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Abstract. Let W be an infinite Coxeter group. We initiate the study of

the set E of limit points of “normalized” roots (representing the directions
of the roots) of W. We show that E is contained in the isotropic cone Q of

the bilinear form B associated to a geometric representation, and illustrate

this property with numerous examples and pictures in rank 3 and 4. We also
define a natural geometric action of W on E, and then we exhibit a countable

subset of E, formed by limit points for the dihedral reflection subgroups of W .

We explain how this subset is built from the intersection with Q of the lines
passing through two positive roots, and finally we establish that it is dense

in E.

Introduction

When dealing with Coxeter groups, one of the most powerful tools we have at our
disposal is the notion of root systems. In the case of a finite Coxeter group W , i.e., a
finite reflection group, roots are representatives of normal vectors for the Euclidean
reflections in W . Thinking about finite Coxeter groups and their associated finite
root systems allows the use of arguments from Euclidean geometry and finite group
theory, which makes finite root systems well studied, see for instance [Hum90, Ch.1],
and the references therein.

To deal with root systems of infinite Coxeter groups, we usually distinguish two
classes: affine reflection groups, and the other infinite but not affine Coxeter groups.
The root systems associated to affine Coxeter groups are also well-studied: an affine
root system can be realized in an affine Euclidean space as a finite root system up
to translations, see for instance [Hum90, Ch.4]. For the other infinite (not affine)
Coxeter groups, in comparison, very little is known.

While investigating a conjecture on biclosed sets of positive roots in an infinite
root system (Conjecture 2.5 in [Dye11]), we came across a difficulty: we do not
know much how the roots of an infinite root system are geometrically distributed
over the space.

First, observe that even the term (infinite) root system seems to designate differ-
ent objects, depending on whether associated to Lie algebras (see [Kac90, LN04]),
Kac-Moody Lie algebras (see [MP89]) or Coxeter groups via their geometric rep-
resentations (see [Hum90, Ch.5 & 6]). While all definitions of root systems are
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2 C. HOHLWEG, J. P. LABBÉ, AND V. RIPOLL

related to a given bilinear form, the bilinear forms considered in the case of Kac-
Moody algebras or Lie algebras are different from the one in the classical definition
of a root system for infinite Coxeter groups. In particular, a difference lies in
the ability to change the value of the bilinear form on a pair of reflections whose
product has infinite order. In this vein, more general geometric representations
of a Coxeter group and of root systems (that we take up in §1) have been intro-
duced. These more general geometric representations were recently presented in
[Kra09] and [BD10] (see also Howlett [How96]) but seem to go back to E. B. Vin-
berg [Vin71], as stated in D. Krammer’s thesis. They have been the framework of
several recent studies about infinite root systems of Coxeter groups (see for instance
[BD10, Dye10, Dye11, Fu12, Fu13]).

Taking up this framework and using the computer algebra system Sage, we
obtain the following pictures (Figures 1(a) and 1(b)), which suggests that roots
have a very interesting asymptotical behaviour. In this article, we initiate the
study of this behaviour.

α β

γ

ρ̂

sα sβ5

sγ

sα sβ

sδ
4 4

sγ

4

(a) The first 100 normalized roots,

around the isotropic cone Q, for the

rank 3 Coxeter group with the depicted

graph.

(b) The first 1665 normalized roots,

around the isotropic cone Q, for the

rank 4 Coxeter group with the depicted

graph.

Figure 1. Root systems for two infinite Coxeter groups computed via the
computer algebra system Sage.

Let us explain what we see in these pictures. First, we fix a geometric action
of W on a finite dimensional real vector space V , which implies the data of a
symmetric bilinear form B, and a simple system ∆, which is a basis for V (the
framework we use is introduced in detail in §1). In §2, we first show that the norm
of an (injective) sequence of roots diverges to infinity. So, in order to visualize
“limits” of roots (actually the limits of their directions), we cut the picture by an
affine hyperplane. Define V1 to be the affine hyperplane spanned by the points
corresponding to the simple roots: Figures 1(a) and (b) live in V1 and the triangle
(resp. tetrahedron) is the convex hull of the simple roots. The blue dots are the
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intersection of V1 with the rays spanned by the roots, and we call them normalized
roots. The red part depicts the isotropic cone Q = {v ∈ V |B(v, v) = 0} of the
quadratic form associated to B. We see on the pictures that the normalized roots
tend to converge to points on Q, and that the set of limit points has an interesting
structure: it seems to be equal to Q in Figure 1(a), whereas in Figure 1(b) it is
similar to an Apollonian gasket.

Let E be the set of accumulation points of the normalized roots, and call limit
roots the points of E. After having explained our framework in §1, we state our
first result (Theorem 2.7 in §2.2): the set E is indeed always contained in the
isotropic cone Q. M. Dyer discovered independently this property in his research
on the imaginary cone of Coxeter groups, see [Dye12] and Remark 2.8. However,
we state this result and its proof in an affine context, which is slightly different
from M. Dyer’s framework, and allows us to describe many examples and pictures
in rank 2, 3 and 4. Through them, we see new geometric properties emerging; in
§3 and §4 we describe two of these properties of E which we feel should motivate
further works on the subject:

(i) The geometric action of W on V induces an action on E. This action is simply
given by the following process: for α ∈ ∆ and x ∈ E, the image sα · x of x
is the intersection point (other than x, if possible) of Q with the line passing
through the (normalized) root α and the point x (see Prop. 3.1 and 3.5).
Contrary to the usual action of W on the roots, the action of W on E stays
in the positive cone on ∆; indeed E lies in the convex hull conv(∆) of the
simple roots. Using this action, we give in §3.2 some ways to understand the
fractal phenomenon.

(ii) The set E is the closure of the set of accumulation points obtained from the
dihedral reflection subgroups of W only. Equivalently, E is the closure of the
set of all points you obtain by intersecting Q with the lines in V1 passing
through two normalized roots (see Theorem 4.2).

A classical question when dealing with a property of Coxeter groups is how it
passes down to subgroups (parabolic, or more generally reflection subgroups). In
the last section (§5), we define the set of limit roots for a reflection subgroup, and
discuss how it compares to the set of limit roots for the whole group.

Along the text, we also present possible future directions and open problems.

In a forthcoming paper ([DHR13]), the first and third authors, together with
M. Dyer, show that E is the closure of the orbit of a finite set of accumulation points,
and make some connections with the notions of root posets and of dominance order
via the imaginary cone for Coxeter groups (cf. [Dye12, Fu13]).

Figures. The pictures were realized using the TEX-package TikZ, and computed
by dint of the computer algebra system Sage [S+13].

1. Geometric representations of a Coxeter group

In this section, we recall some properties of Coxeter groups, the construction of
their associated root systems, and we fix notations. The theory of Coxeter groups
is a rich one, and we recall here only what is necessary for the purpose of this
paper. For more details, see for instance [Bou68, Hum90, Kan01, BB05], and the
references therein.
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We consider a Coxeter system (W,S). Recall that S ⊆ W is a set of generators
for W , subject only to relations of the form (st)ms,t = 1, where ms,t ∈ N∗ ∪{∞} is
attached to each pair of generators s, t ∈ S, with ms,s = 1 and ms,t ≥ 2 for s 6= t.
We write ms,t =∞ if the product st has infinite order. In the following, we always
suppose that S is finite, and denote by n = |S| the rank of W .

1.1. The classical geometric representation of a Coxeter group.
Coxeter groups are modeled to be the abstract combinatorial counterpart of

reflection groups, i.e., groups generated by reflections. It is well known that any
finite Coxeter group can be represented geometrically as a (finite) reflection group.
This property still holds for infinite Coxeter groups, for some adapted definition of
reflection that we first recall below.

For B a symmetric bilinear form on a real vector space V (of finite dimension),
and α ∈ V such that B(α, α) 6= 0, we denote by sα the following map:

(1.1) sα(v) = v − 2
B(α, v)

B(α, α)
α, for any v ∈ V.

We denote by Hα := {v ∈ V |B(α, v) = 0} the orthogonal of the line Rα for the
form B. Since B(α, α) 6= 0, we have Hα ⊕ Rα = V . It is straightforward to check
that sα fixes Hα, that sα(α) = −α, and sα also preserves the form B, so it lies
in the associated orthogonal group OB(V ). We call sα the B-reflection associated
to α (or simply reflection whenever B is clear). When B is a scalar product, this
is of course the usual formula for a Euclidean reflection.

Let us now recall this classical geometric representation (following [Hum90, §5.3-
5.4]). Consider a real vector space V of dimension n, with basis ∆ = {αs | s ∈ S}.
We define a symmetric bilinear form B by:

B(αs, αt) =

{
− cos

(
π

ms,t

)
if ms,t <∞,

−1 if ms,t =∞.
Then any element s of S acts on V as the B-reflection associated to αs (as

defined in Equation (1.1)), i.e., s(v) = v − 2B(αs, v) αs for v ∈ V . This induces
a faithful action of W on V , which preserves the form B; thus we denote by the
same letter an element of W and its associated element of OB(V ).

1.2. Root system and reflection subgroups of a Coxeter group.
The root system of W is a way to encode the reflections of the Coxeter group, i.e.,

the conjugates of elements of S, which are called simple reflections. The elements
of ∆ = {αs | s ∈ S} are called simple roots of W , and the root system Φ of W is
defined to be the orbit of ∆ under the action of W . By construction, any root ρ ∈ Φ
gives rise to the reflection sρ of W , which is conjugate to some sα ∈ S.

A reflection subgroup of W is a subgroup of W generated by reflections; so it
can be built from a subset of Φ. It turns out that any such reflection subgroup is
again a Coxeter group, with some canonical generators ([Deo89, Dye90]). So it is
natural to desire to apply results valid for W to a reflection subgroup simply by
restriction. A major drawback of the classical geometric representation described
above is that it is not “functorial” with respect to the reflection subgroups: it can
happen that the representation of some reflection subgroups W ′ of W , induced (by
restriction) by the geometric representation of W , is not the same as the geometric
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representation of W ′ as a Coxeter group, see Example 1.1 below. Note that it does
also happen that a Coxeter group of rank n contains a reflection subgroup of higher
rank, as shown in Example 5.1.

Example 1.1 (Reflection subgroups of rank 2). Let us consider the Coxeter group
of rank 3 with S = {sα, sβ , sγ} and msα,sβ = 5, msβ ,sγ = msα,sγ = 3 (whose Cox-
eter diagram is on Figure 1(a)). Take the root ρ = sαsβ(α) = sβsα(β), so that sρ
corresponds to the longest element in the subgroup 〈sα, sβ〉: sρ = sαsβsαsβsα =

sβsαsβsαsβ . We compute ρ = 1+
√

5
2 (α + β). Consider the reflection subgroup W ′

generated by sγ and sρ. The product sγsρ has infinite order, so W ′ is an infinite
dihedral group, with generators sγ and sρ. But, if B denotes the bilinear form asso-

ciated to the Coxeter group W , we get: B(γ, ρ) = − 1+
√

5
2 6= −1. So, the restriction

to W ′ of the geometric representation of W does not correspond to the classical
geometric representation of W ′ as an infinite dihedral group. In Example 2.4 we
give a geometric interpretation of this fact, which is visible in Figure 1(a).

1.3. Coxeter groups from based root systems.
In order to solve the problem in Example 1.1, we relax the requirements on the

bilinear form B used to represent the group W : we allow the values of some B(α, β)
to be any real numbers less than or equal to −1 (when the associated product of
reflections sαsβ has infinite order). Actually, an even more general setting is better
adapted here: the notion of a based root system (used for instance in [How96, Kra09,
BD10]).

Definition 1.2. Let V be a real vector space, equipped with a bilinear form B.
Consider a finite subset ∆ of V such that

(i) ∆ is positively independent1: if
∑
α∈∆ λαα = 0 with all λα ≥ 0, then

all λα = 0;
(ii) for all α, β ∈ ∆, with α 6= β, B(α, β) ∈ (−∞,−1] ∪

{
− cos

(
π
k

)
, k ∈ Z≥2

}
;

(iii) for all α ∈ ∆, B(α, α) = 1.

Such a set ∆ is called a simple system. Denote by S := {sα | α ∈ ∆} the set
of B-reflections associated to elements in ∆ (see Equation (1.1)). Let W be the
subgroup of OB(V ) generated by S, and Φ be the orbit of ∆ under the action of W .

The pair (Φ,∆) is a based root system in (V,B); its rank is the cardinality of ∆,
i.e., the cardinality of S. We call the pair (V,B) a geometric W -module2. We
equivalently refer to a geometric representation of W instead of a geometric W -
module.

Remark 1.3.

• Condition (ii) is natural to ensure that subrepresentations are again geomet-
ric representation in the sense of this new definition (we saw in Example 1.1
that this does not work for the usual definition).
• In Condition (i), the relaxation is more subtle, but also necessary if we

want a nice functorial behaviour on the subrepresentations. For instance,
for some Coxeter group W there exists a reflection subgroup of rank (as a
Coxeter group) strictly higher than that of W , see Example 5.1.

1Geometrically, this means we require that 0 does not lie in the convex hull of the points of ∆.
2The triplet (V,∆, B) is sometimes called a Coxeter datum in the literature, see for instance

[Fu12, Fu13].



6 C. HOHLWEG, J. P. LABBÉ, AND V. RIPOLL

• Even if ∆ is not anymore required to be a basis, the condition that it is
positively independent is necessary to keep the usual properties of root
systems, in particular the distinction between a set of positive roots and
a set of negative roots. Indeed, it is not difficult to prove that a set is
positively independent if and only if its is included in an open half-space
supported by a linear hyperplane, see [How96, p.4 note (b)].

This generalization of root system enjoys the following expected properties (see
for instance [Kra09, BD10]):

• (W,S) is a Coxeter system3, where the order of sαsβ is k wheneverB(α, β) =
− cos(πk ), and ∞ if B(α, β) ≤ −1.
• The convex set cone(∆) consisting of all positive linear combinations of

elements of ∆ allows us to define the set of positive roots Φ+ := Φ∩cone(∆),
and then Φ = Φ+ t (−Φ+) and Rρ ∩ Φ = {ρ,−ρ}, for ρ ∈ Φ.

The classical geometric representation (that we recalled in §1.1) is an example
of such a geometric W -module. If all ms,t (called the labels of the group) are finite,
then the only possible representation (supposing that ∆ is a basis) is the classical
one. In particular, when the form B is positive definite, then Φ is a finite root
system and contains no more information than its associated finite Coxeter group.

We say that (Φ,∆) is an affine based root system when the form B is positive
semidefinite, but not definite. Note that traditionally, the Coxeter group itself is
said to be affine if the root system of its classical geometric representation is affine.

Example 1.4 (Irreducible affine root systems). An infinite dihedral group W has
non-affine geometric representations as well as the classical affine representation. If
Φ is an infinite root system of rank 2, with simple roots α, β, then B(α, β) ≤ −1,
and Φ is affine if and only if B(α, β) = −1 (i.e., when Φ corresponds to the classical
geometric representation of W ). We give a geometric description of these two cases
in Figure 2. However, note that if W is irreducible4 of rank ≥ 3, then Φ is affine if
and only if W is affine (because there is no label ∞ in an irreducible affine Coxeter
graph of rank ≥ 3).

All the desired properties of the root system and of positive and negative roots
still hold for a based root system. In particular, the following statements, which
are essential in the next sections, are still valid in this new framework.

Proposition 1.5. Let (Φ,∆) be a based root system in (V,B), with associated
Coxeter system (W,S).

(i) The set {B(α, ρ) |α ∈ ∆, ρ ∈ Φ+ and |B(α, ρ)| < 1} is finite.
(ii) Denote by Q the isotropic cone:

Q := {v ∈ V | q(v) = 0}, where q(v) = B(v, v).

Let ρ1 6= ρ2 be two roots in Φ+. Denote by W ′ the dihedral reflection subgroup
of W generated by the two reflections sρ1 and sρ2 , and

Φ′ := {ρ ∈ Φ | sρ ∈W ′} .
Then there exists ∆′ ⊆ Φ+ ∩ Φ′ of cardinality 2 such that (Φ′,∆′) is a based
root system of rank 2, with associated Coxeter group W ′. Moreover:

3This result is [Vin71, Theorem 1.2].
4See §2.3 for the definition.
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(a) Φ′ is infinite if and only if the plane span(ρ1, ρ2) intersects Q\{0}, if and
only if |B(ρ1, ρ2)| ≥ 1;

(b) Φ′ is affine if and only if span(ρ1, ρ2)∩Q is a line, if and only if B(ρ1, ρ2) =
±1;

(c) when Φ′ is infinite, ∆′ = {ρ1, ρ2} if and only if B(ρ1, ρ2) ≤ −1.

Proof. The nontrivial parts of the proofs of these statements in the context of a
based root system are word for word the same as the proofs in the case of the root
system of the classical geometric representation, proofs that the reader may find
for instance in [BB05, §4.5]. The last statement (ii)(c) is a consequence of [Dye90,
Theorem 4.4], see also [Fu12, Theorem 1.8 (ii)]. �

1.4. Other geometric representations.
Let (W,S) be a Coxeter group. Fix a matrix A = (as,t)s,t∈S such that

(1.2)

{
as,t = − cos

(
π

ms,t

)
if ms,t <∞,

as,t ≤ −1 if ms,t =∞.

We associate to the matrix A a canonical geometric W -module (VA, BA) as fol-
lows.

• VA is a real vector space with basis ∆A = {αs | s ∈ S} and BA is the
symmetric bilinear form defined by BA(αs, αt) = as,t for s, t ∈ S.
• Any element s of S acts on V as the B-reflection associated to αs, i.e.,
s(v) = v − 2B(αs, v) αs for v ∈ VA.

Since ∆A satisfies the requirement of Definition 1.2, W acts faithfully on VA
as the subgroup of OBA(VA) spanned by the B-reflections associated to the αs.
Moreover, (ΦA,∆A) is a based root system of (VA, BA), where ΦA is the W -orbit
of ∆A. Note that giving a matrix A, as we did, is equivalent to fix the values in
Conditions (ii) and (iii) in Definition 1.2.

Example 1.6 (Continuation of Example 1.1). In the case of Example 1.1, the re-
striction of the classical geometric representation ofW to the reflection subgroupW ′

generated by sγ and sρ gives the geometric representation that is associated to the
canonical geometric W ′-module given by the matrix

A =

(
1 − 1+

√
5

2

− 1+
√

5
2 1

)
.

Remark 1.7. By construction, in the based root system (ΦA,∆A) associated to
the canonical geometric W -module (VA, BA) defined above, the set ∆A is a basis.
This setting will actually be the one used throughout the three next subsections:

In §§2-3-4, we assume that the set of simple roots is a basis for the vector space.

Note that analogous results remain true in all generality, but this assumption highly
simplifies the constructions and the statements, and allows us to get into the main
subject more quickly. However, for the sake of completeness, we added in §5 a
discussion of the case where ∆ is not a basis. Moreover, this turns out to be
necessary in order to deal thoroughly with the behaviour of restriction to reflection
subgroups.
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2. Limit points of normalized roots and isotropic cone

Let (Φ,∆) be a based root system in (V,B), with associated Coxeter group W
(as defined in Definition 1.2). We suppose that ∆ is a basis for V ; analogous results
remain true in full generality (see §5.2 for details).

When W is finite, Φ is also finite and the distribution of the roots in the space V
is well studied. However, when W is infinite, the root system is infinite and we have,
as far as we know, not many tools to study the distribution of the roots over V .
The asymptotical behaviour of roots is one of them. This section deals with a first
step of this study: we show that the “lengths” of the roots tend to infinity, and that
the limit points of the “directions” of the roots are included in the isotropic cone
of the bilinear form associated to Φ. In order to get a first grip of what happens,
we begin with some enlightening examples.

2.1. Roots and normalized roots in rank 2, 3, 4, and general setting.
Since Φ = Φ+t(−Φ+), it is enough to look at the positive roots, which are inside

the simplicial cone cone(∆).

Example 2.1. (Rank 2: affine and non-affine representations of infinite dihedral
groups). Let (Φ,∆) be a based root system of rank 2, as defined in §1.3. We get
a Coxeter group W of rank 2, geometrically represented in a 2-dimensional vector
space V (together with a bilinear form B), where V is generated by two simple
roots α, β. Assume that W is an infinite dihedral group, so B(α, β) ≤ −1.
Suppose first that B(α, β) = −1, i.e., that Φ is affine and with the classical geo-
metric representation. Then any positive root has the following form:

ρn = (n+ 1)α+ nβ, or ρ′n = nα+ (n+ 1)β, for n ∈ N.

If we fix a (Euclidean) norm on V (e.g., such that {α, β} is an orthonormal basis),
then the norms of the roots tend to infinity, but their directions tend to the line
generated by α+ β as depicted in Figure 2 (a). Note that this line is precisely the
isotropic cone of the bilinear form B, i.e., the set

Q := {v ∈ V | q(v) = 0} , where q(v) = B(v, v) .

In a general geometric representation of W , Φ can be non-affine, i.e., B(α, β) = k
with k < −1. Then the isotropic cone Q consists of two lines (generated by (−k ±√
k2 − 1)α + β). If we draw the roots, we note that, again, their norms diverge

to infinity and their directions tend to the two directions of the lines of Q; see
Figure 2 (b), and [How96, p.3] for a detailed computation.

Let us go back to the general case of an infinite based root system of rank n.
In the simple example of dihedral groups, we saw that the roots themselves have
no limit points; this phenomenon is actually general, so we are rather interested
in the asymptotical behaviour of their directions. In order to talk properly about
limits of directions, we want to “normalize” the roots and construct “unit vectors”
representing each root. One simple way to do so is to intersect the line Rβ generated
by a root β in Φ with the affine hyperplane V1 spanned by the simple roots (seen
as points), i.e., the affine hyperplane

V1 := {v ∈ V |
∑
α∈∆

vα = 1} ,
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α = ρ0β = ρ′0

ρ1ρ′1

ρ2ρ′2

ρ3ρ′3

Q

V1

Q−

α = ρ0β = ρ′0

ρ1ρ′1

ρ2ρ′2

ρ3ρ′3

V1

(a) B(α, β) = −1 (b) B(α, β) = −1.01 < −1

Figure 2. The isotropic cone Q and the first positive roots of an infi-
nite based root system of rank 2. (a): in the (classical) affine representa-
tion. (b): in a non-affine representation (the red part Q− denotes the set
{v ∈ V | q(v) < 0}).

where the vα’s are the coordinates of v in the basis ∆ of simple roots. That way,

we obtain what we call the set of normalized roots, denoted by Φ̂:

Φ̂ :=
⋃
β∈Φ

Rβ ∩ V1.

Let us describe this set more precisely. Set

V0 := {v ∈ V | |v|1 = 0}, and
V +

0 := {v ∈ V | |v|1 > 0}, where |v|1 :=
∑
α∈∆ vα.

Note that | · |1 is not a norm on V . Since all the positive roots are in the half-space
V +

0 , the entire root system Φ is contained in V \V0. So the following normalization
map can be applied to Φ:

V \ V0 → V1

v 7→ v̂ := v
|v|1 .

For any subset A of V \ V0, write Â for the set {â | a ∈ A}. Because for ρ ∈ Φ,
Rρ ∩ Φ = {ρ,−ρ}, it is then obvious that Φ+ is in bijection with

Φ̂ = Φ̂+ = −̂Φ+ = {ρ̂ | ρ ∈ Φ+}.

Remark 2.2. Obviously, we could also have considered other affine hyperplanes to
“cut” the rays of Φ; it suffices that the chosen hyperplane be “transverse to Φ+”,
and this is discussed in §5.2. We could also have considered the roots abstractly, in
the projective space PV . The principal advantage to consider an affine hyperplane
explicitly, such as V1, is to visualize positive roots in an affine subspace of dimen-
sion n−1, inside an n-simplex (here n = dimV ). Indeed, the simple roots are in V1,

so Φ̂ lies in the convex hull conv(∆), which is an n-simplex in V1. Note that as a
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convex polytope, conv(∆) is closed and compact, which is practical when studying
sequences of roots. From now on, in examples, we only draw the normalized roots
inside the n-simplex conv(∆).

The aim of this work is to study the accumulation points of Φ̂, i.e., the set of
limit points of normalized roots. We first examine its relation with the isotropic
cone Q.

Example 2.3 (Normalized roots in the dihedral case). In the infinite dihedral

case, the “normalized” version of Figure 2 is Figure 3. Here Φ̂ is contained in the
segment [α, β] and there are one or two limit points of normalized roots (depending
on whether B(α, β) = −1 or not), and the set of limit points is always equal to the

intersection Q ∩ V1 = Q̂.

V1Q̂

α = ρ1β = ρ′1 ρ̂2ρ̂′2 · · ·

sα sβ
∞

V1

α = ρ1β = ρ′1 ρ̂2ρ̂′2 · · ·

Q̂−

sα sβ
∞(−1.01)

(a) B(α, β) = −1 (b) B(α, β) = −1.01 < −1

Figure 3. The normalized isotropic cone Q̂ and the first normalized roots
of an infinite based root system of rank 2. (a): in the (classical) affine
representation. (b): in a non-affine representation.

Notation. The graph we draw to define a based root system is the same as the
classical Coxeter graph, except that, when the label of the edge sα—sβ is ∞, we
specify in parenthesis the value of B(α, β) if it is not −1 (i.e., when we do not
consider the classical representation).

We give now some examples and pictures in rank 3 and 4.

Example 2.4 (Rank 3). In Figures 1(a) (in the introduction) and 4 through 7, we

draw the normalized isotropic cone Q̂ (in red), the 3-simplex cone(∆) (in green),
and the first normalized roots (in blue), for five different based root systems of
rank 3. Note that the notion of depth used in the captions is a measure of the
“complexity” of a root, which is defined in §2.2.

The normalized roots seem again to tend quickly towards Q̂. In the affine cases, Q̂
contains only one point, which is the intersection of the line V ⊥ (the radical of B)

with V1. In rank 3, there are three different types: Ã2, B̃2, and G̃2. The latter is

drawn in Figure 4. Otherwise, Q̂ is always a conic (because the signature of B is
(2, 1)), and moreover it is always an ellipse in the classical geometric representation
(see §5.2 for more details).

Some rank 2 root subsystems appear in the pictures; they correspond to dihe-
dral reflection subgroups. The normalized roots corresponding to such a reflection
subgroup, generated by two reflections sρ1 and sρ2 , lie in the line containing the
normalized roots ρ̂1 and ρ̂2. Because of Proposition 1.5 (ii), the subgroup is infinite

if and only if Q̂ intersects this line. In Figure 1(a), for the group with labels 5, 3, 3,
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α β

γ

sα sβ

sγ
6

Figure 4. The normalized isotropic

cone Q̂ and the first normalized roots
(with depth ≤ 12) for the based root

system of type G̃2 (affine).

α β

γ

sα sβ

sγ
7

Figure 5. The normalized isotropic

cone Q̂ and the first normalized roots
(with depth ≤ 10) for the based root
system with labels 2, 3, 7.

α β

γ

sα sβ

sγ
∞(−1.1) ∞(−1.1)

Figure 6. The normalized isotropic

cone Q̂ and the first normalized
roots (with depth ≤ 10) for the
based root system with labels
2,∞(−1.1),∞(−1.1).

α β

γ

sα · β

sα · γ

sα sβ∞

sγ
4 ∞(−1.5)

y

x

sα · y

sα · x

Figure 7. The normalized isotropic

cone Q̂ and the first normalized roots
(with depth ≤ 8) for the based root sys-
tem with labels ∞,∞(−1.5), 4.

the line joining γ and ρ̂ = α+β
2 intersects the ellipse in two points, as predicted by

Example 1.1.
In general, the behaviour for standard parabolic dihedral subgroups is seen on the

faces of the simplex, where three situations can occur. The ellipse Q̂ can either
cut an edge [α, β] in two points, or be tangent, or not intersect it, depending on
whether B(α, β) < −1, = −1, or > −1 respectively; see in particular Figures 6
and 7.

Remark 2.5. When Q̂ is included in the simplex, it seems that the limit points of
normalized roots cover the whole ellipse, whereas in the other cases the behaviour
is more complicated. We discuss this phenomenon in §3.2.

Example 2.6 (Rank 4). Figures 1(b) (in the introduction), and 8-9 illustrate some
based root systems of rank 4, together with the tetrahedron conv(∆). Analogous
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sα sβ

sδ

sγ

Figure 8. The normalized isotropic

cone Q̂ and the first normalized roots
(with depth ≤ 8) for the based root sys-
tem with diagram the complete graph
with labels 3.

sα sβ
∞

sδ
∞ ∞

sγ
∞ ∞

∞

Figure 9. The normalized isotropic

cone Q̂ and the first normalized roots
(with depth ≤ 8) for the based root sys-
tem with diagram the complete graph
with labels ∞.

properties seem to be true: the limit points are in Q̂, and the way how Q̂ cuts a
facet depends on whether the associated standard parabolic subgroup of rank 3 is
infinite non affine, affine, or finite. Moreover, Remark 2.5 still holds: in Figure 8

the limit points seem to cover the whole of Q̂, whereas in Figures 1(b) and 9, some
Apollonian gasket shapes appear. This fractal behaviour is discussed in §3.2.

2.2. The limit points of normalized roots lie in the isotropic cone.
Recall that we denote by q the quadratic form associated to B, and by Q the

isotropic cone:

Q := {v ∈ V | q(v) = 0}, where q(v) = B(v, v).

The following theorem summarizes our first observations.

Theorem 2.7. Consider an injective sequence of positive roots (ρn)n∈N, and sup-
pose that (ρ̂n) converges to a limit `. Then:

(i) the norm ||ρn|| tends to infinity (for any norm on V );

(ii) the limit ` lies in Q̂ = Q ∩ V1.

In other words, the set Q̂ of accumulation points of normalized roots Φ̂ is contained
in the isotropic cone.

Remark 2.8. M. Dyer proved independently this property in the context of his
work on imaginary cone [Dye12]5, extending a study of V. Kac (in the framework
of Weyl groups of Lie algebras), who states that the convex hull of the limit points
correspond to the closure of the imaginary cone (see [Kac90, Lemma 5.8 and Exer-
cise 5.12]).

5M. Dyer, personal communication, September 2011.
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Note that this theorem has the following consequence (which can of course be
proved more directly using the fact that W is discrete in GL(V ), see [Kra09] or
[Hum90, Prop. 6.2]):

Corollary 2.9. The set of roots of a Coxeter group is discrete.

Proof. Suppose ρn is an injective sequence converging to ρ ∈ Φ+. Then ρ̂n converges
to ρ̂, so by Theorem 2.7, ρ̂ ∈ Q. Therefore q(ρ̂) = 0 which gives a contradiction
since q(ρ) = 1. �

The remainder of this subsection is devoted to the proof of Theorem 2.7. We
first need to recall the notion of depth of a root. The depth of a positive root is a
natural way to measure the “complexity” of this root in regard to the simple root
it is obtained from (see [Sau91, §4] or [BB05, §4.6] for details): for ρ ∈ Φ+,

dp(ρ) = 1 + min{k | ρ = sα1
sα2

. . . sαk(αk+1), for α1, ′̇s, αk, αk+1 ∈ ∆}.
The depth is a very useful tool that allows inductive proof in infinite root sys-
tems: if γ is a root of depth r ≥ 2, then there is a root γ′ of depth r − 1 and a
simple root α ∈ ∆ such that γ = sα(γ′), and moreover B(α, γ′) < 0, see [BB05,
Lemma 4.6.2].

Since S is assumed to be finite, it follows that the number of positive roots of
bounded depth is finite. Consider an injective sequence (ρn)n∈N of positive roots, as
in Theorem 2.7. Then we obtain easily that dp(ρn) diverges to infinity as n→∞.
So, to prove the first item of the theorem, it is sufficient to show that when the
depth of a sequence of roots tends to infinity, so does the norm of the roots. This
is done using the following lemma, which clarifies the relation between norm and
depth.

Lemma 2.10. Let (Φ,∆) be a based root system, as defined in §1.3. We take for
the norm ||.|| the Euclidean norm for which ∆ is an orthonormal basis for V .

Then, with the above notations, we have the following properties:

(i) ∃κ > 0, ∀α ∈ ∆, ∀ρ ∈ Φ+, B(α, ρ) 6= 0 ⇒ |B(α, ρ)| ≥ κ;
(ii) ∃λ > 0, ∀ρ ∈ Φ+, ||ρ||2 ≥ 1 + λ(dp(ρ)− 1).

Proof. The first point is a direct consequence of Proposition 1.5 (i). Let us now
prove, by induction on dp(ρ), that

∀ρ ∈ Φ+, ||ρ||2 ≥ 1 + λ(dp(ρ)− 1),

where λ = 4κ2 with κ given by (i). If dp(ρ) = 1, ρ ∈ ∆ so ||ρ|| = 1 = 1+λ(dp(ρ)−1)
by the choice of the norm || · ||. If dp(ρ) = r ≥ 2, then we can write ρ = sα(ρ′),
with ρ′ ∈ Φ+ and α ∈ ∆ such that dp(ρ′) = r − 1 and B(α, ρ′) < 0, by [BB05,
Lemma 4.6.2]. We get

||ρ||2 = ||ρ′ − 2B(α, ρ′)α||2

= ||ρ′||2 + 4B(α, ρ′)2 − 4B(α, ρ′) 〈α, ρ′〉 ,
where 〈·, ·〉 is the Euclidean product of || · ||. But we know that B(α, ρ′) < 0, and
〈α, ρ′〉 ≥ 0 since ρ′ ∈ cone(∆) and ∆ is an orthonormal basis for || · ||. So we obtain
by induction hypothesis on ρ′ and by (i):

||ρ||2 ≥ ||ρ′||2 + 4B(α, ρ′)2 ≥ 1 + (r − 2)λ+ 4κ2.

Since λ = 4κ2, we have ||ρ||2 ≥ 1 + (r − 2)λ + λ = 1 + (r − 1)λ, which concludes
the proof of (ii). �
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We can now finish the proof of Theorem 2.7.

Proof of Theorem 2.7. As explained before Lemma 2.10, and by (ii) of this same
lemma, the norm ||ρn|| of any injective sequence (ρn)n∈N in Φ+ tends to infinity.
Recall from §2.1 that for v ∈ V +

0 , v̂ = v
|v|1 , where |v|1 =

∑
α∈∆ vα. If ρ belongs

to Φ+, the coordinates ρα are nonnegative, so |ρ|1 is the L1-norm of ρ. In particular,
by equivalence of the norms, |ρn|1 tends to infinity as ||ρn|| does. We get

q(ρ̂n) = q

(
ρn
|ρn|1

)
=

q(ρn)

(|ρn|1)2
=

1

(|ρn|1)2
−−−−→
n→∞

0.

Supppose now that ρ̂n tends to a limit `. Then we obtain q(`) = 0, i.e., ` ∈ Q,
which concludes the proof of Theorem 2.7. �

¿From Theorem 2.7 and its proof, we also get these easy consequences.

Corollary 2.11. The two following statements hold:

(i) for any M ≥ 0, the set {ρ ∈ Φ | ||ρ|| ≤M} is finite;

(ii) for any ε > 0, the set {ρ ∈ Φ | dist(ρ̂, Q̂) ≥ ε} is finite.

Definition 2.12. Let (Φ,∆) be a based root system in (V,B), and suppose that ∆
is a basis for V . We denote by E(Φ) (or simply E when there is no possible con-

fusion) the set of accumulation points (or limit points) of Φ̂, i.e., the set consisting
of all the possible limits of injective sequences of normalized roots.

Sometimes, we refer to the points of E as limit roots of the root system (Φ,∆).

Remark 2.13. As stated in Remark 2.2, we could have studied the roots in the
projective space:

PΦ := {Rα |α ∈ Φ} = {Rα |α ∈ Φ+} ⊆ PV

with the quotient topology. However, we choose not to for two reasons: the pictures
at the base of this article were obtained in an affine hyperplane and we wanted to
explain precisely what we see; but also, since we do not use projective geometry
technics, it seemed natural to state our result in the simplest way possible. In this

context, the accumulation set E(Φ) of Φ̂ is the accumulation set of PΦ, which is
(since Φ is discrete) equal to: PΦ \ PΦ = {Rx |x ∈ E(Φ)} (where PΦ denotes the
topological closure of PΦ).

As Φ̂ is included in the simplex conv(∆) (which is closed), Theorem 2.7 implies

E(Φ) ⊆ Q ∩ conv(∆) = Q̂ ∩ cone(∆) .

The reverse inclusion is not always true: we saw some examples of this fact in §2.1,
for rk(W ) ≥ 4, or even for rk(W ) = 3 whenever some B(α, β) < −1. We address a
more precise description of E(Φ) in §3.2.

Since ∆ is finite, the convex set conv(∆) is compact. Moreover, if Φ is infinite,

then Φ̂ is infinite as well. Therefore the inclusion Φ̂ ⊆ conv(∆) implies the following
statement.

Proposition 2.14. Let (Φ,∆) be a based root system in (V,B), and suppose that ∆
is a basis for V . Then E(Φ) 6= ∅ whenever Φ is infinite.
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2.3. Simple examples : rank 2, reducible groups, and affine groups.
When (Φ,∆) is an infinite based root system of rank 2 (with ∆ = {α, β}),

we have already explained that E(Φ) consists of one or two points (according to
whether Φ is affine or not, i.e., whether B(α, β) = −1 or < −1): see Example 2.1.

In any case, we get E(Φ) = Q̂.
For any based root system (Φ,∆), the limit roots coming from a given rank 2 re-

flection subgroup can be observed inside E(Φ). Take two distinct positive roots ρ1

and ρ2, denote by W ′ the dihedral reflection subgroup of W generated by the two
reflections sρ1 and sρ2 , and consider the associated rank 2 root subsystem (Φ′,∆′)
as in Proposition 1.5. Denote by E(Φ′) the points of E that are limits of normal-
ized roots of Φ′, and by L(ρ̂1, ρ̂2) the line passing through ρ̂1 and ρ̂2. Then, by
construction (and using Proposition 1.5), we have the following properties:

• E(Φ′) = Q ∩ L(ρ̂1, ρ̂2) = E(Φ) ∩ L(ρ̂1, ρ̂2);
• the cardinality of E(Φ′) is 0, 1 or 2, depending on whether |B(ρ1, ρ2)| < 1,
|B(ρ1, ρ2)| = 1 or |B(ρ1, ρ2)| > 1.

Another case where the equality E(Φ) = Q̂ holds is when Φ is affine. To see
that, we first need to discuss the reduction to irreducible root systems. Recall that
a Coxeter system (W,S) is irreducible if there is no proper partition S = I tJ such
that any element of I commutes with any element of J , i.e., the Coxeter graph is
connected. Similarly, a based root system (Φ,∆) is called irreducible if its associated
Coxeter group is irreducible, i.e., if there is no proper partition ∆ = ∆I t∆J such
that B(α, β) = 0 for all α ∈ ∆I and β ∈ ∆J .

Now, for any subset ∆I of ∆, we can associate a (standard) parabolic root sub-
system (ΦI ,∆I) by setting:

WI := 〈sα |α ∈ ∆I〉 and ΦI := WI(∆I).

It is then natural to define the limit roots for this root subsystem as the sub-

set E(ΦI) of E(Φ) whose elements are limits of sequences in Φ̂I . We postpone
until §5 the discussion on why this definition and its analogue for more general root
subsystems (not necessarily standard parabolic) make sense. Now we explain in the
following easy proposition why it is possible to limit our study to irreducible root
systems.

Proposition 2.15. Assume that (Φ,∆) is reducible, and consider proper subsets
∆I ,∆J ⊂ ∆ such that ∆ = ∆I t∆J , with B(α, β) = 0 for all α ∈ ∆I and β ∈ ∆J .
Then E(Φ) = E(ΦI) t E(ΦJ).

Proof. We have Φ̂ = Φ̂I ∪ Φ̂J . Since Φ̂I ⊆ conv(∆I) (resp. Φ̂J ⊆ conv(∆J)) and
since conv(∆I) and conv(∆J) are disjoint compact sets, a converging sequence of

elements in Φ̂ eventually lives either in conv(∆I) or in conv(∆J), and so converges
to a limit point either in E(ΦI) or in E(ΦJ). �

Corollary 2.16. If (Φ,∆) is an affine based root system, then E(Φ) is finite.
Moreover, if (Φ,∆) is affine and irreducible, then E(Φ) is a singleton (and is equal

to Q̂).

Proof. By definition, if (Φ,∆) is an irreducible and affine based root system, of

rank n, then the signature of B is (n − 1, 0). So Q̂ is a point in this case, and

since Φ is infinite, E 6= ∅ by Proposition 2.14. Since E ⊆ Q̂, we get that E = Q̂
and contains a single element. The proof follows then from Proposition 2.15. �
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3. Geometric action of the Coxeter group W on the limit roots

In this section, we address some natural questions concerning the pictures we
obtained: can W act on the set E of limit roots? Where does the “fractal phe-
nomenon” come from? As in the previous section, we fix an infinite based root
system (Φ,∆) in (V,B) with associated Coxeter system (W,S), and we assume
that ∆ is a basis for V . We recall that V1 denotes the affine hyperplane containing
the simple roots (seen as points), with direction V0, and E = E(Φ) the set of limit
roots, i.e., the accumulation set of the normalized roots.

3.1. Geometric action.
It is clear that the geometric action of the group W on V does not restrict to an

action on V1. However, using the normalization map, it induces a natural action
on a part of V1. We consider the set

D :=
⋂
w∈W

w(V \ V0) ∩ V1

= V1 \
⋃
w∈W

w(V0).

We define an action of W on D as follows: for x ∈ D and w ∈W , set

w · x := ŵ(x) .

Since any element of D stays in the complement of V0 after action of any w ∈W ,
it is straightforward to check that this is a well-defined action of W , and that any
w ∈ W acts continuously on D. The set D is the complement in V1 of an infinite
union of hyperplanes, and is the maximal subset of V1 on which W acts naturally.
The following statement is the main motivation to consider this action.

Proposition 3.1.

(i) Φ̂ and E are contained in D;

(ii) Φ̂ and E are stable by the action of W ; moreover Φ̂ = W ·∆;

(iii) the topological closure Φ̂ t E of Φ̂ is stable by the action of W .

Proof. First, we show that Φ̂ is contained in D and that Φ̂ is stable by W . Recall

that Φ lies in V \V0 and is stable under the action of W on V . Let β̂ ∈ Φ̂ and w ∈W .

Since Rβ = Rβ̂, we have Rw(β̂) = w(Rβ̂) = w(Rβ) = Rw(β). Therefore, since w(β)

is a root, the point w(β̂) lies in V \ V0 and w · β̂ = ŵ(β̂) = ŵ(β) is a point of Φ̂. It
remains to prove that:

∀w ∈W, ∀x ∈ E, w(x) ∈ V \ V0 and w · x = ŵ(x) ∈ E .

Take x ∈ E, and w ∈ W . Consider an injective sequence (ρn)n∈N in Φ+, such
that (ρ̂n) converges to x. Then, for all n, w(ρ̂n) is in V \V0, as well as its limit w(x).
Since w and ·̂ are continuous, we have:

w · ρn = ŵ(ρn) = ŵ(ρ̂n) −−−−→
n→∞

ŵ(x) = w · x .

So w · x is a limit point of the set Φ̂, i.e., lies in E. The fact that Φ̂ = W · ∆
follows directly from the the definition of Φ, Φ = W (∆). So (i) and (ii) are proved,
and (iii) is a trivial consequence of them. �
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It is possible to restrict the action of W on D to the simplest connected compo-
nent of D, which is the convex set:

D+ :=
⋂
w∈W

w(V +
0 ) ∩ V1 ⊆ V +

0 ∩ V1.

This convex set is still stable by the action of W and does not contain any element

of Φ̂ (since sα(α) = −α). However D+ is of interest to study the action of W on E
(see for instance the proof of Proposition 3.7):

Proposition 3.2. The set E is contained in D+. In particular, W (E) and W ·E
are subsets of V +

0 , that is, |w(x)|1 > 0, for all x ∈ E and w ∈W .

Proof. We need to prove that for any w ∈ W and x ∈ E, the image w(x) stays
in V +

0 . Using a direct induction on the length of w—that is, the minimal length of
the word w in the alphabet S—this is a consequence of the following fact:

∀α ∈ ∆,∀x ∈ E, sα(x) ∈ V +
0 .

Indeed we know from Proposition 3.1 that E is stable by the action of W . Let us
prove this fact. Take x ∈ E, and α ∈ ∆. Consider an injective sequence (ρn)n∈N
in Φ+, such that (ρ̂n) converges to x. We can suppose that (ρn) does not contain α.
Then, for all n, sα(ρn) is in Φ+, and in particular in V +

0 , so sα · ρ̂n is also in V +
0 ,

as well as its limit sα · x. �

Remark 3.3. Although we do not know any better description of D+ than the
definition given here, M. Dyer suggested that if we replace V +

0 with cone(∆) in the
definition of D+, then the convex set we obtain may be equal to conv(E). We do
not know a proof of this statement or even if D+ is equal to this new convex set.

Remark 3.4. Obviously, this action is not faithful when Φ is an affine root system
(since E is finite, see Corollary 2.16). We do not know whether this action is faithful
for infinite irreducible non affine root systems of rank ≥ 3.

The aim behind studying the set E ⊆ V1 is to be able to represent “limit points
of roots” in an affine space. Now we can also study an action of W on these limit
points, and it turns out that the action of the reflections of W on E (and more
generally on Q ∩D) is geometric in essence:

Proposition 3.5 (A geometric description).

(i) Let ρ ∈ Φ, and x ∈ D ∩ Q. Denote by L(ρ̂, x) the line containing ρ̂ and x.
Then:
(a) if B(ρ, x) = 0, then L(ρ̂, x) intersects Q only in x, and sρ · x = x;
(b) if B(ρ, x) 6= 0, then L(ρ̂, x) intersects Q in the two distinct points x

and sρ · x.
(ii) Let ρ1 6= ρ2 ∈ Φ, x ∈ L(ρ̂1, ρ̂2)∩Q and w ∈W . Then w·x ∈ L(w·ρ̂1, w·ρ̂2)∩Q.

To visualize this proposition, we refer to Figure 7 in which we draw the images
of the two yellow points x and y on the edge [β, γ] of conv(∆) under the action
of sα and of sβsα.

Proof. (i) Let ρ ∈ Φ, and x ∈ D ∩Q. First, we know that sρ(x) and sρ · x belong
to Q. Note also that sρ · x ∈ span(ρ, x) ∩ V1 = L(ρ̂, x), so x and sρ · x are always
intersection points of L(ρ̂, x) with Q. Since sρ is a reflection and x ∈ V1, we have

|L(ρ̂, x) ∩Q| = 1 ⇒ sρ · x = x ⇔ sρ(x) = x ⇔ B(ρ, x) = 0 .
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Consider an element uλ = λρ̂+ (1− λ)x in L(ρ̂, x) ∩Q. Then

0 = q(uλ) = λ2q(ρ̂) + 2λ(1− λ)B(ρ̂, x) + (1− λ)2q(x)

= λ2q(ρ̂) + 2λ(1− λ)B(ρ̂, x).

Hence L(ρ̂, x) intersects Q in at most two points. In the case that B(ρ, x) 6= 0,
the two points x, sρ · x are distinct, and thus the third sentence of the present
proof yields that L(ρ̂, x) ∩ Q = {x, sρ · x}. In the case that B(ρ, x) = 0, then
0 = q(uλ) = λ2q(ρ̂), so uλ = x and L(ρ̂, x) ∩Q = {x}.
(ii) Let ρ1 6= ρ2 ∈ Φ. For any x ∈ E ⊆ Q and w ∈ W , since q(x) = B(x, x) =
B(w(x), w(x)) = q(w(x)), it follows that both w(x) and w · x are in Q. Therefore,
we only need to check that if x ∈ L(ρ̂1, ρ̂2) then w · x ∈ L(w · ρ̂1, w · ρ̂2).

Let x ∈ L(ρ̂1, ρ̂2) ∩ Q. Note that x ∈ E as explained in §2.3. Let w ∈ W

and set ρ′1 := w(ρ1) and ρ′2 := w(ρ2). Then w · ρ1 = ρ̂′1 and w · ρ2 = ρ̂′2. Since
x ∈ L(ρ̂1, ρ̂2) ⊆ span(ρ1, ρ2), it follows that w(x) is a point in the plane P spanned

by ρ′1 and ρ′2. Since P ∩ V1 = L(ρ̂′1, ρ̂
′
2), and w · x ∈ P ∩ V1, it follows that

w · x ∈ L(ρ̂′1, ρ̂
′
2) ∩Q as required. �

As we can see on Figure 7, when L(ρ̂, x) intersects Q in two points, one of them
is closest to ρ̂ than the other; the closest point to ρ̂ is then visible from ρ̂. Let us
describe this phenomenon more precisely.

Definition 3.6. We say that x ∈ Q̂ is visible from v ∈ V1 if the segment [v, x]

intersects Q̂ in only one point, which has to be x; in other words, x is visible from v
if and only if [v, x] ∩Q = {x}.

The following proposition sums up what we observe in Figure 7.

Proposition 3.7. Let x ∈ E and ρ ∈ Φ. Then,

(i) x is visible from ρ̂ if and only if B(ρ̂, x) ≥ 0;
(ii) if ρ ∈ Φ+, x is visible from ρ̂ if and only B(ρ, x) ≥ 0;

(iii) if ρ ∈ Φ+ and w ∈ W such that w(ρ) ∈ Φ+, then x is visible from ρ̂ if and
only w · x is visible from w · ρ̂.

Proof. If B(ρ, x) = 0, then by Proposition 3.5, L(ρ̂, x) ∩ Q = {x}, so both state-
ments are obviously true. Assume now that B(ρ, x) 6= 0, which is equivalent by
Proposition 3.5 to |L(ρ̂, x) ∩ Q| = 2. First suppose that ρ ∈ Φ+. So the linear
forms B(ρ, ·) and B(ρ̂, ·) are of the same sign. In this case, the proof follows from
the equality sρ(x) = x−2B(ρ, x)ρ, which implies that when B(ρ, x) < 0, sρ(x) is in
the interior of cone(x, ρ), and when B(ρ, x) > 0, x is in the interior of cone(sρ(x), ρ).
Now, if ρ ∈ Φ−, apply the above case with −ρ ∈ Φ+, which proves (i) and (ii).
For (iii), we use Proposition 3.2: E ⊆ D+, therefore w(x) ∈ V +

0 . So |w(x)|1 > 0,
which means that B(w(x), ·) and B(w · x, ·) have the same sign. Since we have
w(ρ) ∈ Φ+ ⊆ V +

0 , B(·, w(ρ)) and B(·, w · ρ̂) have also the same sign. We conclude
using (i) and (ii). �

We end this discussion by completing the example of infinite dihedral groups.

Example 3.8 (The case of infinite dihedral groups). Let (Φ,∆) be of rank 2 as in
Example 2.1 (illustrated in Figure 2 and Figure 3). Recall that ∆ = {α, β} with

B(α, β) ≤ −1 and that V1 is the line L(α, β). Let x ∈ Q̂ such that B(x, α) ≥ 0,
so x is visible from α. Since sβ · α ∈ V1 = L(α, β) and sβ · β = β ∈ V1 = L(α, β),
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it follows from Proposition 3.5 (ii) that sβ · x ∈ L(α, β) ∩ Q, and similarly that
sα · x ∈ L(α, β) ∩ Q. Now since L(α, β) = L(x, α) = L(x, β), it follows from
Proposition 3.5 (i) that either x = sβ ·x and x = sα ·x or L(α, β)∩Q = {x, sβ ·x} =
{x, sα · x} has cardinality 2. Thus in both case, sβ · x = sα · x, and this point is

visible from β. So the segment [α, x] intersects Q̂ only in x.
We endow the line L(α, β) = V1 with the total order on R by orienting it from α
to β. So from the above discussion we get that

α < x ≤ sα · x < β.

We are particularly interested in the following partition of the segment [α, β]:

[α, β] = [α, x) t [x, sα · x] t (sα · x, β].

It is straightforward computations6 to prove the following nice geometric description

of the action of sα and sβ on Φ̂ t E:

α < sα · β < sαsβ · α < sαsβsα · β < · · · < (sαsβ)n · α < (sαsβ)nsα · β < · · · < x

and

sβ · x = sα · x < · · · < sβ(sαsβ)n · α < (sβsα)n · β < · · · < sβsα · β < sβ · α < β.

Moreover, we note the following two facts:

• the bilinear form B is positive on [α, x[ × [α, x[ and ]sα · x, β] × ]sα · x, β],
and negative on [α, x[× ]sα · x, β];

• the depth (dp) is increasing on [α, x[ ∩ Φ̂ and decreasing on ]sα · x, β] ∩ Φ̂
(where we set dp(ρ̂) := dp(ρ) for ρ ∈ Φ+).

3.2. Fractal description of E.

We know that E is contained in Q̂ (Theorem 2.7), but we could obtain a more
precise inclusion, using the action of W . First of all, E is also included in conv(∆).
Now consider the example illustrated in Figure 7, and suppose that we can act by W

on Q̂, with the action of §3.1, i.e., that Q̂ ⊆ D (this is not true in general). Thus,
as there are no limit points in the red arc which is outside the triangle conv(∆),
there are also no limit points on its image by sα, which is the smaller red arc on
the bottom left; and not either in the subsequent image by sβ . So E seems to be

contained in a fractal self-similar subset F of Q̂, obtained by removing from Q̂ all
these iterated arcs. The rank 4 pictures are even more convincing of this property;
see in particular Figures 9 and 1(b), where the fractal F obtained (an ellipsoid cut

out by an infinite number of planes) looks like an Appolonian gasket drawn on Q̂.

We conjecture that E is actually equal to F . In the particular case where Q̂ is
contained in conv(∆)—e.g., Figure 8, and all the cases of a rank 3 Coxeter group

with classical representation, as Figures 1(a) and 5—, this means that E fills up Q̂.
We also conjecture the following more precise property:

Conjecture 3.9. We say that ∆I ⊆ ∆ is generating if Q̂I := Q̂ ∩ span(∆I) is
included in conv(∆I). Then we have the following properties:

(i) if ∆I ⊆ ∆ is generating, then E(ΦI) = Q̂I ;

6See for instance [Fu12, p.5 Eq. (1.2)] for details.
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(ii) the set E is the topological closure of the fractal self-similar subset F0 of Q̂
defined by:

F0 := W ·

( ⋃
∆I⊆∆

∆I generating

Q̂I

)
.

Example 3.10. In the example pictured in Figure 9, the set F0 defined above
is the fractal constituted by the infinite union of all the circles. The set F (and,
conjecturally, the set E) is the complement, on the red sphere, of the union of the
associated open “disks”.

4. Construction of a dense subset of the limit roots from dihedral
reflection subgroups

As in the previous sections, we fix an infinite based root system (Φ,∆) in (V,B)
with associated Coxeter system (W,S), assuming that ∆ is a basis for V , and we
denote by E = E(Φ) the accumulation set of its normalized roots. In this section,
we construct a nice countable subset of E, easy to describe, and we show its density
in E.

4.1. Main Theorem: E is obtained from dihedral reflection subgroups.
Consider two distinct positive roots ρ1 and ρ2, and define the dihedral reflection

subgroup W ′ := 〈sρ1 , sρ2〉 and

Φ′ := {ρ ∈ Φ | sρ ∈W ′} .

¿From Proposition 1.5, we know that Φ′ is a based root system of rank 2, as-
sociated to the dihedral group W ′. Denote by α, β its simple roots, and sup-
pose that B(α, β) ≤ −1, i.e., that W ′ is infinite and the plane span(ρ1, ρ2) inter-

sects Q \ {0} (see Proposition 1.5 (ii)(a)). Similarly, the line L(ρ̂1, ρ̂2) intersects Q̂

inside V1. Denote by u, v the elements of the intersection L(ρ̂1, ρ̂2)∩Q̂ (where u = v
if and only if B(α, β) = −1). Because of the rank 2 picture (see Examples 2.1 and
3.8 and §2.3), we know that the set E(Φ′) of limit points of normalized roots of W ′

is equal to the finite set {u, v}. This leads to the following natural definition.

Definition 4.1. Let E2 be the subset of E formed by the union of the sets E(Φ′),
where (Φ′,∆′) is any based root subsystem of rank 2 in (Φ,∆). Equivalently,

E2 :=
⋃

ρ1,ρ2∈Φ+

L(ρ̂1, ρ̂2) ∩ Q̂ ,

where L(ρ̂1, ρ̂2) denotes the line containing ρ̂1 and ρ̂2.

Note that E2 is countable, and geometrically easier to describe than the whole
set E. Indeed, it is constructed from Φ with intersections rather than with limits.
Moreover, E2 = E when (Φ,∆) is affine, or of rank 2. Figure 10 gives an example of
construction of some points of E2. Surprisingly, E2 still carries all the information
of E, as implied by the following theorem.

Theorem 4.2. Let Φ be an (infinite) based root system, E the set of limit points
of its normalized roots. Then the union E2 of all limit roots arising from dihedral
reflection subgroups is dense in E.
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α β

γ

sα sβ4

sγ
4 4

Figure 10. Geometric construction
of E2, for the based root system with
labels 4, 4, 4 (roots of depth ≤ 5 in
blue, some elements of E2 are in yellow
diamonds).

Q̂

α

un
xn

`

Figure 11. Construction of a se-
quence of elements of E2 (xn, in yel-
low diamonds) from a sequence of el-

ements of Φ̂ (un, in blue), both con-
verging to ` ∈ E.

Remark 4.3. Since E is a limit set, it is closed, so the theorem implies that E is
the closure of E2. Note also that if we define similarly Ek as the subset of limit
points arising from rank k reflection subgroups (with k ≥ 2), then Ek is dense in E
too (since it contains E2). However, this is not true if we consider only parabolic
subgroups. For instance, any proper parabolic subgroup of an irreducible affine
Coxeter group is finite and therefore does not provide any limit point (contradicting
Corollary 2.16).

It turns out that an even smaller subset than E2 is enough to recover E. De-
fine E◦2 by using the lines passing through a normalized root and a simple root:

E◦2 :=
⋃
α∈∆
ρ∈Φ+

L(α, ρ̂) ∩ Q̂ ⊆ E2.

Proposition 4.4. The set E2 is the W -orbit of E◦2 for the action defined in §3.1:

E2 = W · E◦2 .

Proof. Let x ∈ E2 and ρ1, ρ2 ∈ Φ such that x ∈ L(ρ̂1, ρ̂2). Since Φ = W (∆),
there is w in W such that α := w(ρ1) ∈ ∆. By Proposition 3.5 (ii), we have

that w · x ∈ L(α̂, ŵ(ρ2)) ∩Q, which proves that w · x ∈ E◦2 . �

Theorem 4.2 is in fact a direct consequence of the following stronger property.

Theorem 4.5. Let Φ be an (infinite) based root system, E its set of limit points
of normalized roots, and E◦2 the subset of E defined above. Then E◦2 is dense in E.

The rest of this section is devoted to the proof of Theorem 4.5. In regard to
Proposition 2.15, we assume that the based root system (Φ,∆), and the Coxeter
system (W,S), are irreducible.

Consider an element ` of E. By definition, there exists a sequence of normalized

roots (un)n∈N ⊆ Φ̂ converging to `. We want to construct, from (un), a new
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sequence of elements of E◦2 converging to ` as well. The geometric idea is quite
simple, as illustrated in Figure 11: we construct xn as the “right” intersection
point of the line L(α, un) with Q, for an α ∈ ∆ well chosen. The core of the proof
is to show that it is always possible to find such a simple root that makes the
construction work.

We proceed in two steps, detailed in the next subsections.

4.2. First step of proof: when the limit root is outside the radical.
Denote by V ⊥ = {v ∈ V |B(v, u) = 0, ∀u ∈ V } the radical of the bilinear

form B.

Proposition 4.6. Let ` ∈ E. If ` is not in the radical V ⊥, then ` is in the closure
of E◦2 .

This proposition is a consequence of the following construction.

Lemma 4.7. Let (ρn)n∈N be a sequence in Φ+, such that ρ̂n converges to a limit `
in E. Suppose that there exists α in ∆, such that B(α, `) 6= 0. Then, there exists a
sequence (xn)n∈N converging to `, such that, for any n large enough, xn lies in the
intersection L(α, ρ̂n) ∩Q.

If ` ∈ E and ` /∈ V ⊥, then we are in the hypothesis of the lemma since ∆
spans V . Moreover, by definition of E◦2 , the constructed sequence (xn) eventually
lies in E◦2 . Thus, Proposition 4.6 follows directly from the lemma, which we prove
now.

Proof. Since B(α, `) 6= 0, we get from Proposition 3.5 (ii) that L(α, `)∩Q contains
two points (see Figure 11). Consider an element x ∈ V1 \ {α}, and let us find the
points of L(α, x) ∩Q. Take an element uλ in the line L(α, x)

uλ = λα+ (1− λ)x, with λ ∈ R.
Then a quick computation gives

(4.1) q(uλ) = 0 ⇔ q(α− x)λ2 + 2B(x, α− x)λ+ q(x) = 0

(where q is the quadratic form of B). For x = `, we know that Equation (4.1)
has two solutions for λ. So by continuity, there exists a neighbourhood Ω` of `
in V1, such that, for any x ∈ Ω`, Equation (4.1) has two solutions as well (and
then q(α − x) 6= 0). Computing these solutions in function of x, we find, after
simplification,

λ±(x) =
q(x)−B(α, x)±

√
B(α, x)2 − q(x)

q(α− x)
,

and the two intersection points of L(α, x) with Q (for x ∈ Ω`) are given by u+(x)
and u−(x), where

uε(x) = λε(x)α+ (1− λε(x))x, for ε = + or − .
For x = `, the intersection points are obviously ` and sα · `; so, in regard to
Proposition 3.7, either u+(`) = ` if B(α, `) > 0 (that is, when ` is visible from α),
or u−(`) = ` if B(α, `) < 0 (that is, when sα ·` is visible from α). Define, for x ∈ Ω`,

fα(x) = uε(x) = λε(x)α+ (1− λε(x))x ,

where ε = + if B(α, `) > 0, and ε = − if B(α, `) < 0. Then,

• fα(`) = `;
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• fα is a continuous map on Ω`;
• for all x ∈ Ω`, fα(x) ∈ L(α, x) ∩Q.

Now consider a sequence (ρn)n∈N in Φ+, such that ρ̂n converges to `. For n large
enough, ρ̂n ∈ Ω`, and we set xn = fα(ρ̂n). Then xn ∈ L(α, ρ̂n) ∩ Q, and by
continuity of fα, xn converges to fα(`) = `. �

4.3. Second step of proof: when the limit root is inside the radical.
To finish the proof, we only need to deal with the case where ` is in the radical V ⊥

of the form B. Since ` is also in cone(∆), the following proposition, which is the
same as [Kra09, Lemma 6.1.1], implies that this case can only happen when Φ is
an affine based root system.

Proposition 4.8. Let Φ be an (infinite) irreducible based root system. If Φ is not
affine, then

V ⊥ ∩ cone(∆) = {0} .

The proof of this statement is an application of the Perron-Frobenius theorem;
we refer to [Kra09, Lemma 6.1.1] for details.

So we focus on the last remaining case: Φ is an irreducible affine root system. In
this case, by Corollary 2.16, E is a singleton, so it is sufficient to check that E◦2 is
nonempty. But E◦2 is empty if and only if E2 is empty, if and only if any reflection
subgroup of W of rank 2 is finite; and this cannot happen because of the following
classical property.

Lemma 4.9. Let W be a Coxeter group. If every reflection subgroup of rank 2
of W is finite, then W is finite.

Proof. We use the concept of small roots, described for instance in [BB05, §4.7]; all
the references in this proof are to this book. If every reflection subgroup of rank 2
of W is finite, then any covering edge of the root poset on Φ+ (see Def. 4.6.3) is
a short edge (see §4.7), and any root is a small root. But it is known that the set
of small roots is finite (Theorem 4.7.3, taken from Brink-Howlett [BH93]), so Φ is
finite and W must be finite as well. �

This concludes the proof of Theorem 4.5 and therefore the proof of Theorem 4.2.

5. How to construct the limit roots for reflection subgroups

In this section, we explain how to slightly extend the definition of E so that it
holds for a reflection subgroup W ′ of a Coxeter group W . To do so we extend the
definition of limit roots such that it applies even when the set of simple roots is not
a basis. In the last subsection, we also detail the relations between the set of limit
roots associated to a reflection subgroup of W (especially to a parabolic subgroup)
and the set E associated to W .

5.1. Root subsystems of a based root system.
First, we define the notion of a root subsystem. Let (Φ,∆) be a based root sys-

tem of (V,B) with associated Coxeter system (W,S), according to Definition 1.2.
Consider a finitely generated reflection subgroup W ′ of W , together with its canon-
ical set S′ of Coxeter generators, as explained in §1.2. There is a natural way to
construct a root system for W ′ from the one for W . If

Φ′ := {ρ ∈ Φ | sρ ∈W ′} and ∆′ := {ρ ∈ Φ | sρ ∈ S′},
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then (Φ′,∆′) is a based root system of (V,B) with associated Coxeter system (W ′, S′)
(see [BD10, Lemma 3.5] for details). Note that ∆′ ⊆ Φ+ does not have to inter-
sect ∆. We call (Φ′,∆′) a based root subsystem of (Φ,∆). In §2.3, we already men-
tioned the specific case of standard parabolic root subsystems, which correspond to
standard parabolic Coxeter subgroups of W .

The simplest definition of E(Φ′) in this setting is to consider the subset of E(Φ)

consisting of all the points which are limits of sequences in Φ̂′. A natural question
arises: is this definition consistent with the intrinsic one, when we consider (Φ′,∆′)
as a root system by itself? The first problem here is that, in §2, we only defined E
when the set of simple roots is linearly independent, and this is not always the case
for (Φ′,∆′), as illustrated in the following example.

Example 5.1. Consider the Coxeter group W of rank 3 with S = {s, t, u} and
ms,t = mt,u = ms,u = 4 (whose Coxeter diagram is on Figure 10). Let (V,B) be
the classical geometric representation of W . Consider the reflection subgroup W ′

generated by S′ = {s, u, tst, tut}. It is easy to check that its simple system ∆′

is {αs, αu, t(αs), t(αu)} and satisfies the conditions of Definition 1.2 (Condition (i)
is critical here). So (W ′, S′) is a Coxeter group of rank 4 and V is a geometric W ′-
module of dimension 3 with based root system (Φ′,∆′) where Φ′ is the set of roots ρ
in Φ such that sρ ∈ W ′. Consider now the matrix A = (B(αx, αy))x,y∈S′ , written
accordingly to (αs, αu, t(αs), t(αu)):

A =


1 −

√
2

2 0 −1−
√

2
2

−
√

2
2 1 −1−

√
2

2 0

0 −1−
√

2
2 1 −

√
2

2

−1−
√

2
2 0 −

√
2

2 1

 .

This matrix satisfies Equation (1.2), so we can construct (as in §1.4) the canon-
ical geometric W -module (VA, BA), of dimension 4, associated to W ′. Observe
that (VA, BA) is not the classical geometric representation of W ′.

Such examples explain why a satisfying definition of a based root system should
not require the simple roots to form a basis, but only to be positively indepen-
dent (Condition (i) in Definition 1.2). They also raise the question of the possible
relations between (V,B) and (VA, BA) as W ′-modules (see §5.3).

5.2. How to cut the rays of roots in general: hyperplanes transverse
to Φ+.

In §2 we constructed the set E of limit roots from normalized roots, by cutting
the rays of positive roots with the hyperplane V1. To be able to define properly E
in the case where ∆ is not necessarily a basis, we need to find analogues for the
cutting hyperplane V1 and the normalization map ·̂.

Even when ∆ is a basis, it is natural to ask the following question: since Φ̂
is an affine representative of PΦ obtained by “cutting” Φ by a particularly well-
chosen affine hyperplane, what happens if we change the affine hyperplane, i.e.,
the representative of PΦ? For instance, in the case of an affine dihedral group (see
Example 1.4), if we cut the rays of Φ by an affine line directed by α+β (thus parallel
to the radical of B), then the points representing the roots are not all contained in
the convex hull of the points representing the simple roots, and these normalized
roots diverge to infinity. This fact suggests the following general definition, that
also takes care of the case where ∆ is not a basis (but still positively independent).
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Definition 5.2. Let (Φ,∆) be a based root system in (V,B). We call an affine
hyperplane H transverse to Φ+ if the intersection of H with any ray R+α directed
by a simple root α ∈ ∆ is a nonzero point, i.e., if R+∗α ∩ H is a singleton for
all α ∈ ∆.

If ∆ is a basis for V , the affine hyperplane V1 we used to cut the rays of Φ
is obviously transverse. In the case where ∆ is only positively independent, the
definition of V1 does not work (it could be equal to V ). But transverse hyper-
planes still exist. Consider a linear hyperplane H0, separating Φ+ and Φ−: it
exists because ∆ is positively independent (see Remark 1.3). Then the affine hy-
perplane H :=

∑
α∈∆ α+H0 is transverse.

Let H be a transverse hyperplane directed by a hyperplane H0. Let H+
0 be

the open halfspace supported by H0 and containing H (H is parallel to H0 and 0
cannot be in H by definition). So H+

0 contains also ∆ and therefore Φ+, which is a
subset of cone(∆). In particular, we obtain easily the following statement: an affine
hyperplane H is transverse if and only if R+∗β ∩H is a singleton for all β ∈ Φ+.

Like for V1, a normalization map can be applied to Φ:

πH : V \H0 → H

where πH(v) is the intersection point of Rv with H. For instance, when ∆ is a
basis, πV1

(v) = v̂. Note that since H is transverse, πH(Φ) is contained in the poly-
tope conv(πH(∆)). Denote by E(Φ, H) the set of accumulation points of πH(Φ).
The following straightforward proposition states that the topology of our object of
study, E(Φ), does not depend on the choice of the transverse hyperplane chosen to
cut the rays of Φ, as suggested by the point of view of projective geometry.

Proposition 5.3. Let (Φ,∆) be a based root system, and let H, H ′ be two hyper-
planes, transverse to Φ+. Then πH induces a homeomorphism from conv(πH′(∆))
to conv(πH(∆)), whose inverse is the restriction of πH′ . Moreover, πH maps (bi-
jectively) πH′(Φ) to πH(Φ) and E(Φ, H ′) to E(Φ, H).

Proof. For v ∈ V , πH(v) and πH′(v) (when they are defined) are colinear to v.
As ∆ is contained in V \H0, so are πH′(∆) and conv(πH′(∆)). So, the mentioned
restrictions of πH and πH′ are, by construction, continuous, mutual inverses, and
swap πH′(Φ) and πH(Φ). Consequently, they also swap the sets of limit points of
these two sets, i.e., E(Φ, H ′) and E(Φ, H). �

Remark 5.4. The geometric action of W defined in §3.1 does not depend on the
choice of the transverse hyperplanes employed to cut Φ: if H and H ′ are two
hyperplanes that are transverse to Φ+, then the map πH′ induces by restriction an
isomorphism of W -sets from πH(Φ) t E(Φ, H) to πH′(Φ) t E(Φ, H ′).

Remark 5.5. Changing the transverse hyperplane can still change the geometry
overall. For instance, consider a rank 3 based root system with B of signature (2, 1),
so that Q is a circular cone. Let H be a transverse affine plane. In general, the
intersection Q ∩ H of H with the isotropic cone Q can be an ellipse, a parabola
or an hyperbola. In the case of an hyperbolic cut, only one branch intersects
conv(πH(∆)). In a following paper [DHR13], we prove and use the fact that for a
hyperbolic group of rank 3, there always exists a hyperplane H, transverse to Φ+,
such that Q ∩H is a circle (the analogous property is actually valid for hyperbolic
groups of higher rank).
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For now, we apply this result to explain in the following subsection that all the
results of §§2-3-4 transfer easily to the general case where ∆ is not necessarily a
basis.

5.3. From the linearly independent case to the positively independent
case.

In the case where ∆ is not a basis, there is another way to study the limit points
of roots (without using general transverse hyperplanes), by pulling back all the
structure to a space where ∆ is a basis, using the canonical geometric W -module
defined in §1.4. let us first give the following definition (motivated by Example 5.1).

Definition 5.6. Let (W,S) be a Coxeter group and A = (as,t) be a matrix that
satisfies Equation (1.2). A pair (V,B) is a geometric W -module associated to A if

(i) V is a finite dimensional real vector space containing a subset ∆ = {αs | s ∈ S}
that is positively independent;

(ii) B is a bilinear form such that B(αs, αt) = as,t for all s, t ∈ S.

In this case, since ∆ satisfies the requirement of Definition 1.2, (V,B) is a geometric
W -module (as in Definition 1.2); the associated based root system is called the based
root system associated to (V,B).

Note that any geometric W -module (V,B) of Definition 1.2 is a geometric W -
module associated to a certain matrix A determined by Conditions (ii) and (iii) of
Definition 1.2.

Obviously, for each matrix A satisfying Equation (1.2), the simplest geometric
W -module associated to A is the “canonical” geometric W -module (VA, BA) (de-
fined in §1.4), where we declare ∆ as a basis. However, as Example 5.1 shows, the
set of geometric modules (V,B)—up to isomorphism—associated to A may contain
more than the class of (VA, BA). Still, the canonical geometric W -module associ-
ated to A carries all the combinatorics of the based root system of A, as described
in the following proposition.7

Proposition 5.7. Let (W,S) be a Coxeter system and A be an associated ma-
trix satisfying Equation (1.2). Let (VA, BA) be the canonical geometric W -module,
and (V,B) be a geometric W -module associated to A, with based root system (Φ,∆).
Then there is a morphism of W -modules ϕA : VA → V , preserving B, that restricts
to a bijection from ΦA to Φ, such that ϕA(∆A) = ∆ and ϕA(Φ+

A) = Φ+.

Proof. Write ∆ = {αs | s ∈ S} and ∆A = {γs | s ∈ S}. So

B(αs, αt) = as,t = BA(γs, γt).

Now let
ϕA : VA → V

be the linear map defined by mapping any element γs of the basis ∆A of VA to αs.
We have B

(
ϕA(γs), ϕA(γt)

)
= B(αs, αt) = BA(γs, γt); so that it is easy to check

that ϕA is a morphism of W -modules, preserving B.
The fact that ϕA restricts to a bijection from ΦA to Φ is nontrivial, see [Fu12,
Proposition 2.1]. Finally, as by construction we have ϕA(∆A) = ∆, we get directly
that ϕA also maps Φ+

A to Φ+. �

7This proposition was suggested by M. Dyer (personal communication, September 2011), see
also [Fu12, Proposition 2.1].
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Proposition 5.7 tends to imply that in the previous sections we did not lose much
generality by studying only root systems where ∆ is a basis.

Indeed, let (V,B) be a geometric W -module with based root system (Φ,∆),
where ∆ is not necessarily linearly independent. Then we know that (V,B) is a
geometric W -module associated to a matrix A; but we can also construct, from §1.4,
the canonical geometric W -module (VA, BA) and the based root system (ΦA,∆A)
for which ∆A is a basis. The proposition above tells us that the map ϕA is a mor-
phism of W -modules carrying bijectively the combinatorics of the root system ΦA
to that of the root system Φ′. Moreover, since ϕA is a linear map, it is continuous,
and the topological properties we established in VA are carried to V through ϕA.

In VA, the simple system ∆A is a basis, so we can apply our usual construction

to (ΦA,∆A), building the hyperplane (VA)1, the normalized roots Φ̂A and the limit
roots E(ΦA). Now choose a hyperplane H in V , transverse to Φ+. Thanks to
Proposition 5.7, we see that

conv
(
πH(∆)

)
= πH ◦ ϕA

(
conv(∆A)

)
and πH(Φ) = πH ◦ ϕA(Φ̂A).

Since ϕA and πH are continuous, πH ◦ ϕA is continuous. Therefore we obtain:

E(Φ, H) = πH ◦ ϕA
(
E(ΦA)

)
.

Thus, the sets of normalized roots and limit roots of a based root system (Φ,∆)
attached to a matrix A are the images of the same objects for the based root
system (ΦA,∆A). Overall, this means that all the properties we proved in the
previous sections in the case where ∆ is a basis are simply transferred to the general
case.

However it is not clear whether the map πH◦ϕA induces a bijection between E(ΦA)
and E(Φ, H): we do not know if in general E(Φ, H) is a faithful image of E(ΦA);
but E(Φ, H) is always a projection of E(ΦA) by construction.

5.4. On limit roots for reflection subgroups.
We now address how to define the limit roots for a reflection subgroup. Let (Φ,∆)

be a based root system of (V,B) with associated Coxeter system (W,S). Fix H a
hyperplane that is transverse to Φ+, according to Definition 5.2 (e.g., take H = V1

if ∆ is a basis). Let (Φ′,∆′) be a based root subsystem of (Φ,∆). Then:

• The hyperplane H is also transverse to Φ′+.
• So, we define intrinsically the set E(Φ′, H), constituted with the limit points

of πH(Φ′).
• Obviously E(Φ′, H) is a subset of E(Φ, H).

So, as wanted in §5.1, we get an intrinsic definition of the limit roots for a root
subsystem, which is compatible with the inclusion inside the whole set of limit
roots. Moreover, thanks to §5.3, if we set

• A the matrix associated to the root subsystem (Φ′,∆′),
• (VA, BA) the canonical geometric W ′-module for A, with based root system

(ΦA,∆A),
• ϕA : VA → V the associated map defined in Proposition 5.7,
• E(ΦA) the set of limit roots for (ΦA,∆A),

then E(Φ′, H) is the renormalization of the image under ϕA of E(ΦA)

E(Φ′, H) = πH(ϕA(E(ΦA))).

In the following, to lighten the notations, the cutting hyperplane H is implicit.
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The set E(Φ′) is always included in conv(∆′) (and in E(Φ)). One can wonder
whether the inclusion E(Φ′) ⊆ E(Φ) ∩ conv(∆′) is an equality. Consider the most
simple case, where the reflection subgroup W ′ is in fact a standard parabolic sub-
group. Let I be a subset of S, ∆I = {αs | s ∈ I} and ΦI its orbit under WI = 〈I〉
(i.e., a parabolic root subsystem). Denote by FI the convex hull of ∆I , and E(ΦI)

the set of accumulation points of Φ̂I , which lives inside FI . In this case, the ques-
tion is: if a limit root lies in the face FI of the simplex conv(∆), is this a limit
point of normalized roots of WI? Surprisingly enough, the answer can be negative,
as shown by the following counterexample.

Example 5.8. Take the rank 5 root system Φ with ∆ = {α, β, γ, δ, ε} and the labels
mα,β = mδ,ε =∞, mβ,γ = mγ,δ = 3, and the others equal to 2. Take ∆I = ∆\{γ},
so that WI is the direct product of two infinite dihedral groups. Then we have
E(ΦI) = {α+β

2 , δ+ε2 } (see §2.3). But if we consider ρn = (sαsβsεsδ)
n(γ), it is easy

to check that ρ̂n tends to α+β+δ+ε
4 , that lies in E(Φ) ∩ FI but not in E(ΦI).

In a subsequent paper [DHR13], we show that this property holds nevertheless
for the set E2 studied in §4, i.e., E2(ΦI) = E2(Φ)∩FI . We also define other natural
smaller dense subsets of E for which this property of parabolic restriction works.
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