UNIVERSITÉ DU QUÉBEC À TROIS-RIVIÈRES

SYNTHÈSE D'ALCALOÏDES PYRROLIZIDINIQUES VIA LA CHIMIE DU CUIVRE ET UN RÉARRANGEMENT DE CLAISEN : VERS UNE NOUVELLE VOIE DE SYNTHÈSE DE LA XÉNOVÉNINE

> MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN CHIMIE EXTENSIONNÉE DE L'UNIVERSITÉ DU QUÉBEC À MONTRÉAL

> > PAR

SIMON RICARD

MAI 2014

UNIVERSITÉ DU QUÉBEC À MONTRÉAL Service des bibliothèques

Avertissement

La diffusion de ce mémoire se fait dans le respect des droits de son auteur, qui a signé le formulaire *Autorisation de reproduire et de diffuser un travail de recherche de cycles supérieurs* (SDU-522 – Rév.01-2006). Cette autorisation stipule que «conformément à l'article 11 du Règlement no 8 des études de cycles supérieurs, [l'auteur] concède à l'Université du Québec à Montréal une licence non exclusive d'utilisation et de publication de la totalité ou d'une partie importante de [son] travail de recherche pour des fins pédagogiques et non commerciales. Plus précisément, [l'auteur] autorise l'Université du Québec à Montréal à reproduire, diffuser, prêter, distribuer ou vendre des copies de [son] travail de recherche à des fins non commerciales sur quelque support que ce soit, y compris l'Internet. Cette licence et cette autorisation n'entraînent pas une renonciation de [la] part [de l'auteur] à [ses] droits moraux ni à [ses] droits de propriété intellectuelle. Sauf entente contraire, [l'auteur] conserve la liberté de diffuser et de commercialiser ou non ce travail dont [il] possède un exemplaire.»

«Research is what I'm doing when I don't know what I'm doing.» Wernher von Braun

REMERCIEMENTS

Je voudrais d'abord remercier mon directeur de recherche, le professeur Benoit Daoust, pour m'avoir accueilli dans son laboratoire et pour m'avoir offert un projet de recherche très intéressant. Il est un excellent directeur qui a su me guider à travers mes résultats quelques fois surprenants. Je veux surtout le remercier pour sa grande disponibilité et pour la facilité avec laquelle nous avons discuté de tout et de chimie durant ma maîtrise. Au-delà du professeur, Benoit est devenu un ami que je respecte et que j'estime énormément.

Je veux ensuite remercier mes collègues, Jodrey et Julie. Je partage avec eux bien plus que les pinces Keck du laboratoire. Nous partageons une précieuse amitié et d'innombrables anecdotes. Je les remercie aussi de partager mon quotidien, autant à l'intérieur qu'à l'extérieur du laboratoire, car je les apprécie beaucoup.

Je tiens à remercier mes autres collègues, Justine, Paméla et François pour ne nommer qu'eux, qui ont toujours coloré mes journées de laboratoire à leur façon lorsqu'ils y sont passés. Je veux donner un merci spécial à nos visiteurs du pays de Molière, Alexandre, Hugo et Maxime, pour le risque qu'ils ont pris et qui a engendré de belles amitiés. Je remercie aussi tous les membres du personnel qui sont devenus de bons amis et qui m'ont rendu des milliers de services, merci à Cathia, Jocelyn et Diane. Je remercie évidemment ma famille et mes amis qui m'ont soutenu durant ma maîtrise. Merci d'avoir toujours été là pour m'encourager quand j'en avais besoin et pour m'avoir secoué un peu lorsque nécessaire. Je vous remercie pour les multiples attentions que vous avez eues à mon égard, elles ont toutes été très appréciées.

Je dois remercier celui avec qui je partage ma vie, mon bien-aimé Nicolas. Je le remercie d'avoir été mon confident et mon bureau des plaintes quand les journées étaient moins roses. Merci d'être à mes côtés et de faire de moi quelqu'un de meilleur, quelqu'un qui veut se surpasser.

Finalement, merci à vous chers lecteurs. Que vous lisiez ceci par obligation, par curiosité ou par simple plaisir, je vous remercie de prendre le temps de lire ces quelques pages qui renferment pour moi de nombreux souvenirs.

TABLE DES MATIÈRES

LISTE DES FIGURES vii
LISTE DES TABLEAUX x
LISTE DES SCHÉMAS xiii
LISTE DES SPECTRES xviii
LISTE DES ABRÉVIATIONS, SIGLES ET ACRONYMES xx
LISTE DES SYMBOLES ET DES UNITÉS xxiv
RÉSUMÉ xxvi
CHAPITRE I INTRODUCTION
1.1 Généralités sur les alcaloïdes 1
1.2 Xénovénine : intérêt et synthèse 4
1.2.1 Xénovénine : synthèse par amination réductrice 4
1.2.2 Xénovénine : synthèse par hydroamination 16
1.2.3 Xénovénine : retour sur les méthodes de synthèse 23
1.3 But du projet 23
CHAPITRE II GÉNÉRALITÉS SUR LA CHIMIE DU CUIVRE ET LE RÉARRANGEMENT DE CLAISEN
2.1 Généralités sur les réactions de couplage 28
2.2 Couplages catalysés par le cuivre
2.2.1 Formation de liens C-N
2.2.2 Formation de liens C-O 40
2.3 Réarrangement de Claisen

CHAPITRE III

L'APPLICATION DE L'OUTIL DE SYNTHÈSE À LA PRÉPARATION DE LA (-)-XÉNOVÉNINE	7		
3.1 Préparation du diiodure vinylique <u>51</u> 57	7		
3.1.1 Préparation de la lactame propargylée <u>118</u> à partir du succinimide (<u>120</u>)	9		
3.1.2 Préparation de la lactame propargylée <u>118</u> à partir de l'acide pent-4-énoïque (<u>123</u>)	3		
3.1.3 Préparation du diiodure vinylique <u>51</u> à partir de la lactame propargylée <u>118</u>	5		
3.1.4 Approche envisagée pour la synthèse optiquement pure de la (-)-xénovénine	3		
3.2 lodovinylation intramoléculaire du diiodure vinylique <u>51</u> catalysée par le cuivre)		
 Allyloxylation intermoléculaire du β-iodoénamide <u>52</u> catalysée par le cuivre	3		
CHAPITRE IV CONCLUSIONS ET PROPOSITIONS À PROPOS DU PRÉSENT PROJET	7		
CHAPITRE V PARTIE EXPÉRIMENTALE	2		
5.1 Remarques générales	2		
5.2 Modes opératoires	3		
APPENDICE SPECTRES RMN ¹ H ET ¹³ C			
RÉFÉRENCES			

LISTE DES FIGURES

Figure	P	age
1.1	Quelques alcaloïdes et leur précurseur biochimique	2
1.2	Squelettes numérotés des izidines et énantiomères de la xénovénine.	3
1.3	Épimère C3 de la (-)-xénovénine	7
1.4	Intermédiaires orthoester et bromoacétate lors de la préparation du précurseur <u>10</u> par le groupe de Takahata	11
1.5	États de transition possibles lors de la synthèse du composé <u>22</u> dans le cadre de la préparation du précurseur <u>11</u> par le groupe de Huang	15
1.6	Exemples de complexes organométalliques utilisés pour l'hydroamination.	17
1.7	Structure du NBSH (<u>40</u>) et de l'intermédiaire impliqué dans la synthèse de l'allène <u>36</u> à partir de l'alcool propargylique <u>35</u>	21
1.8	Structure de l'acide de Lewis <u>41</u> et les représentations de Newman qui expliquent la sélectivité observée lors de la synthèse de l'alcool <u>39</u> .	22
2.1	Acides aminés utilisés comme ligands dans la méthode de Zhang pour la N-arylation de nucléophiles azotés.	36
2.2	Ligands utilisés pour la N-iodovinylation de différents nucléophiles azotés par la méthode de Daoust	40
2.3	Ligand utilisé pour la O-arylation de différents phénols par la méthode de Reider	41

2.4	Ligands utilisés pour la O-vinylation de différents phénols respectivement par les méthodes de Ma et Wan.	43
2.5	Halogénure riche utilisé par Keegstra pour la O-vinylation du méthanolate de sodium.	45
2.6	Ligands utilisés pour la O-vinylation de différents alcools par les méthodes de Buchwald.	46
3.1	Structure du diiodure vinylique <u>51</u> , précurseur du premier couplage de l'outil de synthèse.	58
3.2	Structure de l'intermédiaire N-acyliminium généré à partir de la	63
3.3	Positions nucléophiles de l'allényltributylstannane (<u>124</u>) et structure de l'allène <u>125</u> .	64
3.4	Positions nucléophiles du bromure de propargylmagnésium (<u>126</u>) et structure de l'allène <u>125</u>	68
3.5	Signaux caractéristiques de la lactame propargylée <u>118</u> en RMN ¹ H	72
3.6	Signaux caractéristiques de l'allène <u>125</u> en RMN ¹ H	73
3.7	Structure de la lactone iodométhylée <u>130</u> , principal produit secondaire obtenu lors de l'iodolactamisation de l'amide insaturé <u>122</u> .	77
3.8	Structure de l'organomagnésien <u>134</u> et du lithien <u>135</u>	81
3.9	Structure de l'intermédiaire iodonium généré à partir de la	37
3.10	Structure des différents ligands testés lors de l'iodovinylation intramoléculaire du diiodure vinylique <u>51</u> .	98
3.11	Structure de différentes dihalogénures vinyliques)5
3.12	Signaux du brut de la réaction d'hétéro-halogénation de la	06

viii

3.13	Structure des azétidines <u>145</u> et <u>147</u> et de l'azétidinone <u>146</u> potentiellement synthétisées à partir du β -halogénoénamide <u>143</u> .
3.14	Comparaison entre le substrat de Rahem (<u>46</u>) et le nôtre (<u>52</u>) pour la réaction d'allyloxylation catalysée au cuivre
3.15	Portion du spectre RMN ¹ H du β-allyloxyénamide <u>152</u> 117
3.16	Structure de l'alcool cinnamylique (<u>154</u>) 120
3.17	Portion du spectre RMN ¹ H de la cétone γ,δ-insaturée <u>153</u> 123
3.18	Portion du spectre RMN ¹ H du β-allyloxyénamide <u>160</u>
3.19	Portion du spectre RMN ¹ H de la cétone γ,δ-insaturée <u>161</u> obtenu à l'entrée 1 du tableau 3.28 (un seul diastéréoisomère) 131
3.20	Portion du spectre RMN ¹ H du mélange de β -allyloxyénamide <u>160</u> et de la cétone γ , δ -insaturée <u>161</u> obtenue à l'entrée 3 du tableau 3.28
3.21	Prédiction de la structure des diastéréoisomères formés lors du réarrangement de Claisen du β-allyloxyénamide <u>160</u>
3.22	Les cétones γ , δ -insaturées <u>161a-d</u> obtenues par réarrangement de Claisen du β -allyloxyénamide <u>160</u> et énantiomères de la xénovénine

ix

LISTE DES TABLEAUX

Tableau	P	age
3.1	Synthèse de la lactame éthoxylée <u>119</u> par réduction du succinimide (<u>120</u>) avec NaBH ₄	62
3.2	Synthèse de la lactame propargylée <u>118</u> par attaque nucléophile de l'allényltributylstannane (<u>124</u>) sur la lactame éthoxylée <u>119</u>	65
3.3	Synthèse de la lactame propargylée <u>118</u> par attaque nucléophile du bromure de propargylmagnésium (<u>126</u>) sur la lactame éthoxylée <u>119</u> .	71
3.4	Synthèse de l'amide insaturé <u>122</u> à partir du chlorure d'acyle de l'acide pent-4-énoïque (<u>123</u>).	76
3.5	Synthèse de la lactame protégée <u>131</u> à partir de l'amide insaturée <u>122</u> .	78
3.6	Synthèse de la lactame protégée iodométhylée <u>130</u> à partir de l'amide protégé <u>128</u>	80
3.7	Synthèse de la lactame protégée propargylée <u>133</u> à partir de la lactame protégée iodométhylée <u>132</u> .	83
3.8	Déprotection de la lactame protégée iodométhylée <u>132</u> pour obtenir la lactame iodométhylée <u>121</u>	84
3.9	Synthèse de la lactame propargylée <u>118</u> à partir de la lactame iodométhylée <u>121</u> .	86
3.10	Synthèse du diiodure vinylique <u>51</u> à partir de la lactame proparquiée 118	88

3.11	Étude de l'effet de la température sur l'iodovinylation intramoléculaire du diiodure vinylique <u>51</u>
3.12	Étude de l'effet du solvant sur l'iodovinylation intramoléculaire du diiodure vinylique <u>51</u>
3.13	Étude de l'effet de la base sur l'iodovinylation intramoléculaire du diiodure vinylique <u>51</u>
3.14	Étude de l'effet du ligand sur l'iodovinylation intramoléculaire du diiodure vinylique <u>51</u>
3.15	Étude de l'effet de la nature de l'halogénure sur l'halogénovinylation intramoléculaire de deux dihalogénures vinyliques
3.16	Étude de l'halogénovinylation intramoléculaire sur un dihalogénure vinylique hétérohalogéné
3.17	Étude de l'allyloxylation intermoléculaire du β-iodoénamide <u>52</u> dans nos conditions et celles de Rahem [22]
3.18	Étude de l'allyloxylation intermoléculaire du β-iodoénamide 52 112
3.19	Étude de l'allyloxylation intermoléculaire du β-iodoénamide 52 113
3.20	Étude de l'iodovinylation intermoléculaire de la pyrrolidin-2-one (<u>76a</u>)
3.21	Étude de l'allyloxylation intermoléculaire du β-iodoénamide modèle <u>150</u> dans les conditions peu catalytiques de Rahem [22] 116
3.22	Étude de l'allyloxylation intermoléculaire du β-iodoénamide modèle <u>150</u> dans différents solvants
3.23	Étude de l'allyloxylation intermoléculaire du β-iodoénamide modèle <u>150</u> à de hautes températures
3.24	Étude de l'allyloxylation intermoléculaire du β-iodoénamide modèle <u>150</u> avec différents nucléophiles
3.25	Étude de l'allyloxylation intermoléculaire du β-iodoénamide modèle <u>150</u> avec différents ratios d'alcool allylique (<u>53</u>)

xi

- 3.26 Étude de l'allyloxylation intermoléculaire du β-iodoénamide <u>52</u>...... 124
- 3.27 Étude du couplage intermoléculaire du β-iodoénamide <u>52</u> avec différents réactifs déprotonables selon la méthode de Jiang [45]...... 126

LISTE DES SCHÉMAS

Schéma	Pa	age
1.1	Méthodes pour construire le squelette pyrrolizidine lors de la synthèse totale de la (-)-xénovénine par amination réductrice	6
1.2	Sélectivité lors de la construction du squelette pyrrolizidine par amination réductrice dans le cadre de la synthèse totale de la (-)-xénovénine.	7
1.3	Préparation du précurseur pour la construction du squelette pyrrolizidine par amination réductrice (<u>10</u>) dans le cadre de la synthèse totale de la (-)-xénovénine par le groupe de Takahata	10
1.4	Synthèse totale de la (-)-xénovénine par amination réductrice selon la méthode de Takahata	11
1.5	Préparation du précurseur pour la construction du squelette pyrrolizidine par amination réductrice (<u>11</u>) dans le cadre de la synthèse totale de la (-)-xénovénine par le groupe de Huang	14
1.6	Synthèse totale de la (-)-xénovénine par amination réductrice selon la méthode de Huang.	15
1.7	Méthodes pour construire le squelette pyrrolizidine lors de la synthèse totale de la (+)-xénovénine par hydroamination	17
1.8	Sélectivité lors de la construction du squelette pyrrolizidine par hydroamination dans le cadre de la synthèse totale de la (-)-xénovénine.	19
1.9	Préparation du précurseur pour la construction du squelette pyrrolizidine par hydroamination (<u>25</u>) dans le cadre de la synthèse totale de la (+)-xénovénine par le groupe de	04
	Arredondo	21

1.10	Synthèse totale de la (+)-xénovénine par hydroamination selon la méthode d'Arredondo	23
1.11	L'outil de synthèse développé et utilisé dans notre laboratoire et son application pour la synthèse d'acides aminés non-naturels	25
1.12	Notre méthode pour construire le squelette pyrrolizidine lors de la synthèse totale de la (-)-xénovénine à l'aide de l'outil de synthèse	26
2.1	Substitution nucléophile par un hétéroatome sur un halogène lié à un carbone sp ² catalysée par le cuivre	29
2.2	Couplage intramoléculaire catalysé par le cuivre pour la préparation d'un intermédiaire de duocarmycine par le groupe de Fukuyama.	31
2.3	Mécanisme accepté pour la substitution nucléophile sur un halogène lié à un carbone sp ² catalysée par le cuivre	32
2.4	N-arylation de nucléophiles azotés selon la méthode de Zhang	35
2.5	N-arylation de nucléophiles azotés selon la méthode de Nageswar	36
2.6	N-vinylation de nucléophiles azotés selon la méthode de Pan	37
2.7	N-halogénovinylation intramoléculaire de différentes β-lactames selon la méthode de Jiang.	38
2.8	N-iodovinylation de différents nucléophiles azotés selon la méthode de Daoust.	39
2.9	O-arylation de différents phénols pour former des diaryléthers. La méthode A est celle de Reider et la méthode B est celle de He.	41
2.10	O-vinylation de différents phénols pour former des arylvinyléthers. La méthode A est celle de Ma et la méthode B est celle de Wan.	42
2.11	O-arylation de différents alcools pour former des arylalkyléthers selon la méthode de Buchwald.	43

xiv

2.12	O-vinylation d'un alcoolate pour former un vinyléther selon la méthode de Keegstra.	44
2.13	O-vinylation de différents alcools pour former des vinyléthers selon la méthode de Buchwald.	45
2.14	O-vinylation d'un alcool allylique pour former un allylvinyléther selon la méthode de Buchwald.	45
2.15	O-vinylation de différents alcools allyliques pour former des composés N-allyloxyvinylés selon la méthode de Daoust	46
2.16	Forme générale du réarrangement de Claisen	47
2.17	Différentes variations du réarrangement de Claisen.	48
2.18	Mécanisme et état de transition du réarrangement de Claisen	49
2.19	Sélectivité du réarrangement de Claisen déterminée par un centre chiral sur la portion allylique de l'allylvinyléther.	50
2.20	Sélectivité du réarrangement de Claisen déterminée par la géométrie des oléfines.	52
2.21	Réarrangement de Claisen d'un allylvinyléther pour former un composé γ,δ-insaturé selon la méthode de Buchwald	53
2.22	Réarrangement de Claisen de β-allyloxyénamides pour former des aldéhydes γ,δ-insaturés selon la méthode de Daoust	54
2.23	Réarrangement de Claisen de la β-allyloxyénamide <u>54</u> pour former l'allyl-pyrrolizidine-2,5-dione <u>55</u> dans le cadre de la synthèse de la (-)-xénovénine par la méthode de Daoust	55
2.24	Réarrangement de Claisen de β-allyloxyénamides pour former des cétones γ,δ-insaturés selon la méthode de Daoust	56
3.1	Stratégies employées pour préparer le diiodure vinylique <u>51</u>	59
3.2	Réduction du succinimide (<u>120</u>) par le NaBH ₄ pour obtenir la lactame éthoxylée <u>119</u> .	60
3.3	Attaque nucléophile l'allényltributylstannane (<u>124</u>) sur la lactame éthoxylée <u>119</u> pour obtenir la lactame propargylée <u>118</u>	63

xv

3.4	Attaque nucléophile du bromure de propargylmagnésium (<u>126</u>) sur la lactame éthoxylée <u>119</u> pour obtenir la lactame propargylée <u>118</u> .	68
3.5	Amidation de l'acide pent-4-énoïque (<u>123</u>) via le chlorure d'acide <u>129</u> pour obtenir l'amide insaturé <u>122</u>	74
3.6	Transformation de l'acide pent-4-énoïque (<u>123</u>) en chlorure d'acide <u>129</u> catalysée par le DMF (<u>127</u>)	75
3.7	lodolactamisation de l'amide insaturé <u>122</u> pour obtenir la lactame iodométhylée <u>121</u> .	77
3.8	Protection de l'amide insaturé <u>122</u> avec un groupement tert- butoxycarbonyle pour obtenir la lactame protégée <u>131</u>	77
3.9	lodolactamisation de l'amide protégée <u>131</u> pour obtenir la lactame protégée iodométhylée <u>132</u> .	79
3.10	Substitution de l'iode de la lactame protégée <u>132</u> pour obtenir la lactame protégée propargylée <u>133</u>	81
3.11	Déprotection de la lactame protégée iodométhylée <u>132</u> pour obtenir la lactame iodométhylée <u>121</u>	84
3.12	Substitution de l'iode de la lactame iodométhylée <u>121</u> pour obtenir la lactame propargylée <u>118</u> .	85
3.13	Diiodation de la lactame propargylée <u>118</u> pour obtenir le diiodure vinylique <u>51</u>	87
3.14	Dibromation de la lactame propargylée <u>118</u> pour obtenir le dibromure vinylique <u>136</u> , un analogue du diiodure vinylique <u>51</u>	89
3.15	L'approche envisagée pour la synthèse optiquement pure de la (-)-xénovénine à partir de l'acide (S)-pyroglutamique (<u>132</u>)	90
3.16	lodovinylation intramoléculaire catalysée par le cuivre(l) du diiodure vinylique <u>51</u> pour former le β-iodoénamide <u>52</u>	91
3.17	L'iodovinylation intramoléculaire du diiodure vinylique <u>51</u> pour former le β-iodoénamide <u>52</u> dans les conditions mises au point par Rahem.	92

xvi

				٠	
٩.	1	ι.	Ŧ	E	
		u		c	
	۰.				

3.18	L'halogénovinylation intramoléculaire des dihalogénures vinyliques <u>51</u> et <u>136</u> pour obtenir les β-halogénoénamides correspondants
3.19	Approche utilisée pour obtenir les β-halogénoénamides <u>52</u> et <u>143</u> par halogénovinylation intramoléculaire catalysée au cuivre 104
3.20	Les différents paramètres de l'allyloxylation intermoléculaire du β-iodoénamide <u>52</u> pour former le β-allyloxyénamide <u>54</u>
3.21	Préparation du β-iodoénamide modèle <u>150</u> comme modèle pour l'étude de l'allyloxylation intermoléculaire de β-iodoénamides
3.22	L'allyloxylation intermoléculaire du β-iodoénamide modèle <u>150</u> suivie d'un réarrangement de Claisen
3.23	Réaction de référence utilisée par Buchwald[83] pour l'étude de l'effet de la concentration nucléophile et du ligand sur la vitesse de réaction
3.24	Couplage catalysé au cuivre entre le β-iodoénamide 75 et le thiophénol (<u>157</u>) dans les conditions de Jiang [45]
3.25	Allyloxylation intermoléculaire du β-iodoénamide 52 catalysée au cuivre suivie d'un réarrangement de Claisen
4.1	Notre méthode pour construire le squelette pyrrolizidine lors de la synthèse totale de la (-)-xénovénine (<u>9b</u>) à l'aide de l'outil de synthèse

LISTE DES SPECTRES

Pagetre	ge
A.1 trans-5-(2,3-diiodoallyl)-pyrrolidin-2-one (<u>51</u>)	70
A.2 6-iodo-5,6-dihydropyrrolizidin-3-one (<u>52</u>) 17	71
A.3 5-propargylpyrrolidin-2-one (<u>118</u>)17	72
A.4 5-éthoxypyrrolidin-2-one (<u>119</u>)	73
A.5 5-iodométhylpyrrolidin-2-one (<u>121</u>) 17	74
A.6 Pent-4-énamide (<u>122</u>)	75
A.7 5-allénylpyrrolidin-2-one (<u>125</u>)	76
A.8 N-(tert-butoxycarbonyl)pent-4-énamide (<u>131</u>)	77
A.9 N-(tert-butoxycarbonyl)-5-iodométhylpyrrolidin-2-one (<u>132</u>) 17	78
A.10 trans-5-(2,3-dibromoallyl)-pyrrolidin-2-one (<u>136</u>)	79
A.11 6-bromo-5,6-dihydropyrrolizidin-3-one (<u>141</u>)	80
A.12 trans-1,2-diiodohept-1-ène (149)18	81
A.13 N-(trans-2-iodohept-1-ényl)-pyrrolidin-2-one (150)	82
A.14 N-(trans-1-iodométhylènehexyl)-pyrrolidin-2-one (<u>151</u>)	83
A.15 N-(trans-2-(allyloxy)-hept-1-ényl)-pyrrolidin-2-one (<u>152</u>)	84
A.16 N-(1-allylheptan-2-one)-pyrrolidin-2-one (<u>153</u>)	85
A.17 3-(1-vinylbutyl)-pyrrolizidine-2,5-dione (161a)	86

A.18	6-(phénylthioxy)-5,6-dihydropyrrolizidin-3-one (162) 187
A.19	trans-5-(2,3-diiodoallyl)-pyrrolidin-2-one (<u>51</u>)
A.20	6-iodo-5,6-dihydropyrrolizidin-3-one (52)
A.21	5-propargylpyrrolidin-2-one (<u>118</u>)190
A.22	5-éthoxypyrrolidin-2-one (<u>119</u>)
A.23	5-iodométhylpyrrolidin-2-one (<u>121</u>) 192
A.24	Pent-4-énamide (<u>122</u>)
A.25	N-(tert-butoxycarbonyl)pent-4-énamide (131) 194
A.26	N-(tert-butoxycarbonyl)-5-iodométhylpyrrolidin-2-one (132) 195
A.27	trans-5-(2,3-dibromoallyl)-pyrrolidin-2-one (136)
A.28	6-bromo-5,6-dihydropyrrolizidin-3-one (141)197
A.29	trans-1,2-diiodohept-1-ène (<u>149</u>)198
A.30	N-(trans-2-iodohept-1-ényl)-pyrrolidin-2-one (150)
A.31	N-(trans-1-iodométhylènehexyl)-pyrrolidin-2-one (151)
A.32	N-(trans-2-(allyloxy)-hept-1-ényl)-pyrrolidin-2-one (152)
A.33	N-(1-allylheptan-2-one)-pyrrolidin-2-one (153)
A.34	3-(1-vinylbutyl)-pyrrolizidine-2,5-dione (161a)
A.35	6-(phénylthioxy)-5,6-dihydropyrrolizidin-3-one (162)

xix

LISTE DES ABRÉVIATIONS, SIGLES ET ACRONYMES

AD-mix-β	Mélange commercial pour la dihydroxylation asymétrique de Sharpless
Boc	tert-Butoxycarbonyle
Cbz	Carboxybenzyle
CCM	Chromatographie sur couche mince
CLHP	Chromatographie liquide à haute pression
CPG-SM	Chromatographie en phase gazeuse couplée à un spectromètre de masse
d	Doublet (RMN)
DCE	1,2-Dichloroéthane
DCM	Dichlorométhane
dd	Doublet de doublet (RMN)
DEAD	Azodicarboxylate de diéthyle
DIBAL-H	Hydrure de diisobutylaluminium
DMEDA	N,N-diméthyléthylènediamine
DMF	N,N-diméthylformamide
DMSO	Diméthylsulfoxyde
DPPA	Azoture de diphénylphosphoryle
dr	Ratio diastéréoisomérique

Et	Éthyle
éq.	Équivalent
f	Faible (IR)
i	Intense (IR)
i.e.	C'est-à-dire (id est)
<i>i</i> Bu	isoButyle
<i>i</i> Pr	isopropyle
IR	Spectroscopie infrarouge
L _n	Ligand
LUMO	Orbitale moléculaire inoccupée la plus basse en énergie (Lowest unoccupied molecular orbital)
m	Moyen (IR)
m	Multiplet (RMN)
M ⁺	Ion moléculaire
Me	Méthyle
Ms	Mésyle ou méthanesulfonyle
n-heptyle	Heptyle normal
nAChRs	Récepteurs nicotiniques d'acétylcholine
NBSH	2-nitrobenzènesulfonylhydrazine
NMP	N-méthylpyrrolidinone
Nu	Nucléophile
p. ex.	Par exemple
Ph	Phényl

xxi

phen	3,4,7,8-Tétraméthyl-1,10-phénanthroline
PMA	Acide phosphomolybdique
PPTS	para-toluènesulfonate de pyridinium
TMHD	2,2,6,6-Tétraméthylheptane-3,5-dione
Ts	Tosyle ou para-Toluènesulfonyle
q	Quadruplet (RMN)
quint	Quintuplet (RMN)
R _n	Groupement carboné
Rdt	Rendement
RMN	Résonance magnétique nucléaire
S	Singulet (RMN)
sl	Singulet large (RMN)
S _n 2	Substitution nucléophile bimoléculaire
SMBR	Spectrométrie de masse basse résolution
SMHR	Spectrométrie de masse à haute résolution
SOMO	Orbitale moléculaire occupée par un seul électron (Singly occupied molecular orbital)
t	Triplet (RMN)
tt	Triplet de triplet (RMN)
T°	Température
T _{éb}	Température d'ébullition
TBAF	Fluorure de tétrabutylammonium
TBDPS	tert-Butyldiphénylsilyle
	phen PMA PPTS TMHD Ts q quint Rn Rdt RMN s s s S S 3 S 3 S 3 S 3 S 3 S 3 S 3 S 3

xxii

<i>t</i> Bu	tert-Butyle
TFA	Acide trifluoroacétique
THF	Tétrahydrofuranne
THP	Tétrahydropyrannyle

xxiii

LISTE DES SYMBOLES ET DES UNITÉS

°C	Degre Celsius
cm	Centimètre
cm ⁻¹	Par centimètre
δ	Déplacement chimique
g	Gramme
h	Heure
Hz	Hertz
J	Constante de couplage (RMN)
L	Litre
Μ	Molaire ou mol/litre
%m/v	% Masse sur volume ou g/100mL
m/z	Masse sur charge
mesh	Maille par pouce ou trou par pouce
mg	Milligramme
mL	Millilitre
mmol	Millimole
mol	Mole

ppm Partie par million

Microgramme

xxv

RÉSUMÉ

Les pyrrolizidines, telles que la xénovénine, sont des alcaloïdes bicycliques retrouvés chez certains amphibiens et arthropodes. Ces composés servent généralement de défense contre les prédateurs, mais ils ont aussi des propriétés pharmacologiques intéressantes, surtout au niveau des récepteurs nicotiniques d'acétylcholine. Plusieurs méthodes de préparation de la xénovénine sont rapportées dans la littérature. Par contre, ces méthodes ne permettent souvent l'obtention que d'un seul composé, la xénovénine, car la cyclisation est effectuée en fin de synthèse. Ainsi, peu de ces méthodes ouvrent la voie à la préparation de pyrrolizidines analogues.

Nous nous sommes donc intéressés à la synthèse de la xénovénine en élaborant une méthode permettant la préparation de différentes pyrrolizidines substituées en positions 3 et 5. Cette méthode se base sur une séquence réactionnelle développée dans notre laboratoire comportant deux couplages catalysés au cuivre successifs suivis d'un réarrangement de Claisen. Le premier couplage est intramoléculaire entre la portion amide d'une lactame et sa portion diiodure vinylique pour obtenir un β -iodoénamide. Le second couplage est intermoléculaire entre notre β -iodoénamide et un alcool ally/lique chiral pour obtenir un β -allyloxyénamide. La troisième étape est un réarrangement de Claisen du produit du second couplage pour former une cétone γ , δ -insaturée. Cette séquence de trois réactions constitue notre outil de synthèse. Il a été développé dans notre laboratoire et a déjà été utilisé pour la synthèse d'acides aminés non naturels. Le but du présent projet est de démontrer la polyvalence de cette séquence réactionnelle en l'appliquant à la préparation de la xénovénine et à ses analogues.

Nous avons optimisé la synthèse du β -iodoénamide issu de la première réaction de l'outil de synthèse. À notre connaissance, il s'agit d'un des premiers exemples de ce type de couplage catalysé par le cuivre. Nous avons aussi étudié la synthèse du β -allyloxyénamide. Cette étude nous a permis d'observer le produit de couplage et le produit de réarrangement de Claisen. Il s'agit aussi d'un des premiers exemples de ce type de couplage catalysé par le cuivre. Nous avons ainsi fabriqué le squelette bicyclique des pyrrolizidines à l'aide de la séquence réactionnelle proposée.

Ce travail nous a donc permis de confirmer la polyvalence de notre outil de synthèse en démontrant son application à la préparation d'un précurseur de la xénovénine.

Mots-clés : pyrrolizidines, xénovénine, couplage, cuivre, réarrangement de Claisen

CHAPITRE I

INTRODUCTION

1.1 Généralités sur les alcaloïdes

П existe de nombreux produits naturels ayant des propriétés pharmacologiques intéressantes. Parmi ces produits, on retrouve principalement les alcaloïdes, c'est-à-dire des composés généralement issus de plantes, qui contiennent au moins un hétérocycle azoté et qui ont une action physiologique sur l'homme ou les animaux [1]. Ils sont classés selon leurs caractéristiques structurelles et biologiques. Les alcaloïdes qui sont dérivés d'acides aminés et qui contiennent un hétérocycle azoté sont dits alcaloïdes vrais. Par exemple, la cocaïne (1), dérivée de la L-omithine (2), est un alcaloïde vrai (Figure 1.1). Les alcaloïdes qui sont dérivés d'acides aminés, mais dont l'azote ne fait pas partie d'un hétérocycle sont dits protoalcaloïdes. Par exemple, la mescaline (3), dérivée de la L-tyrosine (4), est un proto-alcaloïde. Les alcaloïdes qui ne sont pas dérivés d'acides aminés sont dits pseudo-alcaloïdes, comme l'éphédrine (5).

Figure 1.1 Quelques alcaloïdes et leur précurseur biochimique.

Les alcaloïdes sont aussi classés selon d'autres critères : leur provenance biologique (animale, végétale, etc.) ou la structure chimique de leur cœur cyclique. Certains composés possèdent deux cycles fusionnés avec un atome d'azote à la jonction de cycles. Ces quelques 800 composés sont appelés les izidines [2]. Ils sont divisés en trois catégories selon la structure de leur cœur bicyclique : les quinolizidines ($\underline{6}$), les indolizidines ($\underline{7}$) et les pyrrolizidines ($\underline{8}$) (Figure 1.2). Les izidines de chaque catégorie sont finalement classés selon la position de leurs substituants. La molécule d'intérêt de ce projet, l'alcaloïde *cis*-223H' ou xénovénine, appartient à la catégorie des pyrrolizidines et elle est substituée en *cis* aux positions 3 et 5. La xénovénine existe naturellement sous sa forme énantiomère $\underline{9a}$, il s'agit de la (+)-xénovénine. La forme non-naturelle $\underline{9b}$ ou (-)-xénovénine est l'autre énantiomère et n'a pas été observée dans les extractions naturelles [3]. Toute mention de la xénovénine dans ce texte, sans spécifier l'énantiomère, fait référence au mélange racémique entre les deux.

Figure 1.2 Squelettes numérotés des izidines et énantiomères de la xénovénine.

Les pyrrolizidines, comme beaucoup d'autres alcaloïdes, se retrouvent naturellement dans plusieurs amphibiens et arthropodes [4]. La (+)-xénovénine a été retrouvée dans la peau de quelques grenouilles : plusieurs espèces de *Dendrobates*, *Phyllobates lugubris*, *Melanophryniscus stelzneri* et *Mantella betsileo*. Elle a aussi été retrouvée dans des fourmis du genre *Solenopsis*, ce qui permet aux chercheurs de supposer que les grenouilles acquièrent certaines pyrrolizidines par leur alimentation [5]. L'extraction d'alcaloïdes à partir de spécimens d'*Oophaga pumilio* (une espèce de *Dendrobates*), permet d'obtenir de 5 à 50 µg de (+)-xénovénine par grenouille [6].

Les pyrrolizidines servent essentiellement de mécanisme de défense contre les prédateurs, ce qui leur a valu d'être reconnues pour leur hépatotoxicité de même que pour leurs propriétés mutagènes et carcinogènes [1]. L'hépatotoxicité proviendrait de la dégradation dans le foie des pyrrolizidines en esters de pyrrole, des composés alkylants. L'affinité des pyrrolizidines

pour les récepteurs nicotiniques d'acétylcholine (nAChRs) est aussi le sujet de différentes recherches [7-9]. Par exemple, il a été démontré que la pyrrolizidine *cis*-223B et le mélange d'énantiomères de la xénovénine inhibent la réponse nicotinique à l'acétylcholine et que cette inhibition est dépendante de la concentration [8]. Ces résultats démontrent un potentiel thérapeutique pour les aberrations liées aux récepteurs nicotiniques de l'acétylcholine. L'affinité de la xénovénine pour les nAChRs est supérieure à celle de certaines indolizidines [9].

1.2 Xénovénine : intérêt et synthèse

La xénovénine possède des propriétés pharmacologiques intéressantes tel que décrit plus haut. La forme naturelle est cependant peu biodisponible et la forme non naturelle ne peut tout simplement pas être obtenue par extraction. Plusieurs méthodes ont donc été développées pour les synthétiser. Les méthodes diffèrent le plus souvent quant à la façon de contrôler les centres chiraux et d'installer les groupements méthyle et *n*-heptyle en position 3 et 5. Par contre, on retrouve peu de variété pour la construction du squelette pyrrolizidine qui se fait souvent à la dernière étape. La cyclisation se fait soit par amination réductrice [9-14], soit par hydroamination [15, 16]. Il peut y avoir une mono- ou une bi-cyclisation selon la nature du substrat.

1.2.1 Xénovénine : synthèse par amination réductrice

Le premier avantage des méthodes qui utilisent l'amination réductrice est qu'il est possible de travailler avec des composés monocycliques (tels que <u>10</u> et <u>11</u>) ou linéaires (tel que <u>12</u>) plutôt que bicycliques jusqu'à la fin de la synthèse. Les réactions sur ces types de composés sont généralement mieux

connues et plus documentées. Ces méthodes permettent aussi de combiner la déprotection et la cyclisation en conservant un groupement protecteur de type benzylique sur l'azote jusqu'à l'étape de la cyclisation (Schéma 1.1). Lors de certaines synthèses de la (-)-xénovénine (9b), on se sert aussi des conditions de la cyclisation pour réduire des oléfines excédentaires issues de l'amont de la méthode [9, 12-14]. L'amine cyclique 10 ou 11 est mise en présence des conditions de réactions d'une hydrogénation catalytique, soit du dihydrogène et du palladium comme catalyseur. Les conditions de réactions déprotègent l'azote si elle possède un groupement benzylique et réduisent les oléfines excédentaires s'il y en a. L'amine peut ensuite former un iminium bicyclique avec le carbonyle disponible sur la chaîne. Cet iminium est alors réduit par les conditions de réaction pour former la (-)-xénovénine (9b). Le mécanisme est le même avec le mélange racémique de l'amine linéaire 12. Dans ce cas, l'étape de la formation de l'imine suivie de la réduction, est répétée deux fois et permet d'obtenir un mélange des deux énantiomères de la xénovénine (9a et 9b).

 $R = CH_2Ph$ ou H ou Cbz

Généralement, avec ces méthodes, l'étape de la cyclisation donne une très bonne sélection pour obtenir des pyrrolizidines substituées en *cis* aux positions 3 et 5, car elle dépend des centres chiraux préétablis (Schéma 1.2). Dans les conditions d'hydrogénation catalytique, l'amine cyclique <u>10</u> est déprotégée et les oléfines excédentaires sont réduites pour former l'intermédiaire <u>I</u>. À cette étape, il y a saturation de la molécule, ce qui lui permet de s'orienter pour que l'amine et le carbonyle s'approchent. Il y a ensuite formation de l'intermédiaire iminium <u>II</u>, ce qui rend le bicycle presque planaire, car l'azote et le carbone qui forment l'iminium sont hybridés sp². Les conditions d'hydrogénation catalytique étant toujours présentes, l'iminium peut être hydrogéné par un hydrure de palladium. C'est à ce moment que la sélection est déterminée. Elle dépend du centre chiral présent sur le carbone 5, porteur d'un R₂ et d'un H. Le groupement R₁ n'influence pas la sélection,

car il n'est pas chiral et il est dans le plan de l'iminium. L'hydrure peut donc être ajouté du côté du R2 ou du H. Il va arriver du côté le moins encombré (i.e. le côté du H) pour générer une pyrrolizidine cis aux positions 3 et 5. L'épimère C3 (13) peut cependant être obtenu comme produit minoritaire si R₂ est petit (Figure 1.3).

 $GP = CH_2Ph$ ou Cbz

Schéma 1.2 Sélectivité lors de la construction du squelette pyrrolizidine par amination réductrice dans le cadre de la synthèse totale de la (-)-xénovénine.

Figure 1.3 Épimère C3 de la (-)-xénovénine.

Pour bénéficier de la très bonne sélectivité de l'amination réductrice lors de la formation de pyrrolizidines substituées en *cis* aux positions 3 et 5, la chiralité du substrat doit être contrôlée. Il existe plusieurs façons de préparer des substrats comme <u>10</u> ou <u>11</u> en contrôlant leur chiralité.

Le groupe de Takahata [9] prépare le composé α,β -insaturé **10** à partir de l'hexa-1,5-diène achiral (14) (Schéma 1.3). En présence d'AD-mix-β, l'hexa-1,5-diène (14) est transformé en oléfine dihydroxylée 15. Le réactif AD-mix-\beta est un mélange commercial utilisé pour la dihydroxylation asymétrique de Sharpless. Il contient du tétroxyde d'osmium, un co-oxydant, une base et un ligand chiral, des composantes nécessaires au cycle catalytique. L'énantiomère ou le diastéréoisomère favorisé lors de la dihydroxylation de Sharpless dépend du ligand chiral utilisé. Takahata obtient un excès énantiomérique de 80% en faveur du produit (R) lors de la préparation de l'oléfine dihydroxylée 15. Ce résultat correspond à ceux de Sharpless [17] qui obtient des excès énantiomériques de 72-89% pour la dihydroxylation d'alcènes terminaux linéaires qui varient selon la longueur de la chaine carbonée. Il n'y a pas de produit de double dihydroxylation observé lors de cette réaction, ce qui est probablement dû en grande partie à l'encombrement stérique entre le ligand de l'osmium et la portion diol. Le centre chiral induit à cette étape est déterminant pour le reste de la synthèse, car c'est de lui que dépendent les autres centres chiraux. Lorsque l'oléfine dihydroxylée 15 est mise en présence d'orthoacétate de méthyle en milieu acide, puis traitée avec du bromure d'acétyle et finalement avec du K2CO3 dans le méthanol, l'époxyde 16 est obtenu [18]. Cette réaction se produit en trois étapes. Il y a d'abord formation d'un intermédiaire orthoester à partir de l'orthoacétate de méthyle en milieu acide (Figure 1.4). En présence de bromure d'éthanoyle, l'intermédiaire orthoester se transforme en un intermédiaire bromoacétate (Figure 1.4). L'hydrolyse de l'acétate par le
K₂CO₃ dans le méthanol permet l'époxydation par S_N2 intramoléculaire sur le bromure. L'époxyde 16 est ouvert par l'attaque du bromure d'hex-5-énylmagnésium pour former l'alcool 17. Cet alcool (R) est alors transformé en amine protégée (S) 18 en quatre étapes. Il y a d'abord mésylation de l'alcool 17, ce qui en fait un bon groupement partant. Puis, il y a attaque de l'azoture de sodium. Il y a inversion de configuration lors de cette attaque, car il s'agit d'une substitution nucléophile de type S_n2, Ensuite. l'azoture est réduit en amine par le LiAlH₄. Cette amine est finalement protégée par un groupement carboxybenzyle (Cbz) pour former l'amine protégée (S) 18. L'amine 18 peut cycliser en présence d'acétate de mercure pour former un intermédiaire organomercuriel. Le mécanisme est ionique dans un premier temps lorsqu'il y a complexation de l'oléfine par le mercure. Le mécanisme est radicalaire par la suite au niveau de la cyclisation. L'état de transition est une «chaise de Beckwith», tel que décrit par Beckwith [19] et Houk [20]. Il s'agit d'un état de transition pseudo-chaise qui permet au radical d'attaquer l'oléfine avec un meilleur recouvrement entre la SOMO et la LUMO. L'électrophile (p. ex. le Hg²⁺) vient se complexer à l'oléfine en se liant plus fortement au carbone le moins encombré de la double liaison. L'autre carbone devient un pseudo-carbocation stabilisé par le mercure. La portion nucléophile de la molécule (l'azote d'un carbamate) peut donc attaquer ce pseudo-carbocation pour générer le produit 5-exo. Dans sa synthèse, Takahata n'isole pas l'intermédiaire organomercuriel. Il le transforme en l'alcool 19 par une démercuration oxydative avec du borohydrure de sodium en présence d'oxygène. Cet alcool 19 est transformé en aldéhyde par une oxydation de Swern. L'aldéhyde subit une réaction de Horner-Emmons dans les conditions de Masamune et Roush pour former le composé α,β-insaturé 10. Ces conditions sont plus douces que les conditions initiales de Horner-Emmons qui requéraient l'usage d'une base forte (i.e. du NaH).

AD-mix-B

 $\begin{array}{l} \mathsf{R}_1 = (\mathsf{CH}_2)_5 \mathsf{CH} = \mathsf{CH}_2 \\ \mathsf{R}_2 = \mathsf{Me} \end{array}$

Schéma 1.3 Préparation du précurseur pour la construction du squelette pyrrolizidine par amination réductrice (<u>10</u>) dans le cadre de la synthèse totale de la (-)-xénovénine par le groupe de Takahata.

Figure 1.4 Intermédiaires orthoester et bromoacétate lors de la préparation du précurseur <u>10</u> par le groupe de Takahata.

Le groupe de Takahata procède à la cyclisation du composé α , β -insaturé <u>10</u> par amination réductrice (Schéma 1.4). Les conditions utilisées permettent d'obtenir la (-)-xénovénine (<u>9b</u>) avec 59% de rendement, mais aussi 16% de son épimère en C3 <u>13</u>. La sélection observée correspond à celle attendue, tel que décrit plus haut.

Schéma 1.4 Synthèse totale de la (-)-xénovénine par amination réductrice selon la méthode de Takahata.

Le groupe de Huang [12] prépare la cétone insaturée <u>11</u> à partir d'un dérivé de l'acide L-pyroglutamique, l'alcool protégé <u>20</u> (Schéma 1.5). C'est la chiralité de départ du substrat qui va induire la chiralité ailleurs dans la molécule. La réduction du carbonyle de l'alcool protégé <u>20</u> avec l'hydrure de diisobutylaluminium (DIBAL-H) suivie de sa méthanolyse permet d'obtenir un intermédiaire alcool. Cet intermédiaire forme un iminium en présence de BF₃. L'alcool attaque l'acide de Lewis, puis l'azote forme l'iminium en éjectant un

dérivé d'acide borique. Ensuite, en présence de samarium et de tert-butanol, l'iminium se transforme en radical. Ce radical réagit avec l'ester α,β-insaturé 21 pour former le composé trans 22 et son diastéréoisomère cis dans un rapport 85:15. La sélection observée à cette étape semble provenir des états de transition possibles (Figure 1.5). Les différents états de transitions contiennent tous un atome de samarium qui joue le rôle d'acide de Lewis bidenté. Le samarium complexe l'oxygène du carbonyle du carboxybenzyle (Cbz) qui protège l'azote et l'oxygène du carbonyle de l'ester α,β -insaturé 21. En traçant le lien qui sera formé entre le radical et l'oléfine, on observe des états de transition contenant un cycle à 9 membres. L'oxygène de la fonction alcool protégée par un groupement tert-butyldiphénylsilyle (TBDPS) est trop encombré pour pouvoir être complexé par le samarium. Les états de transition I et II illustrent une attaque par le radical du côté opposé à l'alcool protégé (i.e. l'obtention d'un produit trans) et les états de transition III et IV illustrent une attaque du même côté (i.e. l'obtention d'un produit cis). La chiralité du carbone porteur de l'alcool protégé par un TBDPS influence la sélection. Le groupement TBDPS étant très gros, il favorise les états de transition qui correspondent à une attaque du côté opposé à l'alcool protégé, soit le I et le II. Aussi, les différents états de transition forment des «cages» (i.e. molécule repliée sur elle-même) plus ou moins fermées entre le cycle à 5 membres et le cycle de transition. L'encombrement stérique à l'intérieur de ces cages est beaucoup plus grand qu'à l'extérieur. Ce principe favorise donc les états de transition I et III dans lesquels le groupement méthoxy pointe à l'extérieur de la cage. Ces facteurs expliquent la sélectivité de 85:15 observée par Huang lors de sa synthèse du composé trans 22. Les diastéréoisomères ne sont pas séparables à cette étape. Le mélange est mis en solution avec du fluorure de tétrabutylammonium (TBAF) pour enlever le TBDPS et former l'alcool trans 23 et son diastéréoisomère cis dans un

rapport 85 : 15. Les diastéréoisomères sont ensuite séparés, car la déprotection de l'alcool change beaucoup leur polarité. L'alcool *trans* 23 est oxydé en aldéhyde dans les conditions douces de Parikh-Doering, analogues à celles de Swern. L'aldéhyde n'est pas isolé, il est mis directement en réaction avec un ylure de phosphonium pour procéder à une réaction de Wittig et générer l'oléfine 24. La portion ester de méthyle de l'oléfine 24 est transformé en cétone en passant par l'amide de Weinreb-Nahm, ce qui donne la cétone insaturée 11. L'amide de Weinreb-Nahm permet de rendre l'ester électrophile pour une seule attaque nucléophile. Suite à la première attaque, le métal forme un complexe avec l'oxygène du carbonyle sous forme d'alcoolate et l'oxygène de l'hydroxyle. Ce complexe n'est pas électrophile, ce qui évite le double ajout, et il est hydrolysé lors du parachèvement pour libérer une cétone.

Schéma 1.5 Préparation du précurseur pour la construction du squelette pyrrolizidine par amination réductrice (<u>11</u>) dans le cadre de la synthèse totale de la (-)-xénovénine par le groupe de Huang.

Figure 1.5 États de transition possibles lors de la synthèse du composé <u>22</u> dans le cadre de la préparation du précurseur <u>11</u> par le groupe de Huang.

Le groupe de Huang procède à la cyclisation de la cétone insaturée <u>11</u> par amination réductrice (Schéma 1.6). Les conditions utilisées permettent d'obtenir la (-)-xénovénine (<u>9b</u>) avec 80% de rendement. La sélection observée correspond à celle attendue, tel que décrit plus haut.

1.2.2 Xénovénine : synthèse par hydroamination

Il existe aussi des méthodes pour préparer la xénovénine qui n'utilisent pas l'amination réductrice pour former le cœur bicyclique. Certaines de ces méthodes ont recours à l'hydroamination pour l'étape de la cyclisation. Ces méthodes ont des avantages en commun avec celles qui utilisent l'amination réductrice, soit la possibilité d'utiliser des composés linéaires (tels que 25 et 27) ou monocycliques plutôt que bicycliques et une haute sélectivité lors de la cyclisation pour obtenir des substituants cis. Les conditions de réactions sont cependant très différentes. Pour effectuer l'hydroamination, on utilise généralement un complexe organométallique contenant un métal du groupe des lanthanides comme catalyseur, tels que 28 ou 29. (Figure 1.6) Lors de certaines synthèses de la (+)-xénovénine (9a), l'hydroamination est suivie d'une hydrogénation catalytique pour réduire les groupements restants (i.e. les oléfines). Par exemple, Arredondo utilise l'hydroamination sur un allène (plutôt qu'un alcène) pour faciliter la cyclisation [15]. La réaction génère le produit de cyclisation avec une oléfine en trop qui est ensuite réduite par hydrogénation catalytique. Jiang, quant à lui, utilise l'hydroamination sur un alcène conjugué avec un groupement thiényle pour faciliter la cyclisation [16]. Cette réaction génère le produit de cyclisation avec un groupement thiényle qui est réduit par hydrogénation catalytique. Dans la méthode d'Arredondo (utilisation d'un allène), l'amine 25 est mise en présence du catalyseur 28 qui se complexe à l'azote et à l'allène. Il y a hydroamination et formation d'une amine cyclique à 5 membres. Le catalyseur 28 se complexe alors à cette nouvelle amine et à l'alcène restant pour former la pyrrolizidine 26 via une seconde hydroamination. Une hydrogénation catalytique de la pyrrolizidine 26 permet d'obtenir la (+)-xénovénine (9a). Dans la méthode de Jiang (utilisation d'un thiényle), l'amine 27, en présence du catalyseur 29, procède au même mécanisme.

L'alcène terminal réagit lors de la première hydroamination, puis l'alcène bisubstitué réagit lors de la deuxième hydroamination. L'ordre dans lequel les deux hydroaminations se produisent dépend de l'encombrement autour des alcènes impliqués. L'amine de départ <u>27</u> étant un mélange racémique, les deux énantiomères de la xénovénine (<u>9a</u> et <u>9b</u>) sont obtenus.

Schéma 1.7 Méthodes pour construire le squelette pyrrolizidine lors de la synthèse totale de la (+)-xénovénine par hydroamination.

Figure 1.6 Exemples de complexes organométalliques utilisés pour l'hydroamination.

Généralement, avec ces méthodes, l'étape de la cyclisation donne une très bonne sélection pour obtenir des pyrrolizidines substituées en cis aux positions 3 et 5, car elle dépend des centres chiraux préétablis (Schéma 1.8). L'hydroamination d'amines acycliques est présentée en deux étapes de cyclisation distinctes pour bien illustrer la sélectivité à chaque étape. Il est cependant possible de réaliser ces deux étapes successivement, sans isoler l'intermédiaire monocyclique, en observant la même sélection. En présence d'un complexe organométallique (tel que 28 ou 29), l'amine acyclique 30 forme un intermédiaire dans lequel l'azote et le lanthanide complexent l'oléfine. Le conformère A de l'amine 30 forme un intermédiaire pseudochaise avec un seul groupement pseudo-axial, soit le ligand L₁ du lanthanide. Après l'hydroamination, l'amine cyclique 31 obtenue possède deux groupements trans équatoriaux. Le conformère B de l'amine 30 génère aussi un intermédiaire pseudo-chaise mais dans lequel deux éléments sont pseudo-axiaux : le lanthanide du complexe métallique et l'oléfine. Après l'hydroamination, l'amine cyclique 32 obtenue possède deux groupements cis, soit un axial et un équatorial. C'est donc le conformère A de l'amine 30 qui va préférentiellement réagir avec le complexe métallique pour générer l'amine cyclique bisubstituée trans 31. En présence d'un complexe organométallique, l'amine cyclique trans 33 forme le même type d'intermédiaire que l'amine acyclique 30 (i.e. l'azote et le lanthanide complexent l'oléfine). Après l'hydroamination, la pyrrolizidine formée (p. ex. la (-)-xénovénine <u>9b</u>) possède deux groupements cis aux positions 3 et 5 qui sont du même côté que l'hydrogène en position 7a.

Schéma 1.8 Sélectivité lors de la construction du squelette pyrrolizidine par hydroamination dans le cadre de la synthèse totale de la (-)xénovénine.

Pour effectuer la synthèse de la (+)-xénovénine via une hydroamination, le groupe d'Arredondo utilise une amine chirale acyclique comme substrat. Il prépare donc l'amine chirale <u>25</u> à partir de l'alcool protégé <u>34</u> (Schéma 1.9). La déprotonation de l'alcyne de l'alcool protégé <u>34</u> par le *n*-butyllithium forme un carbanion capable d'attaquer l'hexanal pour former l'alcool propargylique <u>35</u>. La synthèse de l'allène <u>36</u> à partir de l'alcool propargylique <u>35</u> se fait en deux étapes. Les conditions de Myers et Zheng [21] permettent de former la portion allène et la déprotection de l'éther de tétrahydropyrane (i.e. l'alcool protégé par THP) permet de générer la portion alcool. Les conditions de Myers et Zheng sont les mêmes que celles utilisées par Mitsunobu pour transformer un alcool en amine en inversant sa chiralité. Par contre, ce n'est

pas un azoture que Myers et Zheng utilisent mais l'hydrazide 40 (Figure 1.7). L'intermédiaire de réaction est une hydrazide propargylique qui se réarrange pour libérer du diazote, de l'acide sulfinique et former la portion allénique de l'allène 36. La portion alcool de l'allène 36 est oxydée dans les conditions de Swern pour former l'aldéhyde 37. L'attaque de l'organozincique 38 sur l'aldéhyde 37 en présence de l'acide de Lewis chiral 41 (Figure 1.8) permet d'obtenir l'alcool chiral 39. La complexation de l'aldéhyde 37 par l'acide de Lewis 41 permet de prédire le sens de l'attaque de l'organozincique 38 (Figure 1.8). Suite à la complexation d'un aldéhyde par un acide de Lewis volumineux, ce dernier va se placer du côté le moins encombré (i.e. du côté de l'hydrogène). Lors de l'attaque de l'organozincique 38, la chaine carbonée se placera le plus loin possible de l'acide de Lewis pour minimiser les interactions qui mèneraient à de l'encombrement stérique. Il y a deux attaques possibles (i.e. de chaque côté de l'aldéhyde) : l'attaque A qui génère l'alcool 42 et la B qui génère l'alcool 43. Ces alcools se veulent une représentation simplifiée du résultat des deux attaques. Dans le cas de l'attague A, une sulfonamide de l'acide de Lewis bloque l'organozincique via sa chaine carbonée et l'empêche de bien se positionner. Cet encombrement n'est pas observé dans le cas de l'attaque B. C'est donc cette dernière qui est favorisée. C'est le résultat qu'Arredondo observe lors de sa préparation de l'alcool chiral 39. L'excès énantiomérique de cette réaction n'est pas mentionné dans l'article. Il est possible de supposer qu'il ressemble à celui obtenu par Arredondo avec un organozincique semblable (i.e. groupements butyles plutôt que but-3-ényles) sur la même molécule, soit de 94%. Dans les conditions de Mitsunobu, l'alcool chiral 39 est transformé en un azoture de chiralité inverse à l'aide de l'azoture de diphénylphosphoryle (DPPA). La réduction par LiAIH₄ de l'azoture obtenu permet d'obtenir l'amine chirale 25.

Schéma 1.9 Préparation du précurseur pour la construction du squelette pyrrolizidine par hydroamination (25) dans le cadre de la synthèse totale de la (+)-xénovénine par le groupe de Arredondo.

Figure 1.7 Structure du NBSH (<u>40</u>) et de l'intermédiaire impliqué dans la synthèse de l'allène <u>36</u> à partir de l'alcool propargylique <u>35</u>.

Figure 1.8 Structure de l'acide de Lewis <u>41</u> et les représentations de Newman qui expliquent la sélectivité observée lors de la synthèse de l'alcool <u>39</u>.

Le groupe d'Arredondo procède à la double cyclisation de l'amine chirale <u>25</u> par hydroamination (Schéma 1.10) en présence du complexe <u>28</u> pour obtenir la pyrrolizidine <u>26</u> substituée en *cis* aux positions 3 et 5. La sélection observée correspond à celle attendue, tel que décrit plus haut. L'oléfine excédentaire de la pyrrolizidine <u>26</u> est réduite dans les conditions d'hydrogénation catalytique pour obtenir la (-)-xénovénine (<u>9b</u>) avec 78% de rendement sur deux étapes.

Schéma 1.10 Synthèse totale de la (+)-xénovénine par hydroamination selon la méthode d'Arredondo.

1.2.3 Xénovénine : retour sur les méthodes de synthèse

Malgré leur efficacité, les méthodes qui utilisent l'amination réductrice pour construire le squelette pyrrolizidine ont un inconvénient majeur : elles permettent souvent la synthèse d'un seul produit final à partir d'un substrat de cyclisation donné. Pour générer différents produits d'une même famille, il faut revenir en arrière dans la synthèse et construire de nouveaux substrats pour la cyclisation. Cette étape peut aussi causer des problèmes si le produit final désiré contient des groupements sensibles aux conditions utilisées, comme des oléfines ou des acétylènes. Les méthodes qui utilisent l'hydroamination pour construire leur squelette pyrrolizidine partagent le même inconvénient majeur, soit la convergence de la synthèse vers un seul produit final. Aussi, dans certains cas de di-hydroamination, l'utilisation d'un complexe métallique n'est pas suffisante pour catalyser efficacement la réaction [16]. La seconde oléfine doit donc être activée, ce qui complexifie le substrat et limite la méthode.

1.3 But du projet

La méthode idéale pour la synthèse d'un énantiomère de la xénovénine – ou de tout autre pyrrolizidine substituée aux positions 3 et 5 – devrait respecter

les trois critères suivants. La méthode doit être générale pour la construction du cœur pyrrolizidine. C'est-à-dire que la construction du cœur doit arriver tôt dans la synthèse et être indépendante de l'alcaloïde que l'on veut synthétiser. Les étapes de cyclisation doivent être simples et utiliser des conditions catalytiques. Pour avoir une synthèse énantio-enrichie, la méthode doit être sélective, mais il faut pouvoir inverser cette sélection au besoin (p. ex. à partir d'un réactif chiral), pour accéder aux différents isomères de chaque pyrrolizidine.

C'est donc à partir de ces critères que nous avons bâti une méthode pour synthétiser la (-)-xénovénine (9b). Elle est basée sur des réactions développées dans notre laboratoire appelées plus loin «l'outil de synthèse» (Schéma 1.11). Cet outil développé et utilisé dans notre laboratoire consiste à se servir de la chimie du cuivre pour faire deux couplages au cuivre(I) successifs suivis d'un réarrangement de Claisen afin d'obtenir des composés possédant plusieurs centres chiraux contrôlés. La force de cet outil est la très grande sélectivité du réarrangement de Claisen due à son état de transition péricyclique. Le contrôle externe de la chiralité se fait au niveau de l'alcool allylique utilisé. Cet outil de synthèse a déjà été utilisé dans notre laboratoire pour l'iodovinylation d'amides [22] et pour la préparation d'acides aminés non-naturels [23]. Dans un premier temps, le trans-diiodoéthène (45) a été couplé avec l'amide ou le carbamate 44 pour former le β-iodoénamide 46. Ce dernier a ensuite été couplé avec l'alcool allylique 47 pour former le β-allyloxyénamide 48, précurseur pour le réarrangement de Claisen. Suite au réarrangement, on a obtenu la cétone γ , δ -insaturée 49. On peut voir qu'une oxydation et une hydrolyse suffisent à transformer la cétone γ,δ-insaturée 49 en acide aminé non-naturel 50.

Schéma 1.11 L'outil de synthèse développé et utilisé dans notre laboratoire et son application pour la synthèse d'acides aminés non-naturels.

L'utilisation de l'outil de synthèse pour préparer la (-)-xénovénine (9b) nous permet donc de proposer une synthèse qui répond à nos critères énoncés plus haut (Schéma 1.12). À partir du diiodure vinylique 51, il est possible de faire une vinylation intramoléculaire via un couplage catalysé par le cuivre(l) pour former le β-iodoénamide 52. Ce β-iodoénamide 52 peut alors devenir le β-allyloxyénamide 54 via un second couplage catalysé par le cuivre(l) en présence d'un alcool allylique 53. Le β-allyloxyénamide 54 est un précurseur de réarrangement de Claisen. Il peut donc se réarranger pour former le 3,5 précurseur des pyrrolizidines substituées, la cétone y,δ-insaturée 55. Après quelques réactions (i.e. réduction totale de la cétone, ozonolyse et décarbonylation sur le groupe allyle, puis attaque nucléophile sur l'amide), ce précurseur pourra être transformé en (-)-xénovénine (9b). Notre méthode répond ainsi aux différents critères posés précédemment. Le cœur pyrrolizidine est d'abord synthétisé. Ensuite, les groupements en place

permettent la synthèse de diverses pyrrolizidines 3,5 substituées. L'étape de cyclisation est très simple et les conditions sont catalytiques. La sélectivité de la méthode est assurée par le réarrangement de Claisen et l'alcool allylique utilisé, ce qui permet d'obtenir différents isomères à partir du même squelette.

Schéma 1.12 Notre méthode pour construire le squelette pyrrolizidine lors de la synthèse totale de la (-)-xénovénine à l'aide de l'outil de synthèse.

Les schémas précédents montrent comment notre méthode permettrait une synthèse énantio-enrichie de la (-)-xénovénine (**9b**). Par contre, le but du projet étant de montrer la polyvalence de l'outil de synthèse, les réactions seront d'abord effectuées de façon racémique. Une fois mise au point, notre méthode sera testée avec un substrat à la chiralité contrôlée.

Les généralités concernant les couplages catalysés par le cuivre(I) et les réarrangements de Claisen de même que les précédents littéraires seront abordés dans le prochain chapitre (Chapitre II). L'application de l'outil de

synthèse développé dans notre laboratoire à la synthèse de la xénovénine sera aussi abordée (Chapitre III). Une optimisation partielle des réactions a été effectuée dans le but d'améliorer certains rendements. Les conclusions et les propositions à propos du présent projet seront aussi présentées (Chapitre IV).

CHAPITRE II

GÉNÉRALITÉS SUR LA CHIMIE DU CUIVRE ET LE RÉARRANGEMENT DE CLAISEN

2.1 Généralités sur les réactions de couplage

Tel que décrit dans le chapitre I, nous avons proposé une synthèse de la (-)-xénovénine qui permet de démontrer la polyvalence de l'outil de synthèse développé et utilisé dans notre laboratoire. Cet outil de synthèse consiste à se servir de la chimie du cuivre pour faire deux couplages au cuivre(I) successifs suivis d'un réarrangement de Claisen.

Les réactions de couplages sont des réactions qui permettent de lier deux molécules à l'aide d'un catalyseur contenant un métal. Les couplages sont divisés en deux grandes classes selon leurs substrats de réaction : les homocouplages et les couplages croisés. Les homocouplages forment un nouveau lien entre deux molécules identiques alors que les couplages croisés le font entre deux molécules différentes. Dans le cadre de notre projet, ce sont les couplages croisés qui nous intéressent. Plus précisément, les substitutions nucléophiles par un hétéroatome sur un halogène lié à un carbone sp² catalysées par le cuivre (Schéma 2.1). Lors de ces couplages, le

nucléophile <u>56</u> substitue l'halogène de l'halogénure <u>57</u> pour former un lien C-N, C-O ou C-S, selon le nucléophile, ce qui génère la molécule <u>58</u>.

Les premiers exemples de couplages catalysés par le cuivre sont apparus au début du 20^e siècle. Il s'agit de la réaction d'Ullmann [24], la condensation d'Ullmann [25] et la réaction de Goldberg [26]. La réaction d'Ullmann est un homocouplage entre deux halogénures d'aryle, catalysé par le cuivre métallique ou un sel de cuivre(II), pour former un biaryle. La condensation d'Ullmann utilise les conditions de la réaction d'Ullmann pour des couplages croisés entre un halogénure d'aryle et une aniline, un phénol ou un thiophénol. La réaction de Goldberg utilise les conditions de la condensation d'Ullmann pour des couplages croisés entre un halogénure d'aryle et une aniline, un phénol ou un thiophénol. La réaction de Goldberg utilise les conditions de la condensation d'Ullmann pour des couplages croisés entre un halogénure d'aryle et une amide. Les conditions de ces trois réactions sont très drastiques : températures élevées, utilisation de bases fortes, quantités stœchiométriques de cuivre et temps de réaction longs [27, 28]. Malgré l'intérêt pour les produits qu'elles forment, ces réactions ont une application restreinte en plus de donner des rendements faibles et variables.

Les problématiques reliées aux couplages d'Ullmann et Goldberg n'ont pas empêché les chercheurs d'utiliser ces conditions pour de nombreuses synthèses. Ces méthodes étaient les meilleures de la littérature durant de nombreuses années, même avec des conditions de réaction difficiles. Près d'un siècle plus tard, les groupes de Buchwald et Hartwig révolutionnent les couplages en utilisant le palladium et différents systèmes de ligands comme catalyseur [29-33]. Leur approche permet une utilisation catalytique du métal et le développement de conditions de réaction plus douces que celles d'Ullmann. Durant quelques années, les recherches sur les couplages catalysés au cuivre sont presque totalement mises de côté au profit de celles sur le palladium. Par contre, l'utilisation du palladium s'est avérée avoir ses désavantages, surtout pour l'application à grande échelle. Le palladium est un métal dispendieux et ses dérivés sont toxiques [28]. Aussi, il est sensible à l'air, à l'humidité et ne tolère pas beaucoup de groupements fonctionnels [34]. Les différents désavantages reliés à l'utilisation du palladium ont alors incité les chercheurs à revenir sur les couplages catalysés au cuivre. L'intérêt de la recherche était justifié par le fait que le cuivre est un métal moins cher que le palladium et que ses dérivés sont peu toxiques. Les systèmes de ligands développés pour le palladium ont tracé la voie pour l'utilisation catalytique du cuivre dans des conditions plus douces. Généralement, on notera que la source de cuivre n'est pas critique pour la réaction de couplage, par opposition au palladium, car ce sont les autres paramètres qui sont déterminants (i.e. la base, le ligand, le solvant et la température). Le point fort des couplages catalysés au cuivre par rapport à ceux catalysés au palladium est leur tolérance à une plus grande variété de groupements fonctionnels [35]. Le groupe de Fukuyama en montre un exemple lors de sa synthèse totale des (+)-Duocarmycines A et SA (Schéma 2.2) [36]. Il rapporte que la molécule 59 ne forme la molécule 60 qu'avec de faibles rendements dans les conditions typiques d'amination catalysée par le palladium. Il suppose que ces faibles rendements sont dus à des complications issues de . l'addition oxydante du palladium sur le bromure restant sur la molécule. Le principal produit secondaire observé est l'indole 60 sans son brome. Il

rapporte aussi que la molécule <u>59</u> peut former la molécule <u>60</u> sans produits secondaires et dans des conditions douces lorsque le cuivre est utilisé comme catalyseur.

Schéma 2.2 Couplage intramoléculaire catalysé par le cuivre pour la préparation d'un intermédiaire de duocarmycine par le groupe de Fukuyama.

Le mécanisme accepté pour les réactions de couplage catalysées par le cuivre est représenté au Schéma 2.3 [37]. Il commence par une déprotonation du nucléophile <u>56</u> avec une base (p. ex. le carbonate de césium). Le cation résultant de la réaction acide-base (ici le Cs^+), s'associe au nucléophile déprotoné pour former l'intermédiaire <u>61</u>. Le catalyseur de départ, le Cul, substitue ensuite le cation sur le nucléophile pour former le complexe de Cu(I) <u>62</u> et libérer un sel d'iode (CsI). Le complexe <u>62</u> est entouré de ligands (non représentés ici), ce qui le rend réactif et le différencie de l'intermédiaire <u>61</u>. Les ligands ne sont pas présents dans le mécanisme pour alléger le schéma. Le complexe de Cu(I) <u>62</u> peut réagir avec l'halogénure <u>57</u> via une addition oxydante pour former l'intermédiaire de Cu(III) <u>63</u>. Ce dernier intermédiaire procède alors à une élimination réductrice qui régénère le catalyseur de départ et libère le produit de la substitution <u>58</u>.

Schéma 2.3 Mécanisme accepté pour la substitution nucléophile sur un halogène lié à un carbone sp² catalysée par le cuivre.

Le Schéma 2.3 démontre la nécessité du catalyseur de cuivre(I) et de la base dans les conditions de couplages. Par contre, tel que mentionné plus haut, un élément important de ce type de réactions n'apparait pas dans le mécanisme : le ligand. Un ligand est une base de Lewis possédant au moins un doublet d'électrons libre capable d'interagir avec un atome métallique (qui agit comme acide de Lewis) pour former une liaison de coordination [38, 39]. Les ligands sont classés selon leur denticité, c'est-à-dire le nombre de liaisons de coordination qu'ils peuvent former. Ils sont appelés monodentés, bidentés, polydentés, etc. Lorsque le ligand est polydenté, le complexe qu'il forme avec l'atome métallique est appelé un chélate. Les chélates sont plus stables que les complexes formés avec des ligands monodentés, car ils sont favorisés entropiquement et peuvent former des cycles à cinq ou six membres.[39] Pour un complexe métallique donné avec un nombre de liaisons de coordination donné, des ligands polydentés peuvent déplacer

plusieurs ligands monodentés. Ces déplacements augmentent l'entropie : il y a plus de molécules libres que de molécules contraintes à former un complexe.

Les complexes formés entre un métal de transition et ses ligands sont souvent colorés. Cette coloration est déterminée par le comportement des orbitales d du métal au centre du complexe [39, 40]. Les orbitales d d'un métal de transition libre (dans le vide) sont considérées comme dégénérées (i.e. elles ont la même énergie). Lorsque le métal interagit avec un ou plusieurs ligands, ses orbitales d deviennent non-dégénérées et se séparent en plateaux selon leur énergie. Puisque les orbitales d des métaux de transition ne sont que partiellement remplies, il est possible d'exciter un électron d'une orbitale d de basse énergie vers une orbitale d de plus haute énergie. Il s'agit d'une transition d vers d. L'énergie nécessaire pour effectuer cette transition peut provenir de l'énergie de rayonnement électromagnétique d'un photon absorbé. Si cette énergie appartient au spectre visible, une couleur particulière sera absorbée. La coloration perçue sera un mélange de toutes les autres couleurs, soit l'équivalent de la couleur complémentaire à celle absorbée. Cette coloration dépend de trois critères qui influent sur les orbitales d du métal : la nature du ligand, la géométrie du complexe et l'état d'oxydation du métal [39]. Le ligand utilisé peut induire une séparation énergétique étroite ou large des orbitales d du métal. L'intensité de la séparation induite définit le ligand comme ayant un champ faible ou fort. La classification des ligands selon la séparation énergétique induite pour un métal donné est appelée la série spectrochimique (voir ci-dessous) [41].

I⁻ < Br⁻ < S₂⁻ < SCN⁻ < CI⁻ < NO₃⁻ < N₃⁻ < F⁻ < OH⁻ < C₂O₄²⁻ ≈ H₂O < NCS⁻ < MeCN < Pyridine < NH₃ < Éthylènediamine < 2,2-Bipyridine < 1,10-Phénanthroline < NO₂⁻ < PPh₃ < CN⁻ < CO

La géométrie du complexe varie entre autres selon la taille du métal et des ligands, car l'encombrement stérique et les effets électroniques limitent les possibilités [39, 40]. L'orientation que prennent les liaisons métal-ligand tend à stabiliser au maximum les orbitales d. L'état d'oxydation du métal qui forme le complexe détermine la distribution des électrons dans les orbitales d, ce qui module l'énergie des orbitales. Certains métaux de transition possèdent des états d'oxydation dans lesquels leurs orbitales d sont soit vides ou pleines. Dans ces situations, il est impossible de former des complexes colorés, car il est impossible de faire une transition d vers d. Dans le contexte des couplages catalysés au cuivre, les complexes sont seulement caractérisés par leur couleur. L'observation de la couleur confirme la formation du complexe et peut indiquer quel type de complexe fonctionne le mieux pour une réaction donnée. L'utilisation de ligands spécifiques permet d'effectuer des couplages dans des conditions plus douces et plus tolérantes aux groupes fonctionnels que les conditions initiales d'Ullmann [27, 34, 42]. Dans le contexte des couplages catalysés au cuivre, les ligands sont classés selon leurs sites de liaison au métal, c'est-à-dire selon les hétéroatomes qui fournissent leur paire d'électrons.

2.2 Couplages catalysés par le cuivre

Les couplages catalysés par le cuivre se retrouvent dans notre outil de synthèse et donc dans la méthode que nous proposons pour la préparation de la (-)-xénovénine. Le premier couplage permet de créer une liaison C-N de façon intramoléculaire et le second permet de créer une liaison C-O de façon intermoléculaire. De nombreux travaux sont présentés ici dans le domaine des couplages catalysés par le cuivre. L'outil de synthèse est basé sur ces différents travaux. Il est cependant innovateur par sa combinaison de deux

couplages au cuivre suivi d'un réarrangement de Claisen et par la nature de ses couplages (i.e. type de substrat).

2.2.1 Formation de liens C-N

Il existe différentes conditions pour la formation de liens C-N à l'aide des couplages catalysés au cuivre. Ces conditions varient quant aux types de substrat, de ligand et de solvant utilisés. Au tout début du 20^e siècle, Ullmann et Goldberg ont utilisé des couplages catalysés au cuivre pour former un lien C-N entre des halogénures d'aryle et des anilines (Ullmann) [25] de même qu'entre des halogénures d'aryle et des amides (Goldberg) [26]. Les différentes méthodes présentées dans cette section permettent de faire le lien entre ces travaux et notre outil de synthèse. Elles ont été mises au point près d'un siècle après les premières publications d'Ullmann et Goldberg.

En 2005, le groupe de Zhang a effectué la N-arylation de différents nucléophiles azotés (65) avec des halogénures aromatiques (64) à l'aide du cuivre pour former une large librairie de produits N-arylés (66) (Schéma 2.4) [43]. Il utilise différents acides aminés comme ligand : la L-proline (67), la N-méthylglycine (68) et la N,N'-diméthylglycine (69) (Figure 2.1).

Schéma 2.4 N-arylation de nucléophiles azotés selon la méthode de Zhang.

Figure 2.1 Acides aminés utilisés comme ligands dans la méthode de Zhang pour la N-arylation de nucléophiles azotés.

Zhang a appliqué sa méthode à plusieurs substrats différents : des amines primaires (aliphatiques, allyliques, benzyliques, aromatiques) avec des rendements de 51 à 98%, des amines secondaires (aliphatiques, benzyliques et cycliques) avec des rendements de 21 à 100% et des composés hétérocycliques azotés (imidazoles, pyrazoles, indoles, pyrroles et carbazoles) avec des rendements de 22 à 97%. La méthode nécessite l'utilisation de DMSO, ce qui limite les applications, surtout à grande échelle.

En 2010, le groupe de Nageswar a aussi effectué la N-arylation de différentes nucléophiles azotés (65) avec des halogénures aromatiques (64) à l'aide du cuivre pour former lui aussi une large librairie de produits N-arylés (66) (Schéma 2.5) [44]. Il utilise le ligand N,N bidenté <u>70</u> et effectue ses couplages dans l'eau.

Schéma 2.5 N-arylation de nucléophiles azotés selon la méthode de Nageswar.

Nageswar a appliqué sa méthode à plusieurs substrats différents : des amines primaires (aliphatiques, benzyliques, aromatiques) avec des rendements de 60 à 80%, une amine secondaire cyclique avec un rendement de 52%, des composés azotés hétérocycliques (imidazoles, pyrazoles, indoles) avec des rendements de 50 à 98%, une amide et une thioamide avec des rendements respectifs de 51 et 58%. La méthode utilise l'eau comme solvant ce qui rend la réaction beaucoup plus verte, mais qui rend impossible son application aux substrats sensibles à l'hydrolyse ou qui ne sont tout simplement pas solubles dans l'eau.

En 2004, le groupe de Pan a effectué la N-vinylation de différentes nucléophiles azotés (<u>44</u>) avec des halogénures vinyliques (<u>71</u>) à l'aide du cuivre pour former une librairie de produits N-vinylés (<u>72</u>) (Schéma 2.6) [45]. Il utilise la N,N'-diméthylglycine (<u>69</u>) comme ligand et effectue ses couplages dans le dioxane.

Schéma 2.6 N-vinylation de nucléophiles azotés selon la méthode de Pan.

Pan a appliqué sa méthode à plusieurs nucléophiles différents : des amides (aliphatiques, insaturés, aromatiques), un carbamate et des lactames. Il a utilisé plusieurs halogénures vinyliques différents : cycliques, conjugués et aromatiques. Les iodures vinyliques donnent de meilleurs rendement que les

bromures vinyliques, ces derniers donnant des rendements de couplage de 62 à 65%. Les résultats de Pan sont intéressants pour notre groupe, car les substrats et les produits utilisés ressemblent à ceux de notre synthèse. Par contre, la méthode a seulement été appliquée sur des halogénures vinyliques pauvres en électrons (i.e. porteurs de groupements attracteurs) et peu enrichis en électrons (i.e. porteurs de groupements alkyles) ce qui diffère de notre méthode.

En 2008, le groupe de Jiang a effectué la N-halogénovinylation intramoléculaire de différentes β -lactames ayant une portion dihalogénovinylique (<u>73</u>) à l'aide du cuivre pour former une librairie de précurseurs de carbapénèmes (<u>75</u>) (Schéma 2.7) [46]. Il utilise la 2,2'-bipyridine (<u>74</u>) comme ligand et effectue ses couplages dans le toluène avec un équivalent d'eau.

Schéma 2.7 N-halogénovinylation intramoléculaire de différentes β-lactames selon la méthode de Jiang.

Jiang a appliqué sa méthode à plusieurs β -lactames en faisant varier la portion dihalogéno-vinylique du substrat. Il a utilisé des substrats sur lesquels il a fait varier l'halogène qui ne participe pas à la cyclisation (représenté par X dans la molécule <u>73</u>) et il a utilisé sa méthode avec des composés dihalogéno-vinyliques pauvres ou substitués. L'intérêt de notre groupe pour les résultats de Jiang se situe à deux niveaux : i) la nature des substrats

utilisés et ii) la nature de la réaction de couplage elle-même. Le groupe de Jiang utilise une lactame et sa portion dihalogéno-vinylique pour faire un couplage intramoléculaire, ce qui concorde avec notre projet. Par contre, les seules lactames testées sont les β-lactames et la méthode n'a pas été testée avec une portion dihalogéno-vinylique riche en électrons.

En 2008, dans le groupe de Daoust, Sanapo a effectué la N-iodovinylation de différents nucléophiles azotés (**76** et **44**) avec le diiodoéthène (**45**) à l'aide de la chimie du cuivre (Schéma 2.8) [47]. Cette méthode permet de former des β -iodoénamides (**77a**, **77b** et **78**) ou des dérivés (**77c**) [22]. Dans ce même groupe, Rahem a ensuite optimisé la méthode et développé l'outil de synthèse en l'appliquant à la préparation d'acides aminés non naturels, tel que décrit précédemment [23]. Sanapo a développé les couplages en utilisant différents ligands : un ligand N,O-bidenté (**69**) et deux ligands N,N-bidentés (**79** et **80**) (Figure 2.2). Grace aux résultats de Sanapo, Rahem a pu optimiser les réactions de couplage avec le ligand le plus efficace, la N,N'-diméthyléthylènediamine (**79**).

Figure 2.2 Ligands utilisés pour la N-iodovinylation de différents nucléophiles azotés par la méthode de Daoust.

Daoust a appliqué sa méthode à plusieurs nucléophiles différents : une amide avec un rendement de 90%, des lactames avec des rendements de 66 à 75% et un carbamate avec un rendement de 94%. Il a utilisé des nucléophiles riches et pauvres en électrons pour les coupler avec le diiodoéthène (<u>45</u>). Il a formé des iodures vinyliques riches en électrons capables d'être transformés par un second couplage au cuivre. Il a aussi noté un excellent stéréocontrôle en observant la rétention de la configuration *trans* de la portion halogénure. Les travaux de couplage avec un lactame présentés plus loin sont basés sur les conditions de Daoust.

2.2.2 Formation de liens C-O

Il existe aussi plusieurs méthodes pour la formation de liens C-O à l'aide des couplages catalysés au cuivre. Ces réactions de couplages sont issues des premiers travaux d'Ullmann et Goldberg, de la même façon que pour la formation de liens C-N. Dans la littérature, il y a beaucoup de travaux sur la formation d'aryléthers ou de diaryléthers qui utilisent ce type de couplage [34, 42, 48]. À l'opposé, la formation d'éthers d'énols à l'aide des couplages catalysés au cuivre avec des substrats non aromatiques est moins documentée. Les différentes méthodes présentées dans cette section permettent de faire le lien entre les travaux d'Ullmann et notre outil de synthèse, comme précédemment.

En 2002 et 2003, les groupes de Reider et He ont effectué la O-arylation de différents phénols (<u>81</u>) avec des halogénures aromatiques (<u>64</u>) à l'aide du cuivre pour former des diaryléthers (<u>82</u>) (Schéma 2.9) [49, 50]. Pour ce faire, le groupe de Reider utilise un sel de cuivre(I), une base et le ligand O,O-bidenté <u>83</u> (méthode A) (Figure 2.3). Le groupe de He n'utilise pas de ligand et il utilise le chauffage aux micro-ondes plutôt que le chauffage conventionnel (méthode B).

Schéma 2.9 O-arylation de différents phénols pour former des diaryléthers. La méthode A est celle de Reider et la méthode B est celle de He.

Figure 2.3 Ligand utilisé pour la O-arylation de différents phénols par la méthode de Reider.

Reider a appliqué sa méthode à des phénols riches et pauvres en combinaison avec des halogénures riches et pauvres. L'utilisation du ligand **83** lui a permis d'obtenir des diaryléthers dans des conditions plus douces que celles d'Ullmann. He a appliqué sa méthode à des phénols et halogénures riches. L'utilisation de micro-ondes lui a permis de diminuer le temps de réaction de ses couplages et de les faire sans utiliser de ligand.

En 2003 et 2005, les groupes de Wan et Ma ont effectué la O-vinylation de différents phénols (<u>81</u>) avec des halogénures vinyliques (<u>71</u>) à l'aide du cuivre pour former des arylvinyléthers (<u>84</u>) (Schéma 2.10) [51, 52]. Pour ce faire, le groupe de Wan utilise le ligand N,O-bidenté <u>85</u> (méthode A) et le groupe de Ma utilise le ligand N,O-bidenté <u>69</u> (méthode B) (Figure 2.4).

Schéma 2.10 O-vinylation de différents phénols pour former des arylvinyléthers. La méthode A est celle de Ma et la méthode B est celle de Wan.

Figure 2.4 Ligands utilisés pour la O-vinylation de différents phénols respectivement par les méthodes de Ma et Wan.

Wan a appliqué sa méthode à des phénols riches et pauvres combinés à des halogénures pauvres. L'utilisation du ligand <u>85</u> lui a permis d'obtenir des arylvinyléthers dans des conditions plus douces que celles d'Ullmann. Ma a appliqué sa méthode à des phénols riches en combinaison avec des halogénures cycliques ou linéaires. L'utilisation du ligand <u>69</u> lui a aussi permis d'obtenir des arylvinyléthers dans des conditions plus douces que celles d'Ullmann.

En 2002, le groupe de Buchwald a effectué la O-arylation de différents alcools (<u>86</u>) avec des halogénures aromatiques (<u>64</u>) à l'aide du cuivre pour former des arylalkyléthers (<u>87</u>) (Schéma 2.11) [53]. Il utilise le ligand N,N-bidenté <u>80</u> pour ses couplages. Buchwald utilise l'alcool <u>86</u> comme solvant lorsque cet alcool est simple et peu dispendieux. Sinon, il utilise le toluène comme solvant et deux équivalents de l'alcool <u>86</u>.

Schéma 2.11 O-arylation de différents alcools pour former des arylalkyléthers selon la méthode de Buchwald.

Buchwald a appliqué sa méthode à différents halogénures aromatiques avec plusieurs nucléophiles : alcools primaires avec des rendements de 40 à 97%, alcools secondaires avec des rendements de 67 à 92% et alcools allyliques avec des rendements de 54 à 86%. Il a observé une rétention totale de la configuration lorsqu'il a couplé un halogénure aromatique avec un alcool secondaire chiral. Buchwald utilise l'alcool comme solvant lorsqu'il est commercial et peu complexe ce qui simplifie la méthode.

En 1992, le groupe de Keegstra a effectué la O-vinylation du méthanolate de sodium (88) avec des halogénures vinyliques (71) à l'aide du cuivre pour former des alkylvinyléthers (89) (Schéma 2.12) [54]. Il n'utilise pas de ligand et effectue ses couplages dans un mélange de N-méthylpyrrolidone (NMP) et de l'alcool correspondant à l'alcoolate utilisé.

Schéma 2.12 O-vinylation d'un alcoolate pour former un vinyléther selon la méthode de Keegstra.

Keegstra a appliqué sa méthode à plusieurs types d'halogénures vinyliques : des iodures, des bromures, des composés linéaires, cycliques et encombrés ou non. Le résultat qui retient le plus notre attention est la O-vinylation du méthanolate de sodium (88) avec le bromure vinylique riche 90 avec un rendement de 82% (Figure 2.5). C'est un des rares cas où l'halogénure vinylique utilisé dans une réaction de couplage au cuivre est directement lié un hétéroatome donneur.

Figure 2.5 Halogénure riche utilisé par Keegstra pour la O-vinylation du méthanolate de sodium.

En 2003, le groupe de Buchwald a effectué la O-vinylation de différents alcools (86) avec des halogénures vinyliques (71) à l'aide du cuivre pour former des allylalkyléthers (89) (Schéma 2.13) [55]. Il utilise le ligand N,N-bidenté 80 pour ses couplages qu'il effectue dans le toluène (Figure 2.6). Dans la même publication, Buchwald décrit aussi la O-vinylation de l'alcool allylique (92) avec l'iodure vinylique (91) à l'aide du cuivre pour former l'allylvinyléther (93) (Schéma 2.14). Il utilise les ligands N,N-bidenté 80 et 94 pour ses couplages qu'il effectue aussi dans le toluène (Figure 2.6).

Figure 2.6 Ligands utilisés pour la O-vinylation de différents alcools par les méthodes de Buchwald.

Buchwald a d'abord appliqué sa méthode à différents halogénures vinyliques combinés à plusieurs alcools primaires (i.e. alkyle, propargyle et benzyle). Il a ensuite appliqué sa méthode à un iodure vinylique et un alcool allylique pour générer un allylvinyléther avec des rendements de transformation de 66 à 98%. Ce sont des rendements de transformation, car ils sont déterminés par chromatographie gazeuse. Les rendements isolés sont plus faibles à cause de la fragilité de ce type de composés. Buchwald obtient aussi une proportion variable du produit de réarrangement de Claisen.

En 2007 et 2012, le groupe de Daoust a effectué la O-vinylation de différents alcools allyliques (<u>47</u>) avec des composés N-iodovinylés (<u>77a</u>, <u>77b</u> et <u>77c</u>) à l'aide du cuivre pour former des composés N-allyloxyvinylés (<u>95</u>) (Schéma 2.15) [23, 47]. Il utilise le ligand N,N-bidenté <u>79</u> pour ses couplages qu'il effectue dans le tétrahydrofuranne (THF).

Schéma 2.15 O-vinylation de différents alcools allyliques pour former des composés N-allyloxyvinylés selon la méthode de Daoust.

Daoust a appliqué sa méthode à plusieurs composés N-iodovinylés en combinaison avec différents alcools allyliques. Les premiers résultats de Sanapo [47] dans le laboratoire de Daoust ont mené à des rendements de 49 à 84%. Les travaux de Rahem [23] ont permis d'atteindre des rendements de 88 à 94% en optimisant les proportions de réactifs. Les travaux de couplage avec un alcool allylique présentés plus loin sont basés sur les conditions de Daoust.

2.3 Réarrangement de Claisen

Le réarrangement de Claisen a été découvert par Rainer Ludwig Claisen en 1912 [56]. Il s'agit d'un réarrangement sigmatropique [3,3] d'un allyvinyléther (**96**) pour former un composé carbonylé γ , δ -insaturé (**97**) (Schéma 2.16). Le delta (Δ) représente une source d'énergie comme le chauffage conventionnel ou le chauffage par micro-ondes. Le réarrangement de Claisen est une réaction exothermique, mais l'énergie à fournir correspond à l'énergie d'activation nécessaire à l'alignement des orbitales impliquées [57]. La force motrice de la réaction est la formation d'un carbonyle à partir d'un composé contenant seulement des oléfines.

Schéma 2.16 Forme générale du réarrangement de Claisen.

Un réarrangement sigmatropique consiste en une migration des électrons d'une liaison sigma dans un système π . La numérotation de ce type de

réarrangements se fait à partir du lien sigma qui est brisé, tel qu'illustré sur l'allyvinyléther <u>96</u> (Schéma 2.16). Il existe plusieurs variations du réarrangement de Claisen : l'aza-Claisen, le thio-Claisen et le Claisen aromatique (Schéma 2.17).

Schéma 2.17 Différentes variations du réarrangement de Claisen.

La force motrice de l'aza-Claisen est la formation d'une imine, beaucoup moins favorisée que la formation d'un carbonyle. Elle a été exploitée par Kurth [58] pour la préparation d'acides pent-4-énoïque chiraux. Le thio-Claisen fonctionne de la même façon que le Claisen standard, mais l'oxygène est remplacé par un soufre. Il a été très utilisé, tel que Majumdar [59] le mentionne dans sa revue littéraire, même si la formation d'un thio-carbonyle est une force motrice plus faible que la formation d'un carbonyle. Le Claisen aromatique permet de former un intermédiaire carbonylé, ce qui est une partie de sa force motrice. L'intermédiaire peut ensuite se tautomériser en un énol pour rétablir l'aromaticité du système et former un phénol substitué, ce qui constitue principalement la force motrice de cette réaction. La régiosélectivité et le mécanisme du Claisen aromatique ont été étudiés par Gozzo [60].

L'intérêt des chercheurs pour le réarrangement de Claisen provient de sa grande sélectivité, car c'est une réaction péricyclique concertée suprafaciale [57]. Aussi, son état de transition est une pseudo-chaise, donc très ordonné (Schéma 2.18). L'oxygène de l'allylvinyléther <u>96</u> va tirer les électrons de la liaison sigma dans le système π pour former un carbonyle. Cet effet va pousser les électrons du groupement vinyle à former une nouvelle liaison sigma, ce qui va ensuite déplacer les électrons de l'oléfine terminale pour former le composé carbonylé γ , δ -insaturé <u>97</u>. Dans le cas de l'allylvinyléther <u>96</u>, l'absence de chiralité va permettre aux deux pseudo-chaises d'être équivalentes et de générer le même composé carbonylé γ , δ -insaturé <u>97</u>.

Il est possible de contrôler la géométrie de l'oléfine formée par un réarrangement de Claisen en contrôlant la chiralité du substrat. Le

réarrangement de l'allylvinyléther chiral <u>104</u> permet d'obtenir sélectivement un des composés γ , δ -insaturés correspondants (i.e. <u>105</u> ou <u>106</u>) (Schéma 2.19). La chiralité de la portion allylique va favoriser la voie A si le groupement R₂ est plus gros que R₁, car R₂ préfèrera être pseudo-équatorial. Cette voie mène au composé <u>105</u>. Si c'est le groupement R₁ qui est plus gros que R₂, alors c'est la voie B qui est favorisée et c'est le composé <u>106</u> qui sera obtenu.

Schéma 2.19 Sélectivité du réarrangement de Claisen déterminée par un centre chiral sur la portion allylique de l'allylvinyléther.

Il est aussi possible de contrôler la stéréochimie relative des diastéréoisomères formées par un réarrangement de Claisen en contrôlant la géométrie des oléfines du substrat. Un assortiment particulier d'oléfines favorisera toujours les mêmes diastéréoisomères (*anti* ou *syn*). Deux cas spécifiques sont présentés ici (Schéma 2.20), soit celui où les oléfines ont la même géométrie (i.e. *trans-trans*) et celui où elles n'ont pas la même géométrie (i.e. *cis-trans*).

Dans le premier cas, le réarrangement de l'allylvinyléther *trans-trans* <u>107</u> permet d'obtenir sélectivement les diastéréoisomères *anti* du composé γ , δ -insaturé correspondant (<u>108</u> et <u>109</u>) alors que les diastéréoisomères *syn* ne sont pas favorisés (Schéma 2.20). Il est possible de constater que la voie A et la voie B sont équivalentes, car tous les substituants sont pseudo-équatoriaux. Le réarrangement de l'allylvinyléther *cis-cis* (non représenté) permettrait d'obtenir le même résultat.

Dans le deuxième cas, le réarrangement de l'allylvinyléther *cis-trans* <u>110</u> permet d'obtenir sélectivement les diastéréoisomères *syn* du composé γ , δ -insaturé correspondant (<u>111</u> et <u>112</u>) alors que les diastéréoisomères *anti* ne sont pas favorisés (Schéma 2.20). Il est possible de constater que la voie A et la voie B sont équivalentes, car, dans les deux cas, le substituant R₁ est pseudo-axial et le substituant R₂ est pseudoéquatorial. Le réarrangement de l'allylvinyléther *trans-cis* (non représenté) permettrait d'obtenir le même résultat.

Schéma 2.20 Sélectivité du réarrangement de Claisen déterminée par la géométrie des oléfines.

En comprenant bien la sélectivité du réarrangement de Claisen dans diverses conditions, il est possible de combiner plusieurs facteurs pour obtenir une sélection encore meilleure. Une combinaison adéquate entre une portion allylique chirale et des oléfines à la géométrie contrôlée (mono- ou poly-substituées) permet d'obtenir un seul produit majoritaire. Il faut cependant que les facteurs de sélection favorisent le même état de transition, sinon la

sélection sera diminuée. Il existe de nombreux exemples de l'application du réarrangement de Claisen et même quelques revues littéraires [61-63]. Les travaux qui ont retenu notre attention sont ceux de Buchwald [55] et de Daoust [23, 47].

En 2003, le groupe de Buchwald a effectué le réarrangement de Claisen sur un allylvinyléther (**93**) pour obtenir le composé γ , δ -insaturé (**113**) (Schéma 2.21) [55]. Il a comparé le chauffage conventionnel au chauffage par micro-ondes.

Schéma 2.21 Réarrangement de Claisen d'un allylvinyléther pour former un composé γ,δ-insaturé selon la méthode de Buchwald.

Les travaux de Buchwald démontrent que le chauffage par micro-ondes diminue grandement le temps de réaction pour le réarrangement de l'allylvinyléther <u>93</u>. Lors du réarrangement par chauffage conventionnel, Buchwald note qu'une augmentation de la température ou du temps de réaction diminue le rendement et la sélectivité. Il a ensuite combiné l'efficacité du réarrangement de Claisen à son expertise dans le domaine des couplages catalysés au cuivre. Il a ainsi développé une procédure pour coupler des halogénures vinyliques à des alcools allyliques pour obtenir des allylvinyléthers qu'il transforme *in situ* en des composés γ , δ -insaturés via un réarrangement de Claisen. Cette procédure lui permet d'obtenir des

composés γ , δ -insaturés avec des rendements de 55 à 77% à partir de l'halogénure vinylique correspondant.

En 2010, le groupe de Daoust a effectué le réarrangement de Claisen de β -allyloxyénamides (<u>114a</u>) et de β -allyloxyénuréthanes (<u>114b</u>) pour obtenir des aldéhydes γ , δ -insaturés (<u>115</u> et <u>116</u>) (Schéma 2.22) [23]. Il a comparé l'effet de quelques solvants sur le rendement et la sélectivité du réarrangement.

Schéma 2.22 Réarrangement de Claisen de β-allyloxyénamides pour former des aldéhydes γ,δ-insaturés selon la méthode de Daoust.

Daoust a appliqué sa méthode à plusieurs composés dans différents solvants à reflux. Il a obtenu de bons rendements, mais peu de diastéréosélection. Dans son laboratoire, Rahem a ensuite tenté d'améliorer la sélection en catalysant le réarrangement avec des acides de Lewis. L'utilisation de triisobutylaluminium (*i*Bu₃Al) et de triméthylaluminium (Me₃Al) comme catalyseurs a permis d'obtenir des rendements comparables (Rdt 50 à 92%) en augmentant un peu la sélectivité (dr 35:65 à 25:75) et en diminuant grandement les temps de réaction (0,2 à 2h).

Notre stratégie pour la synthèse de la (-)-xénovénine consiste à se servir de la chimie du cuivre pour faire deux couplages au cuivre(I) successifs suivis

d'un réarrangement de Claisen. Le réarrangement de Claisen du β -allyloxyénamide <u>54</u> permet de contrôler la chiralité du carbone 3 de l'allyl-pyrrolizidine-2,5-dione <u>55</u> (Schéma 2.23).

Schéma 2.23 Réarrangement de Claisen de la β-allyloxyénamide <u>54</u> pour former l'allyl-pyrrolizidine-2,5-dione <u>55</u> dans le cadre de la synthèse de la (-)-xénovénine par la méthode de Daoust.

Ce contrôle dépend de la chiralité de l'alcool allylique utilisé pour le couplage (tel que décrit plus haut) et de la chiralité du β -allyloxyénamide <u>54</u>. Ce dernier peut adopter deux conformations pseudo-chaise pour effectuer le réarrangement de Claisen (Schéma 2.24). Dans la voie A, le groupement R de la portion alcool allylique est pseudo-axial, ce qui est hautement défavorable. Dans la voie B, ce même groupement est en position pseudo-équatorial, ce qui est beaucoup plus favorable. L'allyl-pyrrolizidine-2,5-dione <u>55</u> issue de la voie B est donc favorisée par rapport au composé <u>117</u> issu de la voie A. Le réarrangement de Claisen du β -allyloxyénamide <u>54</u> permet donc d'obtenir l'allyl-pyrrolizidine-2,5-dione <u>55</u> avec le substituant du carbone 3 en *syn* par rapport à l'hydrogène à la jonction de cycle. Cette stéréochimie relative correspond à celle de la xénovenine, dans laquelle l'hydrogène à la jonction de cycle et les substituants en C3 et C5 sont tous *syn*.

Schéma 2.24 Réarrangement de Claisen de β-allyloxyénamides pour former des cétones γ,δ-insaturés selon la méthode de Daoust.

Les différents résultats présentés dans ce chapitre ont guidé nos travaux, surtout lors de l'optimisation. L'application de l'outil de synthèse développé dans notre laboratoire à la préparation de la (-)-xénovénine sera abordée dans le prochain chapitre (Chapitre III). Une optimisation partielle des réactions a été effectuée dans le but d'améliorer certains rendements. Les conclusions et les propositions à propos du présent projet seront aussi présentées (Chapitre IV).

CHAPITRE III

L'APPLICATION DE L'OUTIL DE SYNTHÈSE À LA PRÉPARATION DE LA (-)-XÉNOVÉNINE

3.1 Préparation du diiodure vinylique 51

Tel que décrit dans le chapitre I, nous avons proposé une synthèse de la (-)-xénovénine qui permet de démontrer la polyvalence de l'outil de synthèse développé et utilisé dans notre laboratoire. Cet outil de synthèse consiste à se servir de la chimie du cuivre pour faire deux couplages au cuivre(I) successifs suivis d'un réarrangement de Claisen. La première étape de nos travaux consiste à préparer un précurseur pour le premier couplage de l'outil de synthèse. Ce précurseur (voir chapitre 1, Schéma 1.12) est le diiodure vinylique <u>51</u> (Figure 3.1). La structure présentée ici montre un centre chiral contrôlé, tel que nécessaire pour la synthèse optiquement pure de la (-)-xénovénine. Les réactions ont cependant été effectuées avec des substrats racémiques pour évaluer la faisabilité de la méthode. L'approche envisagée pour la synthèse optiquement pure de la (-)-xénovénine est présentée à la fin de cette section (sous-section 3.1.4).

Figure 3.1 Structure du diiodure vinylique <u>51</u>, précurseur du premier couplage de l'outil de synthèse.

Le diiodure vinylique <u>51</u> peut être obtenu par diiodation de la lactame propargylée <u>118</u> correspondante (Schéma 3.1). Cette lactame peut être préparée de plusieurs façons, mais nous avons retenu deux méthodes principales. La première méthode consiste à préparer la lactame propargylée <u>118</u> par une attaque nucléophile sur la lactame éthoxylée <u>119</u>. Cette dernière peut être obtenue par réduction de l'imide cyclique <u>120</u> (i.e. le succinimide). La deuxième méthode consiste à préparer la lactame propargylée <u>118</u> via une substitution nucléophile sur la lactame iodométhylée <u>121</u>. Cette dernière peut être obtenue par iodolactamisation de l'amide insaturé <u>122</u>, obtenu par amidation de l'acide pent-4-énoïque (<u>123</u>).

La synthèse de la lactame propargylée <u>118</u> selon ces deux méthodes est présentée dans cette section (sous-sections 3.1.1 et 3.1.2), de même que la synthèse du diiodure vinylique <u>51</u> par diiodation de la lactame propargylée <u>118</u> (sous-section 3.1.3). L'application de l'outil de synthèse (i.e. deux couplages au cuivre successifs suivis d'un réarrangement de Claisen) est présentée un peu plus loin dans ce chapitre (sections 3.2 et 3.3).

3.1.1 Préparation de la lactame propargylée <u>118</u> à partir du succinimide (<u>120</u>)

La réduction du succinimide <u>120</u> par le borohydrure de sodium (NaBH₄) dans l'éthanol permet d'obtenir la lactame éthoxylée <u>119</u> (Schéma 3.2) selon la

méthode de Speckamp [64]. Elle comporte trois étapes : la réduction, l'acidification et la neutralisation. La réduction est l'étape pendant laquelle le NaBH₄ réduit le succinimide. Elle nécessite l'ajout de HCI (en solution dans l'éthanol) par petites portions pour compenser l'augmentation de pH causée par le NaBH₄ et limiter les réactions secondaires. L'étape d'acidification nécessite d'amener le pH entre 3 et 4 pour détruire le NaBH₄ en excès et permettre l'éthanolyse. Cette étape est critique, car un pH trop acide entraîne la destruction du produit. La neutralisation avec une solution d'hydroxyde de potassium (KOH) dans l'éthanol suivie d'une filtration sur Buchner permet de récupérer le produit final.

Schéma 3.2 Réduction du succinimide (<u>120</u>) par le NaBH₄ pour obtenir la lactame éthoxylée <u>119</u>.

Nous avons obtenu la lactame éthoxylée <u>119</u> avec des rendements très variables de 17 à 80%. Cette variabilité dépend de la quantité de succinimide (<u>120</u>) utilisée et de la méthode utilisée pour le suivi du pH. Les différentes entrées que nous avons effectuées sont consignées selon ces deux paramètres (Tableau 3.1). L'entrée 1 est notre essai de référence dans les conditions de Speckamp [64] et nous a permis d'obtenir la lactame éthoxylée <u>119</u> avec un rendement de 58%.

Nous avons d'abord voulu déterminer l'effet de la quantité de substrat sur le rendement de la réaction pour évaluer son application à de grandes

quantités. Les entrées 1 à 7 sont en ordre croissant selon la quantité de substrat utilisée et le suivi du pH a été fait àvec des papiers pH. Il est possible de déterminer l'effet de la quantité de substrat sur cette réaction en comparant les entrées 1 à 5 aux entrées 6 et 7. Les entrées 1 à 5 correspondent à l'utilisation de moins de 10 mmol de substrat alors que les entrées 6 et 7 correspondent à l'utilisation de 27 et 61 mmol de substrat respectivement. Les entrées 1 à 5 permettent d'obtenir la lactame éthoxylée **119** avec des rendements de 48 à 80% alors que les entrées 6 et 7 permettent d'obtenir des rendements de 41% et 17% respectivement. La difficulté de travailler avec de plus grandes quantités de substrat est que la grande quantité de sels de bores formés lors de l'acidification piège une partie du produit lors de la filtration en formant une masse solide. Il est donc préférable de faire plusieurs fois la réduction sur de petites quantités pour ensuite les réunir.

Nous avons ensuite voulu déterminer l'effet de la méthode utilisée pour le suivi du pH sur le rendement de la réaction pour faciliter les manipulations. Les entrées 8 à 13 sont aussi en ordre croissant selon la quantité de substrat utilisée, mais le suivi du pH a été fait avec un pH-mètre. Il est possible de déterminer l'effet de la méthode utilisée pour le suivi du pH sur cette réaction en comparant l'entrée 2 à l'entrée 8 et l'entrée 6 aux entrées 11, 12 et 13. Les entrées 2 et 8 correspondent à une petite quantité de substrat (environ 5 mmol). Le suivi du pH par papier pH (entrée 2) permet d'obtenir la lactame éthoxylée <u>119</u> avec un rendement de 48% alors que le suivi par pH-mètre (entrée 8) permet d'avoir un rendement de 66%. Les entrées 6, 11, 12 et 13 correspondent à une plus grande quantité de substrat (environ 30 mmol). Le suivi du pH par papier pH (entrée 6) permet d'obtenir la lactame éthoxylée <u>119</u> avec un rendement de 41% alors que le suivi par pH-mètre (entrées 11, 12 et 13) permet d'avoir un rendement de jusqu'à 75% (entrée 12). Ce n'est

pas le suivi du pH durant la réduction qui pose problème, mais bien lors de l'acidification. Le pH-mètre permet de connaitre le pH de la solution en temps réel alors que le papier pH ne donne qu'une indication ponctuelle. Il est difficile avec le papier pH de ne pas trop acidifier, ce qui détruit le produit. Il est donc préférable de faire le suivi du pH avec un pH-mètre.

Entrée	Quantité de succinimide utilisée (mmol)	Méthode utilisée pour le suivi du pH	Rendement
1	2,1	Papier pH	58%
2	5,1	Papier pH	48%
3	7,6	Papier pH	76%
4	7,6	Papier pH	67%
5	7,7	Papier pH	80%
6	27	Papier pH	41%
7	61	Papier pH	17%
8	5,2	pH-mètre	66%
9	20	pH-mètre	46%
10	20	pH-mètre	65%
11	30	pH-mètre	43%
12	30	pH-mètre	75%
13	31	pH-mètre	59%

Tableau 3.1				
Synthèse de la lactame éthoxylée 119 par réduction				
du succinimide (120) avec NaBH ₄ .				

L'attaque nucléophile de l'allénylstannane <u>124</u> sur la lactame éthoxylée <u>119</u> en présence de trifluorure de bore (BF₃) permet d'obtenir la lactame propargylée <u>118</u> (Schéma 3.3) dans les conditions de Karstens [65]. Nous avons utilisé le même substrat et le même stannane que le groupe de Karstens. Les conditions de réaction sont simples et ne nécessitent pas de précautions particulières (p. ex. travailler en milieu anhydre). La réaction comporte deux étapes : la formation de l'intermédiaire N-acyliminium et l'attaque nucléophile. En présence d'un acide de Lewis, la portion éthoxy de la lactame éthoxylée <u>119</u> devient un excellent groupement partant. L'azote va donc fournir ses électrons pour former une liaison double et expulser la portion éthoxy liée à l'acide de Lewis ce qui génère un intermédiaire N-acyliminium (Figure 3.2). Cet intermédiaire est un très bon électrophile sur lequel l'allénylstannane <u>124</u> peut attaquer pour former un mélange racémique de la lactame propargylée **118**.

Schéma 3.3 Attaque nucléophile l'allényltributylstannane (<u>124</u>) sur la lactame éthoxylée <u>119</u> pour obtenir la lactame propargylée <u>118</u>.

Figure 3.2 Structure de l'intermédiaire N-acyliminium généré à partir de la lactame éthoxylée <u>119</u> en présence d'un acide de Lewis.

L'allényltributylstannane (<u>124</u>) utilisé lors de cette réaction comporte deux positions nucléophiles, la 1 et la 3 (Figure 3.3). L'attaque nucléophile à partir de la position 3 sur la lactame éthoxylée <u>119</u> permet d'obtenir la lactame propargylée <u>118</u>. L'attaque nucléophile à partir de la position 1 sur ce même substrat génère l'allène <u>125</u>. L'attaque de la position 1 est défavorisée à cause de l'encombrement stérique autour de l'étain (i.e. trois groupements butyle).

Figure 3.3 Positions nucléophiles de l'allényltributylstannane (<u>124</u>) et structure de l'allène <u>125</u>.

Nous avons utilisé les conditions de Karstens lors de l'entrée 1, ce qui constitue notre essai de référence (Tableau 3.2). Le suivi de la réaction par chromatographie en phase gazeuse couplée à un spectromètre de masse (CPG-SM) permet de voir l'apparition d'un composé de même masse que la lactame propargylée <u>118</u> attendue ainsi que plusieurs produits non identifiés. Nous avons arrêté la réaction en ajoutant une solution de fluorure de potassium (KF) pour faire précipiter les dérivés stannés sous forme d'un solide visqueux blanc très peu soluble dans l'eau ou dans le solvant d'extraction. L'extraction ne nous a cependant pas permis de récupérer la lactame propargylée <u>118</u>. Nous avons émis l'hypothèse que la quantité de substrat était trop faible, générant peu de produit, ce qui rend difficile sa détection. Nous avons donc répété l'expérience avec une plus grande quantité de substrat et avec 4 équivalents de nucléophile (par rapport à 1,2

équivalents lors de l'entrée 1). Nous avons observé l'apparition des mêmes composés lors de notre suivi par CPG-SM. Malgré ces changements, le résultat est le même que lors de l'entrée 1.

Tableau 3.2 Synthèse de la lactame propargylée <u>118</u> par attaque nucléophile de l'allényltributyistannane (<u>124</u>) sur la lactame éthoxylée <u>119</u>.

Entrée	Ordre d'ajout des réactifs	Méthode d'extraction et de purification	Rendement
1	BF₃ puis stannane <u>124</u>	Précipitation de l'étain avec du KF et extraction	0,%
2	BF₃ puis stannane <u>124</u>	Précipitation de l'étain avec du KF et extraction	0%
3	Stannane <u>124</u> puis BF ₃	Extraction sans précipitation avec KF, colonne avec 10% K ₂ CO ₃ et cristallisation	Traces
4	Stannane <u>124</u> puis BF ₃	Extraction sans précipitation avec KF, cristallisation et colonne avec 10% K ₂ CO ₃	36%

Nous avons émis deux hypothèses. D'abord, l'ordre d'ajout des réactifs pourrait changer la proportion de produits secondaires. L'ajout de BF₃ forme l'intermédiaire N-acyliminium qui peut alors être attaqué par un des différents nucléophiles présents (p. ex. la lactame éthoxylée <u>119</u> ou un N-acyliminium déprotoné) avant que l'allényltributylstannane (<u>124</u>) ne puisse attaquer. Ensuite, la méthode utilisée pour l'extraction-purification est critique pour réussir à obtenir un produit final exempt de résidus stannés. Le solide

visqueux blanc très peu soluble obtenu suite à l'ajout de KF pourrait trapper différents composés organiques, dont la lactame propargylée <u>118</u>. Nous avons donc tenté d'extraire la réaction sans faire précipiter l'étain.

Nous avons donc ajouté les 4 équivalents de l'allényltributylstannane (<u>124</u>) avant le BF₃ (entrée 3) Nous n'avons pas utilisé de KF pour précipiter les dérivés stannés. Nous avons parachevé la réaction avec de l'eau et nous avons extrait directement ce qui nous a permis d'obtenir un mélange brut de notre produit (i.e. la lactame propargylée <u>118</u>) avec beaucoup de dérivés stannés. Nous avons utilisé la méthode mise au point par Harrowven [66] pour la purification de composés stannés. Il s'agit de faire une colonne chromatographique avec 10% massique de carbonate de potassium anhydre (K₂CO₃) dans le gel de silice. Avec cette méthode de purification, nous avons réussi à obtenir notre produit, mais il était encore contaminé avec un peu de composés stannés. Nous l'avons donc cristallisé pour obtenir des traces de la lactame propargylée <u>118</u>.

Nous avons émis l'hypothèse que la quantité de dérivés stannés déposée sur la colonne était trop grande. Le résultat de l'entrée 3 est encourageant, car il nous confirme que la réaction fonctionne. Nous avons répété les mêmes étapes qu'à l'entrée 3 : ajout de l'allényltributylstannane (<u>124</u>), puis du BF₃, parachèvement avec de l'eau et extraction sans utiliser de KF (entrée 4). Lors de la purification, nous avons inversé la cristallisation et la colonne pour retirer le maximum d'impuretés avant la colonne et faciliter la séparation. La tentative de cristallisation nous a permis d'obtenir une huile orangée contenant la lactame propargylée <u>118</u> et un peu de dérivés stannés. Cette huile a été purifiée avec une colonne chromatographique sur gel de silice contenant 10% massique de K₂CO₃ anhydre. Nous avons obtenu la lactame propargylée <u>118</u> pure avec un rendement de 36%. Nous avons confirmé que

la méthode utilisée pour l'extraction-purification est critique pour obtenir un produit final exempt de résidus stannés. Les manipulations requises pour obtenir la lactame propargylée <u>118</u> à partir de cette réaction rendent cependant impossible son application à de grandes quantités.

La synthèse de la lactame propargylée <u>118</u> par attaque nucléophile de l'allényltributylstannane (<u>124</u>) sur la lactame éthoxylée <u>119</u> se fait dans des conditions de réaction simples et ne génère pas l'allène <u>125</u>. Par contre, l'extraction et la purification rendent très difficile son application à de grandes quantités de substrat. L'utilisation de plusieurs équivalents d'allényltributylstannane (<u>124</u>) engendre aussi un très mauvais rendement atomique (i.e. beaucoup d'atomes utilisés qui ne se retrouvent pas dans le produit final). L'utilisation d'un magnésien comme nucléophile alternatif pour cette réaction permettrait de pallier à ces inconvénients.

L'attaque nucléophile du bromure de propargylmagnésium (<u>126</u>) sur la lactame éthoxylée <u>119</u> en présence de trifluorure de bore (BF₃) permet d'obtenir la lactame propargylée <u>118</u> (Schéma 3.4). La réaction comporte les deux mêmes étapes que la réaction précédente : la formation de l'intermédiaire N-acyliminium et l'attaque nucléophile. Les conditions de réactions son basées sur les travaux de Lin [67] pour la préparation du magnésien <u>126</u> et sur les conditions de O'Brien [68] pour l'attaque nucléophile. Nous avons préparé le même magnésien que le groupe de Lin (i.e. le magnésien <u>126</u>), mais nous l'avons utilisé sur un précurseur de N-acyliminium différent de celui utilisé par O'Brien.

Schéma 3.4 Attaque nucléophile du bromure de propargylmagnésium (<u>126</u>) sur la lactame éthoxylée <u>119</u> pour obtenir la lactame propargylée <u>118</u>.

Le bromure de propargylmagnésium (<u>126</u>) utilisé lors de cette réaction comporte deux positions nucléophiles, la 1 et la 3 (Figure 3.4). L'attaque nucléophile à partir de la position 1 sur la lactame éthoxylée <u>119</u> permet d'obtenir la lactame propargylée <u>118</u>. L'attaque nucléophile à partir de la position 3 sur ce même substrat génère l'allène <u>125</u>. L'attaque de la position 1 est favorisée, car c'est la position liée directement au métal (i.e. le magnésium), ce qui la rend plus anionique, donc plus nucléophile.

Figure 3.4 Positions nucléophiles du bromure de propargylmagnésium (<u>126</u>) et structure de l'allène <u>125</u>.

Nous avons préparé le magnésien <u>126</u> selon les conditions de Lin. Nous avons utilisé les conditions d'O'Brien lors de l'entrée 1, ce qui constitue notre essai de référence (Tableau 3.3). Nous avons obtenu un rendement de 28% de lactame propargylée <u>118</u>, mais nous avons aussi obtenu 3% d'allène <u>125</u> pour un ratio de 9:1 en faveur du produit attendu. La différence majeure entre le stannane et le magnésien est la formation d'allène. Les différents essais que nous avons effectués sont consignés selon le rendement de lactame

propargylée <u>118</u> obtenu, selon le rendement d'allène <u>125</u> obtenu et selon le ratio entre les deux (Tableau 3.3).

Les entrées 4, 6 et 7 nous ont donné un rendement nul. La préparation du magnésien peut être en cause, car c'est l'étape critique de cette réaction. Si le magnésien n'est pas correctement préparé et que la lactame éthoxylée <u>119</u> est mise en présence de BF_3 , elle sera détruite sans générer la lactame propargylée <u>118</u>. Le faible rendement de l'entrée 2 ne nous a pas permis de retrouver l'allène <u>125</u> après la purification. Nous n'avons donc pas de ratio pour cette entrée.

Nous avons d'abord voulu déterminer l'effet de la quantité de substrat sur le rendement de la réaction pour évaluer son application à de grandes quantités. Les entrées 1 à 6 sont en ordre croissant selon la quantité de substrat utilisée et elles ont été effectuées à -30 °C. Il est cependant impossible de déterminer l'effet de la quantité de substrat sur cette réaction. Les rendements sont très variables, même lorsque les conditions sont exactement les mêmes. Par exemple, le résultat de l'entrée 3 (0,94 mmol et 15% de rendement) est très différent du résultat de l'entrée 4 (1,0 mmol et 0% de rendement).

Nous avons ensuite voulu déterminer l'effet d'une baisse de la température de réaction sur le rendement. Nous avons émis l'hypothèse qu'une telle variation pourrait diminuer la proportion de réactions indésirables (p. ex. formation de l'allène <u>125</u>). Il est possible de comparer l'entrée 5 (-30 °C) et l'entrée 8 (-78 °C). L'entrée 5 permet d'obtenir la lactame propargylée <u>118</u> avec un rendement de 16% et un ratio de 2:1 (alcyne : allène) alors que l'entrée 8 permet d'obtenir un rendement de 17% et un ratio de 6:1. Il n'y a pas d'effet important de la quantité de substrat sur le rendement de la

réaction, mais il y en a un sur le ratio d'allène <u>125</u> formé. Les essais effectués à -78 °C (entrées 9 et 10) ont des rendements comparables à ceux effectués à -30 °C, mais les ratios sont plus intéressant à -78 °C. Il est donc préférable d'effectuer la réaction à -78 °C pour minimiser la quantité d'allène <u>125</u> formée.

Entrée	Température (°C)	Quantité du substrat <u>119</u> utilisée (mmol)	Rendement pour le produit <u>118</u>	Rendement pour l'allène <u>125</u>	Ratio <u>118</u> : <u>125</u>
1	-30	0,57	28%	3%	9:1
2	-30	0,64	6%	Pas isolé	-
3	-30	0,94	15%	7%	2:1
4	-30	1,0	0%	0%	-
5	-30	11	16%	7%	2:1
6	-30	13	0%	0%	-
7	-78	9,3	0%	0%	-
8	-78	12	17%	3%	6:1
9	-78	18	19%	1%	19 : 1
10	-78	23	11%	4%	3:1

Tableau 3.3Synthèse de la lactame propargylée 118 par attaque nucléophile du bromure
de propargylmagnésium (126) sur la lactame éthoxylée 119.

L'identification et la distinction entre la lactame propargylée <u>118</u> et l'allène <u>125</u> ont été effectuées grâce à la résonance magnétique (RMN) nucléaire du proton. La lactame propargylée <u>118</u> possède deux signaux caractéristiques (Figure 3.5). Le proton sur le carbone tertiaire chiral en alpha de l'azote (H_A) produit un multiplet de 3,80 à 3,86 ppm. Le proton alcynique terminal (H_B) génère un triplet fin à 2,02 ppm. Cette multiplicité provient du couplage à longue distance avec le CH₂ du groupement propargyle (J = 2,7Hz).

L'allène <u>125</u>, pour sa part, possède trois signaux caractéristiques (Figure 3.6). Le proton sur le carbone tertiaire chiral en alpha de l'azote (H_A) produit un multiplet de 4,18 à 4,26 ppm. Les protons alléniques terminaux (H_B) génèrent un doublet de doublet à 4,89 ppm. Cette multiplicité provient de leur couplage avec le proton H_C (J = 6,6Hz) et avec le proton H_A (J = 2,0Hz). Le proton allénique non terminal (H_C) produit un quadruplet à 5,17 ppm. Cette multiplicité provient de son couplage avec les protons H_B (J = 6,6Hz) et avec le proton H_A (J = 6,6Hz). Nous observons un quadruplet, car les constantes de couplage, bien que provenant d'hydrogènes différents, sont les mêmes.

Figure 3.6 Signaux caractéristiques de l'allène <u>125</u> en RMN ¹H.

3.1.2 Préparation de la lactame propargylée <u>118</u> à partir de l'acide pent-4-énoïque (<u>123</u>)

La préparation de la lactame propargylée <u>118</u> à partir du succinimide (<u>120</u>) s'effectue avec un rendement jusqu'à 29% sur deux étapes lorsque le stannane <u>124</u> est utilisé. Il est possible d'obtenir un rendement jusqu'à 22% sur deux étapes lorsque c'est le magnésien <u>126</u> qui est utilisé. Ces rendements faibles nous ont poussés à explorer une autre voie pour la synthèse de la lactame propargylée <u>118</u> à partir d'un substrat acyclique.

L'acide pent-4-énoïque (<u>123</u>) est transformé en chlorure d'acyle <u>129</u> par le chlorure d'oxalyle (<u>128</u>) en présence de N,N-diméthylformamide (DMF) (<u>127</u>) dans les conditions de Webb [69] (Schéma 3.5). Nous utilisons un acide carboxylique plus simple que celui utilisé par le groupe de Webb. Cette réaction comporte deux étapes : la formation du chlorure d'acyle <u>129</u> et l'attaque de l'ammoniac (NH₃). La formation du chlorure d'acyle <u>129</u> est catalysée par le DMF en présence de chlorure d'oxalyle (Schéma 3.6) [70].

Le DMF agit comme nucléophile via son carbonyle et attaque le chlorure d'oxalyle <u>128</u> pour former un premier intermédiaire iminium complexe et libérer un ion chlorure. L'ion chlorure attaque cet iminium complexe. L'intermédiaire chloré forme ensuite un iminium très simple pour libérer un autre ion chlorure et deux gaz (mono et dioxyde de carbone). La libération de ces gaz est la force motrice de la réaction. L'iminium simple peut alors réagir avec l'acide carboxylique <u>123</u> pour former un nouvel intermédiaire chloré. Encore une fois, la formation d'un iminium complexe éjecte un ion chlorure. Cet ion attaque le carbonyle de la portion ester pour former le chlorure d'acyle <u>129</u> et régénérer le DMF <u>127</u>. L'ammoniac peut alors attaquer le chlorure d'acyle <u>129</u> pour former l'amide insaturé <u>122</u> et libérer de l'acide chlorhydrique (HCl). L'ammoniac provient de l'hydroxyde d'ammonium (NH₄OH).

Le chlorure d'acyle <u>129</u> synthétisé à la première étape n'est pas isolé à cause de sa grande réactivité. Il est placé directement en réaction avec le NH₄OH pour former l'amide insaturé <u>122</u>. Les rendements présentés sont donc des rendements pour deux étapes.

Schéma 3.5 Amidation de l'acide pent-4-énoïque (<u>123</u>) via le chlorure d'acide <u>129</u> pour obtenir l'amide insaturé <u>122</u>.

 $R = CH_2CH_2CH=CH_2$

Schéma 3.6 Transformation de l'acide pent-4-énoïque (<u>123</u>) en chlorure d'acide <u>129</u> catalysée par le DMF (<u>127</u>).

Nous avons voulu déterminer l'effet de la quantité de substrat sur le rendement de la réaction pour évaluer son application à de grandes quantités. Les différents essais que nous avons effectués sont consignés selon la quantité de substrat utilisée (Tableau 3.4). Nous avons obtenu l'amide insaturé <u>122</u> avec des rendements de 39 à 71%. En comparant les entrées 1, 2 et 3, il est possible de constater que la quantité de substrat a un effet sur le rendement à partir de 100 mmol environ. Cet effet dépend probablement de la méthode de purification (i.e. la cristallisation). L'efficacité d'une cristallisation dépend de la quantité de produit utilisée. Une plus grande quantité de produit facilite la cristallisation et les pertes encourues aux diverses manipulations deviennent relativement plus petites (p.ex. pertes lors d'une filtration ou d'un transfert).

Entrée	Quantité de substrat (mmol)	Rendement
1	39	39%
2	78	39%
3	98	71%

Tableau 3.4Synthèse de l'amide insaturé 122à partir du chlorure d'acyle de l'acide pent-4-énoïgue (123).

Nous voulons transformer l'amide insaturé 122 en lactame iodométhylée 121 par iodolactamisation dans les conditions de Taguchi [71, 72] (Schéma 3.7). Le groupe de Taguchi a effectué l'iodolactamisation de différents amides protégés par un groupement carbonylé, car l'utilisation d'un groupement protecteur carbonylé permet une régiosélectivité entre le N-cyclisation et la O-cyclisation. Taguchi dénote que l'iodolactamisation d'amides non protégés ne fonctionne ou génère seulement le produit de la O-cyclisation (i.e. une lactone). Nous avons tout de même tenté l'iodolactamisation de l'amide insaturé 122 dans les conditions de Taguchi ce qui nous a permis d'obtenir la lactame iodométhylée 121 avec un rendement de 15%. Notre principal produit secondaire n'a pas été isolé, mais son signal au CPG-SM correspond à celui de la lactone iodométhylée 130 (Figure 3.7). Ce résultat est très intéressant par rapport aux conclusions de Taguchi, car il démontre la possibilité de former une lactame par iodolactamisation d'un amide non protégé. Nous pourrons comparer le rendement obtenu sans utiliser de groupement protecteur à celui obtenu avec la méthode qui requiert une protection.

Le rendement obtenu lors de l'iodolactamisation de l'amide insaturée <u>122</u> est très intéressant par rapport aux travaux de Taguchi, mais il reste tout de même faible (15%). Nous avons décidé d'ajouter un groupe protecteur sur l'amide <u>122</u> (i.e. le *tert*-butoxycarbonyle ou Boc) pour tenter d'augmenter le rendement de la réaction. La transformation de l'amide insaturé <u>122</u> en isocyanate par le chlorure d'oxalyle <u>128</u> dans le 1,2-dichloroéthane (DCE) permet ensuite l'attaque du *tert*-butanol pour former la lactame protégée <u>131</u> dans les conditions de Corey [73] ou de Singh [74] (Schéma 3.8).

Nous avons voulu déterminer l'effet de l'agent séchant sur le rendement de la réaction pour optimiser les conditions. Les deux essais que nous avons effectués sont consignés selon l'agent séchant utilisé (Tableau 3.5). L'entrée 1 correspond à notre essai de référence et nous a permis d'obtenir la lactame protégée <u>131</u> avec un rendement de 33%. Lors de cette essai, le séchage de la phase organique avec du sulfate de magnésium (MgSO₄) a généré un bloc solide compacte blanc alors que généralement, l'utilisation de MgSO₄ produit un solide blanc nuageux. Nous avons émis l'hypothèse que ce bloc pouvait contenir une partie de notre produit. Nous avons donc répété l'expérience en utilisant le sulfate de sodium (Na₂SO₄) comme agent séchant (entrée 2). Le Na₂SO₄ est un agent séchant qui ne forme pas ce genre de bloc lors du séchage. Cet essai nous a permis d'obtenir la lactame protégée <u>131</u> avec un rendement de 55%. Il est donc préférable d'utiliser le Na₂SO₄ comme agent séchant pour cette réaction.

Synthèse de la lactame	protégée <u>131</u> à	a partir de l'amide	insaturée <u>122</u> .

Tableau 3.5

Entrée	Agent séchant utilisé	Rendement
1	MgSO ₄	33%
2	Na ₂ SO ₄	55%

Une fois la lactame protégée <u>131</u> préparée, nous l'avons transformée en lactame protégée iodométhylée <u>130</u> par iodolactamisation dans les conditions de Taguchi [71, 72] (Schéma 3.9) tel que décrit précédemment. Cette fois-ci, l'amide de départ possède un groupement protecteur carbonylé, ce qui diminuera la formation de lactone en permettant au lithium de complexer les deux oxygènes de carbonyle.

Schéma 3.9 lodolactamisation de l'amide protégée <u>131</u> pour obtenir la lactame protégée iodométhylée <u>132</u>.

Nous avons voulu déterminer l'effet de la méthode de purification sur le rendement de la réaction pour optimiser les conditions. Les différents essais que nous avons effectués sont consignés selon le groupement sur l'azote et la méthode de purification utilisée (Tableau 3.6). L'entrée 1 correspond à l'essai de référence que nous avons effectué précédemment avec l'amide insaturé 122 (non protégé). L'entrée 2 correspond à l'iodolactamisation de l'amide protégé 131 et nous a permis d'obtenir la lactame protégée iodométhylée 132 avec un rendement de 58%. Ce rendement est légèrement inférieur à ceux obtenus par Taguchi, soit 62 à 88%. Nous avons émis l'hypothèse que la purification par colonne chromatographique entrainait une perte de produit. Nous avons donc tenté de cristalliser le produit plutôt que de le purifier sur colonne chromatographique pour 1) économiser du temps ; 2) simplifier la méthode et 3) diminuer les risques de déprotection par l'acidité de la silice (entrée 3). Cette modification nous a permis d'obtenir la lactame protégée iodométhylée 130 avec un rendement de 76% qui correspond à ceux obtenus par Taguchi. Il est donc préférable de purifier le produit de l'iodolactamisation par cristallisation pour un meilleur rendement.

Entrée	Groupement sur l'azote	Méthode de purification	Rendement
1	Н	Colonne chromatographique	15% ¹
2	-COOtBu (Boc)	Colonne chromatographique	58%
3	-COO <i>t</i> Bu (Boc)	Cristallisation	76%

Tableau 3.6Synthèse de la lactame protégée iodométhylée 130à partir de l'amide protégé 128.

¹ Rendement calculé selon la quantité de lactame iodométhylée <u>121</u> obtenue.

Nous voulons transformer la lactame protégée <u>132</u> en lactame protégée propargylée <u>133</u> en substituant l'iode du substrat par un groupement éthynyle (Schéma 3.10). Pour y arriver, il faut utiliser une triple liaison nucléophile (p. ex. possédant un carbanion) comme dans le cas de l'organomagnésien <u>134</u> ou du lithien <u>135</u> (Figure 3.8). Nous avons basé notre expérimentation sur la méthode de Chang [75]. Nous n'utilisons ni le même substrat, ni le même nucléophile que le groupe de Chang, mais nous utilisons le même groupement protecteur (i.e. Boc). Chang a travaillé avec une amine cyclique protégée (et non une lactame protégée) et son nucléophile permet l'ajout d'un groupement vinyle (et non éthynyle). Il substitue un iodure primaire par un groupement vinyle à partir du magnésien correspondant en présence d'iodure de cuivre (Cul). L'utilisation de Cul permet de diminuer la réactivité du nucléophile en transformant le magnésien en un cuprate. La formation d'un cuprate nécessite deux magnésiens par atome de cuivre. C'est pourquoi le Cul est toujours ajouté à 50% molaire par rapport au magnésien.

Schéma 3.10 Substitution de l'iode de la lactame protégée <u>132</u> pour obtenir la lactame protégée propargylée <u>133</u>.

Figure 3.8 Structure de l'organomagnésien <u>134</u> et du lithien <u>135</u>.

Les différents essais que nous avons effectués sont consignés selon la température de réaction, les conditions de réaction et le nombre d'équivalents de nucléophile utilisé (Tableau 3.7). L'entrée 1 est l'essai de référence effectué avec le nucléophile 133 dans le tétrahydrofuranne (THF) en présence de Cul. Il nous a permis d'observer un peu de produit de déprotection de la lactame protégée iodométhylée 130 (i.e. la lactame iodométhylée 121), mais pas de produit propargylé désiré. Nous avons donc fait une série d'essais (entrées 2 à 4) en augmentant le nombre d'équivalents de nucléophile (2 à 7 équivalents) mais en gardant la même température (i.e. 0°C) pour tenter de forcer la réaction. Lors de chacune de ces entrées, il y a eu destruction totale du substrat et apparition de beaucoup de produits non identifiés. Nous avons émis l'hypothèse que la température de réaction était trop élevée. Nous avons donc effectué des essais à -18 °C (entrées 5 et 6), mais nous n'avons observé aucune réaction. Nous avons tenté la réaction à -18 °C sans Cul (entrée 7) pour augmenter la réactivité du nucléophile. Cette modification a mené à la destruction du substrat, mais en générant moins de sous-produits qu'en présence de Cul. Nous avons tenté d'effectuer la réaction en remplaçant le THF par de l'éther diéthylique en absence de Cul (entrée 8) pour déterminer si le problème de la réaction vient du solvant. Nous avons observé une destruction totale du substrat. Encore une fois, nous avons émis l'hypothèse que la température de réaction était trop élevée. Nous avons fait un essai à -80 °C en présence de Cul (entrée 9), mais nous n'avons pas observé de réaction.

À ce moment, nous avons tenté la réaction avec un autre nucléophile, pour tester l'effet du nucléophile sur la réaction. Nous avons utilisé la méthode de Yadav [76] qui substitue un groupement OTs primaire par un groupement éthynyle avec le lithien <u>134</u>. Nous avons tenté d'effectuer la réaction à 0 °C avec le lithien <u>134</u> dans le diméthylsulfoxyde (DMSO) ce qui a détruit le substrat (entrées 10 et 11). Nous avons effectué la réaction avec le lithien <u>134</u> dans le THF, pour tester l'effet du solvant (entrée 12). Ces conditions ont aussi détruit le substrat. Nous croyons que le substrat est trop sensible aux attaques nucléophiles pour être mis dans ces conditions. Le carbonyle du groupement protecteur est un bon électrophile pour le magnésien <u>133</u> ou le lithien <u>134</u> ce qui peut générer plusieurs produits secondaires. Pour confirmer ou infirmer notre hypothèse, nous avons décidé de déprotéger la lactame protégée iodométhylée <u>132</u> avant de faire la substitution nucléophile de l'iodure.

Tableau 3.7Synthèse de la lactame protégée propargylée 133 à partir de la lactame
protégée iodométhylée 132.

Entrées	Température (°C)	Conditions ¹	Équivalents de nucléophile	Résultat
1	0	<u>134</u> , Cul, THF	1,0	Déprotection $\frac{2}{2}$
2	0	134, Cul, THF	2,0	Destruction $\frac{3}{2}$
3	0	134, Cul, THF	3,0	Destruction ³
4	0	<u>134</u> , Cul, THF	7,0	Destruction ³
5	-18	134, Cul, THF	2,0	Pas de réaction ⁴
6	-18	<u>134</u> , Cul, THF	3,0	Pas de réaction ⁴
7	-18	<u>134</u> , THF	3,0	Destruction ⁵
8	-18	<u>134</u> , Et ₂ O	3,0	Destruction ⁵
9	-80	<u>134</u> , Cul, THF	2,0	Pas de réaction $\frac{4}{2}$
10	0	<u>135</u> , DMSO	1,1	Destruction ³
11	0 <	135, DMSO	1,5	Destruction ³
12	0	<u>135</u> , THF	1,5	Destruction ³

¹ La quantité de Cul ajoutée correspond à la moitié de la quantité de nucléophile.

² Récupération du produit de départ et de la lactame iodométhylée <u>121</u>.

³ Plusieurs produits non identifiés sont obtenus.

⁴ Récupération du produit de départ.

⁵ Peu de produits non identifiés sont obtenus.

La déprotection du groupement Boc de la lactame protégée iodométhylée <u>132</u> par l'acide trifluoroacétique (CF₃COOH) permet d'obtenir la lactame iodométhylée <u>121</u> (voir schéma 47) dans les conditions de Dias [77] et Singh [74]. La force motrice de la déprotection en milieu acide est la libération de deux gaz : le dioxyde de carbone (CO₂) et le 2-méthylpropène.

Schéma 3.11 Déprotection de la lactame protégée iodométhylée <u>132</u> pour obtenir la lactame iodométhylée <u>121</u>.

Les différents essais que nous avons effectués sont consignés selon la quantité de substrat utilisée (Tableau 3.8). Nous avons obtenu la lactame iodométhylée <u>121</u> avec des rendements de 57 à 78%. En comparant les entrées 1, 2 et 3, il est possible de constater que la quantité de substrat a un léger effet sur le rendement de la réaction. Plus la quantité de substrat est grande, meilleur est le rendement. Il est donc préférable de faire cette réaction sur une grande quantité de substrat.

Tableau 3.8Déprotection de la lactame protégée iodométhylée 132pour obtenir la lactame iodométhylée 121.

Entrée	Quantité de substrat (mmol)	Rendement
1	0,35	57%
2	0,62	65%
3	1,2	78%

Nous voulons transformer la lactame iodométhylée <u>121</u> en lactame propargylée <u>118</u> en substituant l'iode par un groupement éthynyle (voir schéma 48). Nous avons décidé d'utiliser les conditions de Kamimura [78]. Kamimura substitue l'iode de la lactame iodométhylée <u>121</u> (énantiopure) par un groupement vinyle à partir du magnésien correspondant en présence de Cul avec 64% de rendement.

Schéma 3.12 Substitution de l'iode de la lactame iodométhylée <u>121</u> pour obtenir la lactame propargylée <u>118</u>.

Les différents essais que nous avons effectués sont consignés selon la température de réaction, le nucléophile utilisé et le nombre d'équivalents de Cul utilisé (Tableau 3.9). L'entrée 1 est l'essai de référence effectué avec le nucléophile <u>133</u> en présence de Cul dans les conditions de Kamimura. Nous n'avons pas observé de réaction. Nous avons donc fait un essai en augmentant le nombre d'équivalents de nucléophile pour favoriser la réaction (entrée 2). Nous n'avons toujours pas eu de réaction. Nous avons tenté de répéter l'expérience en chauffant pour forcer la réaction. Cette modification a engendré la destruction du substrat. Nous avons effectué un essai en utilisant le lithien <u>134</u> (entrée 4) sans Cul pour utiliser un système nucléophile plus réactif, mais nous n'avons pas observé de réaction. Nous croyons que l'acidité du proton du groupement alcyne pourrait nuire à la réaction. La déprotonation à cette position permettrait des réactions secondaires indésirables. Nous envisageons d'utiliser un nucléophile dont le proton alcynique est protégé. Par contre, nous n'avons pas investigué plus loin dans

cette voie par manque de temps et malgré les rendements faibles, nous avons tout de même obtenu la lactame propargylée <u>118</u> précédemment.

Entrée	Température (°C)	Nucléophile	Équivalents de Cul	Résultat
1	0.	<u>133</u> (3 éq.)	1,5	Pas de réaction ¹
2	0	<u>133</u> (5 éq.)	2,5	Pas de réaction ¹
3	55	<u>133</u> (5 éq.)	2,5	Destruction $\frac{2}{2}$
4	0	<u>134</u> (3 éq.)	0	Pas de réaction ¹

Tableau 3.9Synthèse de la lactame propargylée 118 à partir de
la lactame iodométhylée 121.

¹ Récupération du produit de départ.

² Peu de produits non identifiés sont obtenus.

3.1.3 Préparation du diiodure vinylique <u>51</u> à partir de la lactame propargylée <u>118</u>

Pour obtenir un précurseur sur lequel il est possible d'utiliser l'outil de synthèse, il faut procéder à la diiodation de la lactame propargylée <u>118</u>. La diiodation de la lactame propargylée <u>118</u> permet d'obtenir le diiodure vinylique <u>51</u> (Schéma 3.13) dans les conditions de Jiang [46]. La réaction comporte deux étapes : la formation de l'intermédiaire iodonium (voir figure 23) et l'attaque nucléophile de l'iodure. L'intermédiaire iodonium est formé suite à l'attaque nucléophile du groupement alcyne sur le diiode. L'espèce formée est très électrophile. Elle subit une attaque d'un iodure de façon à générer le diiodure vinylique <u>51</u> *trans* exclusivement. Dans ces conditions, il est possible de former une liaison N-l par attaque nucléophile de

l'azote de la lactame sur le diiode. Lors du parachèvement de la réaction, un lavage avec une solution aqueuse de bisulfite de sodium (Na₂SO₃) permet de réduire les liaisons N-l formées.

Schéma 3.13 Diiodation de la lactame propargylée <u>118</u> pour obtenir le diiodure vinylique <u>51</u>.

Figure 3.9 Structure de l'intermédiaire iodonium généré à partir de la lactame propargylée <u>118</u> en présence de diiode.

Les différents essais que nous avons effectués sont consignés selon la quantité de substrat utilisée (Tableau 3.10). Nous avons obtenu le diiodure vinylique <u>51</u> avec des rendements de 65% à 80%. Cette variabilité dépend de la quantité de lactame propargylée <u>118</u> utilisée. Il est possible de déterminer l'effet de la quantité de substrat sur cette réaction en comparant les entrées 1 à 4 (moins d'une mmol) aux entrées 5 à 7 (plus d'une mmol). Ce sont les entrées effectuées sur de plus grandes quantités de substrat qui donnent les meilleurs rendements. Il est donc préférable d'effectuer cette réaction sur de plus grandes quantités de substrat.

Entrée	Quantité de substrat (mmol)	Rendement
1	0,16	65%
2	0,77	67%
3	0,81	64%
4	0,82	66%
5	1,0	80%
6	1,2	70%
7	1,4	79%

 Tableau 3.10

 Synthèse du diiodure vinylique 51 à partir de la lactame propargylée 118.

Avant de se lancer dans l'étude des couplages catalysés au cuivre, nous avons pensé préparer un composé analogue au diiodure vinylique <u>51</u>, le dibromure vinylique <u>136</u>. Avec cet analogue, il nous est possible de tester l'effet de l'halogénure sur les couplages catalysés au cuivre. La dibromation de la lactame propargylée <u>118</u> permet d'obtenir le dibromure vinylique <u>136</u> avec un rendement de 83% (Schéma 3.14) dans des conditions analogues à celles de Jiang [46] (i.e. Br₂ vs l₂ et NaBr vs Nal). La réaction comporte les deux mêmes étapes que la diiodation et requiert la formation d'un intermédiaire bromonium.

Schéma 3.14 Dibromation de la lactame propargylée <u>118</u> pour obtenir le dibromure vinylique <u>136</u>, un analogue du diiodure vinylique <u>51</u>.

La préparation de la lactame iodométhylée <u>121</u> à partir de l'acide pent-4-énoïque (<u>123</u>) permet d'obtenir 11% de rendement sur 2 étapes lorsqu'aucune protection n'est utilisée, mais permet d'obtenir jusqu'à 23% de rendement sur 4 étapes lorsqu'une protection (i.e. le Boc) est utilisée. La préparation du diiodure vinylique <u>51</u> à partir du succinimide (<u>120</u>) permet d'obtenir jusqu'à 23% de rendement sur 3 étapes et la préparation du dibromure vinylique <u>136</u> permet d'obtenir jusqu'à 24% de rendement sur 3 étapes à partir du même substrat.

3.1.4 Approche envisagée pour la synthèse optiquement pure de la (-)-xénovénine

Pour la synthèse optiquement pure de la (-)-xénovénine, nous proposons d'utiliser l'acide (S)-pyroglutamique (<u>137</u>) comme substrat chiral (Schéma 3.15). C'est de ce centre chiral que dépendront les autres centres chiraux créés. Nous proposons donc de réduire le groupement acide carboxylique en alcool primaire pour former la lactame hydroxyméthylée <u>138</u>. La substitution de l'alcool primaire par un groupement iodure permettrait de former un seul énantiomère de la lactame iodométhylée <u>121</u>. Nous avons déjà démontré la stratégie racémique par laquelle la lactame iodométhylée <u>121</u> serait transformée en lactame propargylée <u>118</u> et ultimement en diiodure vinylique

89

<u>51</u>. Nous comptons appliquer cette méthode à la synthèse énantiopure du diiodure vinylique <u>51</u>. Par contre, la méthode devra être retravaillée puisqu'elle ne permet pas d'obtenir la lactame propargylée <u>118</u>.

Schéma 3.15 L'approche envisagée pour la synthèse optiquement pure de la (-)-xénovénine à partir de l'acide (S)-pyroglutamique (<u>132</u>).

L'utilisation des dihalogénures vinyliques <u>51</u> et <u>136</u> préparés dans cette section (pour l'application de l'outil de synthèse) sera discutée dans la section suivante.

3.2 lodovinylation intramoléculaire du diiodure vinylique <u>51</u> catalysée par le cuivre

Tel que décrit au chapitre 1, nous proposons d'utiliser l'outil de synthèse pour préparer la (-)-xénovénine à partir du diiodure vinylique <u>51</u> (voir chapitre 1, Schéma 1.12). L'outil de synthèse consiste en deux couplages catalysés au cuivre successifs suivis d'un réarrangement de Claisen. Nous voulons donc, dans un premier temps, transformer le diiodure vinylique <u>51</u> en β -iodoénamide <u>52</u> par une iodovinylation intramoléculaire catalysé par le cuivre(I) (Schéma 3.16).

Schéma 3.16 lodovinylation intramoléculaire catalysée par le cuivre(l) du diiodure vinylique <u>51</u> pour former le β-iodoénamide <u>52</u>.

L'iodovinylation intramoléculaire catalysée par le cuivre(I) est une réaction de cyclisation. À première vue, il semblerait que la prédiction du résultat de cette réaction puisse se faire avec les règles de Baldwin [70]. Ces règles sont des généralisations basées sur des observations expérimentales et des considérations stéréoélectroniques qui permettent de prédire le résultat de cyclisations par substitution nucléophile (i.e. S_N2). Par contre, dans notre cas, il ne s'agit pas d'une simple substitution nucléophile puisque le cuivre(I) est impliqué dans les états de transition de la réaction (voir chapitre 2, Schéma 2.3). Pour cette raison, nous pensons que, dans notre cas, les règles de Baldwin ne seront pas respectées.

Les conditions de réaction des couplages catalysés au cuivre ont été décrites au chapitre 2. On y rapportait l'importance de la température, du solvant, de la base et du ligand. Notre approche consiste à tester chacun de ces paramètres pour trouver les conditions optimales de réaction pour l'iodovinylation intramoléculaire du diiodure vinylique <u>51</u>. Les différentes conditions testées sont caractérisées selon le rendement obtenu et le temps de réaction. Nous nous sommes fixés un temps maximum de 24h pour cette réaction au-delà duquel le résultat n'est pas intéressant pour une éventuelle application à grande échelle.

91

Le premier essai que nous avons effectuée est notre essai de référence. Nous avons utilisé les conditions optimisées par Rahem [23] lors de la synthèse des β -iodoénamides <u>77</u> et <u>78</u> (voir chapitre 2, Schéma 2.8). La seule différence est que nous avons effectué la réaction avec une concentration de substrat de 0,06M alors que Rahem a utilisé une concentration de 0,8M. La concentration du substrat n'est pas aussi critique dans notre cas puisque notre réaction s'effectue de façon intramoléculaire. Cet essai nous a permis d'obtenir le β -iodoénamide <u>52</u> avec un très bon rendement de 81% après 2h de réaction. Il s'agit d'un des premiers exemples de ce genre de cyclisation. Il n'existe que très peu d'exemples de couplage catalysé au cuivre intramoléculaire entre une portion diiodure vinylique et une portion amide. Il est consigné comme l'entrée 1 de tous les tableaux de cette section et nous sert de référence.

Schéma 3.17 L'iodovinylation intramoléculaire du diiodure vinylique <u>51</u> pour former le β-iodoénamide <u>52</u> dans les conditions mises au point par Rahem.

Selon les règles de Baldwin, le produit attendu lors de l'iodovinylation intramoléculaire de <u>51</u> via une substitution nucléophile serait un cycle à quatre membres possédant un exo-méthylène. Expérimentalement, le seul produit de cyclisation observé est le composé <u>52</u>, soit un cycle à cinq membres contenant une double liaison. Ce résultat démontre bien que les règles de Baldwin ne s'appliquent pas à notre réaction de cyclisation, car il ne

92

s'agit pas d'une simple substitution nucléophile puisque le cuivre est impliqué dans les états de transition.

Malgré le très bon rendement obtenu avec l'entrée 1, nous avons tenté de l'augmenter en faisant varier les différents paramètres de la réaction. Le premier paramètre que nous avons fait varier lors de l'iodovinylation intramoléculaire du diiodure vinylique <u>51</u> est la température de réaction (Tableau 3.11). Nous avons effectué le couplage à température ambiante (25 °C) (entrée 2). L'intérêt de diminuer la température est de favoriser l'application à grande échelle en minimisant l'énergie nécessaire à la réaction. À température ambiante, nous avons obtenu un rendement de 54% avec 11% de récupération de substrat après 24h de réaction. Une baisse de la température de réaction s'accompagne d'une baisse de rendement et de la vitesse de réaction.

Tableau 3.11Étude de l'effet de la température sur l'iodovinylation intramoléculaire
du diiodure vinylique 51 1

Entrée	Température (°C)	Temps (heures)	Rendement	Récupération du substrat
1	55	2	81%	0%
2	25	24	54%	11%

¹ Toutes les réactions ont été effectuées sous atmosphère d'azote, en utilisant 16% molaire de Cul, 20% molaire de DMEDA (<u>79</u>) et 2 équivalents de Cs_2CO_3 avec une concentration de substrat de 0,06 mol/L dans le THF.

Le deuxième paramètre que nous avons fait varier lors de l'iodovinylation intramoléculaire du diiodure vinylique <u>51</u> est le solvant de réaction (Tableau 3.12). Nous avons effectué le couplage dans le dichlorométhane (DCM) à

reflux (entrée 2). L'intérêt de tester ce solvant est de pouvoir combiner la réaction de couplage à la diiodation qui le précède et qui s'effectue dans le DCM. Dans ce solvant, nous avons obtenu un rendement de 66% avec 9% de récupération de substrat après 8h de réaction. Ces conditions diminuent le rendement en plus d'augmenter le temps de réaction. Nous avons effectué le couplage dans le toluène (entrée 3). L'intérêt de tester ce solvant est de pouvoir avoir accès à des températures plus élevées avant d'atteindre l'ébullition et ainsi possiblement diminuer le temps de réaction. Dans ce solvant peu polaire, nous avons obtenu un rendement de 54% après 20h de réaction. Ces conditions diminuent aussi le rendement en plus d'augmenter grandement le temps de réaction. Tout comme pour Rahem [23], notre meilleur solvant est le THF.

Entrée	Solvant	Temps (heures)	Rendement	Récupération du substrat
1	THF	2	81%	0%
2	DCM ²	8	66%	9%
3	Toluène	20	54%	0%

Tableau 3.12Étude de l'effet du solvant sur l'iodovinylation intramoléculaire
du diiodure vinylique 51 1

¹ Toutes les réactions ont été effectuées sous atmosphère d'azote, en utilisant 16% molaire de CuI, 20% molaire de DMEDA (<u>79</u>) et 2 équivalents de Cs_2CO_3 avec une concentration de substrat de 0,06 mol/L.

² Réaction effectuée à reflux (40 °C).

Le troisième paramètre que nous avons fait varier lors de l'iodovinylation intramoléculaire du diiodure vinylique <u>51</u> est la base (Tableau 3.13). En ce qui concerne la base, ce qui est critique, c'est sa solubilité en milieu

organique. Les différentes bases testées correspondent à celles utilisées lors de différents couplages catalysés par le cuivre. Le carbonate de potassium (K_2CO_3) et le phosphate de potassium (K_3PO_4) sont des bases utilisées par Zhang [43] lors de ses couplages catalysés au cuivre pour la préparation de N-arylamines. Le K_3PO_4 est utilisé par Jiang [46] avec un équivalent d'eau lors de ses couplages catalysés au cuivre pour la préparation de carbapénèmes. Le *tert*-butoxyde de potassium (*t*BuOK) est la base utilisée par Venkataraman [79] et Nandurkar [80] lors de leurs couplages catalysés au cuivre pour la préparation de leurs couplages catalysés au cuivre pour la préparation de leurs couplages catalysés au cuivre pour la préparation de leurs couplages catalysés au cuivre pour la préparation de leurs couplages catalysés au cuivre pour la préparation de leurs couplages catalysés au cuivre pour la préparation de leurs couplages catalysés au cuivre pour la préparation de leurs couplages catalysés au cuivre pour la préparation de leurs couplages catalysés au cuivre pour la préparation de leurs couplages catalysés au cuivre pour la préparation de N-arylamines.

Nous avons effectué le couplage en remplaçant le Cs₂CO₃ par le K₂CO₃ (entrée 2). Nous avons obtenu un rendement de 37% après 20h de réaction. La comparaison de cette entrée avec l'essai de référence semble révéler que la solubilité (i.e. l'efficacité) du carbonate en tant que base dépend du contre ion utilisé (K⁺ ou Cs⁺). Le césium étant un atome beaucoup plus gros que le potassium, sa charge est répartie sur un plus grand volume atomique. Cette répartition diminue son caractère ionique et augmente sa solubilité en milieu organique. Nous avons ensuite effectué le couplage en présence de K₃PO₄ (entrée 3) et avons obtenu un rendement de 66% avec 20% de récupération de substrat après 24h de réaction. Nous avons aussi effectué le couplage en présence de K₃PO₄ avec un équivalent d'eau (entrée 4), selon les travaux de Jiang [46], et avons obtenu un rendement de 73% après 4h de réaction. Les entrées 3 et 4 démontrent que l'utilisation de K₃PO₄ en tant que base doit être accompagnée de l'ajout d'un équivalent d'eau pour être efficace (i.e. pour être soluble). Nous avons effectué le couplage en présence de tBuOK, une base forte plus organique que les autres (entrée 5), ce qui nous a permis d'obtenir un rendement de 40% après 24h de réaction. Le résultat démontre que l'utilisation d'une base forte comme le *t*BuOK ne permet pas d'obtenir un bon rendement.

Entrée	Base	Temps (heures)	Rendement	Récupération du substrat
1	Cs ₂ CO ₃	2	81%	0%
2	K ₂ CO ₃	20	37%	0%
3	K ₃ PO ₄	24	66%	20%
4	K₃PO₄ ²	4	73%	0%
5	<i>t</i> BuOK	24	40%	0%

Tableau 3.13Étude de l'effet de la base sur l'iodovinylation intramoléculaire
du diiodure vinylique 51 1

¹ Toutes les réactions ont été effectuées sous atmosphère d'azote, à 55 °C, en utilisant 16% molaire de Cul, 20% molaire de DMEDA (<u>79</u>) et 2 équivalents de base avec une concentration de substrat de 0,06 mol/L dans le THF.

² Ajout d'un équivalent d'eau.

Le quatrième paramètre que nous avons fait varier lors de l'iodovinylation intramoléculaire du diiodure vinylique <u>51</u> est le ligand. Les différents ligands que nous avons testés sont présentés à la Figure 3.10. Tel que décrit au chapitre 2, le ligand possède le double rôle de rendre le cuivre soluble en milieu organique et de le rendre réactif en formant un complexe généralement coloré. Les résultats obtenus avec différents ligands sont présentés selon le rendement et le temps de réaction (comme les autres paramètres testés), mais aussi selon la couleur du complexe formé. De cette façon, il est possible de faire le lien entre les observations expérimentales et la théorie sur les ligands décrite au chapitre précédent.

Dans la littérature, les ligands les plus utilisés pour les couplages catalysés au cuivre entre un halogénure vinylique (ou aromatique) et un dérivé azoté sont les ligands N,N-bidentés. La N,N'-diméthyléthylènediamine (DMEDA) (79) est le ligand utilisé par Rahem [23] lors de son optimisation de la synthèse des β -iodoénamides. La trans-cyclohexane-1,2-diamine (70) est le ligand utilisé par Nageswar [44] lors de sa préparation de N-arylazoles. La 2,2'-bipyridine (74) est le ligand utilisé par Jiang [46] pour la synthèse de carbapénèmes. La 3,4,7,8-tétraméthyl-1,10-phénanthroline (94) est le ligand utilisé par Buchwald [81] pour la préparation de N-arylhydrazides. Quelques ligands N,O-bidentés sont également utilisés pour ce type de couplages. La 8-hydroxyquinoléine (139) est le ligand utilisé par Pu [82] pour la N-arylation d'un pyrazole. La N.N-diméthylglycine (69) est un acide aminé utilisé comme ligand par Pan [45] et Zhang [43] respectivement pour la N-vinylation et la N-arylation de dérivés aminés. D'autres ligands, moins communs, sont utilisés pour les couplages catalysés au cuivre. La 2,2,6,6-tétraméthylheptane-3,5-dione (TMHD) (83) est un ligand O,O-bidenté utilisé par Nandurkar [80] pour la synthèse de dérivés N-arylés. La triphénylphosphine (140) est un ligand P-monodenté généralement utilisé pour les couplages catalysés au palladium. Venkataraman [83] l'a utilisé (sous forme du complexe préformé CuPPh₃I) pour la N-arylation de dérivés aminés.

97

Figure 3.10 Structure des différents ligands testés lors de l'iodovinylation intramoléculaire du diiodure vinylique 51.

Les résultats suivants sont ceux obtenus avec différents ligands lors de l'iodovinylation intramoléculaire du diiodure vinylique <u>51</u> (Tableau 3.14). Nous avons effectué le couplage en absence de ligand pour en déterminer l'importance (entrée 2). Nous avons obtenu un rendement de 38% après 18h de réaction. Ce résultat démontre bien que le ligand est essentiel pour un couplage rapide et efficace. Dans ce cas, le solvant a pu servir de ligand. Nous avons aussi tenté la réaction en absence de cuivre et de ligand (entrée 3), ce qui nous a permis d'obtenir un rendement de 8% avec 63% de récupération de substrat après 24h de réaction: Cet essai permet de démontrer que le cuivre est nécessaire à la réaction pour qu'elle soit rapide et efficace. Ce résultat montre que la simple substitution nucléophile n'est pas impossible, mais aussi qu'elle n'entre pas en compétition avec notre couplage. Nous avons effectué le couplage en présence du ligand

98

N.N-bidenté 70 (entrée 4), ce qui nous a permis d'obtenir un rendement de 65% après 4h de réaction. La différence entre ce résultat et l'essai de référence est un peu surprenante, car la structure du ligand 70 est très semblable à celle du ligand 79. Il est possible que la rigidité du complexe formé, causée par la nature cyclique du ligand 70, ou l'encombrement stérique, nuise à la réaction. Nous avons effectué le couplage en présence du ligand N,N-bidenté 74 (entrée 5) et avons obtenu un rendement de 47% après 20h de réaction. Ce résultat n'est que légèrement supérieur à l'entrée 2 (i.e. sans ligand), ce qui montre que la 2,2'-bipyridine (74) est un mauvais ligand pour notre réaction. Nous avons effectué le couplage en présence du ligand N,N-bidenté 94 (entrée 6) et avons obtenu un rendement de 29% avec 33% de récupération de substrat après 24h de réaction. Ce résultat est inférieur à l'entrée 2 (i.e. sans ligand), ce qui montre que la 3,4,7,8-tétraméthyl-1,10-phénanthroline (94) est un très mauvais ligand pour notre réaction. Nous avons effectué le couplage en présence du ligand N,O-bidenté **139** (entrée 7), ce qui nous a permis d'obtenir un rendement de 62% après 24h de réaction. Ce résultat est comparable à l'entrée 4 (i.e. 62% versus 65%), mais le temps de réaction est beaucoup plus long (i.e. 24h versus 4h). Nous avons effectué le couplage en présence du ligand N,O-bidenté 69 (entrée 8) et avons obtenu un rendement de 53% avec 7% de récupération de substrat après 24h de réaction. Cet essai est aussi très long et ne va pas à complétion, ce qui fait de la N,N-diméthylglycine (69) un mauvais ligand pour notre réaction. Nous avons effectué le couplage en présence du ligand O,O-bidenté 83 (entrée 9), ce qui nous a permis d'obtenir un rendement de 26% après 24h de réaction. Ce résultat est inférieur à l'entrée 2 (i.e. sans ligand), ce qui montre que la TMHD (83) est un très mauvais ligand pour notre réaction. Nous avons effectué le couplage en présence du ligand P-monodenté 140 (entrée 10) et avons obtenu un rendement de 23% avec 8% de récupération de substrat après 24h de

réaction. Ce résultat est inférieur à l'entrée 2 (i.e. sans ligand), ce qui montre que la triphénylphosphine (<u>140</u>) est un très mauvais ligand pour notre réaction.

Entrée	Ligand	Couleur du milieu	Temps (heures)	Rendement	Récupération du substrat
1	<u>79</u>	Bleu-vert	2	81%	0%
2		Incolore ³	18	38%	0%
3	<u> </u>	Incolore ³	24	8%	63%
4	<u>70</u>	Bleu-vert	4	65%	0%
5	<u>74</u>	Incolore ³	20	47%	0%
6	<u>94</u>	Rouge-orange	24	29%	33%
7	<u>139</u>	Jaune-vert	24	62%	0%
8	<u>69</u>	Jaune	24	53%	7%
9	83	Incolore ³	24	26%	0%
10	140	Incolore ³	.24	23%	8%

Tableau 3.14Étude de l'effet du ligand sur l'iodovinylation intramoléculaire
du diiodure vinylique 51 1

¹ Toutes les réactions ont été effectuées sous atmosphère d'azote, à 55 °C, en utilisant 16% molaire de Cul, 20% molaire de ligand et 2 équivalents de Cs₂CO₃ avec une concentration de substrat de 0,06 mol/L dans le THF.

² Réaction effectuée en absence de cuivre.

³ La mention «incolore» correspond expérimentalement à une teinte légèrement jaune due à la solubilisation du substrat.

Dans le chapitre 2, la théorie des champs des ligands a permis d'expliquer la coloration des complexes générés par la mise en solution d'un métal de

transition et d'un ou plusieurs ligands. Cette théorie a aussi permis de créer une classification des ligands selon la force de leur champ (i.e. la série spectrochimique). Nous pouvons relier nos observations expérimentales à la théorie en analysant la couleur des complexes. La DMEDA (<u>79</u>) forme un complexe bleu-vert avec le cuivre, ce qui correspond à l'absorption du rougeorange (peu énergétique). Ce ligand induit donc une faible séparation des orbitales *d* du cuivre. La 3,4,7,8-tétraméthyl-1,10-phénanthroline (<u>94</u>) forme un complexe rouge-orange avec le cuivre, ce qui correspond à l'absorption du bleu-vert (très énergétique). Ce ligand induit donc une large séparation des orbitales *d* du cuivre. La triphénylphosphine (<u>140</u>) forme un complexe incolore avec le cuivre, ce qui peut correspondre à l'absorption dans l'ultraviolet (hautement énergétique). Ce ligand semble donc induire une très large séparation des orbitales *d* du cuivre.

Dans la classification théorique, la DMEDA (79) et la 3,4,7,8-tétraméthyl-1,10-phénanthroline (94) sont absents. Leurs équivalents non méthylés (i.e. l'éthylènediamine et la 1,10-phénanthroline) y sont cependant classés. Nous utiliserons donc les composés équivalents pour notre analyse. Selon la classification théorique, l'éthylènediamine engendre une séparation plus faible des orbitales d du cuivre que la 1,10-phénanthroline. Cette dernière induit une séparation des orbitales plus faible que la triphénylphosphine (140). Nos observations lors de l'iodovinylation intramoléculaire du diiodure vinylique 51 avec différents ligands correspondent à la théorie. Les rendements obtenus pour ces trois ligands semblent corrélés à leur force de champ. La DMEDA (79) est un ligand à champ faible et permet d'obtenir 81% de rendement. La 3,4,7,8-tétraméthyl-1,10-phénanthroline (94) est un ligand à champ fort et permet d'obtenir un rendement de 29%. La triphénylphosphine (140) est un ligand à champ très fort et permet d'obtenir un rendement de 23%. Il semble

donc que ce sont les ligands ayant un champ faible qui sont les plus efficaces pour l'iodovinylation intramoléculaire du diiodure vinylique <u>51</u>.

Il est possible d'arriver aux mêmes conclusions en observant simplement la couleur du complexe formé et en reliant cette couleur au rendement. Les meilleurs rendements (81% et 65%) sont obtenus avec un complexe bleu-vert (i.e. avec les ligands <u>79</u> et <u>70</u>). Les résultats suivants sont obtenus avec un complexe jaune-vert (i.e. 62% avec le ligand <u>139</u>) et un complexe jaune (i.e. 53% avec le ligand <u>69</u>). Les complexes incolores ou rouge-orange donnent des rendements du même ordre de grandeur ou inférieur à l'entrée sans ligand (i.e. 23 à 47% par rapport à 38%). Ce sont donc les complexes bleuvert qui sont les plus efficaces pour l'iodovinylation intramoléculaire du diiodure vinylique <u>51</u>.

Le cinquième paramètre que nous avons fait varier lors de cette réaction de couplage est la nature de l'halogénure vinylique. Nous avons donc comparé l'iodovinylation intramoléculaire du diiodure vinylique <u>51</u> et la bromovinylation intramoléculaire du dibromure vinylique <u>136</u> (Schéma 3.18).

Schéma 3.18 L'halogénovinylation intramoléculaire des dihalogénures vinyliques <u>51</u> et <u>136</u> pour obtenir les β-halogénoénamides correspondants.

L'intérêt de comparer l'halogénovinylation intramoléculaire en fonction de l'halogénure utilisé est de montrer la polyvalence de notre méthode. Tel que l'a illustré Zhang [43] avec ces nombreux essais de N-arylation de dérivés aminés catalysée par le cuivre, la réactivité des iodures et des bromures est différente. Nous avons donc fait varier la nature de l'halogénure vinylique lors de cette réaction de couplage (Tableau 3.15). Nous avons effectué le couplage avec le dihalogénure vinylique <u>136</u> pour obtenir un rendement de 57% après 6h de réaction (entrée 2). La comparaison de cette entrée avec l'essai de référence révèle que le bromure est moins réactif que l'iodure.

Tableau 3.15

Étude de l'effet de la nature de l'halogénure sur l'halogénovinylation intramoléculaire de deux dihalogénures vinyliques ¹

Entrée	Dihalogénure vinylique	Temps (heures)	Rendement
1	<u>51</u> (iode)	2	81
2	136 (brome)	6	57

¹ Toutes les réactions ont été effectuées sous atmosphère d'azote, à 55 °C, en utilisant 16% molaire de Cul, 20% molaire de DMEDA (<u>79</u>) et 2 équivalents de Cs₂CO₃ avec une concentration de substrat de 0,06 mol/L dans le THF.

Cette différence de réactivité entre l'iodure et le bromure lors de l'halogénovinylation intramoléculaire peut être exploitée pour générer une certaine sélectivité entre deux halogénures vinyliques différents. Nous avons testé cette hypothèse pour démontrer une fois de plus la polyvalence de notre méthode. Nous avons effectué l'hétéro-halogénation de la lactame propargylée <u>118</u> pour obtenir l'hétéro-dihalogénure vinylique <u>142</u>. Cette réaction peut être suivie d'une halogénovinylation intramoléculaire catalysée au cuivre pour obtenir les β -halogénoénamides <u>52</u> et <u>143</u> (Schéma 3.19). La

première étape est la bromo-iodation de la lactame propargylée <u>118</u>. Le mécanisme est le même que celui présenté précédemment pour la dibromation et la diiodation. Il y a formation d'un intermédiaire halogénium (i.e. bromonium dans le cas présent), puis attaque de l'halogénure (i.e. l'iodure).

Schéma 3.19 Approche utilisée pour obtenir les β-halogénoénamides <u>52</u> et <u>143</u> par halogénovinylation intramoléculaire catalysée au cuivre.

L'analyse RMN du brut de la réaction de dihalogénation montre la présence d'un produit largement majoritaire et de deux produits secondaires en très petite quantité (Figure 3.11). Nous avons émis l'hypothèse que les produits secondaires pourraient être i) le produit de la dibromation (<u>136</u>) ; ii) le produit de la diiodation (<u>51</u>) ; iii) le produit de l'hétéro-dihalogénation inverse à celui attendu (<u>144</u>) (Figure 3.11). Ces hypothèses viennent d'une autre hypothèse selon laquelle le Br₂ peut réagir avec un anion l⁻ pour former *in situ* le réactif l-Br et libérer un Br⁻. Le problème de cette réaction secondaire est que le réactif l-Br peut réagir de deux façons avec l'alcyne utilisé et que Br⁻ ou l⁻ peuvent attaquer par la suite. Nous nous attendons donc à un mélange de produits. La position la plus électrophile de l'intermédiaire halogénium est le carbone le plus substitué de la portion bromonium. La charge positive partielle sur ce carbone est plus développée, car elle est stabilisée par les substituants du carbone. L'iode est l'halogène que nous voulons à cette position dans le produit hétérohalogéné.

Figure 3.11 Structure de différentes dihalogénures vinyliques.

Pour confirmer ou infirmer nos hypothèses et identifier les dihalogénures formés, nous avons tenté d'assigner les signaux observés sur le spectre RMN proton du brut de réaction (Figure 3.12). Nous avons déjà préparé deux des composés hypothétiquement formés (i.e. le diiodure vinylique <u>51</u> et le dibromure vinylique <u>136</u>), ce qui nous aide grandement pour l'assignation des signaux, car le seul signal qui caractérise les trois produits du brut est leur proton alcénique terminal.

En RMN de proton, le diiodure vinylique <u>51</u> génère un singulet à 7,06 ppm et le dibromure vinylique <u>136</u> génère un singulet à 6,60 ppm. Les signaux observés dans le brut de la réaction d'hétéro-dihalogénation sont trois singulets à 7,02 ppm, 6,98 ppm et 6,84 ppm (Figure 3.12). Le signal à 6,84 ppm est le plus fort et semble correspondre au produit attendu (<u>142</u>). Le signal à 7,02 ppm peut très bien être le diiodure vinylique <u>51</u> (7,06 ppm). Le signal à 6,98 ppm peut être le composé hétérohalogéné inverse à celui attendu (<u>144</u>). Il n'y a pas de signal correspondant au dibromure vinylique <u>136</u>.

Figure 3.12 Signaux du brut de la réaction d'hétéro-halogénation de la lactame propargylée <u>118</u> en RMN ¹H.

Nous avons tenté de purifier le mélange, mais les trois dihalogénures vinyliques ont la même polarité (i.e. le même rapport frontal en CCM) et ne sont pas séparables par chromatographie sur gel de silice. Nous avons donc décidé d'utiliser le mélange pour l'halogénovinylation intramoléculaire, car il contient très majoritairement le dihalogénure vinylique <u>142</u>. Les conditions utilisées sont celles qui ont permis d'obtenir le meilleur rendement lors de l'iodovinylation intramoléculaire, soit les conditions mises au point par Rahem [23] (Tableau 3.16). Nous avons isolé 22% de β -halogénoénamide <u>52</u> et 12% du dihalogénure vinylique <u>136</u> à partir de la lactame propargylée <u>118</u> (entrée 2). Nous avons arrêté la réaction malgré la présence de dihalogénure, car le suivi par CCM semblait montrer que la réaction était terminée.

Tableau 3.16						
Étude de l'halogénovinylation intramoléculaire sur						
un dihalogénure vinylique hétérohalogéné ¹						

Entrée	Temps (heures)	Rendement de dihalogénation	Rendement de couplage	Rendement sur 2 réactions ²
1	2	80% (<u>51</u>)	81% (<u>52</u>)	65% (<u>52</u>)
2	2,5			22% (<u>52)</u> 12% (<u>136</u>) ³

¹ Toutes les réactions ont été effectuées sous atmosphère d'azote, à 55 °C, en utilisant 16% molaire de Cul, 20% molaire de <u>79</u> et 2 équivalents de Cs_2CO_3 avec une concentration de substrat de 0,06 mol/L dans le THF.

² Rendement calculé sur deux étapes à partir de la lactame propargylée 118.

³ Substrat dihalogéné récupéré après le couplage. Rendement calculé à partir de la lactame propargylée <u>118</u>.

L'halogénovinylation intramoléculaire sur un dihalogénure vinylique hétérohalogéné ne nous a pas permis d'obtenir le β -halogénoénamide <u>143</u>. Nous avons obtenu le β -halogénoénamide <u>52</u> qui provient du couplage catalysé au cuivre entre la portion amide et la portion bromure vinylique. Le dihalogénure vinylique <u>136</u> isolé est un produit secondaire de la dihalogénation qui n'a pas eu le temps de réagir. Pour forcer l'obtention du β -halogénoénamide <u>143</u> ou du moins pour atteindre 100% de transformation du substrat, il faudrait augmenter le temps de réaction ou augmenter le chauffage. Cette voie n'a cependant pas été explorée en profondeur, car elle diverge du projet initial. Le développement de ce couplage pourrait permettre la formation de cycles à quatre membres, ce qui est généralement difficile à cause de la tension de cycle créée. L'utilisation de ce type de composés bicycliques est très variée. Par exemple, une hydrolyse de l'amide du β -halogénoénamide <u>143</u> accompagnée de quelques transformations supplémentaires (i.e. réduction du lien C-I, ozonolyse ou métathèse) pourrait

permettre de préparer les squelettes azétidines <u>145</u> et <u>147</u> ou azétidinone <u>146</u> (Figure 3.13).

Figure 3.13 Structure des azétidines <u>145</u> et <u>147</u> et de l'azétidinone <u>146</u> potentiellement synthétisées à partir du β -halogénoénamide <u>143</u>.

La préparation du β -halogénoénamide <u>52</u> à partir du diiodure vinylique <u>51</u> permet d'obtenir jusqu'à 81% de rendement et la même réaction permet d'obtenir 57% de rendement avec le dibromure vinylique <u>136</u> pour former le β -halogénoénamide <u>141</u>.

L'utilisation du β-halogénoénamide <u>52</u> préparé dans cette section (pour la suite de l'application de l'outil de synthèse) sera discutée dans la section suivante.

 Allyloxylation intermoléculaire du β-iodoénamide <u>52</u> catalysée par le cuivre

Tel que décrit au chapitre 1, nous proposons d'utiliser l'outil de synthèse pour préparer la (-)-xénovénine à partir du diiodure vinylique <u>51</u> (voir chapitre 1, Schéma 1.12). L'outil de synthèse consiste à deux couplages catalysés au cuivre successifs suivis par un réarrangement de Claisen. À partir du diiodure vinylique <u>51</u>, il faut 8 étapes pour obtenir la (-)-xénovénine selon notre méthode. Nous avons montré, dans la section précédente, qu'il est possible de transformer le diiodure vinylique <u>51</u> en β -iodoénamide <u>52</u> par une

iodovinylation intramoléculaire catalysé par le cuivre(I) avec 81% de rendement. L'étape suivante est la transformation du β -iodoénamide <u>52</u> en β -allyloxyénamide <u>54</u> par une allyloxylation intermoléculaire catalysé par le cuivre(I) en présence d'alcool allylique (<u>53</u>) (Schéma 3.20).

Schéma 3.20 Les différents paramètres de l'allyloxylation intermoléculaire du βiodoénamide <u>52</u> pour former le β-allyloxyénamide <u>54</u>.

Les conditions de réaction des couplages catalysés au cuivre ont été décrites au chapitre 2. On y rapportait l'importance de la température, du solvant, de la base et du ligand. Notre approche consiste à tester chacun de ces paramètres pour trouver les conditions optimales de réaction pour l'allyloxylation intermoléculaire du β -iodoénamide <u>52</u> (Schéma 3.20). Les différentes conditions testées sont caractérisées selon le rendement obtenu et le temps de réaction.

Nous avons effectué notre premier essai dans nos meilleures conditions d'iodovinylation intramoléculaire catalysée au cuivre, soit celles optimisées par Rahem [23] (Tableau 3.17, entrée 1). L'intérêt de tester ces conditions est de vérifier la possibilité d'effectuer les deux réactions de couplage successives dans les mêmes conditions en ajoutant seulement l'alcool allylique <u>53</u> (i.e. «*one-pot*»). Cet essai ne nous a cependant pas permis d'obtenir le β -allyloxyénamide <u>54</u>. Nous avons ensuite testé la réaction dans les conditions optimisées par Rahem [23] pour l'allyloxylation intermoléculaire

de β -iodoénamides <u>77</u> (voir chapitre 2, Schéma 2.15) (entrée 2). Après 24h de réaction, cet essai ne nous a pas permis d'obtenir le β -allyloxyénamide <u>54</u>. Nous avons émis l'hypothèse que notre réaction est plus lente que celles de Rahem, car l'iodure que nous utilisons est plus substitué (Figure 3.14). Nous avons donc répété l'expérience en augmentant le temps de réaction (entrée 3), mais nous n'avons pas obtenu le β -allyloxyénamide <u>54</u>.

Entrée	Équivalents de DMEDA (<u>79</u>) en %M	Équivalents de Cs ₂ CO ₃	Équivalents d'alcool allylique <u>53</u>	Temps (heures)	Rendement
1	20%	2	1,1	24	0% ²
2	40%	3	2,8	24	0% ²
3	40%	3	2,4	99	0% ²

Étude de l'allyloxylation intermoléculaire du β-iodoénamide 52
dans nos conditions et celles de Rahem [23] 1

Tableau 3.17

¹ Toutes les réactions ont été effectuées sous atmosphère d'azote, à 55 °C, en utilisant 16% molaire de Cul, la DMEDA (<u>79</u>) comme ligand et l'alcool allylique <u>53</u> avec une concentration de substrat de 0,05 mol/L dans le THF.

² Dans tous les tableaux de cette section, à moins d'indications contraires, un rendement nul (0%) correspond à la récupération totale ou partielle du substrat.

Après nos premiers essais pour faire l'allyloxylation intermoléculaire du β-iodoénamide 52, nous avons émis l'hypothèse que la température de réaction était peut-être trop faible. Nous avons donc tenté la réaction à 110°C, mais nous avons dû le faire dans le toluène pour maintenir cette température sans risquer de perdre du solvant (Tableau 3.18, entrée 1). Après 48h de réaction, nous n'avons pas observé le β -allyloxyénamide 54. DMEDA (79) Nous avons décidé de remplacer la par la 3,4,7,8-tétraméthyl-1,10-phénanthroline (94) pour deux raisons : i) la DMEDA (79) ligand volatile (T_{éb} 121°C): est un ii) la 3,4,7,8-tétraméthyl-1,10-phénanthroline (94) est un ligand très peu volatil que Buchwald [55] utilise pour la préparation d'allylvinyléthers. Malgré ce changement, nous n'avons pas observé le β -allyloxyénamide 54 (entrée 2). L'analyse du brut de la réaction au CPG-SM montre qu'il y a des traces d'un produit inconnu. Ce produit pourrait être issu du remplacement de l'iode du β-iodoénamide 52 par un hydrogène. Nous avons émis l'hypothèse que l'alcool allylique ou un peu d'eau était la source d'hydrogène qui pouvait permettre cette réaction. Nous avons donc répété l'expérience en absence d'alcool (entrée 3). Évidement, le rendement de l'allyloxylation est nul puisqu'il n'y a pas d'alcool dans le milieu, mais nous avons encore observé des traces du produit potentiellement hydrogéné. Ce résultat semble signifier que c'est la 3,4,7,8-tétraméthyl-1,10-phénanthroline (94) qui cause cette réaction secondaire. Nous écartons donc ce ligand pour nos prochains tests.

Entrée	Ligand	Température (°C)	Temps (heures)	Rendement	
1	DMEDA (<u>79</u>)	110	48	0%	
2	Phen (<u>94</u>)	110	22	0%	
3	Phen (<u>94</u>)	130	24	0% ²	

Tableau 3.18Étude de l'allyloxylation intermoléculaire du β-iodoénamide 52 1

 1 Toutes les réactions ont été effectuées sous atmosphère d'azote, en utilisant 16% molaire de Cul, 40% molaire de ligand, 3 équivalents de Cs₂CO₃ et 2,5 équivalents d'alcool allylique comme réactif avec une concentration de substrat de 0,1 mol/L dans le toluène.

² Entrée 3 effectuée sans alcool.

Après nos essais pour faire l'allyloxylation intermoléculaire du β-iodoénamide 52 en présence de la 3,4,7,8-tétraméthyl-1,10-phénanthroline (94), nous avons émis l'hypothèse que l'alcool allylique n'était peut-être pas assez acide pour notre réaction. La faible acidité de l'alcool empêcherait la déprotonation, donc la formation de l'alcoolate nécessaire pour entrer dans le cycle catalytique (voir chapitre 2, Schéma 2.3). Nous avons donc tenté la réaction en remplaçant l'alcool allylique (pKa = 15,5) par le phénol (pKa = 10,0), même si le produit de cette réaction ne permet pas de faire un réarrangement de Claisen (Tableau 3.19, entrée 1). Cet essai ne montre pas de produit de couplage. Nous avons testé de nouveau notre hypothèse en gardant l'alcool allylique, mais en utilisant une base plus forte que le Cs₂CO₃, le tert-butoxyde de potassium (tBuOK) (entrée 2). Cet essai ne montre pas non plus de produit de couplage. Nous avons aussi testé les conditions que Ma [52] a utilisé pour le couplage d'iodures vinyliques avec différents phénols, même si le produit de cette réaction ne permet pas de faire un réarrangement de Claisen (entrée 3). Les conditions de Ma sont essentiellement différentes au

niveau de ligand, car il utilise la N,N-diméthylglycine. Ces conditions ne nous ont pas permis d'observer le produit de couplage attendu.

Entrée	É de li	quivalents gand en %M	Équivalents de base		Équivalents d'alcool		Rendement
1	40%	DMEDA (<u>79</u>)	3	Cs ₂ CO ₃	2,6	Phénol	0%
2	40%	DMEDA (<u>79</u>)	3	<i>t</i> BuOK	2,5	Alcool allylique <u>53</u>	0%
3	30%	Glycine (<u>69</u>)	2	Cs ₂ CO ₃	1,5	Phénol	0% ²

Tableau 3.19Étude de l'allyloxylation intermoléculaire du β-iodoénamide 52^{1}

¹ Toutes les réactions ont été effectuées sous atmosphère d'azote, à 55 °C pendant 24h, en utilisant 16% molaire de Cul avec une concentration de substrat de 0,1 mol/L dans le THF.
² Entrée 3 effectuée avec 10% molaire de Cul dans le dioxane.

Après avoir essayé sans succès plusieurs conditions réactionnelles pour l'allyloxylation intermoléculaire du β -iodoénamide <u>52</u>, nous avons décidé de synthétiser une molécule modèle pour poursuivre nos tests. De cette façon, nous avons pu économiser le β -iodoénamide <u>52</u>, car nous n'en avions qu'une petite quantité et sa préparation nécessite des étapes difficiles. La molécule modèle doit posséder une position de réaction équivalente à celle du β -iodoénamide <u>52</u> en plus de pouvoir être préparée facilement et rapidement (i.e. en peu d'étapes). Nous avons donc synthétisé le β -iodoénamide modèle <u>150</u> à partir de l'heptyne (<u>148</u>) et de la pyrrolidin-2-one (<u>76a</u>) (Schéma 3.21). L'heptyne (<u>148</u>) est d'abord diiodé dans les conditions présentées précédemment pour générer le diiodure vinylique <u>149</u> avec 87% de rendement. Ce diiodure est ensuite couplé à la pyrrolidin-2-one (<u>76a</u>) dans nos meilleures conditions d'iodovinylation (i.e. celles optimisées par Rahem[23]) pour générer les β -iodoénamides <u>150</u> et <u>151</u> (Tableau 3.20).

114

Schéma 3.21 Préparation du β-iodoénamide modèle <u>150</u> comme modèle pour l'étude de l'allyloxylation intermoléculaire de β-iodoénamides.

Nous avons effectué l'iodovinylation de la pyrrolidin-2-one (76a) avec 1,51 équivalents du diiodure vinylique 149 et nous avons obtenu 37% du β-iodoénamide modèle 150 et 5,2% de son isomère, le β-iodoénamide 151 (Tableau 3.20, entrée 1). L'isomère n'est pas présent en grande quantité, car l'iode à substituer pour l'obtenir est situé sur un carbone quaternaire (i.e. plus encombré). Ce résultat montre que nos conditions permettent de coupler la pyrrolidin-2-one (76a) à un iodure vinylique encombré, car cette réaction entre en compétition avec le couplage que nous voulons effectuer. Nous avons fait plusieurs essais en faisant varier la quantité de diiodure vinylique 149 pour tenter d'améliorer le rendement de la réaction (entrées 2, 3 et 4). Les différents résultats obtenus ne permettent pas de faire une corrélation en le nombre d'équivalents de diiodure 149 utilisés et le rendement. Nous avons obtenu le β -iodoénamide <u>151</u> avec des rendements de 31% à 75%. Nous n'avons pas étudié davantage cette réaction, car nous l'avons appliquée à de grandes quantités pour obtenir un maximum de β -iodoénamide 151 et ainsi poursuivre notre étude de l'allyloxylation intermoléculaire de β-iodoénamides.

Entrée	Équivalents de <u>149</u>	Rendement	Rendement <u>151</u>
1	1,51	37%	5,2%
2	1,24	75%	0%
3	1,05	36%	2,1%
4	0,91	31%	4,6%

Tableau 3.20Étude de l'iodovinylation intermoléculaire de la pyrrolidin-2-one (76a) 1

¹ Toutes les réactions ont été effectuées sous atmosphère d'azote, à 55 °C pendant 24h, en utilisant 16% molaire de CuI, 20% molaire de DMEDA (<u>79</u>) et 2 équivalents de Cs₂CO₃ dans le THF.

L'allyloxylation intermoléculaire du β -iodoénamide modèle <u>150</u> permettrait d'obtenir le β -allyloxyénamide <u>152</u> (Schéma 3.22). Ce dernier peut procéder à un réarrangement de Claisen et générer la cétone γ , δ -insaturée <u>153</u>.

Schéma 3.22 L'allyloxylation intermoléculaire du β-iodoénamide modèle <u>150</u> suivie d'un réarrangement de Claisen.

Notre premier essai d'allyloxylation intermoléculaire sur le β-iodoénamide modèle <u>150</u> a été fait dans les conditions utilisées par Rahem [23] lors de son optimisation de la synthèse d'allyloxyénamides (Tableau 3.21, entrée 1). Ces conditions sont peu catalytiques (p. ex. 50%M de Cul), mais elles permettent

de forcer la réaction pour optimiser les différents paramètres. La première entrée nous a permis d'isoler 4% du β -allyloxyénamide <u>152</u>. Nous avons confirmé la structure du produit formé par RMN ¹H (Figure 3.15). Nous avons donc répété l'expérience en augmentant le temps de réaction (entrée 2). Cet essai ne nous a pas permis d'observer le produit de couplage (<u>152</u>) ou le produit de réarrangement (<u>153</u>). Nous avons émis l'hypothèse que les produits formés n'étaient peut-être pas stables aussi longtemps dans nos conditions réactionnelles (i.e. 115h vs 24h). Nous avons effectué un essai en augmentant la température avec un temps de réaction plus court (entrée 3), ce qui nous a permis d'isoler 11% du β -allyloxyénamide <u>152</u>. Les rendements de 4% et 11% obtenus démontrent la difficulté de synthétiser le β allyloxyénamide <u>152</u>.

Tableau 3.21

Étude de l'allyloxylation intermoléculaire du β-iodoénamide modèle <u>150</u> dans les conditions peu catalytiques de Rahem [23] ¹

Entrée	Température (°C)	Temps (heures)	Rendement <u>152</u>
1	55	24	4%
2	55	115	0%
3	80	24	11%

¹ Toutes les réactions ont été effectuées sous atmosphère d'azote, en utilisant 50% molaire de Cul, 80% molaire de DMEDA (<u>79</u>), 4 équivalents de Cs_2CO_3 et 2,5 équivalents d'alcool allylique avec une concentration de substrat de 0,3 mol/L dans le THF.

L'identification du β -allyloxyénamide <u>152</u> a été effectuée grâce à la résonance magnétique nucléaire du proton (RMN ¹H). Le β -allyloxyénamide <u>152</u> possède quatre signaux caractéristiques (Figure 3.15). Le proton sur la double liaison liée à l'azote (H_A) produit un singulet à 5,27 ppm. Les deux
protons allyliques à côté de l'oxygène (H_B) produisent un doublet de triplet à 4,26 ppm. Cette multiplicité provient du couplage avec le proton alcénique (H_C) (J = 5,0Hz) et du couplage à longue distance avec le CH₂ (H_D) de l'oléfine (J = 1,6Hz). Le proton alcénique non terminal de la portion allylique (H_C) génère un multiplet complexe (caractéristique du groupement allylique) de 5,93 à 6,07 ppm. Les protons alcéniques terminaux de la portion allylique (H_D) génèrent un multiplet complexe (caractéristique du groupement allylique (H_D) génèrent un multiplet complexe (caractéristique du groupement allylique (H_D) génèrent un multiplet complexe (caractéristique du groupement allylique) de 5,11 à 5,41 ppm.

Après avoir obtenu le β -allyloxyénamide <u>152</u> avec 11% de rendement, nous avons voulu augmenter ce rendement en faisant varier le solvant (Tableau 3.22). Le premier solvant que nous avons testé est le toluène (entrée 1), car il permet l'utilisation de plus hautes températures de réaction avant d'atteindre l'ébullition. Ces conditions ne nous ont pas permis d'obtenir le produit de couplage (<u>152</u>) ou le produit de réarrangement (<u>153</u>). Nous avons émis

l'hypothèse que la faible polarité du toluène nuisait à la solubilité du cuivre et de la base. Nous avons tenté la réaction en utilisant le dioxane comme solvant (entrée 2), car il est plus polaire que le toluène. Ces conditions ne nous ont pas permis d'obtenir le produit de couplage (<u>152</u>) ou le produit de réarrangement (<u>153</u>). Nous avons supposé que la température de réaction devait être encore augmentée. Nous avons tenté la réaction en utilisant l'anisole comme solvant (entrée 3), car il est polaire et possède un point d'ébullition élevé (i.e. 153,8 °C). Encore une fois, ces conditions ne nous ont pas permis d'obtenir le produit de couplage (<u>152</u>) ou le produit de réarrangement (<u>153</u>).

Tableau 3.22

Étude de l'allyloxylation intermoléculaire du β -iodoénamide modèle <u>150</u> dans différents solvants ¹

Entrée	Solvant	Température (°C)	Temps (heures)	Rendement <u>152</u> ou <u>153</u>
1	Toluène	80	48	0%
2	Dioxane	80	48	0%
3	Anisole ²	110	48	0%

¹ Toutes les réactions ont été effectuées sous atmosphère d'azote, en utilisant 50% molaire de Cul, 80% molaire de DMEDA (<u>79</u>), 4 équivalents de Cs₂CO₃ et 2,5 équivalents d'alcool allylique (<u>53</u>) avec une concentration de substrat de 0,3 mol/L.

 2 Entrée 6 faite avec une concentration de substrat de 0,5 mol/L à cause d'une erreur de manipulations.

Nous avons tenté d'effectuer l'allyloxylation intermoléculaire du β -iodoénamide modèle <u>150</u> à de plus hautes températures dans le *o*-xylène (Tableau 3.23). Nous avons effectué un essai à 130°C en utilisant la DMEDA (<u>79</u>) comme ligand (entrée 1), mais nous n'avons pas observé de réaction. Nous avons tenté de chauffer un peu plus (i.e. 150 °C) avec le même ligand (entrée 2), mais nous n'avons pas observé de réaction. Nous avons émis l'hypothèse que la température de réaction était trop élevée pour pouvoir utiliser la DMEDA (79). Ce ligand possède un point d'ébullition inférieur à la température de réaction (119 °C). Si le ligand est en phase vapeur lors de la réaction, il peut difficilement complexer le cuivre et ainsi permettre la réaction. Nous avons donc utilisé la 3,4,7,8-tétraméthyl-1,10-phénanthroline (94) comme ligand pour faire un autre essai à 150 °C (entrée 3). Ces conditions ne nous ont pas permis d'obtenir le produit de couplage (152) ou le produit de réarrangement (153).

Tableau 3.23Étude de l'allyloxylation intermoléculaire du β-iodoénamide modèle 150à de hautes températures $\frac{1}{2}$

Éntrée	Ligand	Température (°C)	Temps (heures)	Rendement 152 ou 153
1	DMEDA (<u>79</u>)	130	24	0%
2	DMEDA (<u>79</u>)	150	49	0%
3	Phen (<u>94</u>)	150	24	0%

¹ Toutes les réactions ont été effectuées sous atmosphère d'azote, en utilisant 50% molaire de Cul, 80% molaire de ligand, 4 équivalents de Cs₂CO₃ et 2,5 équivalents d'alcool allylique avec une concentration de substrat de 0,3 mol/L dans le *o*-xylène.

Suite à nos hypothèses quant à l'état physique du ligand lors de la réaction de couplage, nous avons appliqué ces hypothèses à l'alcool allylique (<u>53</u>). Cet alcool bout à 97 °C. Si l'alcool est en phase vapeur lors de la réaction, il peut difficilement réagir. Nous ne nous étions pas préoccupés du point d'ébullition de l'alcool dans un premier temps, car les réactions de couplage sont effectuées dans des tubes étanches fermés, ce qui limite l'évaporation des constituants volatils comme le solvant, le ligand et l'alcool. Par contre,

même si les tubes étanches limitent la perte de composés volatils, ils n'empêchent pas que ces composés soient en phase vapeur. Nous avons donc décidé d'utiliser l'alcool cinnamylique (<u>154</u>) (Figure 3.16) avec des ligands différents pour les entrées 1 et 2 (Tableau 3.24), car il est beaucoup moins volatil ($T_{eb} = 258 \,^{\circ}$ C). Ces essais ne nous ont pas permis d'obtenir de produit de couplage ou de réarrangement. Nous avons émis l'hypothèse que l'alcool allylique (<u>53</u>) pouvait être trop volatile et trop peu nucléophile à la fois. Nous avons donc tenté la réaction en utilisant l'alcoolate de l'alcool allylique (préparé à partir l'alcool correspondant et de NaH dans l'hexane) dans les conditions qui nous avaient permis d'obtenir le β-allyloxyénamide <u>152</u> avec 11% de rendement (Tableau 3.21, entrée 3). Nous n'avons pas observé de réaction dans ces conditions.

Tableau 3.24

Étude de l'allyloxylation intermoléculaire du β -iodoénamide modèle <u>150</u> avec différents nucléophiles ¹

Entrée	Ligand	Temps (heures)	Rendement	
1	DMEDA (<u>79</u>)	21	0%	
2	Phen (<u>94</u>)	20	0%	

¹ Toutes les réactions ont été effectuées sous atmosphère d'azote, à 150 °C, en utilisant 50% molaire de Cul, 80% molaire de ligand, 2,5 équivalents d'alcool cinnamylique (<u>154</u>) et 4 équivalents de Cs₂CO₃ avec une concentration de substrat de 0,3 mol/L dans le *o*-xylène.

Pour tenter d'augmenter le rendement de l'allyloxylation intermoléculaire du β-iodoénamide modèle 150, nous nous sommes intéressés au ratio entre l'alcool allylique (réactif déprotonable) et le ligand. Cet intérêt provient d'une publication de Buchwald [84] où il est mis en évidence que la concentration de réactif déprotonable et de ligand détermine la vitesse de la réaction. Le groupe de Buchwald a utilisé la N-arylation de la pyrrolidin-2-one (76a) comme réaction de référence (Schéma 3.23). Il a étudié l'effet de la concentration de l'amide 76a (réactif déprotonable) et du ligand N,N-bidenté 70 sur la vitesse de formation du N-arylamide 156. Ses conclusions sont les suivantes : i) le ligand N,N-bidenté 70 sert à prévenir la liaison de plusieurs amides 76a (réactif déprotonable) sur le cuivre ; ii) en présence d'une concentration élevée de ligand N,N-bidenté 70, l'activation de l'iodure d'aryle 155 (i.e. l'addition oxydante) devient l'étape limitante ; iii) en présence d'une concentration faible de ligand N,N-bidenté 70, l'étape limitante est le déplacement d'un amide 76a (réactif déprotonable) par le ligand pour former un complexe de cuivre réactif.

Nous avons tenté d'appliquer les travaux de Buchwald à l'allyloxylation intermoléculaire du β -iodoénamide modèle <u>150</u> en combinaison avec les conditions utilisées par Rahem [23] lors de son optimisation de la synthèse

d'allyloxyénamides (Tableau 3.25). Nous avons d'abord utilisé une guantité équimolaire d'alcool (réactif déprotonable) et de ligand (i.e. 2,5 équivalents), ce qui correspond à trois fois plus de ligand que dans les conditions régulières de Rahem (entrée 1). Cet essai ne nous a pas permis d'obtenir le produit de couplage (152) ou le produit de réarrangement (153). Nous avons ensuite répété l'expérience en utilisant seulement 1,1 équivalent d'alcool allylique (53) (entrée 2), ce qui nous a permis d'obtenir la cétone y, 5-insaturée 153 avec 14% de rendement. Nous avons confirmé la structure du produit formé par RMN ¹H (Figure 3.17). Nous n'avons pas observé le β-allyloxyénamide 152. Il semblerait donc qu'il ait procédé à un réarrangement de Claisen dans nos conditions réactionnelles. Ce résultat est très intéressant, car il nous permet de penser que le réarrangement de Claisen de β-allyloxyénamides peut se faire dans des conditions assez douces et qu'il peut être combiné aux couplages. Selon ce résultat, il semble que le ligand utilisé doit être présent en plus grande quantité que l'alcool pour favoriser la réaction dans un temps raisonnable, ce qui est en accord avec les travaux de Buchwald [84].

Étude de I	allyloxylatic avec diff	on intermolécu férents ratios	alaire du β d'alcool al	-iodoénamide Iylique (<u>53</u>) ¹	modèle <u>150</u>
	Entrée	Équivalents d'alcool allylique <u>53</u>	Temps (heures)	Rendement (produit)	
	1	2,5	72	0%	

Tableau 3.25

14% (153) ¹ Toutes les réactions ont été effectuées sous atmosphère d'azote, à 80 °C, en utilisant 50% molaire de Cul, 2,5 équivalents de DMEDA (79), 4 équivalents de Cs2CO3 avec une concentration de substrat de 0,3 mol/L dans le dioxane.

25

1,1

2

L'identification de la cétone γ , δ -insaturée <u>153</u> a été effectuée grâce à la résonance magnétique nucléaire du proton (RMN ¹H). La cétone γ , δ -insaturée <u>153</u> possède quatre signaux caractéristiques (Figure 3.17). Le proton sur le carbone tertiaire chiral lié à l'azote (H_A) produit un doublet de doublets à 4,69 ppm (J = 5,1Hz et 10,5Hz). Cette multiplicité correspond au couplage différent avec les deux protons du CH₂ voisin. Les protons du CH₂ lié à l'azote dans le cycle pyrrolidin-2-one produisent un multiplet de 3,20 à 3,46 ppm. Le proton alcénique non terminal de la portion allylique (H_C) génère un multiplet complexe (caractéristique du groupement allylique) de 5,58 à 5,83 ppm. Les protons alcéniques terminaux de la portion allylique (H_D) génèrent un multiplet complexe (caractéristique du groupement allylique) de 4,97 à 5,18 ppm.

6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 fl (ppm)

Nous avons arrêté ici notre étude de l'allyloxylation intermoléculaire du β -iodoénamide modèle <u>150</u> pour nous consacrer à l'allyloxylation intermoléculaire de notre molécule d'intérêt, le β-iodoénamide 52. Après avoir obtenu un rendement de 14% sur deux étapes pour l'allyloxylation intermoléculaire du β-iodoénamide modèle 150 combinée à un réarrangement de Claisen, nous avons voulu revenir à l'étude de notre synthèse principale pour tester ces conditions avant de manquer de temps. Nous avons donc repris les conditions mises au point avec le β-iodoénamide modèle 150 qui nous ont permis d'obtenir la cétone y, δ -insaturée 153 avec 14% de rendement (Tableau 3.25, entrée 2). Nous avons appliqué ces conditions à la préparation du β -allyloxyénamide <u>54</u> avec l'alcool allylique (53) (Tableau 3.26, entrée 1). Nous n'avons pas observé de réaction dans ces conditions. Nous avons répété la réaction en remplaçant l'alcool allylique (53) par l'alcoolate correspondant pour rendre le substrat moins volatile et éviter les problèmes potentiellement liés à la déprotonation (entrée 2). Encore une fois, nous n'avons pas observé de réaction.

$\begin{array}{c} \textbf{Tableau 3.26} \\ \text{Étude de l'allyloxylation intermoléculaire du } \beta \text{-iodoénamide } \underline{52} \\ \text{avec différents substrats déprotonables } ^1 \end{array}$

Entrée	Réactif déprotonable	Temps (heures)	Rendement <u>54</u>
1	Alcool allylique <u>53</u>	72	0%
2	Alcoolate de <u>53</u>	120	0%

¹ Toutes les réactions ont été effectuées sous atmosphère d'azote, à 80 °C, en utilisant 50% molaire de Cul, 2,5 équivalents de DMEDA (<u>79</u>), 4 équivalents de Cs₂CO₃ et 1,1 équivalents de réactif déprotonable avec une concentration de substrat de 0,25 mol/L dans le dioxane.

Après les différents essais présentés dans cette section, nous nous sommes questionnés sur la réactivité du β -iodoénamide <u>52</u>. Dans la littérature, il y a peu de couplages catalysés au cuivre impliquant un iodure vinylique encombré et il y en a très peu qui utilisent un iodure vinylique riche en électrons. Le groupe de Jiang [46] utilise le β -iodoénamide <u>75</u> ayant un encombrement semblable à notre β -iodoénamide <u>52</u> comme substrat dans un couplage catalysé au cuivre avec le thiophénol (<u>157</u>) (Schéma 3.24).

Schéma 3.24 Couplage catalysé au cuivre entre le β-iodoénamide <u>75</u> et le thiophénol (<u>157</u>) dans les conditions de Jiang [46].

Le β -iodoénamide de Jiang est pauvre en électrons et le thiophénol (<u>157</u>) ne permet pas de procéder à un réarrangement de Claisen après avoir formé un thioéther. Nous avons tout de même tenté d'appliquer la méthode de Jiang à notre β -iodoénamide <u>52</u> pour en évaluer la réactivité (Tableau 3.27, entrée 1). Cet essai nous a permis d'obtenir le thioéther correspondant avec un rendement de 67%, très comparable à celui de Jiang (i.e. 71%). Nous avons ensuite répété ces conditions en remplaçant le thiophénol (<u>157</u>) par l'alcool allylique (<u>53</u>) et son alcoolate (entrée 2 et 3). Nous n'avons pas obtenu le β -allyloxyénamide <u>54</u> correspondant, même en chauffant à 80 °C. Nous avons aussi tenté la réaction avec l'homologue oxygéné du thiophénol (<u>157</u>), le phénol (entrée 4), mais nous n'avons pas observé l'aryléther correspondant, même en chauffant à 80 °C. Cette expérimentation nous a prouvé que le β -iodoénamide <u>52</u> peut réagir avec un thiol via un couplage catalysé au cuivre.

Tableau 3.27

Étude du couplage intermoléculaire du β-iodoénamide <u>52</u> avec différents réactifs déprotonables selon la méthode de Jiang [46] ¹

Entrée	Réactif déprotonable	Température (°C)	Temps (heures)	Rendement
1	Thiophénol <u>157</u>	55	115	67%
2	Alcool allylique <u>53</u>	55 ²	48 ²	0%
3	Alcoolate de <u>53</u> $\frac{3}{2}$	55 ²	24 ²	0%
4	Phénol	55 ²	24 ²	0%

¹ Toutes les réactions ont été effectuées sous atmosphère d'azote, en utilisant 20% molaire de Cul, 20% molaire de <u>94</u>, 40% molaire de <u>140</u>, 1,5 équivalents de K₃PO₄ et 1,4 équivalents de réactif déprotonable avec une concentration de substrat de 0,1 mol/L dans le toluène.

² Le premier chauffage (à 55 °C) est suivi d'un second chauffage (à 80 °C) de 24h.

³ L'alcoolate de <u>53</u> est placé dans la colonne « réactif déprotonable » même s'il n'y a pas de déprotonation à effectuer.

Après avoir confirmé que notre β -iodoénamide <u>52</u> était réactif, nous sommes revenus à l'étude de notre outil de synthèse. Nous avons consulté une publication de Buchwald [53] sur la O-arylation de différents alcools. Deux choses ont attiré notre attention dans cet article : i) Buchwald a utilisé différents alcool allyliques ayant toujours un point d'ébullition supérieur à la température de réaction ; ii) il mentionne que ses réactions de couplage doivent être effectuées à des concentrations élevées (i.e. 1 mmol de substrat pour 0,5 mL de solvant, soit une concentration de 2 mol/L) pour maintenir l'activité catalytique du système. Nous avons déjà soulevé le problème de volatilité de l'alcool allylique <u>53</u>. Par contre, les concentrations de substrat

utilisées varient de 0,1 à 0,3 mol/L, soit dix fois plus dilué que Buchwald [53]. Nous avons choisi l'hex-2-én-1-ol (**159**) comme alcool allylique pour les tests suivants, car il bout à 160 °C. Nous avons aussi effectué nos essais avec une concentration plus élevée de substrat. L'allyloxylation intermoléculaire du β -iodoénamide <u>52</u> avec l'hex-2-én-1-ol (**159**) permettrait d'obtenir le β -allyloxyénamide <u>160</u> qui peut ensuite procéder à un réarrangement de Claisen pour former la cétone γ , δ -insaturée <u>161</u> (Schéma 3.25).

Schéma 3.25 Allyloxylation intermoléculaire du β-iodoénamide <u>52</u> catalysée au cuivre suivie d'un réarrangement de Claisen.

Nous avons appliqué les conditions de Buchwald [53] à la préparation du β -allyloxyénamide <u>160</u> en utilisant l'hex-2-én-1-ol (<u>159</u>) comme alcool (Tableau 3.28, entrée 1). Nous avons été très heureux d'obtenir 21% de transformation que nous avons ensuite purifié pour obtenir 15% du β -allyloxyénamide <u>160</u> et 6% de la cétone γ , δ -insaturée <u>161</u>. L'analyse RMN ¹H des produits isolés nous a permis de confirmer leurs structures (Figure 3.18 et Figure 3.19). Nous avons pu identifier les différents signaux caractéristiques des deux molécules tel que décrit un peu plus loin. Ce résultat est l'un des premiers pour ce type de réaction. Il y a très peu d'exemples dans la littérature de couplages catalysés au cuivre entre un alcool allylique et un iodure vinylique encombré et riche en électrons. Ce qui est aussi très intéressant, c'est que le β -allyloxyénamide <u>160</u> a procédé

facilement à un réarrangement de Claisen dans les conditions de couplage. Il semblerait donc simple de combiner l'allyloxylation intermoléculaire du ßiodoénamide 52 avec le réarrangement de Claisen pour faire les deux réactions dans les mêmes conditions (i.e. synthèse «one-pot»). Nous avons ensuite reproduit ces conditions en remplacant l'hex-2-én-1-ol (159) par l'alcool allylique 53 pour tenter d'obtenir le β -allyloxyénamide 54 (entrée 2). Nous n'avons pas observé de réaction avec cet alcool. Ce résultat confirme que le point d'ébullition de l'alcool utilisé doit être inférieur à la température de réaction. Nous avons effectué l'allyloxylation intermoléculaire du β-iodoénamide 52 avec l'hex-2-én-1-ol (159) dans des conditions très semblables à nos meilleures conditions d'iodovinylation intramoléculaire catalysée au cuivre, soit celles optimisées par Rahem [23] (entrée 3). L'intérêt de cet essai est d'évaluer la possibilité d'effectuer nos deux couplages successifs dans les mêmes conditions, en ajoutant simplement l'alcool lorsque le premier couplage est complété (i.e. synthèse «one-pot»). Les différences se situent au niveau de la nature du ligand (phen 94 versus DMEDA 79) et au niveau de la concentration de substrat (1,6 mol/L dans le toluène versus 0,1 mol/L dans le THF). Cet essai nous a permis d'obtenir un mélange du β-allyloxyénamide 160 et de la cétone γ,δ-insaturée 161 qui correspond à 25% de transformation. La purification de ce mélange sur gel de silice nous a permis d'isoler un diastéréoisomère de la cétone y,δ-insaturée **161**, l'autre étant resté mélangé au β-allyloxyénamide **160**. Nous avons déterminé le rendement de la réaction par RMN ¹H (Figure 3.20). Le spectre RMN ¹H de la Figure 3.20 ne représente pas le mélange brut obtenu après la réaction, il représente la portion qui est restée mélangée après purification. Sur le spectre du mélange (Figure 3.20), on ne voit donc pas la grande quantité du diastéréoisomère 161a, car elle été majoritairement isolée. Le ratio observé sur ce spectre n'est donc pas représentatif. En additionnant la quantité du diastéréoisomère 161a isolée aux quantités de

<u>161a</u> et <u>161b</u> présentes dans le mélange, il nous a été possible de calculer un rapport entre les deux diastéréoisomères. Ce rapport est de 2,6 pour 1 en faveur de <u>161a</u>.

Tableau 3.28

Étude de l'allyloxylation intermoléculaire du β -iodoénamide <u>52</u> avec différents alcools dans les conditions de Buchwald [53]¹

Entrée	Alcool	Temps (heures)	Transformation couplage (produit formé)	Transformation réarrangement (produit formé)
1	Hex-2-én-1-ol <u>159</u>	30	15% (<u>160</u>)	6% ² (<u>161</u>)
2	Alcool allylique <u>53</u>	72	0% (<u>54</u>)	0% (<u>55</u>)
3 ³	Hex-2-én-1-ol <u>159</u>	31	6% ^{<u>4</u>} (<u>160</u>)	19% ^{<u>4</u>} (<u>161</u>)

¹ Toutes les réactions ont été effectuées sous atmosphère d'azote, à 115 °C, en utilisant 10% molaire de Cul, 20% molaire de phen <u>94</u>, 2 équivalents de Cs₂CO₃ et 2 équivalents d'alcool avec une concentration de substrat de 1,6 mol/L dans le toluène.

² Un seul énantiomère selon le spectre RMN ¹H (voir figure 33).

³ Entrée 3 effectuée avec 16% molaire de CuI à 80 °C.

⁴ Rendement calculés par RMN ¹H.

L'identification du β -allyloxyénamide <u>160</u> a été effectuée grâce à la résonance magnétique (RMN) nucléaire du proton. Le β -allyloxyénamide <u>160</u> possède cinq signaux caractéristiques (Figure 3.18). Le proton sur le carbone tertiaire chiral en alpha de l'azote (H_A) produit un multiplet autour de 4,4 ppm. Le proton alcénique sur le carbone lié à l'azote (H_B) produit un multiplet à 6,57 ppm. Cette multiplicité correspond à de faibles constantes de couplage, probablement dues à des couplages à longue distance. Les protons sur le CH₂ lié à l'oxygène (H_C) produisent un multiplet complexe (caractéristique du

groupement allylique) autour de 4,1 ppm. Le proton alcénique du groupement allylique le plus près de l'oxygène (H_D) produit un multiplet complexe (caractéristique du groupement allylique) autour de 5,4 ppm. Le proton alcénique du groupement allylique le plus loin de l'oxygène (H_E) produit un multiplet complexe (caractéristique du groupement allylique) autour de 5,1 ppm. La multiplicité complexe des signaux caractéristiques du groupement allylique provient d'une combinaison entre des couplages à courte et longue distance via l'oléfine interne.

L'identification de la cétone γ , δ -insaturée <u>161</u> a été effectuée grâce à la résonance magnétique (RMN) nucléaire du proton. La cétone γ , δ -insaturée <u>161</u> possède quatre signaux caractéristiques (Figure 3.19). Le proton sur le carbone tertiaire chiral à la jonction de cycle (H_A) produit un multiplet autour de 4,2 ppm. Le proton sur le carbone tertiaire chiral lié à l'azote (H_B) produit un doublet fin à 4,01 ppm (J = 4,3Hz). Cette multiplicité correspond au

couplage avec le proton du carbone du CH tertiaire voisin. Le proton alcénique non terminal du groupement allylique (H_c) produit un multiplet complexe (caractéristique du groupement allylique) autour de 5,6 ppm. Les protons alcéniques terminaux du groupement allylique (H_D) produisent un multiplet complexe (caractéristique du groupement allylique) autour de 5,1 ppm. La multiplicité complexe des signaux caractéristiques du groupement allylique provient d'une combinaison entre des couplages à courte et longue distance via l'oléfine.

Figure 3.19 Portion du spectre RMN ¹H de la cétone γ , δ -insaturée <u>161</u> obtenu à l'entrée 1 du Tableau 3.28 (un seul diastéréoisomère).

L'identification des diastéréoisomères de la cétone γ , δ -insaturée <u>161</u> (<u>161a</u> et <u>161b</u>) a été effectuée grâce au signal du proton sur le carbone tertiaire chiral lié à l'azote (H_B). Pour <u>161a</u>, il produit un doublet fin à 4,01 ppm (J = 4,3Hz). Pour <u>161b</u>, il produit un doublet fin à 4,04 ppm (J = 4,3Hz). Les protons à la jonction de cycle (H_A) des deux diastéréoisomères produisent ensemble un multiplet complexe autour de 4,2 ppm et celui du β -allyloxyénamide <u>160</u> génère un multiplet autour de 4,4 ppm.

Figure 3.20 Portion du spectre RMN ¹H du mélange de β -allyloxyénamide <u>160</u> et de la cétone γ , δ -insaturée <u>161</u> obtenue à l'entrée 3 du Tableau 3.28.

Suite à l'analyse des trois spectres RMN ¹H obtenus (Figure 3.18, Figure 3.19 et Figure 3.20), il est possible de confirmer que le diastéréoisomère isolé du mélange est <u>161a</u>. Le spectre RMN ¹H présenté à la Figure 3.19 est donc celui du diastéréoisomère <u>161a</u>.

Nous n'avons déterminé pas la structure absolue des deux diastéréoisomères par manque de temps et de matériel. Nous sommes cependant en mesure de prédire la structure des diastéréoisomères formés en analysant les états de transition du substrat. Le β-allyloxyénamide 160 est un mélange racémique de ses énantiomères 160a et 160b (Figure 3.21). Nous avons effectué nos réactions avec le mélange racémique, mais nous avons voulu schématiser la sélectivité du réarrangement de Claisen avec l'énantiomère 160a (Figure 3.21). Nous aurions pu utiliser 160b, ce qui nous aurait permis d'arriver aux mêmes conclusions. Le β-allyloxyénamide 160a peut adopter deux conformations «pseudo-chaise» différentes comme état de

transition pour procéder à un réarrangement de Claisen (i.e. voies A et B). Ces états de transition pseudo-chaise sont très ordonnés et permettent généralement une sélection, telle que décrite à la fin du chapitre 2. L'hex-2-én-1-ol (159) n'étant pas chiral, c'est seulement la chaine carbonée R qui quide la sélection via une oléfine *trans*. Dans la voie A, le groupement R est pseudo-équatorial et il pointe vers «l'extérieur» de la molécule, c'est-àdire qu'il ne crée pas d'encombrement stérique par proximité avec un autre groupement. Dans la voie B, le groupement R est aussi pseudo-équatorial, mais il pointe vers «l'intérieur» de la molécule (i.e. vers l'intérieur du cœur bicyclique) et il crée un encombrement stérique avec le groupement carbonyle de l'amide. C'est donc la voie A qui est favorisée, ce qui correspond à la cétone γ, δ -insaturée <u>161a</u> et son énantiomère (<u>161c</u>). La sélectivité observée (2,6:1) n'est pas excellente, car elle est seulement guidée par un effet stérique faible entre la chaine R et le carbonyle de l'amide. L'utilisation d'un alcool allylique chiral permettrait d'ajouter des effets stériques supplémentaires pour augmenter la sélection. Le centre chiral devrait se situer au niveau du carbone porteur de l'oxygène de la fonction alcool. À cet endroit, un centre chiral de bonne orientation favoriserait davantage notre état de transition, car le groupement guide voudrait être pseudo-équatorial. Il serait possible de tenter d'inverser la sélection en utilisant l'énantiomère de cet alcool. La présence du groupement guide engendrera dans les deux cas un effet allylique qui favorisera un des deux états de transition.

160a

160

<u>161a</u>

 $R = CH_2CH_2CH_3$

Pour calculer le ratio entres les diastéréoisomères syn (161a et 161c) et les diastéréoisomères anti (161b et 161d) nous avons utilisé un signal

caractéristique en RMN ¹H des cétones γ , δ -insaturées <u>161</u>, soit l'hydrogène sur le carbone tertiaire chiral entre l'azote et la cétone. En comparant la structure des diastéréoisomères <u>161a</u> et <u>161b</u> (Figure 3.21), il est possible de constater que l'hydrogène en question n'aura pas le même environnement chimique dans les deux cas. Dans la molécule <u>161a</u>, l'hydrogène pointe vers l'intérieur du cœur bicyclique alors que dans la molécule <u>161b</u>, il pointe vers l'extérieur. Cette différence d'environnement chimique pourrait expliquer la différence de déplacement chimique (0,03 ppm) entre les hydrogènes de <u>161a</u> et <u>161b</u>. Dans tous les cas, le signal de cet hydrogène est un doublet fin (J = 4,3 Hz), car il est couplé avec l'hydrogène du carbone tertiaire chiral voisin.

 $\mathsf{R} = \mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3$

Figure 3.22 Les cétones γ , δ -insaturées <u>161a-d</u> obtenues par réarrangement de Claisen du β -allyloxyénamide <u>160</u> et énantiomères de la xénovénine.

La sélection observée dans nos premiers réarrangements de Claisen est très encourageante pour l'application de notre outil de synthèse à la préparation de la xénovénine (Figure 3.22). Même sans utilisé d'alcool chiral, la sélectivité est presque de 3 pour 1 en faveur du produit *syn*, précurseur de la xénovénine. Cette sélectivité est due à l'état de transition du réarrangement de Claisen, mais aussi à la rigidité de notre substrat.

Les conclusions et les propositions à propos du présent projet seront présentées dans le prochain chapitre (Chapitre IV).

CHAPITRE IV

CONCLUSIONS ET PROPOSITIONS À PROPOS DU PRÉSENT PROJET

Tel que décrit dans le chapitre I, nous avons proposé une synthèse de la (-)-xénovénine (<u>9b</u>) qui permet de démontrer la polyvalence de l'outil de synthèse développé et utilisé dans notre laboratoire. Cet outil de synthèse consiste à se servir de la chimie du cuivre pour faire deux couplages catalysés au cuivre(I) successifs suivis d'un réarrangement de Claisen. Toutes nos réactions ont été effectuées avec des substrats racémiques pour évaluer la faisabilité de la méthode (Schéma 4.1).

Schéma 4.1 Notre méthode pour construire le squelette pyrrolizidine lors de la synthèse totale de la (-)-xénovénine (<u>9b</u>) à l'aide de l'outil de synthèse.

Pour pouvoir tester notre outil de synthèse, nous avons préparé le diiodure vinylique <u>51</u> avec un rendement de 23% sur 3 étapes à partir du succinimide (<u>120</u>) commercial. Cette synthèse devra être retravaillée, car l'étape de l'attaque nucléophile avec un magnésien est très peu reproductible et donne des rendements faibles (6-28%). La préparation énantiopure du diiodure vinylique <u>51</u> à partir de l'acide (S)-pyroglutamique (<u>137</u>) devra être mise au point en vue de la synthèse optiquement pure de la (-)-xénovénine (<u>9b</u>).

La première étape de notre outil de synthèse est l'iodovinylation intramoléculaire du diiodure vinylique <u>51</u> catalysée par le cuivre. Cette réaction nous a permis d'obtenir du β -iodoénamide <u>52</u> avec un rendement de 81%. Il s'agit d'un des premiers exemples de ce genre de cyclisation. Il n'existe que très peu d'exemples de couplage catalysé au cuivre

intramoléculaire entre une portion diiodure vinylique et une portion amide. Nous avons déjà étudié l'effet de plusieurs paramètres sur cette cyclisation. Il serait tout de même intéressant de compléter l'étude en testant la réaction dans l'eau ou le diméthylsulfoxyde (DMSO) par exemple. L'eau et le DMSO sont des solvants très polaires et leur utilisation augmenterait la solubilité de la base et du cuivre, ce qui devrait augmenter le rendement de la réaction. L'eau est aussi une alternative verte à l'utilisation de solvants organiques. Le DMSO possède une température d'ébullition très élevée (189 °C) ce qui donne accès à une large gamme de températures.

La deuxième étape de notre outil de synthèse est l'allyloxylation intermoléculaire du β-iodoénamide <u>52</u> catalysée par le cuivre. Cette réaction nous a causé beaucoup de difficultés dans un premier temps, car le β-iodoénamide 52 semblait ne pas être très réactif. Nous avons finalement démontré sa réactivité en le couplant avec le thiophénol (157) pour former le thioéther correspondant avec 67% de rendement. Ce résultat a relancé notre étude de l'allyloxylation intermoléculaire du β-iodoénamide 52. C'est en jouant avec la concentration de substrat et la proportion de ligand que nous avons finalement obtenu 25% de conversion correspondant à 6% du β -allyloxyénamide **160** et à 19% de la cétone y, δ -insaturée **161**. Encore une fois, il s'agit d'un des premiers exemples de ce genre de réaction. Il n'existe que très peu d'exemples de couplage catalysé au cuivre intermoléculaire entre un alcool allylique et un iodure vinylique encombré riche en électrons. L'obtention du produit de réarrangement de Claisen dans les conditions de couplage démontre bien la possibilité de combiner ces deux réactions. Nous n'avons pas étudié en profondeur l'allyloxylation intermoléculaire du β-iodoénamide 52, par manque de temps. Il serait très intéressant d'optimiser la réaction avec l'hex-2-én-1-ol (159) pour un maximum de conversion et ensuite tenter de combiner l'allyloxylation intermoléculaire avec le

réarrangement de Claisen. Il serait intéressant de tester l'allyloxylation intermoléculaire avec différents alcools, mais aussi avec des thiols allyliques et des dérivés azotés allyliques (i.e. amides ou amines) pour démontrer les applications de la réaction.

La troisième étape de notre outil de synthèse est le réarrangement de Claisen du β-allyloxyénamide 160. Nous n'avons pas étudié cette réaction par manque de temps, mais nous avons tout de même observé le produit du réarrangement, la cétone y, 5-insaturée 161, lors du second couplage catalysé au cuivre. Nous avons été en mesure d'isoler un des diastéréoisomères formés et nous avons déterminé le ratio dans leguel les diastéréoisomères syn et anti sont formés, soit 2,6 pour 1 en faveur du syn selon notre analyse théorique des états de transition. Ce ratio est satisfaisant compte tenu du fait que nous voulions simplement, dans un premier temps, évaluer la faisabilité de la réaction avec un alcool allylique achiral. Nous pensons que l'utilisation d'un alcool allylique chiral lors du second couplage pourrait favoriser l'un ou l'autre des diastéréoisomères selon son orientation R ou S. Il serait très intéressant de démontrer l'effet d'alcools allyliques chiraux pro-syn et pro-anti sur le ratio du réarrangement de Claisen. Il serait intéressant aussi de procéder au réarrangement de dérivés soufrés ou azotés de β-allyloxyénamides (i.e. provenant du couplage entre le β-iodoénamide 52 et un thiol, un amide ou une amine allylique).

Finalement, nous n'avons pas fait la synthèse totale de la (-)-xénovénine (<u>9b</u>), par manque de temps encore une fois. Il serait donc très intéressant de tenter de transformer la cétone γ , δ -insaturée <u>161</u> en xénovénine via quelques réactions simples et connues. Il serait intéressant d'appliquer l'outil de synthèse à la préparation optiquement pure de la (-)-xénovénine (<u>9b</u>) lorsque le diiodure vinylique <u>51</u> pourra être obtenu de façon énantiopure. Il serait

aussi très intéressant de tenter d'appliquer notre méthode à la préparation de différentes pyrrolizidines substituées aux positions 3 et 5.

CHAPITRE V

PARTIE EXPÉRIMENTALE

5.1 Remarques générales

Les produits commercialement disponibles ont été achetés chez Sigma-Aldrich ou VWR et ont été utilisés sans purification. Les chromatographies sur couche mince (CCM) ont été effectuées en utilisant des plaques d'aluminium recouvertes de 250 µm de gel de silice de la compagnie Silicycle et contenant le révélateur F-254. Après élution, les produits sont détectés à l'aide des révélateurs suivants : lampe UV, iode solide, solution aqueuse d'acide phosphomolybdique (PMA). Les chromatographies éclair sur colonne ont été effectuées avec de la silice Silicycle 230-400 mesh (40-63 microns) et l'élution a été effectuée avec des solvants préalablement distillés.

Tous les spectres de résonance magnétique nucléaire (RMN) ont été effectués avec un appareil Varian de 200 MHz. Les déplacements chimiques sont exprimés en ppm (δ) par rapport à une référence interne provenant du solvant résiduel non deutéré. Les constantes de couplages sont exprimées en Hertz (Hz). La multiplicité des spectres RMN ¹H a été décrite par les abréviations suivantes : s (singulet), sl (singulet large), d (doublet), dd

(doublet de doublet), t (triplet), td (triplet de doublet), tt (triplet de triplet), q (quadruplet), quint. (quintuplet) et m (multiplet).

Les spectres infrarouges (IR) des liquides et des solides ont été obtenus en utilisant un spectrophotomètre FTIR Thermo is10. Les liquides et les solides sont déposés directement sur la pointe en diamant de l'appareil. Les bandes d'absorption ont été exprimées en cm⁻¹. L'intensité des signaux en IR a été décrite par les abréviations suivantes : i (intense), m (moyen) et f (faible).

Les chromatographies en phase gazeuse couplées à un spectromètre de masse à basse résolution (CPG-SM) ont été effectuées à l'aide d'un appareil Agilent 6890N avec détecteur de masse à impact électronique. Les spectres de masse haute résolution ont été enregistrés sur un système de chromatographie liquide à haute pression 1200 (CLHP) en utilisant un détecteur TOF 6210 de la compagnie Agilent Technologies. La différence entre la masse calculée et la masse trouvée est indiquée comme la déviation et elle s'exprime en ppm.

Les points de fusion ont été mesurés avec un appareil Electrothermal IA9100 et n'ont pas été corrigés.

5.2 Modes opératoires

Pent-4-énamide (122)

Dans un bicol de 200 mL, on place 10 mL (98 mmol) d'acide pent-4-énoïque (123), un barreau magnétique et 100 mL de DCM. On bouche un des cols avec un septum et on surmonte l'autre d'une colonne de refroidissement. On place le ballon dans un vase Dewar. On amène la solution à -18 °C avec un mélange de glace et de NaCl (3 : 1 massique). On ajoute ensuite 200 µL (2,6 mmol) de DMF (127) et 11,5 mL (132 mmol) de chlorure d'oxalyle (128). On agite à -18 °C durant 5h, puis on agite manuellement à toutes les 15 minutes durant 2h. On concentre le produit sous pression réduite jusqu'à l'obtention d'un solide jaune huileux. On ajoute 100 mL de THF et on ajoute la solution obtenue à 400 mL (3,6 mol) d'hydroxyde d'ammonium à 0 °C (bain de glace) sur une période de 15 minutes. On agite la solution à 0 °C pendant 1h, puis à température ambiante durant la nuit. On concentre le produit sous pression réduite jusqu'à l'obtention d'un solide blanc-jaune. On ajoute 200 mL d'une solution saturée en NaCI et 200 mL d'acétate d'éthyle, puis on extrait avec 80 mL d'acétate d'éthyle. On sèche la phase organique sur MgSO4 anhydre, puis on filtre par gravité. On concentre le produit sous pression réduite jusqu'à l'obtention d'un solide blanc brillant. On cristallise le produit avec un mélange hexane-éther (2:1) et on filtre sur Buchner pour obtenir 6,9 g (70 mmol, 71%) de 122.

71% (6,9 g)

Cristaux blancs

Point de fusion : 101,3-103,1 °C

RMN ¹H, δ (ppm, acétone-d₆), J (Hz) : 2,14-2,42 (4H, m, CH-C<u>H₂</u>C<u>H₂</u>-C=O), 4,84-5,13 (2H, m, C<u>H₂</u>=CH-CH₂), 5,70-6,00 (1H, m, CH₂=C<u>H</u>-CH₂), 6,05-6,40 (1H, sl, O=C-N<u>H₂</u>), 6,55-6,90 (1H, sl, O=C-N<u>H₂</u>) RMN ¹³C, δ (ppm, CDCl₃) : 29,3 (CH₂=CH-<u>C</u>H₂), 35,0 (<u>C</u>H₂-C=O), 115,5

(<u>CH</u>₂=CH-CH₂), 136,9 (CH₂=<u>C</u>H-CH₂), 175,5 (CH₂-<u>C</u>=O)

IR (pur), v (cm⁻¹): 3346 et 3180 (i, NH₂), 3084 (m, CH alcéniques), 2981, 2944 et 2921 (m, CH aliphatiques), 1629 (i, C=O amide)

SMBR (m/z, intensité relative) : 99 (M⁺, 18), 72 (M⁺ - CH=CH₂, 10), 56 (M⁺ - C₃H₇, 100)

SMHR (C_5H_9NO): masse calculée = 99,0684 et masse trouvée = 99,0685 (déviation = 0,67 ppm)

N-(tert-butoxycarbonyl)pent-4-énamide (131)

Dans un bicol de 50 mL, on place 1,5 g (15 mmol) de pent-4-énamide (<u>122</u>), un barreau magnétique et 15 mL de DCE. On bouche un des cols avec un septum et on surmonte l'autre d'une colonne de refroidissement. On amène la solution à 0 °C avec un bain de glace. On ajoute ensuite 1,5 mL (17 mmol) de chlorure d'oxalyle (<u>128</u>) et on agite pendant 20 minutes. On modifie le montage pour chauffer à reflux durant 4h. On ramène la solution à 0 °C avec un bain de glace. On ajoute ensuite 3 mL (31 mmol) de *tert*-butanol et on agite à 0 °C durant 3 heures. On ajoute 30 mL d'une solution saturée en NaHCO₃ et on extrait 5 fois avec 15 mL de DCM. On sèche la phase organique avec du Na₂SO₄ anhydre, puis on filtre par gravité. On concentre le produit sous pression réduite jusqu'à l'obtention d'une huile brune. On cristallise le produit avec de l'hexane chaud et on filtre sur Buchner pour obtenir 1,6 g (8,3 mmol, 55%) de <u>131</u>.

55% (1,6 g) Cristaux blancs

Point de fusion : 52,5-53,8 °C

RMN ¹H, δ (ppm, CDCl₃), J (Hz) : 1,47 (9H, s, C(C<u>H₃</u>)₃), 2,39 (2H, m, C<u>H₂</u>-CH₂-C=O), 2,82 (2H, t, J=7,4 CH₂-C<u>H₂</u>-C=O), 5,02 (2H, m, C<u>H₂</u>=CH-CH₂), 5,84 (1H, m, CH₂=C<u>H</u>-CH₂), 7,52 (1H, sl, O=C-N<u>H</u>)

RMN ¹³C, δ (ppm, CDCl₃) : 28,0 (C(<u>C</u>H₃)₃), 28,1 (CH₂=CH-<u>C</u>H₂), 35,3 (<u>C</u>H₂-C=ONH), 82,4 (<u>C</u>(CH₃)₃), 115,4 (<u>C</u>H₂=CH-CH₂), 136,8 (CH₂=<u>C</u>H-CH₂), 150,5 (HN-<u>C</u>=OO), 174,1 (CH₂-<u>C</u>=ONH)

IR (pur), v (cm⁻¹): 3208 (i, NH), 3144 (i, CH alcéniques), 2983 et 2934 (m, CH aliphatiques), 1749 (i, C=O entre l'azote et l'oxygène), 1684 (i, C=O entre l'azote et la chaine alkyle)

SMBR (m/z, intensité relative) : 143 (M⁺, - *t*Bu, 74), 82 (M⁺ - NH₂Boc, 100), 55 (M⁺ - CONHBoc, 62)

SMHR $(C_{10}H_{17}NO_3)$: masse calculée = 199,1208 et masse trouvée = 199,1219 (déviation = 5,07 ppm)

Procédure générale pour la préparation de 5-iodométhylpyrrolidin-2-ones par iodolactamisation (121 et 132)

Dans un ballon de 250 mL, on place 5 mmol de <u>122</u> ou de <u>131</u>, un barreau magnétique et 50 mL de toluène. Le ballon est bouché et mis sous atmosphère inerte (N₂). On ajoute 5 mL (5 mmol) de *tert*-butoxyde de lithium et on agite durant 30 minutes. On ajoute ensuite une solution de 3,8 g (15 mmol) d'iode dans 12 mL de THF et on agite pendant 24h à l'abri de la lumière. On ajoute 150 mL d'une solution saturée en thiosulfate de sodium. On lave la phase organique avec 100 mL de cette solution saturée en Na₂S₂O₃, puis on extrait 5 fois avec 50 mL d'acétate d'éthyle. On lave la phase organique avec 150 mL d'une solution saturée en NaCl. On sèche la phase organique sur MgSO₄ anhydre, puis on filtre par gravité. On concentre

le produit sous pression réduite jusqu'à l'obtention d'une huile brune. On purifie le produit brut par chromatographie éclair avec un gradient d'acétate d'éthyle dans l'hexane (0-100%) comme éluant pour obtenir <u>121</u> ou par cristallisation avec un mélange hexane-éther (1 : 1) pour obtenir <u>132</u>.

5-iodométhylpyrrolidin-2-one (121)

15% (169 mg)

Solide blanc

Point de fusion : 72,9-73,7 °C

RMN ¹H, δ (ppm, CDCl₃), J (Hz) : 1,62-1,95 (2H, m, CH₂-CH₂-C=O), 2,13-2,65 (2H, m, CH₂-CH₂-C=O), 3,08-3,32 (2H, m, CH-CH₂-I), 3,71-3,96 (1H, m, CH-CH₂-I), 5,71-6,19 (1H, sl, O=C-NH)

RMN ¹³C, δ (ppm, CDCl₃) : 11,5 (CH-<u>C</u>H₂-I), 27,4 (<u>C</u>H₂-CH₂-C=O), 30,3 (CH₂-<u>C</u>H₂-C=O), 55,1 (<u>C</u>H-CH₂-I), 178,2 (O=<u>C</u>-NH)

IR (pur), ν (cm⁻¹): 3187 (i, NH), 2962, 2926 et 2865 (m, CH aliphatiques), 1670 (i, C=O lactame)

SMBR (m/z, intensité relative) : 225 (M⁺, 1), 127 (I⁺, 5), 98 (M⁺ - I, 14), 84 (M⁺ - CH₂I, 100)

SMHR (C_5H_8NOI) : masse calculée = 224,9651 et masse trouvée = 224,9648 (déviation = 1,26 ppm)

N-(tert-butoxycarbonyl)-5-iodométhylpyrrolidin-2-one (132)

76% (1,2 g)

Solide blanc

Point de fusion : 92,4-93,9 °C

RMN ¹H, δ (ppm, CDCl₃), J (Hz) : 1,51 (9H, s, C(C<u>H₃</u>)₃), 1,83-2,77 (4H, m, C<u>H₂-CH₂-C=O</u>), 3,43 (2H, m, CH-C<u>H₂-I</u>), 4,21 (1H, tt, J=2,8 et J=8,0 C<u>H</u>-CH₂I) RMN 13C, δ (ppm, CDCl₃) : 9,2 (CH-<u>C</u>H₂-I), 23,1 (<u>C</u>H₂-CH₂-C=O), 28,0 (C(<u>C</u>H₃)₃), 31,2 (CH₂-<u>C</u>H₂-C=O), 57,9 (<u>C</u>H-CH₂-I), 83,6 (<u>C</u>(CH₃)₃), 149,6 (N-<u>C</u>=OO), 173,5 (CH₂-<u>C</u>=O)

IR (pur), v (cm⁻¹): 2977, 2934 et 2878 (m, CH aliphatiques), 1762 (i, C=O entre l'azote et l'oxygène), 1689 (i, C=O entre l'azote et la chaine alkyle), 1284 (m, C-O du Boc)

SMBR (m/z, intensité relative) : 325 (M⁺, 3), 184 (M⁺ - CH₂I, 26), 142 (M⁺ - I *t*Bu, 46), 98 (M⁺ - I - Boc, 48), 84 (M⁺ - CH₂I - Boc, 100)

SMHR ($C_{10}H_{16}NO_{3}I$): masse calculée = 325,0175 et masse trouvée = 325,0163 (déviation = 3,66 ppm)

Préparation de la 5-iodométhylpyrrolidin-2-one (121) par déprotection

Dans un ballon de 50 mL, on place 370 mg (1,2 mmol) de <u>132</u>, un barreau magnétique, 29 mL de TFA et 6 mL de DCM. On agite la solution pendant 1h. On concentre le produit sous pression réduite jusqu'à l'obtention d'une huile brun-jaune. On ajoute 25 mL d'eau et 25 mL d'acétate d'éthyle. On extrait 3 fois avec 25 mL d'acétate d'éthyle. On sèche la phase organique sur MgSO₄ anhydre, puis on filtre par gravité. On purifie le produit brut par chromatographie éclair avec un gradient d'acétate d'éthyle dans l'hexane (25-100%) comme éluant pour obtenir 206 mg (0,92 mmol, 78%) de <u>121</u>.

5-éthoxypyrrolidin-2-one (119)

Dans un ballon de 500 mL, on place 3 g (30 mmol) de succinimide (<u>120</u>), un barreau magnétique et 150 mL d'éthanol. On amène la solution à 0 °C avec un bain de glace. On ajoute ensuite 3,4 g (90 mmol) de NaBH₄ par petites portions sur un intervalle de 5 minutes. On ajoute 15 gouttes d'une solution de HCl à 2,3M dans l'éthanol (voir plus loin pour la préparation de cette solution) à toutes les 15 minutes durant 4h. On maintient la réaction à 0 °C

durant cet intervalle et on suit le pH à l'aide d'un pH-mètre pour éviter d'atteindre un pH trop élevé. On acidifie le mélange réactionnel avec la même solution de HCI jusqu'à l'atteinte d'un pH entre 3 et 4. On agite la solution à 0 °C durant une heure, puis on la neutralise avec une solution de KOH à 5%m/v dans l'éthanol. On concentre le produit sous pression réduite jusqu'à l'obtention d'un solide blanc poudreux. On ajoute 75 mL de chloroforme au solide et on le filtre sur Buchner. On lave le solide avec 2 autres portions de 75 mL de chloroforme. On sèche le filtrat avec du Na₂SO₄ anhydre, puis on filtre par gravité. On concentre le produit sous pression réduite. Le produit ne nécessite pas de purifications supplémentaires. On obtient 3,1 g (24 mmol, 80%) de <u>119</u>.

80% (3,1 g)

Solide blanc

RMN ¹H, δ (ppm, CDCl₃), J (Hz) : 1,22 (3H, t, J=7,0 O-CH₂-C<u>H₃</u>), 2,00-2,58 (4H, m, C<u>H₂-CH₂-C=O</u>), 3,48 (2H, dq, J=7,1 et J=18,2 O-C<u>H₂-CH₃</u>), 4,96 (1H, d, J=5,9 NH-C<u>H</u>-O), 7,44 (1H, sl, N<u>H</u>-CH-O)

RMN ¹³C, δ (ppm, CDCl₃) : 15,1 (O-CH₂-<u>C</u>H₃), 28,2 et 28,3 (<u>C</u>H₂-<u>C</u>H₂-C=O), 62,4 (O-<u>C</u>H₂-CH₃), 85,7 (NH-<u>C</u>H-O), 178,5 (CH₂-CH₂-<u>C</u>=O)

SMBR (m/z, intensité relative) : 129 (M⁺, 1), 114 (M⁺ - CH₃, 10), 84 (M⁺ - OEt, 100)

Ces données correspondent à celles de la littérature [64].

Préparation de la solution de HCl à 2,3M dans l'éthanol

Dans un erlenmeyer de 250 mL, on place 100 mL d'éthanol absolu avec un barreau magnétique. On amène la solution à 0 °C avec un bain de glace. On ajoute 16,7 mL de chlorure d'acétyle goutte à goutte avec une ampoule à addition. On agite à 0 °C durant 15 minutes après la fin de l'ajout.

Préparation des pyrrolidin-2-ones 118 et 125

Procédure A

ballon de 25 mL, on place 100 mg (0,83 mmol) Dans un de 5-éthoxypyrrolidin-2-one (119), un barreau magnétique et 5 mL de DCM. On amène la solution à 0 °C avec un bain de glace. On ajoute ensuite 1,25 mL (3,4 mmol) d'allényltributylstannane (124) et 450 µL (3,6 mmol) de BF3 Et2O dans cet ordre. On agite la solution pendant 5h30 à température ambiante. On arrête la réaction en ajoutant 25 mL d'une solution saturée de NaHCO3 et 25 mL d'acétate d'éthyle. On extrait la phase aqueuse avec 4 portions de 25 mL d'acétate d'éthyle. On sèche la phase organique sur MgSO4 anhydre, puis on filtre par gravité. On concentre le produit sous pression réduite jusqu'à l'obtention d'une huile orangée. Dans un premier temps, on cristallise cette huile avec 40 mL de pentane pour obtenir un solide orangé brut impur. On purifie ensuite le produit par chromatographie éclair avec 15% de K₂CO₃ dispersé dans la silice. On utilise l'acétate d'éthyle (50%) dans l'hexane comme éluant pour obtenir 37 mg (0,30 mmol, 36%) de 118.

5-propargylpyrrolidin-2-one (118)

NH

36% (37 mg) Solide blanc Point de fusion : 106,6-108,0 °C

RMN ¹H, δ (ppm, CDCl₃), J (Hz) : 1,75-1,96 (1H, m, C<u>H</u>₂-CH₂-C=O), 2,03 (1H, t, J=2,6 CH₂-CC<u>H</u>), 2,24-2,49 (5H, m, O=C-C<u>H</u>₂-C<u>H</u>₂ et C<u>H</u>₂-CCH), 3,74-3,89 (1H, m, C<u>H</u>-NH-C=O), 5,87 (1H, sl, CH-N<u>H</u>-C=O) RMN ¹³C, δ (ppm, CDCl₃) : 26,2 et 26,3 (<u>C</u>H₂-CH-<u>C</u>H₂), 30,0 (CH₂-<u>C</u>H₂-C=O), 53,0 (<u>C</u>H-NH-C=O), 70,8 (CH₂-C<u>C</u>H), 80,0 (CH₂-<u>C</u>CH), 178,1 (CH₂-CH₂-<u>C</u>=O) SMBR (m/z, intensité relative) : 84 (M⁺ - CH₂CCH, 100), 56 (M⁺ - C₅H₇, 9) Ces données correspondent à celles de la littérature [85].

Procédure B

Dans un ballon de 250 mL, on place 7,4 g (306 mmol) de magnésium métallique, 182 mg (0,67 mmol) de chlorure de mercure, deux ou trois cristaux d'iode et un barreau magnétique. Le ballon est bouché et mis sous atmosphère inerte (N₂). On ajoute 30 mL de THF anhydre. On ajoute 1,5 mL (13,5 mmol) de bromure de propargyle. On chauffe la solution avec un pistolet à air chaud pour démarrer la réaction. On place le ballon dans un bain de glace. On ajoute sur une période d'une heure une solution composée de 60 mL de THF et de 9,75 mL (87,5 mmol) de bromure de propargyle. On agite ensuite pendant 30 minutes à 0 °C et pendant 30 minutes à température ambiante. On obtient une solution environ 1M du bromure de propargylmagnésium (<u>126</u>). Cette solution est utilisée directement pour la réaction suivante.

Dans un ballon de 250 mL, on place 2,3 g (18 mmol) de 5-éthoxypyrrolidin-2-one (<u>119</u>), un barreau magnétique et 80 mL de THF. On amène la solution à -78 °C avec un mélange acétone-azote liquide. On ajoute ensuite 73 mL (73 mmol) d'une solution à 1M du bromure de propargylmagnésium (<u>126</u>) (préparée précédemment) et 7,8 mL (63 mmol) de BF_3 :Et₂O dans cet ordre. On agite la solution pendant 30 minutes à -78 °C.
On arrête la réaction en ajoutant 100 mL d'une solution saturée de NH₄Cl et 100 mL d'une solution à 10% de Na₂SO₃. On extrait la phase aqueuse avec 3 portions de 150 mL d'acétate d'éthyle. On sèche la phase organique sur MgSO₄ anhydre, puis on filtre par gravité. On concentre le produit sous pression réduite. On purifie ensuite le produit brut par chromatographie éclair avec un gradient d'éther diéthylique dans l'hexane (20-100%) comme éluant pour obtenir 421 mg (3,4 mmol, 19%) de <u>118</u> et 22 mg (0,18 mmol, 1%) de <u>125</u>.

5-(propa-1,2-diényl)pyrrolidin-2-one (125)

1% (22 mg)

Huile jaune clair

RMN ¹H, δ (ppm, CDCl₃), J (Hz) : 1,90-2,08 (1H, m, CH₂-CH₂-C=O), 2,27-2,46 (3H, m, CH₂-CH₂-C=O), 4,14-4,29 (1H, m, NH-CH-CH=C), 4,89 (2H, dd, J=2,1 et J=6,7 CH=C=CH₂), 5,17 (1H, q, J=6,5 CH-CH=C=CH₂), 5,87 (1H, sl, NH-CH-CH=C)

IR (pur), v (cm⁻¹): 3290 (i, NH lactame), 2925 (m, CH alléniques), 2872 (m, CH aliphatiques), 2117 (f, C=C=C),1703 (m, C=O lactame), 1049 et 1012 (m, C=C=C)

SMBR (m/z, intensité relative) : 79 (M^+ - CH₂ON, 7), 71 (M^+ - CHCH=C=CH₂, 100)

Ces données correspondent à celles de la littérature [86].

Procédure générale pour la préparation des dihalogénures vinyliques <u>51</u>, <u>136</u> et <u>149</u>

Dans un contenant vissable de 20 mL, on place 1 mmol d'alcyne (<u>118</u> ou <u>148</u>), 1,1 mmol de dihalogène (l₂ ou Br₂), 3 mmol d'halogénure de sodium (Nal ou NaBr), 7 mL de DCM et un barreau magnétique. On ferme le contenant et on agite durant 24h à température ambiante à l'abri de la lumière. On ajoute 30 mL d'une solution saturée de Na₂SO₃ et on extrait 3 fois avec 30 mL d'acétate d'éthyle. On lave ensuite la phase organique avec 75 mL d'une solution saturée de NaCl. On sèche la phase organique sur MgSO₄ anhydre, puis on filtre par gravité. On concentre le produit sous pression réduite. On obtient un produit pur qui ne nécessite pas de purifications supplémentaires.

trans-5-(2,3-diiodoallyl)-pyrrolidin-2-one (51)

80% (302 mg)

Solide blanc-jaune

Point de fusion : 123,5-125,1 °C

RMN ¹H, δ (ppm, CDCl₃), J (Hz) : 1,79-1,98 (1H, m, CH₂-CH₂-C=O), 2,21-2,50 (3H, m, CH₂-CH₂-C=O), 2,69 (1H, dd, J=6,1 et J=14,3 CH₂-C=CH), 2,81 (1H, dd, J=7,3 et J=14,3 CH₂-C=CH), 3,99-4,14 (1H, m, CH-NH-C=O), 6,06 (1H, sl, CH-N<u>H</u>-C=O), 7,06 (1H, s, CH₂-C=C<u>H</u>) RMN ¹³C, δ (ppm, CDCl₃) : 26,0 (<u>C</u>H₂-CH₂-C=O), 29,7 (CH₂-<u>C</u>H₂-C=O), 50,4 (<u>C</u>H-NH-C=O), 53,3 (<u>C</u>H₂-C=CH), 82,9 (CH₂-C=<u>C</u>H), 97,0 (CH₂-<u>C</u>=CH), 177,7 (CH₂-CH₂-<u>C</u>=O)

IR (pur), v (cm⁻¹): 3162 (i, NH), 3065 (m, CH alcénique), 2919, 2898 et 2851 (m, CH aliphatiques), 1684 (i, C=O lactame)

SMBR (m/z, intensité relative) : 250 (M⁺ - I, 1), 127 (I⁺, 4), 84 (M⁺ - CH₂-IC=CHI, 100)

SMHR ($C_7H_9NOI_2$): masse calculée = 376,8773 et masse trouvée = 376,8784 (déviation = 2,89 ppm)

trans-5-(2,3-dibromoallyl)-pyrrolidin-2-one (136)

83% (235 mg)

Solide blanc-jaune

Point de fusion : 67,4-68,9 °C

RMN ¹H, δ (ppm, CDCl₃), J (Hz) : 1,79-1,98 (1H, m, C<u>H</u>₂-CH₂-C=O), 2,21-2,50 (3H, m, C<u>H</u>₂-C<u>H</u>₂-C=O), 2,79 (1H, dd, J=6,4 et J=14,2 C<u>H</u>₂-C=CH), 2,87 (1H, dd, J=7,3 et J=14,2 C<u>H</u>₂-C=CH), 3,96-4,11 (1H, m, C<u>H</u>-NH-C=O), 6,34 (1H, sl, CH-N<u>H</u>-C=O), 6,59 (1H, s, CH₂-C=C<u>H</u>)

RMN ¹³C, δ (ppm, CDCl₃) : 26,3 (<u>C</u>H₂-CH₂-C=O), 29,6 (CH₂-<u>C</u>H₂-C=O), 43,3 (<u>C</u>H₂-C=CH), 52,4 (<u>C</u>H-NH-C=O), 105,6 (CH₂-C=<u>C</u>H), 121,3 (CH₂-<u>C</u>=CH), 177,7 (CH₂-CH₂-<u>C</u>=O)

IR (pur), v (cm⁻¹): 3179 (i, NH), 3090 (m, CH alcénique), 2943 et 2909 (m, CH aliphatiques), 1688 (i, C=O lactame), 1661 (i, C=C), 626 (m, C-Br) SMBR (m/z, intensité relative) : 84 (M⁺ - CH₂-BrC=CHBr, 100) SMHR (C₇H₉NOBr₂) : masse calculée = 280,9051 et masse trouvée = 280,9061 (déviation = 3,65 ppm)

trans-1,2-diiodohept-1-ène (149)

87% (304 mg)

Huile jaune

RMN ¹H, δ (ppm, CDCI₃), J (Hz) : 0,92 (3H, t, J=6,8 C<u>H₃</u>-CH₂-CH₂-CH₂), 1,23-1,43 (4H, m, CH₃-C<u>H₂</u>-CH₂-C<u>H₂</u>), 1,45-1,63 (2H, m, CH₃-CH₂-C<u>H₂</u>-CH₂), 2,50 (2H, t, J=7,3 C<u>H₂-C=CH</u>), 6,80 (1H, s, CH₂-C=C<u>H</u>)

RMN ¹³C, δ (ppm, CDCl₃) : 14,0 (<u>C</u>H₃-CH₂-CH₂-CH₂), 22,5 (CH₃-<u>C</u>H₂-CH₂-CH₂), 27,8 (CH₃-CH₂-CH₂-<u>C</u>H₂), 30,3 (CH₃-CH₂-<u>C</u>H₂-CH₂), 44,6 (<u>C</u>H₂-C=CH), 78,9 (CH₂-C=<u>C</u>H), 104,4 (CH₂-<u>C</u>=CH)

IR (pur), v (cm⁻¹): 3070 (f, CH alcénique), 2956, 2921 et 2853 (m, CH aliphatiques), 566 (f, C-I)

SMBR (m/z, intensité relative) : 350 (M⁺, 60), 294 (M⁺ - C₄H₈, 40), 181 (M⁺ - C₃H₆I, 19), 167 (M⁺ - C₄H₈I, 66), 127 (I⁺, 5), 95 (M⁺ - HI - I, 100)

Ces données correspondent à celles de la littérature [87].

Préparation des β-halogénoénamides bicycliques 52 et 141

Procédure A via les homo-dihalogénures vinyliques 51 et 136

Dans un ballon de 25 mL surmonté d'une colonne de refroidissement ou dans un contenant vissable de 20 mL, on place 1,1 mmol de <u>51</u> ou <u>136</u>, 16% molaire de Cul, 20% molaire de ligand, 2 équivalents de base, 18 mL de solvant (concentration de 0,06 M) et un barreau magnétique. On effectue un bullage dans la solution avec de l'azote durant 5 minutes. On agite à 55 °C jusqu'à complétion selon le suivi par CCM. On filtre la solution sur Buchner et on lave avec 100 mL de DCM. On sèche la phase organique sur MgSO₄ anhydre, puis on filtre par gravité. On concentre le produit sous pression réduite. On purifie ensuite le produit brut par chromatographie éclair avec un gradient d'acétate d'éthyle dans l'hexane (10-50%) comme éluant. On obtient 222 mg (0,89 mmol, 81%) de <u>52</u> ou 127 mg (0,63 mmol, 57%) de <u>141</u>.

6-iodo-5,6-dihydropyrrolizidin-3-one (52)

81% (222 mg) Solide blanc-jaune Point de fusion : 96,2-97,2 °C RMN ¹H, δ (ppm, CDCl₃), J (Hz) : 1,77-2,05 (1H, m, N-CH-C<u>H</u>₂-C-I), 2,32-2,51 (1H, m, N-CH-C<u>H</u>₂-C-I), 2,52-2,93 (4H, m, C<u>H</u>₂-C<u>H</u>₂-C=O), 4,47 (1H, ddd, J=6,2 J=8,1 et J=20,7 N-<u>CH</u>-CH₂-C-I), 6,80 (1H, t, J=2;1 N-C<u>H</u>=C-I) RMN ¹³C, δ (ppm, CDCl₃) : 29,2 (<u>C</u>H₂-CH₂-C=O), 35,4 (CH₂-<u>C</u>H₂-C=O), 46,0 (N-<u>C</u>H-CH₂-C-I), 62,2 (N-CH-<u>C</u>H₂-C-I), 75,7 (N-CH=<u>C</u>-I), 132,0 (N-<u>C</u>H=C-I), 170,2 (CH₂-CH₂-<u>C</u>=O)

IR (pur), v (cm⁻¹): 3062 (m, CH alcénique), 2951, 2923 et 2901 (m, CH aliphatiques), 1659 (i, C=O lactame)

SMBR (m/z, intensité relative) : 249 (M⁺, 100), 127 (I⁺, 4), 221 (M⁺ - CH₂CH₂, 53), 194 (M⁺ - CH₂CH₂C=O, 100), 122 (M⁺ - I, 100), 94 (M⁺ - I - CH₂CH₂, 37), 67 (M⁺ - I - CH₂CH₂C=O, 100)

SMHR (C₇H₈NOI) : masse calculée = 248,9651 et masse trouvée = 248,9645 (déviation = 2,4 ppm)

6-bromo-5,6-dihydropyrrolizidin-3-one (141)

57% (127 mg)

Solide blanc

Point de fusion : 71,0-73,0 °C

RMN ¹H, δ (ppm, CDCl₃), J (Hz) : 1,78-2,04 (1H, m, C<u>H</u>₂-C=CH), 2,34-2,92 (4H, m, C<u>H</u>₂-C=CH et C<u>H</u>₂-C<u>H</u>₂-C=O), 4,47 (1H, ddd, J=6,1 J=10,0 et J=26,2 N-C<u>H</u>-CH₂-CBr), 6,71 (1H, t, J=2,0 N-C<u>H</u>=CBr)

RMN ¹³C, δ (ppm, CDCl₃) : 29,3 (<u>C</u>H₂-CH₂-C=O), 35,1 (CH₂-<u>C</u>H₂-C=O), 43,0 (N-<u>C</u>H-CH₂-CBr), 61,6 (<u>C</u>H₂-C=CH), 106,3 (CH₂-<u>C</u>=CH), 126,1 (CH₂-C=<u>C</u>H), 170,9 (CH₂-CH₂-<u>C</u>=O)

IR (pur), v (cm⁻¹): 3080 (m, CH alcénique), 2971, 2916 et 2849 (m, CH aliphatiques), 1672 (i, C=O lactame)

SMBR (m/z, intensité relative) : 203 (M^+ +2 via ⁸¹Br, 57), 201 (M^+ , 59), 173 (M^+ - CH₂CH₂, 9), 148 (M^+ - C₄H₇ via ⁸¹Br, 95), 146 (M^+ - C₄H₇, 100), 122 (M^+ - Br, 39), 67 (M^+ - Br - C₄H₇, 100)

SMHR (C_7H_8NOBr): masse calculée = 200,9789 et masse trouvée = 200,9791 (déviation = 0,67 ppm)

Procédure B via l'hétéro-dihalogénure vinylique 142

Dans un premier temps, dans un contenant vissable de 20 mL, on place 0,19 mmol de <u>118</u>, 0,19 mmol de Br₂, 0,76 mmol de Nal, 3 mL de DCM et un barreau magnétique. On ferme le contenant et on agite durant 24h à température ambiante à l'abri de la lumière. On ajoute 15 mL d'une solution saturée de Na₂SO₃ et on extrait 3 fois avec 20 mL d'acétate d'éthyle. On lave ensuite la phase organique avec 50 mL d'une solution saturée de NaCl. On sèche la phase organique sur MgSO₄ anhydre, puis on filtre par gravité. On concentre le produit sous pression réduite. On obtient 54 mg d'un produit brut contenant l'hétéro-dihalogénure vinylique <u>142</u> qu'on utilise directement pour la suite.

Dans un contenant vissable de 20 mL, on place 54 mg du produit brut préparé ci-dessus (0,12 mmol environ), 3,7 mg (16% molaire) de Cul, 2,5 μ L (20% molaire) de DMEDA (<u>79</u>), 2 équivalents de Cs₂CO₃, 2 mL de THF et un barreau magnétique. On effectue un bullage dans la solution avec de l'azote durant 5 minutes. On agite à 55 °C durant 2h30. On filtre la solution sur Buchner et on lave avec 100 mL de DCM. On sèche la phase organique sur MgSO₄ anhydre, puis on filtre par gravité. On concentre le produit sous pression réduite. On purifie ensuite le produit brut par chromatographie éclair avec un gradient d'acétate d'éthyle dans l'hexane (10-50%) comme éluant. On obtient 10,5 mg (0,042 mmol, 22%) de <u>52</u> et 6 mg (0,021 mmol, 12%) de <u>136</u>.

Préparation des β-halogénoénamides monocycliques 150 et 151

Dans un ballon de 25 mL surmonté d'une colonne de refroidissement ou dans un contenant vissable de 20 mL, on place 500 mg (1,4 mmol) de <u>149</u>, 72 μ L (0,95 mmol) de pyrrolidin-2-one (<u>76a</u>), 29 mg (16% molaire) de Cul, 20 μ L (20% molaire) de DMEDA (<u>79</u>), 2 équivalents de Cs₂CO₃, 2 mL de THF et un barreau magnétique. On effectue un bullage dans la solution avec de l'azote durant 5 minutes. On agite à 55 °C durant 24h. On filtre la solution sur Buchner et on lave avec 100 mL de DCM. On sèche la phase organique sur MgSO₄ anhydre, puis on filtre par gravité. On concentre le produit sous pression réduite. On purifie ensuite le produit brut par chromatographie éclair avec un gradient d'éther diéthylique dans l'hexane (10-50%) comme éluant. On obtient 323 mg (1,1 mmol, 75%) de <u>150</u> et 22 mg (0,07 mmol, 5%) <u>151</u>. N-(trans-2-iodohept-1-ényl)-pyrrolidin-2-one (150)

75% (323 mg)

Huile incolore

RMN ¹H, δ (ppm, CDCI₃), J (Hz) : 0,90 (3H, t, J=6,4 C<u>H₃</u>-CH₂-CH₂-CH₂), 1,18-1,42 (4H, m, CH₃-C<u>H₂</u>-CH₂-C<u>H₂</u>), 1,54 (2H, quint, J=7,9 CH₃-CH₂-C<u>H₂</u>-CH₂), 2,09 (2H, m, C<u>H₂</u>-C=CH), 2,33-2,48 (4H, m, C<u>H₂</u>-C<u>H₂</u>-C=O), 3,67 (2H, t, J=6,4 C<u>H₂-N-C=O</u>), 6,92 (1H, s, CH₂-C=C<u>H</u>)

RMN ¹³C, δ (ppm, CDCl₃) : 14,0 (<u>C</u>H₃-CH₂-CH₂-CH₂), 18,7 (<u>C</u>H₂-CH₂-C=O), 22,5 (CH₃-<u>C</u>H₂-CH₂-CH₂), 29,7 et 29,9 (CH₃-CH₂-<u>C</u>H₂-<u>C</u>H₂), 30,8 (<u>C</u>H₂-C=CH), 38,5 (CH₂-<u>C</u>H₂-C=O), 48,6 (<u>C</u>H₂-N-C=O), 96,3 (CH₂-<u>C</u>=CH), 130,5 (CH₂-C=<u>C</u>H), 173,9 (CH₂-N-<u>C</u>=O)

IR (pur), ν (cm⁻¹): 3058 (f, CH alcénique), 2956, 2928 et 2862 (m, CH aliphatiques), 1705 (i, C=O lactame), 1639 (m, C=C)

SMBR (m/z, intensité relative) : 307 (M⁺, 56), 250 (M⁺ - C₄H₉, 24), 180 (M⁺ - I, 100), 124 (M⁺ - I - C₄H₉, 100)

SMHR ($C_{11}H_{18}NOI$): masse calculée = 307,0433 et masse trouvée = 307,0425 (déviation = 2,69 ppm)

N-(trans-1-iodométhylènehexyl)-pyrrolidin-2-one (151)

5% (22 mg)

Huile incolore

RMN ¹H, δ (ppm, CDCI₃), J (Hz) : 0,90 (3H, t, J=6,7 C<u>H₃</u>-CH₂-CH₂-CH₂), 1,16-1,53 (6H, m, CH₃-C<u>H₂</u>-C<u>H₂</u>-C<u>H₂</u>), 2,05 (2H, quint, J=7,5 C<u>H₂</u>-CH₂-C=O), 2,47 (2H, t, J=7,6 C<u>H₂</u>-C=CH), 2,69 (2H, t, J=7,6 CH₂-C=O), 3,59 (2H, t, J=7,1 C<u>H₂</u>-N-C=O) 6,09 (1H, s, CH₂-C=C<u>H</u>)

RMN ¹³C, δ (ppm, CDCl₃) : 14,0 (<u>C</u>H₃-CH₂-CH₂-CH₂), 18,2 (<u>C</u>H₂-CH₂-C=O), 22,4 (CH₃-<u>C</u>H₂-CH₂-CH₂), 26,8 (CH₃-CH₂-CH₂-<u>C</u>H₂), 31,3 (<u>C</u>H₂-C=CH), 32,0 (CH₃-CH₂-<u>C</u>H₂-CH₂), 33,4 (CH₂-<u>C</u>H₂-C=O), 49,4 (<u>C</u>H₂-N-C=O), 70,0 (CH₂-C=<u>C</u>H), 145,6 (CH₂-<u>C</u>=CH), 173,5 (CH₂-N-<u>C</u>=O)

IR (pur), ν (cm⁻¹): 3086 (f, CH alcénique), 2956, 2922 et 2853 (m, CH aliphatiques), 1694 (i, C=O lactame)

SMBR (m/z, intensité relative) : 307 (M^+ , 5), 180 (M^+ - I, 100), 124 (M^+ - I - C₄H₉, 28)

SMHR ($C_{11}H_{18}NOI$): masse calculée = 307,0433 et masse trouvée = 307,0424 (déviation = 3,07 ppm)

N-(trans-2-(allyloxy)-hept-1-ényl)-pyrrolidin-2-one (152)

Dans un contenant vissable de 20 mL, on place 50 mg (0,16 mmol) de <u>150</u>, 30 μ L (0,44 mmol) d'alcool allylique (<u>53</u>), 16 mg (50% molaire) de Cul, 15 μ L (0,14 mmol) de DMEDA (<u>79</u>), 4 équivalents de Cs₂CO₃, 0,5 mL de THF (concentration de 0,3M) et un barreau magnétique. On agite à 80 °C durant 24h. On filtre la solution sur un pain de silice de 1 cm de haut et 4 cm de diamètre. On lave avec 200 mL d'acétate d'éthyle. On concentre le produit sous pression réduite. On purifie ensuite le produit brut par chromatographie éclair avec un gradient d'éther diéthylique dans l'hexane (50-100%) comme éluant sur un gel de silice traité avec 1% de triéthylamine pour obtenir 4,3 mg (0,018 mmol, 11%) de <u>152</u>.

11% (4,3 mg)

Huile incolore

RMN ¹H, δ (ppm, CDCI₃), J (Hz) : 0,87 (3H, t, J=6,8 C<u>H₃</u>-CH₂-CH₂-CH₂-CH₂), 1,20-1,33 (4H, m, CH₃-C<u>H₂-CH₂-CH₂-CH₂), 1,98-2,18 (4H, m, CH₃-CH₂-CH₂-CH₂-CH₂ et C<u>H₂-CH₂-C=O), 2,43 (2H, t, J=7,9 CH₂-CH₂-C=O), 3,46 (2H, t, J=6,9 C<u>H₂-N-</u>C=O), 4,26 (2H, dt, J=1,4 et J=5,4 C<u>H₂-CH=CH₂), 5,18-5,39 (2H, m, CH₂-CH=CH₂), 5,22 (1H, s, N-C<u>H</u>=CO), 5,86-6,07 (1H, m, CH₂-C<u>H</u>=CH₂)</u></u></u> RMN ¹³C, δ (ppm, CDCl₃) : 13,4 (<u>C</u>H₃-CH₂-CH₂-CH₂), 18,3 (<u>C</u>H₂-CH₂-C=O), 22,2 (CH₃-<u>C</u>H₂-CH₂-CH₂), 26,3 (CH₃-CH₂-CH₂-<u>C</u>H₂), 27,4 (<u>C</u>H₂-CO=CH) 29,9 (CH₃-CH₂-<u>C</u>H₂-CH₂), 31,3 (CH₂-<u>C</u>H₂-C=O), 50,1 (<u>C</u>H₂-N-C=O), 68,1 (<u>C</u>H₂-CH=CH₂), 100,2 (CH₂-CO=<u>C</u>H), 116,0 (CH₂-CH=<u>C</u>H₂), 133,7 (CH₂-<u>C</u>H=CH₂), 157,4 (CH₂-<u>C</u>O=CH), 173,5 (CH₂-N-<u>C</u>=O)

IR (pur), v (cm⁻¹): non disponible par manque de produit SMBR (m/z, intensité relative) : seul le composé réarrangé (<u>153</u>) est observé 237 (M⁺, 9), 196 (M⁺ - CH₂CH=CH₂, 4), 138 (M⁺ - C=OC₅H₁₁, 100) SMHR (C₁₄H₂₃NO₂) : masse calculée = 237,1729 et masse trouvée = 237,1731 (déviation = 1,08 ppm)

N-(1-allylheptan-2-one)-pyrrolidin-2-one (153)

Dans un contenant vissable de 20 mL, on place 44 mg (0,14 mmol) de <u>150</u>, 10 μ L (0,15 mmol) d'alcool aliylique (<u>53</u>), 14 mg (50% molaire) de Cul, 2,5 équivalents de DMEDA (<u>79</u>), 4 équivalents de Cs₂CO₃, 0,5 mL de dioxane (concentration de 0,3M) et un barreau magnétique. On agite à 80 °C durant 24h. On filtre la solution sur un pain de silice de 1 cm de haut et 4 cm de diamètre. On lave avec 200 mL d'acétate d'éthyle. On concentre le produit sous pression réduite. On purifie ensuite le produit brut par chromatographie éclair avec un gradient d'acétate d'éthyle dans l'hexane (10-20%) comme éluant sur un gel de silice traité avec 1% de triéthylamine pour obtenir 4,7 mg (0,020 mmol, 14%) de <u>153</u>.

14% (4,7 mg)

Huile incolore

RMN ¹H, δ (ppm, CDCl₃), J (Hz) : 0,88 (3H, t, J=6,6 C<u>H₃</u>-CH₂-CH₂-CH₂), 1,13-1,35 (6H, m, CH₃-C<u>H₂-CH₂-CH₂), 1,48-1,64</u> (3H, m, C<u>H₂-CH₂-CO-N et CH₂-CH=CH₂), 1,92-2,10 (2H, m, CH₂-CO-N), 2,33-2,48 (3H, m, C<u>H₂-CO-CH et CH₂-CH=CH₂), 3,26-3,38 (2H, m, C<u>H₂-N-C=O), 4,84</u> (1H, dd, J=5,3 et J=10,3 N-C<u>H</u>-C=O), 5,02-5,18 (2H, m, CH₂-CH=C<u>H₂), 5,58-5,80 (1H, m, CH₂-CH=CH₂)</u></u></u>

RMN ¹³C, δ (ppm, CDCl₃) : 13,9 (<u>C</u>H₃-CH₂-CH₂-CH₂), 18,3 (<u>C</u>H₂-CH₂-CO-N), 22,4 et 23,0 (CH₃-<u>C</u>H₂-CH₂-<u>C</u>H₂), 30,8 et 31,3 et 31,5 (CH₂-<u>C</u>H₂-CO-N et CH₃-CH₂-<u>C</u>H₂-CH₂ et <u>C</u>H₂-CH=CH₂), 40,4 et 43,8 (<u>C</u>H₂-CO-CH et <u>C</u>H₂-N-C=O), 58,4 (CH₂-CO-<u>C</u>H), 117,9 (CH₂-CH=<u>C</u>H₂), 133,6 (CH₂-<u>C</u>H=CH₂), 175,6 (CH₂-N-<u>C</u>=O), 207,8 (CH₂-<u>C</u>O-CH)

IR (pur), v (cm⁻¹): non disponible par manque de produit

SMBR (m/z, intensité relative) : 237 (M⁺, 9), 196 (M⁺ - CH₂CH=CH₂, 4), 138 (M⁺ - C=OC₅H₁₁, 100)

SMHR ($C_{14}H_{23}NO_2$): masse calculée = 237,1729 et masse trouvée = 237,1723 (déviation = 2,26 ppm)

Préparation du β-allyloxyénamide <u>160</u> et de la cétone γ ,δ-insaturée <u>161</u>

Dans un contenant vissable de 2 mL, on place 200 mg (0,81 mmol) de <u>52</u>, 200 μ L (1,6 mmol) d'hex-2-énol (<u>159</u>), 25 mg (16% molaire) de Cul, 38 mg (20% molaire) de phen (<u>94</u>), 2 équivalents de Cs₂CO₃, 0,5 mL de THF (concentration de 1,6M) et un barreau magnétique. On agite à 80 °C durant

31h. On filtre la solution sur un pain de silice de 1 cm de haut et 4 cm de diamètre. On lave avec 220 mL d'acétate d'éthyle. On concentre le produit sous pression réduite. On purifie ensuite le produit brut par chromatographie éclair avec un gradient d'acétate d'éthyle dans l'hexane (10-50%) comme éluant sur un gel de silice contenant 15% massique de K₂CO₃. Une portion pure du diastéréoisomère <u>161a</u> est isolée (voir caractérisation ci-dessous). Une partie de <u>161a</u> se retrouve dans un mélange avec <u>161b</u> et <u>160</u>. On détermine par RMN ¹H qu'on obtient 11 mg (0,050 mmol, 6%) de <u>160</u> et 34 mg (0,15 mmol, 19%) de <u>161</u>.

3-(1-vinylbutyl)-pyrrolizidine-2,5-diones (diastéréoisomère 161a)

19% (34 mg) déterminé par RMN

10% (18 mg) isolé

Huile incolore

RMN ¹H, δ (ppm, CDCl₃), J (Hz) : 0,86 (3H, t, J=7,0 C<u>H₃</u>-CH₂-CH₂-CH), 1,09-1,54 (4H, m, CH₃-C<u>H₂-CH₂-CH)</u>, 1,71-1,95 (1H, m, N-CH-C<u>H₂-CH₂-CH₂-C=O)</u>, 2,18 (1H, ddd, J=1,0 J=9,3 et J=18,4 N-CH-C<u>H₂-C=O)</u>, 2,34-2,78 (5H, m, N-CH-C<u>H₂-C=O et N-CH-C<u>H₂-CH₂-C=O)</u>, 4,01 (1H, d, J=4,4 C<u>H-CH-CH=CH₂), 4,14-4,32 (1H, m, N-C<u>H</u>-CH₂-C=O), 5,00-5,16 (2H, m, CH-CH-CH=C<u>H₂), 5,49-5,70 (1H, m, CH-CH-C<u>H</u>=CH₂)</u></u></u>

RMN ¹³C, δ (ppm, CDCl₃) : 13,8 (<u>C</u>H₃-CH₂-CH₂-CH), 20,3 (CH₃-<u>C</u>H₂-CH₂-CH), 29,0 et 32,4 et 32,5 (CH₃-CH₂-<u>C</u>H₂-<u>C</u>H et N-CH-<u>C</u>H₂-CH₂-C=O), 45,9 et

47,5 (N-<u>C</u>H-CH₂-<u>C</u>H₂-C=O), 56,8 (N-CH-<u>C</u>H₂-C=O), 64,0 (<u>C</u>H-CH-CH=CH₂), 117,9 (CH-CH-CH=<u>C</u>H₂), 137,7 (CH-CH-<u>C</u>H=CH₂), 175,0 (N-CH-CH₂-CH₂-<u>C</u>=O), 212,9 (N-CH-CH₂-<u>C</u>=O)

IR (pur), ν (cm⁻¹): 3044 (f, CH alcéniques), 2956, 2928 et 2870 (m, CH aliphatiques), 1756 (i, C=O cétone), 1692 (i, C=O lactame), 1397, 1140 et 913 (m, vinyl)

SMBR (m/z, intensité relative) : 221 (M^+ , 5), 193 (M^+ - CH_2CH_2 , 4), 164 (M^+ - CH_2CH_2 – CH_2CH_3 , 6), 138 (M^+ - C_6H_{11} , 100), 110 (M^+ - CH_2CH_2 - C_6H_{11} , 7) SMHR ($C_{13}H_{19}NO_2$) : masse calculée = 221,1416 et masse trouvée = 221,142 (déviation = 2,04 ppm)

6-(phénylthioxy)-5,6-dihydropyrrolizidin-3-one (162)

Dans un contenant vissable de 20 mL, on place 31 mg (0,13 mmol) de <u>52</u>, 17,5 μ L (0,17 mmol) de thiophénol (<u>157</u>), 5 mg (20% molaire) de Cul, 6 mg (20% molaire) de phen (<u>94</u>), 13 mg (40% molaire) de PPh₃ (<u>140</u>), 1,5 équivalents de K₃PO₄, 1,5 mL de toluène (concentration de 0,09M) et un barreau magnétique. On agite à 55 °C durant 115h. On ajoute 40 mL d'eau et 25 mL d'acétate d'éthyle. On extrait 3 fois avec 25 mL d'acétate d'éthyle. On lave la phase organique avec 75 mL d'une solution saturée de NaCI. On sèche la phase organique sur MgSO₄ anhydre, puis on filtre par gravité. On concentre le produit sous pression réduite. On purifie ensuite le produit brut

par chromatographie éclair avec un gradient d'éther diéthylique dans l'hexane (30-50%) comme éluant. On obtient 20 mg (0,087 mmol, 67%) de <u>162</u>.

67% (20 mg)

Solide blanc

Point de fusion : 73,9-74,8 °C

RMN ¹H, δ (ppm, CDCl₃), J (Hz) : 1,76-1,99 (1H, m, CH₂-CH₂-C=O), 2,25-2,82 (5H, m, CH₂-CH₂-C=O et CH₂-C=CH), 4,46 (1H, ddd, J=6,0, J=16,1 et J=26,2 CH₂-CH-N), 6,69 (1H, s, N-CH=CS), 7,20-7,44 (5H, m, CH aromatiques)

RMN 13C, δ (ppm, CDCl₃) : 29,3 (<u>C</u>H₂-CH₂-C=O), 35,7 (CH₂-<u>C</u>H₂-C=O), 39,8 (CH₂-<u>C</u>H-N), 62,1 (<u>C</u>H₂-C=CH), 122,2 (CH₂-C=<u>C</u>H) 127,1 et 127,3 (CH₂-<u>C</u>=CH et aromatique *para*), 129,2 (<u>C</u> aromatiques *méta*), 130,4 (<u>C</u> aromatiques *ortho*), 133,4 (S-<u>C</u> aromatique), 170,6 (CH-N-<u>C</u>=O)

IR (pur), v (cm⁻¹): 3072 (m, CH aromatiques), 2948, 2907 et 2855 (m, CH aliphatiques), 1680 (i, C=O lactame), 1577 (m, C-S)

SMBR (m/z, intensité relative) : 231 (M⁺, 100), 176 (M⁺ - C₄H₇, 43), 122 (M⁺ - SPh, 17)

SMHR ($C_{13}H_{13}NOS$): masse calculée = 231,0718 et masse trouvée = 231,0716 (déviation = 0,93 ppm)

ANNEXE A

SPECTRES RMN ¹H ET ¹³C

Les spectres RMN ¹H sont tous présentés selon l'ordre de numérotation des composés. Ils sont suivis, dans le même ordre, des spectres RMN ¹³C. Le solvant utilisé pour la solubilisation de tous les produits est le CDCl₃, ce qui permet d'expliquer le pic à 7,26 ppm dans les spectres de proton et les trois pics situés entre 77 et 80 ppm dans les spectres de carbone.

Spectre A.4 5-éthoxypyrrolidin-2-one (119)

Spectre A.7 5-allénylpyrrolidin-2-one (<u>125</u>)

Spectre A.10 trans-5-(2,3-dibromoallyl)-pyrrolidin-2-one (136)

Spectre A.11 6-bromo-5,6-dihydropyrrolizidin-3-one (141)

Spectre A.12 trans-1,2-diiodohept-1-ène (149)

Spectre A.13 N-(trans-2-iodohept-1-ényl)-pyrrolidin-2-one (150)

Spectre A.14 N-(trans-1-iodométhylènehexyl)-pyrrolidin-2-one (151)

Spectre A.15 N-(trans-2-(allyloxy)-hept-1-ényl)-pyrrolidin-2-one (152)

Spectre A.16 N-(1-allylheptan-2-one)-pyrrolidin-2-one (153)

Spectre A.18 6-(phénylthioxy)-5,6-dihydropyrrolizidin-3-one (162)

Spectre A.19 trans-5-(2,3-diiodoallyl)-pyrrolidin-2-one (51)

Spectre A.20 6-iodo-5,6-dihydropyrrolizidin-3-one (52)

Spectre A.21 5-propargylpyrrolidin-2-one (118)

Spectre A.22 5-éthoxypyrrolidin-2-one (119)

Spectre A.23 5-iodométhylpyrrolidin-2-one (121)

Spectre A.24 Pent-4-énamide (122)

Spectre A.25 N-(tert-butoxycarbonyl)pent-4-énamide (131)

Spectre A.26 N-(tert-butoxycarbonyl)-5-iodométhylpyrrolidin-2-one (132)

Spectre A.27 trans-5-(2,3-dibromoallyl)-pyrrolidin-2-one (136)

Spectre A.28 6-bromo-5,6-dihydropyrrolizidin-3-one (141)

Spectre A.29 trans-1,2-diiodohept-1-ène (149)

Spectre A.30 N-(trans-2-iodohept-1-ényl)-pyrrolidin-2-one (150)

Spectre A.31 N-(trans-1-iodométhylènehexyl)-pyrrolidin-2-one (151)

Spectre A.32 N-(trans-2-(allyloxy)-hept-1-ényl)-pyrrolidin-2-one (152)

Spectre A.33 N-(1-allylheptan-2-one)-pyrrolidin-2-one (153)

Spectre A.34 3-(1-vinylbutyl)-pyrrolizidine-2,5-dione (161a)

Spectre A.35 6-(phénylthioxy)-5,6-dihydropyrrolizidin-3-one (162)

RÉFÉRENCES

- 1. Evans, T.a., Alkaloids, in Pharmacognosy. 2009. p. 353-415.
- 2. Aniszewski, T., Alkaloids Secrets of Life, in Alkaloid Chemistry, Biological Signifiance, Applications and Ecological Role, Elsevier, Editor. 2007.
- 3. Daly, J.W., Alkaloids from Amphibian Skin : A Tabulation of Over Eight-Hundred Compounds. J. Nat. Prod., 2005. 68: p. 1556-1575.
- Garrafo, H.M., Alkaloids from Bufonid Toads (Melanophrynzscus): Decahydroquinolines, Pumiliotoxins and Homopumiliotoxins, Indolizidines, Pyrrolizidines and Quinolizidines. J. Nat. Prod., 1993.
 56(3): p. 357-373.
- 5. Jones, T.H., Further alkaloids common to ants and frogs: decahydroquinolines and a quinolizidine. J. Chem. Ecol., 1999. **25**(5): p. 1179-1193.
- Saporito, R.A., Sex-Related Differences in Alkaloid Chemical Defenses of the Dendrobatid Frog Oophaga pumilio from Cayo Nancy, Bocas del Toro, Panama. J. Nat. Prod., 2010. 73: p. 317-321.
- 7. Wink, M., Allelochemical activities of pyrrolizidine alkaloids: Interaction with neuroreceptors and acetylcholine related enzymes. J. Chem. Ecol., 1997. **23**(2): p. 399-416.
- 8. Stockman, R.A., A two-directional approach to pyrrolizidines: total syntheses and biological evaluation of alkaloid cis-223B and (+-)-xenovenine. Chem. Commun., 2013.
- Takahata, H., Total Synthesis of Pyrrolizidines 223H', 239K', 265H', and 267H' Found in Madagascan Frogs (Mantella) and Their Affinities for Nicotinic Acetylcholine Receptor. Bioorg. Med. Chem. Lett., 2000. 10; p. 1293-1295.
- 10. Xiang, Y.G., One-pot cross-coupling of N-acyl N,O-acetals with a,bunsaturated compounds. Chem. Commun., 2009: p. 7045-7047.
- 11. Lhommet, G., Synthesis of Ant Venom Alkaloids from Chiral & Enamino Lactones: (3S,5R,8S)-3-Heptyl-5-methylpyrrolizidine. J. Org. Chem, 1992. 57: p. 2163-2166.
- 12. Huang, P.-Q., One-pot reductive coupling of N-acylcarbamates with activated alkenes: application to the asymmetric synthesis of pyrrolo[1,2-a]azepin-5-one ring system and (-)-xenovenine. Org. Biomol. Chem., 2012. **10**: p. 1275-1284.

- 13. Gebauer, J., Stereoselective synthesis of substituted N-heterocycles via sequential cross metathesis—reductive cyclization. Tetrahedron Lett., 2005. **46**: p. 43-46.
- Takahata, H., A Short, Chirospecific Synthesis of the Ant Venom Alkaloid (3R,5S,8S)-3,5-Dialkylpyrrolizidine. J. Org. Chem, 1992. 57: p. 4401-4404.
- Arredondo, V.M., Organolanthanide-Catalyzed Hydroamination/Cyclization. Efficient Allene-Based Transformations for the Syntheses of Naturally Occurring Alkaloids. J. Am. Chem. Soc., 1999. 121: p. 3633-3639.
- Jiang, T., A Stereocontrolled Synthesis of (+-)-Xenovenine via a Scandium(III)-Catalyzed Internal Aminodiene Bicyclization Terminated by a 2-(5-Ethyl-2-thienyl)ethenyl Group. Org. Lett., 2010. 12(19): p. 4271-4273.
- 17. Sharpless, K.B., Catalytic Asymetric Dihydroxylation. Chem. Rev., 1994. 94: p. 2483-2547.
- 18. Figadère, H., *Contribution to the total synthesis of caribenolide l.* Tetrahedron Lett., 2006. **47**: p. 5905-5908.
- 19. Beckwith, A.L.J., *Some guidelines for radical reactions.* J. Chem. Soc. Chem. Comm., 1980: p. 482-483.
- Houk, K.N., A force-filed model for intramolecular radical additions. J. Org. Chem, 1987. 52(6): p. 959-974.
- Myers, A.G., New and Stereospecific Synthesis of Allenes in a Single Step from Propargylic Alcohols. J. Am. Chem. Soc., 1996. 118: p. 4492-4493.
- Daoust, B., Copper-promoted iodovinylation of amides: synthesis of beta-functionalized enamides. Tetrahedron Lett., 2008. 49: p. 4196-4199.
- Rahem, N., Synthèse de précurseurs carbonylés γ,δ–insaturés via un réarrangement de Claisen [3,3] : vers une nouvelle voie de synthèse d'acides aminés non naturels. 2010, UQTR et UQAM.
- 24. Ullmann, F., Ueber Symmetriche Biphenylderivate. Liebigs Ann., 1904. 332(1-2): p. 38-81.
- Ullmann, F., Ueber die Phenylirung von Phenolen. Chem. Ber., 1905.
 38(2): p. 2211-2212.
- 26. Goldberg, I., Ueber Phenylirungen bei Gegenwart von Kupfer als Katalysator. Chem. Ber., 1906. **39**(2): p. 1691-1692.
- 27. Thomas, A.W., Ullmann Condensation : Modern Synthetic Methods for Copper-Mediated C(aryl)-O/N/S Bond Formation. Angew. Chem. Int. Ed., 2003. **42**: p. 5400-5449.
- Sperotto, E., *The mechanism of the modified Ullmann reaction*. Dalton Trans., 2010. **39**: p. 10338-10351.

- 29. Buchwald, S.L., *Palladium-catalyzed intermolecular Carbon-Oxygen* bond formation : a new synthesis of aryl ethers. J. Am. Chem. Soc., 1997. **119**: p. 3395-3396.
- Buchwald, S.L., Novel electron-rich bulky phosphine ligands facilitate the Palladium-catalyzed preparation of diaryl ethers. J. Am. Chem. Soc., 1999. 121(4369-4378): p. 4369.
- 31. Buchwald, S.L., An efficient intermolecular palladium-catalyzed synthesis of aryl ethers. J. Am. Chem. Soc., 2001. **123**: p. 10770-10771.
- 32. Hartwig, J.F., Palladium-catalyzed C-O coupling involving unactivated aryl halides. Sterically induced reductive elimination to form the C-O bond in diaryl ethers. J. Am. Chem. Soc., 1999. **121**: p. 3224-3225.
- 33. Hartwig, J.F., Palladium-catalyzed formation of diaryl ethers from aryl bromides. Electron poor phosphines enhance reaction yields. Tetrahedron Lett., 1997. **38**(46): p. 8005-8008.
- 34. Evano, G., Copper-Mediated Coupling Reactions and Their Applications in Natural Products and Designed Biomolecules Synthesis. Chem. Rev., 2008. **108**: p. 3054-3131.
- 35. Molander, G.A., Handbook of Reagents for Organic Synthesis -Catalyst Components for Coupling Reactions. 2008: Wiley.
- 36. Fukuyama, T., *Total Synthesis of the Duocarmycins.* J. Am. Chem. Soc., 2003. **125**: p. 6630-6631.
- Paine, A.J., Mechanisms and models for copper mediated nucleophilic aromatic substitution. 2. Single catalytic species from three different oxidation states of copper in an Ullmann synthesis of triarylamines. J. Am. Chem. Soc., 1987. 109: p. 1496-1502.
- 38. Hunt, A., Schaum's A-Z Chemistry. 2003: McGraw-Hill.
- 39. Clugston, M., Advanced Chemistry. 2000: Oxford University Press.
- 40. Rodgers, G.E., Introduction to Coordination, Solid State, and Descriptive Inorganic Chemistry. 1994, New-York: McGraw-Hill.
- 41. Atkins, P.W., *Chimie Inorganique*. 3ème ed. 2001: DeBoeck Université.
- 42. Beletskaya, I.P., Copper in cross-coupling reactions : The post-Ullmann chemistry. Coord. Chem. Rev., 2004. **248**: p. 2337-2364.
- 43. Zhang, H., Amino acid promoted Cul-catalyzed C-N bond formation between aryl halides and amines or N-containing heterocycles. J. Org. Chem., 2005. **70**: p. 5164-5173.
- 44. Nageswar, Y.V.D., *Copper iodide as a recyclable catalyst for Buchwald N-arylation.* Eur. J. Org. Chem., 2010: p. 6678-6684.
- 45. Pan, X., Cul/N,N-Dimethylglycine-Catalyzed Coupling of Vinyl Halides with Amides or Carbamates. Org. Lett., 2004. 6(11): p. 1809-1812.

- Jiang, B., Successive Copper(I)-Catalyzed Cross-Couplings in One Pot : A Novel and Efficient Starting Point for Synthesis of Carbapenems. Org. Lett., 2008. 10(13): p. 2737-2740.
- Sanapo, G.F., Synthèse d'énamides β-fonctionnalisés : vers une nouvelle voie de préparation stéréosélective des acides aminés non naturels. 2007, UQTR et UQAM.
- 48. Ma, D., Copper-catalyzed ligand promoted Ullman-type coupling reactions, in Catalysis Without Precious Metals, R.M. Bullock, Editor. 2010. p. 213-233.
- 49. Reider, P.J., Ullmann Diaryl Ether Synthesis : Rate Acceleration by 2,2,6,6-Tetramethylheptane-3,5-dione. Org. Lett., 2002. **4**(9): p. 1623-1626.
- 50. He, H., Synthesis of diaryl ethers through the copper-catalyzed arylation of phenols with aryl halides using microwave heating. Tetrahedron Lett., 2003. **44**: p. 3445-3446.
- 51. Wan, Z., Vinyl aryl ethers from copper-catalyzed coupling of vinyl halides and phenols. Tetrahedron Lett., 2003. **44**: p. 8257-8259.
- 52. Ma, D., Cul/N,N-dimethylglycine-catalyzed cross-coupling reaction of vinyl halides with phenols and its application to the assembly of substituted benzofurans. Synlett, 2005(11): p. 1767-1770.
- 53. Buchwald, S.L., Copper-catalyzed coupling of aryl iodides with aliphatic alcohols. Org. Lett., 2002. **4**(6): p. 973-976.
- 54. Keegstra, M.A., Copper-catalyzed preparation of vinyl-ethers from unactivated vinylic halides. Tetrahedron, 1992. **48**(13): p. 2681-2690.
- 55. Buchwald, S.L., *A domino-catalyzed C-O coupling-Claisen rearrangement process.* J. Am. Chem. Soc., 2003. **125**: p. 4978-4979.
- 56. Claisen, L., Über Umlagerung von Phenol-allyläthern in C-Allylphenole. Chem. Ber., 1912. **45**(3): p. 3157-3166.
- 57. Hiersemann, M., *The Claisen Rearrangement: Methods and Applications*. 2007: John Wiley & Sons. 591.
- 58. Kurth, M.J., *Enantioselective Preparation of 3-Substituted-4-pentenoiAc cids via the Claisen Rearrangement.* J. Org. Chem, 1985. **50**(26): p. 5769-5775.
- 59. Majumdar, K.C., *The thio-Claisen rearrangement* 1980–2001. Tetrahedron, 2003. **59**: p. 7251-7271.
- 60. Gozzo, F.C., *Regioselectivity in Aromatic Claisen Rearrangements*. J. Org. Chem, 2003. **68**: p. 5493-5499.
- 61. Castro, A.M.M., *Claisen Rearrangement over the Past Nine Decades.* Chem. Rev., 2004. **104**: p. 2939-3002.
- 62. Lutz, R.P., *Catalysls of the Cope and Clalsen Rearrangements.* Chem. Rev., 1984. **84**(3): p. 205-247.
- 63. Ziegler, F.E., *The Thermal, Aliphatic Claisen Rearrangement.* Chem. Rev., 1988. **88**(8): p. 1423-1452.

- 64. Speckamp, W.N., *NaBH4 reduction of cyclic imides.* Tetrahedron, 1975. **31**: p. 1437-1441.
- Karstens, W.F.J., Palladium-catalysed coupling/cyclisation reactions of allene-substituted lactams. Tetrahedron Lett., 1997. 38(35): p. 6275-6278.
- 66. Harrowven, D.C., *Potassium carbonate-silica : a highly effective stationary phase for the chromatographic removal of organotin impurities.* Chem. Commun., 2010. **46**: p. 6335-6337.
- 67. Lin, H.-Y., Synthesis of (+-)-7-Hydroxylycopodine. Org. Lett., 2011. **13**(5): p. 1234-1237.
- 68. O'Brien, P., Bispidine-derived N-acyliminium ions in synthesis: stereocontrolled construction of the BCD rings of sparteine. Tetrahedron Lett., 2000. **41**: p. 6167-6170.
- Webb, M.R., A general route to the Streptomyces-derived inthomycin family: the first synthesis of (+)-inthomycin B. Tetrahedron Lett., 2006.
 47: p. 549-552.
- 70. Clayden, J., Organic Chemistry, ed. O.U.P. Oxford. 2004.
- Taguchi, T., Regio-controlled iodoaminocyclisation reaction of an ambident nucleophile mediated by basic metallic reagent. J. Org. Chem., 1997. 62: p. 7330-7335.
- Taguchi, T., Regio-controlled iodoaminocyclisation reaction of an ambident nucleophile mediated by LiAl(Ot-Bu)₄. Tetrahedron Lett., 1997. 38(4): p. 615-618.
- 73. Corey, E.J., An efficient process for the bromolactamisation of unsaturated acids. Tetrahedron Lett., 2007. 48: p. 7567-7570.
- 74. Singh, O.V., Iridium(I)-catalyzed regio- and enantioselective allylic amidation. Tetrahedron Lett., 2007. 48: p. 7094-7098.
- 75. Chang, S., A short and concise route to (-)-coniceine. Tetrahedron: Asymmetry, 2001: p. 2621-2624.
- 76. Yadav, J.S., Stereoconvergent synthesis of C1-C17 and C18-C25 fragments of bafilomycin A1. Tetrahedron, 2008. **64**: p. 1971-1982.
- Dias, L.C., *Total synthesis of (+)-Crocacin D. J.* Org. Chem., 2005. 70: p. 2225-2234.
- Kamimura, A., Stereoselective conjugate addition of lactams to nitroalkenes and formal total synthesis of indolizidine 167B. Tetrahedron, 2007. 63: p. 11856-11861.
- 79. Venkataraman, D., Formation of Aryl-Nitrogen, Aryl-Oxygen, and Aryl-Carbon Bonds Using Well-Defined Copper(I)-Based Catalysts. Org. Lett., 2001. 3(26): p. 4315-4317.
- 80. Nandurkar, N.S., *N-Arylation of aliphatic, aromatic and heteroaromatic amines catalyzed by copper bis(2,2,6,6-tetramethyl-3,5-heptanedionate)*. Tetrahedron Lett., 2007. **48**: p. 6573-6576.

- 81. Buchwald, S.L., *Synthesis of N-Aryl Hydrazides by Copper-Catalyzed Coupling of Hydrazides with Aryl Iodides.* Org. Lett., 2001. **3**(23): p. 3803-3805.
- 82. Pu, Y.-M., An Expedient and Multikilogram Synthesis of a Naphthalenoid H3 Antagonist. Org. Process Res. Dev., 2007. **11**: p. 1004-1009.
- 83. Venkataraman, D., *Formation of aryl-nitrogen bonds using a soluble copper(I) catalyst.* Tetrahedron Lett., 2001. **42**: p. 4791-4793.
- 84. Buchwald, S.L., *The role of chelating diamine ligands in the Goldberg reaction : a kinetic study on the copper-catalyzed amidation of aryl iodides.* J. Am. Chem. Soc., 2005. **127**(12): p. 4120-4121.
- 85. Nicolai, S., *A Palladium-Catalyzed Aminoalkynylation Strategy towards Bicyclic Heterocycles: Synthesis of (+-)-Trachelanthamidine.* Angew. Chem. Int. Ed., 2011. **50**: p. 4680-4683.
- 86. Karstens, W.F.J., *N*-Acyliminium ion chemistry and palladium catalysis : a useful combination to obtain bicyclic heterocycles. Tetrahedron, 2001. **57**: p. 5123-5130.
- 87. Terent'ev, A.O., *Facile Synthesis of E-Diiodoalkenes: H2O2-Activated Reaction of Alkynes with Iodine.* Synth. Commun., 2007. **37**: p. 3151-3164.