
Université du Québec à Chicoutimi

Mémoire présenté à
L'Université du Québec à Chicoutimi

comme exigence partielle
de h1 maîtrise en informatique

offette à

l'Université du Québec à Chicoutimi
en vertu d'un protocole d'eqtente

avec l'Université du Québec à Montréal

par

YUAN WEI

AN JNTR USJON DETECTION SYSTEM ON NETWORK SECURITY

FOR WEB APPLICATION

août 2006

UNIVERSITÉ DU QUÉBEC À MONTRÉAL
Service des bibliothèques ·

Avertissement

La diffusion de ce mémoire se fait dans le' respect des droits de son auteur, qui a signé
le formulaire Autorisation de reproduire. et de diffuser un travail de recherche de. cycles
supérieurs (SDU-522- Rév.01-2006). Cette autorisation stipule que «conformément à
l'article 11 du Règlement no 8 des études de cycles supérieurs, [l'auteur] concède à
l'Université du Québec à Montréal une licence non exclusive d'utilisation et de .
publication pe la totalité ou d'une partie importante de [son] travail de recherche pour
des fins pédagogiques et non commèrciales. Plus précisément, [l'auteur] autorise
l'Université. du Québec à Montréal à reproduire, diffuser, prêter, distribuer ou vendre des .·
copies de. [son] travail de recherche à des fins non commerciales sur quelque support
que ce soit, y compris l'Internet. Cette licence et cette autorisation n'entraînent pas une
renonciation de [la] part [de l'auteur] à [ses] droits moraux ni à [ses] droits de propriété
intellectuelle. Sauf entente contraire, [l'auteur] conserve la liberté de diffuser et de
commercialiser ou non ce travail dont [il] possède un exemplaire .. »

ABSTRACT

For the last 15 years, significant amount of resources are invested to enhance the security at

system and network leve), such as firewalls, IDS, anti-virus, etc. IT infrastructure tends to be

more and more secure than ever before. As an ever-increasing number of businesses move to take

advantage of the Internet, web applications are becoming more prevalent and increasingly more

sophisticated, and as such they are critical to almost ali major online busincsses. The very nature

of web applications, their abilities to collect, process and disseminate information over the

Internet, exposes thern to rnalicious hackers. How~ver, the traditional security solutions such as

firewall, network and host IDS, do not provide comprehensive protection against the attacks

common in the web applications.

The thesis concentrates on the research of an advanced intrusion detection framework. An

intrusion detection framework was designed which works along with any custom w~b application

to collect and analy:ze HTTP traffic with various advanced algorithms. Two intrusion detection

algorithms arc tested and adoptecl in the framework. Pattern Matching is the most populat·

intrusion detection technology adopted by most of the commercial intrusion detection system.

Bchavior Modeling is a new technolo&,ry that can dynamically adapt the detection algorithms in

accordance with the applicatioq behavior. The combination of the two intrusion technologies has

dramatically reduced fa lse positive and false negative alarms. Moreover, a Servlet filter~based

Web Agent is used to capture HTTP request. An isolated Response Module is developed to

execute pre-defined action according to the analysis result. A database is involved to provide

persistence support for the framework . Also, severa! simulation experiments are developed for

eva luating the efficiency of detecting capability.

--

ACKNOWLEDGEMENT

This thesis would not be possible without the support of many people. First of ali, 1 would

llke to thank my supervisor, Professer Cao Zuolang, for his great enthusiasnJ and indispensable

guidance throughout this research. Thanks, Zhu Hui, my associated director, fol' sharing his

knowledge and experience in web security issues. Thanks, for ali your help and invaluable
adviee.

J would like to thank ali the faculty and student members of Computer Department for their

inspidng discussion and sha.ring their ideas. 1 would like to thank, in particular, Chen Tao for his

help in performance testing and fine tuning the design of the framework.

This research would not have been possible without my family support. Nothing but their

love, moral support, patience, and understanding give me great encouragement to go ahead.

Thanks, thanks, thanks, and more thanks to ali ofyou!

ii

iii

TABLE OF CONTENTS

Abstract ... , i

Acknowledgement ii

Table of Contents , iii

List of Fi gu res .. vi

List of Tables .. vii

1. Introduction ... , ... l
1.1 Motivations , 1

1.2 Objective 3

1.3 Thesis Contribution , 4

1.4 Thesis Organ ization 5

2. Related Work ... 7

2.1 Goal of'Network Security , 8

2.2 Why We Need Intrusion Detection System .. 9

2.2.1 Traditional Network Security Approaches , 9

2.2.2 Fire\val l Is Not Enough , 11

2.2.3 Security Vulnerabilities of Web Application , 13
2.3 Overview oflntrusion Detection System , 15

2.3. 1 Terrninology 15

2.3.21DS or IPS , 16

2.4 Classification of IDS : 18

2.4.1 Host-based IDS, Network-based IDS and Hybrid IDS 18

2.4.2 Misuse Intrusion 20

2.4.3 Anotnaly Detection 22

3. Intrusion Detection Framework ... 26

3.1 Description 26

3.2 Relationships of IDS Components 27

4. Web Agent 30

4.1 Description ,. 30

4.2 Considerations of Web Agent , , 32

4.3 Filter-based Web Agent. ,. 33

4.3.1 Feasibility Study ,, 33

4.3 .2 The Implementation , 35

iv

4.4 Centralizecl Character Filter 37

4.4.1 Why a Centrall.zed Character Filter ls Needed 37

4.4.2 Countenneasure 40

4.5 Nonnalization 41

4.6 Conclusion 41

5. Analysis Engine .. 43

5.1 Description 43

5.2 Pattern Matching Engine 44

5.2 .1 File Description 45

5.2.2 How to Perform Rule Matching ,. 49

5.3 Behavior Modeling Engine 53

5.3. 1 Behavior Modeling Algorithm 53

5.3 .2 Fi le Description 56

5.3.3 How to Manage Behavior Modeling 59

5.3.4 URl ModelingAlgorithm 61

5.3.5 Parameter ModelingAlgorithm , 62

5.4 Conclusion 64

6. Response Module ... 65
6.1 Description , 65

6.2 File lnitialization 66

6.3 Implementation ofResponse Module 69

6.3. 1 Execution of Response Action 69

6.3.2 Send Action Instruction to Web Agent.. , 71

6.4 Conclusion , 71

7. Dat1tbase , : ... , , t••··· 72
7.1 Database for 1-ITTPRequest , 72
7.2 Database for Behavior Modeling Engine 75
7.3 Data Aceess Supported by Spring and Hibernate 76
7.4 Conclusion : 78

8. Experiment~l Results and Case Studies .. , 79
8.1 Case Studies '19

8.1 .1 SQL Injection 80

8.1.2 Cross-Site Scripting (XSS) .. 82

8.1.3 Directory Traversai 83

8.1.4 Hidden Field : 84

8.2 Conclusion , 86

9. Conclusion and Recommendation , , 87

9.1 Conclusion ofThesis 87

v

9.2 R~commendat i on 88

Bibliography , 90

---- - -------------------,

vi

LIST OF FIGURES

Figure 3-1 Relationships oflntrusion Detection Framework Components 27

Figure 4-1 WebAgont Class Diagran1 , 35

Figure 4-2 Prognunming Details of doFilter() , 36

Figure 4-3 DTD for 'HTTP Request. , 42

Figure 5-1 Relationship of'làbles in Pattern Matching Engine 48

Figul'e 5-2 Programming Details on Rule Matching 51

Figure 5-3 Behavior Modeling Algorithm ... , 54

Figure 5-4 Relationship of Tables in Behavior Modeling Engine 58

Figure 5-5 Data Structure of Class URIStatistic , 61

Figure 5-6 Data Structure of Class ParamStatistic 63

Figure 6-1 Pseudo Coçle for Response Module 70

Figure 7-1 Business Service Layer ofBehaviorModelingDB 77

Figure 8-1 Request Parameter for SQL Injection 80

Figure 8-2 Rule for SQL Injection 81

Figure 8-3 Intrusion Log for SQL Injection 81
Figure 8-4 Error Page for SQL Injection 81

Figure 8-5 Request Parameter for XSS 82

Figure 8-6 Rule for XSS , , 82

Figure 8-7lntrusion Log for XSS , 82

Figure 8-8 Request Parameter for Directory Traversai , 83

Figure 8-9 Rule for Directory Traversai. 83

Figure 8-10 Intrusion Log for Directory Traversai 83

Figure 8-11 Manipulation of Hidden Field with Paros ,. 85

Figure 8-12 Intrusion Log for Hidden Field , 86

Figure 8-13 Error Page for Hidden Field 86

vii

LIST OF TABLES

Table 4-l Legal UTF-8 Sequenc~s 39

Table 5-l Structure of a Rule , 45

Table 5-2 Structure of a Rule Mapping 46

Table 5-3 Structure of a Target , 4 7

Table 5-4 Structure of a Mode! , 56

Tabl~ 5··5 Structure of a Model-Mapping , , 57

Table 6-1 Structure of an Action ... , .. 66

Table 7-l Structure of Malicious HTTP Request: Application 73

Table 7-2 Structure of Malicious HTTP Reqltest: Agent.. 73

Table 7-3 Structure of Malicious HTTP Request: Client 73

Table 7-4 Structure ofMalicious HTTP Request: 1-Ieader 74

Table 7-5 Structure of Malicious HTTP Request: Session 74

Table 7-6 Structure of.Malicious HTTP Request: Cookie 74

Table 7-7 Structure ofMalicious HTTP Request: Parameter 74

Table 7-8 Structure ofParamTypelnfo 75

Table 7-9 Structure of ParamProt1le , 76

Table 7-10 Structure ofURIProftle 76

Table 8- l Pararneter Type for Hidden Fie ld ... 84

Table 8-2 Parameter Profile for Hidden Field 85

CHAPTER 1

INTRODUCTION

In this chapter, the motivation and objective are reviewed following by an overview of the

skeleton of the thesis. A brief introduction of the project is included in this section .

1.1 Motivations

Information security is serious issue in today's ex.tensively interconnected cyber space.

Unauthorized network intrusions and computer-related fraud initiated abuses have dramatically

increased due to the popularity of Internet and the implicit anonymity of network users. The

commercial sectors, academie institution, government even individual desktop users are now

victimized at risk from the increasing network attacks.

Since most firewalls are effective in protecting against common attacks at the

network-layer, the target of attacks bas changed to application-layer, where monetary return can

be achieved. Meanwhile, operation system vendors have kept patching up published and

unpublished vulnerabilities, so the weakness of Web application becomes the easy target of

attacks.

In response to this emerging phenomenon, many solutions have been proposed to enhance

application security, among which Intrusion Detection Systems (IDS) is the most effective and

meaningful one.

Lacking the standardization and the supports from the operating system vendors, IDS

solutions introduced their unique approaches and algorithms to detect intrusions. However, the

proposai of common protocols and application programming interface are required so that the

research of intrusion detection can share information and resources.

With the help of A11ificial Intelligence (AI), data mining and other advanced algorithms,

academie research communities attempted to develop advanced technologies to detect intrusions

in large-distributed environments. However, little effort has been invested in application intrusion

detection, which would be able to detect attacks targeted at business logic instead of static

protocol stacks. Thus, the development of a flexible and easy-to-implement Web

application-specifie Intrusion Detection Framework is more desirable at present.

2

Additionally, with the popularlty of Java technology and J2EE standard, proposai of a

platfonn-independent Intrusion Detection Framework for Web application becomcs an emerging

issue. Therefore, the project is conceived and designed to provide an effective and efficient web

application security framework with advanced algorithms.

1.2 Objective

The main objective of this thesis is to propose a common Intrusion Detection Framework

for Web application, which would be able to work with any custom-built web applications. With

advanced framework architecture and effective detection algorithms, this framework can process

various security-related data, detect and prevent intrusion effectively with Jess fal se negative and

false positive.

This J2EE-compatible framework follows the thought of modular architecture design

methodology. Tt consists of the following four pmts:

3

• A filter-based Web Agent is developed. The agent collects network traffic, sends the

captured information to the Web Intrusion Detection System (WebiDS) for intrusion

analysis, and receives instruction message from WebiDS to take appropriate actions against

the network packets.

• Advanced intrusion detection algorithms, pattern matching and behavior modeling, are

developed. They fonn the core component ofWebiDS, Analysis Engine.

- - - ------ ----------- --

4

• Another critical component of WebiDS is Response Module. lt is responsiblc for execution

of specifie actions determined by the analysis rcsult. The module might filter out intrusion

payload wh en an attack is detected, or se nd instructive messages to Web Agent.

• Databuse module is included in order to provide persistent storage for the WebiDS.

1.3 Thesis Contribution

This thesis proposes an Intrusion Detection Framework for Web application with advanced

detection algorithms. The major contributions of this thesis are summarized as the followings:

• A complete Intrusion Detection Framework is proposed. With this framework, various

security relevant data can be collected and analyzed by one system. And the framework is

highly adaptive to allow any new intrusion detection algorithm to be conveniently deployed

as plug-ins, since it adopts designing concept based on modular architecture and it is strictly

compatible with J2EE development standard.

• With the introduction of Servlet Filter technology, the job of data collection becomes easier.

It captures raw network traftic and takes appropriate actions against the packet based on the

instructive message from Analysis Engine.

• Pattern Matching Algorithm and Behavior Modeling Algorithm are the advanced algorithms

developed in this project. The combination of two algorithms decreases false negative and

positive efficiently.

5

1.4 Thesis Organization

The remainder of the thesis is organized as follows.

Cha,pter 2 briefly describes background information. lt discusses the current issues

associated with the security of Web application and the reason that we have to introduce

Intrusion Detection System to prevent attacks coming from outside network. Then, comparison

between Intrusion Detection System and Intrusion Prevention System is reviewed. At last,

relevant terminologies and information of IDS are reviewed.

Chapter 3 presents the overall architecture of IDS framework developed in this project.

Relationships of the components and primary functions of each module are revealed.

From chapter 4 to chapter 7, the design details of the Intrusion Detection Framework for

Web application are explained .

Chapter 4 concentrates on a design ofFilter-based Web Agent. Background information on

Servlet Filter technology is reviewed briefly. Then the detailed implementations are revealed.

Chapter 5 focuses on the intrusion detection algorithms and implementations. A prevalent

pattern-matching algorithm is discussed; a more advanced and effective behaviour-modeling

methodology follows.

6

In chapter 6 and chapter 7, other two modules in the framework, Response Module and

Database are revealed . In chapter 6, design of Response Module is delivered. Chapter 7 presents

the details about database schema and database-relevant technologies, including data access

supported by Spring-framework and Hibernate.

Experiment result and evaluation of the project are the primary content of cht~pter 9, where

severa(case studies arc presented. Chapter 10 concludes this thesis and points out sorne future

work.

7

CHAPTER2

RELATED WORK

First of ali, background of information security (i.e. Web application security

vulnerabilities) is examined. Subsequently, the need for Intrusion Detection System can be

discussed. The debate on the "IDS is dead" is discussed here tao.

In the Internet era, information systems in the government and commercial sectors are

distributed and highly interconnected via local area network and wide area network. These

networks provide potential avenues for attacks mounted by hackers and other adversaries.

Therefore, the methodology for protecting the 'privacy and improve security leve! of these

interconnected computes in the Internet is a significant issue.

8

2.1 Goal of Network Security

A paper wri.tten by Donn Parker [7] out! ines six elements of security that must be engraved

on mind of each security administrator. We think it is worth evaluating any website by

determining how it complies with these six elements.

1. Availability: the system must be available for use when the users need it.

2. Utility: the system, and data on the system, must be useful for a purpose. Similarly, each web

component must have specifie pre-defined function.

3 . Integrity: the system and its data must be complete, and in an available condition .

4. Authenticity: the system must be able to verify the identity of users, and the users should be

able to verify the identity of the system.

5. Confidentiality: only the owner of the data should know private data. The protected data

cannat be disclosed in unauthorized fashion.

6. Possession: the owner of the system must be guaranteed that the system is under his control.

Losing control of a system to a malicious user affects the security of the system for ali other

users.

2.2 Why We Need Intrusion Detection System

The reasons that we need IDS can be concluded into followin g three points:

• The inherent Vlllnerabilities in the traditional network security hierarchy demonstrate that it

is impossible to ensure network security without any external protection.

Firewalls cannot guarantee 100 percent security.

• The prevalent flaws in Web application also declare that the introduction of intrusion

detection system is desirable.

2.2.1 Traditional Network Security Approaches

Improvement on Authentication

ln aim to distinguish network machine from each other and deliver messages, a source and

destination address for the network packet are required. A machine that claims to have a

particular network address might not be telling the truth. An attacker can disable one of the

machines and inwersonate that machine using IP address impersonation [26]. Thereforç, the

authentication only basee! on address is unre liable. The open nature of the Internet a!so makes

most of attacks possible. If packets are sent unencrypted between systems, then an adversary

somewhere along the path can sniff the network and read information contained in the packets

fairly easily.

9

To improve the security oflP packages in a network, the IPSEC (IP Security) standard was

introduced. IPSEC provides two alternatives called Authentication H~ader (AH) and

Encapsulation Security Payload (ESP). AH is sufficient to prevent impersonation of IP headers

and IP address. ESP can provide privacy, integrity, or both. Naturally, IPSEC is s(O\.ver than

unprotected JP traffic because of the additional path lengths introduced for cryptographie

computations .

Improvement on Access Control

Network communications also require some forms of access control. It could be classified

into two levels. One is application levet access control, and the other is network levet access

control, or packet filter access control [26] . Application access control is application-oriented,

and can be configured independently. Packet fil ter access control works at a leve! of the network

stack and control the traffic based on the permission rules. Thus, packet filter operates at a lower

network layer than the application. The biggest drawback of packet filter is that it can operate

only on the fields that appear in the network packets. If access control decisions require

higher-level support, these decisions are not available until they reach the receiving destination.

Firewalls are the most popular and prevalent commercial solutions protecting the network.

Based on the configuration, packets meeting the çriterion are forwarded. Those that fait the check

are dropped . M01·eover, almost every firewall today is equipped with a mechanism to provide

secure IP traffic based on the IPSEC standard.

10

Improvement on Encryption Techniques

Netscape® introduced SSL (Secured Sockets Layer) protocol for transmitting private

documents via the Internet. SSL works by using a public key for encryption and a private key for

decryption. Becm)se SSL encryption d~pends heavily on keys, people nonnally measure the

effectivcness or strength of SSL encryption in terms of key lenf,rth. Now, 128-bit encryption is

recognized by the most makers of Web browser.

Based on the past history of improvements in computer performance, security experts

expect that the Brute-Force attack could not crack the 128-bit cncryption for at !east the next ten

years. However, the potential threat is still there.

2.2.2 Firewall Is Not Enough

Now we have robust enough firewall. It provides better access control and supports more

reliable IPSEC standard. However, the network is still unsecured. For example, in the year 2000

the so-called Distributed Deniai of Service (DDoS) attacks blocked severa! major commercial

sites, including Yahoo and CNN, although they were protected by firewalls. The inherent

limitations that firewalls have make them insufficient for intrusion detection and prevention.

These weaknesses can be summarized as follows:

11

• Firewalls çan be compromised or bypassed, and do little to protect against attacks initiated

from insider. Moreover, a hacker çan easily exploit a bug that already exists in the firewall

implementation.

• Many inside people use modems to connect to the outside world from the secure network,

and unwanted traffic can enter through the modem connections. Thus, firewalls a tone are

not enough to fulfill security needs .

• Traditional firewalls are designed for improving security of network layer instead of

application layer. They allow certain packets to pass through or else disable access for

pre-defined data flow path. However, many of the latest infiltrations of networks occur

through the firewall us ing the ports that the firewall allows by design or default.

• With the invention of SSL, intruqers can pass right through network firewalls and go

directly to the ai:Jplication, because they are using encrypted connections. Even deep-packet

inspection is powerless to detect simple attacks delivered in this way.

• Human intervention is required to decide how to control traffic and configure the firewall

to accept or deny packets. A single security policy established for the wrong reasons can

lead to a system being vulnerable to outside attackers. Therefore, configuration of network

firewalls is a complex and a sensitive task to Web admin istrator.

• Firewalls do not know what happens once the traffic gets through the firewall.

12

2.2.3 Security Vulnerabilities of Web Application

Today, there are various security vulnerabilities in Web applications, such as HTTP header,

HTML, scripts, and cookies. Web-based attacks utilize web sites to send spam email that blocks

inboxes, and mines confidential information. According to recent reports by Gartner [20], over

70 percent of Web attacks occur at the application-layer. Those vulnerabilities in Web

applications become the primary attack targets in the network. The vulnerabilities related to the

Web application can be categorized as follows:

• IT Infrastructure Vulnerabilities:

Exploiting IT infrastructure vulnerabilities is probably the easiest way to attack an

application. Thousands of known vulnerabilities exist in the basic components that form

integrated Internet environments. Attackers, keeping themselves up to date with ali

published vulnerabilities, often find it is extremely easy to take advantage of them. The

best well-known flaw of Web application server was in the IlS 4.0/5.0 developed by

Microsoft® .

13

14

• Software Vulnerabilities:

Designing and maintaining a secure web application are tedious tasks that require constant

quality assurance and security analysis. Application developers often deploy third-party

software and customize it to their specifie needs. As a result, "holes" in the deployed

software and en·ors created during the customization process bring serious vulnerabilities

in the final application production, due to lacking of security knowledge and experience,

Additionally, insecure application development patterns and practices used by developers

might cause inevitable mistakes. For instance, any user can manually change hidden

parameters in HTML documents and then submit the modified va lues to the remote server.

• Database Vulnerabilities:

The database is not only the core components of most app lications but also the most

attractive target of attacks. Various vulnerabilities in database have been published in these

years. Other than those well-known problems, SQL injection or other database-related

attacks could easi ly deJete, modify, or retrieve database records, where Web appliçations

have access to a database directly.

2.3 Overview of Intrusion Detection System

From the above analysis, we have to admit that we need other instrument to guarantee the

security ofiT environment. So, the next question is which one we will choose to protect the Web

application, Intrusion Detection System, Intrusion Prevention System, or both? Before we jump

to the discussion, the terminologies related with Intrusion Detection System have to be reviewcd.

2.3.1 Terminology

Intrusion

An intrusion can be defined as [Heady: 21]: "An intrl!sion is any set o[actions thot qttempt

to compromise the integrity, contldentiality. or availability of a resource."

It can also be defined as a violation of security po licy [12]. In this regard, the definition of

an intrusion may be different for varions organizations according to their policies. For example, a

login at midnight is considered as a kind of intrusion in many companies, regard)ess of whether

the connection is from inside or outside the physical perirneters ofthe organization.

Intrusion Detection System

Intrusion detection is the process of identifying and responding to malicious activities

targeted at computing and networking resources.

15

An Intrusion Detection System, or IDS for short, helps computer systems deal with or

prepare for attacks by analyzing gathered information of security problems. An Intrusion

Detection System usually includes three components: data collector, data analyzer and responder.

A data collector captures security-related data such as system logs, network packets, audit

data, etc. A data analyzer examines if violation of security policy or exploitation occurs. Upon

detecting suçh exploitation, the responder component triggers an alarm, takes appropriate actions,

and saves the evidence of the intrusion for further analysis.

In sh01t, Intrusion Detection System cannot prevent the malicious attacks, but it can help

administrator detect intruders when they enter Web application. Thus, IDS can help stop hackers

before they get too far.

2.3.2 IDS or IPS

Now let us face the debate on Intrusion Detection System sparked by the assessment of

Gartner [20]. The report declarecl that intrusion detection systems would be dead and predicted

the market for such products would be gone by 2005. Moreover, the report also announced that

Intrusion Prevention System (IPS) is the answer to most security issues.

Intrusion Prevention System, or IPS for short, is an active intrusion prevention system. Jt

can detect malicious information within normal network traffic and block the offend ing traffic

automatically before it does any damage rather than sim ply raise an a lert.

16

Thus, the biggest difference between passive IDS and IPS is that once malicious activity is

detected, the IPS has the ability to take active defensive actions. However, we do not think IPS

will take over passive IDS, because the following reasons:

1. It is really difficult to locate the position of passive IDS in the network. But IPS, just like

firewalls, is relatively easy to find.

2. Suppose we need more detailed network activities to do correlation. With an IPS we have

to consider thoroughly, because performance can be an issue if we want to get a huge

amount of these information. If we choose passive IDS, we have Jess risk of performance

impact.

3. Since an IPS combines the blocking capabilities of a firewall with the deep·packet

inspection of IDS together, the configuration of an IPS is very difficult. But IDS is more

flexible to make changes fast.

Moreover, IPS çloes not have any açlvantage over active IDS, Today, many of the IDS

vendors are adding active response capabilities to their products. The concept behind this strategy

is that the IDS can detect an attacker and then move to stop his attack. An active IDS responds to

the suspicious activity by Jogging off an intruder or by reprogramming the firewall to block

network traffic from the suspected malicious source [9]. In the other word, both active IDS and

IPS have the capability to prevent the attack from being successful.

17

Additionally, a lot of people support the point that there is no conflict between IDS and

IPS. Use an IPS to prevent what can reliably be prevented, use an IDS to detect the more difficult

to prevent attacks and collect additional forensic data.

According to the comment stated above, we do not believe IPS is the way of the future.

And we do not think IPS will take over IDS, as IPS does not bring more extra functionality.

Actually, both IDS and IPS share common problems, i.e. sjgnature update. 1-Iowever, it is

important to remember that no single security deviee could stop ali attacks ali the time.

2.4 Classification of IDS

At present, from the techniques that a sy~tem uses, intrusion detection systems cun be

categorized into two broad classes: anomaly detection system and misuse detection system [1 0]

[15]. From the domain that a system protects, intrusion detection systems can also be categorized

into three classes: host-based Intrusion Detection System, network-based Intrusion Detection

System and Hybrid Intrusion Detection System.

2.4.1 Host-based IDS, Network-based IDS and Hybrid IDS

Host-based IDS

18

Host-based IDS employs the host's audit trait (such as audit logs, applic<ltion log, system

information) as the main source of input for detecting intrusions. HIDS can be installed on many

different types of deviees, such as servers, workstations and notebook computers. Although the

HIDS is limited in scope and cannot detect simultaneous attacks against multiple hosts, it can be

powerful tool for analyzing a possible attack by recording what the attacker did . A 1-IIDS usually

provides much more detailed and relevant information than a NIDS.

Network-based IDS

The traditional HIDS was designed to detect intrusions in a single host. As the focus of

çomputing shifted from mainframe environments to distributed networks of servers, it has

considered intrusion not only of single hosts but of networks as weil. NIDS builds its detection

mechanisms to monitor network traffic. It can be installed on active network elements, for

example on routers. NIDS utilizes the source and destination IP address to deduce

security-related parameters, like the number of tot.al connection arrivais in a certain period of

ti me, the number of packets to/from a ce1iain machine, or the arrivai ti me between packets. These

parameters can be used to detect port scans or DoS (Deniai of Service) attempts.

Hybrid IDS

Hybrid IDS is a combination of Network-based IDS and Host-based IDS. Thus, Hybrid

IDS would monitor network traffic, and monitor the host sources that a HIDS would. For

example, Prelude [18] is a typical open source hybrid IDS framework.

19

---------------------- --------------- -----

20

2.4.2 Misuse Intrusion

Misuse Detection [22] (or Signature Detection) attempts to encode knowledge about

attacks as well-defined patterns and monitors for the occurrence of these patterns. Signatures are

patterns for detecting known attacks or misuse symptoms. "Individualpatterns can be composed

of single events. sequences of events. thresholds .of events. or general regular expressions in

which AND and OR operators are al/owed [267. " They may be simple as in the case of character

string matching a single term or command, or complexas in the case of state transition written as

a formai mathematical expression. One technique used to satisfy this may be having rules that

describe the system state changes, i.e. ST AT [13] .

The rule-based system or signature-based system monitors the system resources and logs to

match attack signature. When an attack is detected, an alarm is triggered. For example, an

attempt to exploit a XSS (Cross-site Scripting) intrusion can be caught by examining if there is

JavaScript or HTML in the parameter field . This can be accomplished using a pattern matching

approach. Therefore, the accuracy of the misuse intrusion detection is considered good, but its

completeness requires that the attack knowledge base should be updated regularly. In the other

word, misuse intrusion detection usually has low false positive, but high false negative. At recent,

SNORT [19] becomes the most popular open-source, signature-based network intrusion detection

system.

21

In the Section 5.1, we discuss a Pattern Matching Engine. lt follows the natvre of misuse

detection technique, and realizes a pattern-matching algorithm.

Advantages of Mis use D<;tection

• Misuse detection concerns only the system data items related to pre-defined pattern, does

not need to exhaustively analyze aU system events, thereby reducing system overhead .

Meanwhile, administrator can choose customized patterns for different Web applications.

• Mi suse detection matches system events with cl earl y defined patterns of vulnerabilities and

exploitations. This technique is very efficient and effective to detect well-known attacks.

Disadvantages of Mis use Detection

• It is hard to collect ali the required information for detecting ali known attack, and keep it

abreast with new vulnerabi lities. The construction of signature database is a

time-consuming process and prone to mistake. And it is the most critkal drawback of

misuse intrusion detection.

• The misuse detection approach can be highly accurate, but it cannot detect intrusions that

fall outside its predefined list of ru les describing known vulnerabilities and exploitations.

• A complicated intrusion scenario is very difficult to abstract for generating accurate

intrusion signatures . In addition, it is extremely difficult, even impossible to construct

intrusion signatures to accommodate ail variants of intrusion scenarios. This is the reason

that causes the misuse detection generates low false positive, but high false negative.

22

2.4.3 Anomaly Detection

Anomaly Intrusion Detection is a prevalent approach, which is based on the detection of

the anomalous behaviour or the abnormal use of computer resource [2].

A profile that describes the normality of the monitored system and/or users is always

required for anomaly detection. Anomaly detection systems, for example, IDES [30], flag

observed activities that deviate s ignificantly from the established normal profiles as anomalies or

possible intrusions.

For various kinds of subjects in an anomaly detection system, such as sessions, users,

groups, programs and network traffics, a number of measures and attributes are used to describe

the normality. Depending on the source of these input data, anomaly detection is divided into

host-based anomaly detection and network-based anomal y detection [4].

Network-based anomaly detection focuses on the packets that are sent over the network

and monitors the flow of packets. Source and destination IP addresses, connection start and end

t ime are parameters used to summary network traffics.

23

Like host~based IDS, ho~t-based anomaly detection concentrates on activities at hosts.

Host-base.d anomaly detection works by establishing "profiles" oftypicalnetwork activities, such

as login time, number of failure logins, CPU usage, etc. An anomaly detection system uses these

profiles to monitor current user's activity and to compare them to detect anomalous behaviour.

Whenever a user's cutTent activity deviates from profile significantly, the activity is considered

as a possible or potential attack.

In the Section 5.2, we propose a Bebaviour Modeling Engine. It is an implementation of a

host-based anomaly detection system. A behaviour-modeling algorithm, which extends anomaly

detection technique, is developed in the engine.

Advantages of Anomaly Detection

• The most significant advantage of anomaly intrusion approach is the ability to detect novel

attacks against variants of known attacks, and deviations from normal usage of programs,

regardless of wh ether the source is a privileged user or an unauthorized external user.

• The anomaly detection technique has the capability to determine the Jegitimate profile

according to user activities or program activities without any intervention of human

security expert.

Disadvantage of Anomaly Detection

• The high false alarm rat~ is generally cited as the main drawback of the statistical anomaly

detection. The reason for this is that the entire scope of normal behaviour of a computer

system or user may not be covered during the learning period. Also the constantly

behaviour changes make it difficu)t to accurately grasp the condition of a normal

environment in real time,

• To the statistical anomaly detection, it is difficult to determine a threshold, which is a value

to evaluate if the activity should be classified as an intrusion or a normal action . If the

threshold is too low, it may generate many false positive alarms; on the contrary, if the

threshold is too high, the number of false negative raise. lt is relatively easy for an intruder

to trick the statistical analysis unit into accepting malicious attack as normal activity by

gradually varying his actions over time. Consequently, setting thresholds for indicating

intrusive events requires experience.

• The anomaly intrusion detection method only identifies activities as anomalies or

determines the current system is in anomalous status; it cannot distinctly indicate what

happens to the system or what the hacker has done to the system. The shortcoming results

in a high false positive rate.

24

25

Since every intrusion detection technique has advantages and disadvantages, Intrusion

Detection System proposed in the thesis adopts a hybrid approach to detect attacks or

exploitations. A Pattern Matching Engine can drop a request if it matches well-known malicious

attack pattern, and a Behaviour Modeling Engine can drop the input if it falls outside the normal

profile.

26

CHAPTER3

INTRUSION DETECTION FRAMEWORK

ln this chapter, the proposed Intrusion Detection Framework is discussed, followed by a

short description of overall development approach. Finally, relationships among components in

the proposed Intrusion Detection Framework are analyzed. Each component in this framework

will be described with more details in the following chapters.

3.1 Description

The proposed Intrusion Detection Framework in this project is in compliance with the

Common Intrusion Detection Framework issued by CIDF [5] completely.

• Filter-based Web Agent is used to collect raw HTTP request (note that only request

information is collected and analyzed).

• The intrusion detection approaches including Pattern. Matching and Behavior Mode ling are

designed and implemented in Analysis Engine.

27

• An isolated Response Module is developed to carry out responding actions.

• A Database is involved to provide persistence to the entire system.

The research on the Intrusion Detection Framework is completed in J2SE 1.5.0

environment. Some modern development tools and technologies, like Tomcat, Spring-framework

and Hibernate are employed to meet the requirements of design and programming.

3.2 Relationships of IDS Components

The fn)mework oflntrusion Detection System can be illustrated with the following figure:

Gets Response Command Gets Analysis Rule/Profile

• '~ l'

Gets Action Command ---' ,:,.g Response Module

Figure 3-1 Relationships of Intrusion Detection Framework Components

28

Web Agent

This component could be integrated with target Web application as a pluggable module. It

has the following features:

• Gathers security-related raw HTTP traffic. Stores the collected data in the XML format.

• Sends the collected data in XML to Analysis Engine.

• Executes responding action (drop, pass, etc.) according to instruction received from

Response Module.

Analysis Engine

Once Analysis Engine receives the collected request from Web Agent, it analyzes if there

is malicious content in the request or not. Since some analysis patterns or profiles might be stored

in the Database, Analysis Engine retrieves them from the Database during the pcriod of

initialization or at runtime.

Response Module

According to the analysis result concluded in the Analysis Engine, Response Module

carries out pre-defined response actions. If an attack event is found, the collected data with

malicious attacks will be inserted into the Database as intrusion evidence for further analysis and

reporting. And an alarm must be raised to draw administration 's attention . Moreover, instruction

to drop the malicious request must be return to Web Agent.

29

Database

Database component provides persistent storage for entire Web Intrusion Detection

Framework. As the illustration in Figure 3-1 , Analysis Engine retrieves configuration and profile

information from database for intrusion analysis, and Response Module saves malicious request

to database as security log.

30

CHAPTER4

WEB AGENT

In this chapter, implementation details of Web Agent are discussed. Since Web Agent is

developed with Servlet Filter technology in J2EE environment, some background related with

filter technology are mentioned briefly. Second, a draft on a centralized character filtering

technology is introduced, with the consideration of that attacks could bypass intrusion detection

system by utilizing various charaç:ter encoding. Finally, a metbod to nonnalize HTTP request data

into an analyzable format is revealed.

4.1 Description

Web Agent is a data collector. Ail HTTP data to be analyzed in the Analysis Engine is

çaptured by Web Agent. Th us, Web Agent is designed with following princip les:

• Gathers security-related data.

• Provides a centralized cbaracter set filter for ali input stream.

• Stores the normalized HTTP request to a file in XML format.

• Sends the XML file to Analysis Engine ofWebiDS.

• Gets instruction from Response Module in WebiDS and executes correspondent action (i.e.

drop the user request or deliver the request).

Web Agent gathers security-related data, including network packets data and

system-related data. Network packets are the data transmitted through the network, which are

then collected by the network traffic monitor or sniffer. Generally speaking, network packets data

involves such information like source and destination address, source and destination application

port numbers, types of packet, options of the protocols, and the content of the packets. The

network packets data play an important role in Intrusion Detection Systems, since they provide

detailed and valuable information of network activities.

In the Intrusion Detection Framework covered in the thesis, not only the client request is

normalized, but also some system-related data (i.e. application!D and agentJD) are included in

the XML files for distributed deployment scenario. Association relationship between Web

application and Web Agent is very important. For example, one Web Agent could provide data

collection service for multiple applications deployed in the same web server. This information

should be associated accurately when administrator deploys Intrusion Detection System to

specifie application, so that the Analysis Engine could differentiate web applications being

monitored .

31

32

4.2 Considerations of Web Agent

A number of design requir~m.ents for Web Agent have been taken into account in advance.

They are summ.arized as following three aspects:

Modularization:

The primary task of Web Agent is to gather network data, send the collected information to

WebiDS where further intrusion analysis would be carried out. And it must execute some actions

(i.e. drop or pass) according to the action instruction received from WebiDS. From the view of

functionality, the job of Web Agent is associated with Web application closely. From the view of

modularization, Web Agent should be an isolated component, which can be embedded in the

Web application easily.

N ormalization:

The volume of network traffic is extremely huge, and it includes a lot of irrelevant

information . Sorne measures must be taken to reduce the size of these data and eliminate

non-security-related information before Web Agent sends them to Analysis Engine. With these

considerations in mind, a centralized input filter routine is adopted. A suitable canonicat fonn

must be chosen and ali user requests should be standardized into that fonn before any intrusion

analysis is performed. Moreover, in order to meet the requirement of further information

processing, it is necessaty to normal ize the infonnation into a common format.

---------------~---------------------------------------

33

Effîciency;

In order to meet the requirements of network traJfic capturing and real-time detection, Web

Agent must collect network pÇJckets efficiently with the least system overhead and time

consuming.

4.3 Filter-based Web Agent

In this project, a filter-based Web Agent is employed to capture HTTP request and rece ive

response from WebiDS.

4.3.1 Feasibility Study

Serlvet Filter

Servlet Filter is a useful and important technique, which is introduced since Servlet 2J,

and it çan be defined as follow:

"A ti!ter is an abject that can transform the header and content (or both) of a req~1est or

r.§.NJonse. !1lJ:_ It is a web component that intercepts requests and responses, or manipulates the

data that is being exchanged between client and server. "As a result, the critical difference that

makes {ilters different from other web components in that jilters usually do not themselves create

a resp_onse. [27L Jt provides a modular, object-orientated mechanism for encapsulating common

tasks into pluggable components that are declared via a configuration file and processed

dynamically [14].

Advantagcs of Filter-based Web Agent

According to the features stated above, we draw the conclusion that Servlç:t filter is

sufficient to build an efficient Web Agent. The HTTP request can be captured when it pass

through the filter. After intrusion detection analysis being performed on the request data, the

reconstructed response is retumed to the user. The filter-based Web Agent has severa! important

34

advantages:

• Filter-based Web Agent is designed to be a pluggable component within web application. It

allows the seamless integration of Web Agent with the web application. By encapsulating

application-processing logic into a single component, filter-based Web Agent defines a

modular component that can be easily add~d to and removed from the target application

without any code modification.

• Filter-based Web Agent is a lightweight solution. It can be invoked by the Servlet container

to perform data gathering functionality without any impact to other Web components.

• By means of the modular design of a filter's implementation class and flexible filter

mapping configuration, a filter can be mapped to any number of web resources in a web

appLication. Therefore, filter-based Web Agent provides customized data gathering service

for different web pages.

• Filter-based Web Agent is platform-independent as long as a Servlet container is available.

This feature allows it to be easily deployed in any compliant J2EE environment.

4.3.2 The Implementation

The fo llowing class diagram ill ustrates the re lationships among classes contained in the

Web Ag~nt component. Where, the job tbat normalization package defmes is to normal ize HTTP

request. Wc will discuss it in the Section 4.5. Moreover, the detail about the centralized input

fi lter, Decoder, is going to be reviewed in the nex~ section.

1

webagent

9
<<realize>> , Gets XML Document

Ht tplnfof ilter

-fil terConfig : FilterConfig

+ init(fil terConfig : FilterConfig): void
+doFilter(req: ServletRequest, res: ServletResponse, chain: FilterChain) : void
+ toString(): String
+destory(): void

_.- ----?

Check Input

1

normalization

Decoder

-transferXr'lLDoc(session: HttpSession, req: HttpServletRequest): String +decode(message : String): String

~ Gets Http Connection
' v

Ht tpConnectionUtil
r-~----------------------------------~
r---------·------------------------------~
+getConnection(uri: String) : HttoURLConnection
+receivervlessaqe(conn : HttgURLConnection)
+sendrvlessaqe(conn: HttpURLConnection, message : String): void

Figure 4-1 WebAgent Class Diagram

The imp lementation of fi lter-based Web Agent focuses on a Sevlet Filter component,

HttplnfoFilter. It uses the functionality offered by other objects to perform data collection and

normalization task. The programming details are shown in the following figure, Figure 4-2.

35

1. Il Web Agent sends XML document to and reccives rnessage from WeblDS

2. String receivedMsg = this.transferXMLDoc(session, request);

3.

4. Il Web Agent's request doe$ not pass analysis ofWebiDS

S. if (!receivedMsg.equalsignoreCase("OK"))

6.

7.

8. Il Create a writer from an output stream that writes to this response.

9. PrintWriter out=

1 O. new PrintWriter(new Bu1feredOutputStream(response.get0utputStream()));

11. Il Output el'l'or comment

12. out.println(receivedMsg);

13. out.flush();

14. out.close();

15. }

16. else Il Otherwise

17. {

18.

19. chain.doFilter(request, response);

20. }

Figure 4-2 Programming Details of doFilter()

In line 2, a private method transferXMLDoc is invoked. This method requests the service

provided by normalization package to get standardized XML document. Then it sends the data to

WebiDS with the support of HTTP connection provider, HttpConnectionUtil. Also

transjerXMLDoc is designed to receive the action instruction from WebiDS when intrusion

analysis decision bas been made. The left part of doFilter (!ines 4-20) executes the received

action intrusion. If no intrusion is found or the received instruction is "OK", client will receive

hislher requested page. Otherwise, client might receive a customized error page.

36

4.4 Centralized Character Filter

The responsibility of a centralized character filter is to process system-sensitive and

security-sensitive characters . The activities that centralized character filter perfonns include:

• Canonicalize the sensitive character from one form to another.

• Filter out illegal character sequences.

37

Moreover, it has to be designed as a centralized component. In the other word, ali fonns of

HTTP request must be processed by this filter. And only the HTTP request after being filtered by

this character filter can be utilized as input stream for further processing. So when a HTTP

request is captured, it will be canonicalized once and then utilized by other WebiDS components.

4.4.1 Why a Centralized Character Filter Is Needed

The reasons that we need centralized character filter include the following two points:

• A character sequence might have specifie meaning at different processing points . Since we

store HTTP request in the XML format, some characters (i.e. less-than sign "<") are

sensitive characters we have to consider.

• Some attacks are based on the variant of character encoding. Recognition of the malformed

character format is the most efficient method against these attacks . Moreover, generation of

attack pattern could be much easier if the captured HTTP request could be canonicalized

into a uniform form .

Character Encoding and UTF -8

In order to use a standard and canonicat character set to represent ali available characters,

people perceive the concept of character encoding. Now there are two popular

character-encoding standards, the Unicode Standard [31] and the International standard ISO

10646 [32].

The Unicode Standard defines tluee encoding forms that allow the sarne data to be

transmitted in a byte, word or double word oriented format (i.e. in 8, 16 or 32-bits per code unit).

Where, UTF-8 is popular for HTML and becoming a dominant method for exchanging

international text information through network.

Ail three encoding fonns that the Unicode Standard defines can encode the same common

character collection and can be transformed into one another efficiently without Joss of data.

However, the advantage of compatibility also makes the UTF-8 be an exploitable security flaw.

The following cases demonstrate how hackers initiate attacks aiming at UTF-8 flaws.

Case Study

Take Directory Traversai as an example, a typical input exploitation, for example. The" .. /"

charactcr sequence is not guaranteed to conquer, especially since most security checks get along

just fine with raw character without encoding.

38

39

ru_· _ç_S_C_.o_d_e~(H_e_x~) __ ,__BinaryUTF~S_F_o_r_rn_a_t~----~-------------------------4
00-7F Oxxxxxxx

80-7FF 11 Oxxxxx 1 Oxxxxxx

800-FFFF 11 1 Oxxxx 1 Oxxxxxx 1 Oxxxxxx

1 000-1 FFFFF 1111 Oxxx l Oxxxxxx 1 Oxxxxxx 1 Oxxxxxx

Table 4-1 Legal UTF-8 Sequences

Overlong UTF-8

Firstly, Jet us consiçler the various representations of "."(ASCII 2E). According to the

specification listed in the Table 4-1 , suppose we use the second UTF-8 range (2 bytes) to

represent it, we get an overlong representation, %CO%AE. Likewise, there are more overlong

representations with the other UTF-8 encoding: %E0%80%AE, and %F0%80%80%AE. For the

character "/" (ASCII 2F), we can also ded uce its deformed representations: %CO%AF,

%E0%80%AF, %F0%80%80%AF. Thus, for the character sequence " .. /", we might have 4*4*4

= 64 different choices to present it.

Illegal UTF -8

We even can have more than that. Consider the representation %CO%AE of character ".".

Just like UTF-8 encoding requires, the second octet has "1 0" as its two most significant bits.

Now, it is possible to infer 3 variants for it, by enumerating the rest of the alternative 2 bit

combinations ("00", "0 1" and "Il"). Since sorne UTF-8 parsers sim ply check the]east significant

6 bits (they ignore the most significant 2 bits), they would think these variants as identical to the

original symbol. It shou ld be kept in mind that these character sequences are illegal, since they do

not comply with the legitimate UTF-8 formats listed in the Table 4-1 .

40

Now, we have severa! diverse representations of one character sequence" .. /" . Suppose, one

of the security checks searches for" .. /", and it is carried out before character filter takes place, it

is possible to exploit the Directory Traversai flaw with the overlong UTF-8 encoding. The reason

why the attack can be successful is that it is impossible for security check to recognize ail variant

formats . Jt is the reason that drives us to introduce the centralized character filter. Thus, a suitable

canonical form should be chosen and ali HTTP requests must canonicalized into that form before

any security checks are performed.

4.4.2 Countermeasure

In the implementation of centralized character filter, we use following methods to handle

system-sensitive or security-sensitive characters.

In the Web Agent, the HTTP request after normalization is kept in the XML format, so we

must pay attention to XML-sensitive characters. Because most character formats have an escape

sequence to handle this case, we use the corresponding escape value to replace the sensitive

character. As for the character encoding related to the problems, two cases have to be considered:

• If the UTF-8 encoding is illegal, filter out these character sequences.

• If the UTF-8 encoding is val id but overlong, a canonical UTF-8 form (2 bytes) is adopted

as standard form. Any overlong character sequence must be converted into 2-byte-long

format.

41

4.5 N ormalization

After HTTP request passes through centralized character filter, the filtered and canonicat

data is available. Before Web Agent sends the data to WebiDS, it I111JSt convert the fi ltered

information into a specifie format for the subsequent processing.

XML (Extensible Markup Language) is considered as a desired form of the data. The

reasons for adopting XML can be summarized as follows:

• Unlike HTML, XML tags identify the data itself rather than sp~çify how to display it. It's

common to use XML as a medium for data exchange on the web.

• J2EE platform provides various methods for processing XML, such as SAX and DOM, etc.

Moreover, XML can be easily deployed in any J2EE-compliant environment.

Therefore, we use SAX parser and XSLT to convert HTTP request to XML format. Figure

4-3 il lustrates the DTD (Document Type Definition) of XML fi le after normalization.

4.6 Conclusion

ln this chapter, details about the design of the Web Agent are discussed . The Web Agent

collects and nonnalizes security-related data. Then it sends the normalized data to WeblDS for

further security analysis. It also receives instruction from WebiDS. The received instruction

message determines the client request is a normal request or an abnormal intrusion and what

actions (i.e. drop or pass) should be taken .

<'?xml version=" 1.0" encoding:="UTF-8'"?>

<!ELEMENT HttpDa:ta (A pp, Agent, Client, Header, Session, Cookie?, Request?)>

<!ATTLIST HltpData rr CDATA #REQUIRED>

<!ELEMENT App (AppName, AppiP, AppPort, AppTimestamp)>

<!ELEMENT AppName (#PCDATA)>

<!ELEMENT ApplP (#PCDATA)>

<!ELEMENT AppPort (#PCDATA)>

<!ELEMENT AppTitnestamp (#PCDATA)>

<!ELEMENT Agent (AgentName, AgentlD, ApplicationiD)>

<!ELEMENT AgentName (#PCDATA)>

<!ELEMENT AgentiD (#PCDATA)>

<!ELEMENTApplicationiD (#PCDATA)>

<!ELEMENT Client (ClientName, ClientlP, ClientPort)>

<!ELEMENT ClientName (#PCDATA)>

<!ELEMENT ClientlP (#PCDATA)>

<!ELEMENT ClientPort (#PCDATA)>

<!ELEMENT Header (HeaderParam+)>

<!ELEMENT HeaderParam (Name, Value)>

<!ELEMENT Session (SessioniD, Created, LastAccessed)>

<!ELEMENT SessionlD (#PCDATA)>

<!ELEMENT Created (#PCDATA)>

<!ELEMENT LastAccessed (#PCDATA)>

<!ELEMENT Cookie (CookieParam+)>

<!ELEMENT CookieParam (Name, Value)>

<!ELEMENT Request (RequestParam+)>

<!ELEMENT RequestParam (Name, Value)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Value (#PCDATA)>

Figure 4-3 DTD for HTTP Request

42

43

CHAPTER5

ANAL YSIS ENGINE

In this chapter, details about Analysis Engine are revealed. In this project, two analysis

algorithms are employed: one is Pattern Matching, which is based on Misuse Detection

Algorithm; the other is Behaviour Modeling, which is based on Anomaly Detection.

5.1 Description

Analysis Engine is the most important part of Intrusion Detection Framework for Web

application, which implements of two algorithms: Pattern Matching Engine and Behavior

Modeling Engine. Sorne considerations have to be taken into account when design Analysis

Engine, and they can be summarized as follows:

• Initialization of analysis-related data, which contains configuration files.

• Pattern Matching Engine and Behaviour Modeling Engine perfonn intrusion analysis on

the data captured by Web Agent.

• Trigger Response Module to carry out specifie action once the analysis result is concluded.

44

5.2 Pattern Matching Engine

Pattern Matching Engine makes use of an extension of Misuse Detection technique [22],

Pattern Matching algorithm. lt attempts to encode knowledge about well-known attacks as

patterns and monitors for the occurrence by matching the captured data with pre-defined patterns .

If current HTTP request contains any intrusion pattern, an intrusion is identified .

Design of Pattern Matching Engine

• Three configuration files in the XML format, including rule-mapping file, rule definition

files and attack target file must be initialized before pattern-matching analysis starts.

• According to the declarations in the target file, classify HTTP request sent from Web

Agent into severa) patis.

• With the combination of rule~mapping file, rule definition files and target file,

pattern-matching analysis can be executed in a loop.

• Whenever an analysis result is concluded, pattern Matching Engine triggers Response

Module to execute actions.

• The loop of rule matching must be terminated if an intrusion is detected or the current

HTTP request completes the pattern-matching analysis.

45

5.2.1 File Description

Parameters of pattern-matching analysis have to be initialized in advance, before intrusion

detection stat1s. Three configuration files are defined in the Pattern Matching Engine; they are

ru le definition files, rule-mapping file and target file, respectively. The data in these three files

has to be read and mapped to corresponding Java abjects, !iO future pattern-matching analysis can

retrieve these required data easily and conveniently from system memory.

Rule Files

There are two types of rules defined in the Pattern Matching Engine. Where, system-rule

file specifies the patterns extracted from well-known attacks; and user-rule file keeps custom

rules that a Web application administrator has to declare. Table 5-1 illustrates the structure of a

rule.

Item Name Description

ID Rule ID

RuieN ame Name of a rule

Version Version information of a rule

làrget The HTTP request that a rule matches against

Pattern Pre-defined pattern extracted from well-known attacks
-~

CaseSensitive A rule is case-sensitive or not -- - -
Length Leng;h of parameter defined in the Target item

Reference No Reference information of a rule

Table 5-1 Structure of a Rule

46

Rule-Mapping File

A configuration file, rule-mapping filç is ddined in the Pattern Matching Engine. The

primary function of thi s file is to build rnapping relationship among application, agent, rule and

related action data.

Since Web Agent might associate with more than one Web applications, the mapping

relationship among them must be clearly stated. For a particular combination of Web application

and Web Agent, response actions to take should be determined. Therefore, rule-mapping file is a

map to demonstrate relationsh ips among rules, actions, Web applications and Web Agents. The

fo llowing table exp lains the structure of a ru le mapping.

Item Namc Description

ApplicationlD ID of Application

AgentiD ID of Web Agent
--

Rule ID ID of Rule

na me Two choices for this attribute offanvard element:
match : J-ITTP·request ftts the ru le determined by Rule!D

forward
umnatch: HTTP request does not fit the ru le determined by
Rule!D

actionJD ID of action to be executed

uctionParam The customized action parameter

Table 5-2 Structure of a Rule Mapping

47

Target File

The information defined in the target file represents the patt of the HTTP reqt!est data that

may be used by attacker to deliv~r mal icious content. The tenu "target" is used to represent

various sections of HTTP protocol. Six "targets" are defined in the "target" file; they are Header,

URI (Unifonn Resource Identifier), Session, Cookie, Post parameten; and Get parameters,

respectively. The "target" defined in the rule files must be one of the six "targets". Thus, each

incoming HTTP request must be broken into these six pé~-tts detïned in the target file . The

structure of a target and can be illustrated by the following table.

Item Namc Description

TargetName Name ofTarget

Targetltem A target might contain severa! distinct items, i.e. HTTP Heacler.

So this field lists possible target items that a target includes.

Table 5-3 Structure of a Target

The Relationship of Three Files

Figure 5-4 illustrates the relationship of the three files, rule definition file, target file and

rule-mapping file.

• A Rule!D is specified in the file, rule-mapping.

• According to the reference to Rule!D, the specifie rule can be retrieved from the rule

definition fil e.

1-

• Integrate the pattern (regular expression), case-sensitive and length argurnents tqg~ther, an

attack pattern is generated.

• The combination of "target" reference in the rule definition file and target definition in the

target file determine wbich section ofl-ITTP protocol must be examined.

• The corr~sponding action data are retrieved from the nile-mapping file, once the analysis

result is concluded.

forward

L·----·-
Rule-Mapping File

Action-list to
Response Module

CaseSensitive -t------t

Length
Reference No

Rule Definition File

r

-~--~ ,,
TargetName Relevant HTTP Request

L Targetitem --
Do Matching

~

Target Fil e

Figure 5-1 Relationship of Tables in Pattern Matching Engine

48

49

5.2.2 How to Perform Rule Matching

Basic Algorithm

Rule matching is the most critical part in the Pattern Matching Engine. For each specifie

Web application and Web Agent, severa) different RuleMappings might be defined . The

RuleMapping traversai involves following steps:

1. If there are un-visited RuleMappings left or special flag (i.e. deny-jlag, pass-jlag) is not set,

the loop continues; otherwise it terminates.

2. Retrieve current RuleMapping from rule-mapping file, and the rule to be used can be

determined based on the conditions defined in the rule.

3. Once the rule is selected, "target' of the HTTP request data is determined through the target

element declared in the rule definition file and reference to the target file.

4. According to the "target" specified in the step 3, retrieve the corresponding HTTP section

from the HTTP request received from Web '1-gent.

5. Match the rule against the part of HTTP request retrieved in the Jast step and conclude

rule-matching result.

6. Action data is determined based on the matching result and the action declaration in the

RuleMapping.

7. In tenns of the action data concluded in the last step, special flag (i.e. deny-jlag, pass1lag)

might be set.

8. Deliver the action data and matching result to Response Module to invoke action.

9. Go to step 1 again until the loop terminates or special flag is set.

The following programming fragment illustrates how this works. In tines 4-5, if a special

flag is set true, terminates the rule-mapping loop. Current rule mapping is specified in the !ines

8-9. Li nes 10-11 select a rule used as attack pattern. Li ne 13 ca Ils a priva te method,

dispatchTarget, to perform pattern matching for each specifie "target".

Lines 17-36 show how the private method, dispatchTarget, works for GET parameter in

HTTP request. The detailed GET parameter data is prepa.red in tine 22. Lines 25-27, rule

matching between the specifie rule and GET parameter is done, the corresponding analysis result

and error comment (it is an empty string, if no intrusion is found) are concluded . Lines 29-30, the

action data can be determined through the combination of rule mapping and matching result.

Based on the action data, special flag(s) might be set in the line 31. The Response Module is

triggered to carry out response actions in line 32.

50

51

1. whilc (mleMappingContinued) // lf ruleMapping continues

2. {

3.

4. if (passFiag Il denyflag llredirectFlag) //If passFlag, denyFlag, or redircctFiag is set

5. break;

6.

7. Il Get current RuleMapping for Pa,ttern Matching

8. ruleMapping =

9. currentRuleMapping.getCurrentRuleMapping(ruleContigData, ruleMappingCount);

10. String ru leiD = ruleMapping.getRuleiD(); //(jet cur.rent Rule!D fbr Pattern Matching

11. rule= currentRulc.getCurrentRule(ruleData, ruleiD); // Current Rule for Pattern Matching

12. // Invoke various RuleMatcher to do Pattem Matching in terms of different target

13. this.dispatchTarget(rule.getTarget(), rule, actionData);

14.

15.

16.

17. private void dispatchTarget(String target, RuleObject rule, ActionSet action Data)

18. {

19.

20. case REQGET: Il Target is ReqGet

21. {

22. Vector reqGet = currentTarget.getReqGet();

23. if(reqGet !""' null)

24.

25 .

26.

27 .

28.

{

reqGetMatcher.doMatching(reqGet, rule, resultCache); // Do Pattern Matching

boo lean matchingResult "" reqGetM~ttcher.getMatchii1gResult();

String errorComment "' reqGetMatcher.getErrorComment();

29. forwardA ct ion Vector=forwardAction .ge tF orwardA ction Vector(match ingResult,

30. ruleMapping); // Get forward Actions and execut~

31 . setFlag(forwardActionVector);

32. actionManager.executeAction(errorComrnent,forwardAction Vector,actionData); •

33 . }

34. }

35.

36. }

Figure 5-2 Programming Details on Rule Matching

Special Flags

In this Pattern Matching Engine, four special flags, including deny-flag, pass-:flag,

redirect-flag and skip-flag, are used to represent the current status of the processing. If one of the

four flags is set, the corresponding action will be executed. The detailed explanations can be

summarized as follows:

Deny-flag: when this flag is set, it means that an intrusio11 i;; detected. Thus, the incoming

HTTP request should be denied.

• Pass-flag: when this flag is true, it indicates that current HTTP request does not trigger any

rule in the pattern-matching analysis.

Redirect-flag: when this flag is true, it implies an error is found . However, client will

receive a redirected web page or an error page.

Skip-flag: when this flag is true, it means a list of ru les could be skipped over or ignored

without further analysis.

In the Response Module, four response actions corresponding to the four flags are defined.

52

They arc de.ny-action, pass-action, redirect-action and skip-action, respectively. Once an action is

triggered, the corresponding flag is set. More information about the response action is discussed

in the Chapter 6 Response Module.

53

5.3 Behavior Modeling Engine

5.3.1 Behavior Modeling AJgorithm

The algoritbm of Behaviour Modeling is based on anomaly-based detection [2] , which is

complementary to the misuse detection. [n this case, detection is based on models of normal

behaviour of users and applications, called "profiles". Any deviations from such established

profiles are interpreted as attacks or intrusions. The main advantage of Behaviour Modeling

algorithm is that it is able to identify previously unknown attacks. By defining an expected

normal state, any abnormal behaviour can be detected, once it cannat fit into the normal

behaviour profile.

The Behaviour Modeling algorithm follows a Jearning-based anomaly detection technique.

An example of this technique is described by FOtTest [24] . Dt1ring the training phase, the system

collects ali distinct system cali sequences of a certain specified Iength. During detection, ali

actual system cali sequences are compared to the set of legitimate ones concludcd in the training

period, raising an alarm if no match is fou nd.

Therefore, the algorithm works in two modes, Jearning mode and detection mode. It can be

illustrated by the following figure.

•).,earning mod~: during learning period, mod~ls (or profiles) that characterizc the normal

behaviour of the Web application are built based on the network events observed.

Detection 111ode: when Behaviour Modeling Engine works in the detection mode, ali

incoming requests are compared to the profiles that were established in the learning mode.

If an intrusion (the request is deviated from the normal proflle) is detected, a related alert

can be rai sed.

r·----------- -~1\

(Behavior (\
1 Mode! ing)
\ Database ;
\

_ __ -----v----CY

(Detection-mode) Behavior Analysis (Leaming-mode) Build Profiles

_.----------.\ ~~ Behavior Modeling
Abnormal Behavior 1414----~~ } Analysis Engine

"''-- / D~:i~t~~n L ___________ __,
ldentify
Nonnal

Figure 5-3 Behavior Modeling Algorithm

The Behaviour Modeling algorithm conforms to the statistical approach of anomaly

detection. In the learning moçie, behaviour profiles for subjects (i.e. , Request panuneter and URI)

are generated. A user defina.ble threshold is used to evaluate if the current behaviour could be

stored to database as a legitimate profile. After the le<,trning phase, the system switches to

detection mode in wh ich the new traffic is compared to the profile for detection of anomalies.

54

1-Iowever, sinçe a system can evolve over time, it is also likely that new non~malicious

inputs will be seen [3] [25]. In the other word, the false positive rate will increase dramatically

after a long time running. Jt is simple to update rhe profile-base by the learning phase on the

changed traffic when the number of fa! se positive alarms is greater than the pre-defined value.

In the Behaviour Modeling Engine, tv,ro Behaviour Modeling algorithms are extended to

detect security-related issues in the request URI, and request parameter. We will discuss these

two algorithms in the Section 5.3.4 and Section 5.3.5, respectively.

Design of Behavior Modeling Engine

• Like Pattern Matching Engine, Behavior Modeling Engine also bas to initialize the

configuration files before analysis statts. These XML configuration files include

model-mapping file and the mode! definition file .

• Behavior Modeling Engine determines its working modes based on the configuration

provided by model-mapping file and mode! definition file.

55

• Suppose Behavior Modeling Engine is in learning mode, characterize normal behaviors of

events and establish profile.

• If Behavior Modeling Engine is in detection mode, match the incoming requests with

legitimate profile. Whenever an analysis result is concluded, Behavior Modeling Engine

tires Response Module to execute the corresponding actions.

56

5.3.2 File Description

Like Pattern Matching Engine, in itialization should be done before behaviour~modeling

analysis starts. Two files are defined here, and they are the mode! definition file, and

model~mapping file.

Model File

In the Behaviour Modeling Engine, two modeling algorithms are developed to check

request parameter and request URI in the HTTP request. The two modeling algorithms

correspond to two "Mode!" elements declared in the mode! definition file. Thus, when we build

mode! for request parameter or request URI, the corresponding part of HTTP request will be

evaluated according to the definitions in the madel definition file. The file structure is illustrated

by the following table:

Item Name Description

ModeiiD ID ofmodel

ModelName Name of Mode!

Threshold An integer value that determines if the activity should be classiflecl us a

normal behavior. When the number of times that a behavior occurs is

greater than the defined threshold, we would trcat it as normal behavior.

Cum~ntMoçle Working state of current nwdel; it oould be lcarning Ot' detection mode.

Table 5-4 Structure of a Model

-- ---- -- ------- - - ------ - - --- -------

57

Model-Mapping File

Just like the rule-mapping file employed in the P<.~ttcrn Matching Engine, a model"mapping

file is defined in the Behavior Modeling Engine. The primary function of this file i.s to build

mapping among application, agent, mode! anc! related actions. In the other ward, the

model-mapping file is a map to demonstrate relationships among models, actions, Web

applications and Web Agents.

Item Name Description

ApplicationiD ID of Application

AgentiD lD of Web Agent

ModeliD ID ofModel
.-

na me Two choices fQr this attribute ofjorwarcl element:

match: HTTP request flts the profile determined by ModellD

forward
unmatch; HTTP request does not fit the profile determined by

MoclellD

actionlD ID of action to be executed. •.
actionParam The customized action paramet(il r

Table 5-5 Structure of a Modei-Mapping

The Relationships of Two Files

The following figure illustrates the relationships of the two configuration files , mode! file

and model-mapping file.

• A Moclel!D is specified in the model-mapping file.

• Basecl on the reference to Moclel!D, the detailed mode] data can be retrieved from the

mode] definition fi le.

58

The Mode!Name dec lared in the mode! definition fi le determines which p~ui of HTTP

information must be examined.

• The CurrentMode specified in the mode! definition file determines th~ current running

mode of the mode!, learning or detection .

If " learn ing mode" is signed, the threshold declared in the mode! definition file provides a

lower boundary ofthe number of times a norma l behaviour occurs.

If "detection mode" is configured, the corresponding action data cou ld be retrieved from

the mode l-mapping file once the analysis result is concluded .

Relevant

ApplicationlD --------.....,. Model!D HTTP Request

AgentiD Mode!Name
ModeliD ...- Threshold
forward CurrentMode

Yalid
occurrence

times

ModelConfig.xml Model.xml

Action-list to Learning or
Establish Profil e

Response Moduel Detection mode

r r ,

Figure 5-4 Relationship of Tables in Behavior Modeling Engine

59

5.3.3 How to Perform Bebavior Modeling

Basic Algorithm

For each specifie Web application and Web Agent, severa! different Mode/Mappings might

be processed. The Mode!Mapping traversai involves following stcps:

1. If there is un-visited Mode/Mapping left or special flag (i.e. deny-jlag, pass-jlag) is not set,

the loop continues; otherwise it terminates .

2. Retrieve current Mode!Mapping from model-mapping file, and the mode! to be used ean be

detennined subsequently.

3. Once the mode! is specified, mode! narne is used to refer to the actual mode! data defined

in mode! definition file.

4. According to the mode! name specified in the step 3, the cletailed HTTP section could be

retrieved from the HTTP request forwarded by Web Agent.

5. The corresponding working mode can be determined once a specifie mode! is concluded in

the step 3.

If the model is in learning mode:

6. If it is in learning mode, invoke learning procedure, establish profile, and go to step 1.

60

If the model is in detection mode:

6. If it is in detection mode, invoke detection procedure and conclude analys is result.

7. Action data can be determined through the combination of matching rcsult and

Mode!Mapping.

8. Accorcling to the action data deduced in the last step, special flag (i.e. deny jlag, pass jlag)

mi ght be set.

9. Deliver the action data and matching result to Response Module to invoke action.

1 O. Go to step 1 again until the loop terminates or a special flag is set.

Special Flags

The special flags, including deny-flag, pass-fl ag, and redirect-fl ag, are used in the

Behaviour Modeling Engine again. If one of the three flags is set, the corresponding action will

be executed. The definitions of the th ree special fl ags are same as th ose in the Pattern Matching

Engine. The three response actions corresponding to the special flags are discussed in the Chapter

6 Response Module.

61

5.3.4 URI Modeling Algorithm

The algorithm is designed to verify any abnormal behaviour 111 the request URI.

Exploitations, like Directory Traversai, and other invalid URI requests .

Data Structure

Two issues have to be considered when designing data structure used in the learning mode.

First, the class for URI modeling defines a "counter" field to count how many times the UIU is

requested. Thus, a URI address attribute and an attribute for counter are defined in the class.

Second, ali URis should compose of a URI collection. So, an instance variable of List is

constructed to store the ail request URI objects. The following figure shows the declaration of a

request URI object, URIStatistic .

URIStatistic

-uri: String
-counter: Integer

+getCounter(): Integer
+getUri(): String
+plusCounter(): void
+setCounter(counter: Integer): void
+setUri(uriVv'ithQuery: String) : void
+toString(): String

Figure 5-5 Data Structure of Class URIStatistic

62

Algorithm

• Lcarning mode: During the learning period, ali distinct URis in the Web application could

be learned. For each request URI, we record how many times the URI is requested . When

the number is greater than the threshold defined in the moçlel definition file, the URI could

be stored in database as a URI profile.

• Detection mode: In the detection mode, it matches current request URI with the valid URI

profile and returns analysis result.

5.3.5 Parameter Modeling Algorithm

The modeling algorithm is used to detect deviation of request parameters, including POST

parameters and GET parameters. It can help Web application to prevent from attacks or

intrusions related to request parameters, such as SQL Injection or XSS (Cross-Site Scripting),

etc.

Data Structure

We pre-define data types ofHTTP request parameter in the database. So, we can determine

the type of a request parameter by matching the request parameter with pre-defined parameter

type during learning period. Since there are severa! alternative parameter types for a single

parameter, we can design more than one counter to record how many times that a parameter is of

a specifie type.

63

ln the other word, a request parameter might associate with severa) çounters, and each

collnter corresponds to a possible parameter type. Thus, we declare two attributes !11 the

ParamStatistic class; one is parameter name, the other is a list of counters.

Each counter shotJid also be a compound data, or an abject. It is composed oftwo attributes;

one attribute is to mark the identity of possible parameter type, the other is just an integer counter.

The following figure shows the data structure of ParamStatistic and ParamTypeCounter, where

ParamT;peCounter is an inner class of class ParamStatistic .

Moreover, in order to build profiles for ali request parameters in the learning mode, the

parameters should compose of a paramvter collection. So, an instance variable of List is

constructed to store the ali request parameter abjects.

PararnStatistic

-paramName: String
-par am Typelist: List

+addParamType(typeName: String): void
+çc•ntain$Par ëlm Type(typeNarne: String): Boolean
+getCounter(typeName: String): Integer
+getParamName(): String
+plusCounter(typeNarne: String): void
HetPëlramName(paramName: String) : void
+tostring() : string

ParamTypeCounter·

-paramType: String
-counter: Integer

+getCounter() : Integer
+getPëlrarnType(): String
+plusCounter() : void
+setParamType(paramType: String): void
+toStrin(J(): String

Figure 5-6 Data Structure of Class ParamStatistic

Algoritlun

Learning Mode

In the learning mode of pararneter mode ling, ali parameters of the Web application have to

be profiled. We have ali possible parameter types stored in a table in the database. And

these parameter types are described with Regular Expression. For each request parameter,

we record how many times this parameter matches to a specifie parameter type. When the

number exceeds the pre-defined threshold declared in the mode! definition file, the

parameter name and data type are inserted into database as a legitimate profile.

Detection Mode

64

During detection period, it wi 11 verify if the current request parameter matches to legitimate

parameter profile derived in the learning mode, and returns the analysis result.

5.4 Conclusion

Analysis Engine module is the most important part in the Intrusion Detection framework

for Web application. The responsibility of Analysis Engine is to receive captured HTTP request

from Web Agent and detect if there is any intTusion or malicious exploitation in the request.

Then, Analysis Engine triggers Response Mod~IIe to carry out specifie actions based on the

analysis result. In this chapter, detection algorithms including Pattern Matching based on Misuse

algoritbm and Behaviour Modeling based on Anomaly-based detection are discussed.

65

CHAPTER6

RESPONSE MODULE

The focus of this chapter is to reveal the implementation details associated with Response

Module. Firstly, we introduce a config4ration file. lt is used to define actions deployed in the

Response Module. Then, implementation ofResponse Module is discussed.

6.1 Description

According to analysis result and pre-deflned actions, Responsc Module takes corresponding

actions. Moreover, it sends action instruction to Web Agent.

If an intrusion is detected, "deny' ' action must be triggered, an alert has to be sent to

administrator of the Web application. Additionally, maliciousHTTP request data will be insetted into

da.tabase. As a result, Web Agent will reçeive an analysis result aqion instruction, and the malicious

attacker will get an error page or request-forbidden page.

66

If no intn1sion ~xists, Response Module will inform the web Agent thaJ the current request

is legitimate, and the client will get his or her requested page.

Design of Response Module

• The configuration file, action definition file, must be initialized in advance before

Response Module is triggered.

• Based on the analysis result and action data sent from Analysis Engine, Response Module

executes corresponding actions.

• Returns action instruction(s) to Web Agent. Then, Web Agent can respond different pages

to clients.

6.2 File Initialization

Action definition file is the configuration file for Response Module to dec lare the actions

that will be executed. The actions will be fired once the analysis result of signature detection or

anomaly detection is concluded. Table 6-1 shows the structure of an action.

Item Name Dcscl'iption --
ActionlD ID of action

ActionCom Command for this action

ActionComParam Sorne parameters related with this action . Take skip action for
example, a list of rules can be defined here which indicate the

giv~n rules can be skipped over during further Pattern Matching
Analysis.

Table 6-1 Structure of an Action

67

Actions in Response Module

There are seven unique actions defined i~1 the Response Module, they are de11y action, pass

'
action, continue action, skip action, redirect action, exec action, and logcantent action. The

detailed explanations ofthese actions are as follows:

• Deny action:

When this action is triggered, it indicates that an intrusion is detected and the current HTTP

request should be denied. Customized message can be defined in the a_ctionComParam to

describe the reason that HTTP request is denied. Even if there is other ru les or models left

or un-visited in the analysis loop, the CUITent analysis terminates immediately.

• Pass action:

If current incoming HTTP request passes the analysis of pattern matching or behavior

modeling, this action will be performed. When this action is fired, curre.nt analysis

terminates even ifthere are other rules or models left or un-visited in the analysis loop.

• Continue action:

Unlike Pass action, when Continue action is fired, next rule or mode! in sequence will be

executed continually instead of ignoring them.

68

• Skip action:

When this action is triggered, a number of rules that specified in the actionComParam

element will be ignored.

• Redirect action:

If an intrusion or attack is detected, Redirect action could be alternative choice. This

redirected page is the customized web page specified by administrator. A redirected URL

cou ld be specified in the actionComParam element.

• Exec action:

Administrator can declare sorne externat commands in the actionComParam element of

this action. For example, send an ale1t or alarm to administrator by email when an intrusion

is confirmed.

• Logcontent action:

When an intrusion is detected, intrusion log should be generated. Thus, the job of this

action is to produce log. The open source software Log4j is deployed to manage the

logging conveniently.

----- - - - - ------ -- - ---- - - - -----·--------------------

6~3 Impletnentation of Response Module

6.3.1 Execution of Response Acti()n

According to the definitions ln the model-mapping or rule-mapping file, the action data

delivered from Analysis Engine includes actionil) and actionComParam. With the combination

of the received action data and action definition file, Response Module executes specified

action(s). The equivalent pseudo code is stated below.

Pseudo Code

1. Argument forwardedActions indicates the action data sent from Analysis Engine. Only

action!D and actionComParam are included in it.

2. Argument analysisResult represents the matching result set by the Analysis Engine. It

includes intrusion description or error message.

3. We use 4CtioniD[forwardAction] and actionPwamfforwardAction] to hold action!D and

action command parameter of a response action, respectively.

69

4. We use action!D[action] and actionCom[action] to hold action!D and action command of

a pre-defined actiondeclared in the action definition file.

70

The algorithm ResponseModule works as follows. The for loop of li nes 1-7 execute each

action detennined by action!D. Lines 2-3 get actionlD and action parameter of current action to

be fired . Line 4 calls procedure ResponseModule-Get-ActionCom to retrieve action command

corresponding to the given action!D. Lines 5-6 handle the case in which the ret1,11'!1Cd action

comment is valid. Line 6 carries the determined action into execution. Line 7 prints an error

message when action command is nul!.

ResponseModule (forwardedActlons, analysisResult)

1. for each forwardAction in the forwardActions

2.
currentActionlD .-- actioniD[forwardAction]

3.
currentActionComParam ,__ actionParam[forwardAction]

4.
currentActionCom +- ResponseModule-Get-ActionCom (currentActionlD)

5.
if currentActionCom =t NIL

6. execute action specified by currentActionCom with given currentActionComParam

7. else error "Inval id ActionJD"

8. return

ResponseModule-Get-ActionCom (currentActionJD)

1.
actions ~- Actions declared in the action definition file

2. - ······-·-.._A _ ! ___ n__ ___ li.Tlf

Figure 6-1 Pseudo Code for Response Module

71

6.3.2 Send Action Instruction to \Veb Agent

An action instruction should be returned to Web Agent, no matter whether an intrusion is

detected in the HTTP request or not. With the result from Analysis Engine, Web Agent can

retu.rn diff~rent web pages to client. If an intrusion is recognized, a client might receive an ~rror

page or redirected page; otherwise, he or she would get requested page.

A class named ResponseActionSen 1let that extends HttpServlet IS developed to send

response message from WebiDS to Web Agent.

• When an intrusion is detected, the malicious HTTP request must be inserted into database

for further analysis or kept as intrusion evidences. And a short error description will be

returned to Web Agent.

• Jf no intrusion is detected, "OK" respond shoulcl be sent to Web Agent.

6.4 Conclusion

In this chapter, the implementation ofResponse Module is discussed. The primaty funetion

of this component is to execute response actions according to matching result and action data

from the Analysis Engine. Moreover, the process for making response to Web Agent is also

discussed .

72

CHAPTER 7

DATABASE

In chapter 7, WebiDS database design is reviewed. Tables used to store malicious HTTP

requl!st and tables used in the Behavior Modeling Engine to keep established profiles are

reviewed. Finally, we discuss on the data access technology in WebiDS supported by

Spring-framework and Hibernate briefly. Two databases are created in this proj~ct. One is for the

storage of malicious HTTP requests, and the other is to store the configuration for

behavior-modeling analysis.

7.1 Database for HTTP Request

lf an intrusion or attack is d~tected, the malicious HTTP request must be saved to database

for futther analysis. Therefore, a database named Http!nfoDB is created to hold those data. Since

the HTTP requests sent from Web Agent are broken down into seven pa1ts, and seven tables are

created for them correspondingly.

73

They are W~b application. table, Web Agent table, client table, HTTP headcr table, session

table, çookie table, ançl request parameter table. The tables are designed as followings;

• Application Table:

Field Name Description

ID ID of application information (Prirnary Key)

ClientiD ID of client (Foreign Key)

AppName Name of Web application

ApplP IP address of Web application

AppP01t Port of Web application

Table 7-1 Structure of Malicious HTTP Request: Application

• Agent Table:

Field Name Description

lD ID of Web Agent record (Primary Key)

ClientiD ID of client (Foreign Key)

AgentName Name of Web Agent

Table 7-2 Structure of Malicious HTTP Request: Agent

• Client Table:

Field Name Description

ID ID of client record (Primary Key)

ClientName Name of client machine

ClientlP IP address of client machine

ClientPort Port of client machine

Table 7-3 Structure of Malicious HTTP Request: Client

---------------- --- -------------------------------------

/4

• HTTP Header Table:

Field Namc Description

ID ID ofheader record (PI'imary Key)

ClientiD ID of client (Foreign Key)

HeaderName Name ofHTTP header item

HeaderValue Value of HTTP header item

Ta ble 7-4 Structure of Malicious HTTP Request: Header

• Session Table:

}.,ield Name Descriptio11

ID ID of session record (Primary Key)

ClientrD ID of client (Fol'eign Key)

SessioniD Identifier that the servlet container assigns to the session

SessionCreated The time when the session is created

SessionLastAccess ed The last time that a client sends a request associatcd with the session

Ta ble 7-5 Structure of Malicious HTTP Request: Session

• Cookie Table:

Field Name Description

ID ID of cookie record (Primary Key)

ClicntlD ID of client (Foreign Key)

CookieKey Name ofthe cookie

CookieValue Value of cookie

Ta ble 7-6 Structure of Malicious HTTP Request: Cookie

• Request Param eter Table:

Field Name Description

ID ID of parameter record (Primary Key)

ClientlD ID of client (Foreign Key)

Method Method of HTTP request, GET or POST

ParamKey Name of request parameter

Param Value Value ofrequest parameter

Tab le 7-7 Structure of Malicious HTTP Request: Parameter

- - - ·--------------

75

7.2 Databasc for Behavior Modeling Engine

A database named BehaviorModelingDB is clesigned to facilitate the Behavior Modeling

analysis. There are static tables as weil as dynamic tables used in th~ Behavior Modeling Engine.

Static table is created before behavior-modeling analysis begins. Dynamic table stores the

profiles established during learning phase.

The Static Table

In the parameter mocleling, a static table stores pre-clefined parameter in the database. The

structure of table ParamTypelnfo, can be illustrated as follow:

Field Name Desçriptiou
ID ID of parameter type (Primary Key)

1_T-'):,...:'P'-e_N_a_m_e~------+-N~a.rne of the parat.~n_et_e_r -=ty-"-p_e ________ ~~----~
ParamType Parameter type pattet·n describcd with Regular Exp1·ession. During

learning period, it might be retrieved to match against each

~-------~~----~-re_q~u_e_stparan~1e_~t_e_r. ____________________________ ~

Table 7-8 Structure of ParamTypelnfo

The Dynamic Table

The dynamic tables keep web application profiles generated during learning mode of

behavior-modeling analysis. There are two dynamic tables ParamProfile and URJProfile in the

BehaviorModelingDB. They can be illustrated by the following figures, respectively:

76

ParamProfï le Table:

Field Name Description
,....,..,

ID ID of parameter profile record (Primary Key)
~ ~

ParamName Parameter name
.~

TxpeiD ID of parameter type (Foreign Key). It d~termines panuneter type

of a giv~n parameter concluded in the learning phase.

Table 7-9 Structure of ParamProfile

URl Profi le Table:

r--·

Field Name Description
1-----·

ID ID ofURI profile record (Primary Key)

URI The URl profile value. Any deviated URI can be specl fied in

comparison with this URI dur ing detection period .

Table 7-10 Structure of URIProfile

7.3 Data Access Supported by Spring and Hibernate

The hierarchy of data access under the support of Spring and Hibernate inclucles Logic

Representation Layer, Business Serv ice Layer, and Persistent Object Layer.

• Persistent Object Layer:

Persistence Layer is under the management of Hiberna,te [8], where some persistent classes

are created. The XML files required for the object/relational mapping are declared herc too .

77

• Business Service Layer:

Spring [23] manages Business Layer, Spring's lightweight bean container offers loC-style

(Inversion of Control) wiring t.lp of business abjects, DAOs, and resource like JDBC

DataSources and Hibernate SessionFactories. The following figure shows the definition

Business Service Layer for database, BehaviorModelingDB.

• Logical Presentation Layer:

Logical Presentation Layer makes use of business service provided by the Business Layer

to implement logical consideration when database-related operations are requested. For

example, when we intend to insert legitimate parameter profile or URI profi le in the

learning mode of the Behaviour Modeling, we just create a new persistent abject and

request insettion service provided by the Business Layer.

Beh~v~rModeUngDao

HibernateDaoSupport +getParamProfiles(): List BehaviorModelingService
+getURIProfiles(): List
+imertProfile(profile: Object): void

«extonds>~ _v ~ <\ '
' '•

,• < <realize > > ' ' <<realize>>
/ ' ' ' '

BehaviorModelingl)aoimpl BehaviorModeling5ervicelmpl

+getParamProfiles(): List
-behaviorfl'lodelingDao: BehaviorModelingDao

+getURIProfiles(): List +getDao(): SehaviorfvlodelingDao
+insertProfile(profile: Object): void. +getParamProfiles() : List

+getURIProfiles(): List
+insertProfile(profile: Object): void
+setDao(dao: BehaviorMadelingDao): void

Figure 7-1 Business Service Layer of BehaviorModelingDB

------------------------- ---- -----------------~---~- ---------~

7.4 Conclusion

The primary function of databa.se is to provide persist~nt storagc for the entire Intrusion

Detection System framework In this chapter, databases and tabl~s are discussed, including tables

for malicious HTI'P request and tables used to keep profiles in the Behaviour Modeling Engine.

The data access under the support of Spring-framework and Hibernate makes database-rela.ted

operations more straightforward.

78

79

CHAPTER8

EXPERIMENTAL RESULTS AND CASE STUDIES

In this chapter, functionality testing on the Web Application intrusion detection framework

is discussed. Some common intrusion test cases are performed, including SQL Injection,

Cross-site scripting, Directory Traversai and Hidden Field. These simulations are used to

demonstrate efficiency and effectiveness of the proposed framework.

The simulation is done on a workstation with 2.4GHZ CPU and 512MB DDR running

Windows() 2000 Server under Iight Joad. The web server is Tomcat 5.5 .2 [28]. The proposed

WeblDS is executed in the same time along with the simulating HTTP requests.

8.1 Case Studies

We tested this framework with severa(attacking test cases. The intrusion detection

framework can e:ffectively detect the attacks and raise alarms when exploitations occur.

80

8.1.1 SQL Injection

Description

According to the Top Ten Most Critical Web Application Security VulnerabiHties [29)

issued by OW ASP [16] (Open Web Application Security Project), Injection Flaws is the 6111 of

the top ten most critical vulnerabi lities.

SQL Injection is one ki nd of widespread and dangerous Injection Flaws. To exploit a SQL

Injection flaw, the attacker must find a parameter that the web application uses to dynamically

construct a SQL guery. "By care{ul!y embedding malicious SQL commandy into the content of . .

the parame ter, thot attacker can trick the Web application into (orwardinz a malicious que1y t o

the database ~

Simulation

Web Agent captures HTTP request, and nonnalizes them into XML format. The following

fi gl!re illustrates the collected malicious parameter to exploit SQL Injection flaw:

<Rcqucst>
<RequestParam>

<Name>account number</Name>
<Value>' or ' 1= 1</Value>

</RequestParam>
</Request>

Figure 8-1 Request Parameter for SQL Injection

Pattern-matching anulysis can util ize pattern to detect SQL Injection intrusion. The rule is

illustrated with Figure 8-2:

<SysRulc>
<1 D>Rule032</TD>
<RuleName>SQLlnjection(l = l)</RuieN ame>
·<Version> 1.0</Version>
<Target>RcqPost</Target>
<Patiern>[0-9] { l ,} \W {0,}=\W {0,}[0-9]{1,}</!Jat.tern>
<CascScnsi tivc>y</CaseSensitive>
<Lungtb> 128</Lcnglh>
<Rcfcn.:nccNo>no</RcfcrcnccNo>

</SysRulc>

Figure 8-2 Rule for SQL Injection

The intrusion log demonstrati ng the occurrence of SQL Injection Exploitation, looks like:

8 1

2005-03- 17 20:42:20,250- Alert: ClientiP: l27 .0.0. 1 Clien!Port: 1334 Intrusion Attempt detectcd: SQLlujeclion

Figure 8-3 Intrusion Log for SQL Injection

The attacker or a malicious client might get fo llowing error page:

ti'Im St<~O.Js report

RlXl.U2St WIIS Om'èd, b~&;Sè of !.he rO:kl'l!i'-! Q rùâ!len:
' 1'!. (j! ~kS Ru~;! : SQUnjetl.brï(RéqPOSl]

R.~ue;; t wag Œm:cl, be>2.f,Use of the fo'kmng re;:'ISCn :
Jt br<:.oiŒ R.ule: SQLtnJtlCt>:Jn(l<.eq?cst)

Figure 8-4 Error Page ,for SQL Injection

8.1.2 Cross-Site Scripting (XSS)

The Cross-Site Scripting attack is also <ln injection flaw, which is one of th~ most critical

and common Web application vulnerabilities detined by OWASP [16]. These flaws occLu· when

an attacker uses a Web application to send malicious code, generally in the form of a script, to

different end user [6]. These vulnerabilities are quite widespread and occur when a Web

application takes user input as output directly without validating it.

Pattern-matching analysis is very efficient to detect Cross Site Script attack. Therefore, a

rule to detect this type of attack is described in the following table:

<Rcquest>
<RequcstParam>

<Namc>m. g<JNamc>
<Valuc><SCR.lPT>alert(document.cookie);</SCRfPT><Naluc>

</RcquestParam>
<!Rcqucst>

<SysRulc>
<fD>Rule026<JJD>

Figure 8~5 Request Parameter for XSS

<Rul eName> XSS(RcqPos t)</RuleName>
<Version> 1.0</Version>
<Target>ReqPost</Target>
<Pattcm>(< ;scripr>j\.cookic)</Pattcrn>
<CaseSensiti ve>n</CascSens itive>
<Lcngth> 128</Lcngth>
<RcfercnccNo>no</RcfcrcnccNo>

</SysRulc>

Figure 8-6 Rule for XSS

2005-04-1 0 20:42:16,828 - Alcrt: ClientlJl: 127 .O. O. J ClientPort : 1334 ln tru~ ion Attempt detccted; XSS

Figure 8·7 Intrusion Log for XSS

82

8.1.3 Directory Traversai

Directory Traversai is another attack that breaks Web app lication input validation. "lt is an

attempt to access files out§ide a {the Web document raot, or Jlles within the dQcument root, wl:ich

are athervvise restricted ta thç user [1 [. " The primary target of directory traversai attack is the

URL an attacker can manipulate to bypass the system access control.

Both Pattern Matching Engine and URl modéling of Behavior Modeling Engine are able to

detect Oirectory Traversai attack, For a possible directory traversai intrusion, the corresponding

pattern-matching rule and intrusion log are illustrated as follows:

<Request>
<RequestParam>

<Narne>File</Name>
<Value>%2E%2E%2F%2E%2E<Yo2F</Value>

<./RequestParam>
</Rcqucst>

Figure 8-8 Request Parameter for Directory Traversai

<SysRule>
<ID>RuleO 16</lD>
<RuleName>Di rectoryTraversai (ReqPost)</RuleName>
<Version> l .O<tV ersion>
<Target>Req URI<rr arget>
<Pattern>\.\.1</Pattcrn>
<CaseSensit ive>n</CaseSens i ti vc>
<Lengt.h> 128</Lcngth>
<RcfcrcnccNo>no</RcfcrcnccNo>

</SysRule>

Figure 8-9 Rule for Directory Traversai

83

2005-04- 10 20:42:20,250- Alert Cli entTP : 1 27.0.0. J Clien tPort: 1334 'I ntrusion Attem pt de tec t~d : Di rectoryTraversal

Figure 8-10 Intrusion log for Directory Traversai

84

8.1.4 Hidden Field

Description

Behaviour Modeling Engine can detect Directory Traversai effîçiently. Cross~S itc

Scripting and SQL Injection Flaws can be detected if Paxameter profile is built correctly.

However, only Behaviour Modeling Engine can stop Hidden Field manipulation attack

effectively.

::_JfTML can store field value~s_,Hidden Fields, which are not rendered to the_J...creen b)!.

the browser but ÇQ]lected and submitted as parameter~· during submissisJ_r:J§._f.lL':- The attacker

can save the source code for this HTML page, change the hidden field value or change its value

by Proxy tools during the submission, and then post the newly changed value to the Web

application. Thi s attack is dependent on the deviation from normal parameter value. Thus, only

Behaviour Modeling Engine can raise an ala.rm when this exploitation occurs.

Simulation

During the learning mode, a parameter pro"ftle to describe the normal behaviour of this

hidden field , Priee, can be established. Following table illustrate the legitimate profile in the

data base.

TypeiD TypeName ParamType

1 Hidden 4999.99

Table 8-1 Parameter Type for Hidden Field

85

Para miD ParmuName Type ID
20 Priee 1

Table 8-2 Parameter Prqfile for Hidden Field

During the detection mode, we use the parameter name of this hidden field, priee, as a key

to retrieve its legitimate parameter type. Then, the result 4999.99 can be gotten and a pattern

represented with regular expression can be created conseguently. Thus, the deviation can be

fo und by matching current malicious value with the legitimate profi le.

And now an intrusion attempts to manipu late this hidden fie ld is demonstrated with of a

Proxy tool, Paros [17]. The following fi gure illustrates this attack:

' j . , ' ' •.. . r :i-l<:'lttj~~:.... • !' -~:2$1
=~ - ~·1;---~~~ S>:-!~r<ler - l<i;'illlr~ TçoJ, lo\::Îp ;L "- --"- .i;._ -"'-- -· -
SJ\d j -:::'"'-- ~ -: - 1 :•

Rc~:'t ~.csF:;;oœ:a Tr-•p _ _ _ ·~ · ,. ~

~ [JSlHo POST n11p1ilocalhoost80 BOJY"ebùoalia!tack riTIP/1 .0 ~· ~
œ-CJ h<tp :J ,;cee pt lmagefgif, imag ~<li-Y. Ill tmap, lmage!Jpeg, lmageJpjpeg , a pl•ca1ion.rvncr.ms-powerpoln1, applicabonrmsword, appf1c f .

ShOil>):·S h OCkW8'o'8·fi &$h, ' j' . t;

Referer; http;lltoç;~ t ll o s.:aoeorNeb Cloauattacii.1S,reen=·t 29
"Cee pt-l!.ang I.Jag e; m- en
Content• 'f\'pe· a~p ii CaliOn!X.WM/MOtm• tJII COCodeçJ

Ptü:<)'•COnl\cC1iOn: KCOP•Ali'l'll ~{'

user-Mon!: MoZJIIJJ-ta (cQmpatibla: 1'11SIE 6.0: Winàcrws NT 5.0)
KtoSI: IGcalha.sLB08ü
content-Longth: 13 !'
P1 aorn<L M- cat h<.t --l C ookie: JSE SSION1Do92A51 B9/l.A.6FC3ff 83 636 4 o8235D63CBF

j · ôhnm•lion: Baaic Z3Vic306Z3\IIr.30!: ~J
j P1ice,. tj .)

1 -
1 n,"i' -, ·l J ~: 11?.<'1' VioY:;! 17 .r,·~l? n.~u~,~-' P' ~u~ l' ·t;~·>n~ô _-:~: .. _., t , oé? tinu•
'""""" ~

·1 CETh.~pJllicoca l flostBOSCWiellOoa~·attack KTTP!1.0 "'"' HTTP!l .l 401 Unauthon:recl (O.O~!l sj f 4 GET t11 1P:PIOC ~ I h ost8080fli'MJGO atlatta ck HTTP.f'I.O=> HTIPIU 200 OK [1 .86 .s]

6 POS 1 hltfl:o'localhost:B080ftNebOostl'a1tscK Hïff'/1 .0 ~ >- HTIP/1 .1 200 OK [0 .062 s) if~, .
6 GETh1 1PJiloca lhoot:B0301\N8bGoa~~lt ck?SCI0~1'1=129 HTTP/1.0 =~ HTIP/1.1 200 OK [0.016 s)

1 PO Si illlp:.rimc alh ost:BOSOM!ebé oab'afuick H'I'TP/1.0 = >· r tl"rPI1 .1 .2 00 ü K [0.04 7 s)· ~
~ C\FTh11cvlllnr~lhlll~ t· Rn $lfùWRhc'';MI Iall:t l~k?S~ I ~~mo1 ?~ HTTP/-1 n =~ HTTP/1 1 ' nn fii<O: lill nJO ~ ~ Zl
)(blory l s~i<!od' :l.l•ni)'~ ,,,

''"
li' ('. 0: fi v.

Figure 8-11 Manipulation of Hidden Field with Paros

86

The fo llowing figures illustrate the generat~d intrusion log and the error page that Web

Agent returns to an attacker:

2005-04-10 20:42:25,625 · Al err: CliemTP: 127.0.0. 1 ClientPort: 1334 Intrusion Attempt detccted: lnvalid pammeter type: [Priee o 1 J

Figure 8-12 Intrusion Log for Hidden Field

il'1JI stall.JS report:

Req..Je>t was œ ·Jed, because of the fdlowh g rea son:
The type of r.equested Parametff Vai:.Je : 1 is 1"\va~.dl

R.~t was O::'f""ied, ' &âUSii' of th€! follow:rtg rea son:
1i"te type of requested Pararnetr:r Va !Je : 1 ts nv~b:l!

Figure 8-13 Error Page for Hidden Field

8.2 Conclusion

In this chapter, intrusion test cases to evaluate the effectiveness of this system arç discussed.

These simulations demonstrate that the Intrusion Detection Framework for Web application

proposed in the thesis can protect Web application against malicious attacks efficiently and

effectively.

CHAPTER9

CONCLUSION AND RECOMMENDATION

ln this chapter, the conclusion on this project is stJmmarized. Moreover, some

recommendations or considerations for further research are also discussed here briefly.

9.1 Conclusion of Thesis

In this thesis, an Intrusion Detection framework for Web application with advanced

detection algorithms, which is based on module architecture and comp;itible with J2EE

development standard, is proposed.

Advanced intn1sion detection algorithms, including Pattern Matching and Behavior

Modeling, are adopted and extended. In the Pattern Matching Engine, new patterns can be easily

developed with the XML-based configuration files. Behavior Mode)ing Engine can be easily

configured and extended . A learning-based anomaly detection algorithm, Behavior Modeling,

makes the detection of unknown attack possible. These methodologies and mechani.sms help this

framework detect the complexas weil as simple intrus ion attempts efficiently and effectively.

87

88

A filter based Web Agent is designe.cl to be a pluggable embedded component within Web

application. This allows us to easily deploy WebiDS agent into Web application without

additional configuration.

This thesis conducts experiments to evaluate this intrusion detection framework, These

experiments successfully demonstrate th::tt this framework can detect various intrusions

efficiently and effectively.

9.2 Recommendation

Som~ recommendations for the future works can be summarized as follows:

• For Pattern Matching Analysis Engine, more rules or patterns have to be developed in orcier

to detect more intrusion incidents successfully.

• For Behavior Modeling A.nalysis Engine, more profiles used to describe HTTP request

behavior should be considered.

• For Behavior Modeling Analysis Engine, a more complex and advançed algoritJun could be

developed to perform statistics analysis. So the statistics analysis can be used to measure

whether current request is normal behavior or not more precisely.

"' For Behavior Modeling Analysis Engine, more attributes of normal behavior cou ld be

tested to mode! the normal behavior more precisely. The more accurately that normal

behavior can be modeled, the less false positive or negative alm·ms will rise. More

experiments should be donc to determine the proper attributes to mode! the behavior.

• For Analysis Engine, a correlation algorithm used to measure the correctness of intrusion

detection result should be considered.

89

• Other type of Web Agents could be developed to collect HTTP request data from other

source, such as network Sniffer Agent.

BIBLIOGRAPHY

1. A Guide to Building Secure Web App lications, Open Web Application Security Project.

URL: ht!QJ/wwwowMJ2.onddocumentation/guideJJtml.

2. A. K. Ghosh, J. Wanken, and F. Charron. Detecting Anomalous and Unknown Intrusions

against Programs. ln. Proceedings of the Annual Computer &curity Application Conference
(ACSAC'98), pages 259-267, Scottsdale, AZ, Decembel' 1998.

3. A. Sornayaji and S. Fon·est. Automated Response Using System-Cali Delays. In

Proceeding;,· pfthe 9111 USE"NIX Seourity Symposium, August 2000.

4. Christopher Krügel , Thomas Toth and Engin Kirda. Service Specifie Anomaly Detection

for Network Intrusion Detection . ACM Symposium on Applled Computing, 2002.

5. Common Intrusion Detection Framework (Cil)F). URL: !ll!p://www.isi.edu/gost/c idf/.

6. Cross-site Scripting Flaws, Top 1èn Most Critical Web Application Security Vulnerabilities
- 2004 Updates, page 15-16, Open Web Application Security Project, January 27th, 2004.

URL: www.owasp.org(clocurnentation/topten.html.

7. Donn B. Parker. Demonstrating the Elements of Information Security with Threats. In
Proceedings of the 17th NÇitional Computer Security Conference, pages 421-430, 1994.

8. Hibernate - Relational Persistence for Idiomatic Java, version 2. 1.6, August 9th, 2004.

URL: http :i/www.hibernate.org/.

9. btt12:/ /www:..webop~d ia.com/0 id Yo tL~!l.ow/Computer_,Sc Î§JJ~)200 5/i n trus LQ1LSJetecti on Jl!:

evention.asQ.

10. H. Debar, M. Dacier, and A. Wespi, Towards a Taxonomy of Intrusion Detection Systems,

Cornputer· Networks, 3 1 (8):805-822, April 1999.

11 . Injection Flaws, Top Ten Most Critical Web Application Security Vulnerabilities - 2004

Updates, page 18-19, Open Web Applicatiot1' Security Project, January 27th, 2004 , URL:

}vww.ow~p.org/documentation/topten.html .

12. International Standards Organization: Information Processing Systems - Open Systems

lnterconnection -- Basic Reference Madel, part 2: St?curity Architecture 7498/2.

13. K. llgun, R. A. Kemmerer, and P. A. J>orras. Statc; transition analysis : A rule--based

intrusion detection approach. IEEE Transactions on Sojiware Engineering, 21 (3): 181-199,

Mareil 1995.

14. Kyle Gabhart. J2EE Pa.thfinder: Filtering with Java Serlvet 2.4 Viewing, extracting, and

manipulating HTTP data with Serv let filters,

http://WW\Y.::.l28 . ibn1 .com/develogerworks/java/ libt;ary/j-pj2eel 0 .html.

90

,-------- --- -----

15. K. Jackson, Intrusion Detection Systems (IDS): Product Survey, Los Alamos National

LaboratOI'y, LA-UR-99-3883, 1999.

16. Open Web Application Security Project (OWASP). URL: http://wv~·w.owasp . org.

1 '7. Paros, version 3 .2.1-win, available via http://www.parosproxy.org, April 2006.

18. Prelude Hybrid Intrusion Detection System, version 0.9.0, available via
http://prelude-ids.org/, September 2005.

19. Marty Roesch. Snort, version 2.4.4, available via http://www.snort.org/, April2006.

20. Resea1·cb Firm Gartner, http://www.gartner.com/.

91

21. Richard Heady, George Luger, Arthur Maccabe, and Mark Servilla. The architecture of a

network leve/ intrusion detection ~ystem. Technical R~port CS90.20, Department of

Computer Science, University ofNew Mexico, August 1990.

22. Sandeep Kumar and Eugene H. Spafford. A Pattern Matching Model for Misuse Intrusion

Detection. In Proceedings of 171
h National Computer Security Conference, pages 11-21 ,

October 1994.

23. Spring - Java/J2EE Application Framework, version 1.1.2, November 2004. URL:

hHp://www.springframework.org.

24. S. Forrest. A Sense of Self for UNIX Processes./n Proceedings of the IEEE Syrnposium on

Security and Privacy, pages 12.0-128, OaKland, CA, May 1996.
25. S. Forrest, A. Somayaji, and D. Ackley. Building Diverse Computer Systems. In

Pf•oceedings of the 6111 Workshap on Hot TopÎcs in Operating Systems, pages 67-72, 1997.

26. Terty Escamilla, Intrusion Detection : Network Security beyond the Firewall, John Wiley &
Sons, Inc, 1998.

27. The J2EE™ 1.4 Tutorial for Sun Java System Application Server Platform Edition 8

2004Q4 13eta, Filtering Requests and Responses, pages 503-508, Sun Microsystems, lnc. ,

August 30, 2004.

28. Tomcat, version 5.5.2, available via http://tomcat.apache.org.

29. Top Ten Most Critical Web Application Security Vulnerabilities - 2004 Updates, Open Web

Application Security Project, January 27th, 2004. URL:

www.owasp.org/ do cu mentation/topten. htm 1.

30. T. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P. Neumann, H. Javitz, A. Valdes, and T.
Garvey. A real-time intrusion detection expert system (IDES) - final technical report.

Technical report, Computer Science Laboratory, SRllntemational, Menlo Park, California,

February 1992.

31. UTF-8: Unicode Organization, available at http://www.unicode.org.

32. ISO 10646: Universal multi-octet character set- UCS, available at b.np://www.iso.org.

