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Abstract—Service Based Systems (SBSs), like other software
systems, evolve due to changes in both user requirements and
execution contexts. Continuous evolution could easily deteriorate
the design and reduce the Quality of Service (QoS) of SBSs and
may result in poor design solutions, commonly known as SOA
antipatterns. SOA antipatterns lead to a reduced maintainability
and reusability of SBSs. It is therefore important to first detect
and then remove them. However, techniques for SOA antipattern
detection are still in their infancy, and there are hardly any tools
for their automatic detection. In this paper, we propose a new
and innovative approach for SOA antipattern detection called
SOMAD (Service Oriented Mining for Antipattern Detection)
which is an evolution of the previously published SODA (Service
Oriented Detection For Antpatterns) tool. SOMAD improves
SOA antipattern detection by mining execution traces: It detects
strong associations between sequences of service/method calls and
further filters them using a suite of dedicated metrics. We first
present the underlying association mining model and introduce
the SBS-oriented rule metrics. We then describe a validating
application of SOMAD to two independently developed SBSs. A
comparison of our new tool with SODA reveals superiority of the
former: Its precision is better by a margin ranging from 2.6 % to
16.67% while the recall remains optimal at 100% and the speed
is significantly reduces (2.5+ times on the same test subjects).

Index Terms—SOA Antipatterns, Mining Execution Traces,
Sequential Association Rules, Service Oriented Architecture.

I. INTRODUCTION

Service Based Systems (SBSs) are composed of ready-made
services that are accessed through the Internet [1]. Services
are autonomous, interoperable, and reusable software units
that can be implemented using a wide range of technologies
like Web Services, REST (REpresentational State Transfer), or
SCA (Service Component Architecture, on the top of SOA.).
Most of the world’s biggest computational platforms: Amazon,
Paypal, and eBay, for example, represent large-scale SBSs.
Such systems are complex—they may generate massive flows
of communication between services—and highly dynamic: ser-
vices appear, disappear or get modified. The constant evolution
in an SBS can easily deteriorate the overall architecture of
the system and thus bad design choices, known as SOA
antipatterns [2], may appear. An antipattern is the opposite of
a design pattern: while patterns should be followed to create
more maintainable and reusable systems [3], antipatterns must
be avoided since they have a negative impact, e.g., hinder the
maintenance and reusability of SBSs.

Given their negative impact, there is a clear and urgent
need for techniques and tools to detect SOA antipatterns.
Recently, a tool was developed by our team, called SODA
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(Service Oriented Detection for Antipatterns) [2], [4], which
targets SOA antipatterns. The tool employs a Domain Specific
Language (DSL) to specify SOA antipatterns, which is based
on metrics and generates detection algorithms from antipattern
specifications in an automated way.

Albeit efficient and precise, SODA suffers from serious
limitations. Indeed, the tool performs two phases of analysis,
first, a static one and then a dynamic one. The static analysis
requires access to service interfaces. Consequently, SODA
cannot analyze systems that are proprietary or not open-source.
The dynamic analysis requires the execution of the system and
therefore, the creation of runnable scenarios. Moreover, since
SODA specifically targets systems implementing the SCA
standard, its precision drops as the target system gets bigger.
Given these limitations, there is a space for improvement, both
in precision and in coverage, i.e., detection of antipatterns in
SBSs implementing a wider range of SOA technologies. In
this article, we propose a new and innovative approach for
the detection of SOA antipatterns named SOMAD (Service
Oriented Mining for Antipattern Detection). SOMAD does
not require scenarios to concretely invoke service interfaces
as it only relies on execution traces (provided by any SOA
technology). It discards irrelevant data by using data min-
ing techniques—sequential association rules mining—. The tool
discovers SOA antipatterns by first extracting associations
between services as expressed in the execution traces of an
SBS. To that end, it applies a specific variant of the association
rule mining task based on sequences or episodes: In our case
the sequences represent service or, alternatively, method calls.
Further on, generated association rules are filtered using a suite
of dedicated metrics.

We applied SOMAD on two different SBS called Home
Automation and FraSCAti [5]. Home Automation is made of 13
services and FraSCAti is almost ten times larger. We compared
the outcome of SOMAD to the one produced by SODA, the
so far unique tool for SOA antipatterns detection from the
literature. Both tools were evaluated in terms of precision and
recall, on one hand, and efficiency, on the other hand. The
study results indicate that SOMAD significantly outperforms
SODA in term of precision (2.6% to 16.67%) and efficiency
(2.5+ times faster).

The main contribution of this paper is thus twofold: (i) a
new approach for the detection of SOA antipatterns based
on association rules mining from the execution traces of an
SBS (from a variety of SOA technologies); (ii) an empirical
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validation of this approach, which shows the tool outperforms
its direct competitor in terms of precision and efficiency.
The remainder of the article is organized as follows. Sec-
tion II presents related works on pattern and antipattern
detection both in SOA and OO paradigms and related works
on knowledge extraction. Section III presents the SOMAD ap-
proach, and in particular the mining of association rules from
execution traces while, Section IV presents our experimental
study with a comparison of our SOMAD approach to SODA.
Finally, we provide some concluding remarks in Section V.

II. RELATED WORK

As our approach combines antipattern detection and knowl-
edge extraction from execution traces we provide short serveys
of related work on both: Section II-A deals with detection
of patterns and antipatterns both in OO and SOA paradigms
while Section II-B addresses knowledge extraction. Finally,
Section II-C presents the SODA approach [2], [4].

A. Pattern and Antipattern Detection

Architectural (or design) quality is essential for building
well-designed, maintainable, and evolvable SBSs. Patterns —
and antipatterns— have been recognized as one of the best
ways to express architectural concerns and solutions, and thus
target high quality in systems. A number of methods and
tools exist for the detection of antipatterns in OO systems [6],
[7], [8] whereas the relevant theory and practices have been
summarized in best-sellers books [9], [10]. However, the
detection of SOA antipatterns, unlike their OO counterparts,
is still in its infancy.

An approach to the declarative specification of antipatterns,
called SPARSE, is presented in [11]. In SPARSE, antipatterns
are described as an OWL ontology augmented with a SWRL
(Semantic Web Rule Language) rule basis whereas their oc-
currences are tested through automated reasoning.

Other relevant work has focused on the detection of specific
antipatterns related to the system’s performance and resource
usage and/or given technologies. For example, Wong et al. [12]
use a genetic algorithm for detecting software faults and
anomalous behavior in the resource usage of a system (e.g.
memory usage, processor usage, thread count). The approach
is driven by utility functions that correspond to predicates
identifying suspicious behavior by means of resource usage
metrics. In another related work, Parsons et al. [13] tackled the
detection of performance antipatterns. They use a rule-based
approach made of both static and dynamic analyzes that are
tailored to component-based enterprise systems (in particular,
JEE applications).

B. Knowledge Extraction

A large number of studies focused on knowledge extraction
from execution traces. They were motivated by the iden-
tification of: crosscutting concerns (aspects) [14], business
processes [15], patterns of interests among service users [16],
[17], and features either in OO systems [18] or SBSs [19].
Further related work focused on the identification of ser-
vice composition patterns [20], i.e. sets of services that are

repetitively used together in different systems and that are
structurally and functionally similar. Composition patterns
embody good practices in designing and developing SBSs.

Few projects have explored pattern detection through exe-
cution trace mining. Ka-Yee Ng et al. [21] proposed MoDeC,
an approach for identifying behavioral and creational design
patterns using dynamic analysis and constraint programming.
They reverse-engineer scenario diagrams from an OO system
by bytecode instrumentation and apply constraint program-
ming to detect these patterns as runtime collaborations. Hu
and Sartipi [22] tackle the detection of design patterns in traces
using scenario execution, pattern mining, and concept analysis.
The approach is guided by a set of feature-specific scenarios
to identify patterns, as opposed to a general pattern detection.

Although different in goals and scope, the above studies
on OO antipatterns form a sound basis of expertise and
technical knowledge for building methods for the detection
of SOA antipatterns. However, despite a large number of
commonalities, OO (anti)pattern detection methods cannot
directly apply to SOA. Indeed, SOA focuses on services as
first-class entities and thus remains at a higher granularity
level than OO classes. Moreover, the highly dynamic nature
of a SBS raises challenges that are not preponderant in OO
systems.

C. SODA : The State-of-the-Art Tool

SODA relies on a rule-based language that enables antipat-
terns specification using a set of metrics. A generic process
then turns the specification into detection algorithms. The three
main steps of the processing are as follows (see Figure 1):

Specification of SOA Antipatterns: Relevant properties of
SOA antipatterns are identified, which essentially correspond
to metrics such as cohesion, coupling, number of methods,
response time and availability. These properties compose to
a base vocabulary of a DSL: a rule-based language is used
whereby each rule expresses tendencies in metric values. An
antipattern is described by a set of rules combined into a rule
card.

Generation of Detection Algorithms: Automatic generation
of detection algorithms is performed by visiting models of
rule cards specified during the previous step. The process is
straightforward and ends up with a set of directly executable
algorithms.

Detection of SOA Antipatterns: The detection algorithms
generated in the previous step are applied on the SBS of
interest. This step allows the automatic detection of SOA
antipatterns using a set of predefined scenarios to invoke
service interfaces. At the end, services from the SBS suspected
of being involved in an antipattern are identified.

Although efficient and precise, SODA is an intrusive ap-
proach because it requires a set of valid scenarios concretely
invoking the interface methods of SBSs and its dynamic
analysis involves SCA properties.
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Fig. 1: SODA and SOMAD approaches: Grey boxes depict new steps in SOMAD w.r.t. to SODA (white boxes).

III. THE SOMAD APPROACH

We propose a five step approach, named SOMAD (Service
Oriented Mining for Antipatterns Detection), for the detection
of SOA antipatterns within execution traces of SBSs. This
new approach is a variant of SODA based on execution traces,
which may come from any kind of SBSs. In contrast, SODA
applies specifically on SCA SBSs using a set of scenarios and
SCA-based techniques. In particular, in SOMAD, we specity
a new set of metrics that apply to sequential association rules
mined on execution traces whereas, in SODA, metrics apply
to the concrete invocation of SBSs’ interfaces using a set
of scenarios. Figure 1 shows an overview of SOMAD. We
emphasized in grey the two new steps specific to SOMAD
and added to the SODA approach. Step 1. Metric Inference
is supported by the creation of a set of hypotheses made
from the textual description of SOA antipatterns. The hy-
potheses underlie the definition of new metrics to support the
interpretation of association rules. Step 4. Association Rule
Mining (ARM) discovers interesting sequential associations
in execution traces of the targeted SBS. Output sequential
association rules represent statistically interesting relations
between services inside traces. In what follows, we first
introduce key concepts of sequential ARM and then, present
the overall process of SOMAD. Finally, we provide some
implementation details.

A. Introduction to Sequential Association Rule Mining

In the data mining field, ARM is a well-established method for
discovering co-occurrences between attributes in the objects of
a large data set [23]. Plain associations have the form X — Y,
where X and Y, called the antecedent and the consequent,
respectively, are sets of descriptors (purchases by a customer,
network alarms, or any other general kind of events). Even
though plain association rules could serve some relevant
information, we are interested here in the sequences of service
invocations. We therefore adopt a variant called sequential
association rules in which both X and Y become sequences of
descriptors. Moreover, our sequences follow a temporal order
with the antecedent preceding the consequent. Rules of this
type mined from traces reveal crucial information about the
likelihood that services appear together in an execution trace
and, more importantly, in a specific order. For instance, a
strong rule ServiceA , ServiceB implies ServiceC would mean

that after executing A and then B, there are good chances to
see C in the trace. The conciseness of this example should
not confuse the reader as in practical cases the sequences
appearing in a rule can be of an arbitrary length. Furthermore,
the strength of the rule is measured by the confidence metric:
In probabilistic terms, it measures the conditional probability
of C appearing down the line. Beside that, the significance of
a rule, i.e. how many times it appears in the data, is provided
by its support measure. To ensure only rules of potentially
high interestingness are mined, the mining task is tuned by
minimal thresholds to output only the sufficiently high scores
for both metrics.

B. SOMAD Process

Step 1. Metrics Inference: Metrics to support the interpretation
of sequential association rules are inferred from a set of three
hypotheses synthesized from the textual description of SOA
antipatterns (Table I).

These hypotheses represent heuristics that enable the identifi-
cation of architectural properties relevant to SOA antipatterns.
Indeed, after a careful examination of the textual descriptions,
we observed that SOA antipatterns can be specified in terms

of coupling and cohesion'.

Hypothesis 1. If a service A implies a service B with a
high support and a high confidence, then A and B are tightly
coupled.

Hypothesis 2. If a service appears in the consequent (an-
tecedent) parts for a high number of associations, then it has
high incoming (outgoing) coupling.

The above hypotheses qualify the coupling between two
specific services and overall incoming/outgoing coupling. The
cohesion is also widely used in SOA antipattern descriptions.

Hypothesis 3. If the number of different methods of a service
A is equal or superior to the number of different services
invoking A (Hypothesis 2) then, the service is not externally
cohesive.

This definition of cohesion has been introduced by Pere-
pletchikov et al: "A service is deemed to be Externally

IRecall coupling basically refers to the degree a services relies on others
while cohesion measures the relatedness between its own responsibilities [24].
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TABLE I: List of SOA Antipatterns [2]

Multi-Service, a.k.a God Object corresponds to a service that implements
a multitude of methods related to different business and technical abstrac-
tions. This aggregate too much into a single service, such a service is not
easily reusable because of the low cohesion of its methods and is often
unavailable to end-users because of its overload, which may induce a high
response time [25].

Tiny Service is a small service with few methods, which only implements
part of an abstraction. Such service often requires several coupled services
to be used together, resulting in higher development complexity and reduced
usability. In the extreme case, a Tiny Service will be limited to one method,
resulting in many services that implement an overall set of requirements [25].

Chatty Service corresponds to a set of services that exchange a lot of small
data of primitive types. The Chatty Service is also characterized by a high
number of method invocations. Chatty Service chats a lot with each other
[25].

The Knot is a set of very low cohesive services, which are tightly coupled.
These services are thus less reusable. Due to this complex architecture, the
availability of these services can be low, and their response time high [26].

Bottleneck Service is a service that is highly used by other services or
clients. It has a high incoming and outgoing coupling. Its response time
can be higher because it may be used by too many external clients, for
which clients may need to wait to get access to the service. Moreover, its
availability may also be low due to the traffic.

Service Chain, a.k.a. Message Chain in OO systems, corresponds to a chain
of services. The Service Chain appears when clients request consecutive
service invocations to fulfill their goals. This kind of dependency chain
reflects the action of invocation in a transitive manner.

cohesive when all of its service operations are invoked by
all the clients of this service" [27]. Based on the above three
hypotheses, we have created domain specific metrics to help
us explore the antipattern manifestations that are hidden in
the sequential association rules. We use the DSL we defined
in [2] to combine them. Metrics are presented in Table II. In
the figure, standard mathematical notations are used whenever
possible and extended if necessary. Thus, association rules are
visualized by (X — Y) with X and Y represent the antecedent
and the consequent parts, respectively. K, L are partner ser-
vices. AR stands for the overall set of association rules while
AR, and AR,, being subsets targeting association rules at
service / method level, respectively. Mg denotes the methods
of a given service S. Finally, we use non-standard symbols
for sequence operations: [] is the sequence constructor, U
stand for append on sequences; € denotes the sub-sequence-of
relationship; and A < B means the service/method A appears
inside the association rule B. Metrics can be combined to
define other metrics.

Step 2. Specification of SOA Antipatterns: The combination of
metrics defined in the previous step allows the specification
of SOA antipatterns in the form of sets of rules, called rule
cards.

For the individual metrics and combinations thereof, the val-
ues that trigger the detailed examination of a case are not
fixed beforehand. Instead, we use a boxplot-based statistical
technique that exploits the distribution of all values across the
sets of services, methods, and rules. Moreover, the computed
values are further weighted using the quality metrics for

1 RULE_CARD: MultiService {

2 RULE: MultiService{INTER LowCoh
3 RULE: LowCohesion{COH LOW};

4 RULE: ManyMethods{NM HIGH};
5
6

ManyM hods ManyMatch )

RULE: ManyMatches{NMA HIGH};
N
(a) Multi Service

1 RULE_CARD: TinyService {
2 RULE: TinyService{INTER HighOutgoingCoupling FewMethods},
3 RULE: HighOutgoingCoupling{OC HIGH};
4 RULE: FewMethods{NM LOW };
5k

(b) Tiny Service
1 RULE_CARD: ChattyService {
2 RULE: ChattyService{INTER ManyPartners ManyMatches };
3 RULE: ManyPartners{NDP VERY HIGH};
4 RULE: ManyMatches{NMA VERY HIGH};
5}

(c) Chatty Service
1 RULE_CARD: BottleNeck {
2 RULE: BottleNeck{INTER HighOutgoingC
3 RULE: HighOutgoingCoupling{OC HIGH};
4 RULE: HighIncomingCoupling{IC HIGH};
5}

pling HighIncomingC

(d) BottleNeck Service

1 RULE_CARD: KnotService {
2 RULE: KnotService{INTER LowCohesion HighCrossInvocation};
3 RULE: LowCohesion{COH LOW};
4 RULE: HighCrossInvocation{CID HIGH};
5}

(e) Knot Service
1 RULE_CARD: ServiceChain {
2 RULE: ServiceChain{HighTransitiveCoupling};
3 RULE: HighTransitiveCoupling{TC HIGH};
4}

(f) Service Chain

Fig. 2: Rule Cards

associations, i.e. support and confidence, so that the strongest
rules could be favored. The rule cards used to specify SOA
antipatterns are presented in Figure 2. As an example, the rule
card corresponding to the Tiny Service specification (Figure
3(b)) is composed of three rules. The first one (line 2) is the
intersection of two rules (lines 3, 4), which define two metrics:
a high Outgoing Coupling (OC) and a low Number of Method
(NM).

Step 3. Generation of Detection Algorithms: This step stays
unchanged from SODA, as described in Section II-C.

Step 4. Association Rule Mining: Execution traces are analyzed
to extract the sequential association rules.

Association rules are extracted from a collection of sequence-
shaped transactions with respect to a minimal support and a
minimal confidence threshold. A transaction is a time-ordered
set of different services and method calls. Recall that the
support of a pattern, i.e. sequence of items (services or service
methods), reflects the overall percentage of transactions that
contain the pattern, whereas the confidence measures the
likelihood of the consequent following the occurrence of the
antecedent in a transaction. For our experiments (see next
section) we set the values of the thresholds to 40% and 60%,
respectively. The choice of these values does not follow any
specific indication, general law from ARM or deeper insight
into the SBS architecture. As our approach is at its exploratory
stage, we were only guided by the need to filter out all spurious
associations while still keeping enough rules to represent the
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TABLE II: Metrics U : append on sequences; € : sub-sequence-of relationship; and A < B : A appears inside B.

Number of Matches (NMA(S)) : #{X - Y € AR, [ S< (X UY)}
Follows the number of rules where a service appears, either on the left- or on the right-hand side.

Number of Diff. Partners (NDP(S)) : #{K [ X =Y € AR, S<X, K<Y} + #{K[X >Y € AR,,S<Y,K < X}
Indicates how many different partners a service has. Spelled differently, the metric determines whether the service

communicates intensively with surrounding services or not.

Number of Methods (NM(S)) : #{K | X - Y € AR, K€ M,,K < (X UY)}
Counts the number of occurrences of the methods from a service. The counting for this metric focuses on method rules.

Cohesion (COH(S)) : %ﬂg)

Assesses the ratio between the numbers of partner services and of the available methods, respectively.

Cross Invocation Dependencies (CID(S,, Sp)) : #{X =Y € AR, [ S, <X, Sy<Y} + #{X =Y € AR, [ 5,<Y, Sp< X}
CID is a keystone of the SOMAD approach. Indeed, the metric would explore the typical interactions between services

while ignoring less frequent ones (absent from the mining method output due to the support threshold). To retrieve this
information CID counts all association rules where a service A (Sa) is present in the antecedent and a service B (Sb) in
the consequent or vice versa.

. . ; CID(S,L)
Incoming Coupling (IC(S)) : ZLE{K\X%YEARS7K<X,S<Y} NDP(S)
Counts how many times a service is used. Yet instead of merely counting a unit for each partner service, we use a contextual

value: %ﬁ(’g) where X is the partner service. Thus, the larger the portion of the partner service in the overall number

of partners of .S, the higher the coupling.
CID(L,5)

Outgoing Coupling (0C(S)) : 3 1 c(k|X—YeAR., S<X, K<V} NDP(S)
The same principle as for IC, yet applied in a dual manner: counts how many times the argument service uses other ones.

Transitive Coupling (TC(S,,S,)) : #{K [ X =Y € AR, S, < X, 5, <Y, ([S., K| E X VIK,S]€Y)}
Metric targets the Service Chain SOA antipattern (see above). First, observe that the founding idea of Service Chain is that

absence of direct communication between a pair of services does not mean zero coupling. To identify transitive coupling
manifestations we need to capture the notion of a chain: e.g. a service .S, is in the antecedent of a rule, another one S}, is in
the consequent of another rule and both rules are connected by means of a third service K that appears in the consequent
of the first rule and in the antecedent of the second one. Longer chains are possible as well. Thus, in the basic case, one
could have [A]—[B] and [B]—[C]. In this configuration, although A and C are not directly coupled, if C fails, there are

good chances that A (and B) would fail too.

most significant calls (regulated via the support threshold).
Moreover, we needed enough confidence in the threshold to
make appear the most significant alternatives (rule consequent)
for the termination of a specific sequence of calls (rule
antecedent) while suppressing the less significant ones. Thus,
we have made several incremental attempts, starting from 10%
and 40% respectively for the support and the confidence. For
each attempt, we modified one of the two values by 5% and
observed the number of generated rules. The current values
seem to offer the best trade-off between size and completeness
of scenarios. Now we faced a two-fold possibility for the
effective ARM method to use on our traces. In fact, most
sequential pattern mining and ARM algorithms have been
designed for structures that are slightly more general than
ours, i.e. involving sequences of sets (instead of single items).
Efficient sequential pattern/rule miners have been published,
e.g. the PrefixSpan method [28]. In contrast, execution traces
do not compile to fully-blown sequential transactions as the
underlying structures are mere sequences of singletons, a data
format known for at least 15 years yet rarely exploited by the
data mining community, arguably because it is less challenging
to mine. However, many practical applications have been
reported where such data arise, inclusive software log mining
(see Section II). In the general data mining literature, mining

from pure sequences, as opposed to sequences made of sets,
has been addressed under the name of episode mining [29].
Episodes are made of events and in a sense, service calls are
events. Arguably the largest body of knowledge on the subject
belongs to the web usage mining field: The input data is again
a system trace, yet this time the trace of requests sent to a
web server [30]. Since sequential patterns are more general
than the pure sequence ones, mining algorithms designed for
the former might prove to be less efficient when applied to
the latter (as additional steps might be required for listing all
significant sets). Nevertheless, to jump-start our experimental
study and given the specificity of our datasets, we choose the
RuleGrowth algorithm [31] that seemed to fit at best. Although
it has not been optimized for pure sequences its performances
are more than satisfactory. In summary, at the end of this, we
have extracted the statistically relevant relationship between
services in the form of sequential association rules.

Step 5. Detection of SOA Antipatterns

The last step of SOMAD applies the detection algorithms
generated in Step 3 to the sequential association rules mined in
Step 4. At the end of this step, services in the SBS suspected
of being involved in an antipattern are identified and stored
for further examination.
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C. Implementation Details

In this subsection, we present implementation details for other
steps that may support the SOMAD approach.

Generation of Execution Traces. In case execution traces are
not available, this step allows their generation.

If the target SBS does not produce qualitative execution traces
that contain all the required information, we have to instrument
it. Thus, SOMAD requires either the its source code or
the execution environment. In fact, such traces enable low-
tech application debugging support whenever debuggers are
unavailable or inapplicable (frequently the case with SOA
environments). Therefore, even if trace producing can intro-
duce source code obfuscation, it may nevertheless have some
secondary benefits e.g. in terms of design quality as the code
must be well mastered in order to correctly instrument. This
technique of tracing is the most common. If the source code is
unavailable an alternative consists in instrumenting the running
environment of the SBS, i.e. the virtual machine, the web
server, or the operating system. For example, LTTng [32]
instruments Linux to produce traces with a very low overhead.

To ease automated processing of traces, we provide a
template (see Figure 3) that is a good trade-off between
simplicity and information content. In this template, a method
invocation generates two lines, an opening and a closing one
with belonging customer identification (IP address) and a
timestamp.

IP timestamp void methodA.ServiceA();

IP  timestamp void methodB.ServiceB();

IP  timestamp end void methodB.ServiceB();
IP timestamp end void methodA.ServiceA();

Fig. 3: Trace template

Collecting and Aggregating Traces. The goal here is to down-
load all distributed trace files and merge them into a single
one.

Traces are typically generated by a set of services within
the SBS. Their collection and aggregation is a key yet non-
trivial task [33]. Indeed, the dynamic and distributed nature of
SBSs is the origin of some serious challenges. One of them
is related to the distribution of SBSs and, hence, of execution
traces. In fact, each service will generate its execution traces
in its own running environment. Therefore, we need to know
the name and running place for each service and to have a
mechanism for download / retrieval of execution traces on each
running environment. Moreover, services can be consumed
by several customers simultaneously, hence execution traces
can be interleaved. To solve these problem we applied an
approach inspired by A. Yousefi and K. Startipi [34]: We
first gather all executions log files in one file. Then, we sort
execution traces using their timestamps and exploit the caller-
callee relationships determined by service and method names
to identify blocks of concurrent traces.

Focus shift. This feature is the main reason for SOMAD
performing better than SODA in the identification of truly
harmful SOA antipatterns.

Observe that SOMAD hypotheses shift the focus of the
antipattern search from pure architectural considerations to
usage, thus neglecting the exact values of some basic metrics.
It is a natural choice since SOMAD does not access exact
values through service interfaces or implementation. More-
over, analyzing a system from the usage view angle should
—and this was proven by our experimental study (see below)—
result in a better precision. Consider a service named Half-
Deprecated Service composed of four methods: A, B, C and
D. Assume the methods C and D are outdated yet the service
still exposes them to ensure retro-compatibility. One way to
compute the cohesion of our service is to count how many of
its methods are used during a session by a unique user. Since
half of the methods are outdated it is highly probable that any
user will consume at most the other half. Therefore, if cohesion
is computed from the service interface, it would amount to
0.5 (2/4) which should raise the suspicions of low-cohesion
SOA antipatterns. In contrast, if the cohesion is computed
from execution traces the result will tend to be 1.0. Indeed, the
unforeseen calls to the deprecated methods will most probably
be discarded due to their their low support in the execution
traces. In summary, because of its focus on usage, SOMAD
should perform better than SODA in detecting harmful SOA
antipatterns.

IV. EXPERIMENTS

As a validation study, we apply SOMAD on two indepen-
dently developed SBSs, Home Automation and FraSCAti [5].
Home Automation is an SBS made of 13 services and selected
for comparison with the outcome produced by SODA, the
so far unique state-of-the-art tool for antipatterns detection.
Both tools were evaluated in terms of precision and recall, on
one hand, and efficiency, on the other hand. We also apply
SOMAD to FraSCAti, an SBS almost 10 times larger than
Home Automation, which contains 91 components and 130
services.

A. Subjects

We apply SOMAD to detect six different SOA antipatterns
described in Table 1. In the description of each antipattern, we
highlight in bold the characteristics relevant for their detection
using our metrics.

B. Objects

A first round of experiments was performed on Home
Automation, the same system used in the validation of SODA.
Home Automation is an independently developed SCA-based
system for remotely controlling basic household functions
(i.e., temperature, electrical instruments, medical emergency
support, etc.) in home care support for elderly. It also includes
a set of 7 predefined scenarios for test and demonstration
purposes. Two different versions of the system were used: the
original version, made of 13 services, and an intentionally
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degraded version in which services have been modified and
new ones added in order to inject some antipatterns. The
changes were performed by a third-party to avoid bias in the
results. Given the lack of freely available SBSs, the second
round was performed on FraSCAti [5], the runtime support
of Home Automation. FraSCAti is also an SCA-based system
made of more than 90 components and over 130 services scat-
tered between components. A component exposes at least one
service and services expose methods. Unlike Home Automa-
tion, FraSCAti does not have predefined scenarios—in reality
it provides some unit tests, but not complete feature coverage.
The detection was performed by instrumenting FraSCAti to
produce execution traces as described in Section III-C. As
FraSCAti is a runtime support for SOA systems, we loaded and
ran diverse SBSs of different technologies (SCA, REST, Web
Services, RMI-based) and then, handle these systems to have a
maximum feature coverage. The detection of SOA antipatterns
in FraSCAti has been performed at the component level instead
of service-level since the system architecture is documented
at that level while the subsequent validation will be based on
this documentation. Moreover, it was empirically established
that SCA-based systems suffer from the same architectural
flaws as pure SOA systems. Details on the systems including
all the scenarios and involved services are available online at
http://sofa.uqgam.ca/somad.

C. Process

We applied SOMAD for the detection of the six SOA
antipatterns on the two targeted SBSs. First, we run the
seven scenarios of Home Automation on its two versions,
and then the six scenarios of FraSCAti. Then, we recreated
transactions from the execution traces and run our algorithm
for rule generation, with a support of 40% and a confidence of
60%, the corresponding sequential association rules. The step
that follows consisted in interpreting the generated association
rules. For this purpose, we computed the metrics associated
to hypotheses that fit the textual descriptions of the six SOA
antipatterns. After this step of interpretation, we obtained
for each SBS the list of suspicious services involved in the
antipatterns. Finally, we validated the detection results in terms
of precision and recall by analyzing the suspicious services
manually. Precision estimates the ratio of true antipatterns
identified among the detected antipatterns, while recall esti-
mates the ratio of detected antipatterns among the existing
antipatterns. This validation has been performed manually by
an independent software engineer, whom we provided the
descriptions of antipatterns, the two versions of the analyzed
system Home Automation, and the system FraSCAti with a
printed description of its architecture available online on the
FraSCAti web site (http://frascati.ow2.org). For both systems,
we compared the results with the ones obtained by SODA.
For FraSCAti, we reported the detection results to their devel-
opment team and got their feedback as a objective validation.

D. Results
Table III presents the results for the detection of the
six SOA antipatterns on the original and evolved version

of Home Automation. For each SOA antipattern, the table
reports the version analyzed of Home Automation, the services
detected automatically by SOMAD, the services identified
manually by the software engineer, the metric values, the
recall and precision, the computation time, and finally, the
F-measure [21]. Similarly, Table IV provides the detection
results on FraSCAti. We recall that the metric values reported
in the tables do not represent absolute values (e.g. for NM, the
exact number of methods exposed), but rather elicit what we
called the usage representation of a SBS. And in particular,
the metric values are weighted by the fraction % for
highlighting most confident and supported association rules.
Thus, a number of methods (NM) of 2 means that among the
generated association rules, there are 2 methods that appear in
the rules with a high support and confidence.

E. Details of the Results

We present the detection results of SOMAD while compar-
ing them to SODA, both on the system Home Automation. The
results with SOMAD are quite similar to the ones obtained
with SODA, except for The Knot and Bottleneck Service
antipatterns.

For example, IMediator has been detected and identified
as a Multi Service, both in SOMAD and SODA, because of
its high number of methods (NM > 2), its high number of
matches (NMA > 3.8) and its low cohesion (COH < 0.5).
These metric values have been evaluated as high and low in
comparison with the metric values of Home Automation. For
example, for the metric NM, the boxplot estimates the high
value of NM in Home Automation as equal to 2. Similarly, the
detected Tiny Service has a very low number of methods (NM
< 1) and a high outgoing coupling (OC > 4) according to the
boxplot. In the original version of Home Automation, we did
not detect any 7iny Service. An independent engineer extracted
one method from IMediator and moved it into a new
service named MediatorDelegate; this newly injected
service has been detected as a Tiny Service. Two occurrences
of Chatty Service have been discovered in Home Automation,
both in SOMAD and SODA. PatientDAO and IMediator
have a high number of matches (NMA > 3.8), which mean
that the service talks too much, and they have a high number
of different partners (NDP > 0.6).

PatientDAO has been detected as a Knot because it has
a high cyclic invocation dependencies (CID > 2) and a low
cohesion (COH < 0.5). The metric CID allows the identi-
fication of cyclic invocation dependency. In Home Automa-
tion, the set of services PatientDAO1l, PatientDAO2,
PatientDAO3, PatientDAO4 are tightly coupled because
each of them represents a part of a patient’s information
(name, address, phone number). Therefore, cyclic invocations
between these services appear when information about a pa-
tient are requested. SOMAD does not report the false positive,
IMediator, reported by SODA, and thus obtains a better
precision for this antipattern.

Three services have been detected as BottleNeck Services:
IMediator PatientDAO, and SunSpotService be-
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TABLE III: Results comparison between SODA & SOMAD on HomeAutomation

Antipattern Name Automatlcallly . I\'/Ianually' SOMAD Metrics | Recall Precision Time F1
detected services identified services
. . Mediator-— [1/1] [1/1]

Tiny Service SODA Delegate Mediator oC > 4 100% 100% 0.194s 100%
Detected on the Mediator- -Delegate [1/1] [1/1] o
Evolved Version SOMAD Delegate NM <1 100% 100% 0.077s 100%

SODA IMediator NM > 2 [1/1] /111 04625 | 100%
. . , NMA > 3.8 100% 100%
Multi Service IMediator [171] TI71]
SOMAD IMediator COH < 0.5 100% 100% 0.050s 100%
SODA PatientDRO PatientDRO NMA > 3.8 [2/2] (21211 03835 | 100%
Chatty Service IMediator 1[(2)?;? 1[(2)?2(7]0
PatientDAO )
SOMAD TMediator IMediator NDP > 0.6 100% 100% 0.077s 100%
SODA PatientDAO CID > 2 (/1] U211 04125 | 66.6%
IMediator ) 100% 50%
The Knot PatientDAO (/1] (/1]
SOMAD PatientDAO COH < 0.5 100% 100% 0.077s 100%
IMediator , [2/2] [2/2] ]
SODA PatientbAO IMediator IC>4 100% 100% 0.246s 100%
BottleNeck IMediator [2/2] [2/3]
SOMAD PatientDAO PatientDAO oC >3 0.076s 79.5%

SunSpotService 100% 66%

{IMediator,

PatientDAO, [3/3] [3/4]

SODA SunSpotService, {IMediator, 100% 75% 0.223s 85.7%
. . PatientDAO2} PatientDAO,
Chain Service {IMediator, PatientDAO2} LC>4

PatientDAO, [3/3] [3/4]

SOMAD SunSpotService, 100% 75% 0.056s 85.7%
PatientDAO2}
Averace SODA 100% 87.5% 0.231s 92.0%
verag SOMAD 100% 90.1% 0.068s 94.2%
TABLE IV: Results comparison between SODA & SOMAD on FraSCAti
. Automatically Manually SOMAD . .
Antipattern Name detected services identified services Metrics Recall Precision Time Fi
SODA SCA-Parser oc >3 (/1] (/111 00835 | 100%
. . 100% 100%
Tiny Service SCA-Parser (/1] (/1]
SOMAD SCA-Parser NM <1 100% 100% 0.066 100%
juliac NDP > 24 [1/1] [1/2] ]
o SODA Explorer—GUI NMA >70 | 100% | 5s0% | 04625 | 66:67%
Multi Service Explorer-GUI (/1] (/1]
SOMAD Explorer—-GUI COH < 0.5 100% 100% 0.050s 100%
SODA not present NMA > 70 1[8{)2; 1[869; 097s | 100%
Chatty Service not present [0/0]0 [0/0]0
SOMAD not present NDP >24 100% 100% 0.77s 100%
SODA SCA-Parser cm =25 | V] U211y oa1s | 66.6%
SCA-Composite 100% 50%
The Knot SCA-Parser (/1] (/1]
SOMAD SCA-Parser COH <€ 0.2 100% 100% 0.7s 100%
SCA-Composite B [2/2] [2/2] . o
SODA SCA-Parser SCA-Parser IC>3 100% 100% 0.246s 100%
BottleNeck SCA-Parser [2/2] [2/3]
SOMAD SCA—Comp031tle SCA-Composite oC >3 100% 66.67% 0.076s 80%
Metamodel-Provider
SCA-Parser
[2/2] [2/3]
SODA Composite-Manager 100% 66.67% 0.758 80%
Chain Service Processor Composlite Parser LC>5
. Composite-Manager
Composite—-Parser [2/2] [2/2]
SOMAD Composite-Manager 100% 100% 0.056s 100%
Average SODA 100% 77.77% 0.707s 85.55%
g SOMAD 100% 94.44% 0.28s 96.6%
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cause of their high outgoing and incoming coupling (IC >
4 and OC > 3). This time, it is SOMAD that reports the false
positive, SunSpot Service, and thus decreases its precision
compared to SODA.

Finally, we detected both in SOMAD and SODA, the
transitive chain of invocations IMediator — PatientDAO
— PatientDAO2 — SunSpotService (LC > 4). In both
approaches, the false positive SunSpotService has been
reported.

We now present the detection results of SOMAD on FraSCAti.

SCA-Parser is suspected to be a Tiny Service because it
includes a low number of methods (NM equal 1) and a high
outgoing coupling (OC equal 3). A manual code inspection
of FraSCAti revealed that SCA-Parser contains only one
interface method, named parse(...). The development
team of FraSCAUt validated this antipattern. They indicated
that this service can be invoked alone when only a reading of
a SCA file is requested. However, FraSCAti performs more
tasks that just reading an SCA file, and these other tasks are
performed by other services such as AssemblyFactory.
This explains the high outgoing coupling.

SOMAD did not detect any Multi Service in FraSCAti.
However, the manual inspection of FraSCAti allowed the
identification of the component Explorer—-GUI as a Multi
Service. The FraSCAti development team confirmed that this
component uses a high number of services provided by other
components of FraSCAti. Indeed, this component encapsulates
the graphical interface of FraSCAti Explorer, which aims to
provide an exhaustive interface of FraSCAti functionalities.
SOMAD was not able to detect it because the execution
scenarios did not involve the graphical interface of FraSCAti
Explorer.

SOMAD did not detect any Chatty Service in FraSCAti. No
service has a very high number of matches (NMA) and a very
high number of different partners (NDP), respectively higher
than 70 and 24. This means that no service appears more than
70 times in the set of association rules and communicates
with more than 24 different other services. The manual code
inspection confirmed also that there was no Chatty Service
in FraSCAti. The component Metamodel-provider is
suspected to be part of a Knot because of its low cohesion
(COH < 0.2) and its very high cyclic invocation dependencies
(CID > 25). The validation by the FraSCAti team has only
confirmed that this component was implemented by many
other components, but they did not agree on the specification
of this antipattern. However, the independent software engi-
neer validated this detection.

SOMAD detected three occurrences of the BottleNeck Ser-
vice antipattern, SCA-Parser, Composite-Parser, and
Metamodel-provider, the last of which was identified as
a false positive. These services have been identified as Bottle-
Neck Services because they have a high outgoing and incoming
coupling (OC and IC > 3). The FraSCAti development team
confirmed that SCA-Parser is highly used by other services.

Finally, Composite—-Parser has been detected and iden-
tified as a Chain Service, whereas Composite—Manager

is a false positive. Composite-Parser is involved in a
long transitive chain of invocations (LC > 4). The FraSCAti
development team validated this antipattern and indicated that
this service uses a delegation chain to perform its behavior.

We can observe that Composite-Parser and
SCA-Parser are very suspicious services. They are
both involved in two antipatterns. These services are highly
coupled with other services and are part of a long transitive
invocation chain. The presence of such antipatterns in a
system is not surprising because there is no other way to
develop a parser without introducing a high coupling and
high transitivity.

Finally, for both systems, the average computational time
of SOMAD is 174ms, whereas the one of SODA is 469ms.
SOMAD clearly outperforms SODA. This is explained by
the fact that for each service, SODA unstacks and executes
a pile of aspects including the code for the computation of
metrics whereas SOMAD computes metrics directly on traces
using association rules. In conclusion, FraSCAti is performing
reasonably well towards the antipattern detection. Few services
have been detected as antipatterns compared to the high num-
ber of FraSCAti components/services. Mainly, SCA-Parser
is on the critical path of all processing performed by FraSCAti.

F. Threats to validity

The main threat to the validity of our results corresponds
to the external validity, i.e., the possibility to generalize the
current results to other SBSs. Given the lack of freely available
systems, we have done our best to obtain real systems such as
FraSCAti and we experimented with two versions of Home Au-
tomation. However, we plan to run these experiments on other
SBSs in the future, with special focus on SBSs implementing
other SOA technologies, such as REST and Web services.
Regarding the internal validity, the detection results depend on
our hypotheses. Although we did not perform our experiments
on a representative set of antipatterns as done with SODA, we
obtained comparable results in terms of precision and recall.
The subjective nature of interpreting the association rules and
validating antipatterns is a threat to the construct validity.
We control this threat by specifying our hypotheses based on
a literature review on antipatterns and by involving in our
study an independent engineer and the FraSCAti development
team. Finally, we minimize the threats to reliability validity
by automating the generation of association rules.

V. CONCLUSIONS AND FUTURE WORK

The detection of SOA antipatterns is a crucial activity if we
are to ensure the architectural and overall quality of SBSs.
In this paper, we present a new and innovative approach,
SOMAD, for the detection of antipatterns. The approach relies
on two complementary techniques, from two thriving fields
in software engineering, mining system traces and software
measurement, respectively, both put in an SOA environment.
More precisely, SOMAD detects SOA antipatterns by first dis-
covering strong associations between services from execution
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traces and then filtering the resulting knowledge by means
of domain-specific metrics. The usefulness of SOMAD was
demonstrated by applying it to two independently developed
SBS. The results of our approach, were compared to those
of its forebear, SODA: The outcome shows that SOMAD is
a relevant approach as it is substantially more precise (by a
margin ranging from 2.6% to 16.67%) and efficient (2.5+ times
faster) while keeping the recall to 100%. Moreover, SOMAD
has a wider coverage than SODA as it can adapt to execution
traces from any SOA technology —and is potentially applicable
to traces produced by OO systems— as opposed to a narrow
focus on SCA SBSs.

As a next step, we envision the application of SOMAD in
the context of a large data center whereby the goal would
be to optimize the data center communications. In the near
future, we shall also investigate alternative mining techniques
to refine our approach with additional information, e.g. directly
extracting architectural overviews with graph pattern min-
ing [35] or, detecting recurring patterns of anomalous behavior
with rare pattern mining [36]. Finally, combining explicit
semantic representations of SOA antipatterns, e.g. in OWL
ontologies, with powerful mining methods for heterogeneous
labeled graphs (see [37]) seems to be a particularly promising
track for the extraction of complex structural and/or behavioral
antipatterns.
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