
of its elements and their position relative to the imaginary cone. Finally, we

discuss inversion sets of infinite reduced words and the notions of biconvex and

biclosed sets of positive roots.

1. Introduction

The Cayley graph of a Coxeter system (W,S) is naturally oriented: we orient
an edge w → ws if w ∈ W and s ∈ S such that `(ws) > `(w). Here `(u) denotes
the length of a reduced word for u ∈ W over the alphabet S. The Cayley graph
of (W,S) with this orientation is the Hasse diagram of the (right) weak order ≤,
see [4, Chapter 3] for definitions and background.

The weak order encodes a good deal of the combinatorics of reduced words
associated to W . For instance for u, v ∈ W , u ≤ v if and only if a reduced word
for u is a prefix for a reduced word for v. Moreover, Björner [3, Theorem 8] shows
that the poset (W,≤) is a complete meet semilattice: for any A ⊆ W , there exists
an infimum

∧
A ∈ W , also called the meet of A, see also [4, Theorem 3.2.1]. This

means, in particular, that any u, v ∈W have a common greatest prefix, that is, the
unique longest g = u ∧ v ∈ W for which a reduced word is the prefix of a reduced
word for u and of a reduced word for v.

In the case of finite Coxeter systems, the weak order turns out to be a complete
ortholattice [3, Theorem 8], thanks to the existence of the unique longest element
w◦ in W : u ≤ v if and only if uw◦ ≥ vw◦ and the supremum of A ⊆ W exists and
is
∨
A = (

∧
(Aw◦))w◦, also called the join of A. In particular, for any u, v ∈ W ,

there exists a unique smallest g = u ∨ v ∈ W with two reduced words, one with
prefix a reduced word for u and the other with prefix a reduced word for v. The
existence of w◦ and the fact that the weak order is a lattice play important roles
in the study of structures related to (W,S) such as Cambrian lattices and cluster
combinatorics [31, 32, 33], Garside elements in spherical Artin-braid groups, see
for instance [11], or reflection orders, their initial sections and Kazhdan-Lusztig
polynomials, see the discussion in [17, §2].
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2 C. HOHLWEG AND J.-P. LABBÉ

When trying to generalize this technology to infinite Coxeter systems, the ab-
sence of w◦ and of a join in general is crucially missed. For instance the Coxeter
sortable elements and Cambrian fans fail to recover the whole cluster combina-
torics [34, §1.2]. Examples suggest that we need to adjoin new elements to the
weak order of (W,S) in order to generalize properly its combinatorial usage to in-
finite Coxeter groups. In other words, we need to define a larger family of objects,
containing the elements of the infinite Coxeter groups, that would further have
greatest common prefixes (meet) and least common multiples (join). This brings
us to the following question: is there, for each infinite Coxeter system, a suitable
complete ortholattice with the usual weak order as a subposet?

As a first natural candidate to consider, one could think of the set of finite and
infinite reduced words over S, modulo finite and infinite sequences of relations,
but this fails already in the case of infinite dihedral groups since the two infinite
words do not have a join in that case. Further, a completion was obtained by
Dyer [18, Corollary 10.8] using the theory of rootoids, but it is not suitable to
our combinatorial need. Hereafter, we investigate an extension of the weak order,
containing the set of infinite reduced words, proposed by M. Dyer and conjectured
to be a complete ortholattice [17, Conjecture 2.5].

This extension uses the notion of biclosed subsets of positive roots, a suitable
generalizations of inversion sets of words, which we recall in §2. This conjecture is
still open. The main difficulties are the following:

(1) understand biclosed sets in general. Finite biclosed sets are the inversion
sets of the elements of W , see §2, but what about the other biclosed sets?

(2) understand the possible candidates for a join.

In this article we investigate these two points. After surveying what is known
about the notions of biclosed sets and inversion sets in §2, we give in §3 a geometric
criterion for the existence of a join in (W,≤): the join of a subset X ⊆W exists if
and only if X is finite and the cone spanned by the inversion sets of the elements in
X is strictly separated from the imaginary cone – the conic hull of the limit roots –,
see Theorem 3.2. As a corollary, we obtain that a subset A of positive roots is a
finite biclosed set if and only if A is the set of roots contained in a closed halfspace
that does not intersect the imaginary cone (Corollary 3.4). The proof is based on a
characterization of the existence of the join obtained by Dyer [17] and on the study
of limit roots and imaginary cones started in [21, 16, 19]. In §4, we use our geometric
criterion on finite biclosed sets to give a (partially conjectural) characterization of
biclosed sets corresponding to the inversion sets of infinite words, see Corollary 4.4
and Conjecture 2. This characterization extends to arbitrary Coxeter systems a
result of P. Cellini and P. Papi [8] valid for affine Coxeter systems (see Remark 4.6).
Finally, in §5 we discuss the similarities and especially the differences between the
notions of biclosed, biconvex and separable subsets of positive roots. The notion
of biconvex sets in particular was used in recent works [2, 28] related to the affine
cases in which the authors also conjectured an extension of the weak order similar
to Dyer’s conjecture.

2. Biclosed sets, inversion sets and join in the weak order

2.1. Geometric representation of a Coxeter system. Let (V,B) be a qua-
dratic space: V is a finite-dimensional real vector space endowed with a symmet-
ric bilinear form B. The group of linear maps that preserves B is denoted by
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OB(V ). The isotropic cone of (V,B) is Q = {v ∈ V |B(v, v) = 0}. To any non-
isotropic vector α ∈ V \ Q, we associate the B-reflection sα ∈ OB(V ) defined by

sα(v) = v − 2B(α,v)
B(α,α)α.

A geometric representation of (W,S) is a representation of W as a subgroup of
OB(V ) such that S is mapped into a set of B-reflections associated to a simple
system ∆ = {αs | s ∈ S} (s = sαs). In this article, we always assume that S is a
finite set. Recall that a simple system in (V,B) is a finite subset ∆ in V such that:

(i) ∆ is positively linearly independent: if
∑
α∈∆ aαα with aα ≥ 0, then all

aα = 0;

(ii) for all α, β ∈ ∆ distinct, B(α, β) ∈ ]−∞,−1] ∪ {− cos
(π
k

)
, k ∈ Z≥2};

(iii) for all α ∈ ∆, B(α, α) = 1.

Note that, since ∆ is positively linearly independant, the cone cone(∆) is pointed:
cone(∆) ∩ cone(−∆) = {0} (here cone(A) is the set of non-negative linear com-
binations of vectors in A). Note also that if the order mst of st is finite, then

B(αs, αt) = − cos
(

π
mst

)
and that B(αs, αt) ≤ −1 if and only if the order of st is

infinite. In the case where ast = B(αs, αt) < −1, we label the corresponding edge
in the Coxeter graph by ast instead of ∞.

A geometric representation of a Coxeter system is always faithful and gives rise
to a root system Φ = W (∆) (Φ is the orbit of ∆ under the action of W ), which is
partitioned into positive roots Φ+ = cone(∆) ∩ Φ and negative roots Φ− = −Φ+.

The rank of the root system is the cardinality |∆| = |S| of ∆. The dimension of
the geometric representation is the dimension of the linear span of Φ. The classical
geometric representation is obtained by assuming that ∆ is a basis of V and that
B(αs, αt) = −1 if the order of st in W is infinite. Moreover, the combinatorial
features of the root system, such as the inversion sets defined in §2.2 below, do not
depend on the choice of the geometric representation. For more details on geometric
representations, we refer the reader to [6, §3] or [21, §1 and §5.3].

2.2. Inversion sets and the weak order. We recall here a useful geometric
interpretation of the weak order. First, we review the vocabulary concerning the
combinatorics of reduced words. Recall that, for a word w on an alphabet S, a
prefix (resp. suffix) of w is a word u (resp. v) on S such that there is a word v
(resp. u) on S with w = uv (for the concatenation of words). For u, v, w ∈ W , we
say that

• w = uv is reduced if `(w) = `(u) + `(v);
• u is a prefix of w if a reduced word for u is a prefix of a reduced word for w;
• v is a suffix of w if a reduced word for v is a suffix of a reduced word for w.

Observe that if w = uv is reduced then the concatenation of any reduced word for u
with any reduced word for v is a reduced word for w. Also u ≤ w in the right weak
order if and only if u is a prefix of w. Similarly, v ≤L w in the left weak order if
and only if v is a suffix of w. In this article, we consider only the right weak order
and so any mention of the weak order denotes the right weak order.

The (left) inversion set of w ∈W is N(w) := Φ+ ∩w(Φ−), and its cardinality is
`(w) = |N(w)|. Left inversion sets have a strong connection to the weak order as
stated in the following well-known proposition.

Proposition 2.1. Let u, v, w ∈W .



4 C. HOHLWEG AND J.-P. LABBÉ

(i) If w = s1 · · · sk is a reduced word for w, then

N(w) = {αs1 , s1(αs2), · · · , s1 . . . sk−1(αsk)}.
(ii) If w = uv is reduced then N(w) = N(u) t u(N(v)).

(iii) The map N is a poset monomorphism from (W,≤) to (P(Φ+),⊆).

Proof. The first item follows easily from the geometric interpretation of the length
function, see for instance [22, §5.6] for the classical geometric representation and [6,
Lemma 3.1] in general. The second item is a direct consequence of the first one by
considering a reduced word of w obtained by the concatenation of a reduced word
for u and a reduced word for h. The fact that N is a poset morphism follows from
(ii) and the definitions above. Finally, to show1 that N is injective, consider u, v
such that N(u) = N(v). By definition of N we have Φ+ ∩ u(Φ−) = Φ+ ∩ v(Φ−).
Then Φ−∩u(Φ+) = Φ−∩v(Φ+). By taking complements of N(u) = N(v) in Φ+, we
obtain Φ+ ∩ u(Φ+) = Φ+ ∩ v(Φ+). It follows that u(Φ+) = v(Φ+). In other words,
N(v−1u) = ∅ and therefore v−1u = e, which concludes the proof. �

2.3. Biclosed sets and the weak order. We shall now describe the image of the
map N . A subset A ⊆ Φ+ is closed if cone(α, β) ∩ Φ ⊆ A, for all α, β ∈ A, and A
is coclosed if Ac = Φ+ \ A is closed. A subset of Φ+ is biclosed if it is both closed
and coclosed. Observe that the intersection of closed sets is closed and that the
union of coclosed sets is coclosed. Let B(Φ+) = B denote the set of biclosed sets
and B◦(Φ+) = B◦ the set of finite biclosed sets. The following proposition can be
found in [17, Lemma 4.1 (d) and (f)] for instance.

Proposition 2.2. The map N : (W,≤)→ (B◦,⊆) is a poset isomorphism.

Examples are given in Figure 1 and Figure 2

N(e) = ∅

N(s1) = {αs1} {αs2} = N(s2)

N(s1s2) = {αs1 , αs1 + αs2} {αs2 , αs1 + αs2} = N(s2s1)

N(s1s2s1) = Φ+

Figure 1. The weak order on the Coxeter group of type A2.

Remark 2.3. As far as we know, this proposition was stated first in an article by
Kostant [25, Proposition 5.10], then as an exercise in Bourbaki [7, p.225, Exercice
16], in the case of finite crystallographic root system. An extended version for a
possible infinite non crystallographic root system in the classical geometric repre-
sentation was stated in [3, Proposition 2 and Proposition 3] for biconvexity instead

1The fact that N is injective is classical, see for instance [7, Exercise 16, p.225] in the case of
Weyl groups or [20, Proposition 3.2] in general, we give a proof here for completeness.
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of bicloseness. A version involving initial section can be found in [13, §2.11]. Then
the first complete proof stated for finite biclosed sets in a infinite Coxeter group
can be found in [30, §8]. The proof for an arbitrary root system in an arbitrary
geometric representation is precisely the same as the ones given before and can be
found in [17, Lemma 4.1].

2.4. Join in the weak order. The weak order is a complete meet semi-lattice [4,
Theorem 3.2.1]: any non-empty subset X ⊆ W admits a greatest lower bound
called the meet of X and denoted by

∧
X. As explained in the introduction, the

weak order turns out to be a complete ortholattice whenever W is finite. So in this
case X always admits a least upper bound called the join of X, denoted by

∨
X.

When W is infinite, however, it is not immediately clear if and when the join of X
exists and how to compute it. From the point of view of combinatorics of reduced
words, the join of X, if it exists, should be the smallest length element in W that
has any element in X as a prefix.

Remark 2.4. In general, N(
∧
X) 6=

⋂
x∈X N(x). For instance, let (W,S) be of

type A2 and with S = {s1, s2} as in Figure 1. The inversion set

N(s1s2 ∧ s2s1) = N(e) = ∅

is not equal to N(s1s2) ∩N(s2s1) = {αs1 + αs2}, which is not even biclosed.

In [17], Dyer studied the problem of the existence of join in the weak order. We
explain now the characterization he obtains.

Definition 2.5.

(1) We say that X is bounded in W if there is g ∈ W such that x ≤ g for all
x ∈ X. Observe that X is necessarily finite since there are only a finite
number of prefixes of g.

(2) Similarly, we say that A ⊆ Φ+ is bounded in Φ+ if there is a finite biclosed
set B ∈ B◦ containing A. Hence A is therefore finite.

(3) The 2-closure A of A ⊆ Φ+ is the intersection of all closed subsets of Φ+

containing A. Since the intersection of closed sets is closed, A is the smallest
closed subset of Φ+ containing A.

The 2-closure terminology was introduced by Dyer [17]; see also [30] for a dis-
cussion on different types of closure operators.

Example 2.6. Assume that W is the infinite dihedral group generated with Cox-
eter graph:

s t∞

Then X is bounded if and only if X is finite and all x ∈ X start with the same
letter (either s or t), see Figure 2.

By abuse of notation, we write N(X) :=
⋃
x∈X N(x).

Theorem 2.7 (Dyer [17, Theorem 1.5]). Let X ⊆ W . Then the following state-
ments are equivalent:

(i)
∨
X exists;

(ii) X is bounded in W ;
(iii) N(X) is bounded in Φ+.
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Moreover, in this case, N(
∨
X) = N(X).

We discuss briefly some consequences and questions raised by this theorem.

(a) Theorem 2.7 gives necessary and sufficient conditions for the join to exist and

a way to compute it: if X is bounded then N(X) is finite and is the inversion
set of the join

∨
X. Unfortunately, the computation of the 2-closure of a set of

positive roots is not necessarily easy and we do not know of any combinatorial
rule to produce

∨
X, not even if X = {u, v}. However, we explain in the next

part of this section how to compute the join geometrically, if it exists.
(b) The theorem states also that if

∨
X exists, then N(X) is a finite biclosed set

since it is the inversion set of an element, by Proposition 2.2. Dyer [17, Remarks
1.5] asks if the converse of this last statement is true if we drop the biclosed
condition. This is discussed in §3.

(c) If W is finite, then B = B◦ and the poset (B,⊆) is a complete ortholattice
isomorphic to the weak order with maximal element N(w◦) = Φ+; the join

is given by the formula given in Theorem 2.7 and the meet is
∧
A = Ac

c
for

A ∈ B. Dyer conjectures that this is true even if W is infinite.

Conjecture 1 (Dyer [17, Conjecture 2.5]). The poset (B,⊆) of biclosed sets
ordered by inclusion is a complete ortholattice. The join of a family A ⊆ B, is∨
A =

⋃
A, and the ortholattice complement is the set complement in Φ+.

In other words, for this conjecture to be true, we have to show that the
closed set

⋃
A is also coclosed; this is the case for infinite dihedral groups as

readily seen in Figure 2. The present work was motivated by this conjecture.
We believe that our present investigation of biclosed sets and joins in the weak
order will lead to an understanding of the existence of

∨
A in the case where

the family A in Conjecture 1 is constituted of finite biclosed sets and biclosed
sets corresponding to infinite reduced words. This would be a first step toward
answering this conjecture.

Remark 2.8. Conjecture 1 is related to the theory of initial sections and reflec-
tion orders, developed by Dyer[13, 14] as a tool to study Kazhdan-Lusztig poly-
nomials, see [17, Introduction and §2]. Initial sections and reflection orders ap-
peared also in the works of Cellini-Papi [8] and Ito [23, 24]. Recently, questions
about initial sections and the weak order appeared in the work of Baumann,
Kamnitzer and Tingley [2, §2.5]. The same year, Lam and Pylyavskyy [28,
Theorem 4.10] showed that the set of biclosed sets corresponding to inversion
sets of finite and infinite reduced words in an affine Coxeter group is a meet
semi-lattice. We discuss this particular class of (possibly infinite) biclosed sets
in §4.

2.5. Geometric construction of the join in the weak order. Here we extract
from [17, §11 and Theorem 11.6] that if the join exists, then the 2-closure can be
replaced by the conic closure. For A ⊆ V , denote cone(A) the set of all non-negative
linear combinations of elements of A and coneΦ(A) = cone(A) ∩ Φ the (possibly
empty) set of roots contained in cone(A). Observe that coneΦ(∆) = Φ+. As an
immediate consequence, we have that if A ⊆ cone(∆) then coneΦ(A) ⊆ Φ+.

Definition 2.9. Let A ⊆ Φ+.

(1) The set A is convex if A = coneΦ(A) and coconvex if Ac = Φ+ \A is convex.
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N(e) = ∅

N(s) = {αs} N(t) = {αt}

N(st) = {αs, s(αt)} N(ts) = {αt, t(αs)}

N(sts) = {αs, s(αt), st(αs)} N(tst) = {αt, t(αs), ts(αt)}

N((st)∞) = {(n+ 1)αs + nαt |n ∈ N} N((ts)∞) = {nαs + (n+ 1)αt |n ∈ N}

Φ+ \N(ts) Φ+ \N(st)

Φ+ \N(t) Φ+ \N(s)

Φ+

Figure 2. The weak order on biclosed sets for the infinite dihedral group.

(2) The set A is biconvex if A is convex and coconvex.
(3) The set A is separable if cone(A) ∩ cone(Ac) = {0}.

Note that A is biconvex (resp. separable) if and only if Ac is. The next lemma
exhibits some relationship between these notions.

Lemma 2.10. Let A ⊆ Φ+.

(i) If A is convex, then A is closed.
(ii) A separable =⇒ A biconvex =⇒ A biclosed.

(iii) For any linear hyperplane H, the set of positive roots contained (strictly or
not) in one side of the halfspace bounded by H is separable (hence biclosed).

Proof. The first item follows easily from the definitions. The second implication
of (ii) follows from (i). Assume that A is separable. Suppose by contradiction that
coneΦ(A) 6= A. Note that A ⊆ coneΦ(A) ⊆ cone(A). So there is β ∈ AC∩coneΦ(A).
Hence β ∈ cone(A)∩ cone(Ac), contradicting the definition of separable. Thus A is
convex. The proof is similar to show that A is coconvex. Therefore A is biconvex.

Now let us prove (iii). Consider a hyperplane H = ker ρ (ρ is a linear form
on V ) and A := {β ∈ Φ+ | ρ(β) ≥ 0}. Write H≥0 = {v ∈ V | ρ(v) ≥ 0} and
H<0 = {v ∈ V | ρ(v) < 0}. Note that Ac ⊆ H<0. Therefore we have cone(A) ⊆ H≥0

and cone(Ac)\{0} ⊆ H<0. So those two cones can only intersect in 0, which implies
that A is separable. �

The converse of (i) is false, a counterexample lives in the finite Coxeter group of
type D4, see [30, p.3192]. If A is infinite, the converse of any of the implications
in (ii) is not true nor is the converse of (iii), as it is shown in §5. However, those
equivalences holds if A is finite as stated in the following proposition.
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Proposition 2.11. Let A ⊆ Φ+ be finite. Then the following assertions are equiv-
alent:

(i) A = N(w) for some w ∈W ;
(ii) A is biclosed;

(iii) A is biconvex;
(iv) A is separable;
(v) There exists a hyperplane H such that A is strictly on one side of H and Ac

is strictly on the other side of H.

This proposition is a reformulation of [17, Proposition 11.6] as well as the be-
ginning of its proof. We give here a proof for completeness. For further discussions
about closed and convex sets on different types of finite root systems, see [30].

Proof. By Proposition 2.2 and Lemma 2.10 we only have to show that (i) im-
plies (v). Take w ∈ W and write A = N(w). Note that ∆ is finite so cone(∆) is a
simplicial convex cone. Since ∆ is a simple system, we have cone(∆)∩− cone(∆) =
{0}. Observe that cone(∆) is pointed at 0, so a supporting hyperplane H0 of the
face 0 separates strictly cone(∆)\{0} and − cone(∆)\{0} (see for instance [35, 36]
for further information on cones and polytopes).

Therefore the sets Φ+ and Φ− are strictly separated byH0, since Φ± = ± coneΦ(∆).
Therefore the hyperplane H = w(H0) strictly separates A = N(w) and Ac since
N(w) ⊆ w(Φ−) and Φ+ \N(w) ⊆ w(Φ+). �

Example 2.12. Let (W,S) = (A2, {s1, s2}). Figure 3 shows the corresponding
root system from which the biclosed, biconvex and separable sets can be easily
obtained.

αs1

αs1 + αs2αs2

−αs1

−αs1 − αs2 −αs2
H

Figure 3. The root system of type A2. The inversion sets ∅, {αs1}, {αs2},
{αs1 , αs1 +αs2}, {αs2 , αs1 +αs2} and {αs1 , αs2 , αs1 +αs2} are the biclosed, biconvex
and separable sets of Φ+.

The following corollary is due to Dyer [17, Proposition 11.6].

Corollary 2.13. Let A ⊆ Φ+ such that A is a finite biclosed set. Then

A = coneΦ(A).

Proof. On one hand A′ := coneΦ(A) is convex by definition, hence closed by
Lemma 2.10. So by minimality A ⊆ A′. On the other hand, we have A ⊆ A. Thus
cone(A) ⊆ cone(A). Since A is finite biclosed, it is biconvex by Proposition 2.11.
So coneΦ(A) = A and A′ ⊆ A. �
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Proposition 2.14. Let X be a bounded subset of W . Then the join
∨
X exists

and

N(
∨
X) = N(X) = coneΦ(N(X)).

Proof. This is an immediate consequence of Theorem 2.7 and Corollary 2.13. �

Remark 2.15. (1) Such a formula to compute the join in finite Coxeter groups
was originally proven by Björner, Edelman and Ziegler in [5, Theorem 5.5],
as a special case of their study of ‘Hyperplane arrangements with a lattice
of regions’. It was then extended to infinite Coxeter groups by Dyer in [17,
Proposition 11.6].

(2) The second author (JPL) shows in his thesis [27, Corollary 2.36] that Con-
jecture 1 is true for rank 3 Coxeter system (i.e. |S| = 3) if we consider
biconvex sets instead of biclosed sets. In this case, the join of two biconvex
sets is given by the conic closure, as in Proposition 2.14. The authors tried
in vain to prove or disprove that, for Coxeter groups of rank 3 or affine Cox-
eter groups, biclosed sets are all biconvex sets and that the 2-closure can
be replaced by the conic closure in Conjecture 1. However, this is no longer
true if the Coxeter group is indefinite (not finite nor affine) of rank ≥ 4 as
shown in [27, Section 2.4.2].

3. Existence of the join and the imaginary cone

3.1. Projective representation and normalized roots. In this article we also
refer to the projective representation of W and to the associated normalized root

system Φ̂. Since the root system is encoded by the set of positive roots Φ+, we
represent the root system by an “affine cut” of Φ+. This projective representation
has nice consequences for the study of infinite Coxeter groups, as explained in
[21, 19]. It is especially useful for easily visualizing infinite root systems and to
work out examples of rank |S| = 2, 3, 4 easily. It works as follows: there is an affine
hyperplane V1 in V transverse to Φ+, i.e., for any β ∈ Φ+, the ray R+β intersects

V1 in a unique nonzero point β̂. So Rβ ∩ V1 = {β̂} for any β ∈ Φ. The set of
normalized roots, which is a projective view of Φ, is

Φ̂ = {β̂ |β ∈ Φ},

see for instance [21, Figures 2 and 3]. Observe that Φ̂ is contained in the polytope

conv(∆̂). If W is infinite, so is Φ̂, and thus Φ̂ admits a set E of accumulation points
that we call the set of limit roots, see [21, Figures 4–7][27, Appendix A][9].

Assuming (W,S) to be irreducible, we have E = ∅ if and only if W is finite; E
is a singleton if and only if (W,S) is affine and irreducible. Moreover, limit roots
are in the isotropic cone Q of B:

E ⊆ Q̂ = {x ∈ V1 |B(x, x) = 0}.

A nice observation is that for any roots α, β ∈ Φ+, the dihedral reflection subgroup

generated by sα, sβ is finite if and only if the line L(α̂, β̂) through α̂ and β̂ is such

that L(α̂, β̂) ∩ Q = ∅. Otherwise L(α̂, β̂) intersects Q in one or two points and
contains an infinite number of normalized roots.

In this framework, conic closure is replaced by convex hull and A ⊆ Φ+ is replaced

by Â ⊆ Φ̂. For instance, this gives for A ⊆ Φ+.
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• The set A is closed if for any α, β ∈ A, the normalized roots in the segment

[α̂, β̂] are all contained in Â.

• The set A is convex if Â = convΦ(Â) = conv(Â) ∩ Φ̂.

• The set A is separable if conv(Â) ∩ conv(Âc) = ∅.

We write N̂(w) instead of N̂(w) and we refer to the map N̂ : W → B̂, where B̂
is the set of normalized biclosed sets. We omit the notation ·̂ in figures. Within
this setting, Proposition 2.14 translates as follows (see Figure 4 for an illustration):

Proposition 3.1. Let X be a bounded subset of W . Then the join
∨
X exists and

N̂(
∨
X) = convΦ(N̂(X)).

3.2. A geometric criterion for the existence of the join in W . A very useful
feature studied in [16, 19] is the imaginary convex body conv(E) which is shown to
be a compact set [19, Theorem 2.2]. This lead us to the following result, which is
a geometric generalization of Theorem 2.7. Recall that, by abuse of notation, we
write N(X) :=

⋃
x∈X N(x).

Theorem 3.2. Let X ⊆W . Then the following statements are equivalent:

(i)
∨
X exists;

(ii) X is bounded;

(iii) X is finite and conv(N̂(X)) ∩ conv(E) = ∅.

(iv) X is finite and the convex set conv(N̂(X)) and the imaginary convex body
conv(E) are strictly separated by an hyperplane.

In this case: N(
∨
X) = coneΦ(N(X)).

Proof. The equivalence between (i) and (ii) is Dyer’s Theorem 2.7. The equivalence
between (iii) and (iv) is a consequence of the Hahn-Banach Separation Theorem.

Indeed, since X is finite, conv(N̂(X)) is a polytope, hence compact. Since both

convex sets conv(E) and conv(N̂(X)) are compact, then conv(N̂(X))∩conv(E) = ∅
if and only if there is an hyperplane H1 in V1 that separates strictly conv(E)

and conv(N̂(X)), by the Hahn-Banach Separation Theorem; See for instance [35,
Theorem 2.4.10].

Assume (i): write A = coneΦ(N(X)). Since
∨
X exists, the set X is finite

and N(
∨
X) = A by Proposition 2.14. By Proposition 2.11, there is a hyperplane

H separating strictly A = coneΦ(N(x)) and Ac. That means, if H+ (resp. H−)
denotes the open half-space with boundary H containing A (resp. Ac), then Φ+ ∩
H+ = A. We now show that E ∩ Ĥ+ = ∅. Indeed, otherwise there is x ∈ E ∩ Ĥ+.

Since Ĥ+ is open, there is a neighbourhood of x in Ĥ+, which contains an infinite
number of normalized roots. This means that there is an infinite number of roots
in H+ ∩Φ+ = A, contradicting the fact that A is finite. Thus E is contained in the

closed half-space Ĥ ∪ Ĥ−, so is conv(E). Since conv(Â) ⊆ Ĥ+, we conclude that

conv(N̂(X)) ∩ conv(E) = ∅. So this proves that both (iii) and (iv) are true.
Assume (iv) to be true. Let H1 be the affine hyperplane separating strictly

conv(E) and conv(N̂(X)). Let H be the linear extension of H1 in V . Set H+ to be
the open half space bounded by H and containing N(X). So H− = V \ (H ∪H+)
is the open half space bounded by H and containing conv(E), hence E. The set
A := H+∩Φ+ is therefore biclosed by Lemma 2.10(iii). Assume A is infinite: since

Â ⊆ Φ̂ is discrete, its accumulation points lie in (H+∪H)∩E = ∅ a contradiction.
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So A is a finite biclosed set containing N(X) by definition. So N(X) is bounded in
Φ+ and therefore

∨
X exists by Theorem 2.7.

�

We now give an example of application of Theorem 3.2.

Example 3.3. Consider the affine Coxeter group of type C̃2 given by the following
Coxeter graph:

sα sβ

4

sγ

4

We illustrate the normalized root system (with finitely many roots drawn) in Fig-

ure 4. Here E = Q̂ = {δ} is a singleton represented by a red dot in the center of
Figure 4. Consider X = {sα, sγsβ}. Then

N(X) = N(sα) ∪N(sγsβ) = {α, γ, sγ(β)}.

We see that δ /∈ convΦ(N̂(X)), so by Theorem 3.2 the join g = sα ∨ sβsγ exists
and its inversion set is equal to N(g) = coneΦ(α, γ, sγ(β)) (the blue triangle at
the bottom of Figure 4 that contains exactly 5 roots). Since γ ∈ N(g), we know
that there is g′ ∈ W such that g = sγg

′ is reduced. By Proposition 2.1(ii), we
have therefore N(g) = {γ} t sγ(N(g′)); in Figure 4, the normalized version of the
set sγ(N(g′)) is constituted of the roots in the blue triangle but excluding γ. We
represented all roots in this triangle and we see that the remaining normalized

roots are on the segment between α̂ and ŝγ(β). Now, we see that α is in N(g′), by
proceeding with g′ and α ∈ N(g′) the same way as we did above with γ and g, we
obtain recursively that g = sγ(sαsβ)2.

However, δ ∈ conv(β̂, α̂, ŝβ(γ)) (the orange triangle at the top of Figure 4) so
the join of sα and sβsγ does not exist.

The end of the proof of Theorem 3.2 gives the following useful characterization
of inversion sets, see Figure 5 for an illustration.

Corollary 3.4. Let H be a hyperplane that does not intersect the imaginary convex
body conv(E). Then then the positive roots on the other side of conv(E) relatively
to H form an inversion set N(w) for a w ∈ W . Moreover, any finite biclosed set
is obtained in this way.

3.3. Toward an even simpler criterion for the existence of a join. As we
stated after Theorem 2.7, Dyer asks the question if we could replace the bounded
hypothesis in Theorem 2.7 by “N(X) is finite”. We believe it to be true and state
it as a conjecture:

Question 1 (Dyer [17, Remarks 1.5]). Does
∨
X exists if N(X) is finite?

In regard of Theorem 3.2, a strategy for answering Question 1 would be to

study conv(N̂(X)) ∩ conv(E) whenever N(X) is finite. Indeed, since conical clo-

sure implies 2-closure, we have N(X) ⊆ coneΦ(N(X)); therefore cone(N(X)) ⊆
cone(N(X)) and by minimality of the conic closure we have cone(N(X)) = cone(N(X)).

So if conv(N̂(X))∩conv(E) = ∅, this would imply that N(X) is bounded and so the
join would exist. This discussion leads us naturally to state the following question.
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α γ

β

sβ(γ)

sγ(β)

Figure 4. The join of sα and sγsβ exists and is the element g = sγ(sαsβ)2

whose inversion set is constituted of the roots in the blue triangle that represents
cone(γ, sγ(β), α). However the join of sα and sβsγ does not exist since the red dot
is contained in the red triangle that represents cone(β, sβ(γ), α).

Question 2. Does the join
∨
X exists if coneΦ(N(X)) is finite?

Note that if
∨
X exists then coneΦ(N(X)) is finite by Proposition 2.14. Note also

that if coneΦ(N(X)) is finite, so is N(X). Therefore P = conv(N̂(X)) is a polytope
(and so is compact). One strategy to answer by the positive Question 2 would
be to prove that P and conv(E) are strictly separated. The difficulty to answer
Question 2 lies then in the fact that the set of the limit root does not restrict well
to root subsystems, see [21, 19] for a discussion. More precisely, if A ⊆ Φ+ is finite

and if conv(E) intersects a proper face F of the polytope conv(Â), we would need
to show that this face contains a limit root x ∈ E(Φ′) where Φ′ = Φ ∩ aff(F ) (here
aff(F ) is the affine subspace generated by F ), which would imply that coneΦ(A) is
infinite. This would require a continuation of the study of the faces of the imaginary
convex body conv(E) initiated in [16] and [19, §3]. However, it is not too difficult
to show that if W is of rank ≤ 3, then Question 2 has a positive answer by following
the above outlined strategy.

4. Biclosed sets corresponding to inversion sets of infinite words

The aim of this section is to discuss a generalization of Corollary 3.4 to inversion
sets of infinite reduced words on S.

4.1. Infinite reduced words and limit roots. Let ω = s1s2s3 · · · ∈ S∗ be
an infinite word on S. We say that ω is an infinite reduced word if any prefix
wi = s1 . . . si, i ≥ 1 is reduced in W . We denote by W the set of infinite reduced
words on S. Two infinite reduced words w′ and w are equivalent, denoted by ω ∼ ω′,
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α γ

β

H1

H2

Figure 5. Illustration of Corollary 3.4: the set of roots on the side of H2 not
containing conv(E) forms a finite biclosed set, whereas neither side of H1 provides
a finite biclosed set.

if ω′ can be obtained from ω by a possibly infinite number of braid moves. More
precisely, define a preorder ≺ as follows: ω ≺ ω′ if for any prefix wi of ω, there is a
prefix w′j of ω′ such that wi ≤ w′j . Then we write ω ∼ ω′ if ω ≺ ω′ and ω′ ≺ ω.

Let W∞ be the quotient set of W by this equivalence relation. Therefore, the
partial order ≺ onW induces a partial order ≤ onW∞ called the limit weak order;
see [28, §4.6]. We say that w ∈ W is a prefix of ω ∈ W∞ if a reduced expression
of w is a prefix of some infinite reduced word ω′ in the equivalence class of ω, i.e.,
there is a prefix of w′j of ω′ such that w ≤ w′j .

For ω = s1s2 · · · ∈ W, where wi = s1 . . . si, we consider the following sequence
of roots:

(1) β1 := αs1 ∈ ∆ and βi := wi−1(αsi) ∈ Φ+, for i ≥ 2.

The inversion set of ω is then

N(ω) :=
⋃
i∈N

N(wi) = {βi | i ∈ N∗} ⊆ Φ+.

We illustrate this notion in Figure 2, in Example 4.1 and Figure 6.

Example 4.1. Consider the affine Coxeter group of type Ã2 given by the following
Coxeter graph:

sα sβ

sγ
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Consider ω = (sαsβsγ)∞ and ω′ = sβ(sαsβsγ)∞ = sβω: these two infinite reduced
words are distinct in W∞ since sβ ≺ ω′ and there is no prefix wi of ω such that
sβ ≤ wi, but ω ≺ ω′ since: sα ≤ sβsαsβ ; sαsβ ≤ sβsαsβ ; sαsβsγ ≤ sβsαsβsγsα =
sαsβsγsαsγ ; sαsβsγsα ≤ sβsαsβsγsα = sαsβsγsαsγ ; etc.; see Figure 6.

α β

γ

A

N̂(ω) = A ∩ Φ̂
N̂(ω′) = {β̂} ∪ ̂sβ(N(ω))

= {β̂} ∪ (A ∩ Φ̂)

Figure 6. The inversion sets of ω = (sαsβsγ)∞ and ω′ = sβ(sαsβsγ)∞.

Proposition 4.2. Let ω, ω′ ∈ W.

(i) N(ω) is separable (hence biconvex and biclosed).
(ii) w ∈W is a prefix of ω if and only N(w) ⊆ N(ω).

(iii) If ω ≺ ω′ if and only if N(ω) ⊆ N(ω′).
(iv) N(ω) = N(ω′) if and and only if ω ∼ ω′.
(v) N : W tW∞ → B(Φ+) is a monomorphism.

Remark 4.3. (a) The notion of inversion set of infinite words appear first, as far
as we know, in the work of Cellini and Papi [8] in the context of affine Weyl
groups. The equivalence class, as well as the results stated in Proposition 4.2,
appears in the works of Ito [23, 24]. It was later used in the work of Lam and
Pylyavskyy [28], and Lam and Thomas [29]. The proofs seem to have all been
written within the framework of affine Coxeter systems and their associated
crystallographic root systems; they generalize easily and, for convenience, we
present them here in the context of an arbitrary Coxeter group.

(b) Lam and Pylyavskyy define in [28, §4.6] the limit weak order in W∞: ω ≤ ω′

in W∞ if N(ω) ⊆ N(ω′). Thanks to Proposition 4.2 above, it is clear that the
limit weak order is a subposet of the poset (B,⊆); recall that the poset (B,⊆) is
conjectured to be a lattice (see Conjecture 1). The limit weak order is studied
further in Lam and Thomas [29]

Proof. (i) Assume that there is β ∈ cone(N(ω)) ∩ cone(N(ω)c). So there is a
reduced prefix wi of ω such that β ∈ cone(N(wi)). Since N(wi) ⊆ N(ω), we have
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β ∈ cone(N(ω)c) ⊆ cone(N(wi)
c). So β ∈ cone(N(wi)) ∩ cone(N(wi)

c), implying
β = 0 since N(wi) is separable by Proposition 2.11, a contradiction.
(ii) The direct implication follows from definition. Now, let w ∈ W such that
N(w) ⊆ N(ω). Since N(w) is finite and N(ω) is the union of increasing finite
subsets of N(ω), there is a prefix wi of ω such that N(w) ⊆ N(wi). Hence w is a
prefix of wi by Proposition 2.2. Therefore w is a prefix of ω.
(iii) If ω ≤ ω′, then any prefix w ∈W of ω is a prefix of ω′, and therefore N(w) ⊆
N(ω) by (ii). Hence N(ω) ⊆ N(ω′). Now, assume that N(ω) = N(ω′). Let wi a
finite reduced prefix of ω, so N(wi) ⊆ N(ω) = N(ω′). Therefore wi is a prefix of
ω′ by (ii). Therefore ω ≺ ω′. We show similarly that ω′ ≺ ω, hence that ω ∼ ω′.
Finally (iv) follows from (iii), and (v) follows from (iv). �

We state now a corollary of Theorem 3.2, extending partially Corollary 3.4 to
infinite reduced words.

Corollary 4.4. Let ω ∈ W∞ then conv(N̂(ω)) ∩ conv(E) = ∅.

Proof. If there is x ∈ conv(N̂(ω))∩conv(E), then there are roots β1, . . . , βk ∈ N(ω)

such that x =
∑k
i=1 aiβi, ai ≥ 0. By definition of N(ω), there is a prefix wi ∈W

of ω such that β1, . . . , βk ∈ N(wi). Hence x ∈ cone(N(wi)). Therefore x ∈
conv(N̂(wi)) ∩ conv(E) contradicting Theorem 3.2. �

Remark 4.5 (Separable does not mean separable by an hyperplane). It is not
true in general that an infinite subset of Φ+ is separable if and only if there is an
hyperplane that separates it from its complement. Take the universal Coxeter group
of rank 3 generated by s, t, r as in Figure 8. Then A = N(s(tr)∞) is an infinite

separable set by Proprosition 4.2 and x = ̂s(αr + αt) ∈ E is the accumulation
point of A. But A is not strictly separated by an hyperplane from its complement.

Indeed, assume by contradiction that there is an hyperplane H separating Â and

Âc. Since in this case E = Q̂ (see [19, Theorem 4.4]), the only point of Q̂ contained

in the hyperplane H separating Â and Âc has to be x̂. Therefore, H is tangent to
the circle and contains N(s(rt)∞) ⊆ Ac, a contradiction. Such a counterexample

that lies in the affine Coxeter group of type Ã2 can be found in the second author’s
thesis [27, Figure 2.11].

4.2. Toward a geometric characterization of the inversion sets of infinite
reduced words. Corollary 3.4 states that a biclosed set A is an inversion set for
some w ∈ W if and only if there is a hyperplane H not intersecting conv(E) such
that A lies on the side of H and its complement lies with conv(E) on the other

side. By Proposition 2.11, this is equivalent to state that Acc(Â) is a empty (i.e.

A finite), A is biconvex and conv(Â) ∩ conv(E) = ∅.
We discuss now a conjectural generalization of this characterization for the case

of inversion sets of infinite words. First, say that an infinite reduced word ω is
connected if the induced subgraph of the Coxeter graph corresponding to the letters
that appear an infinite number of times in ω is connected.

Conjecture 2. Let A ∈ B. Then A = N(ω) for some connected ω ∈ W∞ if and

only if A is biconvex, Acc(Â) is a singleton and conv(Â) ∩ conv(E) = ∅.

Remark 4.6. (a) Assume that A = N(ω), for some ω ∈ W∞. Then A is biconvex

and conv(Â) ∩ conv(E) = ∅, by Proposition 4.2 and Corollary 4.4.
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(b) By a theorem of Cellini and Papi [8, Theorem 3.12], this conjecture is true in
affine types, as mentioned in [2, Proposition 2.6]. Indeed in the affine type,

E = {δ̂} is a singleton, and δ is called the imaginary root. So if cone(A) does
not contain δ, we apply Cellini and Papi’s result and obtain an infinite reduced
word ω such that A = N(ω). Moreover the accumulation points of an infinite

Â is in E, so is a singleton.
(c) This conjecture is true for infinite dihedral groups.
(d) As was pointed out by one of the anonymous referee, the definition of connected

infinite reduced word is needed in order for the conjecture above, and the two
conjectures below, to hold. Indeed, let for instance (W,S) to be the infinite
Coxeter system with Coxeter graph

s1 s2 s3 s4 s5

∞ ∞

Then the inversion set of the infinite and not connected reduced word (s1s2s4s5)∞

has two accumulation points: the one corresponding to N((s1s2)∞) and the one
corresponding to N((s4s5)∞).

The left-to-right implication in Conjecture 2 follows from the following weaker
conjecture.

Conjecture 3. Let w be a connected infinite reduced word. Then Acc(N̂(w)) is a
singleton.

Remark 4.7. (a) This conjecture is equivalent to showing that the injective se-

quence (β̂n)n∈N∗ converges, where β̂n is defined in Equation (1). Indeed, the

sequence (β̂n)n∈N∗ is bounded, and therefore the equivalence follows from the
following general topological fact based on the Bolzano–Weierstraß Theorem:
a bounded sequence in a compact metric space converges if and only if it has a
unique accumulation point.

(b) Conjecture 3 is obviously true for irreducible affine types, since E is a singleton.
(c) Conjecture 3, as well as the left-to-right statement in Conjecture 2, are true in

is true for based root systems of Lorentzian type, i.e., the signature of the root
system is (n−1, 1), as shown by Chen and the second author in [9, Theorem 2.8].

Note that in the proof, the authors use the fact that Q̂ is strictly convex in
this case and their approach works also for linearly dependent bases, see [9,
Remark 2.4]. Maybe the argument of strict convexity of Q could be replaced
in full generality by using [19, Corollary 6.8 (ii)] and a result similar to [9,
Proposition 2.1]. In the Lorentzian case, this gives an alternate - but less
straightforward - proof of [9, Theorem 2.8].

(d) Conjecture 3 is true for rank 2 and 3 infinite root systems, since they are all
affine or Lorentzian in this case. So the left-to-right statement in Conjecture 2 is
true in those cases. We could not find any counterexamples to the right-to-left
statement of Conjecture 2.

4.3. Limit sets of inversion sets and paths in the imaginary cone. It would
be interesting to better understand biclosed sets in relation with their limit roots
and subsets of the imaginary cone. Here, we propose an approach to solve Conjec-
ture 3.
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α β

γ

sα(β)

sα sβ-1.2

sγ

-1.2 -1.2

K

z
sα ·z

sαsβ ·z

Figure 7. Illustration of Conjecture 4: the inversion set of N((sαsβ)∞) has an
accumulation point, which is the limit of the sequence z, sα · z, sαsβ · z, . . . . This is

the intersection point of Q with [α̂, β̂] that is the closest to α̂.

The imaginary convex body conv(E) has a tiling parameterized by W : let K =

{u ∈ conv(∆̂) |B(u, αs) ≤ 0, ∀s ∈ S}, then conv(E) = W ·K, where w · x = ŵ(x)
is well-defined on conv(E) for any w ∈W , see [16, 19].

Assume from now on that (Φ,∆) is an irreducible indefinite based root system
(i.e. not finite nor affine). So the relative interior of K is nonempty and open in
the linear span of K. Take z in the relative interior of K, i.e., B(z, α) < 0 for all
α ∈ ∆. Then ω ∈ W can be seen, with the same notations as in §4.1, as a sequence
z, w1 ·z, w2 ·z, . . . , wn ·z within conv(E). Note that wn ·z is an injective sequence,
since wn · z ∈ w ·K and K is a fundamental domain for the action of W on W ·K
(see Figure 7).

Conjecture 4. Let ω be a connected infinite reduced word and (wn)n∈N∗ the in-
creasing sequence of its prefixes. Let z in the relative interior of K. Then there is
x ∈ E such that

Acc((wn · z)n∈N) = Acc(N̂(w)) = {x}.
In other words both sequences (wn · z)n∈N∗ and (β̂n)n∈N∗ converge to x ∈ E.

Remark 4.8. (a) Conjecture 4 has a taste of [19, Theorem 3.11].

(b) We may ask a weaker question: do we have Acc((wn · z)n∈N) = Acc(N̂(w))?
(c) As stated in [19, Remark 6.16(b)], we do not know if Acc(W · x) = E for

x ∈ W ·K in general. We know that Acc(W · x) ⊇ E, see [19, Corollary 6.15].
So Conjecture 4 slightly improves the statement of [19, Corollary 6.15]: any
sequence of the form {wn · x}n∈N ⊆ W · x where wn are increasing prefixes of
an infinite reduced word on S has an accumulation point in E.
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(d) It would be very interesting to fit Lam and Thomas’ results [29] in our frame-
work by interpreting the imaginary convex body as a realization of the Davis
complex, see [10, 1]. It would allow the use of tools from CAT(0) spaces to ex-
plore Conjecture 4. Assume (W,S) be an irreducible indefinite Coxeter system,
otherwise the question below has trivially a negative answer. In the setting of
the Davis complex, the set S is called the nerve of (W,S). Let S′ be the set of
spherical subsets of S: I ∈ S′ if WI = 〈I〉 is finite. A way to start is to take a
point z in the relative interior of K. For any I ⊂ S′, define

P zI := conv(WI · z).

Then P zI is the permutahedron of the finite Coxeter group WI with based
point x. Now take

D = W ·

 ⋃
I⊆S′

P zI

 ⊆ conv(E).

Finally, assume that D is endowed with the piecewise metric µ given by the
Euclidean metric on each permutahedron w · P zI , for any w ∈ W . Is (D, µ)
a geometric realization of the Davis complex? An approach to answer this
problem can be found in [26, Appendix B4-B5].

5. Relationships between biclosed and biconvex sets

We know that for a finite set, the notion of separable, biconvex and biclosed
are the same, see Proposition 2.11. In this final section, we discuss the differences
between the definition of biclosed, biconvex and separable in the case of infinite
sets.

5.1. On infinite biclosed sets and biconvex sets. We establish in the following
examples that biclosed sets are not biconvex in general.

Example 5.1 (A biclosed set that is not biconvex in a geometric representation of
dimension 3 of a Coxeter group of rank 4). We consider (U3, S) to be the universal
Coxeter system of rank 3 whose Coxeter graph is:

r t∞

s

∞ ∞

Let W ′ the reflection subgroup of U3 generated by S′ = {srs, sts, r, t}. It is not
difficult to see that ∆′ = {s(αr), s(αt), αr, αt} is a simple system, with

B(αr, αt) = B(s(αr), s(αt)) = B(αr, s(αr)) = B(αt, s(αt)) = −1

and

B(αr, s(αt)) = B(s(αr), αt) = −3.

Note that ∆′ is positively linearly independent but not linearly independent. It fol-
lows that (W ′, S′) is a universal Coxeter system of rank 4 (geometrically represented
in dimension 3). Now consider the standard parabolic subgroup WI of (W ′, S′)
given by I = {sts, r, t} ⊆ S′, with associated simple system ∆I = {αt, αr, s(αt)}.
The associated positive root subsystem Φ+

I = WI(∆I) ∩ Φ+ is a biclosed set in
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Φ′+ = W ′(∆′) ∩ Φ+. But Φ+

I is not biconvex in Φ′+. Indeed s(αr) /∈ Φ+

I so
ts(αr) /∈ Φ+

I . But

ts(αr) = αr + 2αs + 6αt = αr + 5αt + s(αt) ∈ coneΦ′(Φ
+

I ).

So coneΦ′(Φ
+

I ) 6= Φ+

I . An illustration is given in Figure 8.

αr αt

αs

s(αr) s(αt)

ts(αr)

Figure 8. Example of a biclosed set that is not biconvex in a geometric represen-
tation of dimension 3 of the universal Coxeter group W ′ = U4 of rank 4; the root
system is represented as a root subsystem in the classical geometric representation
of the universal group U3 of rank 3. The circle represent the normalized vectors in
the isotropic cone.

Remark 5.2. However, in the case of an irreducible affine Coxeter group, Dyer [15]
informed us that he can prove that biclosed sets are precisely biconvex sets.

Example 5.3 (A biclosed set that is not biconvex in the classical geometric rep-
resentation of a Coxeter group of rank 4). We consider (W,S) to be the Coxeter
system of rank 4 whose Coxeter graph is:

u

t

∞
r

s

∞

Using the above example, we show that such a non-biconvex biclosed set lives in
the root system of the classical geometric representation of (W,S). Consider ∆′ =
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{r(αu), r(αt), s(αu), s(αt)} and S′ = {rur, rtr, sus, sts}. Note that r(αu) = αr+αu,
r(αt) = αr + αt, s(αu) = αs + αu, s(αt) = αs + αt. We have

B(r(αu), r(αt)) = B(s(αu), s(αt)) = B(r(αu), s(αu)) = B(s(αt), r(αt)) = −1

and
B(r(αu), s(αt)) = B(r(αt), s(αu)) = −3.

So (W ′, S′) is a universal Coxeter system with geometric representation of dimen-
sion 3 and simple system ∆′ as in 5.1. Let H = ker ρ be the hyperplane generated by
∆′. We know by a result of Dyer [12, Theorem 4.4.] that Φ′+ = Φ+∩H is a positive
root system associated to a reflection subgroup of W ; its associated simple system
is the basis of cone(Φ′+), which is equal to ∆′ since H ∩ cone(∆) = cone(∆′). So
Φ′+ is the positive root system of W ′. Consider now I = {rur, rtr, sus} ⊂ S′, so by
Example 5.1, ΦI is biclosed but not biconvex. Then A = Φ+

I ∪ {β ∈ Φ+ | ρ(β) > 0}
is biclosed but not biconvex. We illustrate this example in Figure 9.

αs

αt

αs + αt

αu

αs + αu

αr + αu

αr

αr + αt

Figure 9. Example of a biclosed set that is not biconvex in the classical geometric
representation of a Coxeter group of rank 4.

Remark 5.4. We do not know of any example of a biclosed set that is not biconvex
in a geometric representation of dimension 3 of a Coxeter system of rank 3.

5.2. On infinite biconvex and separable sets. We establish in the following
example that biconvex sets are not separable.

We consider W to be of type Ã3 generated by {s1, s2, s3, s4}, where (s1s3)2 =

(s2s4)2 = e. We know that E = {δ̂} is a singleton (the red dot in the center of the
tetrahedron in Figure 10). Let X = {s2s1s3s2s1, s2s1s4} and A = coneΦ(N(X)).

So Â is the union of all the segments [β̂, δ̂]∩Φ̂, with β ∈ N(X) (in Figure 10, N̂(214)

is the blue triangle on the bottom face and N̂(21321) is in yellow on the left face).

One checks that A is biconvex. But A is not separable since δ ∈ conv(Â)∩conv(Âc).
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s2

s1

s4

s3

Figure 10. A nonseparable biclosed set in the affine root system of type Ã3.

One can also check that A = N(X). Therefore this example also shows that the
infinite join of N(X), for X = {s2s1s3s2s1, s2s1s4}, exists in (B,⊆), is not separable
and is not the inversion set (nor the complement) of a finite or infinite reduced word.

5.3. Infinite biconvex sets in the Kac-Moody/Lie setting. Biclosed sets are
often called biconvex, or compatible, in the literature concerned with root systems
associated to a Kac-Moody algebra, see for instance [8, 23, 24, 2, 28]. One has to
be very careful with these two notions of biconvexity since they are not the same
in general when applied to infinite sets of positive roots. Indeed, in the definition
of biconvex in the Kac-Moody setting, the complement is not taken in Φ+ but in
Φ+tΦ+

im, where Φ+

im denotes the positive imaginary roots. So a subset of Φ+tΦ+

im

is said to be biconvex in a Kac-Moody root system if A and (Φ+ t Φ+

im) \ A are
convex (we have to consider imaginary roots as well as real roots). In affine types,

it is known that Φ+

im = Z>0δ, so Φ̂+
im = {δ̂} is a singleton. Therefore δ cannot be

in A and its complement. Cellini and Papi [8] proved in the affine case that if A is
biconvex then either A = N(ω) for some ω ∈ W∞ if δ /∈ A or (Φ+tΦ+

im)\A = N(ω)
if δ ∈ A, see also Remark 4.6. In particular, this means that the real part of any
biconvex set in the sense of the affine Kac-Moody setting is separable in our setting
by Proposition 4.2. In Figure 10, we provide a biconvex set A (in the sense of
our definition) that is not separable, so it is not a biconvex set in the sense of a
Kac-Moody root system.
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