Université du Québec a Chicoutimi

Mémoire présenté 3
L'Université du Québec a Chicoutimi
comme exigence partielle
de la maitrise en informatique

offerte a

1'Université du Québec a Chicoutimi
en vertu d'un protocole d'entente
avec I'Université du Québec & Montréal

par

YUAN WEI

AN INTRUSION DETECTION SYSTEM ON NETWORK SECURITY
FOR WEB APPLICATION

aolit 2006



UNIVERSITE DU QUEBEC A MONT_REAL
, Service des bibliothéques

Avertissement -

La diffusion de ce mémoire se fait dans le respect des droits de son auteur, qui a signé
le formulaire Autorisation de reproduire. et de diffuser un travail de recherche de. cycles
supérieurs (SDU-522 — Rév.01-2006). Cette autorisation stipule que «conformément a
larticle 11 du Reglement no 8 des études de cycles supérieurs, ['auteur] concéde a
I'Université du Québec & Montréal une licence non exclusive d'utilisation et de .
publication de la totalité ou d’'une partie importante de [son] travail de recherche pour
des fins pédagagiques et non commerciales. Plus précisément, [lauteur] autorise
FUniversité du Québec a Montréal a reproduire, diffuser, préter, distribuer ou vendre des -
copies de. [son] travail de recherche & des fins non commerciales sur quelque support
que ce soit, y compris I'ilnternet. Cette licence et cette autorisation n’entrainent pas une
. renonciation de [la] part [de l'auteur] a [ses] droits moraux ni a [ses] droits de propriété
intellectuelle. Sauf ententeé contraire, [I'auteur] conserve la liberté de diffuser et de
commercialiser ou non ce travail dont [il] possede un exemplaire.»




ABSTRACT

For the last 15 years, significant amount of resources are invested to enhance the security at
gystem and network level, such as firewalls, IDS, anti-virus, etc. IT infrastructure tends to be
more and more secure than ever before. As an ever-increasing number of businesses move to take
advantage of the Internet, web applications are becoming more prevalent and increasingly more
sophisticated, and as such they are critical to almost all major online businesses. The very nature
of web applications, their abilities to collect, process and disseminate information over the
Internet, exposes them to malicious hackers. However, the traditional security solutions such as
firewall, network and host IDS, do not provide comprehensive protection against the attacks
common in the web applications.

The thesis concentrates on the research of an advanced intrusion detection framework. An
intrusion detection framework was designed which works along with any custom web application
to collect and analyze HTTP traffic with various advanced algorithms. Two intrusion detection
algorithms are tested and adopted in the framework. Pattern Matching is the most popular
intrusion detection technology adopted by most of the commercial intrusion detection system.
Behavior Modeling is a new technology that can dynamically adapt the detection algorithms in
accordance with the application behavior. The combination of the two intrusion technologies has
dramatically reduced false positive and false negative alarms. Moreover, a Servlet filter-based
Web Agent is used to capture HTTP request. An isolated Response Module is developed to
execute pre-defined action according to the analysis result. A database is involved to provide
persistence support for the framework. Also, several simulation experiments are developed for
evaluating the efficiency of detecting capability.




ACKNOWLEDGEMENT

This thesis would not be possible without the support of many people. First of all, I would
like to thank my supervisor, Professor Cao Zuolang, for his great enthusiasm and indispensable
guidance throughout this research. Thanks, Zhu Hui, my associated director, for sharing his
knowledge and experience in web security issues. Thanks, for all your help and invaluable
advice.

I would like to thank all the faculty and student members of Computer Department for their
inspiring discussion and sharing their ideas. 1 would like to thank, in particular, Chen Tao for his
help in performance testing and fine tuning the design of the framework.

This research would not have been possible without my family support. Nothing but their
love, moral support, patience, and understanding give me great encouragement to go ahead.

Thanks, thanks, thanks, and more thanks to all of you!




iii

TABLE OF CONTENTS

Abstract ....oceiiiesenenenne e L p e ST e R T YL LT TR Jr P AT P A RS IOt
Acknowledgement.............. ensiey et D oy AL T PRI R R R T RRR ||
Table GFCONLETHN o riirrrnnerit bivissatiis bervsraramie s aes sy oks S e e oV anTaTes o s s s U s Ry RS ST s g SE T EN iii
TASTOE FIBUTES:. ccncc pamsncisorssisassammmnsamsnassvassessnrsssenssonsssarssasaasyeinns syvesaN AN S Ye RS seevedeie RRESSEL ) |
List of TableS..ccccericnmnnsensseisesiosereane 44440 4S8 VS TR SFENENEFISIIEITS FassTsasEIes R T o A 1
1. Inteoduction . aiavsaunisvsinmmsnmsannnssismisiaeirinmgs e T gisirasins 1
1.1 MOtIVALIONS ..c.couiiinrienierneriinermnesinensisieessesmmessmesssommsinesisnesessssssressossensssssssensosasrensessssssessassosass 1

L I Vvt s W am A Eta A P s St e o s oo A BN L s s A A R 5

L3 TR ORI s sostianibined b mtinmini isnbimmebdimind 0 b bbb ISR SRS AL D AT A 4

1AL TR T ARV .00 in mossmc ssmonsssapamg mmmanssuspaamsposs pammmass sorpmRsaEss 5RO D BTSRRI 5

2. Related Work ....c.cceueueeensnee B T TR VSR EVae SRR AE TS e ssssEevess R apoHgues exe il
2.1 Goal of Network SeCULItY ....cucceririnnrminininissnmsesisiiesosseemon pev T el RE LB .8

2.2 Why We Need Intrusion Detection System ........coiveveivininiinnnismmmmsssmsisesoss 9
2.2.1 Traditional Network Security Approaches............coceeecrverncsrcrninens — T —— 9

2.2.2 Firewall Is Not Enough .........cccoriiniiiiinnmiiissions 11

2.2.3 Security Vulnerabilities of Web Application.........c.c.ccvvieieimnenmmen 13

2.3 Overview of Intrusion Detection SYStem.....,cccciceinrrsimsisresnssnsnsmsssniisssmeenisesimss 15
23] TOPORINOIORY . ossacssinssssmsasasmonssmesss wopsomsmson somssmssaasasom BB BN R AR ISR TS 384 SRR SSUEALS 15

232 ID8 1 IPS ..o aisassssensinanspsssssspponsasspsnssansssssas S ————N— 16

Bl ClomakBlbomlom BREIRS. ooty moihimoresbbsiissonniibimeesspamssrert miiomodessratms o A St s 4 18
2.4.1 Host-based IDS, Network-based IDS and Hybrid IDS ........cccconnvenerninnncriennne 18

2.4.2 MiSUSE INETUSION . ccvirvermiemsisinniiniicmmsaisssnsisiesesnssnsesseseesesseessessasssesseessssassessessssssesssasans 20

A3 Amarnntly DETEOTIIR ... oo nssmsiadilnmid bimad fmimimsis bl cabb st s ek R ekl bt sat 22

3. Intrusion Detection Framework.....cc.eeseereens SEEs RIS EREEsRE AT R T O T e FeesTaeeeiine 26
3.1 Description.........cveeen. T S N SRS PSSRV T R b S St 26

3.2 Relationships of [DS Components... ... s snpismisammissammmesemssmssesivavssarsssmenssisaes 27

4, Web Agent........ e — TRy, SRR SEeis weseseseeTRRTeEE e ba T e «30
4.1 Description.....uucerimsimsnsisisesseeesenne S R—— o —— S — sorssasensresyoras SO

4.2 Considerations of Web Agent .........c.ccoveevennas s s regesaneiiae i Sl st R

4.3 Filter-based Web Agent.........cevnnrnvessinsecasnes — S S SRRNIRRUNNRNUMSR: }.
4.3.1 Feasibility Study .........ovvvnmiiniininnnissniniann K A 35 8 i ST BTN RO SR .33

4.3.2 The Implementation .........ceoecsseeernnccesninseorssseoneas D S gt



iv

4.4 Centralized Character Filter........... R B e A A e R e 37
4.4.1 Why a Centralized Character Filter Is Needed.........c.ccovvrceerernnnnieenmeninvminnnn 37
4.4.2 COUNLEITNEOASUIE ...cvirisrersesrersesstsetssnrsnsnsasnoreraesnessestassssssssassssssssasasrasssennessasnessosassnenns 40

8 I VTR TR s bbb M Mt s 41

A o DI s v st i S 0 G e D RS SR B S b 41

Analysis Engine.......ccoeeene. T O BRI o T L P o T L S PR SNSRIEIIR, - -

81 DO R s oo vmeyssiong prssmmenrasansnss possmmss AT VS TS TS TR b s oot eSO T 43

5.2 Pattern Matching ENINe .........cvcviveeniiininminesnsonsnninnsnmsesiessnmescsssmsesmsssmsssssssssssssssane . 44
5.2.1 File Description......cccuvuens e B L T At I ST Sl A TS 45
5.2.2 How to Perform Rule Matching.......c.cooeenivcnnnisiverissersnsieninnas S T 49

5.3 Behavior Modeling Enging..........ccocovvennnvinncnnnniserennnns prerersssenenissien poenreraenes S— 53
5.3.1 Behavior Modeling AlZOrithim .........cvvecriceneenneinenreniensennimensesesenssereressnesessessanns 53
BF 2L DR RO PRI ..ot evmms bt B M b Rl BB AR b s 56
5.3.3 How to Manage Behavior Modeling..........cccoccvvininnininncnin e 59
5.3.4 URI Modeling AlIZOrithm.......coooiviiiiminiinnininiinisisienemsesansansaseesessssssesnss 61
5.3.5 Parameter Modeling AIZOTIthIM,.......cccceierenimmrereserernersinereienmerneesnsnesnusnsssessssssseraraens 62

S A OO C TS TOM S saswssimressstasast s fumivsvsns ims s30T EVHES TS Sa e RSN VI T Svhein g swmiiss Suve b buaaias vep W R R T OuReS ST 64

Response Module .............. BTz SEEeEeEas I T L TR T 65

6.1 Description,............ O o B T RN S 08 S M WS R s A B T 65

8.3 Pt Tt Al CBBINIE . . o vt s pmam s i s g asn s At SO st vy Mg s 66

6.3 Implementation of Response Module...........coveivininnininnnnnnininnsns e, 69
6.3:1 Exeoution of Response ACHION « . s.msssssmsisssssismsivssssivsnassssissivssesissienaenvessssvsssnansss 69
6.3.2 Send Action Instruction to Web Agent.........ccooivinninnnnnmin 71

6:4-CONCHIBION sttt R RS i s s R sttt it osnddo S v ormovnincobausss 71

DIATED AR Baierssssipimmsaios sussarsmasobingronssnss sgius sty susissmdabaiasasssevaseulssnras s sy fehoasns ponsiets o nsr i s Tl

7.1 Database for HT 'lP Request ..... pAbRb I PR~ PTPRERPRPIO AT R L P

7.2 Database for Behavior Modeling Engine............ P — 78

7.3 Data Access Supported by Spring and Hibernate ...........c.ocuvniivnnininnnssnnen. 76

TR ComeluSION: ..ol hitmhninmminaianamnmiiaaamrarmiid i 78

Experimental Results and Case Studies .....c.ccecureericuneas s AR e i

B AR BT ATES s smrvress oy oems T Eooss S i SaR T v o3 e on s D RO T P Ra S SRS T e 79
I LT | Lo UM PR —————————— 80
B.1.2 Cropy-Bite Senipling (XBBY ... iiiemisesiivernschsissssstonmt smmmsmioimed b g ik sms beastesvietb esst 82
8.1.3/Divectory Traversaliv. i s e Bin aminn i minmiiii i i ia i i ain et hdet 83
8.1.4 Hidden Field........ccrvverrrecsuenenrenereronee P 84

8.2 Conclusion........., L P SRS NUAR SO SSSS S —— . 86

Conclusion and Recommendation.............oeueuenes TTTeTeTTasas s aVs ARSI L L L T LT 87

G- ConcluSion Of i THeSIS et i B R i T s M it s e it s ol il i firreity 87



9.2 Recommendation ........ccceeeeereereruenes A s PR e e L R AL rereeee 88
Bibliography .......... ek UE s A i e ¢ivieseatess ey eekessisedie TS |



vi

LIST OF FIGURES
Figure 3-1 Relationships of Intrusion Detection Framework Components............... R — o)
Figure 4-1 WebAgent Class Diagram ......... e — S P, R —— 35
Figure 4-2 Programming Details of dOFilter() ........c.covervciininiiiiinmniiiisns, 36
Figure 4-3 DTD for HTTP Request...........conunn. 4 i A GRS T S — R 42
Figure 5-1 Relationship of Tables in Pattern Matching Engine .......c.ccoouirvvninininnnninnnnnnnrenne. 48
Figure 5-2 Programming Details on Rule Matching...........c.oviniviiniininenmnimssese 51
Figure 5-3 Behavior Modeling Algorithm......c...cocecrcune. b 0 6 b sl s Mt i 54
Figure 5-4 Relationship of Tables in Behavior Modeling Engine.........c.cccccovverercvnnenenenniinccnnennnenes 58
Figure 5-5 Data Structure of Class URIStatistic .......... bt 5 o o APy A SRRTPRRR— — 61
Figure 5-6 Data Structure of Class ParamStatistic ...........coecvvuernciirvircnnnsrenniinncsisninssisnsnsesnnees 63
Figure 6-1 Pseudo Code for Response Module..........ccoriiiniiinimciimiimiiinmenmemsensns 70
Figure 7-1 Business Service Layer of BehaviorModelingDB.........cccoicoimneniinerrvnrennnerenniennnen 77
Figure 8-1 Request Parameter for SQL Injection........cocccennmneiniinnuneisniiimisieeenns 80
Figure 8-2 Rule for SQL Injection .........ccerunenen. R DR TR Bh S I Ml AN N P 81
Figure 8-3 Intrusion Log for SQL INJECtION ......cccvuinrecririicireniinnesiaiencssnnsninessessasnsresssnsssssssssasssasnes 81
Figure 8-4 Error Page for SQL Injection.........csvevsvcsiinirinnnns e R v IS L 81
Figure &5 Roquest Parameter Tor X85 ... smammmmsisansinssinmsnsssamstnss iins obsassiss 82
Figure 8-6 Rule for XS8S.......... N T S — N . 7.
Figure 8-7 Intrusion Log for XSS ... ssesnssssasnssesnssessssasesssnsssssons 82
Figure 8-8 Request Parameter for Directory Traversal ... (RS s Bhamrki &3
Figure 8-9 Rule for Directory Traversal.........c.ccuucniiiniiinonsiismi CT— a— 83
Figure 8-10 Intrusion Log for Directory Traversal ..........ccovvmvvininevonnninimnnmmens 83
Figure 8-11 Manipulation of Hidden Field with Paros............ooevevneensenn. R~ ey R ..
Figure 8-12 Intrusion Log for Hidden Field.............. P—— LT R TR TREr 86

Figure 8-13 Error Page for Hidden Field ..........cccovvnniiiiininiiiniisemnns 86



vii

LIST OF TABLES
‘FaBlea-1 oL Eal LTI Bt ORI oust o6 onssmen)ammnsivinss s OO0 REFRBRYYisinsmni i ooos=st G0 A S MI SISO TR IE 39
Table 3-1 Structure of @ RUIE ......cccvvvniiiinimimnccnmnmmmemomomse, e 45
Table 5-2 Structure of a Rule Mapping ... RN AR esa 46
‘Tbky 5.3 SUnre R TREBM s conovicbiissiinibiniitimasisssmn rivinssss ivs b aaimsisiss b s s b i amsna 47
Table 5-4 Structure of a Model....c.coevevninennssnscinsnnnes e - T e — 56
Table 5-5 Structure of a Model-Mapping..........ccvunn PP S ————— . 57
Table 6-1 Structure of an Action .......ceverivvrnisrinenisionens ETPOCES VERRLIG FUSSE SSITSY JOVSR R TP e 66
Table 7-1 Structure of Malicious HTTP Request: Application .........c.cccovveevevenvccrvnsennnsnencsnesens 73
Table 7-2 Structure of Malicious HTTP Request: AZent....cuuiiimimiinimioemnmersemarens L
Table 7-3 Structure of Malicious HTTP Request: CLient ......cc.ccvvrvenvrenieenreerinnereiseesimseessssaesissssnnese 73
Table 7-4 Structure of Malicious HTTP Request: Header..........c.cviiininiinininiinn ATRPA———— 74
Table 7-5 Structure of Malicious HTTP Request: Session..........ccvvieeiiienrinineniemsisnneniinniiesieses 74
Table 7-6 Structure of Malicious HTTP Request: Cookie........covvimmninnemimiieenn. 74
Table 7-7 Structure of Malicious HTTP Request: Parameter..........ccocvnneivmnnnninniinneii. 74
Table 7-8 Structure of ParamTypeInfo.......c.occvvnievreniienininni. S— T 75
Table 7-9 Structure of ParamProfile..........onuimmimiiiimiiemimmsss .76
Table 7-10 Structure of URIProfile.........cccoevrevennnrcrnnurnenns e TSNS IR CHTErT R pr 76
Tible 8] Parametor Ty pe for Hidden FIBI i mmisismimismnssismmmo tosmyiosmmsmmiyisvssssis 84

Table 8-2 Parameter Profile for Hidden Field .......ccciiiniiieciiionmieeniiesiosismessessominses iosesrenssisssnee 85



CHAPTER 1

INTRODUCTION

In this chapter, the motivation and objective are reviewed following by an overview of the

skeleton of the thesis. A brief introduction of the project is included in this section.

1.1 Motivations

Information security is serious issue in today’s extensively interconnected cyber space.
Unauthorized network intrusions and computer-related fraud initiated abuses have dramatically
increased due to the popularity of Internet and the implicit anonymity of network users. The
commercial sectors, academic institution, government even individual desktop users are now

victimized at risk from the increasing network attacks.




Since most firewalls are effective in protecting against common attacks at the
network-layer, the target of attacks has changed to application-layer, where monetary return can
be achieved. Meanwhile, operation system vendors have kept patching up published and
unpublished vulnerabilities, so the weakness of Web application becomes the easy target of
attacks.

In response to this emerging phenomenon, many solutions have been proposed to enhance
application security, among which Intrusion Detection Systems (IDS) is the most effective and
meaningful one.

Lacking the standardization and the supports from the operating system vendors, IDS
solutions introduced their unique approaches and algorithms to detect intrusions. However, the
proposal of common protocols and application programming interface are required so that the
research of intrusion detection can share information and resources.

With the help of Artificial Intelligence (AI), data mining and other advanced algorithms,
academic research communities attempted to develop advanced technologies to detect intrusions
in large-distributed environments. However, little effort has been invested in application intrusion
detection, which would be able to detect attacks targeted at business logic instead of static
protocol stacks. Thus, the development of a flexible and easy-to-implement Web

application-specific Intrusion Detection Framework is more desirable at present.




Additionally, with the popularity of Java technology and J2EE standard, proposal of a
platform-independent Intrusion Detection Framework for Web application becomes an emerging
issue. Therefore, the project is conceived and designed to provide an effective and efficient web

application security framework with advanced algorithms.

1.2 Objective

The main objective of this thesis is to propose a common Intrusion Detection Framework
for Web application, which would be able to work with any custom-built web applications. With
advanced framework architecture and effective detection algorithms, this framework can process
various security-related data, detect and prevent intrusion effectively with less false negative and
false positive.

This J2EE-compatible framework follows the thought of modular architecture design
methodology. It consists of the following four parts:

. A filter-based Web Agent is developed. The agent collects network traffic, sends the
captured information to the Web Intrusion Detection System (WebIDS) for intrusion
analysis, and receives instruction message from WebIDS to take appropriate actions against
the network packets.

. Advanced intrusion detection algorithms, pattern matching and behavior modeling, are

developed. They form the core component of WebIDS, Analysis Engine.



. Another critical component of WebIDS is Response Module. It is responsible for execution
of specific actions determined by the analysis result. The module might filter out intrusion
payload when an attack is detected, or send instructive messages to Web Agent.

. Database module is included in order to provide persistent storage for the WebIDS.

1.3 Thesis Contribution

This thesis proposes an Intrusion Detection Framework for Web application with advanced
detection algorithms. The major contributions of this thesis are summarized as the followings:

: A complete Intrusion Detection Framework is proposed. With this framework, various
security relevant data can be collected and analyzed by one system. And the framework is
highly adaptive to allow any new intrusion detection algorithm to be conveniently deployed
as plug-ins, since it adopts designing concept based on modular architecture and it is strictly
compatible with J2EE development standard.

. With the introduction of Servlet Filter technology, the job of data collection becomes easier.
It captures raw network traffic and takes appropriate actions against the packet based on the
instructive message from Analysis Engine.

. Pattern Matching Algorithm and Behavior Modeling Algorithm are the advanced algorithms
developed in this project. The combination of two algorithms decreases false negative and

positive efficiently.



1.4 Thesis Organization

The remainder of the thesis is organized as follows.

Chapter 2 briefly describes background information. It discusses the current issues
associated with the security of Web dpplication and the reason that we have to introduce
Intrusion Detection System to prevent attacks coming from outside network. Then, comparison
between Intrusion Detection System and Intrusion Prevention System is reviewed. At last,
relevant terminologies and information of IDS are reviewed.

Chapter 3 presents the overall architecture of IDS framework developed in this project.
Relationships of the components and primary functions of each module are revealed.

From chapter 4 to chapter 7, the design details of the Intrusion Detection Framework for
Web application are explained.

Chapter 4 concentrates on a design of Filter-based Web Agent. Background information on
Servlet Filter technology is reviewed briefly. Then the detailed implementations are revealed.

Chapter 5 focuses on the intrusion detec;tion algorithms and implementations. A prevalent

pattern-matching algorithm is discussed; a more advanced and effective behaviour-modeling

methodology follows.




In chapter 6 and chapter 7, other two modules in the framework, Response Module and
Database are revealed. In chapter 6, design of Response Module is delivered. Chapter 7 presents
the details about database schema and database-relevant technologies, including data access
supported by Spring-framework and Hibernate.

Experiment result and evaluation of the project are the primary content of chapter 9, where
several case studies are presented. Chapter 10 concludes this thesis and points out some future

work,



CHAPTER 2

RELATED WORK

First of all, background of information security (i.e. Web application security
vulnerabilities) is examined. Subsequently, the need for Intrusion Detection System can be

discussed. The debate on the “IDS is dead” is discussed here too.

In the Internet era, information systems in the government and commercial sectors are
distributed and highly interconnected via local area network and wide area network. These
networks provide potential avenues for attacks mounted by hackers and other adversaries.
Therefore, the methodology for protecting the privacy and improve security level of these

interconnected computes in the Internet is a significant issue.



2.1 Goal of Network Security

A paper written by Donn Parker [7] outlines six elements of security that must be engraved
on mind of each security administrator. We think it is worth evaluating any website by
determining how it complies with these six elements.

1. Availability: the system must be available for use when the users need it,

2. Utility: the system, and data on the system, must be useful for a purpose. Similarly, each web
component must have specific pre-defined function.

3.  Integrity: the system and its data must be complete, and in an available condition.

4.  Authenticity: the system must be able to verify the identity of users, and the users should be
able to verify the identity of the system.

5.  Confidentiality: only the owner of the data should know private data. The protected data
cannot be disclosed in unauthorized fashion.

6.  Possession: the owner of the system must be guaranteed that the system is under his control.

Losing control of a system to a malicious user affects the security of the system for all other

users.



2.2 Why We Need Intrusion Detection System

The reasons that we need IDS can be concluded into following three points:

. The inherent vulnerabilities in the traditional network security hierarchy demonstrate that it
is impossible to ensure network security without any external protection.

¢ Firewalls cannot guarantee 100 percent security.

. The prevalent flaws in Web application also declare that the introduction of intrusion

detection system is desirable.

2.2.1 Traditional Network Security Approaches

Improvement on Authentication

In aim to distinguish network machine from each other and deliver messages, a source and
destination address for the network packet are required. A machine that claims to have a
particular network address might not be telling the truth. An attacker can disable one of the
machines and impersonate that machine using IP address impersonation [26]. Therefore, the
authentication only based on address is unreliable. The open nature of the Internet also makes
most of attacks possible, If packets are sent unencrypted between systems, then an adversary
somewhere along the path can sniff the network and read information contained in the packets

fairly easily.



To improve the security of IP packages in a network, the IPSEC (IP Security) standard was
introduced. IPSEC provides two alternatives called Authentication Header (AH) and
Encapsulation Security Payload (ESP). AH is sufficient to prevent impersonation of IP headers
and IP address. ESP can provide privacy, integrity, or both. Naturally, IPSEC is slower than
unprotected IP traffic because of the additional path lengths introduced for cryptographic

computations.
Improvement on Access Control

Network communications also require some forms of access control. It could be classified
into two levels. One is application level access control, and the other is network level access
control, or packet filter access control {26]. Application access control is application-oriented,
and can be configured independently. Packet filter access control works at a level of the network
stack and control the traffic based on the permission rules. Thus, packet filter operates at a lower
network layer than the application. The biggest drawback of packet filter is that it can operate
only on the fields that appear in the network packets. If access control decisions require
higher-level support, these decisions are not available until they reach the receiving destination.

Firewalls are the most popular and prevalent commercial solutions protecting the network.
Based on the configuration, packets meeting the criterion are forwarded. Those that fail the check
are dropped. Moreover, almost every firewall today is equipped wigh a mechanism to provide

secure [P traffic based on the IPSEC standard.

10



Improvement on Encryption Techniques

Netscape® introduced SSL (Secured Sockets Layer) protocol for transmitting private
documents via the Internet. SSL works by using a public key for encryption and a private key for
decryption. Because SSL encryption depends heavily on keys, people normally measure the
effectiveness or strength of SSL encryption in terms of key length. Now, 128-bit encryption is
recognized by the most makers of Web browser.

Based on the past history of improvements in computer performance, security experts
expect that the Brute-Force attack could not crack the 128-bit encryption for at least the next ten

years. However, the potential threat is still there.

2.2.2 Firewall Is Not Enough

Now we have robust enough firewall. It provides better access control and supports more
reliable IPSEC standard. However, the network is still unsecured. For example, in the year 2000
the so-called Distributed Denial of Service (DDoS) attacks blocked several major commercial
sites, including Yahoo and CNN, although they were protected by firewalls. The inherent
limitations that firewalls have make them insufficient for intrusion detection and prevention.

These weaknesses can be summarized as follows:

11



Firewalls can be compromised or bypassed, and do little to protect against attacks initiated
from insider. Moreover, a hacker can easily exploit a bug that already exists in the firewall
implementation.

Many inside people use modems to connect to the outside world from the secure network,
and unwanted traffic can enter through the modem connections. Thus, firewalls alone are
not enough to fulfill security needs.

Traditional firewalls are designed for improving security of network layer instead of
application layer. They allow certain packets to pass through or else disable access for
pre-defined data flow path. However, many of the latest infiltrations of networks occur
through the firewall using the ports that the firewall allows by design or default.

With the invention of SSL, intruders can pass right through network firewalls and go
directly to the application, because they are using encrypted connections, Even deep-packet
inspection is powerless to detect simple attacks delivered in this way.

Human intervention is required to decide how to control traffic and configure the firewall
to accept or deny packets. A single security policy established for the wrong reasons can
lead to a system being vulnerable to outside attackers. Therefore, configuration of network
firewalls is a complex and a sensitive task to Web administrator.

Firewalls do not know what happens once the traffic gets through the firewall.

12




2.2.3 Security Vulnerabilities of Web Application

Today, there are various security vulnerabilities in Web applications, such as HTTP header,
HTML, scripts, and cookies. Web-based attacks utilize web sites to send spam email that blocks
inboxes, and mines confidential information. According to recent reports by Gartner [20], over
70 percent of Web attacks occur at the application-layer. Those vulnerabilities in Web
applications become the primary attack targets in the network. The vulnerabilities related to the
Web application can be categorized as follows:

. IT Infrastructure Vulnerabilities:

Exploiting IT infrastructure vulnerabilities is probably the easiest way to attack an

application. Thousands of known vulnerabilities exist in the basic components that form

integrated Internet environments. Attackers, keeping themselves up to date with all
published vulnerabilities, often find it is extremely easy to take advantage of them. The
best well-known flaw of Web application server was in the IIS 4.0/5.0 developed by

Microsoft®.

13




Saftware Vulnerabilities:

Designing and maintaining a secure web application are tedious tasks that require constant
quality assurance and security analysis. Application developers often deploy third-party
software and customize it to their specific needs. As a result, “holes” in the deployed
software and errors created during the customization process bring serious vulnerabilities
in the final application production, due to lacking of security knowledge and experience.
Additionally, insecure application development patterns and practices used by developers
might cause inevitable mistakes. For instance, any user can manually change hidden
parameters in HTML documents and then submit the modified values to the remote server.
Database Vulnerabilities:

The database is not only the core components of most applications but also the most
attractive target of attacks. Various vulnerabilities in database have been published in these
years. Other than those well-known problems, SQL injection or other database-related
attacks could easily delete, modify, or retrieve database records, where Web applications

have access to a database directly.

14




15

2.3 Overview of Intrusion Detection System

From the above analysis, we have to admit that we need other instrument to guarantee the
security of IT environment. So, the next question is which one we will choose to protect the Web
application, Intrusion Detection System, Intrusion Prevention System, or both? Before we jump

to the discussion, the terminologies related with Intrusion Detection System have to be reviewed.

2.3.1 Terminology

Intrusion

An intrusion can be defined as [Heady: 21]: “Aun intrusion is any set of actions that attempt

to compromise the integrity, confidentiality, or availability of a resource. ”

It can also be defined as a violation of security policy [12]. In this regard, the definition of
an intrusion may be different for various organizations according to their policies. For example, a
login at midnight is considered as a kind of intrusion in many companies, regardless of whether

the connection is from inside or outside the physical perimeters of the organization.

Intrusion Detection System
Intrusion detection is the process of identifying and responding to malicious activities

targeted at computing and networking resources.




16

An Intrusion Detection System, or IDS for short, helps computer systems deal with or
prepare for attacks by analyzing gathered information of security problems. An Intrusion
Detection System usually includes three components: data collector, data analyzer and responder.

A data collector captures security-related data such as system logs, network packets, audit
data, etc. A data analyzer examines if violation of security policy or exploitation occurs. Upon
detecting such exploitation, the responder component triggers an alarm, takes appropriate actions,
and saves the evidence of the intrusion for further analysis.

In short, Intrusion Detection System cannot prevent the malicious attacks, but it can help
administrator detect intruders when they enter Web application. Thus, IDS can help stop hackers

before they get too far.

2.3.2 IDS or IPS

Now let us face the debate on Intrusion Detection System sparked by the assessment of
Gartner [20]. The report declared that intrusion detection systemns would be dead and predicted
the market for such products would be gone by 2005. Moreover, the report also announced that
Intrusion Prevention System (IPS) is the answer to most security issues.

Intrusion Prevention System, or IPS for short, is an active intrusion prevention system. It
can detect malicious information within normal network traffic and block the offending traffic

automatically before it does any damage rather than simply raise an alert.




Thus, the biggest difference between passive IDS and IPS is that once malicious activity is
detected, the IPS has the ability to take active defensive actions. However, we do not think IPS
will take over passive IDS, because the following reasons:

1. It is really difficult to locate the position of passive IDS in the network. But IPS, just like
firewalls, is relatively easy to find.

2. Suppose we need more detailed network activities to do correlation. With an IPS we have
to consider thoroughly, because performance can be an issue if we want to get a huge
amount of these information. If we choose passive IDS, we have less risk of performance
impact.

3.  Since an IPS combines the blocking capabilities of a firewall with the deep-packet
inspection of IDS together, the configuration of an IPS is very difficult. But IDS is more
flexible to make changes fast.

Moreover, IPS does not have any advantage over active IDS. Today, many of the IDS
vendors are adding active response capabilities to their products. The concept behind this strategy
is that the IDS can detect an attacker and then move to stop his attack. An active IDS responds to
the suspicious activity by logging off an intruder or by reprogramming the firewall to block
network traffic from the suspected malicious source [9]. In the other word, both active IDS and

IPS have the capability to prevent the attack from being successful.

17




18

Additjonally, a lot of people support the pbint that there is no conflict between IDS and
IPS. Use an IPS to prevent what can reliably be prevented, use an IDS to detect the more difficult
to prevent attacks and collect additional forensic data.

According to the comment stated above, we do not believe IPS is the way of the future.
And we do not think IPS will take over IDS, as 'IPS does not bring more extra functionality.
Actually, both IDS and IPS share common problems, i.. signature update. However, it is

important to remember that no single security device could stop all attacks all the time.

2.4 Classification of IDS

At present, from the techniques that a system uses, intrusion detection systems can be
categorized into two broad classes: anomaly detection system and misuse detection system [10]
[15]. From the domain that a system protects, intrusion detection systems can also be categorized
into three classes: host-based Intrusion Detection System, network-based Intrusion Detection

System and Hybrid Intrusion Detection System.

2.4.1 Host-based IDS, Network-based IDS and Hybrid IDS

Host-based IDS




19

Host-based IDS employs the host’s audit trail (such as audit logs, application log, system
information) as the main source of input for detecting intrusions. HIDS can be installed on many
different types of devices, such as servers, workstations and notebook computers. Although the
HIDS is limited in scope and cannot detect simultaneous attacks against multiple hosts, it can be
powerful tool for analyzing a possible attack by recording what the attacker did. A HIDS usually

provides much more detailed and relevant information than a NIDS.
Network-based IDS

The traditional HIDS was designed to detect intrusions in a single host. As the focus of
computing shifted from mainframe environments to distributed networks of servers, it has
considered intrusion not only of single hosts but of networks as well. NIDS builds its detection
mechanisms to monitor network traffic. It can be installed on active network elements, for
example on routers. NIDS utilizes the source and destination IP address to deduce
security-related parameters, like the number of total connection arrivals in a certain period of
time, the number of packets to/from a certain machine, or the arrival time between packets. These

parameters can be used to detect port scans or DoS (Denial of Service) attempts.
Hybrid IDS

Hybrid IDS is a combination of Network-based IDS and Host-based IDS. Thus, Hybrid
IDS would monitor network traffic, and monitor the host sources that a HIDS would. For

example, Prelude [18] is a typical open source hybrid IDS framework.




20

2.4.2 Misuse Intrusion

Misuse Detection [22] (or Signature Detection) attempts to encode knowledge about

attacks as well-defined patterns and monitors for the occurrence of these patterns. Signatures are

patterns for detecting known attacks or misuse symptoms. “Individual patterns can be composed

of single events, sequences of events, thresholds of events, or_general regular expressions in

which AND and OR operators are allowed [26].” They may be simple as in the case of character

string matching a single term or command, or complex as in the case of state transition written as
a formal mathematical expression. One technique used to satisfy this may be having rules that
describe the system state changes, i.e. STAT [13].

The rule-based system or signature-based system monitors the system resources and logs to
match attack signature. When an attack is detected, an alarm is triggered. For example, an
attempt to exploit a XSS (Cross-site Scripting) intrusion can be caught by examining if there is
JavaScript or HTML in the parameter field. This can be accomplished using a pattern matching
approach. Therefore, the accuracy of the misuse intrusion detection is considered good, but its
completeness requires that the attack knowledge b,ase should be updated regularly. In the other
word, misuse intrusion detection usually has low false positive, but high false negative. At recent,
SNORT [19] becomes the most popular open-source, signature-based network intrusion detection

system.



21

In the Section 5.1, we discuss a Pattern Matching Engine. It follows the nature of misuse
detection technique, and realizes a pattern-matching algorithm.
Advantages of Misuse Detection
. Misuse detection concerns only the system data items related to pre-defined pattern, does
not need to exhaustively analyze all system events, thereby reducing system overhead.
Meanwhile, administrator can choose customized patterns for different Web applications.
] Misuse detection matches system events with clearly defined patterns of vulnerabilities and

exploitations. This technique is very efficient and effective to detect well-known attacks.
Disadvantages of Misuse Detection

. It is hard to collect all the required information for detecting all known attack, and keep it
abreast with new vulnerabilities. The construction of signature database is a
time-consuming process and prone to mistake. And it is the most critical drawback of
misuse intrusion detection.

* The misuse detection approach can be highly accurate, but it cannot detect intrusions that
fall outside its predefined list of rules describing known vulnerabilities and exploitations.

. A complicated intrusion scenario is very difficult to abstract for generating accurate
intrusion signatures. In addition, it is extremely difficult, even impossible to construct
intrusion signatures to accommodate all variants of intrusion scenarios. This is the reason

that causes the misuse detection generates low false positive, but high false negative.




22

2.4.3 Anomaly Detection

Anomaly Intrusion Detection is a prevalent approach, which is based on the detection of
the anomalous behaviour or the abnormal use of computer resource [2].

A profile that describes the normality of the monitored system and/or users is always
required for anomaly detection. Anomaly detection systems, for example, IDES [30], flag
observed activities that deviate significantly from the established normal profiles as anomalies or
possible intrusions.

For various kinds of subjects in an anomaly detection system, such as sessions, users,
groups, programs and network traffics, a number of measures and attributes are used to describe
the normality. Depending on the source of these input data, anomaly detection is divided into
host-based anomaly detection and network-based anomaly detection [4].

Network-based anomaly detection focuses on the packets that are sent over the network
and monitors the flow of packets. Source and destination IP addresses, connection start and end

time are parameters used to summary network traffics.



23

Like host-based IDS, host-based anomaly detection concentrates on activities at hosts.
Host-based anomaly detection works by establishing “profiles” of typical network activities, such
as login time, number of failure logins, CPU usage, etc. An anomaly detection system uses these
profiles to monitor current user’s activity and to compare them to detect anomalous behaviour.
Whenever a user’s current activity deviates from profile significantly, the activity is considered
as a possible or potential attack.

In the Section 5.2, we propose a Behaviour Modeling Engine. It is an implementation of a
host-based anomaly detection system. A behaviour-modeling algorithm, which extends anomaly

detection technique, is developed in the engine.
Advantages of Anomaly Detection

. The most significant advantage of anomaly intrusion approach is the ability to detect novel
attacks against variants of known attacks, and deviations from normal usage of programs,
regardless of whether the source is a privileged user or an unauthorized external user.

. The anomaly detection technique has the capability to determine the legitimate profile
according to user activities or program activities without any intervention of human

security expert.



Disadvantage of Anomaly Detection

The high false alarm rate is generally cited as the main drawback of the statistical anomaly
detection. The reason for this is that the entire scope of normal behaviour of a computer
system or user may not be covered during the learning period. Also the constantly
behaviour changes make it difficult to accurately grasp the condition of a normal
environment in real time,

To the statistical anomaly detection, it is difficult to determine a threshold, which is a value
to evaluate if the activity should be classified as an intrusion or a normal action. If the
threshold is too low, it may generate many false positive alarms; on the contrary, if the
threshold is too high, the number of false negative raise. It is relatively easy for an intruder
to trick the statistical analysis unit into accepting malicious attack as normal activity by
gradually varying his actions over time. Consequently, setting thresholds for indicating
intrusive events requires experience.

The anomaly intrusion detection method only identifies activities as anomalies or
determines the current system is in anomalous status; it cannot distinctly indicate what
happens to the system or what the hacker has done to the system. The shortcoming results

in a high false positive rate.

24




25
:

Since every intrusion detection techniquel has advantages and disadvantages, Intrusion
Detection System proposed in the thesis adopts a hybrid approach to detect attacks or
exploitations. A Pattern Matching Engine can drop a request if it matches well-known malicious
attack pattern, and a Behaviour Modeling Engine can drop the input if it falls outside the normal

profile.




CHAPTER 3

INTRUSION DETECTION FRAMEWORK

In this chapter, the proposed Intrusion Detection Framework is discussed, followed by a
short description of overall development approach. Finally, relationships among components in
the proposed Intrusion Detection Framework are analyzed. Each component in this framework

will be described with more details in the following chapters.

3.1 Description

The proposed Intrusion Detection Framework in this project is in compliance with the
Common Intrusion Detection Framework issued by CIDF [5] completely.
. Filter-based Web Agent is used to collect raw HTTP request (note that only request
information is collected and analyzed).
. The intrusion detection approaches including Pattern Matching and Behavior Modeling are

designed and implemented in Analysis Engine.

26



An isolated Response Module is developed to carry out responding actions.

A Database is involved to provide persistence to the entire system.

27

The research on the Intrusion Detection Framework is completed in J2SE 1.5.0

environment. Some modern development tools and technologies, like Tomcat, Spring-framework

and Hibernate are employed to meet the requirements of design and programming.

3.2 Relationships of IDS Components

The framework of Intrusion Detection System can be illustrated with the following figure:

: : Web Agent

Gets Http Request

.....
enn®
v
----

Gets Action Command

| Ag Response Madule

»
rerd
------
----
P
,,,,,

WebIDS
g Analysis Engine
o ‘7!————_\_—-
# S ~
o S
o ~, Gets Analysis RulefProfile
.

-
-, [

¢ S

-
Y

Figure 3-1 Relationships of Intrusion Detection Framework Components




28

Web Agent

This component could be integrated with target Web application as a pluggable module. It
has the following features:
& Gathers security-related raw HTTP traffic. Stores the collected data in the XML format,
. Sends the collected data in XML to Analysis Engine.
. Executes responding action (drop, pass, etc.) according to instruction received from
Response Module.
Analysis Engine
Once Analysis Engine receives the collected request from Web Agent, it analyzes if there
is malicious content in the request or not. Since some analysis patterns or profiles might be stored
in the Database, Analysis Engine retrieves them from the Database during the period of

initialization or at runtime.

Response Module

According to the analysis result concluded in the Analysis Engine, Response Module
carries out pre-defined response actions. If an attack event is found, the collected data with
malicious attacks will be inserted into the Database as intrusion evidence for further analysis and
reporting. And an alarm must be raised to draw administration’s attention. Moreover, instruction

to drop the malicious request must be return to Web Agent.




29

Database

Database component provides persistent .storage for entire Web Intrusion Detection
Framework, As the illustration in Figure 3-1, Analysis Engine retrieves configuration and profile
information from database for intrusion analysis, and Response Module saves malicious request

to database as security log.




30

CHAPTER 4

WEB AGENT

In this chapter, implementation details of Web Agent are discussed. Since Web Agent is
developed with Servlet Filter technology in J2EE environment, some background related with
filter technology are mentioned briefly. Second, a draft on a centralized character filtering
technology is introduced, with the consideration of that attacks could bypass intrusion detection
system by utilizing various character encoding. Finally, a method to normalize HTTP request data

into an analyzable format is revealed.

4.1 Description

Web Agent is a data collector. All HTTP data to be analyzed in the Analysis Engine is
captured by Web Agent. Thus, Web Agent is designed with following principles:
G Gathers security-related data.

. Pravides a centralized character set filter for all input stream.



31

. Stores the normalized HTTP request to a file in XML format.

. Sends the XML file to Analysis Engine of WebIDS.

. Gets instruction from Response Module in WebIDS and executes correspondent action (i.e.
drop the user request or deliver the request).

Web Agent gathers security-related data, including network packets data and
system-related data. Network packets are the data transmitted through the network, which are
then collected by the network traffic monitor or sniffer. Generally speaking, network packets data
involves such information like source and destination address, source and destination application
port numbers, types of packet, options of the protocols, and the content of the packets. The
network packets data play an important role in Intrusion Detection Systems, since they provide
detailed and valuable information of network activities.

In the Intrusion Detection Framework covered in the thesis, not only the client request is

|
normalized, but also some system-related data (i.e. applicationID and agentID) are included in
the XML files for distributed deployment scenario. Association relationship between Web
application and Web Agent is very important. For example, one Web Agent could provide data
collection service for multiple applications deployed in the same web server. This information
should be associated accurately when administrator deploys Intrusion Detection System to

specific application, so that the Analysis Engine could differentiate web applications being

monitored.



32

4.2 Considerations of Web Agent

A number of design requirements for Web Agent have been taken into account in advance.
They are summarized as following three aspects:

Modularization:

The primary task of Web Agent is to gather network data, send the collected information to
WebIDS where further intrusion analysis would be carried out. And it must execute some actions
(i.e. drop or pass) according to the action instruction received from WebIDS. From the view of
functionality, the job of Web Agent is associated with Web application closely. From the view of
modularization, Web Agent should be an isolated component, which can be embedded in the

Web application easily.
Normalization:

The volume of network traffic is extremely huge, and it includes a lot of irrelevant
information. Some measures must be taken to reduce the size of these data and eliminate
non-security-related information before Web Agent sends them to Analysis Engine. With these
considerations in mind, a centralized input filter routine is adopted. A suitable canonical form
must be chosen and all user requests should be standardized into that form before any intrusion
analysis is performed. Moreover, in order to r'neet the requirement of further information

processing, it is necessary to normalize the information into a common format.



33

Efficiency:
In order to meet the requirements of network traffic capturing and real-time detection, Web
Agent must collect network packets efficiently with the least system overhead and time

consuming.

4.3 Filter-based Web Agent |

In this project, a filter-based Web Agent is employed to capture HTTP request and receive

response from WebIDS.

4.3.1 Feasibility Study

Serlvet Filter
Servlet Filter is a useful and important technique, which is introduced since Servlet 2.3,
and it can be defined as follow:

“A filter is an object that can transform the header and content (or both) of g request or

response. [27] 1t is a web component that intercepts requests and responses, or manipulates the

data that is being exchanged between client and server. “4s a result, the critical difference that

makes filters different from other web components in that filters usually do not themselves create

a response. [27]” It provides a modular, object-orientated mechanism for encapsulating common

tasks into pluggable components that are declared via a configuration file and processed

dynamically [14].



34

Advantages of Filter-based Web Agent

According to the features stated above, we draw the conclusion that Servlet filter is
sufficient to build an efficient Web Agent. The HTTP request can be captured when it pass
through the filter. After intrusion detection analysis being performed on the request data, the
reconstructed response is returned to the user. The filter-based Web Agent has several important
advantages:

. Filter-based Web Agent is designed to be a pluggable component within web application. It
allows the seamless integration of Web Agent with the web application. By encapsulating
application-processing logic into a single component, filter-based Web Agent defines a
modular component that can be easily added to and removed from the target application
without any code modification.

*  Filter-based Web Agent is a lightweight solution. It can be invoked by the Servlet container
to perform data gathering functionality without any impact to other Web components.

. By means of the modular design of a filter’s implementation class and flexible filter
mapping configuration, a filter can be mapped to any number of web resources in a web
application. Therefore, filter-based Web Agent provides customized data gathering service
for different web pages.

. Filter-based Web Agent is platform-independent as long as a Servlet container is available.

This feature allows it to be easily deployed in any compliant J2EE environment.




35

4.3.2 The Implementation

The following class diagram illustrates the relationships among classes contained in the
Web Agent component. Where, the job that normalization package defines is to normalize HTTP
request. We will discuss it in the Section 4.5. Moreover, the detail about the centralized input

filter, Decoder, is going to be reviewed in the next section,

Filter

==

Gets XML Document normalization

<<realize>>
1

HttpInfoFilter N == v 7

-filterConfig: FilterConfig

Check Input

L — ==

+inlt(FilterConfig: FilterConfig): void

+doFiker{raq: ServistRequast, res: ServiatResponse, chain; FilkerChain); void
+toString(): String

+destory(): void

-transferXMLDoc{session; HetpSession, req: HitpServistRequest): String +d messaqe: String): Strin

Decoder

Gets Http Connectiors

-

HttpConnectionUtil

+ i jon(uri: String): URLC ol

+recelveMassaga(conn: HEtpURLConnection)
g .

Hla| ion, messaqe: Strina)i v

Figure 4-1 WebAgent Class Diagram
The implementation of filter-based Web Agent focuses on a Sevlet Filter component,
HttpInfoFilter. 1t uses the functionality offered by other objects to perform data collection and

normalization task. The programming details are shown in the following figure, Figure 4-2.




36

1. // Web Agent sends XML document to and receives message from WebID§
2. String receivedMsg = this.transferXMLDoc(session, request);

3 i

4. [/ Web Agent's request does not pass analysis of WebIDS

5. if (IreceivedMsg.equalsignoreCase("OK"))

6. {

o "

8. /I Create a writer from an output stream that writes to this response.

9. PrintWriter out =

10. new PrintWriter(new BufferedOutputStream(response.getOutputStream()));
11, // Output error comment

12. out.printin(receivedMsg);

13; out.flush(};

14. out.close();

15. }

16. else // Otherwise

7 4

18.

19. chain.doFilter(request, response);

20. }

Figure 4-2 Programming Details of doFilter()

In line 2, a privaté method rransferXMLDoc is invoked. This method requests the service
provided by normalization package to get standardized XML document. Then it sends the data to
WebIDS  with the support of HTTP connection provider, HttpConnectionUtil. Also
transferXMLDoc is designed to receive the action instruction from WebIDS when intrusion
analysis decision has been made. The left part of doFilter (lines 4-20) executes the received
action intrusion. If no intrusion is found or the received instruction is “OK”, client will receive

his/her requested page. Otherwise, client might receive a customized error page.




37

4.4 Centralized Character Filter

The responsibility of a centralized character filter is to process system-sensitive and
security-sensitive characters. The activities that centralized character filter performs include:
. Canonicalize the sensitive character from one form to another.
. Filter out illegal character sequences.

Moreover, it has to be designed as a centralized component. In the other word, all forms of
HTTP request must be processed by this filter. And only the HTTP request after being filtered by
this character filter can be utilized as input stream for further processing. So when a HTTP

request is captured, it will be canonicalized once and then utilized by other WebIDS components,

4.4.1 Why a Centralized Character Filter Is Needed

The reasons that we need centralized character filter include the following two points;

" A character sequence might have specific meaning at different processing points. Since we
store HTTP request in the XML form;lt, some characters (i.e. less-than sign “<”) are
sensitive characters we have to consider.

. Some attacks are based on the variant of character encoding. Recognition of the malformed
character format is the most efficient method against these attacks. Moreover, generation of

attack pattern could be much easier if the captured HTTP request could be canonicalized

into a uniform form.




38

Character Encoding and UTF-8

In order to use a standard and canonical character set to represent all available characters,
people perceive the concept of character encoding. Now there are two popular
character-encoding standards, the Unicode Standard [31] and the International standard ISO
10646 [32].

The Unicode Standard defines three encoding forms that allow the same data to be
transmitted in a byte, word or double word oriented format (i.e. in 8, 16 or 32-bits per code unit).
Where, UTF-8 is popular for HTML and becoming a dominant method for exchanging
international text information through network.

All three encoding forms that the Unicode Standard defines can encode the same common
character collection and can be transformed into one another efficiently without loss of data.
However, the advantage of compatibility also makes the UTF-8 be an exploitable security flaw.

The following cases demonstrate how hackers initiate attacks aiming at UTF-8 flaws.

Case Study

Take Directory Traversal as an example, a typical input exploitation, for example. The “../
character sequence is not guaranteed to conquer, especially since most security checks get along

just fine with raw character without encoding.




39

UCS Code (Hex) Binary UTF-8 Format

00-7F 0xxxXXXX

80-7FF 110xxxxx 10xxxxXX

800-FFFF 1110x%xxx 10xxxxxx 10xxxx%%
1000-1FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxXX%X

Table 4-1 Legal UTF-8 Sequences

Overlong UTF-8

Firstly, let us consider the various representations of “.”(ASCII 2E). According to the
specification listed in the Table 4-1, suppose we use the second UTF-8 range (2 bytes) to
represent it, we get an overlong representation, %C0%AE. Likewise, there are more overlong
representations with the other UTF-§ encoding: %E0%80%AE, and %F0%80%80%AE. For the
character “/” (ASCII 2F), we can also deduce its deformed representations: %CO0%AF,
%E0%80%AF, %F0%80%80%AF. Thus, for the character sequence “../”, we might have 4¥4*4
= 64 different choices to present it.

Illegal UTF-8

We even can have more than that. Consider the representation %C0%AE of character “.”.
Just like UTF-§ encoding requires, the second octet has “10” as its two most significant bits.
Now, it is possible to infer 3 variants for it, by enumerating the rest of the alternative 2 bit
combinations (“00”, “01” and “11”). Since some UTF-8 parsers simply check the least significant
6 bits (they ignore the most significant 2 bits), thgy would think these variants as identical to the
original symbol. It should be kept in mind that these character sequences are illegal, since they do

not comply with the legitimate UTF-8 formats listed in the Table 4-1.




ol

Now, we have several diverse representatiops of one character sequence “../”. Suppose, one
of the security checks searches for “../”, and it is carried out before character filter takes place, it
is possible to exploit the Directory Traversal flaw with the overlong UTF-8 encoding. The reason
why the attack can be successful is that it is impossible for security check to recognize all variant
formats. It is the reason that drives us to introduce‘ the centralized character filter, Thus, a suitable
canonical form should be chosen and all HTTP requests must canonicalized into that form before

any security checks are performed.

4.4.2 Countermeasure

In the implementation of centralized character filter, we use following methods to handle
system-sensitive or security-sensitive characters.

In the Web Agent, the HTTP request after normalization is kept in the XML format, so we
must pay attention to XML-sensitive characters. Because most character formats have an escape
sequence to handle this case, we use the corresponding escape value to replace the sensitive
character, As for the character encoding related to the problems, two cases have to be considered:
. If the UTF-8 encoding is illegal, filter out these character sequences.

» If the UTF-8 encoding is valid but overlong, a canonical UTF-8 form (2 bytes) is adopted
as standard form. Any overlong character sequence must be converted into 2-byte-long

format.

40




41

4.5 Normalization

After HTTP request passes through centralized character filter, the filtered and canonical
data is available. Before Web Agent sends the data to WebIDS, it must convert the filtered
information into a specific format for the subsequent processing,.

XML (Extensible Markup Language) is considered as a desired form of the data. The
reasons for adopting XML can be summarized as follows:

. Unlike HTML, XML tags identify the data itself rather than specify how to display it. It's
common to use XML as a medium for data exchange on the web.
. J2EE platform provides various methods for processing XML, such as SAX and DOM, etc.

Moreover, XML can be easily deployed in any J2EE-compliant environment.

Therefore, we use SAX parser and XSLT to convert HTTP request to XML format. Figure

4-3 illustrates the DTD (Document Type Definition) of XML file after normalization.

4,6 Conclusion

In this chapter, details about the design of the Web Agent are discussed. The Web Agent
collects and normalizes security-related data. Then it sends the normalized data to WebIDS for
further security analysis. It also receives instruction from WebIDS. The received instruction
message determines the client request is a normal request or an abnormal intrusion and what

actions (i.e. drop or pass) should be taken.



42

<?xml version="1.0" encoeding="UTF-8"?>
<IELEMENT HttpData (App, Agent, Client, Header, Session, Cookie?, Request?)>
<|ATTLIST HittpData rr CDATA #REQUIRED>

<!ELEMENT App (AppName, ApplP, AppPort, AppTimestamp)>
<IELEMENT AppName (#PCDATA)>

<!ELEMENT ApplP (#PCDATA)>

<|ELEMENT AppPort (#PCDATA)>

<IELEMENT AppTimestamp (#{PCDATA)>

<!ELEMENT Agent (AgentName, AgentID, ApplicationID)>
<IELEMENT AgentName (#PCDATA)>

<IELEMENT AgentID (#PCDATA)>

<!ELEMENT ApplicationID (##CDATA)>

<IELEMENT Client (ClientName, ClientIP, ClientPort)>
<!ELEMENT ClientName (#PCDATA)>

<IELEMENT ClientIP (#PCDATA)>

<!ELEMENT ClientPort (#PCDATA)>

<!ELEMENT Header (HeaderParam-+)>
<IELEMENT HeaderParam (Name, Value)>

<IELEMENT Session (SessionID, Created, LastAccessed)>
<|ELEMENT SessionlD (#PCDATA)>

<!IELEMENT Created (${PCDATA)>

<|ELEMENT LastAccessed (#PCDATA)>

<|ELEMENT Cookie (CookieParam+)>
<IELEMENT CookieParam (Name, Value)>

<!ELEMENT Request (RequestParam+)>
<IELEMENT RequestParam (Name, Value)>

<!ELEMENT Name (4PCDATA)>
<IELEMENT Value (YPCDATA)>

Figure 4-3 DTD for HTTP Request




43

CHAPTER 5

ANALYSIS ENGINE

In this chapter, details about Analysis Engine are revealed. In this project, two analysis
algorithms are employed: one is Pattern Matching, which is based on Misuse Detection

Algorithm; the other is Behaviour Modeling, which is based on Anomaly Detection.

5.1 Description

Analysis Engine is the most important part of Intrusion Detection Framework for Web
application, which implements of two algorithms: Pattern Matching Engine and Behavior
Modeling Engine. Some considerations have to be taken into account when design Analysis
Engine, and they can be summarized as follows:

. Initialization of analysis-related data, which contains configuration files.
» Pattern Matching Engine and Behaviour Modeling Engine perform intrusion analysis on
the data captured by Web Agent.

. Trigger Response Module to carry out specific action once the analysis result is concluded.



5.2 Pattern Matching Engine

Pattern Matching Engine makes use of an extension of Misuse Detection technique [22],
Pattern Matching algorithm. It attempts to encode knowledge about well-known attacks as
patterns and monitors for the occurrence by matching the captured data with pre-defined patterns.

If current HTTP request contains any intrusion pattern, an intrusion is identified.
Design of Pattern Matching Engine

. Three configuration files in the XML format, including rule-mapping file, rule definition
files and attack target file must be initialized before pattern-matching analysis starts.

. According to the declarations in the target file, classify HTTP request sent from Web
Agent into several parts.

§ With the combination of rule-mapping file, rule definition files and target file,
pattern-matching analysis can be executed in a loop.

. Whenever an analysis result is concluded, Pattern Matching Engine triggers Response
Module to execute actions.

u The loop of rule matching must be terminated if an intrusion is detected or the current

HTTP request completes the pattern-matching analysis.

44



5.2.1 File Description

Parameters of pattern-matching analysis have to be initialized in advance, before intrusion
detection starts. Three configuration files are defined in the Pattern Matching Engine; they are
rule definition files, rule-mapping file and target file, respectively. The data in these three files
has to be read and mapped to corresponding Java objects, so future pattern-matching analysis can

retrieve these required data easily and conveniently from system memory.
Rule Files

There are two types of rules defined in the Pattern Matching Engine. Where, system-rule
file specifies the patterns extracted from well-known attacks; and user-rule file keeps custom

rules that a Web application administrator has to declare. Table 5-1 illustrates the structure of a

45

rule. ‘
Item Name Description
ID Rule ID
RuleName Name of a rule
Version Version information of a rule
Target The HTTP request that a rule matches against
Pattern Pre-defined pattern extracted from well-known attacks
CaseSensitive A rule is case-sensitive or not
Length Length of parameter defined in the Target item
ReferenceNo Reference information of a rule

Table 5-1 Structure of a Rule




Rule-Mapping File

A configuration file, rule-mapping file is defined in the Pattern Matching Engine. The

primary function of this file is to build mapping relationship among application, agent, rule and

related action data.

Since Web Agent might associate with more than one Web applications, the mapping
relationship among them must be clearly stated. For a particular combination of Web application
and Web Agent, response actions to take should be determined. Therefore, rule-mapping file is a

map to demonstrate relationships among rules, actions, Web applications and Web Agents. The

following table explains the structure of a rule mapping.

46

Item Name Description
ApplicationID ID of Application
AgentlD ID of Web Agent
RuleID IDofRule
name Two choices for this attribute of forward element:
match: HTTP request fits the rule determined by Rule/D
unmatch: HTTP request does not fit the rule determined by
forward
RuleID
actionID ID of action to be executed
actionParam | The customized action parameter

Table 56-2 Structure of a Rule Mapping




47

Target File

The information defined in the target file represents the part of the HTTP request data that
may be used by attacker to deliver malicious content. The term “target” is used to represent
various sections of HTTP protocol. Six “targets” are defined in the “target” file; they are Header,
URI (Uniform Resource Identifier), Session, Cookie, Post parameters and Get parameters,
respectively. The “target” defined in the rule files must be one of the six “targets”. Thus, each
incoming HTTP request must be broken into these six parts defined in the target file. The

structure of a target and can be illustrated by the following table.

Item Name Description

TargetName Name of T:irget

Targetltem A target might contain several distinct items, i.e. HTTP Header.
So this field lists possible target items that a target includes.

Table 5-3 Structure of a Target
The Relationship of Three Files
Figure 5-4 illustrates the relationship of the three files, rule definition file, target file and
rule-mapping file.
. A RulelD is specified in the file, rule-mapping.
. According to the reference to RulelD, the specific rule can be retrieved from the rule

definition file.



48

Integrate the pattern (regular expression), case-sensitive and length arguments together, an

attack pattern is generated.

The combination of “target” reference in the rule definition file and target definition in the

target file determine which section of HTTP protocol must be examined.

The corresponding action data are retrieved from the rule-mapping file, once the analysis

result is concluded.

AgentID
RuleID
forward

ApplicationlD

7

ID
e

uleName
Version

/

Target

Pattern

CaseSensitive

Length
ReferenceNo

Action-list to
Response Module

Rule-Mapping File

Rule Definition File

v
TargetName Relevant HTTP Request
Targetltem
Do Matching
Target File

Figure 5-1 Relationship of Tables in Pattern Matching Engine




49

5.2.2 How to Perform Rule Matching

Basic Algorithm

Rule matching is the most critical part in the Pattern Matching Engine. For each specific

Web application and Web Agent, several different RuleMappings might be defined. The

RuleMapping traversal involves following steps:

L

If there are un-visited RuleMappings left or special flag (i.e. deny-flag, pass-flag) is not set,
the loop continues; otherwise it terminates.

Retrieve current RuleMapping from rule-mapping file, and the rule to be used can be
determined based on the conditions defined in the rule.

Once the rule is selected, “target’ of the HTTP request data is determined through the targer
element declared in the rule definition file and reference to the target file.

According to the “target” specified in the step 3, retrieve the corresponding HTTP section
from the HTTP request received from Web A;gent.

Match the rule against the part of HTTP request retrieved in the last step and conclude
rule-matching result.

Action data is determined based on the matching result and the action declaration in the

RuleMapping.




50

7. In terms of the action data concluded in the last step, special flag (i.e. deny-flag, pass-flag)
might be set.

8.  Deliver the action data and matching result to Response Module to invoke action.

9.  Gotostep 1 again until the loop terminates or special flag is set.

The following programming fragment illustrates how this works. In lines 4-5, if a special
flag is set true, terminates the rule-mapping loop. Current rule mapping is specified in the lines
8-9. Lines 10-11 select a rule used as attack pattern. Line 13 calls a private method,
dispatchTarget, to perform pattern matching for each specific “target”.

Lines 17-36 show how the private method, dispatchTarget, works for GET parameter in
HTTP request. The detailed GET parameter data is prepared in line 22. Lines 25-27, rule
matching between the specific rule and GET parameter is done, the corresponding analysis result
and error comment (it is an empty string, if no intrusion is found) are concluded. Lines 29-30, the
action data can be determined through the combination of rule mapping and matching result.
Based on the action data, special flag(s) might be set in the line 31. The Response Module is

triggered to carry out response actions in line 32.



51

S SR S R

S "W O, o B 1O ZIOR00 RO it L DY R e e O e il e [

while (ruleMappingContinued) // If ruleMapping continues
{

if (passFlag || denyFlag || redirectFlag) / If passFlag, denyFlag, or redirectFlag is set
break;

// Get current RuleMapping for Pattern Matching
ruleMapping =

currentRuleMapping.getCurrentRuleMapping(ruleConfigData, ruleMappingCount);
String ruleID = ruleMapping.getRuleID(); // Get current RulelD for Pattern Matching
rule = currentRule.getCurrentRule(ruleData, ruleID); // Current Rule for Pattern Matching
// Invoke various RuleMatcher to do Pattern Matching in terms of different target
this.dispatchTarget(rule.get Target(), rule, actionData);

private void dispatchTarget(String target, RuleObject rule, ActionSet actionData)

{

case REQGET: // Target is ReqGet |
{
Vector reqGet = currentTarget.getReqGet();
if (reqGet != null)
{
reqGetMatcher.doMatching(reqGet, rule, resultCache); / Do Pattern Matching
boolean matchingResult = reqGetMatcher.getMatchingResult();
String errorComment = reqGetMatchet.getErrorComment();

forwardA ctionVector=forwardAction.getForward Action Vector(matchingResult,
ruleMapping); // Get forward Actions and execute

setFlag(forwardA ctionVector);

actionManager.executeA ction(errorComment,forward Action Vector,actionData);

Figure 5-2 Programming Details on Rule Matching




Special Flags
In this Pattern Matching Engine, four special flags, bincluding deny-flag, pass-flag,
redirect-flag and skip-flag, are used to represent the current status of the processing. If one of the
four flags is set, the corresponding action will be executed. The detailed explanations can be
summarized as follows:
. Deny-flag: when this flag is set, it means that an intrusion is detected. Thus, the incoming
HTTP request should be denied.
. Pass-flag: when this flag is true, it indicates that current HTTP request does not trigger any
rule in the pattern-matching analysis.
. Redirect-flag: when this flag is true, it implies an error is found. However, client will
receive a redirected web page or an error page.
. Skip-flag: when this flag is true, it means a list of rules could be skipped over or ignored
without further analysis.
In the Response Module, four response actions corresponding to the four flags are defined.
They are deny-action, pass-action, redirect-action and skip-action, respectively. Once an action is
triggered, the corresponding flag is set. More information about the response action is discussed

in the Chapter 6 Response Module.

52




33

5.3 Behavior Modeling Engine
5.3.1 Behavior Modeling Algorithm

The algorithm of Behaviour Modeling is based on anomaly-based detection [2], which is
complementary to the misuse detection. In this case, detection is based on models of normal
behaviour of users and applications, called “profiles”. Any deviations from such established
profiles are interpreted as attacks or intrusions. The main advantage of Behaviour Modeling
algorithm is that it is able to identify previously unknown attacks. By defining an expected
normal state, any abnormal behaviour can be detected, once it cannot fit into the normal
behaviour profile.

The Behaviour Modeling algorithm follows a learning-based anomaly detection technique.
An example of this technique is described by Forrest [24]. During the training phase, the system
collects all distinct system call sequences of a certain specified length, During detection, all
actual system call sequences are compared to the set of legitimate ones concluded in the training
period, raising an alarm if no match is found.

Therefore, the algorithm works in two modes, learning mode and detection mode. It can be

illustrated by the following figure.




54

. Learning mode: during learning period, models (or profiles) that characterize the normal
behaviour of the Web application are built based on the network events observed.

’ Detection mode: when Behaviour Modeling Engine works in the detection mode, all
incoming requests are compared to the profiles that were established in the learning mode.
If an intrusion (the request is deviated from the normal profile) is detected, a related alert

can be raised.

N et e |
/ Behavior
( Modeling
\ Database
\ \

(Detection-mode) Behavior Analysis (Learning-mode) Build Profiles

e o - I

Abnormal Behavior (s Behav1or' Mode.llng
. Analysis Engine

b3 > Detect |
Deviation: it

Normal Behavior

Identify 174

Normal

.

Figure 5-3 Behavior Modeling Algorithm
The Behaviour Modeling algorithm conforms to the statistical approach of anomaly
detection. In the learning mode, behaviour profiles for subjects (i.e., Request parameter and URI)
are generated. A user definable threshold is used to evaluate if the current behaviour could be
stored to database as a legitimate profile. After the learning phase, the system switches to

detection mode in which the new traffic is compared to the profile for detection of anomalies.



55

However, since a system can evolve over time, it is also likely that new non-malicious
inputs will be seen [3] [25]. In the other word, the false positive rate will increase dramatically
after a long time running. It is simple to update the profile-base by the learning phase on the
changed traffic when the number of false positive alarms is greater than the pre-defined value.

In the Behaviour Modeling Engine, two Behaviour Modeling algorithms are extended to
detect security-related issues in the request URI, and request parameter. We will discuss these

two algorithms in the Section 5.3.4 and Section 5.3.5, respectively.
Design of Behavior Modeling Engine

. Like Pattern Matching Engine, Behavior Modeling Engine also has to initialize the
configuration files before analysis starts. These XML configuration files include
model-mapping file and the model definition file.

. Behavior Modeling Engine determines its working modes based on the configuration
provided by model-mapping file and model definition file.

¢ Suppose Behavior Modeling Engine is in learning mode, characterize normal behaviors of
events and establish profile.

. If Behavior Modeling Engine is in detection mode, match the incoming requests with
legitimate profile. Whenever an analysis result is concluded, Behavior Modeling Engine

fires Response Module to execute the corresponding actions.



56

5.3.2 File Description

Like Pattern Matching Engine, initialization should be done before behaviour-modeling

analysis starts. Two files are defined here, and they are the model definition file, and

model-mapping file.

Model File

In the Behaviour Modeling Engine, two modeling algorithms are developed to check

request parameter and request URI in the HTTP request. The two modeling algorithms

correspond to two “Model” elements declared in the model definition file. Thus, when we build

model for request parameter or request URI, the corresponding part of HTTP request will be

evaluated according to the definitions in the model definition file. The file structure is illustrated

by the following table:
Item Name Description
ModellD 1D of model
ModelName Name of Model
Threshold An integer value that determines if the activity should be classified as a

normal behavior. When the number of times that a behavior occurs is
greater than the defined threshold, we would treat it as normal behavior.

CurrentMode

Working state of current model; it could be learning or detection mode.

Table 5-4 Structure of a Model




57

Model-Mapping File

Just like the rule-mapping file employed in the Pattern Matching Engine, a model-mapping
file is defined in the Behavior Modeling Engine. The primary function of this file is to build
mapping among application, agent, model and related actions. In the other word, the
model-mapping file is a map to demonstrate relationships among models, actions, Web

applications and Web Agents.

Item Name Description
ApplicationID ID of Application
AgentID ID of Web Agent
ModellD ID of Model
name Two choices for this attribute of forward element:

match: HTTP request fits the profile determined by ModelID
unmatch: HTTP request does not fit the profile determined by
ModellD

actionID ID of action to be executed.
actionParam | The customized action parameter

forward

Table 5-5 Structure of a Model-Mapping
The Relationships of Two Files
The following figure illustrates the relationships of the two configuration files, model file
and model-mapping file.
. A ModellD is specified in the model-mapping file.
. Based on the reference to ModellD, the detailed model data can be retrieved from the

model definition file.



The ModelName declared in the model definition file determines which part of HTTP
information must be examined.

The CurrentMode specified in the model definition file determines the current running
mode of the model, learning or detection.

If “learning mode” is signed, the threshold declared in the model definition file provides a
lower boundary of the number of times a normal behaviour occurs.

If “detection mode” is configured, the corresponding action data could be retrieved from

the model-mapping file once the analysis result is concluded.

Relevant
ApplicationID Ly ModelID HTTP Request
AgentID / ModelName
ModellD | Threshold
forward CurrentMode Valid
occurrence
times
ModelConfig.xml Model.xml
Action-list to Learning or .
Response Moduel Detection mode s Frare
v \{

Figure 5-4 Relationship of Tables in Behavior Modeling Engine

58




59

5.3.3 How to Perform Behavior Modeling

Basic Algorithm

For each specific Web application and Web Agent, several different ModelMappings might

be processed. The ModelMapping traversal involves following steps:

I

If there is un-visited ModelMapping left or special flag (i.e. deny-flag, pass-flag) is not set,
the loop continues; otherwise it terminates.

Retrieve current ModelMapping from model-mapping file, and the model to be used can be
determined subsequently.

Once the model is specified, model name is used to refer to the actual model data defined
in model definition file.

According to the model name specified in the step 3, the detailed HTTP section could be
retrieved from the HTTP request forwarded by Web Agent.

The corresponding working mode can be determined once a specific model is concluded in

b

the step 3.

If the model is in learning mode:

6.

If it is in learning mode, invoke learning procedure, establish profile, and go to step 1.




60

If the model is in detection mede:
6.  Ifitis in detection mode, invoke detection procedure and conclude analysis result.
7.  Action data can be determined through the combination of matching result and
ModelMapping.
8.  Acgcording to the action data deduced in the last step, special flag (i.e. deny-flag, pass-flag)
might be set.
9,  Deliver the action data and matching result to Response Module to invoke action.
10. Go to step 1 again until the loop terminates or a special flag is set.
Special Flags
The special flags, including deny-flag, pass-flag, and redirect-flag, are used in the
Behaviour Modeling Engine again. If one of the three flags is set, the corresponding action will
be executed, The definitions of the three special flags are same as those in the Pattern Matching
Engine. The three response actions corresponding to the special flags are discussed in the Chapter

6 Response Module.




61

5.3.4 URI Modeling Algorithm

The algorithm is designed to verify any abnormal behaviour in the request URI.

Exploitations, like Directory Traversal, and other invalid URI requests.

Data Structure

Two issues have to be considered when designing data structure used in the learning mode.
First, the class for URI modeling defines a “counter” field to count how many times the URI is
requested. Thus, a URI address attribute and an attribute for counter are defined in the class.
Second, all URIs should compose of a URI collection. So, an instance variable of List is
constructed to store the all request URI objects. The following figure shows the declaration of a

request URI object, URIStatistic.

URIStatistic

~Uris String
-counter: Integer

+getCounter(): Integer

+getUri(): String

+plusCounter(): void
+setCounter{counter: Integer): void
+satUri{uriwithQuary: String): void
+toString(): String

Figure 5-5 Data Structure of Class URIStatistic



62

Algorithm

. Learning mode: During the learning period, all distinct URIs in the Web application could
be learned. For each request URI, we record how many times the URI is requested. When
the number is greater than the threshold defined in the model definition file, the URI could
be stored in database as a URI profile.

. Detection mode: In the detection mode, it matches current request URI with the valid URI

profile and returns analysis result.

5.3.5 Parameter Modeling Algorithm

The modeling algorithm is used to detect deviation of request parameters, including POST
parameters and GET parameters. It can help Web application to prevent from attacks or
intrusions related to request parameters, such as SQL Injection or XSS (Cross-Site Scripting),

ete.
Data Structure

We pre-define data types of HTTP request parameter in the database. So, we can determine
the type of a request parameter by matching the request parameter with pre-defined parameter
type during learning period. Since there are several alternative parameter types for a single
parameter, we can design more than one counter to record how many times that a parameter is of

a specific type.



63

In the other word, a request parameter might associate with several counters, and each
counter corresponds to a possible parameter type. Thus, we declare two attributes in the
ParamStatistic class; one is parameter name, the other is a list of counters.

Each counter should also be a compound data, or an object. It is composed of two attributes;
one attribute is to mark the identity of possible parameter type, the ather is just an integer counter.
The following figure shows the data structure of ParamStatistic and ParamTypeCounter, where
ParamTypeCounter is an inner class of class ParamStatistic.

Moreover, in order to buijld profiles for all request parameters in the learning mode, the
parameters should compose of a parameter collection. So, an instance variable of List is

constructed to store the all request parameter objects.

ParamsStatistic

-paramiame: String
-paramTypelist: List

+addParamType(typeName: String); void
+cantainsParamType(typeName; String): Boplean
+getCounter(typeName: String): Integar
+getParamName(): String
+plusCounter{typeiame; String): void
+satParamMamelparamName! String): void
+tastring(): String

ParamTypeCounter

-paramType: String
-counter! Integer

+getCounter(): Integer
+getParamTypel): String
+plusCounter(); void
+setParamType({paramType: String): void
+toString(): String

Figure 5-6 Data Structure of Class ParamStatistic



64

Algorithm

. Learning Mode
In the learning mode of parameter modeling, all parameters of the Web application have to
be profiled. We have all possible parameter types stored in a table in the database. And
these parameter types are described with Regular Expression. For each request parameter,
we record how many times this parameter matches to a specific parameter typs. When the
number exceeds the pre-defined threshold declared in the model definition file, the
parameter name and data type are inserted into database as a legitimate profile.

. Detection Mode
During detection period, it will verify if the current request parameter matches to legitimate

parameter profile derived in the learning mode, and returns the analysis resuit.

5.4 Conclusion

Analysis Engine module is the most important part in the Intrusion Detection framework
for Web application. The responsibility of Analysis Engine is to receive captured HTTP request
from Web Agent and detect if there is any intrusion or malicious exploitation in the request.
Then, Analysis Engine triggers Response Module to carry out specific actions based on the

analysis result. In this chapter, detection algorithms including Pattern Matching based on Misuse

algorithm and Behaviour Modeling based on Anomaly-based detection are discussed.



65

CHAPTER 6

RESPONSE MODULE

The focus of this chapter is to reveal the implementation details associated with Response
Module. Firstly, we introduce a configuration file. It is used to define actions deployed in the

Response Module. Then, implementation of Response Module is discussed.

6.1 Description

According to analysis result and pre-defined actions, Response Module takes corresponding
actions. Moreover, it sends action instruction to Web Agent.

If an intrusion is detected, “deny” action must be triggered, an alert has to be sent to
administrator of the Web application. Additionally, malicious HTTP request data will be inserted into
database. As a result, Web Agent will receive an analysis result action instruction, and the malicious

attacker will get an error page or request-forbidden page.




66

If no intrusion exists, Response Module will inform the web Agent that the current request

is legitimate, and the client will get his or her requested page.

Design of Response Module

4 The configuration file, action definition file, must be initialized in advance before

Response Module is triggered.

» Based on the analysis result and action data sent from Analysis Engine, Response Module

executes corresponding actions.

v Returns action instruction(s) to Web Agent. Then, Web Agent can respond different pages

to clients,

6.2 File Initialization

Action definition file is the configuration file for Response Module to declare the actions

that will be executed. The actions will be fired once the analysis result of signature detection or

anomaly detection is concluded. Table 6-1 shows the structure of an action,

Item Name Description

ActionID ID of action

ActionCom Command for this action

ActionComParam Some parameters related with this action. Take skip action for

example, a list of rules can be defined here which indicate the
given rules can be skipped over during further Pattern Matching
Analysis.

Table 6-1 Structure of an Action




67

Actions in Response Module

There are seven unique actions defined in the Response Module, they are deny action, pass
action, continue action, skip action, redirect acti'on, exec action, and logcontent action. The
detailed explanations of these actions are as follows:

8 Deny action:

When this action is triggered, it indicates that an intrusion is detected and the current HTTP

request should be denied. Customized message can be defined in the actionComParam to

describe the reason that HTTP request is denied. Even if there is other rules or models left
or un-visited in the analysis loop, the current analysis terminates immediately.
. Pass action:

If current incoming HTTP request passes the analysis of pattern matching or behavior

modeling, this action will be performed. When this action is fired, current analysis

terminates even if there are other rules or models left or un-visited in the analysis loop.
° Continue action:
Unlike Pass action, when Continue action is fired, next rule or model in sequence will be

executed continually instead of ignoring them.



Skip action:

When this action is triggered, a number of rules that specified in the actionComParam
element will be ignored.

Redirect action:

If an intrusion or attack is detected, Redirect action could be alternative choice. This

redirected page is the customized web page specified by administrator. A redirected URL

could be specified in the actionComParam element.

Exec action:

Administrator can declare some external commands in the actionComParam element of

this action. For example, send an alert or alarm to administrator by email when an intrusion
is confirmed.

Logcontent action:

When an intrusion is detected, intrusion log should be generated. Thus, the job of this

action is to produce log. The open source software Logdj is deployed to manage the

logging conveniently.

68




69

6.3 Implementation of Response Module
6.3.1 Execution of Response Action

According to the definitions in the model-mapping or rule-mapping file, the action data
delivered from Analysis Engine includes actionID and actionComParam. With the combination
of the received action data and action definition file, Response Module executes specified

action(s). The equivalent pseudo code is stated below.
Pseudo Code

1. Argument forwardedActions indicates the action data sent from Analysis Engine. Only
actionID and actionComParam are included in it.

2. Argument analysisResult represents the matching result set by the Analysis Engine. It
includes intrusion description or error message.

3.  We use actionID[forwardAction] and actionParam(forwardAction] to hold actionID and
action command parameter of a response action, respectively.

4.  We use actionID[action] and actionCom/action] to hold actionID and action command of

a pre-defined action declared in the action definition file.




70

The algorithm ResponseModule works as follows. The for loop of lines 1-7 execute each
action determined by actionID. Lines 2-3 get actionID and action parameter of current action to
be fired. Line 4 calls procedure ResponseModule-Get-ActionCom to retrieve action command
corresponding to the given actionID. Lines 5-6 handle the case in which the returned action
comment is valid. Line 6 carries the determined action into execution. Line 7 prints an error

message when action command is null.

ResponseModule (forwardedActions, analysisResult)
1.  for each forwardAction in the forwardActions

2
currentActionID « actionID[forwardAction]
3. i g .
currentActionComParam « actionParam[forwardAction]
4., ) . .
currentActionCom « ResponseModule-Get-ActionCom (currentActionlD)
5. :
if currentActionCom * NIL
6. execute action specified by currentActionCom with given currentActionComParam
1. else error “Invalid ActionID”
8. return

ResponseModule-Get-ActionCom (currentActionID)

actions « Actions declared in the action definition file

meccscamand A adl e ial N an NT¥T

Figure 6-1 Pseudo Code for Response Module



71

6.3.2 Send Action Instruction to Web Agent

An action instruction should be returned to Web Agent, no matter whether an intrusion is
detected in the HTTP request or not. With the result from Analysis Engine, Web Agent can
return different web pages to client. If an intrusion is recognized, a client might receive an error
page or redirected page; otherwise, he or she would get requested page.

A class named ResponseActionServiet that extends HttpServlet is developed to send
response message from WebIDS to Web Agent.
®  When an intrusion is detected, the malicious HTTP request must be inserted into database

for further analysis or kept as intrusion evidences. And a short error description will be

returned to Web Agent.

®  Ifno intrusion is detected, “OK” respond should be sent to Web Agent.

6.4 Conclusion

In this chapter, the implementation of Response Module is discussed. The primary function
of this component is to execute response actions according to matching result and action data
from the Analysis Engine. Moreover, the process for making response to Web Agent is also

discussed.



CHAPTER 7

DATABASE

In chapter 7, WebIDS database design is reviewed. Tables used to store malicious HTTP
request and tables used in the Behavior Modeling Engine to keep established profiles are
reviewed. Finally, we discuss on the data access technology in WebIDS supported by
Spring-framework and Hibernate briefly. Two databases are created in this project. One is for the
storage of malicious HTTP requests, and the other is to store the configuration for

behavior-modeling analysis.

7.1 Database for HTTP Request

If an intrusion or attack is detected, the malicious HTTP request must be saved to database
for further analysis. Therefore, a database named HetpInfoDB is created to hold those data. Since
the HTTP requests sent from Web Agent are broken down into seven parts, and seven tables are

created for them correspondingly.

72




73

They are Web application table, Web Agent table, client table, HTTP header table, session
table, cookie table, and request parameter table. The tables are designed as followings:

¥ Application Table:

Field Name Description

ID ID of application information (Primary Key)
ClientID ID of client (Foreign Key)

AppName Name of Web application

ApplIP IP address of Web application

AppPort Port of Web application

Table 7-1 Structure of Malicious HTTP Request: Application

. Agent Table:

Field Name Description

ID ID of Web Agent record (Primary Key)
ClientID ID of client (Foreign Key)

AgentName Name of Web Agent |

Table 7-2 Structure of Malicious HTTP Request: Agent

. Client Table:

Field Name Description

ID ID of client record (Primary Key)
ClientName Name of client machine

ClientIP IP address of client machine
ClientPort Port of client machine

Table 7-3 Structure of Malicious HTTP Request: Client

i



74

HTTP Header Table:
Field Name Description
ID ID of header record (Primary Key)
ClientID ID of client (Foreign Key)
HeaderName Name of HTTP header item
HeaderValue Value of HTTP header item

Table 7-4 Structure of Malicious HTTP Request: Header

Session Table;

Field Name Description
ID ID of session record (Primary Key)
ClientID ID of client (Foreign Key)
SessionID Identifier that the servlet container assigns to the session
SessionCreated The time when the session is created
SessionLastAccessed | The last time that a client sends a request associated with the session
Table 7-5 Structure of Malicious HTTP Request: Session
Cookie Table:
Field Name Description
ID ID of cookie record (Primary Key)
ClientID ID of client (Foreign Key)
CookieKey Name of the cookie
CookieValue Value of cookie
Table 7-6 Structure of Malicious HTTP Request: Cookie
Request Parameter Table:
Field Name Description
ID ID of parameter record (Primary Key)
ClientID ID of client (Foreign Key)
Method Method of HTTP request, GET or POST
ParamKey Name of request parameter
ParamValue Value of request parameter
Table 7-7 Structure of Malici‘ous HTTP Request: Parameter



75

7.2 Database for Behavior Modeling Engine

A database named BehaviorModelingDB is designed to facilitate the Behavior Modeling

analysis. There are static tables as well as dynamic tables used in the Behavior Modeling Engine.

Static table is created before behavior—mo'déling analysis begins. Dynamic table stores the

profiles established during learning phase.

The Static Table

In the parameter modeling, a static table stores pre-defined parameter in the database. The

structure of table ParamTypelnfo, can be illustrated as follow:

Field Name

Description B i e s

ID

[D of parameter type (Primary Key)

TypeName

ParamType

Name of the parameter type
Parameter type pattern described with Regular Expression. During
learning period, it might be retrieved to match against each

request parameter.

The Dynamic Table

Table 7-8 Structure of ParamTypelnfo

The dynamic tables keep web application profiles generated during learning mode of

behavior-modeling analysis. There are two dynamic tables ParamProfile and URIPrqfile in the

BehaviorModelingDB. They can be illustrated by the following figures, respectively:




76

. ParamProfile Table;

Field Name Description

ID ID of parameter profile record (Primary Key)

ParamName Parameter name

TypelD ID of parameter fype (Foreign Key). It determines parameter type
of a given parameter concluded in the learning phase.

Table 7-9 Structure of ParamProfile

. URIProfile Table:

Field Name Descriptidn

ID ID of URI profile record (Primary Key)

URI The URI profile value. Any deviated URI can be specified in
comparison with this URI during detection period.

Table 7-10 Structure of URIProfile

7.3 Data Access Supported by Spring and Hibernate

The hierarchy of data access under the support of Spring and Hibernate includes Logic
Representation Layer, Business Service Layer, and Persistent Object Layer.
. Persistent Object Layer:

Persistence Layer is under the management of Hibernate [8], where some persistent classes

are created. The XML files required for the object/relational mapping are declared here too.



&

Business Service Layer:

Spring [23] manages Business Layer, Spring’s lightweight bean container offers loC-style
(Inversion of Control) wiring up of business objects, DAQOs, and resource like JDBC
DataSources and Hibernate SessionFactories, The following figure shows the definition
Business Service Layer for database, BehaviorModelingDB.

Logical Presentation Layer:

Logical Presentation Layer makes use of business service provided by the Business Layer
to implement logical consideration when database-related operations are requested. For
example, when we intend to insert legitimate parameter profile or URI profile in the
learning mode of the Behaviour Modeling, we just create a new persistent object and

request insertion service provided by the Business Layer.

BehaviorModelingDao

+gatParamProfiles(): List
+getURIProfiles(); List
+insertProfile(profile; Object): void

=
<<extends>> JragR - <realizes> S 0 < <rgalize>>

~

HibernateDaoSubport BehaviorModelingService

BehaviorModelingDaoImpl BehaviorModelingServiceImpl

-behaviorModelingDaa: BehaviorModelingDas
+getParamProfiles(): List g 'goa

+getURIProfilas(y: List ; +getDao(): BehaviorModelingDao
+insertProfile{profile: Object): vald +getParamProfiles(); List
-+gatURIProfiles(): List
+irsertProfile(profile: Object): void
+satDao({dan: BehaviorMadelingDao): vaid

Figure 7-1 Business Service Layer of BehaviorModelingDB




78

7.4 Conclusion

The primary function of database is to provide persistent storage for the entire Intrusion
Detection System framework. In this chapter, databases and tables are discussed, including tables
for malicious HTTP request and tables used to keep profiles in the Behaviour Modeling Engine.
The data access under the support of Spring-framework and Hibernate makes database-related

operations more straightforward.



79

CHAPTER 8

EXPERIMENTAL RESULTS AND CASE STUDIES

In this chapter, functionality testing on the Web Application intrusion detection framework
is discussed. Some common intrusion test cases are performed, including SQL Injection,
Cross-site scripting, Directory Traversal and Hidden Field. These simulations are used to

demonstrate efficiency and effectiveness of the proposed framework.

The simulation is done on a workstation with 2.4GHZ CPU and 512MB DDR running
Windows® 2000 Server under light load. The web server is Tomcat 5.5.2 [28]. The proposed

WeblDS is executed in the same time along with the simulating HTTP requests.

8.1 Case Studies

We tested this framework with several attacking test cases. The intrusion detection

framework can effectively detect the attacks and raise alarms when exploitations occur.



80

8.1.1 SQL Injection

Description

According to the Top Ten Most Critical Web Application Security Vulnerabilities [29]
issued by OWASP [16] (Open Web Application Security Project), Injection Flaws is the 6" of
the top ten most critical vulnerabilities.

SQL Injection is one kind of widespread and dangerous Injection Flaws. To exploit a SQL
Injection flaw, the attacker must find a parameter that the web application uses to dynamically

construct a SQL query. “By carefully embedding malicious SOL commands intg the content of

the parameter, that attacker can trick the Web application into forwarding a malicious query (o

the database [11].”

Simulation

Web Agent captures HTTP request, and normalizes them into XML format. The following

figure illustrates the collected malicious parameter to exploit SQL Injection flaw:

<Request>
<RequestParam>
<Name>account_number</Name>
<Value>’ or '1=1</Value>
</RequestParam>
</Request>

Figure 8-1 Request Parameter for SQL Injection




81

Pattern-matching analysis can utilize pattern to detect SQL Injection intrusion. The rule is

illustrated with Figure 8-2:

<SysRule>
<[D>Rule032</ID>
<RuleName>SQLInjection(1=1)</RuleName>
<Version>1.0</Version>
<Target>ReqPost</Target>
<Pattern>[{0-9]{1,}\W {0,}=\W{0,}[0-9]{1,}</Pattern>
<CaseSensitive>y</CaseSensitive>
<Length>128</Length>
<ReferenceNo>no</ReferenceNo>

</SysRule>

Figure 8-2 Rule for SQL Injection

The intrusion log demonstrating the occurrence of SQL Injection Exploitation looks like:

2005-03-17 20:42:20,250 - Alert: ClientIP; 127.0.0.1 ClientPort: 1334 Intrusion Attempt detected: SQLInjection

Figure 8-3 Intrusion Log for SQL Injection

The attacker or a malicious client might get following error page:

Request was derted, becsuse of the fulowing reasen:
It breaks Rule: SQLFacHon{RegPost)

DERTHENI e request senk by the dent wes syntacticaly incorrect,

Request was dereed, because of the folowing reascn:
It bresks Ruse: SQLINMecbon(RegPost)

\pache Touieat 55,2

Figure 8-4 Error Page for SQL Injection




82

8.1.2 Cross-Site Scripting (XSS) -

The Cross-Site Scripting attack is also an injection flaw, which is one of the most critical
and common Web application vulnerabilities defined by OWASP [16]. These flaws occur when
an attacker uses a Web application to send malicious code, generally in the form of a script, to
different end user [6]. These vulnerabilities are quite widespread and occur when a Web
application takes user input as output directly without validating it.

Pattern-matching analysis is very efficient to detect Cross Site Script attack. Therefore, a

rule to detect this type of attack is described in the following table:

<Request>
<RequestParam>
<Name>msg</Name>
<Value><SCRIPT>alert(document.cookie);</SCRIPT></Value>
</RequestParam>
</Request>

Figure 8-5 Request Parameter for XSS

<SysRule>
<ID>Rule026</1D>
<RuleName>XSS(ReqPost)</RuleName> »
<Version>1.0</Version>
<Target>ReqPost</Target>
<Pattern>(&lt;script&gt;[\.cookic)</Pattern>
<CaseSensitive>n</CaseSensitive>
<Length>128</Length>
<RefercnceNo>no</ReferenceNo>

</SysRule>

Figure 8-6 Rule for XSS

2005-04-10 2():42:'16,828 - Alert: ClientIP:127.0.0.1 ClientPort:1334 h1truz§ion Attempt detected: X88

Figure 8-7 Intrusion Log for XSS




8.1.3 Directory Traversal

Directory Traversal is another attack that breaks Web application input validation. “It is an

attempt tg access files outside of the Web document root, or files within the document root, which

are_atherwise restricted to the user [1].” The primary target of directory traversal attack is the

URL an attacker can manipulate to bypass the system access control.
Both Pattern Matching Engine and URI modeling of Behavior Modeling Engine are able to
detect Directory Traversal attack, For a possible directory traversal intrusion, the corresponding

pattern-matching rule and intrusion log are illustrated as follows:

83

<Request>
<RequestParam>
<Name>File</Name>
<Value>%2E%2E%2F%2E%2E%2F</Value>
</RequestParam>
</Request>

Figure 8-8 Request Parameter for Directory Traversal

<SysRule>
<ID>Rulel 1 6</ID>
<RuleName>Directory Traversal(ReqPost)</RuleName>
<Version>|.0</Version>
<Target>ReqURI</Target>
<Pattern>\\./</Pattern>
<CaseSensitive>n</CaseSensitive>
<Length>128</Length>
<RefercnceNo>no</ReferenceNo>

</SysRule>

Figure 8-9 Rule for Directory Traversal

2005-04-10 20:42:20,250 - Alert: ClientIP:127.0.0.1 ClientPort:1334 Intrusion Attempt detected: DirectoryTraversal

Figure 8-10 Intrusion Log for Directory Traversal



84

8.1.4 Hidden Field

Description

Behaviour Modeling Engine can detect Directory Traversal efficiently. Cross-Site
Scripting and SQL Injection Flaws can be detected if Parameter profile is built correctly.
However, only Behaviour Modeling Engine can stop Hidden Field manipulation attack
effectively.

“HTML can store field values as Hidden Fields, which are not rendered to the screen by

the browser but collected and submitted as parameters during submissions [1].” The attacker

can save the source code for this HTML page, change the hidden field value or change its value
by Proxy tools during the submission, and then post the newly changed value to the Web
application. This attack is dependent on the deviation from normal parameter value, Thus, only

Behaviour Modeling Engine can raise an alarm when this exploitation occurs.

Simulation

During the learning mode, a parameter profile to describe the normal behaviour of this
hidden field, Price, can be established. Following table illustrate the legitimate profile in the

database.

TypelD TypeName | ‘ParamType
1 Hidden 4999.99

Table 8-1 Parameter Type for Hidden Field




85

Parﬁmm _| ParemName = [ TypelD
20 Price : 1

Table 8-2 Parameter Profile for Hidden Field
During the detection mode, we use the parameter name of this hidden field, price, as a key
to retrieve its legitimate parameter type. Then, the result 4999.99 can be gotten and a pattern
represented with regular expression can be created consequently. Thus, the deviation can be
found by matching current malicious value with the legitimate profile.
And now an intrusion attempts to manipulate this hidden field is demonstrated with of a

Proxy tool, Paros [17]. The following figure illustrates this attack:

W paros 3.2.0beta2 - Unkitled Session.
-_f'ﬁe Edt &'aew arcier Sesort Ioc&s Heb
Si iﬂ } :

i ____ISM-s
o hepf

Kequ.t "Ec:ponsa Trap ' : cudes ; : i Sl
FCST ntpiiocalhost:B0E0WebGaatattack HTTFMA 0
Accepl imageigin, imageli-xhitimagp, imagefpeq, imageqnpeg agplicationfund ms- powerpoint, applicationimsword, applic
sfattonde-shockvesve-fiash, »* b
§ Referer hitpaflocalionstg0s0ekGoatiattack?Screen=129

| Accephlanguage; 2h-cn

ContentType. applications-vssfonm-utlencaded

Froge-Connection: Keap-Alive

Hlsee-Agent Mozilas 0 compatible; MSIE 6.0, Windows NT 5.0)

HHost: Iocalhost 2020

licontent-Length: 13 ;
Fragrna: na-gashe _—
Cookie: JSESSIONIDHBZAS% BYAABFEIF1B3638456235083CEF

qw

“Continue

1 GET htipticcalhost B0 ehGoaliattack HTTPM .0 =+ HTTR/.1 401 Unauthonzed {0.078 <)
4 GET hilpMocalnost 80300 ebGoatiallack HTTRIR Q=> HTTP/1.1 200 0K [1 .86 €]

4 POET hitg:focalhost BOZ0MebGoatiattack HTTEM 0 =» HTTEM .1 200 0X [0.0682 s}

6 GET Mip-tiocalhost 8080A%ehGoaliaitack?Seraan=129 HTTPM.0 == HTTRM ¥ 200 OK [2.016 £)

7 FOET hitoiocalhost 80800 ebGoatiattack HTTEA .0 == HTTFA.1 200 0K [1.047 s}

A GET Mg Sitnealhost RanmnhGnﬁh’aﬂm k"F;rmnnd 79 HTI'PH |‘\ == HTTPH 1 7nn t‘)l{ m nu sﬂ

Saxanrlﬂin: Dutpat|

1 lhstory

Figure 8-11 Manipulation of Hidden Field with Paros



86

The following figures illustrate the generated intrusion log and the error page that Web

Agent returns to an attacker:

2005-04-10 20:42:25,625 - Alert: ClientlP:127.0.0.1 ClientPort: [ 334 Intrusion Attempt detected: Invalid parameter type: [Price = 1]

Figure 8-12 Intrusion Log for Hidden Field

HTTP Status400- = = =

Status repart

Request was denied, because of the follovng reason:
The bype of requastad Parameter Value: 1 & rwakd!

DT The request sent by the dient was syrtactically incorrect.

| Requiest was denied, because of the following reason:
. The type of requested Parameter Value: 1k rwvabd!

BApathe Tomeat/5.5.2

Figure 8-13 Error Page for Hidden Field

8.2 Conclusion

In this chapter, intrusion test cases to evaluate the effectiveness of this system are discussed.
These simulations demonstrate that the Intrusion Detection Framework for Web application
proposed in the thesis can protect Web application against malicious attacks efficiently and

effectively.




87

CHAPTER 9

CONCLUSION AND RECOMMENDATION

In this chapter, the conclusion on this project is summarized. Moreover, some

recommendations or considerations for further research are also discussed here briefly.

9.1 Conclusion of Thesis

In this thesis, an Intrusion Detection framework for Web application with advanced
detection algorithms, which is based on module architecture and compatible with J2EE
development standard, is proposed.

Advanced intrusion detection algorithms, including Pattern Matching and Behavior
Modeling, are adopted and extended. In the Pattern Matching Engine, new patterns can be easily
developed with the XML-based configuration files, Behavior Modeling Engine can be easily
configured and extended. A learning-based anomaly detection algorithm, Behavior Modeling,
makes the detection of unknown attack possible. These methodologies and mechanisms help this

framework detect the complex as well as simple intrusion attempts efficiently and effectively.



88

A filter based Web Agent is designed to be a pluggable embedded component within Web
application. This allows us to easily deploy WebIDS agent into Web application without
additional configuration. '

This thesis conducts experiments to evaluate this intrusion detection framewark, These

experiments successfully demonstrate that this framework can detect various intrusions

efficiently and effectively.

9.2 Recommendation

Some recommendations for the future works can be summarized as follows:

. For Pattern Matching Analysis Engine, more rules or patterns have to be developed in order
to detect more intrusion incidents successfully.

. For Behavior Modeling Analysis Engine, more profiles used to describe HTTP request
behavior should be considered.

. For Behavior Modeling Analysis Engine, a more complex and advanced algorithm could be
developed to perform statistics analysis. So the statistics analysis can be used to measure

whether current request is normal behavior or not more precisely.




89

For Behavior Modeling Analysis Engine, more attributes of normal behavior could be
tested to model the normal behavior more precisely. The more accurately that normal
behavior can be modeled, the less false positive or negative alarms will rise. More
experiments should be done to determine the proper attributes to model the behavior.

For Analysis Engine, a correlation algorithm used to measure the correctness of intrusion
detection result should be considered.

Other type of Web Agents could be developed to collect HTTP request data from other

source, such as network Sniffer Agent.




10.

11,

13-

13.

14.

BIBLIOGRAPHY

A Guide to Building Secure Web Applications, Open Web Application Security Project.
URL: http://www.owasp.org/documentation/guide.html,

A. K. Ghosh, J. Wanken, and F. Charron. Detecting Anomalous and Unknown Intrusions
against Programs. In Proceedings of the Annual Computer Security Application Conference
(ACSAC'98), pages 259—267, Scottsdale, AZ, December 1998.

A. Somayaji and S. Forrest. Automated Response Using System-Call Delays. In
Proceedings of the 9" USENIX Security Symposium, August 2000.

Christopher Kriigel, Thomas Toth and Engin Kirda. Service Specific Anomaly Detection
for Network Intrusion Detection. ACM Symposium on Applied Computing, 2002.

Common Intrusion Detection Framework (CIDF). URL: http://www.isi.edu/gost/cidf/.
Cross-site Scripting Flaws, Top Ten Most Critical Web Application Security Vulperabilities
— 2004 Updates, page 15-16, Open Web Application Security Project, January 27th, 2004.
URL: www.owasp.org/documentation/topten.html.

Donn B. Parker. Demonstrating the Elements of Information Security with Threats, In
Praceedings of the 17th National Computer Security Conference, pages 421-430, 1994.
Hibernate — Relational Persistence for Idiomatic Java, version 2.1.6, August 9th, 2004,
URL: http://www.hibernate.org/.

http://www.webopedia.com/Did YouKnow/Computer_Science/2005/intrusion_detection_pr
H. Debar, M. Dacier, and A. Wespi, Towards a Taxonomy of Intrusion Detection Systems,
Computer Networks, 3 1(8):805-822, April 1999.

Injection Flaws, Top Ten Most Critical Web Application Security Vulnerabilities ~ 2004
Updates, page 18-19, Open Web Application' Security Project, January 27th, 2004, URL:
www.owasp.org/documentation/topten.html.

International Standards Organization: Information Processing Systems — Open Systems
Interconnection — Basic Reference Model, part 2: Security Architecture 7498/2.

K. Iigun, R, A. Kemmerer, and P. A. Porras. State transition apalysis: A rule-based
intrusion detection approach. IEEE Transactions on Software Engineering, 21(3):181-199,
March 1995. :

Kyle Gabhart. J2EE Pathfinder: Filtering with Java Serlvet 2.4 Viewing, extracting, and
manipulating HTTP data with Servlet filters,
http://www-128.ibm.com/developerworks/java/library/j-pi2eel 0.html.

90




=
16.
i
18
19.

20.
21.

22

28,

24.

29

26.

27,

28.
29.

30.

31.
32,

91

K. Jackson, Intrusion Detection Systems (IDS): Product Survey, Los Alamos National
Laboratory, LA-UR-99-3883, 1999,

Open Web Application Security Project (OWASP). URL: hitp:/www.owasp.org.

Paros, version 3.2.1-win, available via http://www.parosproxy.org, April 2006.

Prelude Hybrid Intrusion Detection System, version 0.9.0, available via
http://prelude-ids.org/, September 2005.

Marty Roesch. Snort, version 2.4.4, available via http://www.snort.org/, April 2006.
Research Firm Gartner, http://www.gartner.com/.

Richard Heady, George Luger, Arthur Maccabe, and Mark Servilla. The architecture of a
network level intrusion detection system. Technical Report CS90-20, Department of
Computer Science, University of New Mexico, August 1990,

Sandeep Kumar and Eugene H. Spafford. A Pattern Matching Model for Misuse Intrusion
Detection. In Proceedings of 17" National Computer Security Conference, pages 11-21,
October 1994,

Spring — Java/J2EE Application Framework, version 1.1.2, November 2004. URL:
http://www.springframework.org,

S. Forrest. A Sense of Self for UNIX Processes. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 120-128, OaKland, CA, May 1996.

S. Forrest, A. Somayaji, and D. Ackley. Building Diverse Computer Systems. /n
Proceedings of the 6" Workshap on Hot Topics in Operating Systems, pages 67-72, 1997,
Terry Escamilla, Intrusion Detection: Network Security beyond the Firewall, John Wiley &
Sons, Inc, 1998,

The J2EE™ 1.4 Tutorial for Sun Java System Application Server Platform Edition 8
2004Q4 Beta, Filtering Requests and Responses, pages 503-508, Sun Microsystems, Inc.,
August 30, 2004.

Tomcat, version 5.5.2, available via http://tomcat.apache.org.

Top Ten Most Critical Web Application Security Vulnerabilities - 2004 Updates, Open Web
Application Security Project, January 27th, 2004. URL:
www.owasp.org/documentation/topten.html,

T. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P. Neumann, H. Javitz, A. Valdes, and T.
Garvey. A real-time intrusion detection expert system (IDES) - final technical report.
Technical report, Computer Science Laboratory, SRI International, Menlo Park, California,
February 1992.

UTF-8: Unicode Organization, available at http://www.unicode.org,

ISO 10646: Universal multi-octet character set — UCS, available at http://www.iso.org.




