
Softw Syst Model (2012) 11:111–125
DOI 10.1007/s10270-010-0181-9

THEME SECTION

Reusable model transformations

Sagar Sen · Naouel Moha · Vincent Mahé ·
Olivier Barais · Benoit Baudry · Jean-Marc Jézéquel

Received: 1 November 2009 / Revised: 29 September 2010 / Accepted: 4 October 2010 / Published online: 11 November 2010
© Springer-Verlag 2010

Abstract Model transformations written for an input
metamodel may often apply to other metamodels that share
similar concepts. For example, a transformation written to
refactor Java models can be applicable to refactoring UML
class diagrams as both languages share concepts such as clas-
ses, methods, attributes, and inheritance. Deriving motivation
from this example, we present an approach to make model
transformations reusable such that they function correctly
across several similar metamodels. Our approach relies on
these principal steps: (1) We analyze a transformation to
obtain an effective subset of used concepts. We prune the
input metamodel of the transformation to obtain an effec-
tive input metamodel containing the effective subset. The
effective input metamodel represents the true input domain
of transformation. (2) We adapt a target input metamodel by
weaving it with aspects such as properties derived from the

Communicated by Tony Clark and Jorn Bettin.

S. Sen (B) · N. Moha · V. Mahé · O. Barais · B. Baudry ·
J.-M. Jézéquel
INRIA Rennes, Bretagne Atlantique/IRISA, Université Rennes 1,
Triskell Team, Campus de Beaulieu, 35042 Rennes Cedex, France
e-mail: ssen@irisa.fr

N. Moha
e-mail: moha@irisa.fr

V. Mahé
e-mail: vmahe@irisa.fr

O. Barais
e-mail: barais@irisa.fr

B. Baudry
e-mail: bbaudry@irisa.fr

J.-M. Jézéquel
e-mail: jezequel@irisa.fr

effective input metamodel. This adaptation makes the tar-
get metamodel a subtype of the effective input metamodel.
The subtype property ensures that the transformation can
process models conforming to the target input metamodel
without any change in the transformation itself. We validate
our approach by adapting well known refactoring transfor-
mations (Encapsulate Field, Move Method, and Pull Up
Method) written for an in-house domain-specific modeling
language (DSML) to three different industry standard meta-
models (Java, MOF, and UML).

Keywords Adaptation · Aspect weaving · Genericity ·
Metamodel pruning · Model typing · Model transformation ·
Refactoring

1 Introduction

Model transformations are software artifacts that under-
pin complex software system development in Model-driven
Engineering (MDE). Making model transformations reus-
able is the subject of this paper.

Software reuse in general has been largely investigated in
the last two decades by the software engineering community
[1,2]. Basili et al. [3] demonstrate the benefits of software
reuse on the productivity and quality in object-oriented sys-
tems. However, reuse is a new entrant in the MDE commu-
nity [4]. One of the primary difficulties in making a model
transformation reusable across different input domains is the
difference in structural aspects between commutable/inter-
changeable input metamodels. Consider an example where
model transformation reuse becomes obvious and yet is
infeasible due to structural differences in commutable input
metamodels. The example consists of a model transforma-
tion to refactor models of class diagrams, which is possible in

123



112 S. Sen et al.

Fig. 1 Overview of the approach

several modeling languages supporting the concepts/types of
classes, methods, attributes, and inheritance. For instance, the
metamodels for the languages Java, MOF (Meta Object Facil-
ity), and UML all contain concepts/types needed to specify
classes. If we emphasize the necessity for reuse then the
refactoring transformation must be intuitively adaptable to
all three metamodels as they manipulate similar models con-
taining objects of similar types. Hence, we ask: How do we
reuse one implementation of a model transformation for other
type-theoretically similar modeling languages?

Our aim is to enable flexible reuse of model transforma-
tions across various type-theoretically similar metamodels to
enhance productivity and modularity in MDE. The aim is in
line with the effort of the model-driven engineering commu-
nity to provide methods and techniques for the development
of tool chains through model-driven interoperability. In this
paper, we present an approach to make legacy model trans-
formations reusable for different target input metamodels.
We do not touch the body of the legacy transformation itself
but transform a target input metamodel such that it becomes a
subtype of the effective subset of the transformation’s input
metamodel. We call the effective subset an effective input
metamodel which represents the true input domain of the
legacy model transformation. By definition in model type
theory [5] the subtype property or the type conformance per-
mits the legacy model transformation to process pertinent
models conforming to the target input metamodel. Concisely,
our approach, depicted in Fig. 1, follows these steps: (1)
We perform a static analysis of the legacy transformation to
extract the types and properties required in the transforma-
tion. (2) We automatically obtain an effective input meta-
model via metamodel pruning [6] based on the types and
properties required in the transformation. Metamodel prun-
ing [6] is an algorithm that conserves a set of required types

and properties (given as input to metamodel pruning) and
all its obligatory dependencies while it prunes away every
other type and property. Hence, it outputs an effective subset
metamodel of a possible large input metamodel such as the
UML. This step drastically reduces the adaptation effort in
the next step when dealing with large metamodels such as
UML where model transformations often use only a small
subset of the entire metamodel. (3) We adapt a target input
metamodel by weaving it with structural aspects from the
effective input metamodel. We also weave accessor func-
tions for these structural aspects that seek information from
related types in the target input metamodel. For example, if
Java is the target input metamodel and UML is the origi-
nal input metamodel for a legacy transformation then values
from properties in Java input models must stay synchronized
with UML properties actually handled by the transformation.
Moreover, the Java input models must temporarily (during
execution) contain properties derived from UML that are
identifiable by the transformation for UML models. These
identifiable properties in fact are part of the effective input
metamodel. Therefore, the woven aspects are derived prop-
erties and accessor functions that help make the Java meta-
model a subtype of UML. (4) We use model typing [7] to
verify the type conformance between the woven target input
metamodel and the effective input metamodel. The woven
target input metamodel must be a subtype of the effective
input metamodel. Our approach is infeasible when the target
input metamodel cannot be adapted to show type confor-
mance with the effective input metamodel for some type(s)
used in the transformation. (5) Replacing the original input
metamodel with the woven target input metamodel at exe-
cution allows the legacy model transformation to process
relevant input models conforming to the target input meta-
model.

123



Reusable model transformations 113

The scientific contribution of our approach is based on a
combination of two recent ideas; namely, metamodel prun-
ing [6] and manual specification of generic model refact-
orings [8]. In [8], the authors manually specify a generic
model transformation for a hand-made generic metamod-
el that is adapted to various target input metamodels. The
generic metamodel, presented in [8], is a lightweight meta-
model that contains a minimum set of concepts (such as clas-
ses, methods, attributes, and parameters) common to most
metamodels for object-oriented design/development such as
Java and UML. In our work, we automatically synthesize an
effective input metamodel via metamodel pruning [6], which
is in contrast to manually specifying a generic metamodel as
done in [8]. Further, the effective input metamodel is derived
from an arbitrary input metamodel of a legacy model trans-
formation and not from a domain-specific generic metamodel
(for refactoring) as in [8]. The adaptation of target input meta-
models to the effective input metamodel via aspect weaving
remains similar to the approach in [8].

We demonstrate our approach on well known model trans-
formations; namely, refactorings [9]. A refactoring is a par-
ticular transformation performed on the structure of software
to make it easier to understand and modify without chang-
ing its observable behavior [9]. For example, the refactoring
Pull Up Method consists of moving methods to the super-
class if these methods have the same signatures and/or results
on subclasses [9]. We validate our approach by performing
some experiments where three well known legacy refact-
orings (Encapsulate Field, Move Method, and Pull Up
Method) are adapted to three different industrial metamodels
(Java, MOF, and UML). The legacy refactorings are written
in the transformation language Kermeta [10].

This article is organized as follows. In Sect. 2, we describe
motivating examples that illustrate the key challenges. In
Sect. 3, we introduce foundations necessary to describe our
approach. The foundations include a description of the exe-
cutable metamodeling language, Kermeta, highlighting some
of its new features including the notion of model typing, and
a presentation of meta-model pruning to obtain an effective
input metamodel. Section 4 gives a general step-by-step over-
view of our approach. Section 5 describes the experiments
that we performed for adapting three legacy refactoring trans-
formations (Encapsulate Field, Move Method, and Pull
Up Method) initially described for an in-house DSML to
three different industry standard metamodels (Java, MOF,
and UML). Section 6 surveys related work. Section 8 con-
cludes and presents future work.

2 Motivating examples

Let us suppose that a company needs to economically
upgrade its legacy transformations from an old input meta-

model to a new but similar industry standard metamodel such
as the latest UML. The old metamodel may either be from
an in-house DSML or an old version of an industry standard
such as UML. The legacy transformation itself must remain
unchanged.

Let us now consider an example of a model transforma-
tion that can refactor the in-house DSML. The DSML itself
is used to model software structure and behaviour. Our ulti-
mate objective is to make this model transformation reusable
and applicable across different industry standard metamod-
els. Specifically, we describe the Pull Up Method refactoring
transformation which we intend to use for models from three
different metamodels (Java, MOF, and UML).

2.1 The Pull Up Method refactoring

The Pull Up Method refactoring consists of moving meth-
ods to the superclass when methods with identical signa-
tures and/or results are located in sibling subclasses [9]. This
refactoring aims to eliminate duplicate methods by central-
izing common behavior in the superclass. A set of precondi-
tions must be checked before applying the refactoring. For
example, one of the preconditions to be checked consists of
verifying that the method to be pulled up is not a construc-
tor. Another precondition checks that the method does not
override a method of the superclass with the same signature.
A third precondition consists of verifying that methods in
sibling subclasses have the same signatures and/or results.

The example of the Pull Up Method refactoring presented
in [11] of a Local Area Network (LAN) application [12] and
adapted in Fig. 2 shows that the method bill located in the
classes PrintServer and Workstation is pulled up to
their superclass Node.

The Pull Up Method refactoring is written for an in-house
DSML for the INRIA team TRISKELL from Rennes, France
that contains the notions of classes, attributes, inheritance,
methods and several other concepts related to contracts and
verification that are not pertinent to refactoring. The in-house
DSML does not conform to an industry standard metamodel
such as UML.

2.2 Three different metamodels

Our goal is to make the refactoring reusable across three
different target input metamodels (Java, MOF, and UML),
which support the definition of object-oriented structures
(classes, methods, attributes, and inheritance). The Java
metamodel described in [13] represents Java programs with
some restrictions over the Java code. For example, inner
classes, anonymous classes, and generic types are not mod-
eled. As a MOF metamodel, we consider the metamodel of
Kermeta [10], which is an extension of MOF [14] with an
imperative action language for specifying constraints and

123



114 S. Sen et al.

Fig. 2 Class diagrams of the LAN application before and after the Pull Up Method Refactoring of the Method bill

Fig. 3 Subset of the Java
Metamodel

operational semantics of metamodels. The UML metamod-
el studied in this paper corresponds to version 2.1.2 of the
UML specification [15]. This Java metamodel is one possi-
ble specification for Java programs; we may use another Java
metamodel based on the specification of the Abstract Syn-
tax Tree Metamodel (ASTM) provided by the OMG ADM
(Architecture-Driven Modernization) group [16].

We provide an excerpt of each of these metamodels in
Figs. 3, 4, and 5. These metamodels share some common-
alities, such as the concepts of classes, methods, attributes,
parameters, and inheritance (highlighted in grey in the fig-
ures). These concepts are necessary for the specification of
refactorings, and in particular for the Pull Up Method refac-
toring. However, they are represented differently from one
metamodel to another as detailed in the next paragraph.

2.3 Problems

We encounter several problems if we intend to specify a com-
mon Pull Up Method refactoring for all three metamodels:

– The metamodel elements (such as classes, methods,
attributes, and references) may have different names.
For example, the concept of attribute is named Prop-

erty in the MOF and UML metamodels whereas in the
Java metamodel, it is named Variable.

– The types of elements may be different. For example,
in the UML metamodel, the attribute
visibility of Operation is an enumeration of
type VisibilityKind whereas the same attribute in
the Java metamodel is of type String.

– There may be additional or missing elements in a given
metamodel compared to another. For example, Class
in the UML metamodel and ClassDefinition in the
MOF metamodel have several superclasses
whereas Class in the Java metamodel has only one.
Another example is the ClassDefinition in MOF,
which is missing an attribute visibility compared
to the UML and Java metamodels.

– Opposites may be missing in relationships. For exam-
ple, the opposite of the reference related to the notion
of inheritance (namely, superClass in the MOF and
UML metamodels, and extends in the Java metamod-
el) is missing in the three metamodels.

– The way metamodel classes are linked together may
be different from one metamodel to another. For exam-
ple, the classesOperation and Variable in the Java
metamodel are not directly accessible from Class as

123



Reusable model transformations 115

Fig. 4 Subset of the MOF
Metamodel

Fig. 5 Subset of the UML Metamodel

opposed to the corresponding classes in the MOF and
UML metamodels.

These differences among these three metamodels make it
impossible to directly reuse a Pull Up Method refactoring
across all three metamodels. Hence, we are forced to write
three different implementations of the same refactoring trans-
formation for each of the three metamodels. We address this
problem with our approach in Sect. 4. In the approach we
make a single transformation reusable across different meta-
models without rewriting the transformation. We only adapt

different target input metamodels such that they become a
subtype of the input metamodel of the transformation.

3 Foundations

This section presents the foundations required to explain the
approach presented in Sect. 4. We describe the model trans-
formation language Kermeta in Sect. 3.1. We present relevant
Kermeta features that allow weaving aspects into target input
metamodels in Sect. 3.2. We describe Kermeta’s implemen-
tation of model typing in Sect. 3.3 which helps us perform

123



116 S. Sen et al.

all type conformance operations in our approach. Finally,
in Sect. 3.4 we present the metamodel pruning algorithm
to obtain the effective input metamodel to be used in the
approach.

3.1 Kermeta

Kermeta is a language for specifying metamodels, models,
and model transformations that are compliant to the MOF
standard [14]. The object-oriented meta-language MOF sup-
ports the definition of metamodels in terms of object-
oriented structures (packages, classes, attributes, and
methods). It also provides model-specific constructions such
as containments and associations between classes. Kermeta
extends the MOF with an imperative action language for
specifying constraints and operational semantics for meta-
models [17]. Kermeta is built on top of Eclipse Modeling
Framework (EMF) within the Eclipse development environ-
ment. The action language of Kermeta provides mechanisms
for dynamic binding, reflection, and exception handling. It
also includes classical control structures such as blocks, con-
ditionals, and loops. We note that Kermeta is used to specify
the refactorings used in our examples in Sect. 5.

3.2 Features of Kermeta

The action language of Kermeta provides some features for
weaving aspects, adding derived properties, and specify-
ing constraints such as invariants and pre-/post-conditions.
Indeed, the first feature of Kermeta is its ability to extend an
existing metamodel with new structural elements (classes,
methods, and attributes) by weaving aspects (similar to inter-
type declarations in AspectJ or open-classes [18]).Aspect
weaving consists of composing a base model with aspects
defining new concerns, thereby yielding a base model with
new structure and behavior. This feature offers more flexibil-
ity to developers by enabling them to easily manipulate and
reuse existing metamodels while separating concerns. The
second key feature is the possibility to add derived proper-
ties. A derived property is a property that is derived or com-
puted through getter and setter accessors for simple types and
add and removemethods for collection types. The derived
property thus contains a body, as operations do, and can be
accessed in read/write mode. The feature amounts to the pos-
sibility of determining the value of a property based on the
values of other properties. These other properties may come
from the same class and/or from properties reachable through
the navigation of the metamodel. The last pertinent Kermeta
feature is the specification of pre- and post-conditions on
operations and invariants on classes. These assertions can be
directly expressed in Kermeta or imported from OCL (Object
Constraint Language) files [19].

Fig. 6 Metamodel M

3.3 Model typing

The Kermeta language integrates the notion of model typ-
ing [7], which corresponds to a simple extension to object-
oriented typing in a model-oriented context. Model typing
can be related to structural typing found in languages such as
Scala. Indeed, a model typing is a strategy for typing mod-
els as collections of interconnected objects while preserving
type conformance, used as a criterion of substitutability.

The notion of model type conformance (or substitutabil-
ity) has been adapted and extended to model types based
on Bruce’s notion of type group matching [20]. The match-
ing relation, denoted <#, between two metamodels defines
a function of the set of classes they contain according to the
following definition:

Metamodel M ′ matches another metamodel M (denoted
M ′ < #M) iff for each class C in M, there is one and
only one corresponding class or subclass C ′ in M ′ such
that every property p and operation op in M.C matches
in M ′.C ′, respectively, with a property p′ and an oper-
ation op′ with parameters of the same type as in M.C.

This definition is adapted from [7] and improved here by
relaxing two strong constraints. First, the constraint related
to the name-dependent conformance on properties and oper-
ations was relaxed by enabling their renaming. The second
constraint related to the strict structural conformance was
relaxed by extending the matching to subclasses.

Let’s illustrate model typing with two metamodels M and
M’ given in Figs. 6 and 7. These two metamodels have model
elements that have different names and the metamodel M ′ has
additional elements compared to the metamodel M.

C1 < #C One because for each property COne.p of
type D (namely, COne.name and COne.aCTwo), there
is a matching property C1.q of type D’ (namely, C1.id
and C1.aC2), such that D′ < #D.

Thus, C1 < #C One requires D′ < #D, which is true
because:

– COne.name and C1.id are both of type String.
– COne.aCTwo is of type CTwo and C1.aC2 is of type

C2, so C1 < #C One requires C2 < #CT wo or

123



Reusable model transformations 117

Fig. 7 Metamodel M ′

that a subclass of C2 matches CTwo. Only C3 <

#CT wo is true because CTwo.element and C3.elem
are both of type String.

Thus, matching between classes may depend on the
matching of their related dependent classes. As a conse-
quence, the dependencies involved when evaluating model
type matching are heavily cyclical [5]. The interested reader
can find in [5] the details of matching rules used for model
types.

However, model typing with the mechanisms of renam-
ing and inheritance is not sufficient for matching metamodels
that are structurally different. We overcome this limitation of
the model typing by weaving required aspects as described
in our approach in Sect. 4.

3.4 Metamodel pruning

Metamodel pruning [6] is an algorithm that outputs an effec-
tive subset metamodel of a possible large input metamodel
such as UML. The output effective metamodel conserves a set
of required types and properties (given as input to metamodel
pruning) and all its obligatory dependencies (computed by
the algorithm). The algorithm prunes every other type and
property. In the type-theoretic sense the resulting effective
metamodel is a supertype of the large input metamodel. We
verify the supertype property using model typing [7]. We
concisely describe the metamodel pruning algorithm in the
following paragraphs.

Given a possibly large metamodel such as UML that may
represent the input domain of a model transformation, we ask
the question : Does the model transformation process models
containing objects of all possible types in the input metamod-
el? In several cases the answer to this question may be no.
For instance, a transformation that refactors UML models
only processes objects with types that come from concepts
in the UML class diagrams subset but not UML Activity,
UML Statechart, or UML Use case diagrams. How do we

obtain this effective subset? This is the problem that meta-
model pruning solves.

The principle behind pruning is to preserve a set of
required types Treq and required properties Preq and prune
away the rest in a metamodel. The authors of [6] present a
set of rules that help determine a set of required types Treq

and required properties Preq given a metamodel M M and
an initial set of required types and properties. The initial set
may come from various sources such as manual specification
or a static analysis of model transformations to reveal used
types. A rule in the set adds all superclasses of a required
class into Treq . Similarly, if a class is in Treq or is a required
class then for each of its properties p, add p into Preq if the
lower bound for its multiplicity is > 0. Apart from rules, the
algorithm contains options which allow better control of the
algorithm. For example, if a class is in Treq then we add all
its subclasses into Treq . This optional rule is not obligatory
but may be applicable under certain circumstances giving the
user some freedom. The rules are executed where the con-
ditions match until no rule can be executed any longer. The
algorithm terminates for a finite metamodel because the rules
do not remove anything from the sets Treq and Preq .

Once we compute the sets Treq and Preq the algorithm sim-
ply removes the remaining types and properties to output the
effective metamodel M Me. The effective metamodel M Me

generated using the algorithm in [6] has some very interesting
characteristics. Using model typing (discussed in Sect. 3.3)
we verify that M Me is a supertype of the metamodel M M .
This implies that all operations written for M Me are valid
for the large metamodel M M .

4 Approach

We present an approach to make a legacy model transfor-
mation MT reusable. We outline the approach in Fig. 1 and
describe the steps in the approach below:

Step 1: Static analysis of a transformation
As shown in Fig. 1 we first perform static analysis on

the legacy model transformation MT. Static analysis can be
extrapolated to several model transformations when they are
called and navigable from a main transformation. The main
transformation is given as an input to the static analysis pro-
cess. The static analysis involves visiting each rule, each con-
straint, and each statement in the model transformation to
obtain an initial set of required types Treq and a set of required
properties Preq manipulated in the input metamodelInput-
MM. The goal behind performing static analysis is to find the
subset of concepts in the input metamodel actually used in
the transformation. We do not go into the details of the static
analysis process as it is just classical traversal of the abstract
syntax tree of an entire program or a rule in order to check the

123



118 S. Sen et al.

Fig. 8 The Legacy Model
Transformation MT used as
Transformation for Subtype
TargetMM

type of each term. The static analysis can only be performed
when the source code for the transformation is available. If
not, the required types and properties must be manually spec-
ified. If the type is present in InputMM we add it to Treq .
Similarly, we add all properties manipulated and existing in
InputMM into Preq .

Step 2: Metamodel pruning
Using the set of required types Treq and properties Preq

we perform metamodel pruning on InputMM to obtain
an effective input metamodel EffectiveMM that is a
supertype of InputMM. We recall the metamodel pruning
algorithm described in Sect. 3.4. The algorithm generates
the minimal effective input metamodel EffectiveMM that
contains the required types and properties and their obliga-
tory dependencies. The advantages of automatically obtain-
ing the EffectiveMM are the following:

– The EffectiveMM represents the true input domain of
the legacy model transformation MT.

– The EffectiveMM containing only relevant concepts
from the InputMM drastically reduces the number of
aspect weaving and type matching operations to be per-
formed in Step 3. There is often a combinatorial explo-
sion in the number of type comparisons given that each
concept in the input metamodel must be compared with
the target metamodel TargetMM

The metamodel pruning process plays a key role when
the input domain of a transformation corresponds to a stan-
dard metamodel such as UML where the number of classes
is about 246 and properties about 587. Writing adaptations
for each of these classes, as we shall see in Step 3, becomes
very tedious unless only a subset of the input metamodel is
in use.

Step 3: Aspect weaving of target metamodel
One of the new features of Kermeta is to weave aspects

(see Sect. 3.2) into metamodels. In the third step we manu-
ally identify and weave aspects from EffectiveMM into
the TargetMM. We also weave getter and setter accessor
functions intoTargetMM. These accessors seek information

in related concepts of the TargetMM and assigns their
values to the initially woven properties and types from
EffectiveMM. We verify the subtype property as described
in Step 4. Examples of woven aspects are given in Sect. 5.

Step 4: Model type conformance
We perform model type conformance between the effec-

tive input metamodel EffectiveMM and the target input
metamodel TargetMM with woven properties. The model
type matching process is described in Sect. 3.3. All the
types in the woven TargetMM are matched against each
type in EffectiveMM. If all types match, then Tar-
getMM with aspects is recalled as the subtype target input
metamodel: SubTypeTargetMM. Replacing the input
metamodel of the legacy model transformation MT with
SubTypeTargetMM will allow all pertinent models con-
forming to the target input metamodel to be processed by MT,
as shown in Fig. 8.

5 Experiments and discussion

We performed some experiments by applying our approach
to legacy model refactoring transformations (Encapsulate
Field, Move Method, and Pull Up Method [9]) written for
an in-house DSML to three target industry standard input
metamodels Java, UML, and MOF. Our goal is to be able
to reuse these three well-known refactorings on models of
a given application conforming to the three different meta-
models. We choose an application for the simulation of a
local area network (LAN) developed by the Vrije Universi-
teit Brussel and the University of Bern [12]. This application
has been used to illustrate various aspects of the evolution
of object oriented programs and is thus appropriate for the
application of refactorings.

We illustrate our approach using the specific exam-
ple of the Pull Up Method refactoring transformation.
The implementation of the example is in Listing 1 (see
Appendix A.1) which is an excerpt of the class Refac-
tor. The class Refactor contains the operation Pull
Up Method (Line 5). The refactoring is implemented in

123



Reusable model transformations 119

Fig. 9 Effective Metamodel
EffectiveMM extracted from
an In-house DSML via Pruning

Kermeta1. This operation aims to pull up the method meth
from the source class source to the target class target.
This operation contains a precondition that checks if the sib-
ling subclasses have methods with the same signatures. In
the body of the operation, the method meth is added to the
methods of the target class and removed from the methods
of the source class.

A step-by-step application of our approach is described in
Sect. 5.1. We discuss the experiment in Sect. 5.2.

5.1 Application

In Step 1, we perform a static analysis of refactoring model
transformations (Encapsulate Field, Move Method, and
Pull Up Method) applied on an in-house DSML for the IN-
RIA team TRISKELL from Rennes, France. The result of
the static analysis is a set of required types and required
properties. The analysis reveals that required classes in the
transformation are : Class, Attribute, Method, and
Parameter. This drastically reduces the number of adap-
tations required in the target input metamodels: Java, MOF,
and UML. The DSML contains several other classes related
to contracts and verification. These classes and their proper-
ties are not used by the refactoring transformation and hence
the static analysis does not reveal them. Due to space limita-
tions we do not show the entire DSML in the paper.

In Step 2, we perform metamodel pruning of the input
metamodel InputMM for the refactoring transformation. We
show the resulting effective input metamodel Effecti-
veMM in Fig. 9. As claimed earlier the effective meta-
model only contains the required types, required proper-
ties, and their obligatory dependencies. The only inputs to
the metamodel pruning algorithm were the classes Class,
Attribute, Method, and Parameter. The rest of the

1 The interested reader can refer to the Kermeta syntax in [21].

obligatory structure for the EffectiveMM metamodel is
automatically conserved by the metamodel pruning algo-
rithm. All other irrelevant classes for statecharts, verification,
and activities are automatically removed.

In Step 3, we adapt the target input metamodels to
the effective input metamodel EffectiveMM using the
Kermeta features for weaving aspects and adding derived
properties. We weave missing types, properties and their
opposite properties from the EffectiveMM into the
TargetMM. These properties include getter and setter
accessors that seek information in the TargetMM to assign
values to the derived properties woven from Effecti-
veMM. This step of adaptation is necessary because model
typing is too restrictive for allowing a matching between
metamodels that are structurally very different. The adapta-
tion virtually modifies the structure of the target input meta-
model with additional elements and in the following step we
use model typing to match the metamodels. The resulting
subtype target input metamodel is SubtypeT arget M M , as
seen in Fig. 8.

To better understand the adaptation process we illustrate
it with a simple example shown in Fig. 10. In Fig. 10
(a), type Class exists in the effective input metamodel
EffectiveMM and Classifier exists in the target input
metamodel TargetMM Java. We ask in Fig. 10 (b) if the
the types match with respect to model typing rules and the
answer is no because the properties superClasses and
subClasses do not appear in TargetMM. Hence, we
weave the properties superClasses and subClasses
from Class into Classifier as shown in Fig. 10 (c).
These properties are computed using the already existing
property extends in TargetMM. Now, the types Class
and Classifier match as seen in Fig. 10 (d). This pro-
cess is repeated for every type in EffectiveMM such that
a conforming type is created in the target input metamodel.
If a match for a type is not found or multiple matches for a

123



120 S. Sen et al.

Fig. 10 An example of
weaving steps for adaptation

(a)

(b)

(c)

(d)

type in the EffectiveMM are found then the target input
metamodel is unadaptable and our approach fails.

In the following paragraphs, we describe technical details
of the adaptations for the target input metamodels Java, MOF,
and UML such that they type conform with the effective input
metamodel EffectiveMM of refactoring transformations.
In particular, we describe the adaptations of the derived prop-
erties superClasses and subClasses of Class for
the target input metamodels. We discuss only the woven get-
ter accessors of the derived properties; the setter accessors
are symmetric.

Adaptation for the Java metamodel Listing 2 in Appendix
A.2 describes the adaptation made to the Java metamodel to
adapt it to EffectiveMM. The adaptation is applied on a
subset of the Java metamodel shown in Fig. 3. The derived
property superClasses corresponds to a simple access
to the property extends that is then wrapped in a Java
Class (Lines 12–15). For the derived property subClas-
ses, the oppositeinv_extendsof the propertyextends
was weaved by an aspect on the classClassifier and used
to get the set of subclasses (Lines 17–21).

Adaptation for the MOF metamodel Listing 3 in Appendix
A.3 describes the adaptation made to the MOF metamodel
to adapt it to EffectiveMM. We apply the adaptation on a
subset of the MOF metamodel shown in Fig. 4. Due to the
distinction in the MOF between Type and TypeDefini-
tion to handle the generic types, it is less straightforward to
compute the derived properties superClasses and sub-
Classes. Several opposites are required as shown in List-
ing 3 (Lines 5–15).

Adaptation for the UML metamodel Listing 4 in
Appendix A.4 describes the adaptation made to the UML
metamodel to adapt it toEffectiveMM. We apply the adap-
tation on a subset of the UML metamodel shown in Fig. 5.
In UML, the inheritance links are reified through the class
Generalization (Lines 5–7). Thus, the derived property
superClasses is computed by accessing the class Gen-
eralization and the reference propertygeneral (Lines
11–15). As in Java and MOF, an opposite inv_general
is specified to get the set of subclasses (Lines 17–21).

Finally, we apply the refactoring on the target input meta-
models as illustrated in Listing 5 (see Appendix A.5) for
the UML metamodel. We reuse the example of the method

123



Reusable model transformations 121

Fig. 11 Subset of the Fourth
Metamodel

bill in the LAN application (Lines 12, 16). We notice that
the class Refactor takes as an argument the UML meta-
model (Lines 18–19), which due to the adaptation of Listing
4 is now a subtype of the expected supertype Effecti-
veMM as specified in Listing 1. The model typing guarantees
the type conformance between the UML metamodel and the
effective input metamodel EffectiveMM.

5.2 Discussion

We also experimented with a fourth metamodel as shown in
Fig. 11. In this metamodel, the two classes (corresponding to
Class and Parameter in the effective input metamodel)
are unified in the same class (Type). This case introduced
an ambiguous matching with the effective input metamod-
el since these classes are distinct in the latter. This special
case illustrates a limitation of our approach that needs to be
overcome and will be investigated in future work. Thus, the
only prerequisite of our approach is that each element in the
effective input metamodel should correspond to a distinct
element in the target input metamodel. We specified a fourth
refactoring, Extract Method [9], that creates a new method
from a code fragment. The Extract Method refactoring uses
the concept of method body, but this concept is missing in
the UML metamodel. Therefore, the missing concept pre-
vents the ability to reuse the refactoring for the UML meta-
model. However, during the adaptation step, we could fill in
this difference by weaving the missing concept to the UML
metamodel as a stub. Our approach is thus not very restric-
tive since the mechanism of adaptation enables the raising of
awareness of inherent limitations.

In [10], we apply some refactorings on a Java metamodel
with a flat structure (i.e., with no containers). The search for
elements in such a metamodel is not optimal since we need
to traverse all elements in the flat structure. However, in the
current paper, the navigation of the elements is easier due to
opposites properties. These properties enable bi-directional
traversal of a metamodel. The addition of opposites is done
automatically while loading metamodels in the Kermeta plat-
form.

Our approach theoretically relies on the model typing and
is feasible in practice because of the mechanism of meta-
model pruning and aspect weaving based adaptation. Writing
adaptations can be challenging depending on the developers’
knowledge of the target input metamodels. Our approach is
relevant if the number of transformations to be reused is sig-
nificant. This means that the effort to convert the transfor-
mations is greater than writing adaptations of a metamodel.
However, once the adaptation is done, the developers can
reuse all model refactorings written for the original input
metamodel. Conversely, if a developer specifies a new refac-
toring on the input metamodel, it can readily be applied on
all target metamodels if adaptations are provided.

Although we show reuse of a kind of model transforma-
tion, namely, refactoring, we predict its extensibility to arbi-
trary model transformations with arbitrary input metamodels.
In addition, our approach also fits well in the context of meta-
model evolution. Indeed, all model transformations written
for an old version of a given metamodel (for example, UML
1.2) can be reused for a new version (for example, UML 2.0)
once the adaptation is done. Moreover, the models do not
need to be migrated from an old version to a new one.

6 Related work

Reuse in MDE has not been sufficiently investigated as com-
pared to object-oriented (OO) programming. However, we
observe some efforts in the MDE community that are directly
inherited from type-safe code reuse in OO programming and,
in particular, from generic programming.

Generic programming is about making programs adapt-
able using generic operations that are functional across sev-
eral input domains [22]. This style of programming allows
writing programs that differ in their parameters, which
may be either other programs, types and type construc-
tors, class hierarchies, or even programming paradigms [22].
Aspects [23] and open-classes [18] are powerful generic pro-
gramming techniques for adapting programs by augmenting
their behavior in existing classes [24,25]. Other languages
that provide support for generic programming are Haskell

123



122 S. Sen et al.

and Scala [26]. The use of Haskell has been investigated
[27] to specify refactorings based on high-level graph algo-
rithms that could be generic across a variety of languages
(XML, Pascal, Java), but its applicability does not seem to
go beyond a proof of concept. Scala’s implicit conversions
[28] simulate the open-class mechanism in order to extend the
behavior of existing libraries without actually changing them.
Although Scala is not a model-oriented language, develop-
ers can build type-safe reusable model transformations on
top of EMF because of its seamless integration with Java.
However, it would require writing a significant amount of
code and manage relationships among generic types.

In the MDE community, Blanc et al. propose an architec-
ture called Model Bus that allows the interoperability of a
wide range of modeling services [29]. The term ‘modeling
service’ defines an operation having models as inputs and
outputs such as model editing, model transformation, and
code generation. Their architecture is based on a metamodel
that ensures type compatibility checking by describing ser-
vices as software components having precise input and output
definitions. However, the type compatibility defined in this
metamodel relies on a simple notion of model types as sets
of metaclasses, but without any notion of model type substi-
tutability. Other works [30,31] study the problem of generic
model transformations using a mechanism of parameteriza-
tion. However, these transformations do not apply to different
metamodels but to a set of related models.

Modularity in graph transformation systems was also
explored [32]. In this area, an interesting work was done by
Engels et al. who presented a framework for classifying and
defining relations between typed graph transformation sys-
tems [33]. This framework integrates a novel notion of sub-
stitution morphism that allows to define the semantic relation
between the required and provided interfaces of modules in
a flexible way.

7 Discussion

In this paper, we combine ideas from two recently published
papers on metamodel pruning [6] and manual specification of
generic model refactoring [8]. In [8], the authors present an
approach to manually specify generic model transformations
and in particular refactorings. A generic metamodel is man-
ually specified and a generic transformation is written for the
generic input metamodel. Other target input metamodels are
then adapted to the generic metamodel to achieve genericity
and reuse. This approach is not applicable to legacy model
transformations where we do not use a generic metamodel
but an existing and possible large input metamodel such as
UML. Adapting a target input metamodel to this large meta-
model to make it a subtype is a very tedious task. It sometimes
requires several unnecessary adaptations because many of the
concepts may not be used in the transformation. We deal with

this problem via metamodel pruning [6] in our work to auto-
matically obtain the effective input metamodel which plays
the role of the generic metamodel. This automatic synthesis
of the effective input metamodel extends the approach in [8]
to legacy model transformations written for arbitrary input
metamodels. It also helps drastically reduce the number of
required adaptations via aspect weaving and the time for type
matching. Adaptation followed by verification using model
typing, used in our approach, may be compared to generic
pattern-matching techniques [34,35]. These pattern match-
ing techniques can automatically detect concept similarities
between metamodels. However, these similarities are often
limited to the syntax of the metamodels and not their intended
semantics. For instance, the notion of a Class may have very
different meanings in two metamodels. Simply matching the
concept Class and its structure in two metamodels does not
ascertain a 100% conformance between these seemingly sim-
ilar types. A number of ambiguities may crop up due to the
same name but different structure of concepts while pattern
matching. Human intervention is required to clearly build
a bridge between concepts in two metamodels. The precise
mechanism of adapting a metamodel using aspects followed
by verification using model typing overcomes the limitations
of classical pattern-matching mechanisms.

8 Conclusion

In this paper, we present an approach to make model
transformations reusable across structurally different meta-
models. This approach relies on metamodel pruning, model
typing, and a mechanism of adaptation based mainly on the
weaving of aspects. We illustrate our approach with the Pull
Up Method refactoring and validate it for three different
refactorings (Encapsulate Field, Move Method, and Pull
Up Method) for three different industrial metamodels (Java,
MOF, and UML) in a concrete application. We demonstrate
that our approach ensures a flexible reuse of model transfor-
mations. We enlist the limitations of our approach based on
the theoretical foundations of model typing [5]. We predict
that our approach could be generalizable to arbitrary model
transformations that can be used for various input domains
such as the computation of metrics, detection of patterns,
and inconsistencies. As future work, we plan to increase the
repository of legacy transformations adapted to several dif-
ferent metamodels, in particular industry standards such as
Java, MOF, and UML. We intend to apply our approach
to the reuse of OCL constraints used as pre-/post-condi-
tions of model transformations. We also plan to apply our
approach on large industry-strength transformations. This
will help us highlight the effectiveness and limitations of
our approach. Finally, we are presently investigating a semi-
automatic approach to adapt the effective input model to the
target input model.

123



Reusable model transformations 123

A Appendix

A.1 Kermeta Code for the Pull Up Method Refactoring

Listing 1 Kermeta Code for the Pull Up Method Refactoring

A.2 Kermeta Code for Adapting the Java Metamodel

Listing 2 Kermeta Code for Adapting the Java Metamodel

A.3 Kermeta Code for Adapting the MOF Metamodel

Listing 3 Kermeta Code for Adapting the MOF Metamodel

A.4 Kermeta Code for Adapting the UML Metamodel

Listing 4 Kermeta Code for Adapting the UML Metamodel

A.5 Kermeta Code for Applying the Pull Up Method
Refactoring on the UML metamodel

Listing 5 Kermeta Code for Applying the Pull Up Method Refactor-
ing on the UML metamodel

References

1. Biggerstaff, T.J., Perlis, A.J.: Software Reusability Volume I: Con-
cepts and Models, vol. 1.. ACM Press, Addison-Wesley, Read-
ing (1989)

2. Mili, H., Mili, F., Mili, A.: Reusing software: Issues and research
directions. IEEE Trans. Softw. Eng. 21(6), 528–562 (1995)

3. Basili, V.R., Briand, L.C., Melo, W.L.: How reuse influences pro-
ductivity in object-oriented systems. Commun. ACM 39(10), 104–
116 (1996)

4. Blanc, X., Ramalho, F., Robin, J.: Metamodel reuse with MOF.
In: ACM/IEEE 8th International Conference on Model Driven
Engineering Languages and Systems (MODELS’05), pp. 661–675
(2005)

5. Steel, J.: Typage de modèles. PhD thesis, Université de Rennes 1
(2007)

6. Sen, S., Moha, N., Baudry, B., Jezequel, J.M.: Meta-model prun-
ing. In: ACM/IEEE 12th International Conference on Model Driven
Engineering Languages and Systems (MODELS’09). Springer,
Berlin (2009)

7. Steel, J., Jézéquel, J.M.: On model typing. J. Softw. Syst. Model.
(SoSyM) 6(4), 401–414 (2007)

8. Moha, N., Mahé, V., Barais, O., Jézéquel, J.M.: Generic Model Re-
factorings. In: ACM/IEEE 12th International Conference on Model

123



124 S. Sen et al.

Driven Engineering Languages and Systems (MODELS’09),
Springer, Berlin (2009)

9. Fowler, M.: Refactoring – Improving the Design of Existing Code.
1st edn. Addison-Wesley, Boston (1999)

10. Moha, N., Sen, S., Faucher, C., Barais, O., Jézéquel, J.M.: Evalua-
tion of Kermeta on Graph Transformation Problems. Int. J. Softw.
Tools Technol. Transf. (STTT) (2010) (To appear)

11. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Elec-
tron. Notes Theoret. Comput. Sci. 152, 125–142 (2006)

12. Janssens, D., Demeyer, S., Mens, T.: Case study: Simulation of a
LAN. Electron. Notes Theoret. Comput. Sci. 72(4) (2003)

13. Hoffman, B., Pérez, J., Mens, T.: A case study for program refac-
toring. In: 4th International Workshop on Graph-Based Tools (Gra-
BaTs’08) (2008)

14. OMG: MOF 2.0 core specification. Technical Report formal/06-01-
01, OMG (2006)

15. OMG: The UML 2.1.2 infrastructure specification. Technical
Report formal/2007-11-04, OMG (2007)

16. OMG: Architecture-driven modernization (ADM): Abstract syntax
tree metamodel (ASTM) 1.0 - beta 2. Technical Report ptc/09-07-
06, OMG (2009)

17. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving executability into
object-oriented meta-languages. In: ACM/IEEE 8th International
Conference on Model Driven Engineering Languages and Systems
(MODELS’05), pp. 264–278. Springer, Berlin (2005)

18. Clifton, C., Leavens, G.T., Chambers, C., Millstein, T.D.: Multijav-
a: Modular open classes and symmetric multiple dispatch for java.
In: 15th Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’00), pp. 130–145 (2000)

19. OMG: The Object Constraint Language Specification 2.0. Techni-
cal Report ad/03-01-07, OMG (2003)

20. Bruce, K.B., Vanderwaart, J.: Semantics-driven language design:
Statically type-safe virtual types in object-oriented languages. Elec-
tron. Notes Theoret. Comput. Sci. 20, 50–75 (1999)

21. Kermeta: http://www.kermeta.org/. Accessed on April 2010
22. Gibbons, J., Jeuring, J., (eds.): Generic Programming. Proceedings

of the IFIP TC2/WG2.1 Working Conference on Generic Program-
ming, Kluwer Academic Publishers, Boston (2003)

23. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C.V., Loingtier, J.M., Irwin, J.: Aspect-oriented programming.
In: 11th European Conference on Object-Oriented Programming
(ECOOP’97), vol. 1241, pp. 220–242. Springer, Berlin (1997)

24. Hannemann, J., Kiczales, G.: Design pattern implementation in Java
and AspectJ. SIGPLAN Not. 37(11), 161–173 (2002)

25. Kiczales, G., Mezini, M.: Aspect-oriented programming and modu-
lar reasoning. In: 27th International Conference on Software Engi-
neering (ICSE’05), pp. 49–58. ACM Press, New York (2005)

26. Oliveira, B., Gibbons, J.: Scala for generic programmers. In: Hinze,
R., Syme, D., eds.: SIGPLAN Workshop on Generic Programming
(WGP’08), pp. 25–36. ACM Press, New York (2008)

27. Lämmel, R.: Towards generic refactoring. In: 3rd SIGPLAN Work-
shop on Rule-Based Programming (RULE’02), pp. 15–28. ACM
Press, New York (2002)

28. Odersky, M., et al.: An overview of the Scala programming lan-
guage. Technical Report IC/2004/64. EPFL Lausanne, Switzerland
(2004)

29. Blanc, X., Gervais, M.P., Sriplakich, P.: Model Bus : Towards
the interoperability of modelling tools. In: European Work-
shop on Model Driven Architecture: Foundations and Applica-
tions (MDAFA’04). Volume 3599 of LNCS, pp. 17–32. Springer,
Berlin (2004)

30. Amelunxen, C., Legros, E., Schurr, A.: Generic and reflective graph
transformations for the checking and enforcement of modeling
guidelines. In: IEEE Symposium on Visual Languages and Human-
Centric Computing (VLHCC’08), pp. 211–218, IEEE Computer
Society, Washington, DC (2008)

31. Münch, M.: Generic Modelling with Graph Rewriting Systems.
PhD thesis, Berichte aus der Informatik. RWTH Aachen, Aachen
(2003)

32. Heckel, R., Engels, G., Ehrig, H., Taentzer, G.: Classification and
comparison of module concepts for graph transformation systems.
In: Handbook of graph grammars and computing by graph trans-
formation: vol. 2: applications, languages, and tools, pp. 639–689.
World Scientific Publishing Co., Inc., Hackensack (1999)

33. Engels, G., Heckel, R., Cherchago, A.: Flexible interconnection
of graph transformation modules. In: Formal Methods in Software
and Systems Modeling. vol. 3393 of LNCS., pp. 38–63. Springer,
Berlin (2005)

34. Lahire, P., Morin, B., Vanwormhoudt, G., Gaignard, A., Barais, O.,
Jézéquel, J.M.: Introducing variability into aspect-oriented mod-
eling approaches. In: ACM/IEEE 10th International Conference
on Model Driven Engineering Languages and Systems (MOD-
ELS’07). LNCS, pp. 498–513. Springer, Berlin (2007)

35. Ramos, R., Barais, O., Jézéquel, J.M.: Matching model-snippets.
In: ACM/IEEE 10th International Conference on Model Driven
Engineering Languages and Systems (MODELS’07). LNCS,
pp. 121–135. Springer, Berlin (2007)

Author Biographies

Sagar Sen is a PhD (2010) in
computer science from Univer-
sity of Rennes 1, France. He
obtained his M.Sc. in computer
science from McGill University,
Montreal. Currently, he is post-
doctoral researcher at INRIA
team PULSAR at Sophia-Antip-
olis, France. His interests are in
model-driven engineering, mod-
els@runtime, software product
lines and scaling of formal meth-
ods to tackle validation in large
software systems. Currently, he
is working on applying mod-

els@runtime and dynamic adaptation in the area of computer vision
systems. He has published 6 journal papers and 16 peer-reviewed inter-
national conference papers.

Naouel Moha received the Mas-
ter degree in computer science
from the University of Joseph
Fourier, Grenoble, in 2002. She
also received the PhD degree,
in 2008, from the University of
Montreal (under Professor Yann-
Gael Gueheneuc’s supervision)
and the University of Lille (under
the supervision of Professor Lau-
rence Duchien and Anne-Franc-
oise Le Meur). The primary
focus of her PhD thesis was to
define an approach that allows
the automatic detection and cor-

rection of design smells, which are poor design choices, in object-ori-
ented programs. She has been a postdoctoral researcher in the INRIA
team-project Triskell. Currently she is an associate professor with Uni-
versity of Rennes 1 and an adjoint assistant professor at University of
Quebec in Montreal. Her research interests include software quality and
evolution, in particular refactoring and the identification of patterns in
service oriented systems.

123

http://www.kermeta.org/


Reusable model transformations 125

Vincent Mahé received the Mas-
ter degree in industrial econom-
ics from the University of Rennes
1 in 1991. After a first career in
a software company, he received
a Master degree in computer
science form the University of
Rennes 1 in 2006. He now works
as research engineer in the Atlan-
Mod team. His research interests
covers Model-Driven Engineer-
ing with focus on generic tool-
ing and design of domain specific
metamodels.

Olivier Barais Associate
Professor, Université de Rennes
1/ IRISA, born in 1980 Olivier
Barais received an engineering
degree from the Ecole des Mines
de Douai, France in 2002 and a
PhD in computer science from
the University of Lille 1, France
in 2005. After having been a PhD
student in the Jacquard INRIA
research team, he is currently
associate professor at University
of Rennes 1 and a member of
the Triskell INRIA group. His
research interests include Com-

ponent Based Software Design, Model-Driven Engineering and Aspect
Oriented Modelling. Olivier Barais has co-authored 6 journals, 30 inter-
national conference papers, 2 book chapters and 23 workshop papers
in conferences and journals such as SoSym, IEEE Computer, ICSE,
MoDELS and CBSE.

Benoit Baudry received his PhD
in computer science from the
University of Rennes, France
in 2003. He first worked at
CEA (French government
nuclear agency) before joining
INRIA in 2004. He is now a
researcher in software engineer-
ing in the Triskell team at INRIA
Rennes Bretagne Atlantique. In
2008 he was an invited sci-
entist at Colorado State Uni-
versity. His research interests
include software testing, aspect-
oriented software development,

model transformation and model-driven development. He is the vice-
chair of the steering committee of the International Conference on Soft-
ware Testing Verification and Validation. He is a member of the IEEE
and the IEEE Computer Society.

Jean-Marc Jézéquel is a Pro-
fessor at the University of
Rennes and the leader of an
INRIA research team called
Triskell. His interests include
model driven software engi-
neering for software product
lines, and specifically compo-
nent based, dynamically adapt-
able systems with quality of
service constraints, including
reliability, performance, timeli-
ness etc. He is the author of
several books published by Addi-
son-Wesley and of more than 100

publications in international journals and conferences. He is a member
of the steering committees of the AOSD and MODELS conference
series. He also served on the editorial boards of IEEE Transactions on
Software Engineering and on the Journal on Software and System Mod-
eling and the Journal of Object Technology. He received an engineering
degree in Telecommunications from ENSTB in 1986, and a PhD degree
in Computer Science from the University of Rennes, France, in 1989.

123


	Reusable model transformations
	Abstract
	1 Introduction
	2 Motivating examples
	2.1 The Pull Up Method refactoring
	2.2 Three different metamodels
	2.3 Problems

	3 Foundations
	3.1 Kermeta
	3.2 Features of Kermeta
	3.3 Model typing
	3.4 Metamodel pruning

	4 Approach
	5 Experiments and discussion
	5.1 Application
	5.2 Discussion

	6 Related work
	7 Discussion
	8 Conclusion
	A Appendix
	A.1 Kermeta Code for the Pull Up Method Refactoring
	A.2 Kermeta Code for Adapting the Java Metamodel
	A.3 Kermeta Code for Adapting the MOF Metamodel
	A.4 Kermeta Code for Adapting the UML Metamodel
	A.5 Kermeta Code for Applying the Pull Up Method Refactoring on the UML metamodel

	References


