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1.1 Résumé 

Les processus écologiques à l'échelle de l'écosystème, comme la décomposition, 

peuvent être affectés par des modifications dans la composition des arbres du couvert 

forestier résultant du climat et de l'usage des terres au sein des écosystèmes tropicaux. Le 

principal objectif de ce premier chapitre était d'examiner l'influence de la diversité des 

arbres tropicaux sur la décomposition de racines à deux échelles spatiales distinctes. Ceci 

a été réalisé en mesurant les taux de décomposition et l'activité enzymatique des 

décomposeurs à l'échelle de l'unité d'échantillonnage (sac de litière 0.002m2
) ou a l'échelle 

de la parcelle (taille de parcelle 2000m2
), soit deux échelles et qui sont liées directement 

(transfert de nutriments) ou indirectement (microclimat) à la diversité des arbres. Nous 

avons également évalué 1) comment, à l'échelle de l'unité d'échantillonnage, les effets nets 

de la diversité seraient influencés par l'hétérogénéité biotique et abiotique et 2) à quel point 

la variation interspécifique des traits fonctionnels racinaires des arbres tropicaux explique 

la décomposition racinaire grossière. Les sacs de litière ont été disposés sur deux sites au 

Panama, Sardinilla et Agua Salud caractérisés par des propriétés de sol contrastées. Les 

sacs de litière comprenant différents mélanges d'espèces ont été placés pour 

décomposition sous couvert forestier soit de faible ou de forte diversité. L'influence de la 

diversité des arbres, à l'échelle de l'unité d'échantillonnage et de la parcelle, a été étudiée 

en plaçant une espèce seule ou cinq espèces locales d'arbres tropicaux mélangés dans 

différentes conditions de diversité du couvert forestier. Les sacs de litière ont été mis à 

décomposer en juillet 2011 et collectés après 50,160/195 (Agua Salud/Sardinilla), 310, 

et485 jours afin de déterminer les taux de décomposition en utilisant la perte en masse. 

En plus, l'activité des enzymes impliqués dans les cycles du carbone, de l'azote et du 

phosphore a été mesurée après 485 jours de décomposition. Nos résultats ont montré que 

la diversité des arbres n'influence pas significativement la décomposition des racines, et ce 

peu importe l'échelle spatiale étudiée. Cependant, une importante variance des réponses à 

l'échelle de l'unité d'échantillonnage a été observée, suggérant une forte hétérogénéité 

spatiale. L'importance des effets du site, surtout associés aux caractéristiques du sol ainsi 

que la densité des espèces de décomposeurs de racines ont contribué à une variation 

intraspécifique des taux de décomposition. Les variations interspécifiques des traits 

racinaires expliquaient entre 35 (Sardinilla) et 80% (Agua Salud) des taux de décomposition 

des racines. Notre étude suggère que les changements en termes de décomposition ne sont 

pas uniquement influencés par la diversité des arbres du couvert forestier mais plutôt par 

des changements dans la composition fonctionnelle des forêts tropicales qui peuvent 

altérer la quantité et la qualité des entrées de litières racinaires. 



Mots-clés: racine, effets de diversité, processus souterrain, échelles spatiales, activités 

enzymatiques, sol, traits fonctionnels racinaires, cycle des nutriments, Panama. 
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1.2 Abstract 

Ecosystem-level ecological processes, such as decomposition, may be affected by 
changes in tree overstory composition that may result from climate and land-use change 
in tropical ecosystems. Thus, our objective in this chapter was to examine the influence 
of diversity of tropical trees on coarse root decomposition by measuring decomposition 
rates and enzymatic activity at two spatial scale s, micro - (within bag: 0.02m 2

) and 
meso- (wi thin plot: 2000 m 2

) scales, that are related to direct, e.g. nutrient 
transfer, and indirect effects, e.g. microclimate , of tree diversity on this 
ecosystem process, respectively. As well, we evaluated: 1) how net diver sity 
effects at the micro-scale could be affected by abiotic and biotic 
heterogeneity and 2) the extent to which interspecific variation in root functional 
traits of tropical species explained coarse root decomposition. We established coarse root 
decomposition bags that varied in species composition in two sites in central Panama 
with contrasting soil properties, Sardinilla and Agua Salud. The influence of tree diversity 
at both spatial scales was examined using tree overstory plots of either low or high diversity 
(meso-scale) and decomposition bags with low, i.e. single-species coarse roots, and high, 
i.e. a five species coarse root mixture, diversity levels (micro-scale). Decomposition bags 
were established in July 2011 and collected after 50, 160/ 195 (Agua Salud/Sardinilla), 310, 
and 485 days to determine decomposition rates using mass loss. In addition, activity 
of enzymes involved in carbon, nitrogen, and phosphorus cycles were measured after 
485 days of decomposition. Our results showed that tree diversity did not significantly 
influence coarse root decomposition and enzymatic activity at either of the studied spatial 
scales. However, considerable variation of net diversity effects at the micro-scale was 
observed, suggesting a strong effect of environmental heterogeneity. The importance of 
site effects, predominantly differences in soil characteristics, and species identity of the 
decomposer root material contributed to intraspecific variation in decomposition rates. 
Interspecific variation in root traits explained 35 and 80 % of variation in coarse root 
decomposition rates in Sardinilla and Agua Salud, respectively. Our study suggests that 
changes in decomposition is not mediated by tree overstory diversity perse, but rather by 
changes in the functional composition of tropical forests that may alter the quan tity and 
quality of root litter input. 

Keywords: coarse roots, diversity effects, below-ground processes, spatial scales, 
enzymatic activities, soil, root functional traits, nutrient cycle, Panama 



GENERAL INTRODUCTION 

Ort;anic matter decomposition is the reciprocal process of p!unary plant 

production in terrestrial ecosystems, whereby assimilateci carbon retained in stmctural 

plant biom%s is transferred to the soil as leaf, wood, or root litter anc'. released by 

decomposer communities (Malhi and Grace 2000, Gessner et al. 2010). Studies in 

boreal; ten:?erate, and tropical forests report that large portions of assirr.:lated carbon 

are transfer:ed belowground (Vogt et al. 1986, Grays ton et al. 1996, MalL. et al. 1999), 

yet little rer::1.ains known about the turnover of belowgrou:1d components, f·:.ch as coarse 

roots of tr(.::s, particularly in tropical regions (Giardina e:: al. 2005, Meiste:: et al. 2012). 

Tropical fo --:ests play an important role in the global nu trient cycle (Vitouse!< and Sanford 

1986, Mall"i et al. 1999) to which they con tri bute ~70 % of terres trial nitr ::)gen fixation 

(TownsenC: et al. 2011) and stock an estimated 40 % of terrestrial carbo·:; (Soepadmo 

1993). Hcwever, nutrient cycles in tropical ecosystems are being altered by land use 

change (Fc~ey et al. 2003, Townsend et al. 2011), principally through the transformation 

of vege tati·:ms covers, e.g. forest to agricultural and pastt.::.re fields, and the es tablishment 

of native c;~ exotic tree plantations (Achard et al. 2002, Lambin et al. 2003, Piotto et al. 

2010), brin;;ing uncertainty to global estimates of terrestr:al carbon. This ::.hesis aims to 

improve ot:;r knowledge of coarse root decomposition ic tropical forests i::-o the context 

of multi-sp F:cies plantations with the hope of improving cur estima tes of tlùs component 

of the carb::~n cycle for global models. 

Dei.pite their important contribution to the nutrient cycle ~.n terrestrial 

ecosystems~ belowground processes have been less studid than abovegroccd processes, 

mostly due to logistical challenges. Belowground carbon could be undere~'::imated by as 

much as 4C' % globally (Robinson 2007), increasing estimates of belowgw(::'1d carbon in 

tropical foi ests from 74 to 123 Pg and total tropical forest carbon stocks' from 553 to 

602 Pg (Robinson 2007) . In a meta-analysis on global :patterns of root ':::.Jrnover that 

included g;_;aminoids, shmbs and fine tree roots, Gill and Jackson (2000) f.:mnd a steady 

increase with decreasing latitude in annual turnover of maximum root biomass ranging 

•1 
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on average··. from 13% in boreal ecosys tems to 73% El tropical ecosys ~~ms . When 

contras ting . tree root diameter classes, fine root litter had an annual tur:J.over rate of 

56%, while larger tree root sizes had an annual turnover rate of only 10%, cxhibiting 

considerabl~ variation (Gill and Jackson 2000). Across ecosystems globally, the fastest 

decomposi -:.i.on rates of aggregated li tter types was found .'n tropical rain forests with 1.3 

g g·' yr·1 ar.d the slowest rates were. found in tundra w;th 0.18 g g·1 yr·' (Zhang et al. 

2008). However, only seven studies on root decomposition were includeè in the meta­

analysis, wh ile for other groups, such as broad-leaved litter, as many as 154 studies were 

i.ncluded (Z:l1ang et al. 2008). Contributions of root turnover to the carbon cycle may be 

currently Ué~ der- or overestimated si.mply due to the lack cf available inform:::tion. 

To :iate, tl1e dominant focus in decomposition stt;dies has been on ~~af litter and 

on the de~: ~rmination of which factors influence their decomposition r<. tes, such as 

climatic cc 1ditions (Aerts 1997, Hattenschwiler et al. ::.011), decompose.'.: community 

compositio::1 (Schmidt et al. 2008, Gessner et al. 2010, H znda et al. submit': ~d) and litter 

quality (Cc.rnwell et al. 2008, Z hang et al. 2008). Whether these ;~.ctors affect 

belowgrou!',d decomposition similarly remains to be detei:~in.ined. In the me~:a-analysis by 

Silver and Miya (2001), studies on root decomposition were limited mostly to fine root 

decomposition in temperate forests and · grasslands. Contrary to ·expectations, 

comparati,l"! studies on leaf litter and root litter decomposition have reported 

contradictè ëy results (Cusack et al. 2009, Hobbie et al. 20'".0). Cusack et al. (2009) found 

no differences between leaf and root decomposition rates in a tropical forest; although 

different dzivers explained iliei.r respective decomposition. Root decomposition was 

explained r.1ainly by temperature and lignin concentratio ::t, hile leaf deco::nposition by 

seasonality '(Cusack et al. 2009). On the other hand, Hob::tie et al. (2010) f( ind that leaf 

decomposi';ion rates were not correlated with root decunposition rates. :Jne possible 

explanatior: for de-coupled leaf and. root decomposition rates is related tc litter quality 
·' ' 

(Silver anè, ,Miya 2001). The same species could have 1iifferent leaf, wc?d, and root 

chemical c:;:mposition, likely reflecting different physioL(gical functions Ç{!estoby and 

Wright 20C6, Baraloto et al. 2010). Furthermore, different traits poss;.Jly influence 
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above and 'iJelowground decomposition across species, v-rhich would resul': in root and 

leaf deconL?osition rates with contrastirtg directions and magnitudes (P~obbie et al. 

2010). In ~temperate tree species, fast leaf decompositi·::m was associatec' with higher 

hemicellulde content and thinner leaves, while fas ter roo~~ decomposition \"las associated 

with higher calcium and lower lignin content (Hobbie et al. 2010). 

The majority of studies on decomposition have been limited to singi.e species leaf 

litter (Prescott 2010). Still, studies on decomposition of l ~af litter mixtures from various 

biomes ar:'.i ecosystems have highlighted the importance of considering species 

interactionf in arder to detect additive or non-additive effects of species co::nposition on 

ecosystem function (e.g., Bail etal. 2008, Schindler and Gessner 2009, Gie[,elmann et al. 

2010). Add.i tive effects occur when the decomposition rate in mixtures is equal to the 

sum of li tt~r decay rates of each species, while non-aè,ditive effects occlt when the 

decomposi :ion rate of the mixture is grea ter or less than the sum of decay rates of 

individual ~?ecies (Gartner and Cardon 2004, Hattenschwiler et al. 2005). \X'hile additive 

effects hav ~ emphasized, in part, the importance of specie's identity and ho"~ species with 

divergent e:·~composition rates can cancel each other out ·!rhen 1TILxed toget:~·er (Bali et al. 

2008), non-additive effects have illustrated the importanc ~ of species interal_tjons in litter 

mixtures, s'howing either synergistic (positive) or antdgonistic (negativt) effects on 

decomposi:ion (Gartner and Cardon 2004). Using a plant communit<; perspective 

enables diversity or species composition effects on decomposition to be evaluated 

(Hattensch-viler et al. 2005). I-Iowever, studies where ~tter mixtures deo mpose in a 

'common €~arden ' type environment could limi t the spatial scale at which cliversity effects 

opera te to , he scale of the litter bag, as they exclude the, potential influenc.~ of di ersity 

of the surrçunding plant community. 

Decomposer communities, comprised of detritivores and microbial 

decomposers, play a vital role in the decomposition ptocess (Gessner et al. 2010). 

Microbial '~ecomposers break clown lignocellulose and r.~tycle detrital nut.!ients such as 

nitrogen, f'hosp horus, and sulfur making use of enzy:nes (Sinsabaugh · et al. 1991, 

li ol 
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Sinsabaugh' et al. 2002). These enzymes are used to catalyze the degradation of plant 

biomass, b:,_eaking clown complex chemical compounds irlto simpler compo;.mds that are 

more reacl'y assimilated (Sinsabaugh et al. 1991, Sinsab:mgh et al. 2002) . Enzymatic 

activity has . been used as a biochemical measure of insta~taneous degrada bon rates and 

as a robust indicator of microbial activity at different stages of degradatior. (Sinsabaugh 

et al. 1991, Sinsabaugh et al. 2002). Given the varia tien of enzymatic 2. :tivity a cross 

decomposi~g plant species (Allison and Vitousek 2004), measuring the a::tivity of key 

enzymes ir:.volved in C, N and P degradation may help to understand :he observed 

variation ir: decomposition rates in species-rich tropical fcrests. 

This thesis presents two chapters that explore v2::ious factors that influence the 

decomposi:ion of coarse roots in tropical forest plantations and a natc:ral forest in 

central Panama. In the fust chapter, the effects cf tree diversity ::. n tree root 

decomposit-ion rates and enzymatic activity are studied at two spatial so:ales and in 

contrasting decomposition environments. More specifically, we ask 1) how does tree 

species div~rsity influence decomposition of tree roots at mesa- scale (witL.in plot: 2000 

m~, e.g. ir'direct effects of tree overstory on decomposer communities, r:1icro-climate 

conditions. :and soil properties, and the decomposition at' micro- scale (wieun bag: 0.02 

m~, e.g. è ~rect effects due to nutrients transfer amor:.g litters and cot;~ plementarity 

resources b r decomposers and 2) will species functiorial identity, i.e. rc··:)t functional 

traits, con l:':ibute to understanding root decomposition' rates? In the se<:•:)11d chapter, 

enzymatic ~.ctivity, a method typically used in sail scienœ, is adapted for ui; e in the root 

decomposiSon study presented in the previous chapter for use as an inCicator of the 

m.icrobial decomposer community. Specifically, we as~{ 1) to what ex <-=nt does the 

activity of particular enzymes sampled on decomposed 
1 
roots exp lain ch·,~nges in root 

decomposiüon over cime and 2) is this enzymatic activity influencer:] by species 

compositiqn of litter mixtures and decomposition enviror:.ment? 

Thi3 thesis attempts to offer several novel contributions to ~he scientific 

commUluty. Firstly, few studies on tree diversity effects have focused on belowground 
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componen~s such as coarse root decomposition and micr~;bial decomposers, even Jess in 

tropical ecosys tems. Secondly, in contrast tb most st:udies on diversi ty effects on 

decomposition, the use of multip le spatial scales pro7ides a more complete plant 

community perspective and the comparison of different forest sites allows for observing 

the influen ::e of site-specifie external factors on the diversi ty and root decomposition 

relationshit= (Chapter 1). Thirdly, we assess the relai:ivc importance of particular 

structural, chemical and anatomical functional traits that are rela ,<!d to root 

decomposi ::ion (Chapter 1). Given that root decomposition is a complex process, the 

exploratior:, of contrasting and promising approachcs th~ t provide a link 1:. :!tween plant 

componen ~s and microbial decomposer communities is rcquired. The ada;:·tation of the 

method of soil enzymatic activity to decomposed roots in our study (chapt-'~r 2) provides 

a fourth nsvel contribution whcrc wc dcscribe clear pa':ameters to quant' fy enzymatic 

activity on dead roots. We also show the relationship between root decor:.~position and 

various enzymes involved in the C, N, and P nutrient cycles over cime and identify 

factors tha t could influence enzymatic activity during root decomposition (chapter 2). 

To address these various questions, we conducted a root decomposi tion field 

experiment during 485 days using coarse roots from five native tropical tree species that 

encompass a broad range of life histories strategies. Eoots decomposed in two tree 

overstoty t~.iversity levels, low or high diversity, at two sites, Sardinilla anè. Agua Salud, 

under different soil conditions. Two diversity levels were also used within ;:oot bags and 

consisted of either low (single species) or high (five species mixtures) dive~sity. A suite 

of various 'structural, chemical and anatomical functiocal traits was measured on ail 

species. E tzymatic acti ity of key enzymes in ol ed ir~ C, N or P d g:1~dation wer 

measured ~·1 the beginning, middle and at the end of the ex periment in :~ ifferent root 

decomposüion treatments. Collectively, we aim that thcse two chapters' :mprove our 

understanc:::n g on the role of tree diversity for co :; rse root decorr:Sosition and 

decomposer activity in tropical forests. 
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CHAPTERI 

INFLUENCES OF TREE DIVERSITY ON TROPICAL TREE COARSE ROOT 

DECOMPOSITION AT MICRO- AND HESO- SCALES 
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Les processus écologiques à l'échelle de l'écosystème, comme la décomposition, 

peuvent être affectés par des modifications dans la composition des arbres du couvert 

forestier résultant du climat et de l'usage des terres au seiD des écosystèmes .:ropicaux. Le 

principal o~j ectif de ce premier chapitre était d'examine! l'influence de la diversité des 

arbres trop<caux sur la décomposition de racines à deux é:::helles spatiales distinctes. Ceci 

a été réali: é en mesurant les taux de décomposition et l'activité enz7::natique des 

décompose~rs à l'échelle de l'unité d'échantillonnage (sac de litière o.:)02m2
) ou a 

l'échelle de la parcelle (taille de parcelle 2000m2
) , soit deux échelles et ~~ sont liées 

directemen ~ (transfert de nutriments) ou indirectement (microclimat) à la diversité des 
arbres. N:1us avons également évalué 1) commr::nt, à l'échelle de l'unité 

d'échantillcnnage, les effets nets de la diversité seraient influencés par l '~1é térogénéité 

biotique et abiotique et 2) à quel point la variation intersrécifique des traits fonctionnels 

racinaires ces arbres tropicaux explique la décomposition racinaire grossière. Les sacs de 

litière ont été disposés sur deux sites au Panama, Sardinilk et Agua Salud q~·ac térisés par 

des propri~ tés de sol contrastées. Les sacs de litière comprenant différe:1 ts mélanges 

d'espèces c :1t été placés pour décomposition sous couvert forestier soit de faible ou de 

forte divc:sité. L'influence de la diversité des arbres, à l'échelle de l'unité 

d'échantillc:nnage et de la parcelle, a été étudiée en plaçant une espèce ~cule ou cinq 

espèces lo,aJes d'arbres tropicaux mélangés dans différentes conditions dr:. diversité du 

couvert fo: es tier. Les sacs de litière ont été mis à décomroser en juillet 20 ~~ 1 et collectés 

après 50, 1.50/ 195 (Agua Salud/Sardinilla), 310, et485 jc·:ùfs afin de déterr1.iner les taux 

de décom2osition en utilisant la perte en masse. Er. plus, l'activité :-:les enzymes 

impliqués dans les cycles du carbone, de l'azote ct du phc sphore a été mesu~·ée après 485 

jours de dt::omposition. Nos résultats ont montré que la.' diversité des arbi':.s n'influence 

pas signific.a tivement la décomposition des racines, et c : peu importe l'é :·helle spatiale 

étudiée. Cependant, une importante variance des réponses à l'échû .e de l'unité 

d'échantillonnage a ete observée, suggérant une forte hétérogénéité spatiale. 

L'importatJ.ce des effets du site, surtout associés aux caractéristiques du sel ainsi que la 

densité des espèces de décomposeurs de racines ont contribué à une variation 

intraspéciGque des taux de décomposition. Les variations interspécifiq~es des traits 

racinaires .expliquaient entre 35 (Sardinilla) et 80% ' (Agua Salud) des taux de 

décomposi":ion des racines. Notre étude suggère que les changements en termes de 

décomposi:jon ne sont pas uniquement influencés par la diversité des arbres du couvert 

forestier rr.:ais plutôt par des changements dans la composition fonctionn~lle des forêts 

tropicales ;i.ll peuvent altérer la quantité et la qualité des entrées de litières n:cinaires. 

,. 



Mots-clés: racine, effets de diversité, processus souterrain, échelles spatiales, activités 

enzymatiqu~s, sol, traits fonctionnels racinaires, cycle des nutriments, Panama. 
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1.2 Abstract 

Ecosystem-level ecological processes, such as decomposition, may he affected by 
changes in tree overstory composition that may result from climate and land-use change 
in tropical ecosystems. Thus, our objective in this chapter was to examine ':he influence 
of diversity of tropical trees on coarse root decomposition by measuring 
decomposition rates and enzymatic activity at two spatial scales, micro- (within 
bag: 0 .02m 2

) and meso- (within plot: 2000 rr?) scales, that are related to 
direct, e. g. nutrient transfer, and indirect effects, e.g. microclimate, of tree 
diversity on this ecosystem process, respectively . As weil , we evaluated: 1) 
how net •Jiversity effects at the micro-scale could be affected by abiotic 
and bioti c heterogeneity and 2) the extent to which interspecific variation in root 
functional traits of tropical species explained coa.~se root decomr osition. We 
established coarse root decomposition bags th at varied ir: species composition in two 
sites in cer:tral Panama with contrasting soil properties, Sardinilla and Agu<. Salud. The 
influence o'. tree diversity at both spatial scales was exarr:.ined using tree o·.rerstory plots 
of either lcw or high diversity (meso-scale) and decompcsition bags with lc·w, i.e. single­
species co~.::se roots, and high, i.e. a five species coars"- root mixture, è.~rersity levels 
(micro-scak) . Decomposition bags were established in J;.ly 2011 and collected after 50, 
160/ 195 (ltgua Salud/ Sardinilla), 310, and 485 days to c'.etermine decomposition rates 

. using mass loss. In addition, activity of enzymes involved in carbon, :litrogen, and 
phosphorus cycles were measured after 485 days of decomposition. Our results showed 
that tree diversity did not significantly influence coarse root ·decomposition and 
enzymatic activity at either of the studied spatial scales. However, considerable 
variation o ~· net diversity effects at the micro-scale was observed, suggesting a strong 
effect of e:lVironmental heterogeneity. The importance of site effects, Fedominantly 
differences: in soil characteristics, and species identity of the decomposer root material 
contributed to intraspecific variation in decomposition rates. Interspecific variation in 
root trai ts explained 35 and 80 % of variation in coarse root decomposition rates in 
Sardinilla . ~nd Agua Salud, respectively. Our study suggests that changes in 
decompos1· ion is not mediated by tree overstory diversity per se, but rath c:.r by changes 
in the func::ional composition of tropical forests that may alter the quanti;y and quality 
of root litt~r input. 

Keywords: coarse roots, diversity effects, below-grc.Jnd processes, spatial scales, 
enzymatic ?ctivities, soil, root functional traits, nutrient cyde, Panama 

l' 



10 

1.3 Introduction 

Globally, natural and anthropogenic climate and land-use change are altering 

drastically plant community diversity and composition. These altera':i.ons, mainly 

biodiversity loss, are affecting ecological processes such as prod'.lctivity and 

decomposition and, hence, ecosystem functions (Cardinale et al. 2012, Hooper et al. 

2012). Tropical ecosystems are rich in biodiversity and play a vital role in global nutrient 

cycles. Th.ese ecosystems are estimated to store 40% of global carbon (C) stocks, 

although bdowground C stocks, which have been poorly characterized du ~ to logis tical 

constraintf, are likely underestimated (Robinson 2007). D espite the importance of 

tropical fc:.·es t ecosys tems in terms of the global C cyd e and biodiversity, there are 

relatively few studies that have exarnined diversity effects on belowgrounô processesin 

these ecosys tems. 

Or.;anic matter decomposition is driven by the li ~~er quali ty of the -:lecomposing 

substrate, c .. ~iotic factors of the decomposition environnent and bio tic fa ~ tors su ch as 

the decorn;)oser community diversity (Gessner et al. 201 0). D ecomposer :ommunities, 

comprising of bo th mesa- and macrofauna, as well as rnicrobial decompo,~rs, may also 

be affec ted· by land-use change (H eijden et al. 2008). ':r:hese organisms :ontribute to 

decomposi~ion through different mechanisms. While macrodetritivores act as litter 

fragmenters making litter more accessible to smaller decomposers (David & Handa 

2010), mic:obial communities degrade lignocellulose and recycle detrital n::l trients using 

different e:i.zymes that break clown complex chemical compounds into simplet, more 

readily assLnilated compounds (Sinsabaugh et al. 1991, Sinsabaugh et al. '2002) . As a 

result of tl-: ~ diverse functions of contras ting enzymes during decomposition, enzymatic 

activi ty ha .~ been used as a good indicator of degradation (Sinsabaugh ·et al. 2002), 

varying m~::kedly across plant species (Allison and Vitousek 2004) likely due to species­

specific differences in traits that are related to li tter quali ty. 

Fur ctional plant traits, which include chemical, stLuctural and anatd:nical traits in 

plant litter; ·have been useful in general to understand e!:osystem processe·3 and to link 
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above- and belowground dynamics (Cusack et al. 2009, H.")bbie et al. 2010, Birouste et al. 

2011 ). Leaf traits th at determine leaf litter quality, su ch as total p~îenolics and 

nonstructu:t'al carbohydrates, influence decomposition rares in tropical fore~ts (Coq et al. 

2010, I-Iattenschwiler et al. 2011). While studies on wood.and root decomposition in the 

tropics are :;carce, traits such as vesse! area proportion and diameter have ceen found to 

be strong predictors of decomposition rates (Cusack et al. 2009, Geffen et al. 2010). 

Due to th~ importance of functional traits in processes like decomposi ti.::m, diversity 

lasses associated with particular traits could generate complex responses across 

ecosys tems (Cardinale et al. 2012). 

Tre~ overstmy diversity may influence belowground properties and processes, as 

weil as the surrounding plan t community. The "home field advantage" hypothesis 

(Gholz et d. 2000) posits that a particular tree overstory composition c~.;.-J. promote a 

decompose: community that is more efficient in breaking clown local types of litter. 

However, evidence for this hypothesis remains limited. A recent reciprocal transplant 

experirnent across multiple biomes showed that plant litter traits were mere important 

than local 0ecomposer communities in predicting decorr~?osi tion rates (Mz'Kkonen et al. 

2012). Srecies identity of the tree overstory also co~lld influence soi: biochemical 

processes c:irectly by modifying the availability of resourc ~s , such as water,"soil nutrients 

and light, 1:o competitors while, at the same rime irnproving their own 'fitness (tight 

weave hyp~thesis). Indirectly, tree overstory could change sail properties a:1d processes, 

e.g. decomposition, through mechanisms that improve a species' own perfcrmance, such 

as the production of recalcitrant, flammable litter in response to herbivore pressure 

(loose weave hypothesis); or by affecting sail processes due to tree-soil interactions, e.g. 

mycorrhiu.l fungi (frayed hypothesis) (Binkley and Giard.ina 1998). In tropical forests, 

tree overs:ory composition affects sail processes su:h as carbon mineralization, 

phosphow1 acquisition, litter quality input, and carbon pools (Potvin et aL 2011, Keller 

et al. 2013) . e.g. sail carbon fluxes changes due to root ex·;dations (Graysto~: et al. 1996). 

Despite tl-. ~ possible influences of tree overstmy on decomposition, h':'w overs tory 

/•, 
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diversity aëd composition may affect root decomposition in tropical fores ts remruns 

unknown. ' 

As decomposition in natural ecosystems is a product of litter com?rised of co­

occurring species in a particular plant community (Gartner and Cardon 2004, 

Hattenschwiler et al. 2005), the use of litter mixtures t::> evaluate diversity effects on 

decomposiion has become increasingly frequent (Gartner and Ca:cdon 2004). 

Comparisons of litter mixture decomposition rates . ·vi th decomposi ton rates of 

individual '-?ecies can be used to assess whether the effects of increasing species diversity 

is additive or non-additive. Additive effects on decompcsition reflect the neutral result 

of mixing various species together (Gartner and Cardon 2004). Non-aè.:iitive effects 

(referred tc also as positive diversity effects) on litter mixtures can be explained by: 1) 

complemer~tarity effects mediated by decomposer cot-:1munities, e.g. li tter mixtures 

create more diverse micro-habitats and, thus, change the abundance and activity of 

decomposers (Hansen and Coleman 1998, Gief3elmann et al. 2010) and 2) nutrient 

transfer or ?resence of inhibitory components by leaching or biological mediation (Fyles 

and Fyles 1993, Schimel and Hattenschwiler 2007). Non-additive d fects when 

observed, show in general a much weaker response in leaf litter d~composition 

experimen :s than what has been observed for plan: productivi ty ir. biodiversity 

experiments (H anda et al. submitted). However, the spatial scale at which Etter mixtures 

have been . studied has been limited generally at the ~cro scale, i.e. the. mechanisms 

related to i:-1teractions inside the li tter bag listed (Fyles a::d Fyles 1993). V:oreover, few 
• • 1 

studies mal~e use of multi-site comparisons, which test the sensitivity of di~rersi ty effects 

on litter Enxtures to environmental biotic and abiotic heterogeneity (I..fadritch and 

Cardinale 2007). 

Div'::rsity effects in natural ecosystems could vai.y across tempor~.l and spatial 

scales (Duffy 2009). Across temporal scales, diversity eŒ~cts on productivity change due 

to increasir.g species complementarity (Cardinale et al. 2007) and due to cl1.anges in the 

magnitude of negative and positive plant-soi! feedbacks (Eisenhauer et al. 2012) . Across 
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spatial sc~les, belowground processes could be affected by tree overstory 

compositions/ diversity due to changes in the distribution of soil comrnunities: soil 

microbial communities are affected by trees at fine scales, e.g. by root traits and 

exudation, by plant community composition at intermediate- scales, and by vegetation 

types at large scales (Ettema and Wardle 2002). In the tropics, evidence. of cliversity 

effects ope::ating at extremely local spatial scales, i.e. fe-v meters, bas been found for 

productivity (Uriarte et al. 2004b, Potvin and Dutilleul 2009). Potvin and Dutilleul 

(2009) found that the individual tree productivity, i.e. tree diameter and height, was more 

strongly af;cected by the size of neighbors than by di versity. While tl:.e effects of 

neighbors on tree growth decreases with distance, the !afluence of tne ~~ .ighborhood 

depends st::ongly on the target species in tropical forests (Uriarte et aL 2004a, Uriarte et 

aL 2004b). In spire of the importance of spatial scales in. explaining diver~:ty effects on 

ecological processes in tropical ecosystems, the infbence of diversir-; effects on 

belowground processes in the tropics, such as root decomposition, h0.s yet to be 

determinee:. Hence, to understand if similar spatial sc2:les that apply to productivity 

(Weigelt et aL 2007) also apply to decomposition in the tropics, we used a multi-scale 

approach to evalua te direct and indirect cliversity on root decomposition. 

Ou: study aimed to determine how the diversity of tropical trees influenced the 

decomposi:!ion rate of coarse roots and the enzymatic activity of decomposer 

communiti ~s at two spatial scales during 485 days. We 'tested a) the indirect effect of 

tree overstory cliversity on decomposition at the meso- scale (within plot: 2000 m~ 

and b) the direct effect of tree root diversity at micro- 2:ale (within the decomposition 

bag: 0.02 : h~. At the meso- scale, we expected tha~ where tree ove::s tory species 

diversity \Vas higher, there would be faster root decomposition rates du~ to positive, 

indirect effects on the abiotic decomposition environmen.t (Prescott 2002, : hapin 2003, 

Keller et :.:1. 2013) . We also hypothesized that tree diversity at both scales would 

accelerate decomposition, mediated by the biotic · 'decomposer anô detritivore 

communities, due to complementary resource availability in mixtures (Hatt~nschwiler et 

aL 2005, Wardle 2006, Thorns et aL 2010, Eisenhauer 2('12). Finally, we expected that 
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spee1es fu n:: tional identity based on root functional trai!s (Hobbie et al. 2010) would 

explain coase root decomposition rates across sites, as found in leaf decomposition 

studies (Comwell et al. 2008, Hattenschwiler et al. 201 1, Freschet et al. 2012). 

1.4 Methods 

1.4.1 Stnr!J siteJ 

The. study was clone in two experimental forest sites in central Panama, Sardinilla 

(9°19' N- 79°38' W) and Agua Salud (9°13' N - 79°47' \'V'), with annual precipitations of 

2350 mm ~n.d 2300 mm, respectively (Scherer-Lorenzen et al. 2007, Breugel et al. 2011 ). 

The Sardinilla site is an experimental diversity tree plantation established in 2001 where 

former pas :ure land was planted in plots of 45 x 45 tL with either one, three or six 

species of native tree species (Scherer-Lorenzen. et al. 2005, Scherer-Lo::enzen et al. 

2007) . The tree species used in the Sardinilla plantation were selected to have a gradient 

of relative growth rates (Table 1.1) of slow growing spec.ies, Cedrela odorata and Tabebuia 

rosea, modéate growing species, Anacardium excelsum and Httra crepitans, and fast growing 

species, Col.dia alliodora and Luebea seemanii (Scherer-Lorenzen et al. 2007).: Mortali ty of 

one species, Cordia allidora, was high in the early years such that it is no long.: r considered 

to be represented within the tree diversity treatments at the site (Potvi=: and Gotelli 

2008). After 10 years of growth, the Sardinilla plantation has a closed, str~~ tified canopy 

(Kunert et al. 2011). Understory vegetation is varied and is dominated by grasses and 

herbaceous. species (Potvin et al. 2011). Soils originated from sedimentary rocks and 

tertiary limestone, presenting Alfisols dominated by clay (Potvin et al. 2004). 

Th~ Agua Salud forest sites include young native tree plantations established in 

2008 on fœmer catde pastures and agricultural fields and secondary forest; of different 

ages, rangi~~g from one to eighty years old (Breugel and'Hall 2008, Breugel et al. 2011, 

Paul et al. 2011). In contrast to Sardinilla, the Agua SaluC: plantation plots are 45 mx 39 

m (Breugel and Hall 2008) and are characterized by short; steep slopes with soils derived 

from prete;:tiary basait plateau (Hassler et al. 2011 ). A subset of the plantçd native tree 
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spee1es (Anacardittm excelsttm and T abebuia rose a) in Agua Salud also occur in Sardinilla. 
. . 1 

After three years of growth, the canopy remains ope-.:1 with a vigorous understory 

dominated oy exotic pasture grasses, as most individuals are less than ~2.5 r.'l in height. 

Table 1.1 Ecolo~cal characteristics of the studied na1jve troEical tree species. 

Species Fa mil y Successional stage 
Relative Leaf 

growth rate '?henology 

Anacardium 
Anacardiaceae 

Light-
Intermediate :2vergreen 

exce!Sflm intermediate 

Cedrela 
Meliaceae Shade-tolerant Slow 

Dry season 
odorata deciduous 

.Hum 
Euphorbiaceae 

Light-
Intermediate 

Dry season 
trepitan: intermediate deciduous 

L ue bea 
Tiliaceae Earl y Fast 

Dry season 
seemcmii deciduous 

Tabebuia 
Bignoniaceae Shade-tolerant Slow 

Dry season 
rose a deciduous 

Notes: Far.ily information from Coll. et al. (2008) and Pérez (2008); successional stage 
from Scheter-Lorenzen. et al. (2005); approximate relative growth rates fro:n Potvin and 
Gotelli (20:)8); leaf phenology from Carrasquilla (2005); Pérez (2008) ar;d PaLÙ et al. 
(2011). 

1.4.2 Exjl8rimental de.rign 

Tree diversity effects on root decomposition w::re tested using Jaw and high 

diversity le-rels at two spatial scales: meso- (within plot: 2CJOO rn~ and micr :- (wi thin bag: 

0.02 m~ (Fig 1.1). At the meso- scale, root decompositicn experiments weze performed 

at two sites because they allowed for comparisons of decomposition dynamics under low 

and high tree overstory diversity levels between strongly contrasting sè.i1 conditions 

(Table 1.2) The low diversity level of tree overstory composition consisted of two 

single-spec:1es plots in Sardinilla of five tree species, Anamrdium exœl.rum, Cedrela odorata, 

Hum crepitans, Lmhea seemanii, and Tabebuia ro.rea, and three single-species plots in Agua 

Salud of two tree species, Anacardium excel.rum and Tabebuia rvsea. The h.igh d.iversity leve! 

of tree overstory composition differed at both sites. In Sardinilla, it consi.sted of three 

plots that :1ad a five-species mixture in the tree overstory, while in Agua Salud, it 

1.· 
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consisted cf three plots of secondary forests older than 50 years (Table 1.3). At the 

micro- scah, the low and high diversity levels refer to the species composition of the 

coarse root~ inside each bag. The low diversity leve! consisted of single-species coarse 

roots for e::.ch of the five studied tree species, while the h:gh diversity leve! consisted of a 

five species coarse root mixture containing ali five of the studied species. To avoid 

confusion, we will use low and high diversity to refer to tree overstory diversity at the 

meso- scale and single-species and five-species coarse root mixture to refer to low and 

high root d.iversity at the micro scale. 

In each plot of low tree overstory diversity, five 1::-ags with coarse rc 'Jts matching 

the composition of the tree overstory and five bags with the five species ::oot mixture 

were established (summarized in Table 1.3). In total, ten plots with one hundred coarse 

root bags were used at the low overstory diversity in Sardinilla, while in Agua Salud, six 

plots with sixty decomposition bags were used. For the high overstory diversity levels in 

both Sardinilla and Agua Salud, 30 decomposition bags were established p~r plot (three 

plots per s1_te), including five single-species bags per species and five bags with a five­

species root mixture (90 bags per site). This design allowed us to assess beth direct and 

indirect efFects of tree diversi ty on root decompositior:, as weil as any potential net 

diversity e.:fects associated with root diversity inside ÜJ.e bag (single-species vs five 

species root mixture) under heterogeneous biotic and abiotic conditions. T he influence 

of tree overstory on net diversity effects was tested in two ways using the five species 

root mixtu::e (Table 1.4). First, this mixture was established in low and high diversity 

plots in Sadinilla and high diversity plots in Agua Sah1d to evaluate if net diversity 

effects due to root interactions inside the decomposi~ ;)D bag were aff::,_ted by tree 

overstory c_omposition (Wardle et al. 1997, Loreau 1998} Secondly, sing:e-species and 

five root rrüxtures bags were established in plots with the same overstory composition 

(i.e. Tabebti!a rosea roots in a Tabebuia rosea plots) to calculate the net cE-.rersity effect 

integra ting ,the effect of tree overstory composition with that of root interactions inside 

the bags. 

,. 



Meso- scale 

Indirect diversity effects on coarse root 
decompos '': ion through changes in decomposer 
communit ;<:s due to root exudation, understory 
plant com p sition, and soil chemistry 

45 m 

17 

Micro- scale 

0.1 m 

0.2m 

Direct tree diversity effec'·s associated with 
coarse root characterist' -:s that facil itate 
resource complementarity for decomposers 
and nut rients transfer 

Figure 1.1. Description of the two spatial scales used .i.n our study . 

. ·; , 

•' 
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Table 1.2 Soi! characteristics and enzymatic soi! actvity measured in tree diversity 
elots at the Sardinilla and Agua Salud sites. 

Se i! variable 
Tree overs~ory diversi!_y 

Sardinilla Agua Sahd 
W::ean ±SE 

Low High Low High 

Humidity (%) 44.4 ± 2.3 43.5 ± 1.7 45.5 ± 2.8 Li.~ .o ± 3.8 

pH (H20) 5.7 ± 0.04 5.4 ± 0.03 5.5 ± 0.07 

Carbon (%) 5.5 ± 0.2 6.2 ± 0.7 3.1 ± 0.2 3.5 ± 0.2 

Nitrogen (%) 0.5 ± 0.01 0.6 ± 0.06 0.3 ± 0.01 0.3 ± 0.03 

Extractable phosphorus 3.53 ± 
1.1 ± 0.05 J .. 5 ± 0.1 

(mg kg.1) + 0.38 

Potassiuc (mmolc kg.1) t 6.5 ± 0.3 3.12 ±0.7 

Calcium (mmolc kg.1
) t 290 ± 8.1 70.2 ± 20.4 

Magnesium (mmolc kg.1) 1 32 ± 1.0 3"7.6 ± 6.8 

Aluminum (mmolc kg.1
) t 4.0 ±0.1 73 .7 ± 10.0 

!3-Glucos;dase (f3G) t 8.0 ± 1.0 7.3 ± 0.5 2.9 ± 0.5 1 . . 5±0.1 

CellobioLydrolase (CEL) t 1.5 ± 0.2 1.6 ± 0.2 0.6 ± 0.2 0.3 ± 0.04 

!3-Xylanase (XYL) t 2.3 ± 0.2 2.4 ± 0.3 1.3 ± 0.2 0.8 ± 0.1 

N-acetyl-·3-D-
7.5 ± 1.2 8.5 ± 0.6 3.2 ± 0.4 L .. 5 ± 0.4 

glucosarninidase (NAG) t 

Phospho:.-..1.onoesterase 
28.1 ± 1.9 29.0 ± 3.8 64.5 ± 7.2 9~ .4 ± 15.1 

(PME)t ; 

NoteJ: "fvabes including the entire plantation in Sardi....·ülla (low and high diversity), 
:j:values rer: ")rted in fliDOl MU g dry min·1

• Sardinilla: total carbon, nitrogeP- '<!nd pH from 
Healy. et ü (2008); extractable phosphorus from Ze'..lgin. et al. (2010), potassium, 
calcium, rr.agnesium and aluminum from Oelmann et al. (2010), and clay loam texture 
(Abraham 2004). Agua Salud: pH, total carbon, nitrogen, phosphorus, potassium, 
calcium, magnesium and aluminum persona! communication (Hall and Breugel 2012). 
Soil texture in Agua Salud varied between silty clay to clay from Hassler et ;_~j_ (2011). 



19
 

T
ab

le
 1

.3
 

E
x

p
er

im
en

ta
l 

d
es

ig
n 

u
se

d 
to

 e
st

ab
li

sh
 t

h
e 

ro
o

t 
d

ec
o

m
p

o
si

ti
o

n
 e

x
p

er
im

en
t 

at
 S

ar
di

ni
.ll

a 
an

d
 A

g
u

a 
S

al
ud

 s
it

es
. 

N
u

m
b

er
 o

f 
b

ag
s 

(l
ow

 a
n

d
 h

ig
h 

co
ar

se
 r

o
o

t 
di

ve
rs

it
y 

le
ve

ls
) 

es
ta

bl
is

h
ed

 u
n

d
er

 l
o

w
 o

r 
h

ig
h 

tr
ee

 o
v

er
st

or
y 

di
ve

rs
it

y 
p

lo
ts

 a
re

 s
h

aw
n

. 
In

 t
o

ta
l, 

10
0 

an
d

 6
0 

b
ag

s 
w

er
e 

in
st

al
le

d 
in

 l
o

w
 t

re
e 

o
v

er
st

o
ry

 d
iv

er
si

ty
 p

lo
ts

 i
n

 S
ar

di
ni

ll
a 

an
d

 A
g

u
a 

S
al

u
d

 r
es

pe
ct

iv
el

y.
 

In
 h

ig
h 

tr
ee

 o
v

er
st

o
ry

 d
iv

er
si

ty
 p

lo
ts

, 
90

 
b

ag
s 

w
er

e 
in

st
al

le
d 

in
 e

ac
h 

st
u

dy
 s

it
e.

 

M
ic

ro
-

sc
al

e 
(C

o
ar

se
 r

o
o

t 
co

m
p

o
si

ti
o

n
) 

A
na

ca
rd

iu
m

 e
xc

e/
su

m
 

C
ed

re
la

 o
do

ra
ta

 
L

o
w

 
H

ur
a 

cr
ep

ita
ns

 
Lu

eh
ea

 s
ee

m
an

ii 
Ta

be
bu

ia
 R

os
ea

 

-
-
-
-

-
--

-·
-·-

·-
----

--
-·

-·
---
-
-
-
-
-
-

--
---

-
-
M
e
~
~
~
~

le
 (
Tr

~~
-\

1:
~!

'-~
!:"

:".
tL _

_
_

_
_

_
_

_
_

_
__

_
_

__
_

_
 _ 

Sa
rd

in
ill

a 
.A

gu
a 

Sa
lu

d 

L
ow

 d
iv

er
si

ty
 (

2 
pl

ot
s 

pe
r 

sp
ec

ie
s)

 
H

ig
h 

L
ow

 
H

ig
h 

(3
 p

lo
ts

) 
(3

 p
lo

ts
 p

er
 s

pe
ci

es
) 

(3
 p

lo
ts

) 
A

na
ca

rd
iu

m
 

C
ed

re
la

 
H

u r
a 

L
u

eh
ea

 
T

ab
eb

ui
a 

ex
ce

ls
um

 
od

or
at

a 
cr

ep
ita

ns
 

se
em

am
z 

ro
se

 a 
F

iv
e 

sp
ec

ie
s 

A
na

ca
rd

iu
m

 
T.

 b
 b

 
. 

S
ec

on
da

ry
 

m
ix

tu
re

t 
ex

ce
lsu

m
 

a 
e 

uz
a 

ro
se

a 
F

or
es

 tt
 

5 
5 

5 
5 

5 
5 

5 
5 

5 
5 

5 
5 

5 
5 

5 
5 

5 
H

ig
h 

F
iv

e 
sp

ec
ie

s 
m

ix
tu

re
 

5 
5 

5 
5 

5 
5 

5 
5 

5 
· 

N
ot

es
: 
t 

in
cl

ud
e:

 A
na

ca
rd

iu
m

 e
xc

el
su

m
, 

C
ed

re
!a

 o
do

ra
ta

, 
H

ur
a 

cr
ep

ita
ns

, 
L

ue
he

a 
se

em
an

ii 
an

d
 T

ab
eb

ui
a 

ro
se

a.
 

sp
ec

ie
s 

ri
ch

ne
ss

 o
f 

15
5 

sp
p

. 
0.

2 
h

a 
-J

, 
p

er
so

na
! 

co
m

m
u

n
ic

at
io

n
 B

re
ug

el
 (

2
0

1
2)

. 
:j: 

O
ld

 S
ec

on
da

ry
 f

or
es

t 
(>

50
 y

ea
rs

) 
w

it
h 



Table 1.4 Composition of roots in decomposition bags in each tree overstory for 
testing net diversity effects. 

Diversity leve! 

Root diversity inside 
decomposition bag 
across tree 
avers tari ~s 

Tree overstory 
diversity :::.nd root 
diversity :'!1side 
decompcsition bag 

Composition of coarse root inside the bags p'=r tree 
overstmy diversity 

Sardinilla Agua Salud 

Low diversity 

Singles species t 
and five species 

mixture 

Singles speciest 

High diversity 

Singles speciest and 
five species mixture 

Five species root 
mixture 

High diversity 

Singles species t 
and five species 

rrixture 

Notes: t include: Anacardium excels11m, Cedrela odorata, Hura crepitans, Luebec seemanii and 
Tabebttia ros&a 

1.4.3 Roo: selutiort artd installation 

Co~.rse root material was excavated in non-exp c<:rimental plots of ail five tree 

species in r:-1e Sardinilla plantation (Table 1.1 ). Soil partiel es were removed while leaving 

the roots intact to determine root orders for each species. Root arder was determined 

for each s2ecies based on the classification proposed by Pregitzer et al. (2002) and 

Valenzuela-Estrada et al. (2008). A digital caliper was used to measure the diameter of 

each root c·rder to the nearest 0.01 ± mm: Root arder determination was done on two 

root branches per tree and for ten trees per species. These same trees were subsequently 

used to c~:lect roots for decomposition experiments. Roots were removed from the 

soi!, washed, and air dried at 40 °C for four days. Roots whose function was to 

transport 3:1d store nutrients were selected ( 4'h and S'h order) and eut to 10 :min length. 
1 • . 

Decompoo.~tion bags (10 cm x 20 cm) were made using a 2 mm nylon n: ·::sh to permit 

entry of m~::so-fauna (Fig 1.2a). A total of 5 g dry weight (40 °C) of mate::Yal was placed 

carefully in the bags and closed by a manual heat sealer. Aluminum iden'ification tags 

were placed inside and outside the decomposition bag. For species mixtures, equal 

proportiom of root litter from each species were used. ,The decomposition bags were 

established,in a 3 m x 3 m space inside the plot avoiding canopy gaps and areas close to 
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the border. Understory vegetation was eut and removed before installation. 

Decomposi.tion bags were installed randomly at a depth of 20 cm in a diagonal position, 

40 cm apart (Fig 1.2b) using a wooden trowel. 

Figure 1.2 Decomposition bag and installation. a) Decomposition bag of 20 x 10 cm 
with 5 grams of root material and b) bags wer~ separately for 4G cm each. 

1.4.4 Rou( harvest and measurements 

Reet bags were established in August/September 2011 and collected four times 

at 50, 160/195 (Agua Salud/Sardinilla), 310 and 485 days. Mass loss at e;;.sh collection 

was deterŒined by washing roots carefully over a 2 mm and 250 f.lm mesl-~ sieve in the 

ftrst and la:;t two harvests respectively and oven-drying samples at 65 °C f0r four days. 

Initial dry weight values at 40 °C were converted to dry mass at 65 °C based on 

conversio~ factors calculated for each species (n=S per species). 
•, ; · w 

1. 4.5 En:tymatic Attiviry cifter 485 dqys 

Sample from low and high diversity plots in Sardinilla and in Aguf! Salud were 
~ . . 

used to rrii asure enzymatic activity on decomposed r~ot after 485 days. Enzymatic 
"' actiVity o($ve enzymes involved in carbon, e.g. 13-gluco,sidase (13G), cellc,:biohydrolase 

(CEL) and, 13-J\.)'lanase (XYL), nitrogen, e.g. N~acetyl-13-glucosarninidase (NAG) and 

phosphorU3, e.g. phosphomonoesterase (PME), degradation were measured. 

Characteri:.ation of these hydrolytic enzymes was perforrred with a modified fluorogenic 

substrate rr;ethod (Turner and Romero 2010). Complete details about the protocol are 

presented i.l. Chapter 2. 
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1 

1.4. 6 Roo': functional traitJ meamrementJ 

A set of root characteristics possibly related to coarse root decomr:osition were 

measured. Functional trait measurements included struc~ral, anatomical, and chemical 

characteristics and were performed on the 4'" and 5'h root orders for each of the five 

species. Root diameter, specifie root length (SRL), root density, and root dry matter 

content (RDMC) were measured with a segment of fresh root material (n=5 trees). For 

each replicate, four measurements on independent roots were taken. Root diameter was 

measured three times at different points using a caliper. SRL is the relationship between 

root length and dry weight (cm g·1) . Root length was measured with Image] (Abramoff 

et al. 2004) using scanned digital images, while root weight was determine.:! after being 

aven dried at 65 °C for 48 h. Root volume was measured using the water-displacement 

method (C'1ave et al. 2006). Root density was calculated by dividing the volume by the 

65 °C ovev. dried weight. RDMC was measured using a ~odified method {rom leaf dry 

matter content (LDMC) using partial rehydration (Vaieret:i et al. 2007). 

An<,tomical measurements were made using fres~1 material collecte::! from three 

different tr~es in the field and transported to the laborat'Jt)' immediately. Samples were 

eut manua:Jy, slides were mounted, and images were ~aken by an Olymj:ms FVlOOO 

confocal n:icroscope using auto-fluorescence. The in1ages were analyzed using Image] 

(Abramoff et al. 2004) to determine: the percent area of xylem, cortex or parenchyma, 

epidermis (including peridermis), and proportion of vessels in the xylem (Hummel et al. 

2007, Chave et al. 2009, Poorter et al. 2010). Although studies abc-ut fine root 

decomposi jon have not included anatomical measurements freguently, coarse root 

decomposi:ion could be associated with traits tha•: are correlated with wood 

decomposiion rates (Cornwell et al. 2009, Weedon et al. 2009, Geffen et al. 2010). 

For
1 

root chemical traits, carbon (C) and nitrogen (N) conce:: tration were 

determinee with an elemental analyzer using five replicates per species (Wif1ington. et al. 
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2006, Goeqel et al. 2011). For determining phosphorus (P) and micronutrient contents, 

200 mg of 0ven-dried ground root material were used; five replicates were analyzed for 

each species. The sample was suspended in 2 mL of concentrated nitric àcic~ and headed 
' . 

at 180 °C for 6 h. Solutions were measured with an indectively coupled p\asma-atomic 

emission spectrometry (ICP - OES). The micronutrients included aluminum (Al), boron 

(B), calciur::J (Ca), copper (Cu), iron (Fe), potassium (K.), magnesium (Mg), manganese 

(Mn), sodium (Na), and zinc (Zn). Water-soluble compo·;nds, hemicellulo::es and lignin 

(van Soest method) were quantified using a fiber analyzer system for four trees samples 

per species (ANK.OM Technology, NY, USA) . The satr.~ les were enclosec' in a bag and 

trea ted wit'1. a series of aggressive extractants to deternine 1) neutra! detergent fi ber 

percent (% NDF- total fiber), 2) acid detergent fiber percent (% ADF- ceEulose, lignin, 

insoluble ash) and lignin and insoluble ash percent (Alvarez-Clare and K.itajima 2007). 

1.4.7 Anc!ysis 

1.4. 7. 1 Tree. diversiry effect.r on root decompo.rition 

Tw0 response variables, rates and enzymatic activity after 485 days of 

decomposiion, were used to evaluate tree diversity effects on root decomposition. 

Decompo~:tion rates (k) were calculated using a first œ:der, exponential decay mode! 

proposed 1:::)' Olson (1963). Effects of tree diversity at rricro- and meso- s·-:ales on root 

decompos{tion rates (k year.1
) and enzymatic activities were analyzed using 2. linear mixed 

effect moèid with the REML estimation method (Zuui: et al. 2009) in the in 'lme4' 

package (Eates and Maechler 2009). First, the most parsimonious ra11dom effects 

structure was determined using Akaike's information ctiterion (AICc), ,J::ere site and 

species identity of the coarse root inside each bag (inclucLng the five-species coarse root 

mixture) were treated as nested, random effects. These effects were selected because the 

relationship between diversity and root decomposition could be influenced by 

heterogene.i. ty in abiotic and biotic factors, e.g. soil fertility and root characteristics. The . 
most parsiéaonious fixed effects structure was subsequef'tly determined where site, tree 

overstory diversity at the plot level, tree diversity at the bag leve!, and their interactions 
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. 1 

were included as fixed effects in the initial full madel. The most parsimonious models 

were select.ed using parametric bootstraps and maximum likelihood estimation (Zuur et 

al. 2009), e~:cluding the fixed factors and in teractions that did not contribute information 

to the mod':.l (p<0.05). Final models were fit using REML. 

To determine the influence of tree overstory and root diversity inside the bag on 

root decor;-1position, net diversity effects were estimated using samples from low and 

high divers:. ty plots in Sardinilla and high diversity plot in Agua Salud. First, proportional 

deviance 'Pas calculated (\\!ardle et al. 1997, Loreau ~ 998) from single-species and 

mixtures using the following equation: 

(Ot- Et) 
Dt = * 100 

Et 

where D, is the proportional deviance of decomposition rates of the root mixture, 0, is 

the observed decomposition rates taken from the root mixture, and E, is the expected 

value of decomposition rates of the root mixture, estimated from the sum of 

decomposition rates of individual species (\\!ardle et al. 1997, Loreau 1998) . D, was 

calculated for the low and high diversity levels in Sardinilla and the high diversity level in 

Agua Salud. To evaluate the tree diversity effect at different ecological scales, i.e. where 

overstory ·~;:ee diversity matches that of the root bag content, D , was salculated by 

estimating 0 , from the five species mixture in the high diversity leve! in Sa::dinilla and E, 

from the s•c•m of individual species in the corresponding .' ow diversity level in Sardinilla. 

Secondly, :J test whether D, reflects non-additive effe:ts, 95 % confidence intervals 

were calculated using 10,000 bootstrap replicates. If the 95 % CI did not include zero, 

this would ;ndicate non-additive effects. 

'• 
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1.4.7.2 Fur.dional spedes identiry ef/eds ott decomposition 

Variation among species based on their root funccional traits was vis·.1alized using 

a principal c:omponent analysis (PCA) in the vegan package (Oksanen et aL 2013). Due 

to the nuraber of root functional traits measured and possible multi-collinearity, a 

correlation analysis was performed. Partialleast squares regression (PLSR) was used to 

determine 1) which root functional traits explain decomposition and 2) if the effects of 

these functional traits are consistent across sites. PLSR is robust to multi-collinearity 

among pr·::dictor variables and allows predictions when the number of predictor 

variables e:;ceeds that of observations (Mevik et al. 2011 ). In the final ::-nodels, sorne 

traits were êxcluded because of their functional similarity with other traits (based on the 

PCA). Ratios of C, N, and P were included due to their stoichiometric importance in the 

decomposôon process (Manzoni et al. 2010). PLSR models using root fu:Ktional traits 

at each site were calculated using the pls package (Mevik et al. 2011). To evaluate mode! 

fit, cross vdidation was used. The best mode! was selected based on low w.l.ues of mean 

squared eri:-::Jrs of prediction (MSEP) and root mean squzre errors (RMSE). Ali statistical 

analyses were performed using R 2.15 .3 (R Development Core Team. 201 1) , 

1.5 Results 

1.5.1 Roof decompo.rition rates 

Variation in root decomposition rates was observed between sites and across 

species (T2.ble 1.5). D ecomposition rates in Sardinilla had lower variatio:1 (0.4- 1.1 g 

year·') coripared with Agua Salud (0. 5 - 2.6 g year-1) . In Agua Salud, on average, 

decomposi':ion rates were 40% faster than in Sardinilla. The species with the highest k 

was I--Iura t"'~'epitans in both sites with 1.1 and 2.6 g year· ' in Sardinilla and i:-1 Agua Salud 

respectively. The species with the lowest decomposition rates varied betwt::en sites with 

Cedrela odomta (0.4 g year-1
) and Lttebea seemanii (0. 5 g y~ar- 1) in low and iligh diversity 

plots in Sardinilla, respectively and Tabebuia rosea (0 .5 g y-=ar-') in both div~rsity levels in 
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Agua Salud. Tabebuia ro.rea was the only species that exhibited faster decomposition rates 

in Sardinilla than in Agua Salud. 

Table 1.5 Annual decomposition rate (g year·') for coarse roots of s;ngle species 
and a five S?ecies root mixture at two tree overstory diversity levels at the ::ardinilla and 
Agua Salud sites. 

Bag composition 

k year 

Mean± SD 

Plot diversity 

A11acardium excei.rum 

Cedrela odorata 

H ura rrepi!am 

Luebea .ree:nanii 

T abebuia r:JJea 

Sardinilla 

Low High 

0.8 ± 0.1 0.7 ± 0.1 

0.4 ± 0.04 0.6 ± 0.2 

1.0 ± 0.2 1.1 ± 0.2 

0.6 ± 0.1 0.5 ± 0.1 

0.7±0.1 0.6 ± 0. 1 

Agua S:dud 

Low High 

1.4 ±0.4 1.1 ± 0.1 

NA 1.0 ± 0.3 

NA 2.6 ± 0.5 

NA 0.8 ± 0.1 

0.5 ± 0.2 0. 5 ± 0.1 

Five spec:.es mixture 0.7 ± 0. 1 0.7 ± 0.04 0.9 ± 0.2 1.1 ± 0.1 

Note.r: Mem values were calculated in Sardinilla for singles species (n=2) and five 
species roct mixtures (n=10) in the low diversity level, and for ali bag compositions 
(n=3) in tl:e high diversity level. Mean values were calculated in Agua Saled for ail bag 
compositions (n=3) at both tree diversity levels. NA: Plot not available in Agua Salud. 

1.5.2 Tm diver.ri(y eflects 011 coarse root decompositio11 

We found a consisten t lack of evidence in suppc:~ t of direct or inckect diversity 

effects or\' root decomposition rates and enzymatc activity. Whi;:~ the most 

parsimonious model explained 80% of decomposition raœs (Table 1.6, Ta0le S1.1), this 

model did not include tree diversity at ei ther the micro and meso- scales. H owever, a 

strong site effect on coarse root decomposition rates was present in most models. 

Similar patterns were observed for enzymatic activity, where only site was included as a 

fixed effect. However, the final models only explained between 6 to 38 % of the 

variation fcund in enzymatic activity, indicating that other factors not tested in the study 

could influ~nce enzymatic activity during root decomposition. 
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Table 1 6. 2 ffects of site and two scales of diversity on root decomposition rates and 
enzymatic z.ctivity after 485 days of decomposition. 

Factors Explained 
Response variable AI Cc MI Cc R2(%) variationt 

Fixed Random (%) 

k year 130.7 Site 
Species identity 87.0 

2.0 80.0 
Site 10.8 

.B-glucosidase 188.0 2.8 27.8 Site 
Species 

0.7 
identi ty* 

Cellobio~1ydrolase 187.2 2.1 27.2 Site 
Species 

0.3 
identity* 

.B-xylanase 
Species Identi ty 19.0 

190.6 0.6 37.9 Site* 
Site 56.6 

N-acetyl-.B-D-
200.3 2.2 6.1 

Species 
0.2 

glucosaminidase identity* 

Phosphom~moesterase 189.0 2.6 24.2 Site 
Species 

0.2 
identi ty* 

Notes: For each response variable, a mixed effects mode! was fit with REML after 
cletermining the most parsimonious random and fixed effec ts structure. Tested random 
effects ind,.1ded species identi ty of roo t material in decomposition and site. In the initial, 
full models, site, diversity at micro and meso- scales, and their interactions were includecl 
as fixed eff~c ts . t Variation explained by random effects. 

1.5.3 Net diversi()' eJ!ècts on c·oarse root decomposition 

Th~ influence of tree overstory composition on net cliversity effe-::ts measured 

using five species root mixture showed contrasting results. No significan7. net cliversity 

effects (additive effects) in k values were observee! in the S.ve species root mixture across 

the low and high cliversity levels in Sardinilla and high cliversity leve! in Agua Salud (Fig 

1.5, white boxes) . As weil, no net diversity effects Ù1 k values were found when 

observee! and expected values from the high and low tree cliversity levels in Sarclinilla 

were compred (Fig 1.3, gray box) . However, for enzy:n atic activity, alt!wugh no net 

cliversity effec t was found in high tree overstory cliversity levels in Sarclinill~, and in Agua 

Salud, a negative net cliversity effect (non-additive) was observee! in the low cliversity 

leve! in Sardinilla (Fig 1.4, white boxes). Negative effec~s also were foun-:1. in high and 
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low tree diversity levels in Sardinilla for almost every enzymatic activity, with the 

exception of NAG (Fig 1.4, white boxes). 
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Figure 1.3 

High Diversity (AS) High Diveisity ( S) Low Diversi~J (S} LowiHigh Dlvers;ty (S) 

Net diversity effects in five root species mixtures using the annual k. 
White boxes represent five species root mixture across contrasting tree 
overstory diversities. The gray box represents the comparison between 
single species in low diversity plots and the five species root mixture 
installed in the high diversity plots in Sardinilla. Agua Salud (AS) and 
Sardinilla (S). 
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Net diversity effects in five root species mi.xtt:~es for enzymatic activity after 485 
days . \'\1hite boxes represent five species roct mi.xture across contrasting tree 
overstory composition. The gray box repref.';nts the compariso'l in Sardinilla 
betwen single species samples in low diversity plots and the five species root 
mixture samples installed in the high diversity ·.Jlots. 
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1.5.4 Fuiictional species root identity efletts on decomposition 

PC!\ analysis revealed thar the studied species differentiated marked)y in terms of 

function (Fig 1.5, Table Sl.2). The first two axes of th': principal component analysis 

using root traits explained 80 % of the variation observed across five species. 

Anacardium excelsum, Hura crepitans, and Tabebuia rosea were strongly associ2.ted with the 

first axis (PC1) while Cedrela odorata and Lue!Jea seemanii with the second axis (PC2). PCl 

was comprised principally of chemical traits, as well as sorne structural (SRL, and 

diameter) a'.1d anatomical (epidermis and xylem) traits. PC2 was defined principally by 

structural t-::aits . The contribution of chemical and anatomical traits to PC2 was limited 

to Zn and Mg content and xylem area. The water soluble fraction of tissue was an 

important trait in both axes. Correlation analysis exhibited similar relationships among 

root functional traits (Table Sl.3) . 

De~pite PLSR models showing thar root functional traits predicted root 

decomposi·ion rates in both sites, the explained proportion of root decomposition using 

root traits varied between sites. PLSR mode! using data from both sites explained 35 % 

of varia ti oc in k, separa te models for Sardinilla and Agu a Salud explained 3ï % and 80 % 

of this variation, respectively (Table 1.6). Also, in spire of sorne root fun.ctional traits 

significantly explaining root decomposition rates in all mcdels, the magnitut:le of tl1e size 

effect varied for traits between sites (Fig 1.6, Table S1.4). In the PLSR mode! using data 

from both sites, traits that explained root decomposition significantly (p<C.05) were Al, 

ash, C:P, lignin, Mn, RDMC, and vesse! area proportior.. The PLSR mede! for Agua 

Salud also included C:P, Ca, cellulose, and cortex area proportion as signific~nt variables. 

Root Na ccntent was significant in Sardinilla and Agua Salud models separately, but not 

when analyzed together. As a result of PLSR models and the different responses of the 

species to site conditions (reflected in their root decomposition rates), the interaction 

between root functional traits and sites werc analyzed (Fig 1.7). For instance, a 

functional :rait related to C quality, i.e. lignin, explained 61 % of the site differences. In 

other wor~s, while less recalcitrant root material decomposed up to -60 % faster in 
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Agua Salud than in Sardinilla, more recalcitrant root initial material decomposed -30 % 

faster in Sardinilla than in Agua Salud. 

Figure 1.5 

-2 -1 

,Cm 

,, 
.· '• Tr ·--

He 

L;~.1l ; . 

c 

~<.L 

Ls 

-0.5 0.0 0.5 

PC1:46% 

Principal component analysis using ali roct functional traits . Five species 
used: Ae: Anacardium excelsum, Cm: Cedrela odorata, He: Httra crepitans, Ls: 
L uebea seemanii and Tr: Tabebuia rosea. Root functional traits ii1cluded: SRL: 
specifie root length, RDCM: · Root dry :natter content, Vessel: vessel 
proportion related to xylem area, C: carbcn, N: nitrogen, P: phosphorus, 
Al: aluminium, B: boron, Ca: calcium, Cu: copper, Fe: iron, ~.<:.: potassium, 
Mg: magnesium, Mn: manganese, Na: sodium and, Zn: zinc. 
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Table 1.7 Partial !east squares regresswns (PLSR) using root functional traits to 
exelain decomeosition rates. 

Vari~ble Site 
Component 

MSEP R.MSEP R2 
number 

Sardinilla 3 0.59 0.77 37.1 

k constac.t Agua Salud 3 0.19 0.44 79.6 

Both 3 0.63 0.80 34.6 

Abbreviatiom: MSEP: Mean squared error of prediction and R.MSE: Root mean square 
error. R2 values show the percent of variation explained by the mode!. 
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R2 = 60.6 %, p-value = 0.01 
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Figure. 1.7 

14 16 18 20 22 

Lignin content (log) 

Correlation between differences in k values between sites and initial root 
lignin content. Values higher than 1 indicate faster decomposition in 
Agua Salud than in Sardinilla while values lower than 1 indicate faster 
decomposition in Sardinilla than in Agua Salud. Differences in k values 
were calculated by dividing the values of decomposition from both sites 
for each species. 

1.6 Discussion 

Co~,trary to our expectations, tree diversity did not influence root d.~composition 

neither at meso- scale nor at the micro- scale across sites. Patterns o f decomposition 

were stror~gly modulated by functional identity, yet these response3 were also 

inconsis ter~t across study sites. Our results suggest that in tropical forests, tree 

communitif:s directly influence root decomposition mainly based on functional identity. 

However, ;:he high variance associated with tl1e calculated mean net diversity effects in 

five species root mixtures (Fig. 1.3) suggest that the influence of external factors, such as 

spatial heterogeneity of abiotic and biotic conditions, likely overshadowed diversity 

effects at rnicro- scale. I-Ierein, we will discuss the ecolog:cal implications of our results. 
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·, 
1.6.1 Tree diversi(y eflects on coarse root decomposition 

In the present study, tree overstory diversity did not influence coarse root 

decomposition rates or enzymatic activity across sites. Our results concur with those 

found by Scherer-Lorenzen et al. (2007), where the indirect influence of tree overstory 

diversity or: decomposition was not found in a leaf decomposition using the same five 

species in Sardinilla. While diversity effects on decomposition, mainly using leaf litter, 

have been found in other studies, these effects have been either weak (Banda et al. 

submitted) or less consistent than effects on other, well-described ecosyst~m functions 

such as pro.:luctivity (Cardinale et al. 2011, Hooper et al. 2:)12). 

Tree overstory diversity effects on root decomposition at the meso-scale could 

be mitigated by intrinsic environmental conditions associated with tlus process. Soil 

could provide a buffer for indirect tree overstory diversity effects on micro-climatic 

conditions (Silver and Miya 2001 ). As weil, soil properties and environmental factors 

could influence rrucro- and mesa-decomposer communities more strongly than tree 

diversity in our study. For example, studies have shown that fungal:bacterial ratios 

depend in great part to the C:N ratio of the soil (Fierer et al. 2009). Factors like soil 

texture arid seasonali ty have also been shawn to influence root decomposition in 

tropical grasses (Gijsman et al. 1997) by affecting the activity and mobility of 

decomposers. In our study, we assumed that the understory vegetation was influenced, 

in terms of composition, by tree overstory identity and chversity (Li et al. /..012). Still, a 

considerabie portion of root biomass from the understory vegetation is Lxated in the 

first soil l·).yers, i.e. where the root bags were installed. Consequentl;}, understory 

vegetation !:ould influence tree root decomposition direc'tly or indirectly èy influencing 

soil comm1mities, e.g. fungal and bacterial compositions (Wardle and Zaà risson 2005, 

Wu et al. 2011) and providing additional litter with co~1trasting quality to the system 

(Zhao et al. 2013). Still, the relationship between tree root decomrosition and 

understory vegetation needs to be tested. \Y'hile tree diversity effects were not observed 

in our study, direct effects of tree overstory composition may indeed influence 
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belowground processes through specifie tree identity effects that may be associated with 

litter traits (Thorns et al. 2010). 

The absence of diversity effects on decomposiL.ion in the present study also 

could be related to temporal and spatial scales. Despite using one of the oldest 

experimental biodiversity plantations established in Latin America and an old secondary 

forest (1 0 years in Sardinilla and > 50 years in Agua Salud), the se temporal scales could 

be too brief for diversity effects to emerge. Recently, diversity effects on ecosystem 

processes bave been found to increase with time (Cardinale et al. 2011, Allan et al. 2013). 

However, most studies using temporal scales have been performed in grasslands (e.g. 

Isbell et al. 2011, Reich et al. 2012), which have much faster species turnover rates than 

forests (Gi_11. and Jackson 2000) . Hence, biotic interactions leading to density-dependent 

mortality or "home field advantage" (Ayres et al. 2009) might become apparent much 

later in tree communities compared to grasslands. 

At two distinct spatial scales, significant eEfects of diversity on root 

decomposition were not found. Contrary to our hypothesis of complementary resource 

availability at the micro scale (I-httenschwiler et al. 2005), illrect effects of tree diversity 

were not consistently obset-ved. Indilect effects of tree overstory composition were not 

reflected in decomposition rates at the meso- scale either. \Vhile this study is one of the 

fust studies to compare tree root decomposition rates between two levels of tree 

diversity using experimental plots, we sugges t using a more flexible spatial approach to 

detect diversity effects, such as the neighborhood analysis used Potvin and Dutilleul 

(2009). 

1.6.2 Net diversiry ef!ects 011 marse roof decomposition 

No. significant net diversity effects (NDE) at the micro scale (Fig. 1.3) reflected 

the greater relative importance of species identity in deterrnining root d ~composition 

rates relative to species interactions. The high explar:atory power of 'ooth species 

identity and functional traits in predicting decomposition, rates provide furLher evidence 
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in support of our finding of additive effects of species at the micro sca!e. The high 

variation o~served in NDE across plots (-13 to 15% a~d -17 to 10% in ~jgh diversity 

plots in Sardinilla and Agua Salud, respectively), indicates that environmental 

heterogeneity also strongly influenced decomposition at the micro scale. SL."'Tlilarly, NDE 

on enzymatic activity were highly variable, as bath additive and non-additive effects were 

observed for the same five species root rni..-.,:ture. While fe\v studies using leaf mixtures in 

multiple sites have been performed, across-site variation has been observed frequently 

and has be en attributed to heterogeneity of abiotic and batie conditions ( e.g. Madritch 

and Cardinale 2007,Jonsson and Wardle 2008, Hoorens et al. 2012) . 

Although decomposition rates and enzymatic activity are bath indicators of the 

process of litter degradation, they reflect different aspects of the same process: 

decomposi':ion rates reflect degradation over the entire ~rocess and enzymatic activity 

indicates te;nporally dynamic shifts in degradation. Perhaps due to these di:cferences, we 

observed contrasting NDE between decomposition rates and enzymatic 2.ctivity at the 

micro scak in the present study. Decomposition is a dynamic prbcess where 

fluctuations in litter quality, succession of decomposer communities, aiid micro-site 

conditions could result in different interactions at the micro scale (within the 

decomposi':ion bag) that would alter the direction and magnitude of diversity effects 

(Gartner and Cardon 2004). From a biochemical perspective, negative non-additive 

values observed in the preseüt study could be explained l::y substrate diversity, as organic 

N and P could be obtained from less recalcitrant substrates, thereby decreasing 

investment in N-acetyl-f3-D-glucosaminidase and phosbhomonoesterase, respectively 

(Sinsabaugh and Moorhead 1994). Also, due to the cE ersity of substrate C quali ty, 

extracellular enzymes cm.ùd be acting on multiple substrates simultaneously. 

1. 6.3 Efftcts of fimctiotzal compositiotz otz coarse root decomposition 

The. observed patterns of interspecific variation araong an extensive. suite of root 

functional ,::raits (27 traits) provide novel insight tQ re~ationships amans anatomical, 

structural, ~.nd chemical root traits for tropical tree species. Previous stucli ~s in tropical 
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ecosystems have emphasized leaf and stem functional traits (e.g. Kraft et al. 2008, 

Swenson and Enquist 2009, Uriarte et al. 2010, Wright et àl. 2010), despite the increasing 

appreciatio;\ of the importance of belowground processes in tropical forests (Mangan et 

al. 2010). 3 ven when belowground processes have been explicitly included, the limited 

number of belowground traits measured has prevented the generalizati-::'n of a trait 

syndrome for roots similar to that of leaf (\'V'right et al. 2004) and stem tr2.i ts (Chave et 

al. 2009). For example, a study on the functional strategies of 758 Neotropical tree 

species, Fortune! et al. (2012), included only one root functional trait (root wood 

density) , F t 13 leaf functional traits. Our results 'Jrovide a basis for selecting 

informative root functional traits, thus enabling a larger number of species to be 

measured in future studies. 

Our study illustrates the importance of root traits as a predictor of coarse root 

decomposiion in tropical trees. Root functional traits explained 37and 80% of variation 

in decomposition in Sardinilla and Agua Salud, respectively. Across sites, faster 

decomposi ':ion was associated with high values of SRL and ash, Al, and Mn content, and 

low values of R.MDC, vesse! area proportion, lignin cont~nt, and C:P. The influence of 

leaf and ro~t traits associated with C quality, such as ligrtin, on decomposition has been . 
reported eisewhere (Hattenschwiler et al. 2011, Freschet et al. 2012) . MQ content has 

been foun ! to exert significant, positive èffects on decomposition as it is a component 

of Mn-percxidase, an enzyme involved in lignin degradat .on (Baldrian and Snajdr 2011 ). 

Vessel area proportion was strongly and negatively associated with · coarse root 

decomposition in our study and has been found to be a strong predictor of wood 

decomposi~ion· (Cornwell et al. 2009, Geffen et al. 2010).! Larger vessel aro::a proportion 

could be linked to slow decomposition because it reduces access to microorganisms 

when interstitial spaces are plugged with tyloses, gum, or resin (Geffen et al. 2010). 

Finally, the significan tl y negative effects of root C:P could be related to the importance 

of high P content in roots in P poor soil, which are as old tropical soils (Vitousek and 

Sanford 1986). Also, P limitation in soils on root decomposition was sugges ted due to 
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the high quantities of phosphomonoesterase produced during root decomposition (see 

Chapter 2). 

The importance of sites effects was reflected 1n the contrasting root 

decomposition rates found in Sardinilla and in Agua Salud. Similar to other ecosystem 

processes, abiotic resource heterogeneity could influence diversity effects ( fylianakis et 

al. 2008, I:uffy 2009, Cardinale et al. 2012). In our study, the greatest differences in 

abiotic coniitions between study sites are likely related to soil properties. Despite our 

hypothesis about soil properties being an important driver of root decom?osition, it is 

necessary to interpret these results with caution, as i~ is necessary to separate the 

influence of soil properties from other factors, like tree overstory diversity. Soil fertility 

could influ~nce decomposer communities, as lower fert:ility soils are aswciated with 

fungus, wh.ile more fertile soils are associated with bactr:.·ia (\'\!ardle et al. 2004). Thus, 

the fast cle,_;omposition observed at Agua Salud is likely due, in part, to its lower soil 

fertility, as fungi are more efficient at decomposing C than bacteria (Rhee et al. 1987). 

However, studies linking soil decomposer communities ue less frequent in the tropics, 

where fungal community composition was not related either to soil nutrient and tree 

diversity in a leaf decomposition stucly (McGuire et al. 2011). Differences in topography 

between Sardinilla (flat landscape) and Agua Salud (steep slopes) could have influenced 

hydrological processes (Hassler et al. 2011, Wohl et al. 2012), generating either ox.ic or 

anoxie conr::litions, which could modulate decomposition rates (Lee 1992). Finally, it is 

important .~o highlight that species die! not respond uniformly to site cor..ditions. The 

most recalcitrant species based on lignin content, Tabeb~tia rosea, decomp'?sed faster in 

Sardinilla, ;.vhile the least recalcitrant species, Hura crepitans and Anacardium excelsum, 

decompose~ fastest in Agua Salud. These results suggest that root decomposition rates 

are jointly determined by functional identity and site conditions. 
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1. 7 Conclusions 

Ou:: results show that tropical tree commur.ities did not ir .. Guence root 

decomposition through their overstory diversity at two distinct spatial scales, but rather 

through functional identity. As a result, changes in tree overstory composition in 

tropical regions that alter functional composition, such as land-use change or drought 

(Phillips et al. 201 0), could have significant repercussions on ecosystem processes su ch 

as root decomposition. Secondly, we emphasize the importance of considering multiple 

scales and multiple sites for exploring tree diversity effects on decomposition, as weil as 

on other bflowground ecosystems processes (Madritch and Cardinale 2007). Finally, sail 

decomposer communities that are linked to intrinsic sail characteristics may also strongly 

modulate root decomposition. 
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1.9 Supplementary material 

Table S1.1 Mixed effects mo del for explaining root decomposition rates and 
enzymatic activi!Y after 485 days. 

AI Cc 
Mo del 

k year BG CEL À'YL NAG PME 

Three-way interaction + two-way 
146.1 200.8 198.3 202.2 213.2 201.1 

interactions + single factors 

Two-way interactions + single 
144.8 200.1 197.5 201.3 213.3 200.8 

factors 

Two-w<;y interactions (except 
meso- scal~ diversity x micro scale 142.0 198.1 195.3 198.9 L.12.0 199.4 

divers;ty) + single factors 

Two-way i:.teractions (except site x 
micro- scale diversity) + single 143.7 198.0 196.5 200.6 211.5 198.7 

factors 

Two-way interactions (except site x 
meso- scale diversity) + single 141.2 197.8 195.2 199.7 211.6 198.6 

factors 

Single factors 137.4 193.7 192.2 196.8 208.7 195.1 

Site + meso- scale diversity 135.3 191.4 190.4 194.4 206.2 192.5 

Site + micro- scale diversity 132.7 190.8 189.3 193.7 205.9 191.6 

Meso- scat': + micro scale diversity 142.0 205.8 204.9 196.7 205.3 206.8 

Site 130.7 188.0 187.2 190.6 203.6 189.0 

Me~o- scale di ersity 139.9 203.6 203.2 194.4 202.9 203.8 

Mic~o- scale diversity 137.4 202.7 203.1 193.9 402.5 203.8 

Without factors 135.4 200.4 200.7 191.2 ~00.3 200.7 

Notes: BG: B-glucosidase; CEL: cellobiohydrolase; XYL: B-xylanase; NAG: N-acetyl-!3-
glucosaminldase; and PME: phosphomonoesterase (PME) . 
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Table S1.2 Root functional traits values for five tree species, including: structural, 
anatomical and chemical traits. 

Root traits 
S ecies 

Mean± SD 
Anacardittm Cedrela Hura Lue he a 

T abebuia rose a 
excelsum odorat a creE.itan.r seemanzz 

Structural traits 
Diameter (cm) 2.6 ± 0.2 2.8±0.1 2.8 ± 0.5 2.3 ± 0.1 4.0 ± 0.7 
SRL (cmg-1) 65.2 ± 11.8 59.1 ± 8.0 68.3 ± 10.4 67.2 ± 15.0 41.2 ± 12.2 
RMDC 0.3 ± 0.02 0.2 ± 0.02 0.2 ± 0.02 0.3 ± 0.01 0.2 ± 0.01 
Root density 0.3 ± 0.01 0.2 ± 0.02 0.2 ± 0.02 0.3 ±0.01 0.2 ± 0.002 
Water solublet 47.5 ± 2.2 44.1 ± 3.0 43.0 ± 3.0 34.2 ± 0.9 36.1 ± 2.0 
Hemicelluloset 9.8 ± 0.5 10.3 ± 0.2 10.9 ± 0.9 12.1 ± 1.2 11.0 ± 0.4 
Celluloset 28.6 ± 2.3 25.7 ± 2.9 30.6 ± 3.3 34.5 ± 1.8 29.2 ± 1.7 
Lignint 13.7 ± 0.4 19.5 ± 2.4 15.2 ± 1.2 19.1 ± 0.9 23.4 ± 2.2 
Asht 0.3 ± 0.2 0.4±0.1 0.4 ± 0.2 0.2 ± 0.02 0.3 ± 0. 1 
Anatomical traits 
Epidermis a::ea t 16.3 ± 4.9 20.4 ± 2.6 22.8 ± 2.8 9.8 ± 3.4 38.1 ±6.2 
Cortex area t 56.2 ± 4.9 64.2 ± 7.1 49.0 ± 4.2 41.9 ± 3.8 30.4 ± 7.4 
Xylem areat 27.6 ± 5.1 15.3 ± 4.7 28.2 ± 3.3 48.3 ± 5.7 12.9 ± 5.8 
V ascular area t 27.6 ± 5.1 15.3 ± 4.7 28.2 ± 3.3 48.3 ± 5.7 31.4 ± 5.6 
Vessel areat 17.0 ± 3.0 23.2 ± 5.0 10.4 ± 2.5 15.4 ± 2.4 25.1 ± 4.5 

Chemical traits 
Carbon* 446.5 ± 4.1 453.7 ±7.0 441.0 ± 7.3 461.1 ± 3.5 481.4 ± 12.9 
Nitrogent 5.6 ± 0.6 10.3 ± 2. 1 9.8 ± 1.9 8.2 ± 0.7 7.0 ± 0.7 
Phosphorust 0.7±0.1 3.1 ± 1.5 1.2 ± 0.6 0.7 ± 0.2 0.7 ± 0.1 
Aluminuml 3.5 ± 2.2 2.3 ± 1.1 3.2 ± 2.2 1.7 ± 0.3 1.2 ± 0.5 
Boront 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.0! 0.03 ± 0.005 0.02 ± 0.002 
Calciumt 21.8 ± 1.9 21 .8 ± 2.0 11.9 ± 2.C 6.8 ± 1.9 8.0 ± 1.1 
Cuppert 0.01 ± 0.004 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.03 ± 0.004 
Iront 2.3 ± 1.8 1.2 ± 0.7 1.9 ± 1.3 0.7 ± 0.3 0.8 ± 0.3 
Potassium* 3.7 ± 1.3 8.6 ± 3.1 5.2 ± 1.5 4.5 ± 1.6 0.3 ± 0.2 
Magnesiumt 4.4 ± 0.9 2.7 ± 0.8 3.7 ± 0.5 6.2 ± 1.1 1.3 ± 0.2 
Manganese*. 0.1 ± 0.07 0.1 ± 0.03 0.1 ± 0.07 0.1 ± 0.09 0.04 ± 0.02 
Sodiumt 0.6 ± 0.3 2.1 ± 1.1 2.8 ± 1.1 1.0 ± 0.6 7.7 ± 1.3 
Z'* ~mc 0.01 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.3 ± 0.1 0.01 ± 0.01 
t Values in percent, in anatomical measurements is the area percent in the cross-section 
while vesse! area was calculated is respect to the xylem, +Values reported in mg g·'. 
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Table S1.4 Coefficient values of partial least square regressions using root functional 
traits to explain decomposition rates. O nly significant coefficients (p-values <0.05) are 
repor_t_ed_. ______________________________________________________ _ 

Trait 
Size effects on decomposition rates 

Sardinilla Agua Salud Both 

SRL 0.096 0.069 

RMDC -0.220 -0.194 -0.160 

Lignin -0.126 -0.129 -0.103 

Cellulose 0.071 

Ash 0.249 0.261 0.207 

Cortex -0.080 

Vesse! -0.260 -0.302 -0.234 

C:N -0.218 

C:P -0.137 -0.102 

Alu!Y'.inum 0.154 0.149 0.120 

Calcium -0. 1.44 

Manganese 0.234 0.250 0.197 

Sodium 0.132 0. 110 

Notes: wate! soluble, hernicellulose, xylem area, N:P, and K were used but no significant 

results were found. 
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EXPANDING THE USE OF ENZYMATIC ACTI7 ITY IN COARSE ROOT 

DECOMPOSITION STUDIES IN TROP1CAL FORESTS 
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2.1 Résumé 

Les communautés microbiennes utilisent un ensemble diversifié d'enzyme pour 

dégrader le carbone (C) des litières de plantes et acquérir l'azote (N) et le phosphore (P) 

au cours des différentes étapes du processus de décomposition. E n dépit du rôle majeur 

· des enzym-::s pour la décomposition des litières, les études incluant cette perspective 

biochimique sont rares et restreir:1tes principalement à une poignée d'études utilisant des 

litières d'écosystèmes tempérés. Notre principal objectif de ce second chapitre était de 

développer un protocole standard pour mesurer l'activité -::nzymatique des décomposeurs 

dans les études de décomposition des racines et de démontrer son application 

écologique. Nous suggérons des valeurs de paramètres, notamment la concentration du 

substrat, le pH optimal, et le temps d'incubation basé sur des essais avec du matériel 

décomposé de cinq espèces tropicales locales et un mélange de racines de cinq espèces. 

Les valeurs de l'activité enzymatique associée au C, à l'1 et au P ont été utilisées pour 

évaluer l'irrportance relative de ces nutriments dans les t~mx de décomposition au cours 

du temps à deux endroits caractérisés par des propriétés du sol contrastés au Panama, 

Sardinilla et Agua Salud. L'expérience de terrain a duré 485 jours et l'activité enzymatique 

a été mesurée après 50, 310, et 485 jours de décomposition. Les enzymes étudiées liés à 
la dégrada tion de C étaient cellobiohydrolase (CEL), B-glucosidase (BG), et B-xylanase 

(XYL). Les enzymes liés à l'acquisition de N et P étaient N-acetyl B-glucosaminidase 

(NAG) and phosphomonoesterase (PME). Afin de déterminer les paramètres optimaux 

pour mesu.::er l'activité enzymatique lors des essais, les enzymes ()(-glucosidase (AG) et 

sulfatase ar:;-le (AS) ont aussi été incluses. Parmi les enzymes, nos résultats i.."ldiquent que 

l'activité er.zymatique dans les racines décomposées doü être mesurée en utilisant une 

concentrati.on en substrat de 100-200 f.Lmol et un tampon de pH 4.8 à 5. Les temps 

d'incubation varient entre enzymes, de 45 min pour PME à > 180 min pour AG, CEL, 

XYL et AS. E n accord avec notre hypothèse initiale, nous avons observé une relation 

entre l'activité enzymatique et la décomposition des racinr~s au travers des espèces et des 

sites d'étude. L'activité enzymatique cumulative prédisait entre 21 et 63:~ des taux de 

décomposition. L'activité des enzymes liées à l'acquisitiofl de N et P, en particulier, a été 

fortement (;Orrélé avec les taux de décomposition, c'est à dire une décomposition plus 

rapide a ét~ associée avec une plus forte activité enzymatique cumulée. ::..'activité des 

enzymes associées au C était quant à elle reliée à l'identitê de l'espèce, même si les effets 

de site étaient également importants, ce qui indique que des facteurs externes, à savoir les 

différences dans les communautés de décomposeurs ou les propriétés du sol peuvent 

également moduler les taux de décomposition. De façon inattendue, l'activité 

enzymatique cumulative des enzymes carbonées n'a pas été expliquée par les 

caractéristiques des racines qui décrivaient la qualité du C. La variation de l'activité 
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enzymatique liée à l'N a été principalement expliquée par l'activité enzymatique du sol, 

alors que la variation de l'activité enzymatique associée au P a été expliqué par les traits 

fonctionnels des racines. Bien que différents facteurs influencent clairement le rôle de 

ces enzymes lors de la décomposition, la quantification de l'activité enzymatique nous a 

permis d' ~va luer l'importance relative des différents groupes fonctionnels de 

décomposcurs microbiens pendant le processus de décomposition racinaire. 

Mots-clés: racine, décomposition, cinétique de Michaelis-Menten, pH optimal, temps 

d'incubatio:1, phosphomonoesterase, 13-glucosidase, cx.-glucosidase, cellobiohydrolase, 13-

Jo,:ylanase, N-acetyl-13-glucosamidase, aryl sulphatase, arbres tropicaux, Panama. 
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2.1 Abstract 

Microbial commurutJ.es use a diverse set of enzymes to degrade plant litter 
carbon (C) components and acquire nitrogen (N) and phosphorus (P) d'Jring various 
stages of the decomposition process. In spite of the important role of enzymes in plant 
litter decomposition, studies including this biochemical perspective are scarce and 
res tricted mainly to a handful of studies using leaf litter from temperate ecosystems. 
O ur principal obj ective in this second chapter was to develop a standard protocol for 
measuring the enzymatic activity of decomposers in root decomposition studies and 
demonstrate its ecological application. We suggest p <.rameter values, i.e. substrate 
concentrati~n, optimal pH, and incubation time based on trials with decomposed 
material of five native tropical species and a five-species root mixture. E nzymatic 
activity vabes associated with C, N and P were used to evaluate the relative importance 
of these m:trients in decomposition rates over time at ':wo sites with co.:1. tras ting soi! 
properties in central Panama, Sardinilla and Agua Salud. The field experiment lasted for 
485 days and enzymatic activity was measured after 50, 310, and 485 days of 
decomposition. The studied enzymes related with degradation of C were 
cellobiohydrolase (CEL), 13-glucosidase (fiG), and 13-Jo.:ylanase (À'YL). E nzymes related to 
the acqui~: ition of N and P were N-acetyl 13-glucosaminidase (NAG) and 
phosphomonoesterase (PME). For the assays to determine optimal p<rameters for 
measuring ~nzymatic activity, cx-glucosidase (AG) and ary: sulphatase (AS) were included 
as well. Across enzymes, our results indica ted that enzymatic activity in decoJ;Tiposed 
coarse roots should be measured using a substrate concentration of 100-200 f-lmol and a 
buffer with a pH of 4.8 to S. Incubation times varied across enzymes, from 45 min for 
.PME to > 180 min for AG, CEL, XYL and AS. Consistent with our general hypothesis, 
we obsetved a relationship between enzymatic activity ::> nd root decomposition across 
species anà study sites. Cumulative enzymatic ac tivity predicted between 21 to 63% of 
decomposition rates. Activity of enzymes related to N and P acqtùsition, in particular, 
were strongly correlated with decomposition rates, i.e. fas ter decomposition was 
associated with higher cumulative enzyme activity. Activity of enzymes associated with 
C were rehted to species identity, although site effects were strong, thus i11dicating that 
external factors, i.e. differences in decomposer communities or soil properties, also may 
modulate decomposition rates . Unexpectedly, cumulative enzymatic 2.ctivity of C 
enzymes ':.'as no t explained by root traits that descr:bed C guality. Variation in 
enzymatic activity related \vith N was explained principally by soil enzymatic activity, 
while vari<'. tion in enzymatic activity associated with P was uniguely explained by root 
functional ë.raits. Although different factors clearly influence the role of these enzymes 
during dec·:>mposition, the quantification of enzymatic activity allowed us to assess the 
relative importance of different functional groups of microbial decomposers during the 
root decomposition process. 

Keywords: coarse roots, decomposition, Michaelis-Henten kinetics, optimal pH, 
incubation time, phosphomonoesterase, 13-glucosidase, c:'-glucosidase, cellobiohydrolase, 
B- xylanase, N -acetyl-13-glucosamidase, aryl sulphatase, trcpical trees, Panama. 
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2.3 Introduction 

Trcpical forests play an important role in the global nutrient cycle (\Titousek and 

Sanford 1986a, Malhi et al. 1999), fixing ~70% of terrestrial nitrogen (Townsend et al. 

2011) and assi.milating 60 % of global carbon (Malhi and Grace 2000). TheiL importance 

in the global nutrient cycle is closely related to their vas t diversity. Plant diversity could 

influence ecosystem processes involved in the carbon cycle such as productivity and 

decomposiëion (Cardinale et al. 2012, Hooper et al. 2012). However, uncertainties about 

the relative contributions of belowground components to the nutrient cycle still persist 

(Vitousek "'nd San ford 1986a, Pan et al. 2011 ). Better e~timations of the belowground 

contribution in the tropics, that considers their susceptibility to land use and climatic 

change (McGroddy and Silver 2011, Ngo et al. 2013), are needed to improve models for 

predicting changes in nutrient cycles at a global scale. 

Plant tissues 0eaves, roots and wood) are composed of a diversity of carbon (C) 

components with different levels of C lability that ultimately influence their 

decomposi'ion rates (Berg and McClaugherty 2008). The fastest degradable and most 

easily met~ bolizable C components are monosaccharid~s, followed by rr::xe complex 

polysaccha:·ides (cellulose and hemicelluloses), and then bio-polymers s:Jch as lignin 

(Baldrian and Snajdr 2011 ). Due to variation in C quality and content across plant tissue 

and species in the tropics (Hattenschwiler and ]0rgensen 2010, I-Iattenschwiler et al. 

2011), decomposition of plant tissues is a complex process. Therefore, microbial 

communities involved in organic matter decomposition use specifie extra-cellular 

enzymes tc degrade these C components (Baldrian and Snajdr 2011). 

Measurements of enzymatic activ:ity can elucidate the role of microbial 

com.munities during the decomposition process at varying temporal scales (Sinsabaugh et 

al. 2002, ·=aldwell 2005). During the initial stages of leaf litter decomposition, 

Sinsabaugh et al. (2002) and Baldrian and Snajdr (2011) showed that the grea test 

concentrations of invertase and cx-glucosidase are produced by microbial communities 

that decompose soluble components. Later, cellulose, !3- glucosidase, and B-xylosidase 
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are produced to decompose available polysaccharides. Finally, phenol oxidase and 

peroxides are generated to decompose lignin. Changes in the duration of each stage of 

decomposition are associated with the quality of the decomposing litter, as early peaks in 

cellulose activity are associated with more lignified litter (Sinsabaugh et al. 2002). 

Despite the usefulness of studying enzymatic activity to understand decomposition of 

plant material (Sinsabaugh et ai. 1991, Sinsabaugh et al. 1 <;94, Moorhead an cl Sinsabaugh 

2000), most studies have been performed on leaf litter in temperate ecosystems while 

other litter types such as dead wood and roots have been less frequently studied 

(Sinsabaugh et al. 1993), particularly in tropical ecosystems (Allison and Vitcusek 2004). 

Extra-cellular enzyme activity of microbial communities is critical to the 

breakdown of dead organic matter, e.g. lignocelluloses, as weil as the release of nutrients 

such as nitrogen (N), phosphorus (P), and sulfur (S) (Sinsabaugh et al. 2002). Enzymes 

related to N and P acquisition are associated with nutrient demand and exogenous 

availability during decomposition (Sinsabaugh et al. 1993). When N and P are not 

available as inorganic or simple organic compounds, extracellular enzymes are produced. 

For exampie, chitin, a complex compound and major reservoir of organic N induces the 

B-N-acetyl-!3-glucosamidase production to release N (Sinsabaugh et al. 1993, Sinsabaugh 

et al. 2008). Conversely, when labile N is available. production of B-N-acetyl-B­

glucosamidase is inhibited (Sinsabaugh et al. 1993). P limitation in soils is associated to 

high ptoductivity of phosphomonoesterase (Sinsabaugh et al. 1993). 

Multiple levels of diversity act on decomposition, such as microbiai decomposer 

diversity (Gessner et al. 2010). Microbial groups, e.g. fungus and bacteria, have diverse 

functional roles during decomposition using cnzymatic activity (Boer et al. 2005). Rhee 

et al. (1987) found that fungi contribute more to the decomposition of cellulose 

components than bacteria. Gram-positive and gram-negative bacteria are also linked to 

cellulose activity (Waldrop et al. 2000). On the other hand, 13- glucosidase and 13-

xylosidase are linked mainly to gram-negative bacteria (\'V'aldrop et al. 2000). These 

differences are due to the contrasting abilities of gram-positive bacteria to metabolize 

~-------
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complex substrates, while gram-negative bacteria are stronger competitors for simple 

substrates (Waldrop et al. 2000). Therefore, evaluating the activity of multiple enzymes 

could provide further insight to the influence of functional diversity of microbial 

communities on the decomposition of dead organic matter. 

Enzyme production during decomposition is influenced by internai factors, such 

as litter quality, as weil as external factors, such as environmental conditions. During 

decomposition, litter specifie patterns of enzymatic activity are determined by substrate 

or litter quality, e.g. lignified versus labile litter, tannin coctent, and particulate size of the 

material in decomposition (Sinsabaugh et al. 2002, Joanisse et al. 2007). ?or example, 

high values of the lignocellulose index in leaf litter (LCI, lignin / lignin + cellulose) have 

been found to be related to low cellulose activity and slow decomposition r2.tes (Carreiro 

et al. 2000, Sinsabaugh et al. 2002). Due to differences in litter quali ty across species, 

variation in enzymatic activity during decomposition in tropical tree species has been 

observed (Allison and Vitousek 2004). Soil nutrient avûlability can also influence the 

production of enzymes related to decomposition (Sinsaba"ugh et al. 2002). Studies about 

the effects of nitrogen deposition on enzymatic activity have shown that high levels of 

nitrogen can suppress the production of phenol oxidase ac tivity, an enzyme involved in 

breaking clown lignin, thereby reducing decomposition rates of lignified litters in the la ter 

stages o f decomposition (Carreiro et al. 2000, Bobbie et al. 2012). 

Although measurements of a range of enzymes cao be used as indicators of 

microbiological functional diversity, their use and interpretation must be applied with 

caution (German et. al. 2011, Nannipieri et al. 2012) . An array of enzyme assay methods 

needs to ce performed to calibrate measurements of enzymatic activity prior to an 

experiment (Tabatabai and Dick 2002, German et al. 2011). This fundamental step is 

necessary because enzyme production efficiency varies with biotic and abiotic factors, 

including pH, substrate selection and substrate quality, resistance of enzymes to 

environmental conditions, and sorp tion processes (Sinsabaugh et al. 2002, Taylor et al. 

2002, TutD.er 2010). The enzyme parameters that should be tested indude kinetic 
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variables, affinity of the enzymes for a given substrate, optimal pH, and incubation time 

(Tabatabai and Dick 2002, German et al. 2011). Kinetic variables and substrate affinities 

are estimated precisely using the Michaelis-Menten mode! (Turner et al. 2001, Tabatabai 

and Dick 2002, German et al. 2011). As weil, determ.ini.ng optimal pH values can be 

used to se:ect an appropriate buffer (German et al. 201 1). A range of ecological 

questions, including leaf decomposition, have been examined using enzymatic activity 

measurements (Bobbie et al. 2012) However, parameters for measuring enzymatic 

activity frequently are not measured or reported, increasing methodological concerns 

about the use of enzymatic activity in different studies (German et al. 2011). 

In the present study, we examine activity of multiple enzymes to elucidate the 

mechan.isms that determine coarse root decomposition over time in tropical forests. To 

this end, our flrst objective was to deflne methodological parameters for measuring 

enzymatic activity of decomposed roots, as these parameters could change across 

ecosystems and plant substrates. Secondly, we exam.ined activity of multiple enzymes 

involved in major nutrient cycles (C, N, and P), and later related it to decomposition 

over time (50, 310 and 485 days of decomposition) providing a framework to understand 

the dynam.ics under coarse root decomposition and its eèological imphcaticns. We used 

coarse root material of flve tropical tree species estabhshed in two sites that differed in 

soi! properties. Based on the diverse functional roles of the studied enzymes, we 

hypothesizèd that initial stages of decomposition would be positively correlated with 

cellobiohydrolase, 13- glucosidase, and 13-xylanase, as found in leaf l.itter as they have been 

shown to break clown Jess recalcitrant carbon components (Waldrop et al. 2000, 

Sinsabaugh et al. 2002, Boer et al. 2005). Activity of enzymes not directly related to 

decomposition o f plant flber, such as acetyl N-acetyl 13-glucosam.in.idase and 

phosphomcmoesterase, were expected to be correlated with decomposition, given their 

role in the acquisition of organ.ic n.itrogen and phosphorus (Sinsabaugh et al. 2002). 

Las tly, we explored the extent to which root traits z.nd site conditions influenced 

enzymatic activity during root decomposition. 
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2.4 Methods 

2.4. 1 5 tucjy sites and species selection 

The study was conducted in two experimental forest sites, Sarclinilla (9°19' N -

79°38' W) and Agua Salud (9°13' N - 79°47' W), located in central Panam~ with annual 

precipitati0!1 of 2350 mm and 2650 mm, respectively (Scherer-Lorenzen et al. 2007, 

Breugel et al. 2011 ). Sarclinilla is an experimental biocliversity tree plantation established 

in 2001 where former pasture land was planted in plots of 45 x 45 rn with either one, 

three, or six native tree species (Scherer-Lorenzen. et al. 2005, Scherer-Lorenzen et al. 

2007). A ft er 10 years of growth, the Sarclinilla plantation has a closed, stratified canopy 

(Kunert et al. 2011). Understory vegetation is varied and is dominated by grasses and 

herbaceous species (Potvin et al. 2011). Agua Salud includes secondary forests of > 50 

years old (Breugel et al. 2011, Paul et al. 2011). While ia Sarclinilla the soils originated 

from sedimentary rocks and tertiary limestone, presenting Alfisols dominated by clay 

(Potvin et al. 2004), in Agua Salud soils originatcd from pretertiary basalt plateau 

(Hassler et al. 2011) (see Table 1.2 for soil characteristics). 

Roots used to es tablish the decomposition experiment were harvested from the 

five species present in Sarclinilla. The studied species r~present a graclie:1t of relative 

growth rates, inclucling slow growing species, Cedrela odorata and Tabebuia rcsea, moderate 

growing species, Anacardium exœlsum and Hura crepitam, and fast growing species, Luebea 

seemanii (Scherer-Lorenzen et al. 2007). 

2.4.2 Roo! material and experimental design 

Live coarse roots (2- 5 mm cliameter) corresponding to 4th and S'h orcier roots 

from Anacardinm excelsum, Cedrela odorata, Hum crepitans, Luebea seemanii and Tabebuia rosea 

were excavated, washed, and air dried at 40 °C for four days. Root traits inclucling 

structural, e.g. specifie root length (SRL), root dry mattèr content (RDMC) and lignin, 

. cellulose, and hemicellulose content, chemical, e.g. carbon (C), nitrogen (N), phosphorus 

(P) and micronutrients, and anatomical, e.g. cortex, xylerr,, vessel, and epidermis percent 



64 

area, characteristics were measured (see: Chapter 1 for details). Root material was eut to 

10 cm in length and 5 grams of each of the five species was placed into 10 x 20 cm 

nylon decc>mposition bags with a 2 mm mesh that allo·.ved entry of rneso-fauna. As 

well, a sixth treatment consisting of a five species root mixture where all species were 

included in equal proportions was included. Root decomposition bags were established 

in three high diversity plots in Sardinilla (see: Chapter 1 for details) and in three high 

diversity plo ts in Agua Salud. High diversity plots in Sardinilla contained aU five studied 

tree species, while those in Agua Salud had approx. 155 species in 0.2 ha (Breugel pers. 

communication). This design yielded three replicates fo:: each of the six treatments at 

two types (?lantation and secondary forest) of high diversity sites. 

Roct decomposition bags were established diagonally in the top 20 cm of the 

soil (see Fig. 1.1, Chapter 1) in August/September 2011. Subsamples for measuring 

enzymatic ac tivi ty were collected after 50, 310 and 485 days. To prepare the sub­

samples, roots were washed carefully with reverse-osmosis water over a 2 nun and 250 

fl.m mesh sieve. Later, 1 - 2 g of root were taken from each replicate and frozen at -35 

°C until analyzed. For five-species root mixtures, the subsamples were taken including 

small pieces from every remaining roots. Mass loss at each collection date was 

determined by oven-drying the remaining samples at 65 °C for four days. After 50 and 

310 days, fresh mass of the subsamples removed for measuring enzymati~ activity was 

converted to dry mass based on the specifie conversion factor between the fresh mass 

and dry Wêight of the remaining samples. La ter, · this dry mass \.vas z,dded to the 

remaining sample to estimate mass loss. After 485 days, independent samples for mass 

loss and erizymatic activity were used because there was not sufficient root material for 

certain species. 

2.4.3 Detqrminatiott of parametets to measttre en:ryme activi!J rbring coarse root deccmposition 

In orcier to develop a standardized protocol for measuring enzymatic activity in 

dead, coarse roots of tropical tree species, enzymatic parameters (kinetics, substrate 

affini ty, optimal pH, and incubation time) were tested for coarse roots after 50 days of 
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decomposition in Sardinilla. Each parameter was calibratéd using three samples of root 

material, which were selected from the studied species (Anacardium excel.rum, Cedrela 

odorata, Hum crepitans, Lue!Jea seemanii, Tabebuia rosea and five species root mixture) in 

orcier to capture as much variation as possible in substrate characteristics. 

2.4.3. 1 Eni]tnalic activi!J msqy 

Enzymatic activity of seven enzymes involved in the release of carbon (C), 

nitrogen (N), phosphorus (P) and sulphur (S) were measured (Table 2. 1 ). 

Characterization of these seven hydrolytic enzymes was performed with a modified 

fluorogenic substrate method (rurner and Romero 2010) . Enzymatic activity was 

assessed using 4-methylumbelliferyl (MU) that links compounds to substrate analogues. 

For each sample, 1 g of fresh decomposed root materia! was homogenized in a coffee 

grinder for 30 seconds. Suspensions were then prepared with the ground 7:oot material 

in deionize::l water (1:100 ratio), plus 1 mM NaN3 to prevent microbial <,ctivity. The 

suspension was stirred using a magnetic stir-plate for 1Q min. Micro-weiJ. plates were 

used to quantify enzymatic activities, including 50 ~ of root material, 100 ~tL of 

substrate, and 50 f.LL of sodium acetate acetic acid buffer. Controls for each substrate 

(containing substrate, buffer and 1 mM NaN3) and blanks (suspension and buffer) were 

included. Plates were incubated at 30°C. To stop the reaction, 50 ~ of 0.5 M NaOH 

was added. Fluorescence was measured at an excitation wavelength of 355 nm and an 

emission wavelength of 450 nm using a computerized fluorimetric microplate reader 

(Fluostart Optima, BMG Labtech, Offenberg, Germany). 
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Table 2.1 Substrates used in assays of enzymatic activity, the enzyme required for 
their breakdown and the main element released. 

E leme!1t E nzyme Substrate Code 

a-Glucosidase 
4-Methylumbelliferyl a-D-

AG 
glucopyranoside 

B-Glucosidase 
4-Methylumbelliferyl B-D-

BG 

Carbon 
glucopyranoside 

Cellobiohydrolase 
4-Methylumbelliferyl B-D-

CEL 
cello biopyranoside 

Be X y la nase 
4-Methyh:mbelliferyl B-D -

XYL 
Jo.:ylopyranosidc 

N itrogen 
N-acetyl-B-D - 4-Methylumbelliferyl N-acetyl- r3-

NAG 
gluccisaminidase D-glucosaminide 

Phosphorus Phosphomonoesterase 4-Methylumbelliferyl phosphate PME 

Sulphur Aryl sulphatase 
4-Methylumbelliferyl sulphate 

AS 
potassium sal t 

2.4.3.2 Kinetitparameter measttrement.r and calculation.r 

Eight substrates between 2 to 1000 f-LM were used to calculate kine t.ic parameters 

for seven enzymes with root litter. K.inetic assays were made using a buffer at pH 5. 

PME, BG, NAG were incubated for 1 h while AG, CEL, XYL, and AS w~re incubated 

for 2 h. Kinetic parameters were estimated using a Michaclis- Menten equation: 

V max S 
V= 

Km +S 

where the velocity o f reaction at any time is V and the substrate concentration by 

S (Cornish-Bowden 1995). T he Michaelis constant (Km) is an indicator of an enzyme's 

affini ty for a particular substrate (highest affini ty is equal to low Km) wherein the velocity 

of the reaction increases with the substrate concentration until maximal velocity (Vmax) 

(Cornish-Bowden 1995). 
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Additionally, three contrasting linear transformations of Michelis - Menten 

equations were used to calculated Vmax and K m: Lineweaver-Burn or doubl.e-reciprocal, 

Hanes or \'X/oolf, and Eadie-Hofstee. The Lincaweaver-Burn transformation is based on 

1/V against 1/S, where the slope is Km / V and the intercept is 1/ V Even though this 

has been ~sed commonly, it can be misleading regarding experimental errors for 

different V values (Cornish-Bowden 1995). The Hanes transformation is based on S/ V 

against S, where slope is 1/V and the intercept is Km/V This transformation provides 

better experimental error calculations in comparison with the other two transformations 

(Cornish-Bowden 1995). Lastly, the Eadic-Hofstte transformation is based on V against 

V /S, where slope is -Km and the intercept is V Although the Eadie-Hofstee 

transformation provides good results, experimental error affects both axes (Cornish­

Bowden 1995). 

2.4.3.3 Optimal pi-1 values and int'ubation time 

Multiple tests were performed to characterize optimal pH buffers and incubation 

times using substrates with a ftnal concentration of 100 !J.M. pH tests were performed 

using seven sodium acetate acetic acid buffers, ranging from 3.7 to 5.6. Additionally, 

enzymatic activities were quantified using diverse incubation times, 15, 30, 60, and 180 

minutes. A buffer of pH 5 was used for the incubation ti'Tie assays. 

2.4.4 En::;ymatù· activity and roof decompo.rition 

Sul:.samples from Sardinilla and Agua Salud a~ 50, 310 and 485 days were 

analyzed using the enzymatic activity assay explained abc-ve (section: 2.3.2.1-). Only five 

of the seven enzymes (f3G, CEL, À'YL, NAG, and PME) were analyz~d using the 

instantaneous and cumulative enzymatic values, since vcllues of AG and AS activities 

were extremely low in the preliminary assay. Instantaneous enzymatic activity was 

measured after 50, 310, and 485 days in 1-lmol MU g mi:1-1
, while cumulative enzymatic 

activity was calculated as the value under a curve relating enzymatic activity vs. time 

(Sinsabaugh et al. 2002). Decomposition rates (k) ~ere calculated following a flrst orcier, 
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exponentiai decay model proposed by Olson (1963) us!Jg mass loss for four harvest 

during 485 sampling days. Additionally, enzymatic activity of the same five enzymes was 

measured on soil collected in the first 20 cm deep inside experimental plots after 485 

days. Mass loss was calculated for each sampling period. 

2.4.4.1 Data ana!Jsù 

Relationships between instantaneous and cumulative enzymatic activity and 

decomposition were evaluated using standard major axis (SMA) regression in the 'smatr' 

package, as both contain measurement error (Warton et al. 2012). To determine if 

enzymatic activity varied by species identity of root litter, installation sites, and/ or 

harvest time, repeated measures analysis of covariance (ANCOVA) were performed. All 

variables had homogeneous variance; logarithmic transformation was used to meet 

normality assumptions for mass loss values. In addition, principal component analysis 

(PCA) was used to assess relationships among activity of multiple cumuh:.tive enzymes 

and decorr,position rates using the 'vegan' package (Oksanen et al. 2013). Finally, 

partial !east square regression (PLSR) models were fit to examine the extent to which 

root decomposition rates were explained by enzymatic activity. As weil, PLSR models 

were fit to determine if enzymatic activity was explained by root functional traits, and 

soi! characteristics, i.e. soi! enzymatic activity. Model performance was evaluated using 

cross-validation. Mean squared errors of prediction (MSEP) and root mean square 

errors (RlviSE) were used to select the best fit mode!. PLSR models were fit using the 

'pls' package (Mevik et al. 2011 ). Ail statistical analyses were performed using R 2.15 .3 

(R Develorment Core Team. 2011). 
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2.5 Results 

2.5.1 Determination of parameters to measure m'?Yme activity a!tring coane roof duomposition 

2.5.1.1 Kinetic parameter.r 

Variations in kinetic parameters su ch as V max and Km across species and enzymes 

were observed (Table 2.2). Across species, the lowest values for V max were 1 and 2 f.lillOl 

g-1 min-1 for AS and AG, respectively, while for Km the lowest values was 4 f.lillOl for 

CEL. The highest values for V max and Km were observed for PME with values of 263 

f.lillO l g-1 rrJn-1 and 110 f.lmol, respectively. Across enzymes, the lowest va1.ues for Vmax 

and Km we.ce found in roots of Tabebuia rosea and Hura crepitans, while the highest values 

were measured in roots of Hura crepitans and the five species root mixture, respectively. 

Species wif1 lowest and highest values for V max and Km differed only for PME and AS. 

E nzymatic activity of f3G, CEL, and NAG followed Michael-Me:.1ten kinetics, 

while enzymatic activity of AG, XYL, PME, and AS did not (Fig. 2.1, Table 2.2) . The 

Hanes-Woclf transformation revealed that at low and high substrate concentration 

ranges, two distinct rates of enzyme kinctics were prese:1ted (Table 2.3), such as Hura 

trepitam and Tabebuia rosea for PME and XYL, respectively (Fig. 2.2). The low 

concentrations found for the five species root mixture in f3G, AG, and XYL and for 

Tabebuia rosea in AG and XYL ranged between 2 to 200 f.lillOl, while the high 

concentration range was between 200- 1000 f.Lmol. Low and high concentration ranges 

for PME and AS were between 2- 100 f.lmol and 100- 1000 f.lmol, respectively, except 

for the five species root mixture in AS where concentrations were between 2 - 500 and 

500 - 1000 f.lmol, respectively. Lower Km values were found in lower concentration 

ranges. For example, Hura trepitans had a Km value of 42 flmol in low concentration, but 

a Km value of 559 f.lm in high concentration. Bence, gr-:ater affinities for the substrate 
! . 

in low concentrations were associated with low Km values. 
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Michaelis-Menten kinetics plots. Hura crepitans (solid line), Tabebuia rosea 
(thicker line) and the five species root mixture ( dotted line). 
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Table 2.3 Kinetic parameters for roo ts calculated us1ng the H anes Woolf 
transformation. Two-phase kinetics was found for phosphomonoes terase and 13-
>..y lanase at low and high substrate concentrations 

E nzymes 

13-glu.cosidase 
(i3G) 

a-glu ::osidase 
(AG) 

13-xylanase 
(XYL) 

Phosphomonoes terase 
(PME) 

Aryl sulphatase 
(AS) 

Species 

Root mixture 

Tabebuia rosea 

Root mixture 

Tabebuia rosea 

Root mixture 

Hura crepitan.r 

T abebuia rose a 

Root mixture 

Hura crepitans 

Tabebuia rosea 

Root mixture 

Substrate range 
J.-l-mOl 

2-200 
200-1000 

2-200 
200-1000 

2 - 200 
200-1000 

2 - 200 
200 -1000 

2-200 
200 -lOGO 

2-100 
100 - 100) 

2-100 
100 - 1000 

2 -lOO 
100-1000 

2-100 
100 -1000 

2-100 
100-500 
2 - 500 

500-1000 

f.lmol 
33 
89 
15 
94 

31 
118 

36 
338 
106 
265 
42 

559 
28 

220 
46 

310 
12 
94 
51 

149 
34 

225 

V max 

161 
138 

2 
2 

3 
5 

4 
11 
14 

23 

137 
565 
18 
40 
68 
187 
2 
4 
1 
2 
2 
2 
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Figure 2.2 Hanes-Woolf kinetics plot showing rates of reaction under low and high 
substrate concentrations of phosphomonoesterase (2 - 100 and 100 -
1000 f..lm) for Hura crepitans and fi- xylanase for Tabebuia rosea (2- 200 and 
200-1000 f..lm). 

2.5.1.2 Optimal p.H va!tte.r and intubation time 

Considerable intra-specific variation 1n enzymati:: activity was observed when 

usmg contrasting pH values. Nonetheless, the optimal pH value was consistently 

between 4.8 and 5.0 across species and enzymes (Fig. 2.3) . Httra crepitans was the species 
' 
with the highest enzymatic activity as weil as the highest variation of enzymatic activity 

across pH values. For example, CEL in Httra crepitans varied between 2 to 12 f..Lmol MU 

g·1 min·1 at 3.7 and 5.0 pH values, while CEL in Tabebttia rosea varied between 0.9 to 1.8 

!-'mol MU g·1 min·1 at 4.8 and 5 pH values, respectively. Anacar·dium excelsum bad a similar 

pattern as Tabebuia rosea for CEL. Across species, two optimal pH values were observed 

for AG and AS, 3.7 and 4.8/5.0. 

The maximum values for enzymatic activity after the longest incubation rime 

(180 minutes) by enzyme, from lowest to highest, was PME > BG> NAG> CEL> 

XYL> AG> AS. Although across samples, enzymatic activity did no~ exceed 30,000 

f..lmol MU g·1 after 180 minutes of incubation (Fig. 2.4), two distinct patterns were 

observed. First, the values of AS and AG were lowest and difficult to detect. Secondly, 
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the highest PME values (>65,000 f..lmol MU g·' after one hour) could be found when 

other species and/ or incubation sites are used (data not sl"'.ow). 
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Figure 2.3 Enzymatic activity of roots after 50 days of decomposition under varying 
buffer pH conditions. Empty circles (Tabebuia rosea), gray diamond (Anacaridum exce/sum), 
and black triangles (Hura .repitam). 
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15 :lO 60 180 
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Enzymatic activity measures after 15, 30, 60 and 180 minutes of 
incubation. Hura crepitans (solid line), Ar.:acardium excelsum ( dotted line), 
and Lttebea seemanii (thicker line) 
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2.5.2 En:;;ymatic adiviry and root det'omposition 

Sigrüficant, but at times weak relationships between decomposition and 

enzymatic activity were found across sites. Between cumulative enzymatic activity and 

decomposition rates, coefficients of variation (R~ varied between 22 to 56 %, while 

between instantaneous enzymatic activity and mass loss, they .ranged between 4 to 27 %. 

When enzymatic activity from both sites was analyzed together, only XYL was 

marginally correlated with mass loss (Fig. 2.5), while significantly positive correlations 

were found for enzymes related to N and P acquisition (Fig. 2.6). When sites were 

considered separately, significantly positive relationships between enzymes for C, N, and 

P acquisition and decomposition rates were observed in Sardinilla (p<O.OS), but not for 

cumulative values of CEL (Fig. 2.5). In contrast, significant negative rebtionships for 

BG and CEL with mass loss were observed in Agua Salud (p<O.OS). Furthermore, mass 

loss and cumulative values of NAG and PME exhibited significant and positive 

correlatiom in Agua Salud; instantaneous NAG activity, however, was not correlated 

significantly with mass loss (Fig. 2.6). 

Across study sites, activity of multiple enzymes stwngly regulated decomposition 

rates of roots. PLSR models using enzymatic activity as explanatory variables explained 

63 % of d'!composition in Sardinilla, 21 % in Agua Salud, and 38 % when bath sites 

were analyzed together. In Sardinilla, enzymes that significantly explained 

decomposition, in arder of their standardized coefficient sizes, were: BG> PME> 

XYL> CEL. In Agua Salud, decomposition was only explained by PME with a 

standardized effect size of 0. 550, while across sites it was predicted significantly by PME 

(s tandardized coefficient size = 0.441) and NAG (standa!:dized coefficient size = 0.375) 

(Table S2.1 and S2.2). 
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Figure 2.5 Relationships between decomposition and enzymatic activity associated 
with carbon. The left column shows cumulative enzymatic 2- ctivity versus 
the annual k constant and the right column shows enzymatic activity 
().lmol MU g min-1

) versus mass loss across ali species. Lines represent 
significant relationships (p<O.OS) in Sardinilla (solid line), Agua Salud 
(dotted . line), and bath sites (thick ll!1e). Sardinilla samples are 
represented by yellow points and Agua Salud by blue points. l3G: l3-
glucosidase, CEL: cellobiohydrolase, and XYL: l3-;..,;danase. 
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8oth sites R1 = 15 36 %, Sardinilla R2 = 13 88 %, Agua Salud R1 = 10.96% 

10 20 50 100 

k year (log) Mass loss (log) 

Relationships between decomposition and enzymatic activity associated 
with nitrogen and phosphorus acquisition. The left column shows 
cumulative enzymatic activities versus the annual k constant and the right 
column shows enzymatic activity (f..Lmol MU g min-1) versus mass loss 
across aU species. Lines represent signit.cant relationships (p<O.OS) in 
Sardinilla (solid line), Agua Salud (dotted line) and both study sites (truck 
line). Sardinilla samples arc represented by yellow points and Agua Salud 
by blue points. NAG: N -acetyl-f3-D-glucosaminidase and PME: 
phosphomonoesterase. 

2.5.2.1 EJ!ects of species a11d site 011 enzymatic activiry durùzg roof decompositio11 

D ecomposition rates and cumulative enzymatic activity varied significantly across 

species and sites (Fig. 2.7). Hura crepitam was the species with the fastest decomposition 

in Sardinilla (k=1.1g year-1) and in Agua Salud (k=2.6 g year-1
). High decomposition 

rates in Sarr:linilla were linked to high production of enzymes related toC, while in Agua 

Salud high decomposition rates were associated with activity of enzymes related toP and 

N acquisition. In the PCA, samples were strongly grouped by site, with the exception of 

Hura crepitans in Sardinilla, thus substantiating site differences enzymatic activity and 
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decomposition rates. Anacardium excel.rum in Agua Salud was the only species that was 

related more strongly toC enzymes than to NAG and PME enzymes. 

The influence of species site and their interactio:1s on enzymatic .activity during 

decomposition was further supported by the results of the repeated measures ANCOVA 

(fable 2.4). Across enzymes, the interaction between species and site was significant 

(p<0.03), excluding PME, where species was the only significant variable (p<O.OOl). As 

a main effect, harvest time did not significantly predict variation in enzymatic activity. 

However, the interaction of species, site, and harvest time was significant (p:SO.OS) for 

CEL, XYL, and NAG, and was marginally significan t fer BG (p = 0.06). In addition, 

variation in À'YL was explained significantly by the interaction between species and 

harvest time (p=0.02), while that of NAG was explained by site (p <0.01) and the 

interaction between site and harvest (p =0.03) . 

Fitt~d PLSR models using root traits and soi! enzymatic activity explained 57% 

and 75% of variation in NAG and PME, respectively. The mode! for NAG was mainly 

explained by enzymatic activity in soi!, while root traits principally explained variation in 

PME (Fig. 2.9, Table S2.3). High NAG activity was related to low values of BG, CEL, 

À'YL, and NAG in soil and low lignin, vesse!, and sodiur:1 (Na) content and high values 

of PME in soi! and high SRL, aluminum (Al), and manganese (Mn) content. I-Iigh PME 

activity was associated with low values of BG, CEL activity in soi! and RMDC, lignin, 

cortex, vesse!, C:N, C:P and calcium (Ca) content and with high values of PME in soi! 

and, SRL, hemicelluloses, cellulose, ash, Al and Mn. Models for activity of enzymes 

related to C acquisition exhibited po or fit, as they bad negative R 2 values (Table 2.5) 

indicating lhat neither of tl1e variables used in the r.1odel explained cumulative C 

enzymatic ?.ctivity during root decomposition. 
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PC1 : 49% 

Principal component analysis using cumulative enzymatic activity and 
decomposition rates. The enzymes (in gray) were: 13G: 13-glucosidase, 
CEL: cellobiohydrolase, À.'YL: 13-xylanase, NAG: N -acetyl-13-
glucosaminidase and PME: phosphomd::J.oesterase. Decomposition is 
k_year·1

• In black, letters refer to the studied species: Ae: A nacardium 
excelsum, Cm: Cedrela odorata, He: Hura crepitans, Ls: Luehea seemanii and Tr: 
Tabebttia rosea. Inside the parentheses, letters refer to study site: S: 
Sardinilla and AS: Agua Salud. 
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Table 2.5 Partial !east squares regression models using root traits, soi! enzymatic 
activi~', and their combined effects for exelaining cumulative enzymatic activi~ 

Variable Mo del 
Component 

MSEPt RMSEt H._2 

number 
Root 1 1.10 1.05 -14.1 

f3-glucosidase 
Soils 2 0.97 0.98 -0.2 

(f3G) 
Root and Soils 1 1.13 1.06 -16.7 

Root 1 1.23 1.11 -27.6 
Cellobiohydrolase · 

Soils 2 0.92 0.96 4.5 
(CEL) 

Root and Soils 3 1.23 1.11 -27.6 

Root 1 1.10 1.C5 -13.6 
f3-xylanase 

Soils 1 1.05 1.03 -9.0 
(ÀT)'L) 

Root and Soils 1 1.11 1.05 -14.4 

N -acetyl-G- Root 1 1.03 1.01 -6.0 

glucosaminidase Soils 1 0.51 0.72 46.9 

(NAG) Root and Soils 2 0.41 0.64 57.2 

Root 2 0.50 0.71 47.9 
Phosphomonoes terase 

Soils 1 0.86 0.93 11.0 
(PME) 

Root and Soils 3 0.24 0.49 74.9 

Abbreviation.r: MSEP: Mean squared error of prediction and RMSE: Root mean square 
error. Bold R2 values show fitted models, while negative R2 show unfitted models. 
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Figure 2.8 Standardized coefficient sizes of partialleast squares regression models using 
root traits (white) and soi! enzymatic activy (g::ay) to explain NAG and PME 
based on cumulative values. Abbreviations soil enzymes: f3G : B-glucosidase, 
CEL: cellobiohydrolase, XYL: f3-.rylanas , NAG: -acetyl-f3-glucosaminidase, 
and PME: phosphomonoesterase. Abbreviaeons root characteristics: SRL: 
~pecific root length, RMDC: root matter dry content, Hemicell: 
hemicelluloses, Cell: cellulose, Al: aluminum, Ca: calcium, Mn: manganese, 
and Na: Sodium. 
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2.6 Discussion 

To further our current understanding of temporal variation of coarse root 

decomposition in tropical tree species, we determined the optimal puameters for 

measuring activity of enzymes involved in C, N, and P cycles and evaluated how activity 

of these enzymes varied with respect to decomposition rates over rime. Using results 

from the present study, we provide guidelines for measuring enzymatic activity of coarse 

roots and then discuss the ecological implications of temporal variation in 

decomposition and nutrient cycles. 

2. 6. 1 Parameter.r to measttre en:omatic activity in coarse roof decompo.rition 

Ou:: results showed that, despite variation of enzymatic activity parameters 

across and within species, consistent optimal values across species for measunng 

enzymatic ilctivity cmùd be determined. Consequently, measurements of enzymatic 

activity wili allow for comparisons across decomposed coarse root material of tropical 

tree species using similar substrate concentration, pH buffer, and incubation times. 

The optimal substrate concentration for ail enzymes tested ranged c etween 100 -

200 f-lmol (Table 2.3) . The !one exception to this was AS when tcsting the five species 

root mixture, which had an optimal substrate concentration of 500 f-Lmol (Table2.3). 

Using the five species root mixture permitted us to compare optimal substrate 

concentrations of decomposed root material of single species versus that of multiple 

species. The higher substrate affinity found across species and enzymes at low substrate 

concentrations (100- 200 f-lmol) and over a small range of values, could be a result of 

the normal enzyme quantities, i.e. low concentrations, found in natural environments 

(Turner et al. 2001). 

Our results show that the most frequent optimal pH values across species and 

enzymes w11s 4.8/5. The importance of selecting an optimal pH to make comparisons 

across species was illustrated by the high intra-specific variation of enzymatic activity we 

observed when using different pH values. An increase in PME activity of 35 % for Hura 
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crepitans, 37 % for Tabebuia rosea, and 38 % for Anacardium excelsttm was observed when 

optimal pH values were compared with sub-optimal ones (5 vs 5.6, 5 vs 4.4, and 5 vs 5.6, 

respectively) . As weil, the increase in CEL activity was 50 % for Anacardium excelsttm and 

Tabebuia rosea and 83 % for H ura crepitans comparing CEL activity when using optimal 

and sub-optimal pH. Variation in enzymatic activity measurements found in this study 

when using contrasting pH values is congruent with that found in diverse tropical soils 

by Turner (2010). 

As expected, enzymatic activity increased with incubation for all enzymes across 

decomposed root material of the studied tree species. Due to the low activity of CEL, 

XYL, AG, and AS, we used prolonged incubation times of 180 minutes or greater. 

Using prolonged incubation times fo r these enzymes will reduce the error associated 

with blank subtraction when calculating enzymatic activity. In contrast, the high activity 

of PME permitted shorter incubation times to be used (45 min- 60 min) relative to the 

other enzymes tested. For this enzyme, short incubation times will enable precise 

estimates of maximum enzymatic activity to be captured by the computerized 

fluorimetric microplate reader. By adjusting optimal incubation times for each enzyme, 

we were able to measure precisely and consistently enzymatic ac tivity of coarse root 

litter for tropical tree species. 

2. 6. 1. 1 Remmmendations for measuring enzymatù· activiry in co am roof decomposition 

In the present study, we used coarse roots of tropica:. tree species that varied widely 

1n terms of structure, anatomy, and chemical content. Thus, it is possible to make 

recommendations for optimizing the measurement of enzymatic activity as part of 

future studies on coarse root decomposition in tropical forests : 

1) Generally, a substrate concentration between 100 - 200 1-lmol is appropriate for 

me2.suring enzymatic activity in decomposed coarsc roots; 

2) optimal pH values for the studied enzymes ranged between 4.8 and 5, and; 
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3) incubation times should be determined separately for each enzyme; they were 45 

- 60 min for PME, 60 min for f3G and NAG, and 180 min and more for AG, 

CEL, XYL and AS. 

2.6.2 En:()'matic activiry and coarse roof decomposition 

Consistent with our hypothesis, enzymatic activity played an important role 

during coarse root decomposition of tropical tree species, predicting 21 and 63% of 

variation of decomposition in Agua Salud and Sardinil'.a, respectively. Unexpectedly, 

cumulative enzymatic activity of C was not explained by root traits that described C 

quality. Furthermore, consistent patterns across sites for C enzymatic acti-rity were not 

found, indicating that external factors, such as differences in decomposer communities 

or sail properties, also could modulate decomposition. Following expectations, 

enzymatic activity related to N and P acquisition were strongly co..:related with 

decomposition rates across sites. These results sugges! that while enzymatic activity 

could provide complementary information for understanding root decomposition from 

a more mechanistic perspective, the complexity of this process due to abiotic conditions 

and species-specific root traits could hinder the determination of clear patterns. 

2.6.2.1 Ew.rymatù· activity aJJociated witb C degradation . 

Our results support the idea that enzymatic activity vanes over time during 

coarse root decomposition. Usually, variation in enzymatic activity related to C 

degradation has been associated with substrate C quality, e.g. cellulose, hemicelluloses, 

and lignin content (Sinsabaugh et al. 2002), but our r~sults suggest tha! abiotic site 

conditions strongly influenced changes in enzymatic activity over time. Across species, 

the highes t: CEL activity in Sardinilla was found after 485 days, with the exception of 

Tabebuia rosea after 310 days, while in Agua Salud, CEL activity peaked after 50 days, 

except for Anacardùmt ext"elsttm which peaked after 3l 0 days (Table S2.4). Faster 

decomposition and earlier enzymatic activity peaks in Agua Saluèl than in Sardinilla 

contradicted hypotheses like that of 'home-field advantage' where t.ree overstory 
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composition could promote more efficient decomposers to break clown local litters 

(Makkonen et àl. 2012), as the coarse roots used in the stady were sampled in Sardinilla. 

Across-site variation could be related to differences in soi! nutrient properties and 

microbial decomposer communities, as the most obvious difference between sites was 

soi! type (see Table 1.2), which could result in differences in soi! communities due to 

contras ting soi! nutrient content (Wakelin et al. 2012, Jangid et al. 2013). In other words, 

Sardinilla c::mld have a microbial community formed primarily by bacteria, which are 

associated with fertile soils, while the microbial decomposer communities in Agua Salud 

are likely C:ominated by fungus, which is associated with infertile soils (\Vardle et al. 

2004). As fungi are more efficient at cellulose degradation (Rhee et al. 1987), early and 

intermediate stages of decomposition could be faster in Agua Salud than in Sardinilla. 

Still, this b.ypothesis needs to be considered with caution as we did not measure directly 

soi! community composition. 

2.6.2.2 The ro/e of en~matit· activiry related toN and P acquisition on t·oarse roof det·:;mposilion 

While decomposition of plant nutrients usually has focused on C degradation, 

results from the present study clearly show that enzymatic activity associated with N and 

P release also play a fundamental important role in root decomposition in tropical 

ecosystems. Regarding NAG, greater activity during decomposition was associated with 

low values Jf BG, CEL, XYL, and NAG and high values of PME in the soi!. To a lesser 

extent than enzymatic activity in soil, root functional traits like SRL, lignin, vesse! area, 

Al, Mn, an::! Na content explained variation in NAG. The relationship between NAG 

activity and enzymatic activity of multiple enzymes in soi! is expected, as enzymes for N 

are closely related to nutrient demand and exog~nous N availa~ility during 

decomposiion (Sinsabaugh et al. 1993). Still, defi:'ling the role of N in root 

decomposi::ion is problematic due to complex N sources and their inte.::actions with 

other nutrients like P (Sinsabaugh et al. 1993). For example, C:N predict root 

decomposition rates of tree tropical roots (see: Chapter 1), yet initial root N content was 

not related to NAG activity. Also, our study showed a significantly positive relationship 
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between NAG activity and PME with decomposition ra~es, suggesting complementary 

interactions between N and P cycles. 

Faster decomposition associated with higher PME production found in our study 

suggested that coarse roots could be an important source of P facilita ting C degradation. 

Cumulative enzymatic activity of PME was explained mainly by root functional traits. 

High values of PME were associated with high values of SRL, hemicellulose, cellulose, 

ash, Al, Mn, and Na root content and with low values of RMDC, cortex arca, vessel 

arca, C:N and C:P. These same root traits also significantly predicted variation in 

decomposi··:ion rates in our study (see: Chapter 1). The importance of l:JME, due to 

highest cumulative values as well as a predictor of decomposition, was stronger in Agua 

Salud than in Sardinilla. This could be related to the lower available P in Agua Salud 

than in Sardinilla, as decomposition depends on the ability of plant a!1d microbial 

communitiss to use different sources of P (Turner 2008), including root P content. 

Hence, plant tissues could be a source of other growth-limiting nut::ients in the 

environment, such asPin tropicallowland forests (Vitousek and San ford 1986b). 

Enzymatic activity for diverse nutrients provides insight to the complexity of 

root decomposition, much of which is likely related to the heterogeneity in 

environmental conditions. For instance, fast decomposition was rel~. ted to high 

cumulative C enzymatic activity in Sardinilla, while in Agua Salud it was associated with 

high enzymatic activity of NAG and PME. Sinsabaugh and Moorhead (1994) proposed 

that when inorganic forms of N and P are available, the energy saved by producing 

enzymes will be relocated and invested in C degradation, i.e. greater production of C 

enzymes (Sinsabaugh and Moorhead 1994). Although this partly supports the results 

found in Sardinilla, it does not support the results found in Agua Salud where high 

values of PME and NAG were associated with faster decomposition. 

Plants produce enzymes as a mechanism to obtain nutrients such as P (Vance et 

al. 2003, Turner 2008), thereby exerting direct effects on processes like decomposition. 

While evidence for trec overstory diversity effects on decomposition rates and enzymatic 
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activity was not found (Chapter 1), diversity and composition of understory vegetation 

still could have affect coarse root decomposition and eczymatic activity. For example, 

understory vegetation could influence decomposition directly by producing enzymes 

such as phosphomonoesterase to release phosphate (Turner 2008) and root exudations 

to obtain diverse N forms Qones et al. 2005). Contrasting plant understory functional 

groups, such as grasses, legumes and herbs, could influence decomposers communities, 

e.g. reproductions and growth rates of invertebrate decomposers (Milcu et al. 2006). 

Indirect effects of understory vegetation also include the effects of roots on physical 

and chemical soil components such as soil structure and pH (Ehrenfeld et al. 2005), 

which are key factors in regulating enzymatic diffusion and efficiency (Sinsabaugh et al. 

2002, Taylor et al. 2002, Turner 2010) . 

2.7 Conclusions 

Enzymatic activity plays an important role for understanding the temporal 

dynamic on root decomposition. To our knowledge, this study is the first to provide 

specifie parameters for measuring enzymatic activity on ,coarse root decomposition for 

tropical trce species. We found that optimal values of cnzymatic activity parameters 

varied considerably across enzymes, which suggests that future studies should explicitly 

determine (and present) these parameters for each enzyme. Establishing a standard 

protocol for the measurement of enzymatic activity in coarse root litter is a fundamental 

step in the development of decomposition studies, as it will greatly facilitate 

comparisons across studies. 

Out study established a link in the temporal vai:~ation in enzymatic activity of 

coarse roots during decomposition to variation in ahiotic conditions and substrate 

diversity. The importance of environmental heterogeneity in determining patterns of 

root decoc1position in tropical ecosystems (Chapter 1) was supported by the across-site 

variation in enzymatic activity that we observed in the present study. In addition to the 

heterogeneous site conditions, high substrate diversity, i.e. root functional traits, also 

influenced temporal variation in enzymatic activity. Finally, the complementary 
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relationship between enzymatic activity related to N and P acqwsltlon and faster 

decomposition rates found in our study indicates that current biochemical models, 

developed for temperate species and ecosystems, need to be restructured to account for 

the complex interactions that arise in diverse tropical ecosystems. 
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2. 9 Supplementary material 

Table S2.1 PLSR models using cumulative enzymatic activity during decomposition 
to explain root decomposition rates. 

Mo del 

Sardinilla 
Agua Salud 

Both 

Component 
number 

1 
2 
1 

MSEP 

0.367 
0.875 
0.662 

RMSEP 

0.606 
0.936 
0.814 

R2 

62.6 
21.3 
38.4 

Abbreviatiom: MSEP: Mean squared error of prediction and RMSE: Root mean square 
err or. 

Table S2.2 Standardized coefficients for PLSR models explaining decomposition 
rates. Explanatory variables were cumulative· enzymatic activities during root 
decomposition. Only significant coefficients (p-values <0.05) were reported. 

Cumulative Enzymatic activity 

f3-glucosidase 
Cellobiohydrolase 

B-xylanase 
N-acetyl-13-glucosamidase 

Phosphomonoesterase 

Sardinilla 
0.292 
0.150 
0.239 

0.285 

k constant 
Agua Salud 

0.550 

Both 

0.375 
0.441 
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GENERAL CONCLUSIONS 

This thesis focused on coarse root decompositic:1 in tropical forests, given the 

importance of this process to nutrient cycles globally. To do so, we examined coarse 

root decomposition from two different ecological perspectives: tree diversity effects at 

the micro- (within the bag: 0.02 rn~ and meso- (within the plot: 2000 rn~ scales and 

interactions between root and microbial decomposer community functions during coarse 

root decomposition. While effects of tree diversity on decomposition rates were not 

observed at either spatial scale, our resul ts suggest th<J.t changes in plant functional 

composition of tropical forests could alter nutrient cycles via changes in root litter input. 

In addition, this study provides support for expanding the use of enzymatic activity, 

typically used in soil science, to decomposi tion studies in order to illustrate possible 

underlying mechanisms that determine temporal changes in coarse root decomposition 

of tropical trees. E nzymatic activi ty changed with cime, elucidating distinct biochemical 

stages of decomposition, as well as across species and between sites. These results 

suggest that changes in the functional composition of decomposer communities could 

influence biochemical processes and that heterogeneous environmental conditions also 

drive variation in coarse root decomposition. The relationship between fast 

decomposition rates with high N and P enzymatic production observed in our study 

could be evidence of the influence of soil nutrien ts on ecosystem processes, such as P 

limitation on soils in lowland tropical forests . Hence, in the following sections we make 

severa! suggestions to approach, conceptually and experimentally, these ecological 

concerns. 

We diù not detect the influence of tree overstory divcrsity on coarse root 

decomposilion at either very small (0.02 rn~ or medium (2000 rn~ spatial scales. The 

question whether such an effect could be occurring at an intermediate or even larger 

spatial scale is still open. Such further experiments could adapt approaches used for 

evaluating ~he influence of overst01y diversity on tree growth at the tree neighborhood 

scale, such as Potvin and Dutilleul (2009) and Uriarte et al. (2004), using neighborhood 
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models. \XIhile the model developed by Potvin and Dutilleul (2009) showed a stronger 

influence of neigbourhood on productivity than tree diversity at meso scales in a tropical 

tree plantation, Uriarte et al. (2004) found that neigbourhood abundance affected 

productivüy more than neigbourhood diversity in tropical forest. Hence, the use of 

more flexible spatial statistical approches could improve our ability to detect tree effects 

on belowground processes and soil communities and 'to determine the area of influence 

where diversity effects actually occur. 

In this study, we used roots from the 4'11 and 5'11 branch orders, which were 

selected because of their role in the transport and storage of nutrients. Root orders play 

an importa~t role in C soi! retention, as higher root orders are longer lived than lower 

root orders (Guo et al. 2008) ~ yet can decompose faster than lower root orders (Fan and 

Guo 2010, Goebel et al. 2011). Fan and Guo 2010 found that higher orders (5'11 and 6'h) 

decompose faster than lower orders likely by i) their higher nonstructural carbohydrate 

content and it) greater recalcitrance of lower root orders, due to their close association 

with mycorrhiza. Still, the mechanisms of root decomposition related to root orders 

need to be studied. Decomposition rates found in our study (0.4- 2.6 g year' 1
) suggests 

that residence rime of belowground carbon could be lower in areas previously disturbed 

by cattle grazing or agriculture, increasing labile carbon, i.e. mean resistance time of 1 - 2 

years approx (Nair et al. 2009). Furthermore, our results emphasize the importance of 

root traits for predicting decomposition rates. As weil as characteristics of a particular 

decomposition environment appear to modulate tb..e strength of root trait -

decomposition relationships. 

The strong influence of environmcntal heterogeneity on root decor:1position was 

reflected iri the variation in responses at the micro scale within study plots. As this 

environmental heterogeneity could be caused by either biotic or abiotic variables (or an 

interaction of the two), we suggest: 1) including other biotic factors such as understory 

vegetation composition and diversity as such component could influence decomposition 

and, subsequently, carbon sequestration, through root exudation, root symbiosis 
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interactions and specifie root litter contributions (Deyn et al. 2008); 2) evaluating the 

role of diverse groups of decomposers, such as maèro-fauna (macro-arthropods and 

earthworms), which ail play a crucial role on leaf decomposition in the tropics 

(Hattenschwiler et al. 201 1); and 3) establishing sim.ilar experiments under more 

controlled conditions to evaluate the influence of specifie abiotic factors, such as 

microenvironment climate conditions, sail nutrient content, sail water saturation, soil 

percolation, and biotic factors separately. In addition, as our results also showed that 

sail type modulated variation in root decomposition rate<>, an experiment using multiple 

tropical forest sites thar encompass a greater range of soil properties and decomposer 

communities would allow for a more detailed examination of the effects of sail on 

decomposition in tropical forest, such as prim.ing effects (Fontaine et al. 2003). For 

these expe<:iments, the use of single-species samples as well as root species mixtures 

could provide interesting data about the large variation we observed when calculating net 

diversity effects at the decomposition bag scale. 

In our study, the C enzymes used were associated mainly with polysaccharide 

degradation, at early and intermediate stages of coarse root decomposition. Hence, we 

suggest including enzymes for lignin degradation, such as phenol oxidase and peroxides, 

in arder to ·capture the la ter stages of decomposition. Given the variation observed for 

the activity of enzymes associated with degradation of C, N and P across study sites, we 

also suggest exam.ining enzymatic activity during root decomposition across a wider 

gradient of sail properties. Given that the relationship between root decomposition 

rates and enzymatic activity between sites may be mot;ulated in part by functionally 

distinct (i.e. bacterial versus fungal dom.inated) microb~al communities (-Xlardl et al. 

2004), an assessment of m.icrobial diversity in soils arid roots during decomposition 

could help disentangle how soil m.icrobial diversity may influence decomposition and 

associated nutrient cycles. 

Finally, although tree overstoty diversity did not influence coarse root 

decomposition at the spatial scales we tested, w.e urge caution in interpreting these 
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results as biodiversity effects may only become evident over longer time scales. A 

growing network of tree biodiversity experiments globally will provide interesting 

opportunities in the coming years to study nutrient cycling processes of different aged 

tree communities across taxonomie and functional diversity gradients. 
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