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FOREWORD 

In this doctoral thesis, five chapters are presented as scientific articles. The first ar­

ticle (Chapter II) was published in Animal Behaviour (Vol. 78, pp. 1343-1350) un­

der the title "Finding the evolutionarily stable learning mie for freguency-dependent 

foraging". This article was co-authored by Steven Hamblin and Luc-Alain Giraldeau. 

Chapter III is an article published in Oikos (Vol. 119, pp. 286-291) entitled "Predator 

inadvertent social information use favors reduced clumping of its prey", and was 

co-authored by Steven Hamblin, Kimberley Mathot, Julie Morand-Ferron, Joseph 

Nocera, and Luc-Alain Giraldeau. In Chapter IV is the article "Scroungers are shy 

and producers are either: The co-evolution of boldness and foraging tactics", co­

authored by Ralf Kurvers, Steven Hamblin, and Luc-Alain Giraldeau and submitted 

ta the journal Behavioral Ecology. Chapter V contains the article "A mie of thumb 

for social foraging", co-authored by Steven Hamblin and Luc-Alain Giraldeau and 

submitted ta The American Naturalist. FinaIly, Chapter VI is a single-author article 

by Steven Hamblin in preparation for journal submission (e.g. to Proceedings of the 

Royal Academy, Series B or Behavioral Ecology). 

During the time of this thesis, Steven Hamblin was supported by an NSERC CGS­

D scholarship as weIl as une bourse d'exemption des frais majorés from UQAM, and 

from an NSERC Discovery grant ta Luc-Alain Giraldeau. 
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Résumé 

Les animaux grégaires en quête de ressources peuvent soit consacrer leurs 
efforts à la recherche (stratégie producteur) ou soit attendre que les produc­
teurs réussissent à trouver ces ressources pour les y rejoindre (stratégie cha­
pardeur). La profitabilité de chaque option peut être analysée par le jeu producteur­
chapardeur. Ce jeu a été largement exploré aux plans théorique et empirique, 
mais plusieurs aspects demeurent toujours inexplorés. J'ai développé cinq mod­
èles afin d'explorer l'approvisionnement social en lien avec l'utilisation.d'information 
et les contraintes spatiales. Le premier modèle concerne l'évolution de règles 
d'apprentissage, des expressions mathématiques décrivant la valeur qu'un ani­
mal accorde aux options producteur et chapardeur en fonction des gains obtenus. 
J'ai démontré que la règle du relative pay-off sum est évolutivement stable et 
donc la meilleure disponible. Les paramètres de la règle attendue demeurent 
intrigants et demandent maintenant à être éplorés au niveau empirique. Le 
second modèle explorés plutôt l'effet de l'usage d'information sociale (cha­
pardeur) chez un prédateur en examinant son effet sur l'évolution du niveau 
d'agrégation de ses proies. Le modèle démontre que les proies évoluent à dif­
férents niveaux d'agrégation en réponse à l'usage d'information sociale par leurs 
prédateurs et que cette relation affecte à la fois l'efficacité de recherche du pré­
dateur et la survie des proies. Le troisième modèle teste l'hypothèse, générée à 
partir de recherche empirique sur les oies cendrées, selon laquelle la variation 
du niveau de hardiesse serait associée à un dimorphisme de producteurs hardis 
et de chapardeurs poltrons (bold et shy, respectivement) dans le jeu producteur­
chapardeur. Le modèle réfute l'existence d'un tel dimorphisme, mais démontre 
néanmoins un effet environnemental fort des paramètres de l'approvisionnement 
social sur le niveau de hardiesse d'une population. Ce résultat a d'importantes 
implications pour le rôle de l'utilisation d'information et les effets spatiaux dans 
la régulation des relations entre les producteurs et les chapardeurs. J'ai développé 
à partir d'une approche d'automate cellulaire un modèle producteur-chapardeur 
pour déterminer si une règle simple (rule of thumb) fondée sur l'apprentissage 
social élémentaire dans un contexte spatialement explicite pouvait prédire l'atteinte 
d'un équilibre producteur chapardeur. Les résultats démontrent que l'ajout 
de cette règle simple génère à la fois une flexibilité comportementale signi­
ficative et des dynamiques complexes qui ne sont pas habituelles à ce genre 
de systèmes simples. Le modèle lie l'usage d'information sociale à la struc­
ture spatiale dans un modèle déterministe. Enfin, avec le cinquième mod­
èle j'ai exploré les effets de la géométrie du paysage (la façon dont l'espace 
est représenté, habituellement un quadrillage régulier) sur le jeu producteur­
chapardeur. Il appert que les représentations spatiales sont un déterminant-clé 
dans la manière dont un jeu d'approvisionnement social d'alimentation peut 
réellement rendre compte de l'approvisionnement des animaux. 

Keywords: l'approvisionnement social, effets spatiaux, l'utilisation des in­
formations, l'apprentissage, personnalités des animaux 





Abstract 

Animals foraging in groups can invest effort in searching for resources such 
as food (producing) or wait for producers to successfully find these resources 
and then join the discovery (scrounging); the game theoretical model that cap­
tures this situation is known as the producer-scrounger game. Producer-scrounger 
games have been well-studied theoretically and empirically, but a number of 
questions remain open. 1created five models to explore new avenues in social 
foraging related to information use and the effects of spatial relationships. The 
first model tested the evolution of learning rules, mathematical descriptions of 
the value a foraging animal will place on the producing and scrounging tac­
tics as a function of gathering personal information, to determine which can­
didate rule for foraging out of those previously published was most attractive 
in population dynamics. 1 found that one rule, the Relative Payoff Sum, was 
by far the most attractive and provided evidence that this rule is evolutionar­
ily stable; the findings also pointed out intriguing features of parameter evolu­
tion amenable to empirical testing. The second model moves from personal to 
social information, examining predator-prey dynamics and the manipulation 
of information use in predators by prey as the outcome of a coevolutionary 
arms race. The model found that prey evolved different levels of clumping in 
response to predator use of social information (scrounging), and that this rela­
tionship affected both predator search eftlciency and prey surviva!. The third 
model tested the hypothesis, generated from empirical work on geese, that the 
personality trait ofboldness would create a dimorphism of bold producers and 
shy scroungers in a producer-scrounger game. This model failed to find such 
a dimorphism but did find strong environmental effects on the relationship 
between boldness and social foraging; this result has important implications 
for the role of information use and spatial effects in regulating producing and 
scrounging relationships. In the fourth mode!, 1developed a cellular automa­
ton producer-scrounger model to test the effect of a simple sociallearning 'rule 
of thumb' in a spatially explicit setting. The results show that adding this rule 
of thumb to the simplest possible producer-scrounger game generates signifi­
cant behavioural fleJÙbility and intricate population dynamics not usually seen 
in simple systems; the outcome of this model connects social information use 
to spatial structure among foragers in a deterministic and tractable mode!. Fi­
nally, in the fifth model 1explored the effects oflandscape geometry (the way in 
which space is represented, usually as a square grid) on the producer-scrounger 
game as part of a focused argument that spatial processes will be a key deter­
minant in how this foraging game generalizes to real animal foraging. 

Key words: social foraging, spatial effects, information use, learning, ani­
mal personality 





CHAPTERI 

GENERAL INTRODUCTION 

Social foraging theory offers a surprisingly rich, unexploited 

patch of untested models and predictions. May many readers 

discover and exploit il. 

Giraldeau and Caraco (2000), p.334. 

Producer-scrounger models have been a backbone of the study of social forag­

ing, and the goal of this thesis is to add additional threads to the tapestry of theory 

and models woven around that framework. Three themes appear in what follows: 

additions to social foraging models, personal and social information use including 

learning, and spatial processes in foraging. To that end, in this introduction 1 will 

provide an overview of important background material for the chapters of the the­

sis, separated into five sections. In section I.l, r discuss the history and concepts of 

frequency dependent modelling of social foraging behaviours (social foraging theory 

and producer-scrounger games in particular). In section 1.2, 1 discuss information 

use, bath personal, and social, and the mechanisms of using such information to 

learn optimal behaviour as they apply to foraging models. Following that, in section 

1.3, 1 inspect the existing work on producer scrounger games in a spatially explicit 

world. In section 1.4, 1 review the simulation methodologies that were used during 

this thesis and provide an introduction to each. Finally, in section 1.5, 1 present an 

overview of the chapters and their relationship to each other, with attention paid to 

the fundamental thematic elements. 
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1.1 Frequency dependent ('social') foraging 

When studying the evolution of animal foraging behaviour, two separate approaches 

have been taken throughout the years. The first, optimal foraging theory (Stephens 

and Krebs 1986; Stephens et al. 2007), focuses on economically 'optimal' decision 

makingwhen individuals forage on their own; for example, when different prey types 

are presented sequentially, which types should be part of the optimal diet (the so­

called 'prey model'; Stephens and Krebs 1986)? Optimal foraging theory can be used 

to predict aspects of foraging behaviour whether individuals forage as solitary indi­

viduals or as part of a group, but breaks down when group foragers receive payoffs as 

a function of the actions of other group members. This payoff relationship is stud­

ied by the application of game theory to foraging situations; the body of models and 

theory that has sprung up as a result is known as 'social foraging theory' (Giraldeau 

and Livoreil1998; Giraldeau and Caraco 2000; Giraldeau and Dubois 2008). 

1.1.1 Evolutionary game theory 

A review of simple evolutionary game theory concepts is useful here, though it will 

be necessarily brief; Maynard Smith (1982) provides an excellent and accessible in­

troduction to evolutionary game theory in general, and Giraldeau and Caraco (2000) 

is the seminal text on the application of these concepts to interdependent group 

foragers. (Note that 'evolutionary game theory' is also used to describe population 

dynamics concepts such as replicator dynamics. In the interest of concision, 1 will 

not deal with those more advanced topies here, but Hammerstein (1998) provides a 

usefuloverview). 

Game theory is the study of optimal behaviour when an individual's best action 

depends on the actions of other individuals. Awell-known example ofthis in animal 

behaviour is the case of animal aggression, as captured by Maynard Smith and Price 

(1973). Maynard Smith and Price took their motivating question to be 'why are an­

imal fights so rarely fatal?', and the answer to that question came in the form of the 

Hawk-Dove model. In the model, two animaIs engage in an aggressive confronta­

tion over a resource with a value V and each animal has two potential strategies. 

The first, Hawk, is an aggressive strategy, and the second, Dove, is a 'peaceful' strat­

egy. If two Hawks meet, the result is an escalated conflict with a cost to losing C, 
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such that each player receives a payoff of (V - C) 12 (divided by two because it is as­

sumed that one Hawk loses 50% of the encounters and vice versa). If a Hawk meets 

a Dove, the Hawk takes the resource and the Dove escapes without injury, resulting 

in payoffs of V to the Hawk and 0 to the Dove. If two Doves meet, one or the other 

takes the resource with probability .5, so the resulting payoff is V12. The variables 

and payoffs are summarized in Figure LI. 

Player 2 
Hawk 

Hawk (V - C)/2, (V - C)/2
Player 1 r---------,-----=-::----+-c:-::-:--,-----,--,--,--,--{

Dove 0, V 

Figure 1.1: The Hawk-Dove game 

Given this, what is the optimal strategy for each player? Passing over the math­

ematical details, it turns out that the Hawk-Dove game has a solution that takes the 

form of an evolutionarily stable strategy (hereafter ESS). Simply put, an ESS is a strat­

egy which, when played by the whole population, cannot be invaded by a mutant 

playing a different strategy (Maynard Smith 1982). For example, as demonstrated 

in Maynard Smith and Price (1973), the Hawk-Dove game in Figure 1.1 has an ESS 

wherein each player plays Hawk sorne times and Dove others (a 'mixed strategy'). 

The proportion of Hawk that each player should play turns out to be the ratio of the 

value of the resource to the cost of injury (V IC); thus, if V =20 and C =30, each 

player should play Hawk 2/3 of the time and Dove 1/3 of the time. This proportion 

of {2/3,1/3} is an ESS, because any mutant entering the population who played a dif­

ferent proportion of Hawk and Dove would do worse. The major contribution of the 

ESS concept to evolutionary biology arises from the linkage of natural selection ta 

game theory, because in the example above mutants playing a different strategy will 

be selected out due to their reduced fitness, and thus natural selection will maintain 

the population at the ESS value. However, it is important to be aware that selection 

will maintain a population at an ESS (stability), but it may not take a population ta 

that ESS point in the first place (attractivity; Hamblin and Hurd 2007; 2009). This is 

the subject of sorne discussion in Chapters II and V, though the issue can be ignored 

for games as simple as Hawk-Dove (see next section). 
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1.1.2 Frequency dependent selection 

The process of selection which willlead a population to the mixed ESS in the Hawk­

Dove game is known as frequency dependent selection, where the fitness of a phe­

notype is dependent on the frequency of that phenotype relative to the other phe­

notypes in the population (a notion adapted from population genetics: Maynard 

Smith 1982; Rice 2004). ln negative frequency dependent selection (l will ignore the 

positive variant), phenotypes are more fit when they are rare, leading to a mixed 

ESS produced by selective pressures. This process is illustrated for a fictional situa­

tion in Figure 1.2, where selection operates to adjust the population composition to 

the equilibrium point; if the population begins with mostly tactic 1 players, the fre­

quency of tactic 1 players will decrease to the equilibrium point, while a population 

ofmostly tactic 2 players will change in the opposite direction. The equilibrium will 

occur at the point where the fitnesses ofthe two t'actics are equal. This is equivalent 

- for infinite populations - to saying that ail individuals in the population adopt the 

same mixed strategy at equilibrium (a monomorphic population playing a mixed 

strategy instead of a polymorphie population playing pure strategies). 

1.1.3 Evolutionary and ecological time 

To this point, 1have described evolutionary game theory and frequency dependent 

selection as envisioned by Maynard Smith (1982). The ESS concept adopted in this 

view is an explicitly genetic one; natural selection operates on individuaIs over gen­

erations to produce a population at equilibrium and maintain it at ESS frequencies. 

However, it is possible to consider frequency dependent selection without positing 

a specifie underlying mechanism. When we do, the ESS solution concept is replaced 

by the more agnostic stable equilibrium frequency (SEF; Mottley and Giraldeau 2000; 

Giraldeau and Dubois 2008). Extending further, we can investigate how animaIs 

might solve game theory problems such as Hawk-Dove over ecological time (i.e. a 

period of time no longer than the individual's lifetime). A solution concept with an 

explicit behavioural mechanism has been labelled a behaviourally stable solution 

(BSS: Dawkins 1976; Giraldeau and Dubois 2008, Dawkins actually termed it a 'De­

velopmentally Stable Strategy' or DSS, but 1will follow modern usage and use BSS). 

ln the final chapter of his book, Maynard Smith (1982) suggested learning as a 

mechanism for BSSs, based in part on the work of Harley (1981) who published the 
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Here, tactic l has higher fitness, 50 selection 
moves to a lower proportion of tactic 2 in the 
population. 

Here, tactic 2 has higher 
fitness, 50 selection moves to 

1

l Tactic l 

a higher proportion of tactic 2 : 

in the population. 1 
1 
1 
1 
1 Tactic 2 
1 
1 

o Equilibrium 0.5 

Proportion playing tactic 2 

Figure 1.2: Frequency dependent selection. Each tactic has greater fitness when it is 
rare, leading selection to move the population to a mixture of the two tac tics where 
their fitnesses are equal (a mixed strategy, shown by the verticalline). 

first attempt at providing such a mechanism. HarIey coined the term 'evolutionarily 

stable learning rule' (ES learning rule) as part of an attempt to show that the BSS as 

achieved by an ES learning rule is the same outcome as the ESS (p.612): 

1will define the rB]SS as the strategy which is adopted by individuals 

with the evolutionarily stable (ES) learning rule. The ES learning rule is 

one such that ail mutant individuals differing only in their learning rule 

will have a lower than average fitness when considered among a popula­

tion of individuals who possess the ES learning rule. In other words, the 

ES learning rule is uninvadable. With sorne simplifying assumptions, 

it can be shown that the [B)SS for each game is in fact the ESS: the ES 

learning rule will cause a population to adopt the strategy which would 

be uninvadable if it were genetically determined. 

1offer Table I.l to summarize the solution concepts and clear any terminological 
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fog. 

Concept Mechanism Origin 
ESS Genetie Maynard Smith (1972) 
BSS Behavioural (e.g. ES Learning rule) Dawkins (1976) 
SEF None Implied Mottley and Giraldeau (2000) 

Table 1.1: Summary of solution concepts. 

Harley's initial proofwas flawed (Harley 1983; Houston 1983; Houston and Sum­

ida 1987; Harley 1987), but was later rescued (Tracy and Seaman Ir. 1995), and the 

search for mechanisms underlying BSSs remains an active area of research (recent 

review in McNamara and Houston 2009). 

1.1.4 Social foraging models 

The application of the tools outlined in the previous sections to the evolution of an­

imaI foraging behaviour resulted in the class of models that are collectively known 

as social foraging theory (Giraldeau and Caraco 2000). Of these models, arguably 

the most well-studied is the producer-scrounger game, first outlined by Barnard 

and Sibly (1981). The producer-scrounger game is a model of scramble kleptopar­

asitism - food theft with Httle to no aggression and simultaneous exploitation by 

competitors (Giraldeau and Caraco 2000, p.153) - in which individuals play one of 

two strategies: producers invest effort in finding resources (food, primarily, though 

the model can be generalized to other shareable resources), while scroungers join 

the discoveries of producers and share the resource. Producing and scrounging are 

considered to be completely incompatible, in that producing and scrounging cannot 

be played by the same player at the same time. Mathematieally, the game is an n­

person alternative-option scramble (Giraldeau and Caraco 2000), which is actually 

an extension of Hawk-Dove into an n-person game (see Chapter V). 

The producer-scrounger game follows the logie of negative frequency depen­

dent selection as outlined above: both producers and scroungers have higher fitness 

when they are rare, which leads to a mixed ESS solution. A graphieal representation 

of this can be found in Figure 1.3, and in fact the first producer-scrounger model 

(Barnard and Sibly 1981) was a graphieal model that was later formalized (e.g. Parker 

1984; Viekery et al. 1991; Giraldeau and Caraco 2000). There have been various mod­
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Figure 1. The payoffs of producer (sol id line) and scrounger (dashed 
line) tactics as a function of the frequency of the scrounger tactic as 
expected in a producer-scrounger game. The intersection of the two 
payoff functions denotes what we cali the stable equilibrium fre­
quency (SEF) of the scrounger tactic. At the SEF, the payoffs to 
producer and scrounger are equal. 

Figure 1.3: Figure 1 of Mottley and Giraldeau (2000). Note the similarity ta Figure 1.2 

ifications and extensions ta the basic model, which l refer ta as the Deterministic 

Rate-Maximizing model, or DRM, following Giraldeau and Caraco (2000). For exam­

pie: 

• Vickery et al. (1991) also relaxed the assumption of incompatibility by allow­

ing opportunists who could play both producer and scrounger with differing 

efficiency. 

•	 Ranta et al. (1996) took into account competitiveness and food-finding effi­

ciency when extending the DRM. 

•	 Dubois et al. (2010) used the DRM model as a basis for modelling the evolution 

of flexible versus fixed individuals. 
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• Caraco and Giraldeau (1991) presented a stochastic version of the model that 

focuses on the minimization of the risk of energetic shortfall; see also Giraldeau 

and Caraco (2000, chapter 7) 

• Barta and Giraldeau (1998) introduced the 'phenotype-limited' producer-scrounger 

game to examine the effect of dominance. 

Extending the producer-scrounger game can become complex when even basic 

elaborations are added, and this has led to the popularity of producer-scrounger 

simulation modelling (see section 1.4 for a discussion on simulation methodologies). 

Of particular relevance to this thesis are: 

• Barta et al. (1997), who used a genetic algorithm to examine the geometry of a 

group of producer-scrounger foragers. 

•	 Beauchamp (2000b), who created an individual-based model to simulate learn­

ing rules in a producer-scrounger game. 

• Another individual-based model is found in Beauchamp (2008), created for 

the purpose of simulating spatial effects on social foragers. 

1.1.5 Empirical work 

Do species in the wild play this game? The existence of producer-scrounger re­

lationships has been studied in a diverse range of species; a partial list includes 

such species as bald eagles (Hansen 1986), shark mackerel (Auster 2008), kelp gulls 

(Steele and Hockey 1995), Harris sparrows (Rohwer and Ewald 1981), house spar­

rows (Barnard and Sibly 1981; Katsnelson et al. 2008), pigeons, (Giraldeau and Lefeb­

vre 1986; Lefebvre and Helder 1997), carib grackles (Morand-Ferron et al. 2007), ba­

boons (King et al. 2009), and barnacle geese (Kurvers et al. 2010), as well as nutmeg 

mannikins and zebra finches (Giraldeau et al. 1990). Laboratory work has focused 

largely on nutmeg mannikins (Lonchura punctulata) , also known as spice finches, 

and zebra finches (Taeniopygia gutta ta) , both of which are gregarious passerine birds 

found in Southeast Asia that feed on seeds typically found in discrete patches. Work 

on Lhese species has confirmed sorne of the model's assumptions, such as the as­

sumption ofincompatibility; Coolen et al. (2001) established that nutmeg mannikins 
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use a head-down posture when producing and a head-up posture when scrounging 

and showed that the proportion of head-up to head-down behaviours changed in 

the correct direction when the payoff to scrounging was manipulated. The interac­

tion of producing and scrounging with other effects, such as risk sensitivity (Wu and 

Giraldeau 2005), prey crypticity (Barrette and Giraldeau 2006), and anti-predatory 

vigilance (Coolen and Giraldeau 2003; Mathot and Giraldeau 2008) has also been 

explored. 

This thesis focuses on the theory of producer-scrounger games and so 1 leave 

an exhaustive examination of empirical work on the producer scrounger game to 

reviews such as Giraldeau and Caraco (2000) and Giraldeau and Dubois (2008), but 

empirical work of particular importance to my thesis is noted in later sections of this 

introduction. 

1.1.6 Personality and social foraging 

Animal personality is an area of behavioural ecology that has seen rapid growth in 

recent years (Gosling and John 1999; Koolhaas et al. 1999; Sih et al. 2004; Carere and 

Eens 2005; Groothuis and Carere 2005). The definition of personality is somewhat 

controversial (Réale et al. 2007), but a reasonable definition is 'differences between 

individuals in sorne behavioural and or physiological traits that remain consistent 

over time and contex!' (see Chapter IV). Examples of such personality traits include 

boldness, aggression, and proactivity (reviewed in Sih et al. 2004). Empirical evi­

dence for the existence of animal personalities and work on their properties has 

accumulated quickly (Réale et al. 2007; Biro and Stamps 2008; Sih and Bell 2008), 

but until recently theoretical explanations of the coexistence of personality types 

have been scarce. New work (e.g. Wolf et al. 2007; 2008; Wolf and Weissing 2011) has 

placed personality on a stronger theoretical footing by suggesting methods by which 

frequency dependent selection could allow multiple personality types to arise and 

aid in their subsequent maintenance. 

In the area of producer-scrounger games, this pattern of empirical and theo­

retical evidence has replayed itself at a smaller scale. Empirical work on barnacle 

geese (Branta leucopsis) has shown that there is a relationship between personality 

- boldness, in this case - and producing / scrounging tactics (Kurvers et al. 2010); 

bolder geese are more Iikely to be producers, while shy geese are more Iikely to be 
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scroungers. This follows a body ofwork on boldness showing that bolder individuals 

are more likely to approach food (e.g., Beauchamp 2000a; Dyer et al. 2009; Harcourt 

et al. 2009; Kurvers et al. 2009; Schuett and Dall 2009). To date, though, there has 

been no theoretical explanation provided for a link between the producer-scrounger 

game and boldness, and no a priori reason to believe that one should exist with the 

producer-scrounger relationship as a causal factor. Chapter IV explores this issue 

by modelling social foragers playing a producer-scrounger game that vary in bold­

ness to determine if a polymorphism of bold producers and shy scroungers arises 

naturally. 

1.2 Information use and learning 

The producer-scrounger game (section 1.1) is, at its core, a game about information 

use. In social foraging, information may be individually-acquired (personal infor­

mation, sometimes called private information) or acquired vicariously from others 

(social information; this section follows the terminology in Danchin et al. 2004). Per­

sonal information is information about an individual's world, such as the habitat and 

resources, that is acquired by the individual and remains private. For instance, an 

animal foraging alone may obtain information about a patch of food, which would 

be personal information. Social information, on the other hand, is information pro­

vided to others uncontrollably (inadvertent social information, or ISI) or purposely 

(signaIs). In the producer-scrounger game, inadvertent social information is pro­

vided by producers to scroungers, who use ISI to join patch discoveries. 

Despite the fact that the producer-scrounger game is effectively agame with in­

advertent social information as its primary driving force (Galef and Giraldeau 2001; 

Dall et al. 2005), when it cornes to acquiring information through learning more at­

tention has been paid to learning personal information in the game than social in­

formation. Here 1will describe the use ofboth personal and social information in the 

producer-scrounger model with particular reference to areas of interest in Chapters 

II, III, and V. 
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1.2.1 Personal and social information use while learning 

ln the producer-scrounger game, when the decision-making process surrounding 

an individual's choice of tactic use has been modelled (Beauchamp 2000b), the fo­

cus has been on personal information: by playing producer and scrounger in se­

quence, they integrate information about the payoffs to each and make a decision 

about appropriate tactic use based entirely on personal information. For instance, 

if the producer tactic fails to payoff an individual might increase the proportion of 

scrounger that they use. To date, learning mechanisms discussed in the literature 

have centred on this idea (Beauchamp 2000b, Chapter 11), but given the abundant 

social information available in the producer-scrounger game the absence of social 

learning in these models is curious, especially given empirical evidence that such 

learning might be occurring (Lefebvre and Helder 1997; Coolen et al. 2001). 

Be that as it may, one approach to learning in behavioural ecology has focused 

on the evolution of 'learning rules' (literature reviewed in section I.l.3). Learning 

rules are mathematical expressions of the value that an individual places on each 

behavioural alternative available to it as a function of the payoffs it has received to 

that alternative; in producer-scrounger games, this translates to the valuation that 

foragers place on producing and scrounging from payoffs received to sampling each 

tactic. Work on these rules in foraging has focused on a restricted set of plausi­

ble rules, such as the Relative Payoff Sum (Harley 1981), the Perfect Memory rule 

(Houston and Sumida 1987), and the Linear Operator rule (Bush and Mosteller 1955, 

mathematical details of each rule presented in Chapter Il); even restricted to these 

three choices, previous work on learning rules for the producer-scrounger game 

(Beauchamp 2000b) has not examined the relative performance ofthese rules against 

each other or their attractivity. Houston and Sumida (1987) noted that '[olur main 

concern is that we put the various rules into competition against each other. This is 

crucial because competition is the essence of the problem.' (p.302), and in Chapter 

II 1have attempted to do this in a comprehensive and rigorous fashion. 

While learning rules have focused on the integration of personal information to 

inform decision-making, other work such as the Social Learning Strategies Tourna­

ment (Rendell et al. 2010) has proposed social learning mechanisms for individ­

ual foragers and demonstrated that situations in which largely (or even entirely) 

ignoring personal information may be the optimal course of action. These strate­
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gies are often simple 'rules of thumb' which employ heuristic principles ta solve 

behavioural problems such as social foraging (Simon 1957; Gigerenzer 2000; Mc­

Namara and Houston 2009). Extending the study of producer-scrounger games by 

employing such heuristic sociallearning rules is the subject of Chapter V. 

1.2.2 Social information use beyond the individual 

Much has been made of individual use of personal and social information (Galef and 

Giraldeau 2001; Danchin et al. 2004), but information use in relationships between 

populations or species, such as predator-prey interactions, is less well-explored. Within 

a group it is well known that increases in the proportion of scrounging leads to lower 

mean intake rates (e.g. Beauchamp and Giraldeau 1996), due to a decreased num­

ber of producers looking for food (which leads to lowered search efficiency; Coolen 

2002). Coolen et al. (2007) demonstrated that the proportion of scrounging in a 

population can regulate that population's dynamics, but the question of whether 

populations can affect each other simultaneously through the manipulation of so­

cial information is largely open. Studies that have examined this issue previously 

have focused largely on one direction, Le. prey response alone (e.g. Abrams 2000; 

Lima 2002) or predator response alone (Murdoch 1973; Readshaw 1973; Ryer and 

Olla 1995; Cosner et al. 1999; Bonmarco et al. 2007). In the study in Chapter III, 1ex­

plore this question in greater detail by asking whether prey can manipulate the use 

of social information in predators playing a producer-scrounger game; in particular, 

can prey evolve to manipulate the use of scrounging in predators, lowering predator 

efficiency and increasing prey survival? 

1.2.3 Empirical work on learning in producer-scrounger games 

1am not aware of any studies which have directly tested the predictions of learning 

rules in producer-scrounger games (though sorne tests have been done in other for­

aging scenarios, e.g.: Regelmann 1984; Wildhaber and Crowder 1991; Amano et al. 

2006), though observations have been made which indicate that learning is indeed 

taking place. In one study of particular interest, Mottley and Giraldeau (2000) tested 

nutmeg mannikins using an apparatus that allowed them to control the payoffs to 

the producer and scrounger tactics and discovered that the birds were able to ad­
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just their behaviour over time to reach the stable equilibrium frequency (SEF); this 

study confirmed the equality of payoffs to the two tactics at equilibrium and demon­

strated that nutmeg mannikins were able to learn the equilibrium and change their 

behaviour when local conditions changed. Katsnelson et al. (2008) later found that 

house sparrows could be biased in their tactic use by early manipulation of their 

experienced payoffs, and this relationship was explored in nutmeg mannikins by 

Morand-Ferron and Giraldeau (2010), who found that nutmeg mannikins who had 

been exposed to high payoffs to scrounging used more scrounger behaviour in sub­

sequent trials where scrounging had lower payoffs compared to individuals who had 

been exposed to low scrounging payoffs to begin with. The form of the mechanism 

underlying this learning remains open, however, and is the subject of Chapters II 

and V. 

1.3 Social foragers in space 

In what is otherwise an excellent volume, a recent textbook on animal foraging (Stephens 

et al. 2007) features a surprising omission: not a single chapter deals substantively 

with spatial processes in foraging, and the entire book contains only a few passing 

mentions of the topic at ail. This is not an isolated problem; indeed, the standard 

reference text on social foraging (Giraldeau and Caraco 2000) does not have a sin­

gle mention of the concept in its index. This is an odd oversight, given that foraging 

is one of the most obviously spatial concepts in behavioural ecology, yet the ma­

jority of social foraging models have focused exclusively on time and ignored space 

(Lima and Zollner 1996; Valcu and Kempanaers 2010). Even models such as the ideal 

free distribution (Harper 1982), which are inherently spatial, are presented without 

an explicit description of the underlying spatial process for resources or consumers 

(e.g. Sutherland 1983; Cressman et al. 2004). 

Producer-scrounger games are subject to this problem as weil, as evidenced by 

the deterministic rate-maximizing model discussed in Giraldeau and Caraco (2000). 

The model contains assumptions which deliberately abstract spatial issues out of 

the game, but this creates its own problems. As an example, the model assumes 

that patch handling time is negligible and also that patch discoveries happen with 

a rate low enough that the chance of simultaneous discovery by producers is effec­
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tively zero; this eliminates problems related to the distribution of scroungers be­

tween patches, but clearly does not match observations in empirical work. The con­

sequence of that assumption is another assumption in turn: every scrounger joins 

the food discovery of every producer, which presents no problems to a non-spatial 

model but is an issue when spatial scale is introduced. The distortions introduced 

by these assumptions are less disruptive if group sizes and spatial extents are small, 

as they often are in laboratory observations conducted in small aviaries with flocks 

numbering no more than six or eight birds (a common enough occurrence: Gi­

raldeau et al. 1990; 1994; Mottley and Giraldeau 2000; Gauvin and Giraldeau 2004; 

Wu and Giraldeau 2005; Barrette and Giraldeau 2006, among others), but satisfying 

these same assumptions in any real environment would likely require birds ofunre­

alistic speed and cognitive ability. A common study species for laboratory observa­

tions is the zebra finch, but as Zann (1996) notes, foraging flocks in wild zebra finch 

populations can number in the hundreds. Further, aviary conditions in which indi­

viduals forage on square grids with regularly spaced patches laid out in a grid format 

ignore the spatial heterogeneity that animaIs foraging in reallandscapes face; this 

problem is replicated in the entire body of simulation work that has been done on 

the problem (including the work discussed below; Chapter VI explores the issues in 

detail). Mapping predictions from classical producer-scrounger models onto such 

populations of animais foraging in reallandscapes will be a difficult challenge vvith­

out spatially-explicit models. 

To date, few attempts have been made to address the issue in the study ofproducer­

scrounger games or social foraging in general. Ruxton (1995) was among the first to 

make a coherent call to address the problem, and presented a spatially-explicit sim­

ulation model for group foragers. Although Ruxton noted that spatial processes had 

significant effects on the rime taken by foragers to discover patches and join oth­

ers who have done so (" tilt seems likely that sharing patches discovered by other 

individu ais may not always benefit a forager because of the cost of travelling to the 

discovered patch", p. 284), the paper seems to have been léu'gely ignored. 

A more well-known model was published by Barta et al. (1997), wherein the au­

thors modelled the geometry of a producer-scrounger flock and predicted that pro­

ducers would be found near the outside of the flock and scroungers would concen­

trate near the centre. Curiously, though, despite focusing on flock geometry, the pa­

per adopts the same 'teleporting' scroungers as in the classical models, which dilutes 
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the spatial explicitness of their representation. Regardless, the model has played an 

important part in the producer-scrounger literature , and its predictions were quali­

tatively verified by a foIlow-up empirical study (Flynn and Giraldeau 2001). 

The only other spatially explicit model to be published in recent years is an effort 

by Beauchamp (2008), who created an individual-based model to study the problem. 

Unfortunately, in work not presented in this thesis (MS in prep.) 1discovered that the 

results of this study are not replicable. 

The most likely reason for this systematic omission is the difficulty in creating 

tractable models which contain such explicit spatial mechanisms. Models with ana­

lytical solutions are largely out of reach to current techniques, but a new generation 

of simulation methodology has grown up to help alleviate this problem (see section 

1.4), and the chapters of my thesis reflect these new techniques. 

1.4 Modelling methodology 

Contributing to the collected work on producer-scrounger models has required us­

ing simulation and computational methods of sorne complexity; these methods are 

increasing in popularity in biology and behavioural ecology in general, but their 

use still benefits from introduction and explanation. In this section, 1 provide an 

overview and brief description of the methods used in the thesis: individual-based 

models, genetic algorithms, and cellular automata. 

1.4.1 Individual-based models 

Forming the core of each of Chapters II,III, and IV is an individual-based model 

(IBM; also known as an agent-based model or ABM). An individual-based model is a 

computational model of the actions and interactions of individuals, usually imple­

mented by specifying rules of behaviour for individuals and simulating their inter­

action to see the effects on those individuals and the system as a whole (Grimm and 

Railsback 2005). lndividual-based models have many positive attributes, including 

the ability to simulate complex systems beyond the reach of analytical models and 

the chance to study emergent properties of those systems (Judson 2003; DeAngelis 

and Mooij 2005); negatives include difficulties in interpretation (Seth 2007) and the 

sometimes massive computational requirements for modelling systems of interest. 



16 

ln foraging theory, individual-based models al10w us to easily simulate social forag­

ing in a spatially explicit world (e.g. Ruxton 1995; Beauchamp and Giraldeau 1996; 

Beauchamp 2000b, Chapters II, III, IV), a task which has yet escaped capture by a 

tractable analytical modeI. 

1.4.2 Genetic algorithms 

Genetic algorithms are simulations which mimic the action of natural selection to 

solve optimization problems (Mitchell 1998). Populations of individual candidate 

solutions ('chromosomes') are generated randomly and their ability ta solve an op­

timization problem is assessed; chromosomes which prove to be better solutions to 

the problem are assigned higher 'fitness' values. After fitness evaluation, the candi­

date solutions / chromosomes undergo selection and reproduction to form a new 

population, modified by the genetic operators of mutation and / or recombination. 

As the simulation progresses through generations, solutions with higher fitness re­

produce in greater proportions and the population converges on fitness peaks in 

the adaptive landscape; unlike simpler hill-climbing algorithms, genetic algorithms 

have the ability to avoid local optima by 'jumping' over fitness valleys using muta­

tion and recombination (Mitchell 1998). 

The use of genetic algorithms in behavioural biology was called for over twenty 

years ago (Sumida et al. 1990), but the answer to that call was slow in coming. In 

recent years, however, genetic algorithms have seen use in problems such as forag­

ing (Barta et al. 1997, Chapters II and IV), the study of cooperation (Crowley et al. 

1996; Crowley 1996), vigilance (Ruxton and Beauchamp 2008), mate choice (Collins 

et al. 2006), and signalling (Hamblin and Hurd 2007; 2009; Szalai and Szamad6 2009), 

and urgings to adopt genetic algorithm approaches for complex problems (espe­

cially those involving game theory) have appeared (Hamblin and Hurd 2007; Ruxton 

and Beauchamp 2008). 

It should be noted that Chapter III features an unusual use of genetic algorithms 

in biology (and, indeed, elsewhere), as it uses two co-evolving genetic algorithms 

to model the coevolution of the predator-prey problem of interest. 1 am not aware 

of another example of this in the literature of behavioural biology, though the tech­

nique is used in computer science and bioinformatics circles (e.g. Lohn et al. 2002). 
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1.4.3 Cellular automata 

Cellular automata are discrete-time models in which individuals are embedded on 

a grid in one of a finite set of states and interact with their immediate neighbours 

in a way that is defined by their update rule; update rules define the state that indi­

viduals will be in after their current time step is completed (Wolfram 1984). Cellu­

lar automata are usually (but not always: Moyano and Sanchez 2009) deterministic, 

meaning that given the same input it is possible to replicate the results ofthat input 

at will, even if the results cannot be predicted ahead of time. 

By far the most famous example of a cellular automata is John Conway's Game of 

Life (described in Gardner 1970), which has simple genetic rules: the game is played 

on an infinite two-dimensional grid of cells, each of which is either alive or dead in 

any time step. The update rules for the grid are: a cell with two or three live neigh­

bours survives to the next time step, a cell with two or less live neighbours dies (star­

vation) as does a cell with four or more live neighbours (overcrowding), and a dead 

cell with three live neighbours becomes alive in the next time step (reproduction). 

The rules are depicted in Figure 1.4, along with two beginning patterns that do not 

immediately fade. 

From simple rules, the Game of Life can give rise to patterns of impressive com­

plexity, and it has been a source of much interest and research; recently, a self­

replicating pattern that constructs a new copy of itself with a generation time of 34 

million time steps was discovered (Groucher 2010). 

Cellular automata have also been combined with evolutionary game theory to 

explore the dynamics of simple frequency dependent games. Nowak and May (1992) 

constructed and analyzed a cellular automata to play the Prisoner's Dilemma game 

(a well-studied game that models the evolution of cooperation; Nowak 2006). ln 

the basic one-shot Prisoner's Dilemma game cooperation cannot easily evolve, but 

when played as a cellular automata the resulting dynamics showed chaotic complex­

ity that led to indefinite co-existence of both cooperation and defection. The power 

of this approach inspired the model of social learning in the producer-scrounger 

game that is presented in Chapter V 
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Figure 1.4: Figure 1 of Gardner (1970).
 

1.5 Thesis overview 

The articles in this thesis form my attempt to contribute to the study of social forag­

ing in general and producer-scrounger games in particular. Three broad themes will 

be evident in the studies presented in the following chapters. The first is the addi­

tion of needed complexity to the body of producer-scrounger theory: learning rules, 

coevolutionary pressures, personality, and sociallearning. The second broad theme 

is information use, both personal Oearning rules; Chapter II) and social (coevolution 

ofinformation use and sociallearning; Chapters III and V); even Chapter IV on per­

sonality and producer-scrounger games contains items of interest for information 
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use in its results. Finally, an important issue that acts as a substrate for this thesis is 

the effect of space on the producer-scrounger models. Every model presen ted in this 

thesis is spatially-explicit, and this spatial aspect has ramifications for the results of 

each chapter that will be deait with not only in the individual chapters but in the 

conclusion of the thesis as weil. 

In Chapter II, 1 attempt to clarify previous work on learning rules for social for­

aging (Beauchamp 2000b) by testing the attractiveness and stability of previously 

proposed learning rules in an individual-based model ofproducing and scrounging. 

By testing the rules in competition with each other and using a genetic algorithm to 

select the rule with the best performance, 1was able to provide evidence that Harley 

(1981)'s initial claims about an ES learning rule - overreaching as they may have been 

at the time - were true, and that the rule took the form he predicted; 1was also able 

to generate new predictions for empirical work based on patterns observed in the 

results on the evolution of the rule parameters. 

In Chapter III, 1show how the co-evolution ofpredator-prey population dynam­

ics can influence information use in predators as a function of prey trait evolution 

(clumping); this response to prey trait evolution led to changes in predator search 

efficiency and in turn changes in prey survival rates. The model 1 constructed for 

this effort used a set oftwo co-evolving genetic algorithms coupied to an individual­

based model in order to allow prey and predators to evolve against each other. 

In Chapter IV; 1 use a genetic algorithm on top of an individual-based model to 

explore the relationship of the animal personality trait boldness to the producing 

and scrounging tactics in order to determine if the bold producer / shy scrounger 

dimorphism seen in empirical work (Kurvers et al. 2010) would occur. This model 

allowed us to explore the relationship between boldness and social foraging thor­

oughly and proVided evidence regarding the probable form of the link between the 

two variables. 

Following this, in Chapter V. 1 present a novel producer-scrounger model in the 

form of a cellular automata that uses a sociallearning 'rule of thumb' as a mecha­

nism for decision-making about tactic choice. The model also has interesting spa­

tial characteristics and population dynamics that have implications for the study of 

producer-scrounger systems in future empirical and theoretical work. 

Finally, ChapterVI presents a model that 1developed to explore the effect ofland­

scape geometry (the way that space is represented, which in extant work has been as 



20 

a square grid) on producing and scrounging. The model demonstrates the impact of 

spatial heterogeneity on ESS outcomes, flock geometry, and feeding rates as part of 

a broader argument about the generalization of producer-scrounger models to real 

foraging situations. 

Chapter VII provides a synthesis of the thesis material and a discussion of key 

findings and and how they related to the themes of the thesis. 1 identify the contri­

butions to the study of producer-scrounger games and social foraging that my work 

has produced, and discuss directions for future research. 
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ILl Abstract 

The cognitive mechanisms by which an organism cornes to employ an op­

timal response to a situation are of great interest in behavioural ecology, but 

the basis and form of these mechanisms have been little studied. One ap­

proach employs learning rules, mathematical expressions that calculate the 

value of the behavioural alternatives in an organism's repertoire based on past 

and present rewards to those alternatives. Previous work on these learning rules 

has examined the performance of rules to determine whether they can achieve 

evolutionarily stable optimums. However, not only has this work tested rules in 

isolation, but the parameter values chosen to test them have been few and cho­

sen arbitrarily. Moreover, the environments in which the rules have been eval­

uated are unchanging, a condition that does not favour learning. In this study 

we extend simulation work on three learning rules (Relative Payoff Sum, Linear 

Operator, and Perfect Memory. We use a genetic algorithm to both estimate the 

optimal parameter values for each rule and place the rules in competition with 

each other in a foraging game with a changing environment. Our results con­

firm earlier findings that the relative payoff sum is an ES learning rule. However, 

the results go much further because they show that the form of the learning rule 

that qualifies as evolutionarily stable combines near inextinguishable produc­

ing with highly responsive scrounging. The relative payoff sum may provide a 

single rule that can account for the way an animal's ecology can come to affect 

its specific set of learning sensitivities. 
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II.2 Introduction 

In the course of their daily activities many animais are faced with choices. These 

may concern habitat selection, the exploitation of food patches, selecting prey to 

attack or mates to court or even opponents with whom to compete. The expected 

fitness return from such decisions depends on the information that is available to 

the animal and how it is used to decide on a course of action. When the value of al­

ternatives is uncertain and changes over time, animais collect information or sampie 

before deciding on a course of action. Selection is expected to have favoured indi­

viduals capable of acquiring information and acting appropriately (Stephens 1991). 

Models of optimal sampling under mostly non-social cireumstances have been pro­

posed and supported experimentally (Shettleworth et al. 1988). 

In social situations sampling can become more difficult because the values of al­

ternative courses of action not only depend on how the environment changes over 

time but also on the decisions of others (Giraldeau and Caraco 2000). In such cases 

sampling is best analyzed as an evolutionary game (Maynard Smith 1982). For ex­

ample, an animal foraging for two prey types may face uncertainty concerning the 

abundance of either prey type. But if it forages in the company of others, it must 

also contend with the changing abundances that will be induced by the prey selec­

tion decisions of its competitors. Determining which prey selection policy provides 

the greater payoff will require sorne sampling and adjustment of decision as condi­

tions change. 

The rule that governs an animal's sampling and its influence on decision in the 

context of games has been labelled a "Iearning rule" (Harley 1981). Learning rules 

are mathematical descriptions of how animais assign values to behavioural alterna­

tives based on current and past information about their payoffs obtained by sam­

pling. Maynard Smith (1982) and Harley (1981) argued that natural selection would 

favour learning rules that led the group most quickly to the expected evolutionar­

ily stable strategy: the ESS (Maynard Smith 1982). They defined an evolutionarily 

stable (ES) learning rule (Harley 1981) as a rule which, once fixed in a group, could 

l10t be invaded by any "mutant" rule. An ES learning rule, if one exists, would prove 

an extremely powerful tool for predicting the strategic use of alternative behaviour 

by animais engaged in games such as cooperation, fighting. habitat choice and re­

source exploitation (Dugatkin and Reeve 1997). 
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Maynard Smith (1982) and Harley (1981) proposed that one learning rule, the 

Relative Payoff Sum (RPS), was a strong contender for the title of an ES learning 

rule. Not too surprisingly, therefore, a considerable amount of research has been 

focused on testing the evolutionary stability of the RPS and other mies; sorne the­

oretical (Harley 1983; Houston 1983; Hines and Bishop 1983; Harley 1987; Houston 

and Sumida 1987; Tracy and Seaman Ir. 1995), sorne empirical (e.g. Milinski 1984; 

Kacelnik and Krebs 1985; Amano et al. 2006), and sorne using computer simulation 

(e.g. Regelmann 1984; Beauchamp 2000; Beauchamp and Fernandez-Iuricic 2004; 

Beauchamp 2004; Beggs 2005; Amano et al. 2006; Spataro and Bernstein 2007). In 

the course of this research three mies have been proposed as serious contenders to 

the title of ES mie: the Relative Payoff Sum (RPS; Harley 1981), the Linear Opera­

tor (LOP; Bush and Mosteller 1955), and Perfect Memory (pM; Houston and Sumida 

1987), the mathematical details of which are discussed in the methods. 

Despite the considerable research effort devoted to ES learning rules, none have 

emerged as convincingly evolutionarily stable. Strong conclusions have been ham­

pered bya combination of three major problems: first, few studies have pitted ail 

rules against ail others; second, ail studies have used rules fitted with just a few pa­

rameter values, apparently chosen arbitrarily; third, almost all rules have been tested 

in unchanging environments where learning is of little value. 

One of the most complete investigations into the question of ES learning rules 

has been conducted by Beauchamp (2000). To our knowledge, this is the only study 

that has attempted to study ES properties of learning mies in competition against 

each other. To do so, he used an agent-based model but tested rules using only three 

parameter values that were apparently chosen arbitrarily. Harley's 1981 original con­

cern of whether a learning rule might lead a population to adopt an uninvadable 

strategy through behavioural means cannot be addressed without determining the 

parameters which drive these learning mies. To date ail studies of the ES properties 

of learning rules have neglected the importance of the exact parameters used when 

testing the rule. Given the possible set of parameter values for these rules, only a 

miniscule portion of the available parameter space has been explored. If we are to 

conclude about a rule's evolutionary stability, it is imperative that we do so knowing 

that a rule's success is not just due to its being fitted with better-performing param­

eters. The only way to do this is by using each mle's optimal set of parameters. 

How do we find optimal parameter values for these rules to use in testing? An an­
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alytical solution to these equations is out of reach, and the set of possible parameter 

values (the parameter space) is too large to feasibly conduct an exhaustive search. 

To solve this problem, we turn to a heuristic search technique known as a genetic al­

gorithm. Genetic algorithms mimic the techniques of natural selection - differential 

reproduction, mutation, recombination - to find solutions to optimization problems 

(Sumida et al. 1990; Huse et al. 1999) Here, we use the genetic algorithm to evolve 

candidate rules with different parameter values, selecting those which perform best 

in the social foraging task to reproduce and using mutation and recombination to 

sweep the parameter space. One of the virtues of the genetic algorithm approach 

to modelling is that the evolution of traits can be made explicit (Hamblin and Hurd 

2007; Ruxton and Beauchamp 2008), and by linking it to a model with an explicit 

description of a behavioural mechanism, insights into the interaction between the 

two may be gained (for a review, see (Seth 2007)). A cautionary note is required here, 

though, since the language of the field of evolutionary computation borrows heav­

ily from biology while the comparisons between the two are not always so clear. It 

is important not to take the jargon of genetic algorithms too literally, as the details 

of the GA may seem odd, biologically; parameters and methods for genetic algo­

rithms are usually chosen for search power, not biological realism (see Ruxton and 

Beauchamp 2008, for a discussion on the ways of conceptualizing genetic algorithms 

in behavioural ecology). 

Beauchamp tested the properties of these rules as agents were engaged in play­

ing one of two foraging games, the Producer-Scrounger game (Barnard and Sibly 

1981) or an Ideal Free Distribution game (Fretwell and Lucas 1969; Sutherland 1983). 

Given that Beauchamp's results are similar whether the agents are engaged in a PS 

or an IFD game, we chose to have our agents play only a PS game. Although most 

experimental wark on PS games concerns foraging in small flocks ofbirds (Giraldeau 

and Caraco 2000), it is important to realize that the structure of the PS game is more 

general and applies widely to any case where the investment of sorne individuais 

is exploited by athers (Barnard 1984) much like the caller and silent satellite male 

strategies of many toads (e.g. Howard 1978) or the digging versus entering strategies 

of digger wasps (Brockmann et al. 1979). 

As in all investigations of the ES property of learning rules, Beauchamp's (2000) 

study is set in an unchanging environment. This is problematical because learning 

may be of most value when the environment is at an intermediate level of variability 
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(Kerr and Feldman 2003; Stephens 1991). So testing a learning rule under conditions 

where learning is of \ittle value may not have provided the rules with conditions that 

allowed them to perform efficiently. To provide rules with a variety of conditions we 

focus on changing two variables: group size, and environmental variability. Popu­

lation size is relevant for both biological and technical reasons. Technically, genetic 

algorithms are more powerful with larger group sizes, since a large group (popula­

tion) size means more candidate rules to select among. Biologically, we investigate 

the effect of group size ta determine how the use of learning may change in large 

or small groups. With regards to environmental variability we will investigate rule 

performance as environmental features such as patch density and food items per 

patch. 

Our first objective is to go beyond the use of arbitrary parameters when testing 

rules. To do this we determine the optimal parameters for each rule using a genetic 

algorithm. As this is occurring, the rules simultaneously compete with each other in 

the genetic algorithm, allowing us to form a clearer picture of the evolutionary sta­

bility of the rules, which is our second objective (Houston and Sumida 1987). Third, 

we wish to establish the evolutionary stability of rules in environments that vary. 

Finally, we hope to determine whether the rules predict similar or distinct group 

structures, that is whether agents will end up specia\izing on one or the other alter­

native or instead become generalist individuais that switch from one to the other 

alternative. 

II.3 Methods 

II.3.1 The model 

We use an agent-based foraging model that builds on the model described in Beauchamp 

(2000) and extends it by using a genetic algorithm to optimize the rule type and rule 

parameter choices of the agents in the mode\. 

The learning nues 

Each rule has its own pecu\iarities. The RPS has two components: one concerns the 

estimated value of the alternatives, the other is a decision based on these values. 
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Relative Payoff Sum (RPS): 

Si (t) =X· Si (t -1) + (l - x) . ri + Pd t) (lU) 

where Si(t) is the value placed on behavioural alternative i at time t, x is the 

memory factor which determines how highly the past is valued, ri is the residual, 

the cutoff below which the valuation of the alternative cannot go, and Pi (t) is the 

payoff to the alternative during the current round (Le. the amount of food eaten by 

the agent during that time step as above). 

In essence, the estimated values of the alternatives are updated by experience 

using a memory factor to weight past against current information, and the residuals 

provide default values for each alternative in the absence of sampling. 

The linear operator rule is the simplest of the three rules, and has been a pop­

ular choice for simulation and empirical work (Lefebvre 1983; Bernstein et al. 1988; 

Frischknecht 1996; Beauchamp and Fernandez-Juricic 2004; Amano et al. 2006). The 

form of the linear operator rule is: 

Linear Operator (LOP): 

(II.2) 

where the variables are the same as for the RPS rule. 

The linear operator rule differs from the RPS rule mainly in its lack of a residual 

value. This means that, unlike the RPS rule, if an alternative stops paying off, the 

value that is placed on the alternative can go to zero. The other difference is that 

in the LOP mie, the memory factor influences the contribution of the payoff to the 

value placed on the alternative. 

The perfect memory mie assumes the animal retains knowledge of ail payoffs up 

until the current time step. Thus, the value placed on an alternative is a ratio of the 

total payoffs for that alternative to the total payoffs for ail alternatives. Unlike the 

RPS or LOP rules, there is no memory factor to devalue older experience in favour of 

more recent experience. 

Perfeet Memory (PM): 

(11.3) 

where a and f3 are parameters, Ri (t) is the total payoffs to alternative i since the tirst 

rime step to time t and Nr(t) is the total payoff to the player from ail alternatives 

from the first time step to time t. 
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The parameters a and f3 are constant parameters with no immediately obvious 

interpretation. 

Foraging simulation 

Agents played a producer-scrounger foraging game (Barnard and Sibly 1981) on a 

variable-sized grid arranged into Sx by Sy patch sites where 20% of the patches ac­

tually contain food at the beginning of the simulation. Similarly, the group size of 

agents (nagents) was set to 10% of the area of the grid. We simulated 20 runs each for 

grid sizes of {10xl0, 20x20, 30x30, 40x40, 60x60, 100xl00 }leading to group sizes of { 

10,40,90,160,360,1000}. Patches contained 20 food items. 

At each time step, agents played either producer or scrounger. If they played pro­

ducer, theywould search for a food patch at their immediate location, with discovery 

being assured if food was present. If no food was found, they would move one square 

in one of the four cardinal directions (up, down, left, right), and select their strategy 

again. Agents could either move or eat in a single time step, not both. If agents 

played scrounger, they would scan the entire grid for conspecifics exploiting a patch 

and move towards the nearest feeding conspecific to join the discovery (if one was 

found). Scroungers chose the patch to move to only as a function of distance, regard­

less of the number of foragers at each patch. Agents moving to scrounge at a patch 

moved at twice the rate of movement while searching, or two grid squares per turn. 

If no conspecifics exploiting a patch were detected anywhere on the grid, agents 

would move randomly as above and select their strategy again. Agents exploiting a 

patch, whether as a producer or scrounger, would continue feeding at the rat~ of one 

food item per turn until the food was depleted. If the number of agents feeding at a 

patch exceeded the food available at the patch, agents would be selected randomly 

to consume the final food items. Upon depletion, the patch would be recreated at 

a random point elsewhere on the grid to maintain the overall patch density. There 

is no difference in energy consumption between the alternatives, and to simplify 

Beauchamp's analysis, we ignored the effect of forager interference by setting it to 

zero. 

Agents used one of three learning rules specified in the introduction, as encoded 

in their genetic algorithm chromosome (see next section) to determine their alloca­

tion to searching as a producer or scrounger. At the end of each time step, agents 
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updated their value for producer and scrounger based on the results of that time 

step, and recalculated p, the probability of playing scrounger. p was calculated ac­

cording to one of two possible equations: 

. Ss(t)
Matchmg: p = ,or (11.4) 

Ss(t) + Sp(t) 

1 ifSs>Sp
Maximizing: p = (11.5)

{ o otherwise 

This equations follow the usage in Beauchamp (2000), which is itself common 

(e.g. GroE et al. 2008). 

When the probability of scrounging had been calculated, the time step was con­

sidered completed and the process would begin again. Agents foraged for tsim = 500 

iterations, after which the foraging game ended. 

The genetic algorithm 

After the simulation component was finished, fitness values (calculated from the 

feeding rates) were fed to the genetic algorithm. Agents were ranked by their fitness 

values and selected for reproduction as follows: the bottom 10% offitness "died", and 

rherefore did not reproduce, while individuals in the top 10% of fitness values were 

eligible to replace the bottom 10%. Selection from the top 10% was proportional to 

fitness values, where individuals with higher fitness values had a higher chance of 

being chosen ("roulette wheel" selection; Goldberg 1989; Lee and Kim 2005). Be­

cause the members of the top 10% were sampled with replacement, a given individ­

ual in the top 10% could be selected more than once for replacement of the bottom 

10%. 

Once selection was finished, the selected group bred a new generation through 

the genetic operators of crossover and mutation, which are used to introduce vari­

ation into the new group of agents. Pairs of haploid "parents" were chosen for breed­

ing, qnd would undergo a uniform crossover operation, in which each locus is swapped 

between the parents "vith probability Pc = 0.5 (Goldberg 1989; Lee and Kim 2005). 

To clarify, each of the nine loci (see below) in the parent's chromosome were taken 

in turn, and if a randomly generated number between 0 and 1 was less than 0.5, 

the values of the loci were swapped between the parents; thus, on average 4.5 loci 



41
 

would be swapped between each set of parents. After swapping loci, the two new 

"child" chromosomes were subjected to mutation, with a per-Iocus probability of 

Pm =0.002 (see Table ILl for the bounds placed upon mutation), and the "children" 

were placed in the new group. This was continued until a new group the same size 

as the old group was constructed (group size was constant). With selection and re­

production completed, the foraging game was restarted with the new group. This 

cycle continued to tga = 500 iterations of the genetic algorithm. 

A nine-Iocus chromosome determined an agent's choice of learning rule (Table 

ILl). The first locus coded for rule choice 1,2,3 for RPS, LOp, and PM respectively, 

and the remaining eight loci coded for the parameters to each rule. Loci 2, 3, and 

4 coded for the RPS parameters rproducer, x, and rscrounger respectively. Loci 5 and 6 

coded for the LOP memory factor x and the choice of matching or maximizing al­

gorithm, while Loci 7, 8, and 9 coded for the PM parameters a and f3 and choice 

of matching or maximizing algorithms (the RPS rule used only matching, following 

Beauchamp (2000)). Table ILl summarizes the chromosome as well as the bounds 

placedupon mutation. The parameter values for the learning rule encoded into the 

agent's chromosome in the first generation were randomly selected, and optimized 

by the genetic algorithm in following generations. To determine if a group had fix­

ated on a particular strategy, we used an operational definition of a stable group with 

an average of over 90% dominance by one strategy for at least the last 100 genera­

tions (an average was used to handIe the problem of mutation noise at small grid 

sizes) . 

Locus Description Range Mutation Bounds 
l Rule type {x 1XE [1,2,3]} {m 1mE [1,2,3]} 

2 RPS producing residual. {x E IR+ 1 x 2: 01 {m E IR 1mE [-1.0, 1.0]} 

3 RPS memory factor. {XEIR+ 10sxsll {m E IR 1 mE [-D.I.O.Ill 
4 RPS scrounging residual. {x E IR+ 1 x 2: 01 {m E IR 1mE [-1.0, l.0]} 

5 LOP memory factor. {x E IR+ lOs x s Il {m E IR 1mE [-0.1,0.1]} 

6 LOP scrounge algorithm. {x 1 XE [maximize, match] 1 {m 1 mE [maximize, match]} 
7 PM a parameter. {x E IR+ 1 x 2: 01 {m E IR 1 mE [-10.0, 10.0]} 

8 PM f3 parameter. {x E IR+ 1 x 2: 01 {m E IR 1mE [-10.0, 10.0]} 

9 PM scrounge algorithm. {x 1 XE [maximize, match]} {m 1 mE [maximize, match]} 

Table ILl: Genetic algorithm chromosome description. 

The code for the genetic algorithm is based on that used and validated previously 



42 

in Hamblin and Hurd (2007), rewritten in Python (Lee and Kim 2005; Bassi 2007). 

The source code is available from the authors upon request. 

Environmental variability 

Frequency-dependent variability is a natural component of the mode!, but envi­

ronmental variability must be explicitly added in. To do so, we performed a series 

of test runs which held group size constant but varied environmental parameters 

(patch density and patch richness) that might have had an effect on the proportion 

of scrounger use, which is the response variable of interest in demonstrating an ef­

fect on forager behaviour. Preliminary analysis showed that the effect of patch den­

sity on scrounger use was markedly greater than that of patch richness, with patch 

density defined as the number of patches on the grid. This effect was qualitatively 

the same regardless of group size used for the test. Environmental variability was 

therefore added to the model by modifying patch density N times throughout the 

foraging simulation to create N + 1 environments with different patch densities ex­

perienced by the agents. Patch density would start at 20% and then new patch den­

sities were drawn from a uniform distribution from 1% to 10%, which was the range 

identified as having the maximum effect on scrounger proportion; thus, runs done 

with N =0 are comparable to runs done without environmental variability. We then 

performed runs with different values of N, with increasing values of N representing 

greater environmental variability. For the results presented here we varied N from 0 

to 9; we tested higher values of N, which had no effect on the pattern of results. 20 

runs were done at each level of environmental variability, at a group size of 90. 

II.4 Results 

11.4.1 Base model 

The RPS rule usually drives to fixation in under 100 generations (Figure lU). From 

table 11.2, it is clear that RPS is the dominant rule, evolving to fixation with increasing 

probability as the group size increases; this probability is also considerably larger 

than either of the other two rules. 
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Figure ILl: Typical evolution of learning rules in agents playing a producer­
scrounger game over 500 generations of discrete time. This run was done at a grid 
size of 40x40 with 160 agents and 320 food patches with 20 items in each patch. The 
bars indicate the proportion of the group playing a strategy (light grey is Relative 
PayoffSum, dark grey is Linear Operator, black is Perfect Memory). 
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Figure II.2: Mean optimal parameter values selected for by the genetic algorithm 
with standard errors for the RPS rille as group size increases. Circles are producer 
residuals, triangles are memory factor values, and squares are scrounger residuals. 
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Fixation: 
Group Size (n) RPS LOP PM None 

10 (20) 60% 15% 20% 5% 
40 (20) 70% 0% 15% 15% 
90 (20) 95% 0% 5% 0% 
160 (20) 95% 0% 5% 0% 
360 (20) 100% 0% 0% 0% 
1000 (5) 100% 0 0 0 

Table II.2: The percentage of runs in which each of the three learning rules, relative 
payoff sum (RPS), linear operator (LOP), and perfect memory (PM) went to fixation 
for each group size tested. Due to computational constraints, only 5 runs at the 
group size of 1000 were done. 

The parameters of the RPS rule evolved as a function of the group size provided 

(Figure II.2). The parameter for the residual associated with producer increased with 

the group size while the parameter for the residual associated with scrounger de­

clined and remained low over a wide range of group sizes. The parameter coding 

for the memory factor also declined \-vith group size. For the memory factor and 

scrounger residual, the standard deviation decreases as the group size increases and 

although no single value is ever settled upon, the two parameters appear to be ap­

proaching sorne typical value, while the producer residual remains more variable. 

More importantly, the parameter for the producer residual is always significantly 

higher than the parameter for the scrounger residual. Since the other rules were se­

lected out quickly and only fixated in a small number of runs, drawing conclusions 

about their parameter values would be difficult since we can not know whether the 

rule was selected out in a particular run because it did not achieve optimal parame­

ter values or because it achieved those values but stilllost to another, superior rule 

(fixation at group sizes greater than 10 occurred rarely enough to give us confidence 

that the PM and LOP rules are local, not global, optima) . We performed enough 

runs that the LOP and PM rules were nearly certain to achieve optimal values often 

enough to give us confidence abou t the attractiveness of the RPS rule, but for these 

reasons interpreting LOP and PM parameter values would be difficult, and so we 

foeus here on the values of the RPS parameters. 

We found a pattern of increasing specialization as group size increases (Figure 

11.3) . 
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Figure II.3: Mean proportion of individuals that are specialist producers (fil1ed cir­
des) or scroungers (open circ1es) as a function of group size. Means are based on 20 
runs and bars show standard errors. The solid line is the combined mean of special­
ists. 
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II.4.2 Environmental variability 

Table II.3 shows the trend in rule evolution as a function of environmental variabil­

ity and group size. Group size was the only significant predictor of fixation when 

entered into a logistic regression of size, variability, and their interaction against a 

binary response (1 =RPS, 0 =the other 3 outcomes; size: Z796 =6.533, P < 0.00001; 

variability: Z796 = -0.201, P =0.84; interaction: Z796 = -1.838, P = 0.07). The genetic 

algorithm evolved the RPS rule to fixation preferentially for group sizes greater than 

10. RPS parameter evolution seemed to be unresponsive to environmental variabil­

ity (Figure lIA - note the similarity to Figure II.2). 

As before, we also examined the pattern of specialization, this time as a func­

tion of increasing environmental variability. Specialization increased with increas­

ing environmental variability (Figure 11.5), and examining producer and scrounger 

specialists separately shows that producer specialists increase as the environment 

becomes more variable (Figure 11.5). Also as before, the parameter for the producer 

residuals were consistently an order of magnitude greater than the parameter for the 

scrounger residuals. 

II.5 Discussion 

Our results show a clear trend amongst the three learning rules that we tested: the 

RPS rule evolves to fixation with increasing frequency as the group size increases, 

and evolves ta fixation at a minimum of 60% at the smallest group sizes. The evolu­

tionary stability of the RPS learning rule that we found confirms an earlier analytical 

analysis by Tracy and Seaman Ir. (1995) which showed that RPS was an ES learn­

ing rule. The genetic algorithm provides evidence for the stability of RPS, though it 

does not conclusively demonstrate that the LOP or PM rules are not evolutionarily 

stable, just that RPS is a much more powerful attractor in the strategy space, likely 

because it converges faster to the ESS (Tracy and Seaman Ir. 1995). Harley's (1981) 

original concern ofwhether a learning rule might lead a group to adopt an uninvad­

able strategy through behavioural means cannot be addressed without determining 

the parameters which drive these learning rules. To date aIl studies of the ES prop­

erties of learning rules have neglected the importance of the exact parameters used 

when testing the rule. Our study is the first to provide support for the ES property of 
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Figure II.4: Mean optimal parameter values selected for by the genetic algorithm 
with standard errors for the RPS rule as group size increases. Circles are producer 
residuals, triangles are memory factor values, and squares are scrounger residuals. 
Variability increases to the right, and runs are done at group size 90. Means are based 
on 20 runs. 
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Figure 11.5: Mean proportion of individuals that are specialists as a function of en­
vironmental variability. Specialist producers are filled circ!es, specialist scroungers 
are open circ!es, and the line shows the trend in combined specialization. Means are 
based on 20 runs and bars show standard errors; variability increases to the right. 
Runs done at a group size of 90. 
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[Group size 10] 
Periods ofvariability: 

Rule 0 1 2 3 4 5 6 7 8 9 
RPS 60% 35% 35% 25% 30% 30% 5% 25% 40% 30% 
LOP 0% 0% 5% 0% 0% 0% 0% 0% 0% 0% 
PM 30% 40% 35% 50% 35% 30% 75% 40% 45% 55% 

None 10% 25% 25% 25% 35% 40% 20% 35% 15% 15% 
[Group Slze 40] 

Periods of variability: 
Rule 0 1 2 3 4 5 6 7 8 9 
RPS 95% 90% 100% 95% 60% 70% 65% 80% 30% 80% 
LOP 0% 5% 0% 0% 0% 0% 0% 5% 10% 10% 
PM 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

None 5% 5% 0% 5% 40% 30% 35% 15% 65% 10% 
[Group Slze 90] 

Periods of variabihty: 
Rule 0 1 2 3 4 .5 6 7 8 9 
RPS 100% 95% 100% 95% 100% 90% 95% 95% 90% 85% 
LOP 0% 5% 0% 0% 0% 0% 0% 0% 0% 0% 
PM 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

None 0% 0% 0% 5% 0% 10% 5% 5% 10% 15% 
[Group Slze 160] 

Periods of variability: 

Rule 0 1 2 3 4 5 6 7 8 9 
RPS 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
LOP 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
PM 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

None 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Table 11.3: Rule evolution by group size and environmental variability. n =20 runs 
were done for each combination of group size and variability. 

the RPS while allowing candidate rules to evolve ta their optimal parameter values. 

Our finding of a single learning rule with great attractive power in the strategy 

space somewhat contradicts simulation results of Beauchamp (2000), who instead 

reported multiple stable rules. However, this contradiction may be attributed ta use 

of a single, rather small, group size of 10 foragers where Beauchamp's results are 

in line with ours. We found that as the group size increases the other mIes can no 

longer evolve to fixation. The overwhelming stochasticity of the payoffs that are ex­
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pected at such a small group size makes the fitness landscape almost impossible ta 

optimize because any change in behaviour by one individual will exert a strong in­

fluence on the payoffs obtained by all other individuals in the group. As the group 

size increases the variance in payoffs decreases and the genetie algorithm is bet­

ter able to reach fitness optimums. If we are correct that small group sizes make it 

more difficult to reach the optimal allocation to producer and scrounger, then both 

experimental work and field observations of Producer-Scrounger systems (Mottley 

and Giraldeau 2000; Wu and Giraldeau 2005), should find that using larger groups 

increases the rate at which animaIs reach behavioural equilibria. No such study has 

yet been conducted. Our result also suggests that in animaIs confined to frequency­

dependence in small groups of 10 or less, any of the three learning rules or perhaps 

combinations of these ought ta be expected. To date no study has explored whether 

populations are polymorphie for learning rules. 

Why does the RPS rule predaminate at any but the smallest group sizes? The 

answer may lie in the structure of the learning rules themselves. The linear op­

erator rule allows for adjustment to rapidly changing local conditions, but cannot 

continue sampling an alternative once that has failed to pay off for any appreciable 

amount of time. In other words once one alternative is lost there is no real way of 

allowing the animal ta sampie it in case its value suddenly increased. The perfect 

memory rule accumulates information about aIl the payoffs ever received for an al­

ternative which creates an important inertia of responding that prevents the animal 

from taking advantage ofrapid changes in the value of alternatives. The RPS presents 

sorne important advantages over those two rules. Because it incorporates parame­

ters for residuals, constant parameters that fix the lowest possible rate of responding 

to each behavioural alternative, neither of these alternatives can ever totally extin­

guish. The animal will always have a non-zero probability of trying an alternative 

even if it hasn't paid off for a long time. Moreover, the memory parameter weighs 

the importance of past events such that the inertia provided by the past can be smal!. 

Finally, the mathematical structure of the rules themselves may give the RPS rule an 

advantage, since the RPS rule has one extra parameter and a model's performance 

increases with the number of parameters in the mode!. This should not, however, 

be taken as a definite cause for why the RPS was selected by the genetie algorithm in 

preference to the other rules, since the increased number of parameters also makes 

for a more difficult optimization problem to solve in the first place. In short, the 
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number of parameters may have helped the RPS rule perform better in the forag­

ing game, but may have disadvantaged itin the genetic algorithm, and it is unclear 

which effect would be more important. 

The geneticalgorithm allows the parameters of aIl the learning rules to evolve 

ta optimal values. The evolution of parameter values shows an interesting pattern: 

at all group sizes, the RPS's parameter for the producing residual evolves ta a much 

greater value than the equivalent parameter for scrounging. This makes sense and 

demonstrates that it is optimal never to give up the producer strategy even if it tem­

porarily fails to provide rewards. It is not the same, however, for the scrounger strat­

egywhich is associated with a much lower residual value. This implies that it can pay 

to stop scrounging altogether when current payoffs are low, only to be reacquired 

when scrounging begins to pay off again (since the parameter for the scrounging 

residual approaches, but does not reach, zero, which forces the payoffto be sampled 

accasionaIly). This asymmetry in residual values means that when smaIl groups of 

animaIs are engaged in a producer-scrounger game, if they are using the RPS rule 

they need not try to determine a combination of producing and scrounging. They 

should instead start offwith a low level of scrounging and increase its use when the 

payoffs it obtains from that option are relatively greater than those from producer. 

The RPS with a higher producing residual therefore makes learning the equilibrium 

use ofproducer and scrounger much easier. On the other hand, an RPS with a mem­

ory factor very close to zero can actuaIly inhibit changing behaviour, such that the 

ratio of the residuals is the overriding factor in the decision whether to play producer 

or scrounger; in this case, evolution wauld be required to shift the ratio of producer 

and scrounger behaviours; the interplay between these elements of the RPS rule may 

help regulate population dynamics (Coolen et al. 2007). 

This discrepancy in residuals between the two tactics is likely to be a factor in 

the pattern we observed for the structure of the groups which evolved playing the 

RPS rule. We found that tactic specialization (playing a pure strategy of producer or 

scrounger) increased with group size. This move from a monomorphic group play­

ing a mixed behavioural strategy to a dimorphic group playing fixed producing or 

scrounging has interesting implications for foraging groups. The instability of mixed 

strategies in large, learning populations has been predicted analytically (e.g. Craw­

ford 1989), while evidence ofmixed strategyuse is common in empirical work, which 

typicaIly uses small group sizes (Giraldeau and Dubois 2008). The work we present 
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here on learning rules may represent a bridge between these two approaches. 

Finding a test for the RPS rule which distinguishes it from other rules (such as 

the linear operator rule) has proven difficult in the past (e.g. Regelmann 1984; Milin­

ski 1984; Kacelnik and Krebs 1985). This difference in the producing and scrounging 

residuals suggests an easy empirical test ofthe RPS rule. If the parameter for the pro­

ducing residual is much higher than the parameter for the scrounging residual, then 

it should be much easier to reduce scrounging behaviour to lower levels than pro­

ducing behaviour in animais that are using the RPS rule; if producing is maintained 

at a high level despite its failing to payoff, this would provide evidence against the 

LOP and PM rules, since neither has a parameter for residuals to keep an animal's 

sampling of producing from waning after it fails to payoff for a substantial period 

of time. The ease of scrounging has been demonstrated empirically (Coolen et al. 

2001), but we are unaware of any test which has attempted to determine the rela­

tive difficulty of manipulating the producer and scrounger use of an animal. The 

predominance of RPS for most group sizes also has important implications for em­

pirical work on learning, since many of the studies which have been done to date 

have used the linear operator rule as a reference point (Lefebvre 1983; Bernstein 

et al. 1988; Frischknecht 1996; Amano et al. 2006), probably because of its relative 

simplicity, but our results show that this may be incorrect. 

The evolution of parameter values showed not only that the residuals evolved 

a definite pattern, but that the memory factor for the RPS rule was selected to be 

reduced (approaching, but not reaching zero). This means that optimal RPS param­

eters were selected to discount recent information gained about the environment. 

Taken together, the optimal residuals and memory factor generate an RPS that is 

rather insensitive to short-term changes in payoffs but whose overallievei of using 

strategies is fixed by the residuals. The values of the residuals represent an inflexi­

ble bias for producing and scrounging that leaves little room for local adjustment. 

This is rather paradoxical because there is an optimal ES learning rule that evolves 

towards parameters that place greater weight on genetically determined fixed resid­

uals and reduces the importance of experience by having a small memory factor; in 

essence, the optimallearning rule rejects learning. 

In our study the payoffs associated vvith producing and scrounging varied as a 

result of two distinct processes. First, the adjustment in individual use of producing 

and scrounging as foraging progressed changed the payoffs experienced by the other 
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players. Second, we changed the resource distribution over time which affected 

equilibrium levels of producing and scrounging, and found that highly stochastic 

environments should select against learning. The RPS evolved parameters that forced 

genetically fixed producing at high levels, suggesting that the payoffs may simply be 

too stochastic to be worth tracking. Intermediate levels of environmental variation 

that would lead non-social foraging theorists to expect selection for learning (Kerr 

and Feldman 2003; Stephens 1991) may in fact select against learning in a social for­

aging context, as it did in this study, where no amount of environmental variation 

evolved a rule that emphasized short-term flexibility. The RPS rule, with its com­

bination of flexible memory factor and hard-coded residual values, was apparently 

best able to deal with the trade-off between the advantage of learning to respond to 

new circumstances and the ability to pre-select for the best average response over 

multiple environments. 

The finding that the RPS rule evolves to ignore short-term experience in favor of 

genetically fixed behaviour is surprising, and suggests that our picture of the value 

that learning brings to an organism is incomplete. Given that our model includes 

both frequency-dependent and environmental variation, we can only ask whether 

our model has failed to capture sorne relevant component of a learning response to 

one or both ofthose sources ofvariation, or ifthese kinds ofuncertainty are not what 

drives the acquisition and maintenance of learning ability. Answering that question 

will be an important step in understanding the role of learning in animal behaviour. 

It remains to be seen, however, whether the RPS generalizes to other behavioural 

decision situations such as the evolution of cooperation or the ideal-free distribu­

tion. Future work should therefore test this rule against other game theory mod­

els. Frequency-dependent effects on learning evolution at smail group sizes also 

deserves more attention than could be paid here; given its relevance to natural sit­

uations, where small groups may be common, it is important to de termine if the 

genetic algorithm's lack of agreement on rule evolution is just noise or if a pattern 

can be found. Finally, since the rule structure itself is an arbitrary creation, we are 

currently using genetic programming techniques to evolve not only the parameters 

to the rules, but the structure of the rules themselves. 

The RPS rule is clearly a superior learning rule at ail but the smallest group sizes 

in a foraging producer-scrounger game, and the evolved form of the rule, with its 

emphasis on fixed residuals in the face of both frequency-dependent and environ­
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mental variation, raises important questions about animallearning in a social for­

aging context. The relative payoff sum may therefore provide a single rule that ac­

counts for the way an animal's ecology cornes to affect its specific set of learning 

sensitivities. 
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111.1 Abstract 

When animaIs forage sociaJly, individuals can obtain prey from their own 

searching (producer tac tic) or by using the behaviour of others (scrounger tac­

tic) when it provides inadvertent social information (lSI) that food has been 

located. This rsr may either indicate the location of food (social information, 

SI), or it may indicate the quality of the resource (public information, PI). To 

date, few studies have explored the selective consequences for prey ofbeing ex­

ploited by predators that use rSI. Prey exploited by such predators should evolve 

traits that favour high levels of rsr use (scrounging) because this would result in 

lower predator search efficiency given that fewer predarors would be searching 

directly for the prey. Our simulations confirm that rSr-using predators should 

increase their use of rsr when their prey form larger clumps resulting in higher 

prey survival. Our objective therefore is to explore whether prey will evolve to­

wards higher clumpiness when their predators use rsr, using genetic aJgorithm 

simulation. The preywere subjected to one ofthree types ofpredarors for over 

500 prey generations. The predators either used: (1) no sociaJ information (NS), 

(2) sr only, or (3) PI. Surprisingly, the prey evolved the highest clumpiness for 

NS predators. Prey evolved towards smaller clump sizes with sr predators and 

the clumps were marginally larger when predators used PI. The result is due to 

the prey evolving the minimum clumpiness required to cause maximal rsr use 

by their predators. We discuss how this response by prey may favour the use of 

pr over sr in their rsr -using predators. 
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III.2 Introduction 

A great deal of research has been invested in exploring how predators influence the 

distribution of their prey. Most studies have focused on solitary foragers, and the 

general pattern emerges that prey evolve towards clumped distributions, a response 

that reduces the efficiency of predator searching (Taylor 1977; Bonmarco et al. 2007). 

Yet, a large number of predators forage sociaUy. Social foraging has been shown to 

impact predator efficiency at detecting prey (Giraldeau and Beauchamp 1999). This 

wiUlikely affect the anti-predator strategies evolved by their prey (Barrette and Gi­

raldeau 2006) and, in turn, how predators adapt their search strategies. 

When animals forage socially, individuals can obtain prey by searching for food 

patches themselves (producer tactic), but they may also search for patches discov­

ered by others (scrounger tactic). To use the scrounger tactic, the predator must rely 

on information provided inadvertently by a successful producer. This inadvertent 

social information (ISI) can be ofrwo types (Danchin et al. 2004); it may provide so­

cial information (SI) simply indicating the location of the resource or it may provide 

public information (PI; Valone 1989; 2007) that indicates the quality of the resource 

based on the performance of the individual already engaged in exploiting it. PI is 

thought to be better than SI because it is used preferentiaUy when it is equaUy costly 

to obtain as other types ofISI (Coolen et al. 2005). 

The gains from using ISI are likely to be negatively frequency dependent, as is 

the case for aU producer-scrounger (PS) games (Barnard and Sibly 1981; Giraldeau 

and Caraco 2000); each tactic does better relative to the other when it is rare (Mottley 

and Giraldeau 2000). Under most circumstances, we expect the coexistence of both 

tactics at a stable equilibrium frequency (Mottley and Giraldeau 2000) where payoffs 

ta each tactic are equal. Because scrounging, and hence ISI use, is mutuaUy incom­

patible with producing (Coolen et al. 2001), any increase in the stable equilibrium 

frequency of scrounging results in a decreased number of producers that are concur­

rently searching for prey, and thus, lower predator search efficiency (Coolen 2002). 

Therefore, prey may be expected to evolve characteristics that can induce high rates 

of scrounging in their predators to reduce predator search efficiency (e.g. prey cryp­

ticity; Barrette and Giraldeau 2006). Another such trait may be prey clumpiness, 

because larger prey clump sizes are predicted to increase the stable equilibrium fre­

quency of scrounging (Vickery et al. 1991; Caraco and Giraldeau 1991) and have been 
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demonstrated to reduce predator efficiency at finding patches (Coolen 2002). 

The behavioural traits of prey and predators engaged simultaneously in a PS 

game have only been examined on very short temporal scales, usually by monitoring 

the immediate response of players to environmental variation. Coolen et al. (2007) 

made an important step towards rectifying this by showing that scrounging can reg­

ulate both predator and prey populations. However, the impacts of scrounging, and 

thus the rate and type of information use, have never been empirically examined 

in an evolutionary context. Furthermore, despite the importance of predator-prey 

interactions in bridging behaviour and population ecology,· very few studies have 

examined simultaneously the evolution of predator and prey, with most studies fo­

cusing only on prey response to predation pressure (Abrams 2000; Lima 2002) or vice 

versa (Murdoch 1973; Readshaw 1973; Cosner et al. 1999). 

Here, we simulate a population of predators engaged in exploiting prey and thus 

explore a system of reciprocal evolution that integrates the behaviour of predator 

and prey in response to each other. First, we determine whether the optimal re­

sponse of a predator is to increase its use of ISI and scrounge more when its prey 

form larger clumps. Then, we use a genetic algorithm approach to investigate whether 

prey confronted with predators that use: (1) no social information (NS), (2) SI, and 

(3) PI evolve towards the formation of increasingly larger clump sizes. 

111.3 Methods 

Agents played a producer-scrounger foraging game on a 40 x 40 grid, with predator 

population size set to 10 and prey population size set to 1000. At each time step, 

predators played either producer or scrounger. If they played producer, they would 

search for a prey patch at their immediate location, with discovery being assured if 

prey were present. If no prey were found, predators would move one square in one 

of the eight cardinal/sub-cardinal directions and select their strategy again. Ifpreda­

tors played scrounger, they would scan the grid for conspecifics exploiting a patch 

and move towards them to join the discovery if one was found. Predators moving 

to scrounge at a patch moved at twice the normal rate of movement while search­

ing (i.e. two grid squares per turn; Beauchamp 2000). If no conspecifics exploiting 

a patch were found, agents would move randomly as above and select their strat­
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egy again. Predators exploiting a patch, whether as producer or scrounger, would 

consume one prey item per time step, and continue feeding until the prey were de­

pleted or the simulation ended, whichever occurred first. Predators had neither a 

minimum required, nor maximum allowed, food intake level. A complete simula­

tion run consisted of 500 iterations of the above cycle. 

In the NS scenario, predators can only discover food patches by searching them­

selves (producer tactic), and the scenario is provided as a reference against which 

to compare the other two scenarios in which predators do use ISI. In the SI sce­

nario, predatars can locate foodthemselves (producer tactic), or use foraging con­

specifies as a eue to the location of food patches (scrounger tactic), and their allo­

cation to each tactic is determined by the relative payoff sum (RPS) learning rule 

(Harley 1981). The relative payoff sum is a mathematical decision rule with the fol­

lowing form: 

(IIU)· 

where Si(t) is the value placed on behavioural alternative i at time t, x is the 

memory factor which determines how highly the past is valued by determining how 

much the value placed on the alternative in previous rounds is used in calculating 

the current value placed on the alternative (x· (Si(t-1))); this might be viewed intu­

itively as the degree to which past rewards to a strategy affect how the organism cur­

rently values the behaviour), ri is the residual (the cutoff below which the valuation 

of the alternative cannot go even if the alternative should stop paying off entirely), 

and Pi (t) is the payoff to the alternative during the current round, calculated as the 

amount of food ingested during that round by using that alternative (consequently, 

the payoff to at least one alternative will be zero each round since only one alter­

native can be used in a single time step). The probability Ps of using the scrounger 

tactic was then calculated by matching: 

, = Ss(t) (III.2)
P~ Ss(t) + Sp(t) 

The use of a decision rule ta model the learning of behaviour follows that found 

in Beauchamp (2000). 

Finally, in the PI scenario, predators can search for food themselves (producer 

tactic), or use foraging conspecifics as a eue to the location of food patches (scrounger 
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tactic), however, in this case, scroungers were also able to calculate whether they 

could reach a target patch before the patch was exhausted. This calculation was per­

formed once, when the target search was performed, and was not recalculated as the 

scrounger moved towards the patch. 

At the beginning of the simulation, prey were aggregated according to their clump 

size, which had initial values ranging randomly from 1-S0. The clumping algorithm 

clumped aU prey with an identical clump size together into patches as large as the 

coefficient itself: as an example, if 4S prey had a clump size of 10, four clumps of 10 

would be produced as weU as one clump of S. The initial locations of predators and 

prey clumps were selected randomly from a uniform distribution over the set oftwo 

dimensional grid coordinates. 

111.3.1 Genetic algorithms 

Genetic algorithms are heuristic algorithms used to solve optimization problems by 

mimicking the methods of natural selection (selection,mutation,recombination; see 

Goldberg 1989). In behavioural biology, genetic algorithms are increasingly used to 

solve complex models of behaviour (Sumida et al. 1990; Hamblin and Hurd 2007; 

Ruxton and Beauchamp 2008). 

Two genetic algorithms running in parallel were used to aUow predator and prey 

characteristics to evolve. The performance of predators was calculated as the sum 

of the prey eaten over the entire time course of the simulation, while the perfor­

mance of prey was calculated as the number of iterations in which prey remained 

alive; thus, for prey a maximal performance value would be SOO, equal to the num­

ber of iterations for the simulation. In each genetic algorithm, agents were ranked 

by their performance and a new population was constructed using roulette-wheel 

selection (in which the chance of being selected for reproduction or replacement is 

related to fitness; Goldberg 1989; Lee and Kim 200S) over the top lS% of the pop­

ulation (selected for reproduction) and the bottom lS% of the population (selected 

for replacement). Mutation and recombination were then applied, with a mutation 

rate of 0.01 per locus and a recombination probability of O.S. The simulation compo­

nent was restarted with the new population when selection and reproduction were 

completed for both predator and prey populations. This cycle continued for SOO 

generations of the genetic algorithm. 
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A three loci chromosome was used for the predators, with one locus for each 

residual (producer and scrounger) and the memory factor. Values for the residual 

loci were {ri E: IRlri ~ 01 where IR is the set of real numbers, while values for the mem­

ory factor were {x E: IRIO :5 X:5 Il. For prey, the chromosome consisted of a single lo­

cus with an integer value ~ 0, which was the dumping coefficient. Initial values were 

randomized; residual values were constrained between 0-5 initially, but allowed to 

mutate above that, while dumping coefficients were constrained between 0-50 but 

allowed to mutate above 50. Mutation steps (the allowable range in which mutation 

can modify the value of a locus) for residuals were E: [1.0,1.0], for the memory factor 

were E: [0.1,0.1], and for the dumping coefficient were E: [3,3]. The results showed 

no sensitivity to these values. 

The code for the genetic algorithm is based on that used and validated previously 

by Hamblin and Hurd (2007), rewritten in Python (Lee and Kim 2005; Bassi 2007). 

The source code is available from the authors upon request. 

111.3.2 Simulation types 

Two simulation types were performed. In the first, the prey used a constant dump 

size throughout the simulation so that the predators could modify their level of scroung­

ing to maximize their gains. In the first set of simulations, prey dump size was fixed 

for each run with prey dump sizes stepped from 1 to 50 in steps of five (except the 

initial step: 1,5, la, 15, etc.). In the second set of simulations, prey dump size was 

free ta evolve in the face of predators. For both simulation types, 25 replicates of 

each parameter combination were run. 

To determine whether the simulated evolutionary patterns were directional (i.e. 

demonstrably different from a random walk), we assessed the patterns for signatures 

of an auto-regressive (AR) process, a moving average (MA) process, or sorne mixture 

of the two (ail models were implemented in R ver. 2.6.2). If an AR process (without 

differentiation) or MA pro cess is apparent in a model, then the pattern cannot have 

been created from a random walk or drift. We chose this ARlMA (auto-regressive 

integrated moving average) procedure over estimating a trendline (e.g. with a linear 

mode!) to better understand and describe temporal patterns in the data; ARlMA es­

timates how preceding points influence each point in a temporal data series to infer 

underlying evolutionary processes (Box and Jenkins 1976). ARlMA models are spec­
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ified in the form (p, d, q), where p is the number of AR parameters, dis the level of 

differentiation, and q is the number of MA parameters. An example pattern gener­

ated from a random process (with or without drift) could thus be represented as (0, 

0,0). 

To fit our ARIMA models, the series first had to be stabilized by determining the 

level of differentiation required (Le. the variance associated with time must be re­

moved). In our case, aU models of dumping behaviour showed a very slow decay, 

indicating that a first-order differentiation (a model of the form (p, l, q)) was nec­

essary to remove the trend to make the data stationary. No transformations were 

required for models of scrounging behaviour. As our second step, we then examined 

temporal autocorrelation in the fitted series to determine whether any AR and MA 

terms belonged in the model, how many terms were necessary, and the coefficients 

of each of those terms. 

III.4 Results 

The predators increased their use of the scrounger tactic in response to increased av­

erage prey dump size. The increase in scrounger frequency however, was non-linear, 

and reached an asymptote when ca. 60% of individuaIs scrounged for prey in dump 

sizes 2:: 15 (Fig. 111.1). The number of prey surviving at the end of a foraging bout 

mirrored those for scrounging: as dumping increased, so did the number of prey 

surviving (ANOVA: FlO ,264 =96.143, P < 0.0001). For prey survival, as for scrounging, 

no further increase in prey survival was seen above dumping coefficients of 15, with 

prey survival reaching an asymptote near 600 (Fig. III. lB) . 

Prey evolved towards increased dumpiness (from 25 starting value to ca 40) with 

NS predators (Fig. III.2A). The increase in prey dump size was non-linear, with an 

asymptote dump size of 40 reached after approximately 250 generations. The best­

fitARIMA model (0, 1,2) contained two MA terms with smaU coefficients (8 =-0.16 

and -0.11), which reflect the time series data fluctuating around a slowly increas­

ing mean. These low MA coefficients indicate low resilience in the dumping data, 

but the fact that there were two MA terms in the model indicates the series is non­

random and suggests a tendency to inflect in the direction of the exogenous pertur­

bation (Le. presence ofpredators aU playing producer and searching for themselves). 
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Figure IlL l : The effect of prey clump size on a) the frequency of scrounger tactic use 
by predators, and b) prey survival (number of prey surviving from a starting popula­
tion of 1000 prey). Prey clump size was held constant while predator behaviour was 
allowed to evolve under the social information scenario. Note that prey clump size 
refers ta the dumping coefficients as described in the methods section. 
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When predators used SI and PI, the situation reversed. When predators used SI, 

prey evolved towards lower clump sizes (from 25 to ca. 15). The evolution of prey 

clump size was graduaI, occurring throughout the 500 generations of the simula­

tion. The best-fit ARlMA model (l, l, 1) indicates the series was not the product of a 

random walk; the coefficient (8) of the autocorrelation term was 0.51, and the coef­

ficient (8) of the MA term was 0.31. At the same time, predators decreased their use 

of the scrounger tactic from 0.5 to 0.4 (Fig. III.2B). The shift in predator behaviour 

was faster in the PI than in the SI situation, occurring within the first 75 generations, 

and remaining stable thereafter. Un!ike clumping behaviour, temporal autocorrela­

tion explains almost ail variabi!ity in both scenarios involving scrounging behaviour 

(Fig. III.2B-C). In both cases, the best-fit ARIMA models (l, l, 0) contained an AR 

term showing perfect autocorrelation (8 = 1.00) and since the model contained a 

differentiation term, it is possible the series was generated from randomness. 

When predators used PI, prey dump sizes decreased only slightly, from 25 to 20 

and also appeared to stabilize more quickly compared with the NS situation, within 

100 generations (Fig. III.2C). The best-fitARlMA model (0, l, 1) indicated the trend in 

dumping in this scenario was no different than might expected from a random-walk; 

the single MA term was very low (8 =0.09) and thus had !iule statistical power. At 

the same time, predators decreased their level of scrounging from 0.5 to 0.4, with the 

adjustment occurring here within the first 25 generations, and remaining relatively 

stable thereafter. 

For ail three scenarios, there was no change in prey survival rates over evolu­

tionary time, but the survival rates of prey were better when predators used sr or 

PI compared with when they used NS (Fig. III.3); after controlling for a substantial 

random effect of 'run' (any of the 500 repeated measures of a population), a linear 

model shows a notably statistically significant difference between the three scenar­

ios (F2,1497 =1254.3, P < 0.000l). Tukey HSD post-hoc tests showed highly significant 

differences between all combinations of group means, showing that mean prey sur­

vival rates were higher in both the SI and PI than NS conditions and higher in the SI 

than in the PI condition. 
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Figure III.2: The evolution of prey dump size (solid line) and the frequency of 
scrounger tactic use by predators (dotted !ine) when both traits are allowed to co­
evolved under three scenarios of information use by the predators: a) no social in­
formation, b) social information, and c) pub!ic information. Note that prey dump 
size refers to the dumping coefficients as described in the methods section. Thick 
!ines depict means, and thinner !ines show ± l s.d. 
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Figure III.3: Changes in prey survivaI rates across generations when predators use 
A) no social information, B) social information, and C) public information. Genera­
tions were pooled together as follows: 100 = generations 1 through 100,200 = gener­
ations 101-200,300 = generations 201-300, 400= generations 301-400, 500 = genera­
tions 401-500. The bold line of the box plots denote medians, while the higher and 
lower edge of the box denote the upper and lower quartiles respectively, the whiskers 
extend to the farther points that are still within 1.5 interquartile ranges from the 
quartiles. 



74 

111.5 Discussion 

Our results show social information to be an important factor guiding the evolution 

of predator and prey characteristics; increased prey clump sizes induced increased 

levels ofISI use by predators (Fig. III. lA), which decreased predator search efficiency 

(as measured by prey survival; Fig. III.IB). This result is consistent with experimen­

tal tests of PS foraging games (Giraldeau and Caraco 2000; Coolen 2002). However, 

surprisingly, when prey were free to evolve, they did the opposite: they evolved to­

wards the highest clumping against NS predators (Fig. III.2A) and smaller clump 

sizes against SI and PI predators (Fig. III.3B-C). This is the first demonstration of 

how information use by predators evolves in response to predator-prey dynamics, 

and here we explore this unanticipated result. 

Both the rate-maximizing (Vickery et al. 1991) and risk-sensitive (Caraco and Gi­

raldeau 1991; Barta and Giraldeau 2000) PS models predict an increase in scroung­

ing frequency, and hence ISI use, with increasing prey clump size. However, the 

predicted effect of c1ump size on scrounging is non-linear; scrounging increases at 

a decreasing rate as clump size increases. As a result, any selective advantage of in­

creased prey clumping will decrease as scrounging approaches asymptotic values. 

Our simulation of predators foraging for prey of different clump sizes supports this 

yet unrecognized non-linear effect. Our predators increased their use of scrounging 

when prey were in larger dumps but the level of scrounging reached an asymptote at 

around 60% scrounging, with no further increase in scrounging at dump sizes >15. 

Moreover, as expected, prey survival increased with increased scrounging (Giraldeau 

and Caraco 2000; Barrette and Giraldeau 2006). 

We suggest that prey failing to evolve towards large clump sizes when faced with 

predators using ISI can be understood in light of these non-linear effects of dump 

size on scrounging frequency. When predatars use SI, dump sizes decreased ta 

around 15 prey items per patch. This number happens to match the minimum 

clump size found to induce the maximum leveI of scrounging in our predatars (Fig. 

ULlA). Given that predators are already using ISI at its asymptotic frequency and 

\'iill not evolve towards greater levels of ISI use, no further increase in dumping will 

benefit the prey in terms of reducing predator search efficiency. As a consequence, 

cIump size ceases to evolve towards largervalues. At this leveI of dumping, it is note­

worthy that predators using only SI are induced to attempt to scrounge at all patches, 
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even those that may well be exhausted by the time they reach them. This blindness 

to patch quality by the predators is still advantageous to the prey because it allows 

them to adapt to predator behaviour and clump only so much as to induce maxi­

mum levels of scrounging and impose an energetic cost on their predators. Such an 

advantage, however, may be reduced if the predators are better informed of patch 

quality and scrounging opportunities by the additional use of PI. When predators 

use PI, they do not join unless patch richness is such that they will have time to 

reach the patch before it is depleted. 

Generally, information regarding resource location and qualitythat is more accu­

rate and precise should increase predator efficiency (Valone 1996; King and Cowlishaw 

2007). If we assume that NS predators have the least information, those that use SI 

have more and those using PI the most, then that was not the case in our study; prey 

survival was lowest against NS predators (Fig. 111.3). The prey survived better when 

the predators used either SI or PI, which shows that scrounging, and hence ISI use of 

any form, actually reduced predator efficiency. Because scroungers inevitably exist 

in populations of social foragers (Giraldeau and Caraco 2000), such reduced preda­

tor efficiency will not be eliminated through selective pressure. 

Predator efficiency tended to be higher when predators had access to PI com­

pared with SI, as indicated by the lower prey survival rates (Fig. 111.3). Given that the 

ability to use ISI evolves within predators, we would then expect selection to favour 

predators that shift from using SI to PI, which would allow them to forage more ef­

ficiently, mainly by avoiding scrounging attempts directed to less valuable food dis­

coveries. As a result, predators may be less susceptible ta manipulation by prey when 

they have access to PI. Consistent with this suggestion, predators reduced their in­

vestment in scrounging much more rapidly when they had ac~ess to PI compared 

with when they had access only to SI. This suggests there would be an advantage to 

prey to evolve traits that reduce the ability of predators to provide PI white they are 

being exploited. It would be interesting to explore what such traits would be like. 

Our results illustrate sorne of the long-term consequences ofpredators opting ta 

search for prey themselves or to collect SIIPI from others, which makes an important 

step towards understanding the effect of information use on evolution of predator 

and/or prey. However, we note that the results of our simulations require empirical 

testing; we have made several simplifying assumptions that might not hold in a re­

alistic biological system. For example, we have assumed that predator survival was 
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entirely determinedby foraging success on a single prey species, and have kept pop­

ulation sizes constant throughout the simulated evolutionary process, thereby in­

sulating our populations from density-dependent processes (see Abrams (2000) for 

a discussion on the impact of density-dependent process in predator-prey coevolu­

tion). Moreover, we have assumed that prey could not flee or adjust their behaviour 

ta reduce their immediate risk of detection or mortality. Our conclusions may have 

been different ifwe assumed other benefits from clumping such as prey dilution and 

evasion, or improved predator detection. Nonetheless, we suggest that our genetic 

algorithm approach provides the possibility of addressing these intriguing passibil­

ities. 
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IV.1 Abstract 

Animais foraging in groups may use either the producing or the scroung­

ing tactic to ob tain food items. Most models of producer - scrounger games 

generally assume that individuals are competitively equal such that pay-offs 

are independent of phenotype. However, personality, most notably boldness, 

is known to affect the use of foraging strategy. Here we use a genetic aJgorithm 

to determine how the use of producer and scrounger tactics interacts with the 

evolution ofboldness, defined as the tendency to move away from conspecifics 

and explore the environment. Agents varied in boldness and scrounging prob­

ability and the genetic algorithm searched for the optimal combination ofbold­

ness and scrounging probability under different ecological parameters. Our 

simulations show that over a wide range of ecological conditions bold individ­

uaJs evolve to play both producer and scrounger, whereas shy individuaJs re­

main confined to scrounging. An increase in patch density increased boldness, 

whereas patch richness did not affect boldness. We argue that this difference 

is due to the spatial dynamics: patch density, in contrast to patch richness, is a 

spatial component and therefore directly affects the optimal spatial positioning 

of individuaJs foraging in groups and as a result their boldness. lncreased pre­

dation pressure resulted in the evolution of shyer individuals. For each parame­

ter combination the genetic algorithm selected a single optimum level ofbold­

ness for aJl individuaJs demonstrating the absence of any negative frequency 

dependence of personaJity types in a producer - scrounger game. Our results 

show that differences in ecological conditions in a sociaJ foraging game may 

generate variation in boldness between populations. 
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I~2 Introduction 

AnimaIs may either collect personal information about their environment, or they 

may observe other individuals to collect social information (Danchin et al. 2004). 

One of the best studied systems related to social information gathering is known as 

the producer - scrounger game (Barnard and Sibly 1981), in which individuals ei­

ther search for food themselves (producing, = personal information) or make use 

of information about food made available by other group members (scrounging, 

=social information) (Hamblin et al. 2009). Most models of producer - scrounger 

games generally assume a symmetric game, a situation where phenotypic differ­

ences among individuals have no incidence on the payoffs they obtain from using 

one or the other foraging alternative. However, sorne phenotypic differences such 

as social dominance or competitive ability willlikely affect the payoffs obtained via 

one or the other foraging alternative (Barta and Giraldeau 1998; Liker and Barta 2002; 

McCormack et al. 2007; King et al. 2009). 

"Personality" in animal behaviour is used to describe differences between indi­

viduals in sorne behavioural and or physiological traits that remain consistent over 

rime and context (Gosling and John 1999; Koolhaas et al. 1999; Carere and Eens 2005; 

Groothuis and Carere 2005). Different behavioural and physiological reactions have 

a genetic basis (van Oers et al. 2005) and are often correlated, suggesting that these 

differences are fundamental aspects of the behavioural organization of individuals. 

These animal personalities are documented at an increasingly quick pace (Réale 

et al. 2007; Biro and Stamps 2008; Sih and Bell 2008). More recently, experimen­

tal evidence shows that tactic choice in producer - scrounger games is related to 

personality differences; bolder barnacle geese (Branta leucopsis) use the producing 

tactic more often than shyer geese (Kurvers et al. 2010). This is in agreement with 

several studies which show that, in groups, bolder individuals approach food Cpro­

duce') more readily than shyer individuals (e.g. Beauchamp 2000; Dyer et al. 2009; 

Harcourt et al. 2009; Kurvers et al. 2009; Schuett and Dall 2009), whereas shyer in­

dividuals are more often observed following others (Dyer et al. 2009; Harcourt et al. 

2009; Kurvers et al. 2009). 

Although the association between bold producing and shy scrounging makes in­

tuitive sense, there is no a priori reason to believe that it should be universal and ap­

plicable to all circumstances. For instance, could sorne foraging conditions call for 
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dissociation between this personality trait and social foraging tactics? Do sorne for­

aging conditions calI for monomorphic populations of intermediate boldness that 

allows for maximum flexibility in the use of producer and scrounger tactics? Here 

we incorporated personality differences in a producer - scrounger simulation model 

to explore the conditions under which personality and social foraging traits should 

coevolve. As a measure of the personality trait boldness, we varied the tendency 

of individuaIs to move away from other conspecifics and explore the environment. 

Bolder individuals were more likely to move away from other individuals than shyer 

individuaIs. We allowed individu al agents to vary both in boldness as weIl as in 

scrounging probability in a spatially explicit producer-scrounger mode\. We used 

a genetic algorithm (Sumida et al. 1990) to find the optimal combination of bold­

ness and foraging tactic while varying patch density, patch richness and predation 

pressure. Genetic algorithms mimic the action of natural selection ta model pop­

ulation change over time (Hamblin and Hurd 2007; Ruxton and Beauchamp 2008), 

selecting the most successful individuals (Le. those with the highest foraging rates) 

to reproduce in the next generation. 

I~3 The model 

1\1.3.1 The foraging simulation 

Individuals searched for 200 time units for Np patches containing Ns indivisible food 

items randomly distributed on a 500 by 500 grid. At each time unit individuals could 

either be feeding or not. When individuals were feeding they would continue feeding 

in that patch, consuming one food item per time unit until the patch depleted. When 

individuals were not feeding, their action consisted of two steps. In the first step, 

they chose whether or not to move towards other flock members and in the second 

step they searched for food opportunities. Choosing to move towards flock members 

was selected according to the probability Pm, the likelihood that an individual moves 

back to its conspecifics, calculated as: 

(IVI) 

bis boldness (ranging from 0 to 1), f3 is a scaling parameter that affects the rate 

of moving back to conspecifics and dm is the median distance between the focal 
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individual and its conspecifics. The probability of moving back to conspecifics in­

creased with decreasing boldness score, implying that shyer individuals showed a 

higher tendency to move back to conspecifics as compared to bolder individuals. 

This is in agreement with the observation that shyer individuals show a lower ten­

dency to split in smaller subgroups (Michelena et al. 2009) and have a higher shoal­

ing tendency (Budaev 1997; Ward et al. 2004; Dyer et al. 2009). Pm increased with 

increasing median distance dm, ensuring the maintenance of group cohesion. 

If an individual decided to move towards the other flock members, its direction 

of movement was calculated as follows: a new direction was chosen by averaging the 

directions from the focal individual to each conspecific, weighted by the distance to 

each conspecific so that closer conspecifics weighted the new direction more heav­

ily, according to the weighting function: 

(IY.2) 

where w is the calculated weight as a function of distance, W is a weighting con­

stant and di is the Euclidean distance to a conspecific i. To handle edge cases where 

every conspecific was too far away to affect the direction of the focal individual, a 

new direction of movement would be calculated by adding a random component 

drawn from a Gaussian distribution that was added to the previous direction (a cor­

related random walk). 

When searching for food an individual could either (1) search for food itself (pro­

ducing) or (2) search for food discoveries of other individuals (scrounging). When 

producing, an individual investigated its close vicinity for food (as defined by a ra­

dius Rv), and if food was encountered, it started feeding in the next time unit. If no 

food was found, it took a step randomly. Random movement was calculated by se­

lecting from a uniform distribution over the set of new directions within 45 degrees 

on either side of the current direction. When scrounging, an individual scanned the 

environment for producers exploiting a patch. The probability of detecting feeding 

producers Pf declined with distance di to the forager: Pf = e- di / H 
2

• H determines 

the scrounging horizon; small values indicate that scroungers could only identify 

producers close by. If it identified a feeding producer it moved in its direction dur­

ing the next time step with twice its normal step length. If the individual arrived in 

the next time step, it started feeding. If it did not arrive it continued in the direc­
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tion of the foraging patch, provided that the patch still contained food items, un­

ti! it reached the patch. If the patch was emptied during the movement, or if the 

scrounger did not find a forager in its initial search it moved randomly as described 

previously. Ascrounger could only forage from the food discoveries of other foragers. 

In ail cases (moving to conspecifics or random movement), the length of the 

step SI was a increasing function of boldness: SI = b * Smax. Smax is the maximal 

step length. To avoid a potential value of zero, a small random Gaussian compo­

nent was added to every individual's step length. An increasing step length with in­

creasing boldness reflects a higher exploration tendency for bold individuals, a well­

described phenomenon since bold individuals are more often found in the leading 

edge of moving groups (Beauchamp 2000; Harcourt et al. 2009; Kurvers et al. 2009; 

Schuett and Da1l2009). 

The predation probability Pp represents the chance that the furthest individuals 

from the flock will be predated each round (from 0 to 80%); each round a random 

uniform number was compared to the probability, and if it was lower, predation was 

applied to the population. To implement predation, the centroid (geometric center) 

of the population was first calculated as the average of each member's position. Each 

member of the population then received a distance score from the centroid, Ci and 

an individual was chosen to be predated proportionally to its distance score (with 

individual probability Pi = Ci/r.7(Cj). This process was repeated each round until 

a maximum proportion of the population was preyed upon (the predation limit PL, 

set to 5% of the population size) or the end of the simulation was reached. 

ru3.2 The genetic algorithm 

An individual's strategy was encoded in a 2-10cus real-valued chromosome, with lo­

cus 1 coding for the probability of scrounging and locus 2 coding for the value of 

boldness. Both loci ranged from 0 to l, and al! individuals in a given population size 

NI started the genetic algorithm with a randomly generated chromosome value. At 

the end of each foraging simulation the number of consumed food items was com­

puted for each individu al and individuals were ranked on the basis of their fitness 

and the highest 60% was allowed to reproduce, ail other individuals were removed 

from the population. Crossover probability was 0.9 implying that the probability of a 

selected chromosome to remain unchanged in the next generation (apart from any 



88 

Symbol Meaning Value or range 
Np Number of patches 5,10,20,30,40,50,60 
Ns Number ofindividual food items in each 5,10,20,30, ... ,100 

patch 
T The length of the tournament 250 
Tc The number of generations for each run 100 

of the genetic algorithm 
Rp Spatial radius of a food patch 10 
Rv Radius of patch detection for producers 20 
NI Population size 50 
PL Predation limit 0.05 
H Scrounging horizon 10 
f3 Rate ofmoving back to conspecifics 25 
w Parameter of weighting function 50 
Pp Predation probability 0,0.2,0.4,0.6,0.8 
SMAX Maximal step length 50 
Ps Scrounging probability [0.0,1.0] 
b Boldness [0.0,1.0] 
Pp Probability of detecting producers [0.0,1.0) 

PM Probability of moving back to con­ [0.0,1.0] 
specifics 
Step length [0.0,1.0] 

Table IVl: Parameters of the simulation and behavioural variables. 

changes due to mutation) is 0.1. The mutation rate was 0.1; if a locus was selected 

for mutation, it would be shifted from the old value by drawing a uniform random 

number between {-o. l, 0.1} and adding that to the old value. We varied patch density, 

patch richness and predation pressure (see Table IV l for parameter ranges). 

1\1.3.3 Measuring the evolution of personality and scrounging 

For each parameter combination (see Table IV 1) we ran Tc =100 generations (here­

after called a run) with five replicates per parameter combination for a total of 3850 

runs. We analyzed the mean scrounging and boldness values, averaged over the last 

10 generations of each run to reduce the effects of stochasticity. 

For each run of the genetic algorithm, we searched for a polymorphism in scroung­

ing and boldness using model-based cluster analysis on the final scrounging and 
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boldness values for each member of the population using the Mclust package in 

R (Fraley and Raferty 2002; 2006); Mclust provides the optimal model according to 

the BIC (Bayesian Information Criterion) for expectation maximization in Gaussian 

mixture models. If a clear polymorphism of boldness and scrounging values was 

present (e.g., bold producers and shy scroungers), the cluster analysis would be ex­

pected ta select a model with two clusters. 

I~4 Results 

Boldness and scrounging became associated in the course of our runs: the shyest 

individuals ending up with high scrounging proportions, whereas the boldest indi­

viduals had low scrounging proportion (Fig. IY.I and IV.2). High scrounging was 

observed over nearly the full range of boldness levels, except at the very extremes of 

boldness. Low scrounging was only observed at high values of boldness (Fig IV.I and 

IV. 2) . 

An increase in patch density led to an increase in boldness: under conditions 

of low patch density shy individuals were selected, but boldness increased rapidly 

with increasing patch density (Fig. IV.I ). This pattern was consistent and appeared 

over the entire range of patch richness values (Fig. IV.I ) and predation pressure, 

although the effect in the absence of predation was weaker (Fig. IY.2). An increase in 

patch density also led to a reduction in scrounging. This effect disappeared at high 

patch richness (Fig. IV.I ). An increase in patch richness resulted in an increased 

scrounging, both for bold and shy individuals (Fig. IV.I ). There was, however, no 

effect of patch richness on boldness (Fig. IV.I ). 

In the absence of predation, only bold individuals emerged (Fig. IV. 2) . When pre­

dation was present, shy individuals were selected and so boldness declined. There 

was no effect of predation on scrounging proportion (Fig. IV.2). 

There was no evidence for a dichotomy in boldness. Model-based cluster analy­

sis produced no evidence of preference for a model with 2 clusters (Table IV.2J, and 

inspection of the data revealed that this was due to low variance in both scroung­

ing and boldness across runs (mean (Jscr =0.049, mean (Jbold =0.038); the results of 

cluster analysis are bound to be unstable when overall variance is so restricted. Ev­

ery run converged to a single value of boldness (max (Jbold =0.067), and only 54 runs 
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Figure ruI: The effect ofpatch density and patch richness on boldness and scroung­
ing values. An increase in patch density led ta an increase in boldness and a reduc­
tian in scrounging, but the latter only under conditions oflow / intermediate patch 
richness. An increase in patch richness resulted in increased scrounging, but there 
was no effect on baldness levels. 
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Figure IV2: The effect of predation pressure and patch density on boldness and 
scrounging values. An increase in predation resulted in a reduction in boldness, bu t 
there was no effect on scrounging proportion. 
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Model components 1 234 5 6 789 
Number of runs 116 394 507 534 548 448 509 398 396 

Table IY.2: Optimal number of components selected in a cluster analysis of each run 
of the genetic algorithm. 

failed to converge to a single value of scrounging (ascr > 0.1) . Inspection of these 

runs confirmed the results of the statistical analysis in finding that no dimorphism 

in either boldness or scrounging existed. 

I~5 Discussion 

The outcomes of our simulations showed a broad range of both boldness score as 

weil as scrounging probability. Interestingly, high rates of scrounging were observed 

over nearly the full spectrum of boldness values, whereas high rates of producing 

were only observed at high boldness values. This conforms to earlier experimental 

evidence that shy barnacle geese scrounge more than bold individuals (Kurvers et al. 

2010) and that boldness did not affect scrounging, but did affect producing, with 

bolder individuais producing a patch faster (Kurvers et al. 20 Il). At the same time 

these outcomes illustrate that the relationship between social foraging and boldness 

is not a simple linear relationship. Variation in patch density, patch richness and 

predation pressure ail shaped the relationship between scrounging and boldness. 

An increase in patch density led to a reduction in scrounging level, but only at 

low values ofpatch richness (see Fig. IV 1). This prediction conforms to Beauchamp 

(2008)'s results and is a consequence of the spatial explicitness of our model. The 

first models of producer - scrounger games (Barnard and Sibly 1981; Vickery et al. 

1991; Caraco and Giraldeau 1991) assumed scroungers would instantaneously join 

food discoveries of other individuals and so obtain equal shares of any remaining 

food items independently of their initial spatial position. Under these conditions, 

scrounging frequency was independent of patch density. Beauchamp (2008) created 

a spatially explicit model of producers and scroungers, thereby introducing travel­

ing time to scrounged food patches (hence a decrease in the share of food items 

scroungers received with increasing distance). Beauchamp and Giraldeau (997) 

demonstrated the importance of traveling time by showing that producing nutmeg 
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mannikins, Lonchura punctulata, were more Iikely to leave a patch as scroungers 

arrived when search time was short. Our results confirm Beauchamp (2008)'s pre­

diction that increasing patch density should reduce scrounging, because scrounging 

becomes less profitable when it is easy to find food (Clark and MangeI1984). Koops 

and Giraldeau (1996) however, showed that increasing patch density resulted in an 

increase in the proportional use of scrounging. This increase in scrounging was, 

however, marginal and the total foraging area was small. An experiment varying 

patch density on a larger spatial scale would be valuable for testing our predictions. 

That an increase in patch density led to a reduction in scrounging level only under 

conditions of low patch richness makes sense. Under conditions of high patch rich­

ness, the profitability of scrounging increases rapidly, making producing relatively 

less profitable. Interestingly, an increase in patch density not only led to a reduction 

in scrounging level, but also favored an increase in boldness. When patches are poor 

the bolder individuals turn to producing such that at a high density of poor patches 

more producing emerges. Producer success depends on the producers' ability to dis­

tance themselves from conspecifics (Barta et al. 1997; Flynn and Giraldeau 2001). In 

our simulation a tendency to increase one's distance from conspecifics is achieved 

by increasing boldness, meaning that shy individuals forage at close proximity of 

each other, whereas bolder individuals are more spaced out. We think that these spa­

tial dynamics are the single most important reason for the various effects we found 

on boldness. At low patch density the tendency to scrounge increases and the suc­

cess of scrounging requires remaining close to potential producers (Barta et al. 1997; 

Flynn and Giraldeau 2001). So, our simulations predict that shy individuals do best 

at low patch densities. Our simulation results also suggest that gregariousness, the 

tendency to remain close to each other, breaks down at high patch density, because 

selection favors bold producers (that is spaced out solitary foraging). Several models 

predict that group foraging is more likely ta occur only when food patch es are scarce 

and rich (Waltz 1982; Clark and Mange11986; Barta and Giraldeau 2001), exactly the 

situation where our simulation predicts the most scrounging and closest proxim­

ity (i.e., shyest individuals). Interestingly, in our simulation boldness declined with 

increasing patch scarcity when patches were rich, but scrounging levels remained 

similar. This suggests that although scrounging levels are simiIar, the optimal spatial 

positioning of individuals in a foraging group depends on the number of patches. 

Most likely, when there are very few patches finding a patch is a rare event such that 



94 

one needs to remain close to as many other group mates as possible if scrounging 

is to be profitable at aIl. However, when there are many patches, finding a patch is 

commoner so scrounging success is less dependent on the number of individuals 

kept close by. 

Increasing patch richness resulted in an increase in scrounging frequency. This 

was a very consistent pattern across the complete range of boldness values. This is 

in agreement with both empirical and theoretical results for producer - scrounger 

games (Giraldeau and Livoreil 1998; Coolen et al. 2001; Coolen 2002; Beauchamp 

2008): with an increase in patch richness the finder's share decreases (or seen from 

a scrounger perspective: the joiner's share increasesl, resulting in an increase in 

scrounging pay-offs. Patch richness, in contrast to patch density, did not affect bold­

ness. We think that this is due to the spatial dynamics of the producer - scrounger 

game: patch richness is not a spatial component, whereas patch density is primarily 

a spatial component. Because patch richness is not a spatial component it does not 

affect the optimal spatial positioning of individuals in a foraging flock and this is, we 

think, the reason for the lack of effect of patch richness on boldness. Interestingly, 

Michelena et al. (2009) showed that the spatial distribution of bold and shy Scot­

tish blackface sheep, Ovis aries, differed with bold sheep splitting into subgroups at 

smaller group sizes than shy sheep. The differences in spatial distribution could be 

simulated by a model that included simple rules on sensitivity to crowding and so­

cial attraction (Michelena et al. 2010). Although our model is different as it runs over 

an evolutionary time scale both their and our models show the importance of dif­

ferences in social attraction rules on the spatial dynamics of individuals foraging in 

groups. Clearly, how personality affects social attraction rules between group living 

individuals and how this in turns affects collective processes is an exciting avenue 

for funher research. 

Predation pressure did not affect scrounging probability. This is in line with 

Coolen and Giraldeau (2003) and Ha and Ha (2003) who show that predation dan­

ger did not affect the stable equilibrium frequency of scrounging (but see Barta et al. 

2004). Although predation danger did not affect the stable equilibrium frequency of 

scrounging (group response), individual manipulation of predation danger (individ­

ual response) did affect scrounging: individual zebra finches, Taeniopygia guttata, 

increased their scrounging frequency when treated with wing-Ioad manipulations 

that increased their vulnerability (Mathot and Giraldeau 2010). How predation risk 
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shapes scrounging pay offs and frequency is highly affected by the (in)compatibility 

between scrounging tactic and anti predatory vigilance. If the scrounging tactic is 

compatible with anti predatory vigilance increased predation risk should lead to 

more scrounging. In our simulations, using the scrounging tactic and scanning for 

predators were not compatible, following Coolen and Giraldeau (2003) who show 

that scrounging tactic and anti predatory vigilance are not compatible in nutmeg 

manikins (but see Ranta et al. 1998; Mathot and Giraldeau 2010). 

As predicted by Stamps (1991) we found that increasing the risk of predation re­

sulted in reduced boldness and hence shyer individuals. In our model the risk of 

being preyed upon increased with increasing distance from the fIock centre. Be­

cause bolder individuals moved further out of the centre of the group, they suffered 

an increased predation pressure. Differences in boldness are suggested at least in 

part to be the consequence of differences in predation pressure (Bell and Sih 2007). 

Cote et al. (2008) went as far as suggesting that the costs of being bold likely disap­

pear in the absence ofpredation. In that case there is a trade-offbetween food intake 

rate and predation risk, with bold individuals enjoying a higher food intake rate but 

also a higher risk of being predated. A positive correlation between boldness and 

food intake rate has indeed been reported in several species (for review see Biro and 

Stamps 2008) and there is now also evidence accumulating that bolder individuals 

suffer a higher predation risk (Dugatkin 1992; Bremner-Harrison et al. 2004; Bell and 

Sih 2007; Carter et al. 2010), due ta an increased tendency to expose themselves to 

risky situations. It is, however, noteworthy that boldness may also be favored by 

increased predation pressure, if bolder individuals engage more in predator inspec­

tion events and predator inspection deters predators as is suggested by a study in 

bighorn sheep ewes (Réale and Festa-Bianchet 2003). 

Our simulations showed that differences in patch density and predation pressure 

result in a broad range of different optimal combinations of boldness and scroung­

ing across runs. Differences in selection pressures (either in space or time) in a so­

cial foraging game may generate different optimal boldness levels, suggesting that 

spatio-temporal dynamics (Le., fIuctuating environments) may cause variation in 

boldness levels between populations (see also Dall et al. 2004; Dingemanse et al. 

2004; 2009; Bell and Sih 2007; Smith and Blumstein 2008). Populations evolved to­

wards a monomorphism where a single optimallevel of boldness characterized ail 

the individuals in the population. We found no evidence for a stable co-existence of 
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different personality types within one population submitted to a given assortment 

of environmental conditions. Playing the producer - scrounger game seems thus to 

be insufficient ta allow the evolution and maintenance of different personality types 

by means of, for example, negative frequency dependent selection as illustrated by 

recent theoretical work (Wolf et al. 2008; McNamara et al. 2009; Wolf and Weissing 

2011). 

To conclude, we have shown that boldness and social foraging are linked. Bold 

individuals are able to play both producer and scrounger, whereas shy individuals 

are confined to the scrounging tactic. In general an individual's scrounging proba­

bility increased with decreasing boldness. An increase in patch density resulted in 

the evolution of bolder individuals, whereas patch richness did not affect boldness 

levels. The genetic algorithm selected a single optimum level of boldness for each 

parameter combination, thereby showing no evidence for a negative frequency de­

pendent selection of personality types in a producer - scrounger game. 
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\7.1 Abstract 

Social foraging models like the producer-scrounger game have brought great 

insight to the study of strategic decision making in foraging situations, but ex­

isting producer-scrounger models do not specify a mechanism by which an­

imals learn the equilibrium behaviour over ecological time. In this paper we 

present a spatially-explicit producer-scrounger model that uses a simple social 

learning mechanism, a heuristic rule of thumb in which individuals adopt the 

tactic - producer or scrounger - that has received the highest payofffor the indi­

viduals in their neighbourhood. We explore the effect of two key variables: the 

division of the food in a patch, and the size of an individual's neighbourhood 

(their effective group size). The results of the model show chaotic outcomes 

which possess features that match weil with observations of animals playing 

producer-scrounger games, and the model makes several new predictions for 

future empirical work. 
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V.Z Introduction 

ln the study of the evolution of animal foraging behaviour, it has been traditional to 

separate efforts inta two bodies of related but separate theory: optimal foraging the­

ory (Stephens and Krebs 1986), which studies the foraging decisions of animaIs that 

do not depend on the presence or absence of other foragers, and social foraging the­

ory (Giraldeau and Caraco 2000), which models foraging behaviour when a forager's 

decisions are directly related to the decisions of other foragers (e.g. under condi­

tions of frequency dependence). In social foraging, one of the best studied mod­

els used to describe and explain this behaviour has been the producer-scrounger 

game (Barnard and Sibly 1981; Vickery et al. 1991; Giraldeau and Caraco 2000). This 

game theoretical model depicts foraging individuals as producers, who invest effort 

in finding exploitable resources such as food patches Cproducing') and scroungers, 

who parasitize the effort of producers by sharing in their discoveries Cscrounging'). 

In the producer-scrounger game, each tactic (producing and scrounging) has a higher 

fitness when it is rare, leading to negative frequency-dependent selection and a mixed 

evolutionarily stable strategy (ESS: Maynard Smith 1982; Vickery et al. 1991). The 

classical producer-scrounger models have been tested in both laboratory and wild 

populations in multiple species, and have shown success in predicting qualitative 

patterns ofbehaviour (e.g. Steele and Hockey 1995; Wu and Giraldeau 2005; Barrette 

and Giraldeau 2006; Coolen et al. 2007; Morand-Ferron et al. 2007; Mathot and Gi­

raldeau 2008; King et al. 2009; Kurvers et al. 2010; Giraldeau and Dubois 2008), but 

issues remain that should be addressed if the study of social foraging is to advance. 

In particular, while evolutionary game theory predicts that animaIs will use fixed 

strategies (in the sense of unchanging, not to be confused with pure strategies), in­

dividuals consistently show flexibility in tactic use that changes over time to ap­

proach the equilibrium value and often responds to local conditions (Mottley and 

Giraldeau 2000; Morand-Ferron and Giraldeau 2010). This strongly suggests that 

individuals require decision rules that can sample alternatives and invest in each 

tactic in sorne way to determine the strategy that will maximize their payoffs (Mc­

Namara and Houston 2009), and we have indeed seen animaIs do this (an explicit 

example can be found in Mottley and Giraldeau 2000). But what mechanisms un­

derlie this ability? The original producer-scrounger games (Barnard and Sibly 1981; 

Vickery et al. 1991; Giraldeau and Caraco 2000) suggest no mechanism beyond the 
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genetic model assumed in ESS theory (Maynard Smith 1982). One line of research 

has sought to model the behavioural mechanisms responsible for this as 'Iearning 

rules', mathematical rules that describe how animaIs assign values to behavioural 

alternatives based on current and past information about their payoffs obtained 

by sampling; after an initial interest in learning rules waned (Harley 1981; Hous­

ton 1983; Selten and Hammerstein 1984; Milinski 1984; Houston and Sumida 1987; 

Harley 1987), researchers have begun to study them in greater detail again (Tracy 

and Seaman Ir. 1995; Beauchamp 2001; Hamblin and Giraldeau 2009; McNamara 

and Houston 2009). 

To date, however, published work on learning rules has focused exclusively on 

the use ofpersonal information obtained by sampling (Le. payoffs that an individual 

obtains from their own use of producing or scrounging), and to our knowledge no 

models have used learning rules that incorporate social information. This omission 

is curious because many social animaIs are capable of sorne kind of social learn­

ing (Galef and Giraldeau 2001; Danchin et al. 2004), and is even more curious when 

learning rules have been applied to social foraging because the Producer Scrounger 

game is a game of social information use (Dall et al. 2005), in that individuals use 

social information about the foraging success of conspecifics to calculate their own 

optimal strategy. 

In this study we present a model of social foraging in which individuals use a 

simple learning rule (a 'rule of thumb') based on social information use; the rule 

compares information about payoffs achieved by Immediate neighbours (social in­

formation) to the payoff achieved by an individual (personal information; Dall et al. 

2005) to make a decision about whether to produce or scrounge in the next time 

step. This rule is one of the simplest examples of social learning, and the use of 

similarly simple sociallearning rules has proven fruitful in the study of individual 

foraging (e.g. the Social Learning Strategies Tournament reviewed in Rendell et al. 

2010). Our model assumes that social information is gathered by each individual 

from only its nearest neighbours and that foraging interactions occur only in this 

same neighbourhood (Le. theyare Locan; we interpret the resulting subset of the 

population that each individual interacts with as effective group size. This imparts 

spatial structure to the model which is important when group sizes increase beyond 

the small flocks typically studied under laboratory conditions. Indeed, we contend 

that in most real producer-scrounger systems, space will pose a reallimitation to in­
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teractions which must be accounted for. For instance, in turbid waters fish may only 

be able to keep track of their immediate neighbours, while in ground-feeding birds 

vegetation may have the same effect (or detected food discoveries might be too far 

to be worth scrounging). It seems that in many group foraging scenarios, foragers 

may be limited to interacting with close neighbours. 

A good way to model a producer-scrounger game with these characteristics is 

a cellular automaton (Wolfram 1984), a discrete-time model where space is repre­

sented by cells (foragers) on a grid with each cel! in one of a finite set of states. AJI 

interactions are not only local but regular, occurring in a lattice formation; interac­

tions are local in that each cel! interacts with its immediate neighbours according to 

an update rule that specifies which state each cel! will be in after the current time 

step has been completed. By adopting this model, we follow work on other evolu­

tionary games such as the Prisoner's Dilemma (Nowak and May 1992; Nowak 2006). 

In doing so, we can compare our results to the predictions of the classical producer­

scrounger model to describe changes to predictions resulting from incorporating 

sociallearning and spatial relationships, and we hope to derive a model which is de­

terministic, contains fewer assumptions and parameters than the individual-based 

models which have been used for these questions (Barta et al. 1997; Beauchamp 

2000; Hamblin and Giraldeau 2009), and is easier to manipulate in future work. 

With the model in hand, we ask questions related to the issues we have identified, 

above. What are the consequences of using a sociallearning heuristic in a spatial!y­

explicit social foraging task (the producer-scrounger game)? Exploring the proper­

ties of the model, we investigate whether individuals achieve a behavioural equilib­

rium Ca stable equilibrium frequency, or SEF; Mottley and Giraldeau 2000; Giraldeau 

and Dubois 2008) and how the results compare to the predictions of the classical 

producer-scrounger model. Further, identifying an equilibrium is not the same as 

showing that the equilibrium is attainable (Nowak 1990; Hamblin and Hurd 2007), 

and so we investigate the conditions under which scroungers can invade a popula­

tion of producers in this mode!. In our results and discussion, we focus on the ef­

fective group size as an important mediating variable in this mode!. We conclude by 

discussing the implications of our model for future empirical and theoretical study 

of the producer-scrounger game and social foraging in general. 
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~3 Methods 

Our cel!ular automaton model is a two dimensional grid of cells with a toroidal ge­

ometry (so that the cells on the left edge interact with those on the right edge, the 

top with the bottom, and opposite corners). Each cell is then assigned a tactic from 

the set {Producer, Scrounger}. Time proceeds in discrete units, and at each time step 

every cell on the grid simultaneously calculates its payoff and after that each com­

pares its payoff to the other cells in its neighbourhood; if any of the neighbouring 

cells has a higher payoff, the focal cel! adopts the tactic of the cell with the highest 

payoff for the next time step. Ties are broken randomly. After all cells have updated, 

the time step is over and the next time step begins. 

\7.3.1 Neighbourhoods 

For our model, we defme the local neighbourhood (area) for a focal cell to be a Moore 

neighbourhood ofradius r (see Fig. V.l). The area for a given radius is Ar = (2r + 1)2. 

Cel!s interact with every other cel! in their neighbourhood at each time step, and the 

radius is kept constant through each run of the automaton. In the discussion of our 

results, we interpret the set of individuals in the neighbourhood defined by a par­

ticular radius to be the effective group size for that radius; th us, a radius of 1 is an 

effective group size of 8. We use radii from 1 to 6 in this study, leading to effective 

group sizes of {8,24,48,80, 120, 168}. We denote effective group size by GE, and con­

nect radius with effective group size by the notation Gér) =n, where r is the radius 

and n is the group size; thus Gél) =8, Gé2) =24, and so on. 

\7.3.2 Payoffs 

To calculate payoffs, each cell plays a 2-player game against each of its neighbours, 

one after the other, with results defined by Table V. 1. Each cell has an inexhaustible 

food source which is accessible in discrete units worth one food unit pel' interaction. 

For simplicity, food units are treated as divisible; to model indivisible food units with 

the same payoff structure would simply require multiplying by a constant (which 

would maintain the rank-ordering of payoffs). The defining feature of this payoff 

matrix is the parameter a, which is a generalized form of the finder's share from the 

standard producer-scrounger model, and de fines the amount that producers lose by 
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r =1 r =2 

r =3 r =4 

Figure V.I: Effective group size. The number of neighbours that each focal forager 
(red square) interacts with (grey squares) - the effective group size, GE - is plotted as 
a function of the radius. 

interacting with a scrounger; changes in a are functionally equivalent to changing 

the finder's share in standard producer-scrounger models. 

To be clear, we provide an example. A focal forager has adopted the producer 

tactic for this time unit, and so produces one unit of food per interaction (play of 

the game) with each of its neighbours, for a maximum of 8 food units at GE(l), 

24 at Gé2), and sa on. For the purposes of this example, assume GE(l), and fur­

ther assume that the focal agent's neighbours consist of a mix of 4 producers and 4 

scroungers. Each play against a producer nets the focal producer half of the resource 

(top left ceIl in Table v.I), so they achieve a payoff of 0.5 against a feIlow producer. 

Each play against a scrounger nets the focal producer a payoff equal to l - a, where 

a is the amount that the scrounger reduces the payoff of the producer by consum­
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ing that portion of the resource. The scrounger in such an interaction gets a payoff 

of a. Two scroungers playing against each other will score 0, because no-one has 

produced any food items. 

Producer Scrounger
 
Producer 0.5 1 - a
 
Scrounger a 0
 

Table V.l: Payoffs for the producer-scrounger game used as the basis for this mode!. 
See the text for an explanation of the significance of each payoff. 

This payoff matrix has the form of the well-known game of Chicken (Rapoport 

and Guyer 1966), also known more famously as Hawk-Dove (Maynard Smith 1982), 

with a mixed equilibrium for any value of a > 0.50. Though this has not been noted 

elsewhere ta our knowledge, the standard producer-scrounger game model (Vick­

ery et al. 1991; Giraldeau and Caraco 2000) follows the logic of an n-person con­

tinuous Chicken (Hawk-Dove), In our model, individual interactions are 2-player 

but the payoffs are still n-player because an individual's payoff in each round is a 

function of the number of scroungers in their neighbourhood; as the number of 

scroungers increases, payoffs to the scrounger tactic decrease just as in standard 

producer-scrounger models (Giraldeau and Caraco 2000, also see Arbilly et al. (2010) 

for a similar 2-player producer-scrounger game). 

~3.3 Updating 

Figure V.2 shows the process for updating a focal cell (in this case, the centre-most 

cell). Each cell plays the game against its neighbours and receives a payoff. After the 

payoffs have been calculated for each ceIl, the cells simultaneously compare their 

payoffs to their neighbours; if any neighbour has a payoff which is higher than its 

own, the cell adopts the tactic of the neighbour with the highest payoff. The choice 

is recorded, and the tactic replacement is done before the next round begins but 

after ail of the choices have been made (to avoid conflicts). 

The updating rule used in our CA is a deterministic one, sa knowing the initial 

configuration of the grid and the simulation parameters, it is possible ta faithfully 

recreate any simulation run from beginning to end (though it is not necessarily pos­

sible to predict the outcome of a simulation; see Results). There are other possi­



114 

ble updating mIes, including stochastic mIes that allow for a more realistic (but no 

longer replicable) updating, and which may have an effect on the results (e.g. Moy­

ano and Sanchez 2009), but we do not deal with these here. 

88888 88888
 
8888 88888 

88 88 88e 8 
88 88 88 8
 
88888 88888
 

1 1
 
888 888
 
88 8 
888 88 

Figure V2: Updating a cell. Red is scrounger and blue is producer. Cells calculate 
their payoffs against each of their neighbours, in this case using GE(l) and an a of 
0.75. Here, we look at the cell in the centre of the grid section pictured. On the left 
hand side, the scrounger in the bottom-right of the focal cell's neighbourhood has a 
higher payoff than the focal cell, so the focal cell will become a scrounger in the next 
time step (though this is not depicted, 50 will the other two producers). On the right 
hand side, the addition of one more producer in the neighbourhood drives the focal 
cell's fitness high enough that it will no longer change to scrounger in the next time 
step. 



115 

~3.4 Simulations 

We did both individual and batch runs of the cellular automaton. For individual 

runs, we varied a and effective group sizes and inspected the results visually to clas­

sify outcomes and search for patterns. Individual runs could be started from an 

initial condition of random tactic choice in each ceIl , or the initial configuration 

could be specified down to the choice for each cell; this was used so that a single 

cell could be set to scrounger to see if it would invade a field of producers, or to see 

how many scroungers were stable for a given effective group size by setting the field 

to all-producer and then introducing one or more scroungers in a clump. We also 

did batch runs to collect data on scrounging and producing frequency as a function 

of the a and GE values. In all cases, we used Gér) with values of r E {1,2,3,4,5,6} 

(higher values were computationally prohibitive, since updating each cell requires 

playing against, and comparing payoffs to, an increasingly larger proportion of the 

grid) and a from 0.51 to 0.99. Simulations were run for 200 generations to allow 

enough time for a steady state to emerge, if one were forthcoming. Grid size was 

scaled by multiplying the side length of the grid by the radius, starting with a side 

length of 10 so that the grid sizes would be {10xl0, 20x20, 30x30, 40x40, 50x50, 60x60 

}. This choice was made to scale the percentage of the grid area occupied by one cell's 

neighbourhood so that the percentage was roughly constant (if the area of the cell's 

neighbourhood for a given radius Ar is Ar = 2(1' + 1)2, Iimr~ooAr/(10r)2 = 0.02 and 

the percentage of the grid area occupied by one cell's neighbourhood asymptotes to 

2% as the radius increases). 

We also performed batch runs in which the initial population contained ran­

domly selected producers and scroungers with each tactic having a 50% chance of 

being chosen in individual cells. 100 repetitions of each combination of a and GE 

were performed, for a total of 29400 individual simulations. For batch runs, we 

report data on the mean frequency of scrounger played across the grid (of course, 

mean frequency of producer would be 1-frequency of scrounger), defined as the 

average of the proportion of the population playing scrounger at each generation 

over the total number of generations, and the variance of scrounger frequency. 

We also report mean payoff to each tactic over the last 10 generations of each 

run to determine if a population equilibrium was reached; an average of 10 genera­

tions was used to smooth out the effects of oscillations with a short-period. To clarify 
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the results, outcomes with producer proportions of 100% and 0%, representing the 

breakdown of social foraging, were omitted from the results and the difference in 

mean fitness values was normalized by the maximum scrounger fitness for the rele­

vant value of a: 

di
d n =	 (Vl)

GE(r) . a 

where di is the raw mean difference in payoff to producer and scrounger, dn is 

the normalized difference, and GE(r) . a is the maximum payoff achievable by an 

individual for a given value of a and effective group size. This normalization was 

used to eliminate the scaling of payoffs due to large values of GE, and results in values 

of dn between -1 and 1. 

The source code for our simulation is written in Python (Bassi 2007), and is freely 

available from the authors upon request. 

\':3.5	 Comparison to predictions of deterministic rate-maximizing 

model 

In the results, we compare the results of our simulation to the analytical predictions 

of the deterministic rate-maximizing (DRM) producer-scrounger model (put forth 

in Vickery et al. (1991), and discussed thoroughly in Giraldeau and Caraco (2000)). 

The DRM model result specifies that the predicted proportion of producing in a pop­

ulation, p, is given by 

~ a	 1 
p =- + -	 (V2)

F G 
where a is the producer's advantage (the amount of a discovered patch's food that 

is available exclusively to the producer), Fis the total amount of food in each patch, 

and Gis the total group size. The anticipated number of producers and scroungers 

(1- p) can than be calculated by multiplying pby the group size. 

To compare results from our model to the predictions of the DRM mode!, we take 

a to be the proportion of the patch which is lost to scroungers and set a =1 - (al F). 

Group size G is the number offoragers on the grid (GE < G), allowing us to compare 

p to the observed proportion of scrounging for any run of the simulation. 
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~4 Results 

~4.1 Equilibrium outcomes 

Do foraging agents in this model reach an equilibrium mixture of producing and 

scrounging behaviours as in the classical producer-scrounger models? At an equi­

librium value the payoffto producer and scrounger should be equal (Maynard Smith 

1982; Giraldeau and Caraco 2000); because this is a discrete model, we can consider 

an equilibrium to have been reached if the difference in payoffs is close to O. Fig­

ure V3 shows the normalized difference in mean payoff values to the producer and 

scrounger tactics for each value of a and GE. Positive differences mean that pro­

ducers did better than scroungers, while negative differences mean the reverse. The 

figure shows that payoff differences fluctuate around 0, signifying that approximate 

equilibrium values were achieved. The variance in payoff differences increases at in­

termediate values of a and as the effective group size increases, the range of values 

of a which show variation in payoffs decreases. 

To determine what the equilibrium values in this model are, and to compare their 

results to the classical producer-scrounger model (the deterministic rate maximiz­

ing, or DRM, mode!), we plotted the mean scrounging values when starting from a 

random configuration of producers and scroungers in Figure V4, with the predic­

tions of the DRM model overlaid as the dashed line. The DRM model predictions 

are the same for all values of GE because the radius (hence the effective group size) 

in the DRM model is effectively infinite, as scroungers can join producers anywhere 

with no cost. 

Figure V4 shows that the effect of ais decidedly non-linear, with the DRM model 

alternatively over- and under-predicting the amount of scrounging that will occur. 

As can be seen from the figure, the effective group size interacts strongly with a to 

define the region of a values that willlead to a mixed producer-scrounger equilib­

rium; this effect will be discussed further in section V4.4. Note that at higher values 

of a, outcomes with 100% scrounging appear. .This does not mean that the model 

predicts a population composed entirely of scroungers, which would be a biological 

impossibility; the model is instead predicting that a pathological outcome (extinc­

tion) will occur at these levels of a. In real populations, this would most likely lead 

to the collapse of social foraging. Similarly, outcomes with a mean scrounging of 0% 
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Figure V3: Mean ± 1 S.D. of the normalized mean difference in payoffs for the last 10 
generations of each run, as a function of the value of a and GE, Normalization was 
done as discussed in the methods, and the difference is calculated by subtracting 
the payoffto scrounger from the payoffto producer; thus, positive differences mean 
that producers performed better and negative differences mean that producers per­
formed worse. 
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Figure V.4: Mean scrounging values, by value of a and GE. The dashed line shows 
the predictions ofthe deterministic rate-maximizing model for each value of a. 
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would be analogous to real populations in which social foraging never takes hold 

because scroungers cannot establish themselves. 

\1.4.2 Invasion 

Figures Y.3 and Y.4 provide evidence for a mixed stable equilibrium frequency in our 

model just as in the DRM model, but the existence of an SEF does not mean that 

populations can reach that SEP. To test whether the sociallearning rule in our model 

allows scroungers to establish themselves in a population of producers, we did in­

vasion tests with single scroungers as a function of a and effective group size and 

plotted the results in Figure Y.S. 

The results demonstrate that invasion is possible for many values of a, though 

this effect is once again mediated by the effective group size (section Y.4.4). Scroungers 

typically invade a population of producers in one of two ways: they will either form 

a colony of a size no greater than the area defined by the effective group size, or the 

use of the scrounger tactic will spread without bounds and any equilibrium will be 

an oscillating one over the entire area ofthe grid. In the case of the former, it is possi­

ble to predict how many scroungers can co-exist in the neighbourhood area defined 

by the radius for a particular effective group size (Le. 9 squares for a radius of 1). If 

the area of the radius Ar is Ar = (2r + 1)2, where r is the radius, then x scroungers will 

be stable when 

(Y. 3) 

and the maximum number of scroungers in the neighbourhood for a given radius 

is (Ar + 1) /2. 

\':4.3 Population dynamics 

Two classes of outcomes were seen in this model (Wolfram 2002). The first, stable os­

cillations, occurred when the entire grid locked into an oscillating pattern (typically 

with a short period, though we cannot rule out longer period patterns). The sec­

ond class of outcomes comprised runs which appeared to never reach a stable end­

point, which we calI chaotic outcomes. As a subset of the first class of outcome, as 

noted above the invasion tests would often produce "colonies", smal1, stable blocks 



121 

r-r..---L--..---L-------'--_'----__l--__"-------.... 0' ~ 

6'0 

9'0 

O'~ .J--f---------------------L ç'O 

9'0 

ç'O J---Jf------------------___\.. 0' ~ 

6'0 

90 ~ 
M ro 
w LCl l'O 0­

9'0 
<i: 

s'o 
O'~ J-f-----------------------l 

N 

l'O Cl 

9'0 

ç'O .J--f--------------------L O'~ 

6'0 

9'0 

l'O 

90 

OO~ 09 09 0\7 o 

JaBunoJ:Js BU!A8Id uO!l.JOdoJd u8aV'J 

Figure V5: Invasion bya single scrounger, by a value and effective group size of inter­
action. When the mean proportion of scrounger is at or near 0%, this indicates that 
the scrounger was either extinguished or forrned a small, stable configuration; val­
ues near 100% indicate that scroungers extinguished (or nearly extinguished) pro­
ducers, and intermediate values suggest chaotÎC, unpredictable rnixed populations 
of producing and scrounging. Note that there are fewer interrnediate values as the 
effective group size increases. 
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of scroungers that remained fixed or oscillated in a self-contained group surrounded 

by producers. 

From the invasion tests, we noted that for small values of a, colony outcomes 

were common and we could predict the size of these colonies from Equation V3, 

but as a increased this relationship broke down and scroungers would grow without 

bounds throughout the entire grid. It is possible to see the form of this pattern in 

Figure VS; for example, at the smallest effective group size, colonies arose at a val­

ues between 0.5 and 0.62. Following that, mean scrounger values rapidly increased 

and displayed great variability. In these regions, unpredictable oscillating or chaotic 

outcomes are the rule, as pictured in Figure V6, which shows a mixed equilibrium 

with scroungers scattered throughout the grid. The form of this pattern is similar ta 

the patterns of deterministic chaos found in discrete systems like the logistic map 

(May 1976) and other cellular automata (Wolfram 2002). 

When comparing individual behaviour to population equilibrium values, a startling 

effect appears. As pictured in Figure V7, mixed equilibrium outcomes oscillate un­

predictably at the level of the individual, such that individual agents may be scroungers 

one moment or producers the next with no discernible pattern. Blocks of individuaIs 

will group together and play producer or scrounger for sorne time, with these blocks 

moving across the grid and then being displaced by other formations or swallowed 

whole, while other individuaIs remain fixed on one tactic or flip back and forth. How­

ever, when we calculate the proportion of the population playing each tactic, the 

overall values for producer and scrounger remain remarkably stable (allowing for 

the fluctuations inherent in the fact that the grid is composed of a discrete number 

of cells). It is also instructive to compare Figure V7 to the population-level results 

in Figures V3 and V4; chaotic outcomes occur in regions of a values which lead to 

mixed equilibrium outcomes. 

VA.4 Effective group size 

As seen in Figures V3, Y.4 and VS, the effective group size has a dampening effect on 

chaotic population equilibrium outcomes. At larger effective group sizes, the inter­

mediate zone where mixed equilibria occur is severely truncated, to the point where 

only a few values of a lead to the overall co-existence of producing and scrounging 

behaviours instead of an all-producer or all-scrounger (pathological) population, or 
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individual scrounger colonies. This effect of the social learning model is not seen 

in the DRM model, where scrounging exists only as a part of a mixed ESS solution. 

Note that this effect is not explainable simply as an outcome of crowding, because 

as noted in the methods, grid size was scaled with effective group size to make the 

neighbourhood of each cell a (relatively) constant proportion of the grid. 

~5 Discussion 

The deterministic rate-maximizing (DRM) model predicts a mixed equilibrium out­

come for social foraging without specifying a mechanism for how that equilibrium is 

achieved; classical models assumed a genetic mechanism operated upon by natural 

selection. By specifying a simple heuristic behaviour rule using social information in 

a spatially-explicit mode!, we tind unexpected equilibrium outcomes and complex 

population dynamics in the resulting producer-scrounger game. When comparing 

to the DRM model, we showed that scrounging increases as the value of a (which 

has the same effect as the tinder's share in the DRM model) increases. However, the 

effect is non-linear, so that at low values of a the population is much more resis­

tant to scroungers, while at high values of a pathological outcomes that lead to the 

collapse of social foraging (100% scrounging) are possible. Mixed equilibrium out­

cornes occur at intermediate values of a, which correspond to populations playing a 

mixed ESS of the producer and scrounger tactics in the DRM mode!. Our results also 

show that for low values of a the invasion of scroungers into a population of produc­

ers will often lead to scrounging in isolated colonies within the larger population, an 

outcome that cannot be derived from any of the classical producer-scrounger mod­

els. 

Furthermore, these effects are heavily influenced by the effective group size, such 

that environments with long-range interactions (larger effective group size) have 

greatly reduced zones of mixed equilibrium outcomes and more all-producer or 

all-scrounger outcomes. This difference in the effective group size, driven by en­

vironmental conditions or phenotypic differences - bird vs. terrestrial animaIs, for 

example - could lead to sorne species foraging socially and others foraging individ­

ually (Le. a population consisting entirely of producers is indistinguishable from a 

population foraging non-socially). The impact of effective group size on scrounging 
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also suggests that systems with high or low levels of scrounging should have inter­

actions that are highly local (smail effective group size) and that social foraging sys­

tems "vith a wide range of patch environments, where the value of a fluctuates as 

scroungers are able to take a larger or smaller proportion of the food in each patch, 

would be better supported under highly local interactions. In essence, large effective 

group sizes have a significant dampening effect on interesting, chao tic outcomes in 

this producer-scrounger game. This might help to explain why species with similar 

ecologies may exploit clumped food differently (Maher and Lott 2000); our model 

suggests that species that have a larger effective group size - which may manifest 

as more gregarious species, species with greater cognitive or sensory abilities, etc. ­

would be less likely to have social foraging, while similar species with smaller effec­

tive group sizes might have greatly different levels of scrounging despite facing only 

a small difference in the way that patches are divided. This effect cannot be derived 

from the DRM model, which predicts a linear relationship between the finder's share 

and the equilibrium value of scrounging regardless of group size. 

The implications of the foraging heuristic also help ta solve a largely ignored 

problem with the DRM model, which is that the classical model requires that ani­

mais pay attention to every other member of their foraging group. This remains true 

no matter how large that group is, because ail scroungers must join the patch discov­

ery of every producer and it is an assumption of the DRM model that simultaneous 

patch discoveries are impossible. Such tracking is likely to be an impossible sensory 

or cognitive task for any but the smallest groups, but the sociallearning model also 

suggests that animais who are foraging socially may be better off paying attention 

only to animais in a small group anyways. In short, no matter what the absolu te 

group size is a social forager should pay attention only to the nearest neighbours 

(the effective group size). 

Perhaps most importantly, in our model we see that the sociallearning heuris­

tic employed by foragers ("adopt the tactic that has the highest payoff among al! of 

your neighbours") allows them to use strategies flexibly, changing on a moment­

to-moment basis as shown in Figure V.7 while the population usage of each tactic 

reaches and maintains an equilibrium. The pattern of behaviour observed in our re­

sults allows foragers to respond sensibly to changing conditions in their immediate 

environmentwhile still achieving a population equilibrium; this matches qualitative 

results seen in flocks of captive nutmeg mannikins (Lonchura punctulata; Mottley 
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and Giraldeau 2000). The findings of Coolen and Giraldeau (2003) also align with 

our results, as they showed that nutmeg mannikins switch between the producer 

(head-down) and scrounger (head-up) tactics with great rapidity, on the order of 3­

5 seconds spent on each tactic. Such flexibility in tactic use is an important issue 

for theoretical and empirical investigations of foraging behaviour (and strategic de­

cision making in general), but the traditional way of modelling such flexibility has 

been learning rules (Harley 1981; Hamblin and Giraldeau 2009) which use only per­

sonal information obtained by sampIing payoffs to tactics. Therefore, the results of 

our study are an important step towards integrating learning mechanisms into so­

cial foraging models. It would be interesting to compare the use of sociallearning 

in our model with recent work on mechanisms such as learning rules (Beauchamp 

2000; Hamblin and Giraldeau 2009) for personal information; one prediction from 

the model in Hamblin and Giraldeau (2009) was that producing behaviour should be 

difficult to extinguish and that this effect became stronger as group size increased, 

which is similar to the increasingly broad regions of a as GE grows for which the pop­

ulation is predicted to be composed entirely of producers or scroungers (patholog­

ical outcomes). The details of a full comparison, which would require bridging the 

cellular automaton we use with the individual-based models that have been used 

to study learning rules, are beyond the scope of this work but the mechanisms of 

learning personal and social information and their interaction should prove a fruit­

fuI avenue of future research (McNamara and Houston 2009). 

The model we have discussed in this study also suggests new directions for em­

pirical tests. The local interactions captured in our model resemble the situations 

commonly seen in empirical work on the producer-scrounger game (e.g. Wu and Gi­

raldeau 2005; Barrette and Giraldeau 2006; Coolen et al. 2007; Mathot and Giraldeau 

2008; King et al. 2009), and the predictions of our model should be testable. Compar­

ative analyses might examine social foraging across species with different effective 

group sizes or an experimental manipulation might be found to test effective group 

size in lab work, and comparison of the spatial patterns we see in our work (Figures 

V6 and V7, for example) to lab or field systems should be possible if the interactions 

betvveen foragers can be tracked. The effects that we have predicted from manipu­

lating the value of a as discussed above may also provide new insight into the labo­

ratory and field study Of social foragers; most studies to date have assumed the Iin­

ear relationship between the tinder's share found in the DRM model, but the social 
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learning model suggests that there might instead be a non-linear relationship. Ex­

periments with a fine-grained manipulation of the way in which the patch is divided 

should provide a key test for our mode l, as does the interaction between effective 

group size and a. For example, a clear difference between the models can be found 

at high values of a which result in the breakdown of social foraging in our model, an 

effect which grows more powerful as effective group size increases; if the amount of 

the patch that scroungers can take is manipulated toward 100%, our model predicts 

that producers will do so poorly relative to scroungers because of local interactions 

that the result will be pathological. This might involve a retreat from social to indi­

vidual foraging or even a change to a smaller effective group size, which could be 

tested with methods from network analysis (Croft et al. 2008). 

Future work on models like this can take several approaches. Extensions to the 

basic model we present are certainly possible, as a start: for example, the determin­

istic updating rule we use might be replaced with a stochastic mIe which allows for 

more complexity at the cost ofreproducibility (Moyano and Sanchez 2009), or the ef­

fects of different neighbourhood types (Moore vs. von Neumann and others) might 

be examined. To take the model beyond a cellular automaton and allow for move­

ment of agents, with the corresponding asymmetry in relationships and measurable 

distance between them, it willlikely be necessary to turn back to individual-based 

models (Beauchamp 2008; Hamblin and Giraldeau 2009), but it can now be done in 

the light of simpler, more tractable models such as the one we present here. 
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VI.I Abstract 

The producer scrounger game is a mode! of social foraging, wherein an an­

imal's foraging success is contingent on it's own choices and the choices of oth­

ers simultaneously. The mode! assumes that individuals invest time in finding 

resources (producing) or joining resource discoveries (scrounging). The mode! 

has been productive theoretically and empiricaUy, but the generalization of the 

the theory and laboratory work to more realistic animal foraging is hampered 

by the nature of landscapes upon which foragers have been studied to date. In 

this study 1present a model that takes the underlying landscape geometry (the 

way space is represented, usually as a square grid) into account and demon­

strates that by manipulating this geometry to be more realistic we can signifi­

cantly affect the outcomes in the producer-scrounger game. 1 use these results 

to argue that future work must take landscape effects into account if research 

on the producer-scrounger paradigm is to be successfully applied to real ani­

mal foragers in the specifie and to systems of exploitation in general. 
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VI.2 Introduction 

The study of social foraging - in which a forager's decisions are directly related to the 

decisions of other foragers under conditions of frequency dependence - has been 

represented most successfully by the body of theory and empirical work known as 

the producer-scrounger game (Barnard and Sibly 1981; Giraldeau and Caraco 2000; 

Giraldeau and Dubois 2008). In this game, individuals may adopt one of two tac­

tics, producer or scrounger. Producers invest time in searching for resources (e.g. 

food patches), while scroungers join the discoveries of producers but do not search 

themselves. A strategy in the producer-scrounger game is a mix of producing and 

scrounging contingent on the actions of other foragers in the group (a mixed strat­

egy); the producer-scrounger game has a solution in the form of an evolutionarily 

stable strategy (ESS: Maynard Smith 1982) in which individuals produce sorne pro­

portion of the time and scrounge the rest. The producer-scrounger game has been 

productive both theoretically and empirically (reviewed most recently in Giraldeau 

and Dubois 2008). Many species have been observed behaving in accordance with 

the producer-scrounger model: a non-exhaustive list includes such diverse species 

as bald eagles (Hansen 1986), shark mackerel (Auster 2008), zebra finches and nut­

meg mannikins (Giraldeau et al. 1990), Harris' sparrows (Rohwer and Ewald 1981), 

kelp gulls (Steele and Hockey 1995), pigeons (Giraldeau and Lefebvre 1986), baboons 

(King et al. 2009), barnacle geese (Kurvers et al. 2010) and pigs (Held et al. 2000). 

More generally, the game applies in situations beyond foraging to broader ques­

tions where parasitic exploitation of (non-food) resources occurs (Barnard 1984; Gi­

raideau and Dubois 2008) 

Yet to date, almost ail of the experimentallaboratory work testing predictions or 

variations of the producer-scrounger model has been on small birds, grouped into 

flocks numbering no more than 6 or 8 in an aviary in which birds forage on grids pop­

ulated by regularly-spaced patches of food (e.g. Giraldeau et al. 1990; Koops and Gi­

raldeau 1996; Mottley and Giraldeau 2000; Coolen et al. 2001; Katsnelson et al. 2008; 

Mathot and Giraldeau 2008; Morand-Ferron and Giraldeau 2010). These aviaries 

bear little resemblance to the foraging landscape faced by birds such as the zebra 

finch (Zann 1996), where patches are dotted in a landscape with heterogenous ge­

ometries that sized much differently (usually lar'ger) than laboratory aviaries. Simi­

larly, simulation studies have sought to extend producer-scrounger theory (e.g. Barta 
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et al. 1997; Beauchamp and Giraldeau 1996; Beauchamp 2000; 2008; Hamblin and 

Giraldeau 2009; Hamblin et al. 2009; Kurvers et al. 2011), but these have ail used the 

same landscape format as found in aviary work: simulated foragers interact with 

each other across a regular, square grid, a spatial environment that is entirely ho­

mogenous. 

Other authors have made clear and compelling arguments that landscape fea­

tures and spatial heterogeneity matter to animal behaviour (Turner 1989; Johnson 

et al. 1992), but we know little of how these processes affect animaIs engaged in 

a producer-scrounger game. For instance, foragers in a producer-scrounger sys­

tem must travel through their environment to search for patches (search time) and 

join patch discoveries (travel time) before the patches are depleted, but these effects 

have received little attention; theoretical work avoids mention of spatial processes 

(one exception found in Beauchamp 2008), and empirical work is done in spaces 

which are highly restricted. Adding explicit spatial representations and processes to 

current theoretical work has the potential to significantly enhance the external and 

ecological validity ofthese models. 

Addressing this concern by conducting large-scale laboratory work on social for­

agers with more complex environments would be ideal, but such experiments re­

main out of reach as yet. Therefore, this study presents a simulation model that ex­

plicitly manipulates landscape geometry upon which foragers playing a producer­

scrounger game interact. Following Holland et al. (2007) 1 1 test the effects of four 

landscape geometries (von Neumann, hexagonal, Moore, and Dirichlet, also known 

as Voronoi; see Figure VU) on producer-scrounger outcomes. This study distin­

guishes between the effect of regular grids (von Neumann, hexagonal, and Moore) 

which are characterized by their fixed number of neighbours and fixed patch sizes 

and the irregular Dirichlet grid, with its variable number of neighbours and mix of 

large and small patches. Of particular note are Moore grids, the most commonly 

used geometry in simulation work, and the heterogenous Dirichlet grid, which more 

closely resembles reallandscapes that animaIs might encounter. The effects ofthese 

geometries are measured by outcomes including ESS values of scrounging, feeding 

rates, and flock geometry, to allow insight into the mapping of producer-scrounger 

models to reallandscapes. 
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Figure VI.l: Landscape geometries modelled in this study, with neighbourhoods 
for each patch (black) indicated in grey. Clockwise from top-left: von Neumann (4 
neighbours per patch), Moore (8 neighbours), Dirichlet (variable), and hexagonal (6 
neigh bours). 

VI.3 Methods 

To model the effect oflandscape geometry, 1used an individual-based model (IBM). 

Individuals played a producer-scrounger social foraging game on a grid with np 

patches (see Table VI.l) and population size was scaled as a percentage nf of np ' 

For this study, np was held constant at 400, and so nf =5(%) was a population of 20 

foragers. In any given round, npf patches held food items, measured as a percentage 

of np; npf =10 means that 10% of the patches were filled, and to avoid the effects 

of patch depletion npf was held constant by randomly regenerating filled patches 

as they were exhausted. Each patch contained 20 food items; Kurvers et al. (2011) 

found that in a spatial producer-scrounger model patch richness had significant ef­

fects on the equilibrium value of scrounging, and so we kept the number of items in 
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each patch constant to explore the effects of the other variables. 

The grid geometry was manipulated by changing the number of neighbours for 

each patch; in the von Neumann, hexagonal, and Moore grid geometries, each patch 

had a regular number ofneighbours (4, 6, and 8 respectively), while in the Dirichlet 

geometry each patch had a variable number of neighbours, constructed so as to have 

a mean of6, s.d. of 1.8, and range 2-12 neighbours. Grids were represented in code as 

a graph object, and Dirichlet geometries were constructed by an algorithm written 

by the author after descriptions such as those found in Green and Sibson (1978). The 

code for this simulation was written in Python and is available upon request. 

At each time step if they were not feeding or moving, individuais chose to scrounge 

with probability Ps or produce with probability 1- Ps. Producers searched their cur­

rent patch for food, and ifno food was discovered, moved between patches by choos­

ing randomly among the neighbouring patches and selected their tactic again in the 

next round. If food was present in a patch, producers foraged at the patch, removing 

1 food item per round, until the patch was exhausted. Scroungers searched the grid 

for producers and moved towards the nearest producer at the rate of tvvo patches per 

turn; this was meant to reflect laboratory observations ofscrounging individuals and 

is common in producer-scrounger simulations (e.g. Beauchamp 2008; Hamblin and 

Giraldeau 2009). If the patch was exhausted before (he scrounger arrived, the agent 

abandoned the attempt and chose their tactic anew in the next round. Vpon reach­

ing the patch, scroungers joined the discovery and fed at a rate of l unit per round; 

agents feeding at a patch moved randomly as above in the round after exhausting it. 

Foragers received an initial energy budget of e = 100 units of energy, and each 

step of movement depleted e. Foragers who reached e = 0 were considered to be 

"dead" and no longer moved or foraged. 1 manipulated two aspects ofthis energy 

depletion. In the first manipulation, food eaten during foraging would either regen­

erate energy stores at the rate of one unit of energy per unit of food eaten, or it would 

have no effect on energy stores (regenerate: false). In the second manipulation, 1 

scaled the energy cost of movement by the number of neighbours for a given patch, 

under the assumption that patch size would scale linearly with the number ofneigh­

bouring patches (larger patches, more neighbours). To normalize the costs around 

l, 1 used the ratio of the number of neighbours for a patch to the median number 

ofneighbours in every patch. Because the von Neumann, Moore, and hexagonal ge­

ometries each have a regular number of neighbours, the cost to movement under 
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this scaling remained 1 while the cost varied under the Dirichlet geometry. Analysis 

of the results (not shown) confirm that foragers under the no regeneration condition 

with scaling of movement costs (NR-S) had the lowest energy reserves at the end of 

the simulations, and final energy reserves increased through the NR-NS (no regen­

eration, no scaling), R-S (regeneration, scaling) and finally R-NS (regeneration, no 

scaling) conditions as would be expected. 

Each run of the the fora'ging simulation lasted 500 time steps, and 1recorded food 

intake rates to each tactic and flock geometry (1 use the language for the birds which 

have been the favoured subject of producer-scrounger studies, but the term is in­

terchangeable with the more general 'group'). Flock geometry was measured as the 

mean area of convex hull which encompassed the foraging flock at each time step, 

averaged over the entire simulation. 1varied nf' npf, regeneration (TIF) and scaling 

(TIF) as in Table VI.l for a total of 240 parameter combinations, and for each com­

bination 1systematically varied Ps from 0 to 1 by 0.01 to calculate ESS proportions 

of tactic use. Each combination of parameters and Ps was replicated 100 times, for a 

total of 2.4 million runs. 

ESS values of tactic use (Ps) were calculated by comparing the mean intake rates 

to each tactic during a run and averaged over all100 replications. The value of Ps at 

which the intake rates were equal was considered to be the ESS value of scrounging. 

To automate the calculation of ESS values, 1calculated the intake rates to each tactic 

(producer and scrounger) as a function of Ps for each parameter combination and 

fit a smoothing cubic spline to the resulting curve for each tactic in R (R Develop­

ment Core Team 2007). The intersection point of the two curves was calculated by 

minimizing the squared difference between the curves using R's optimize function. 

ln subsequent analyses of food intake and flock geometry, 1 used the subset of the 

data formed by taking the runs done at the ESS value of Ps for each combination of 

parameters (24000 runs). 
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VI.4 Results 

Figure VI.2 shows the ESS value of scrounging calculated for each combination of 

grid type, patch density (npfL population size (nf)' regeneration (TIF) and cost 

scaling (TIF). The ESS values showed clear effects from each variable. Scrounging 

tended to be highest under the Dirichlet geometry and lowest under the von Neu­

mann, though this effect interacted with the other variables. As patch density in­

creased, scrounging decreased (c.f. Figure 1 of Kurvers et al. 2011, where a similar 

effect was found). Interestingly, scrounging was lowest in the NR-S (no-regeneration 

but cost-scaled) condition and highest in the R-NS and R-S conditions, suggesting 

that the ESS value of scroungingwas sensitive to the energybudget available (highest 

under R-NS, lowest under R-S). Population size decreased the variance in scrounging 

values at high patch densities. 

Range Number of combinations 
< 0.05 8 

0.05 up to 0.10 33 
0.10 up to 0.15 11 

0.15 to 0.23 8 
Total 60 

Table VI.2: Range of ESS values between grid types within each parameter combina­
tion, calculated by subtracting the lowest ESS value from the highest. 

Figure VI.3 shows the feeding rates by grid type and combinations of patch den­

sity and population size, grouped by regeneration and scaling. The effects on the 

ESS values for each combination of parameters can be seen in this figure: grid type 

had no consistent effect on feeding rates, but there was a significant increase in in­

take rates as patch densities went up, and there were also significant differences as a 

function of energy budget. Feeding rates went down between NR- NS condition (low­

est energy reserves) and the R-NS (highest energy reserves). This result follows from 

the relationship in Figure VI.2, where the NR-S condition had the lowest scrounging 

and the R-NS and R-S conditions had the highest, and fits with the predictions of 

producer-scrounger theory that under frequency-dependent foraging mean intake 

rates go down as the proportion of scrounging in the population increases. There 

was no clear effect of patch density. 



NR
-N

S 
c 

R·
NS

 
() 

NR
-S

 
• 

R-
S 

;) 

Di
ric

hl
et

 H
eX

'ag
on

al 
M

oo
re

 vo
n 

Ne
um

an
n 

Di
ric

hl
et

 H
ex

ag
on

al
 

M
oo

re
 v

on
 N

eu
m

an
n 

Po
pu

la
tio

n 
si

le
: :

{ 2
0 

} 
Po

pu
la

tio
n 

si
le

: :
{ 2

0 
} 

Po
pu

la
tio

n 
si

le
: :

 { 
20

 } 
PO

Du
lat

ion
 s

ile
: :

 { 
20

 }
 

Po
pu

la
tio

n 
sil

e:
 :

(2
0 

} 
Pa

tch
 d

en
sit

v:
 :

{ 5
} 

Pa
tch

 d
en

sit
v:

 : 
( 1

0 
) 

Pa
tch

 d
en

sit
v:

 :
{ 1

5 
} 

Pa
tch

 d
en

sit
y:

 :
 ( 

20
 ) 

Pa
tch

 d
en

sit
v:

 :
( 2

5 
) 

'T
l

.....
.. 

O
'Q

 
C ....,

 
(l

) S N
 

tn
 

C/
"J

C/
"J 

,..
...

. 

~

 

0.
8 

0.
6 

0.
4 

0.
2 

1 
1 • 

1 
• • 

• 
• 

•
• 

• 
1

• 
• 

1 • • 
• • • 

• • • 
1 • • 

• • 
1 • 

1 • • 
• 1 

• • • 
• 1 

• 
1 

• 
• • 

• • • 
<

 
~

 2"
 

(l
) 

C
/l .....
., 

0 '-
"
 

()
) c OÔ
) 

po
pu

là
tio

n 
si

le
: :

( 1
0 

} 
Pa

tch
 d

en
sit

v:
 : 

( 5
) 

Po
pu

la
tio

n 
si

le
: :

 ( 
10

) 
Pa

tch
 d

en
sit

v:
 : 

{ 1
0 

) 
Po

pu
la

tio
n 

si
le

: :
11

0)
 

Pa
tch

 d
en

sit
v:

 :1
15

1 
Po

pu
la

tio
n 

si
le

: :
 ( 

10
 } 

Pa
tc

h 
de

ns
ity

: :
{ 2

0 
} 

Po
pu

la
tio

n 
si

le
: :

 { 
10

 } 
Pa

tch
 d

en
sit

y:
 : 

f2
5 

} 

0 ....,
 

(l
) 

~

 

(
)
 

::T
 

"0
 

~

 

....,
 
~

 a (l
) 

C
 

:J
 

0 L
­

Ü
 

Cf
) 

'+
­ 0 Q)
 

:J
 

1 • 
• • 

1 • 
1 • 

• • • 
• • • 

• • • 
• • • 

• • • 
• 

•
• 

• •
• 

• • • 

• 
•

• 
•

• 

• 1 
• • • 

• • • 

• • • 

• • • 

œ
 • • 

0.
8 

0.
6 

0.
4 

0.
2 

M
 

(l
) ....,
 

(
)
 

0 

(1
j >
 

(j
) 

Po
pu

la
tio

n 
si

le
: :

( 5
} 

Pa
tch

 d
en

sit
v: 

: (
 5

} 
Po

pu
lat

ion
 s

ile
: :

1
5

\ 
Pà

tch
 d

en
sit

v: 
: (

 1
0 

1 
Po

pu
la

tio
n 

si
le

: :
T5

) 
Pa

tch
 d

en
si

iV
::I

15
-) 

Po
pu

la
tio

n 
si

le
: :

( 5
} 

Pa
tch

 d
en

sit
y:

 :
( 2

0 
) 

Po
pu

la
tio

n 
si

le
: :

f 5
} 

Pa
tch

 d
en

sit
v:

 : 
12

5 
} 

a 
(j

) 
0

­ S·
 

~

 c.
 

0 ;:
l 

w
 0.8

 

0.
6 

0.
4 0.
2 

1 • 
1 • 

• 1 
u • • 

1 • 
1 • 

e • • 
S • • 

(l • • 
0 • • 

• • • 

1 • • 

• • • 

• 
• 

• 
• 

• 
•

• 
• 

• 

• • • 

e • • 

•
e 

• 

• 
• • 

Dl
nc

hl
e!

 H
ex

ag
on

al
 

M
oo

re
 vo

n 
Ne

um
an

n 
Di

ric
hl

el 
He

xa
go

na
l 

M
oo

re
 v

on
 N

eu
m

an
n 

Dm
ch

let
 H

ex
ag

on
al 

M
oo

re
 v

on
 N

eu
m

an
n 

.....
.. 

gr
id 

typ
e 

..
" 

U
1 



0
"'

 
>-

rj
1

--
'0

 
ס(

0o
oo

oO
-

::
S

(]
Q

 
P

l 
C

,...,
. 

....,
 

...
...

. 
C1

l

? 
:::; 

'ü
 

W
 

8.
 

'T
l 

Po
pu

lat
ion

 s
ile

: :
{ 2

0 
\ 

Pa
tch

 d
en

sit
y: 

:{
 5

\ 
Po

pu
lat

ion
 s

ile
: :

 { 
20

 \ 
Po

pu
lat

ion
 s

ile
: :

i 2
0 

) 
pà

tch
 d

en
sit

v: 
: {

 10
 \ 

Pa
tch

 d
en
~i
tv
: 

: {
 15

 ) 

NR
-S

R-
NS

 
0

NR
-N

S 
G

 

D
iric

hl
el

 
He

xa
go

na
l 

M
oo

re
 v

on
 N

eu
m

an
n 

Po
pu

la
tio

n 
si

le
: :

{ 2
0 

\ 
Po

pu
lat

ion
 s

ile
: 

:(
20

 \ 
Pa

tch
 d

en
sit

v: 
:{

 20
 \ 

Pa
tch

 d
en

sit
y: 

: {
 25

 \ 

Di
ric

hl
el

 
He

xa
go

na
l 

M
oo

re
 v

on
 N

eu
m

an
n 

R-
S 

li
• 

.....
.. 
~

 

en
 

::J
 

C1
l

,...,
. 

C1
l

V
l 

0.
. 

P
l 

5'
....,

 
C

1
l(

]Q
 

8 
....,

 
P

l 
C1

l 
,...,

. 
P

l 
C1

l
::s 

V
l 

V
l 
~

 

o 
§

,...,
 _

. 
>

-'
 

,..
.,.

 

0.
6 

0.
5 

0.
4 

0.
3 

02
 

0.1
 

1 
1 

1 
• 

1 
1 

• 1 
• 1 

•
• 

•
1 

1 

• • 1 

• • • 

• 
• 

•
• 

• 
1 

• • • 
• • e 

•
• 

• 
• 

e 
~

 

1 • 

• • 1 

• • • 

0
8

' 
o 

0 
@

 0
..

 

Po
pu

lat
ion

 s
ile

: :
{ 1

0\
 

Pa
tch

 d
en

sit
y: 

:r
5

\ 
Po

pu
la

tio
n 

si
le

: :
{ 1

0 
\ 

P~
tc

h 

de
Qs

itv
: :

r1
0 

\ 
Po

pu
lat

ion
 s

ile
: :

i 1
0 

) 
Pa

tch
 d

en
sit

v: 
: i

 1
5 

) 
Po

pu
lat

ion
 s

ile
: :

{ 1
0 

\ 
Pa

tch
 d

en
sit

v: 
:r

20
 1

 
Po

pu
lat

ion
 s

ile
: :

{ 1
0 

\ 
Pa

tch
 d

en
sit

y: 
:r

25
 \ 

'O
'ü

:::
-:r

o 
0 

....,
 

P
l 

C
 

c.
 

::s
o 

_.
 

::J
 

;::;
:

V
l 

...
...

. 
. 

8 ~

 

,...,
 

0 ....,
 

(1)
 
~

 

Cil
 .... O
l 

C
 

\J
 

Q
) 

Q
) 

LL
 

1 
1 

1 

• 
e 

ft 
• 1 

• 1 

• 
• 

•
• 

•
• 

• • 1 

• • • 

• 
• 

•
• 
•

• 

• • • 

• • • 

• 
• 

Il
 

Il
 

(1
 

0 

• • • 

• • • 
• • • 

0.
6 

0.
5 

0.
4 

0.
3 

02
 

0.1
 

C1
l 

P
l 

0 ::r
 

(]
Q ....,

 0.:
 

P
l ::s 0.
. 

'ü
 

P
l ....,
 

P
l 8 C1
l ,...,
. 

C1
l ....,
 

0.
6 

0.
5 

0.
4 

0.
3 

0.
2 

0.1
 

Po
pu

lat
ion

 s
ile

: :
 {5

 \ 
Pa

tch
 d

en
sit

y: 
:r

5
\ 

1 
1

1 
•

1 
1 

Po
pu

lat
ion

 s
ile

: :
{ 5

1 
Pa

tch
 d

en
sit

v: 
:{

 1
0 

\ 

• 
•

• • 
• • 

Po
pu

lat
ion

 s
ile

: :
{ 5

\ 
Pa

tch
 d

en
sit

v: 
:{

 15
 \ 

• 
•

• 
•

• 
• 

•
• •

 
• 

•
• 

Po
pu

lat
ion

 s
ile

: :
 i 

5
\ 

Pa
tch

 d
en

sit
v: 

:{
 20

 \ 

• 
•

• 
• 

• 
• 

• 
• 
• 

•
•

• 

Po
pu

lat
ion

 s
ile

: :
{ 5

) 
Pa

tch
 d

en
sit

v: 
:{

 25
 )

 

• 
• 

1 

• 
• 

•
• 

1 
el 

•
• 

• • Il
 

0 0 
Di

ric
hle

t 
He

xa
go

na
l 

M
oo

re
 v

on
 N

eu
m

an
n 

Di
nc

hl
et

 
He

xa
go

na
l 

M
oo

re
 v

on
 N

eu
m

an
n 

Di
ric

hl
et

 
He

xa
go

na
l 

M
oo

re
 v

on
 N

eu
m

an
n 

8 1 
Gr

id 
typ

e 



147 

Figure VIA shows mean flock area by grid type and combinations of patch den­

sity and population size, grouped by regeneration and scaling. Flock geometry showed 

significant effects of grid type, with flocks being significantly larger (more widely­

spaced) under the Dirichlet landscape; the other three geometries showed roughly 

equal flock areas, and flock geometries grew larger with increased population size 

and patch density. Once again, grouping by energy budget shows significant effects: 

lower energy reserves led ta larger flock areas and vice versa. Increasing population 

sizes increased mean flock area. 

VI.5 Discussion 

The results of the simulation model presented in this study show that the form of 

the landscape upon which animaIs forage may have significant and unrecognized 

effects on the dynamics of the producer-scrounger game. As depicted in Figure VI.2, 

the ESS values changed as a function of grid type, with differences ranging up to 

23% and Table VI.2 shows that a third of the parameter combinations resulted in a 

difference greater than 10%. Flock geometry showed significant effects of grid type 

as well, as can be seen in Figure VIA. Sorne of these differences are explainable by 

the ESS value of scrounging for each grid; Barta et al. (1997) show that the area oc­

cupied by a flock varies inversely with scrounging, such that producer-only flocks 

have the largest areas. Indeed, comparing Figure VI.2 to Figure VIA, combinations 

with lower ESS values of scrounging had larger areas. However, the size of the dif­

ference between the regular (von Neumann, hexagonal, and Moore grids) and irreg­

ular (Dirichlet) geometries cannot be explained by ESS values alone and provides 

strong evidence that the variable geometry of reallandscapes may have important 

effects on the behaviour of animaIs foraging socially. Also, for both the flock geome­

tries predicted by Barta et al. (1997) and the spatial arrangement of producers and 

scroungers shown in Kurvers et al. (2011), predation was required to maintain group 

cohesion, while no such mechanism was required in this model. 

The larger flocks (and often higher use of scrounging) in Dirichlet landscapes are 

likelya consequence of the irregular nature ofthis landscape. As Holland et al. (2007) 

demonstrated, the path between two points in irregular landscapes like the Dirich­

let is longer than in regular grids. Irregular geometries such as the Dirichlet could 
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plausibly arise whenever animais are foraging in spatially heterogenous territories 

(rocky, patchy landscapes with irregular rou tes between patches, wooded areas with 

elevation differences, etc.), or as the outcome of group interactions. Few studies 

to date have explicitly discussed this, but an example is the work done by Doncaster 

and Woodroffe (1993), who showed that the boundaries ofbadger setts fit the pattern 

of a Dirichlet tessellation. Our results are the first 1 know of to suggest that animaIs 

playing producer-scrounger games in such complex conditions will forage in groups 

with larger areas unless reigned in by other forces like predation or visibility. Future 

tests of producer-scrounger games in more ecologically realistic environment may 

be able to manipulate these forces to see if flock geometry changes as a result. 

Feeding rates (Figure VI.3) did not show significant differences by grid type and 

only weak effects from population size, but did show consistent and strong effects 

from patch density, energy regeneration and cost scaling. The results for both feed­

ing rates and ESS values of scrounging show a clear pattern based on energy reserves: 

intake rates decreased and scrounging increased as energy reserves increased. The 

results for patch density inverted this relationship: intake rates increased and scroung­

ing decreased as patch density increased. Patch density's effects on intake and scroung­

ing agree with the results in Kurvers et al. (2011) without the confounding person­

ality variable and confirm the role of patch density as a spatial driver of producer­

scrounger dynamics. On the other hand, the effect of energy reserves agrees (quali­

tatively) with the predictions of variance-sensitive models ofproducing and scroung­

ing, which predict that scrounging should increase as energy reserves increase (be­

cause scrounging has less variance in payoff Stephens 1981; Caraco and Giraldeau 

1991). However, these models usually presume that the change in scrounging is a 

strategic choice made by foragers, such as: "increase scrounging when my energy 

reserves exceed a threshold x". The same trend in our results cornes entirely from the 

spatially explicit nature of the model; no strategic choice is made by foragers other 

than maximizing rate of intake by using ESS values of scrounging (as opposed to 

minimizing the chance of shortfall as in the variance-sensitive models). This model 

thus suggests a potentiallink between variance-sensitive producer-scrounger games 

and spatial processes. 

The results presented here should not be seen as an attempt to exhaustively cat­

alogue the effects of landscape geometry or spatial effects (like patch density); they 

are instead an argument that these effects may significantly affect the predictions of 
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the basic producer-scrounger models and should be taken into account when de­

signing future empirical work. Though full-scale explorations of these processes in 

laboratory work may not yet be achievable, it should still be possible to manipulate 

the arrangement of patches under aviàry conditions to look for the effects predicted 

here. Introducing spatial heterogeneity by placing various obstacles on foraging 

grids, for example, is an easy manipulation that could mimic more realistic land­

scapes. It may also be possible to detect these effects in field work. In their excellent 

study of baboons in central Namibia foraging under a producer-scrounger game, 

King et al. (2009) did not explicitly note the geometry of their desert "small-patch" 

and woodland "large-patch habitats", but their descriptions sound tantalizingly sim­

ilar to the difference between regular and irregular grid types and their finding of a 

14 times increase in scrounging in the large-patch environment is reminiscent of the 

differences seen in Figure VIA. Such systems may provide a good opportunity ta test 

the effects of landscape geometry that are predicted in this study. 

The reach of this effect also extends weil beyond food-based foraging problems 

to the logic of exploitation in other systems like mating and social structure. For 

example, Fukuyama (1991) suggested that the male Japanese foam-nesting frogs he 

studied played a producer-scrounger game while attempting to mate (here, calling 

and satellite males are producers and scroungers respectively); further, the descrip­

tion of the conditions under which the frogs mate suggest that these landscape ef­

fects might play an important role. Similarly, Winterhalder (1996a; 1997; 1996b) ex­

plored producer-scrounger dynamics that might underlie aspects of resource trans­

fers in primates, hominids, and even hunter-gatherer societies, and the question of 

how these transfers might be structured spatially 

As noted in the introduction, a wide variety of species have been found to play 

the producer-scrounger game when foraging in social groups (and in other, more 

general situations of exploitation). These species often forage in environments far 

removed from the aviaries in which the predictions ofthe producer-scrounger model 

have been tested on small birds, and the results of this paper provide an argument 

that these differences can not be ignored ifthe study of social foraging is to success­

fully generalize to animais foraging on reallandscapes and provide greater under­

standing of the mechanisms underlying social foraging processes as weil as the evo­

lutionary pressures brought to bear on social foragers by their environments. Thus l 

urge future work on this paradigm to include the effect of spatial heterogeneity and 
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other spatial processes as a first-class citizen when designing and executing new re­

search on social foraging problems. 
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CHAPTER VII 

GENERAL CONCLUSION 

The producer-scrounger game is one of the best studied models of social foraging, 

and as discussed in the introduction (section 1.5), this thesis has focused on three 

underlying themes: contributions to the advancement of producer-scrounger mod­

els, information use in producer-scrounger games, and spatial effects on these mod­

els. In this conclusion, 1 will summarize and synthesize the association of the four 

chapters 1have presented to these themes and suggest directions for future research, 

both theoretical and empirical. 

VII.l Summary and Synthesis 

VILI.I Advancing the models 

There are a number of basic producer-scrounger models currently in use (e.g. Vick­

ery et al. 1991; Caraco and Giraldeau 1991; Ranta et al. 1996; Barta and Giraldeau 

1998), and while the study of these models has by no means stood still (Dubois 

et al. 2010; Mathot and Giraldeau 2010), there remains an abundance of unanswered 

questions and ample space for exploration. 

ln Chapter II, 1extended work by Beauchamp (2000) exploring learning mecha­

nisms for foragers playing a producer-scrounger game in a spatially-explicit world. 1 

discovered that when candidate mIes such as the Relative Payoff Sum, Perfect Mem­

ory, and the Linear Operator were placed in competition using a genetic algorithm 

approach, population dynamics (as a function of group size) c1early favoured the 

Relative Payoff Sumo This result provided evidence in favour of earlier work on ES 

learning mIes that suggested that the Relative Payoff Sum was evolutionarily stable 
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CHarley 1981; Tracy and Seaman Ir. 1995). The genetic algorithm also produced a 

previously unseen pattern in the evolution of the parameter values to the RPS which 

showed that specialization in tactic use increases along with group size and grid size. 

Our findings on environmental variation and behavioural flexibility in the producer­

scrounger game provide an interesting contrast to the work of optimal foraging theo­

rists, and pointed to different pressures on learning mechanisms operating on social 

foragers. 

Chapter III showed that by broadening the scope of producer-scrounger rela­

tionships ta indude coevolutionary dynamics between predator and prey, interest­

ing new effects of manipulative information use could be seen. Increased prey dump­

ing forced increased use of social information by predators (increased levels of scroung­

ing)) reducing predator search efficiency and boosting prey survival. When both prey 

and predators were allowed to co-evolve, though, prey evolving the highest level of 

dumping against predators not using social information. The interpretation ofthese 

results - that prey evolved to turn predator information use against predators them­

selves - is a novel outcome for the producer-scrounger dynamic. 

Chapter IV presents the first attempt l know of to link the evolution of a poly­

morphism linking the producer-scrounger to an animal personalitY trait such as 

boldness. Though there was no evidence of the expected within-population poly­

morphism of bold producers and shy scroungers, a strong effect of environmental 

parameters such as patch density and richness and predation pressure was found 

on overall population dynamics; bold producers evolved when faced with dense, 

poor patches while shy scroungers emerged when patches were sparse but rich, and 

predation moderated these effects. Animal personality is an area of immense fo­

cus in current behavioural ecology research, and the work in Chapter N makes the 

producer-scrounger paradigm a relevant part of that focus. 

Chapter V explores a cellular automata that furnishes us with a simple model to 

study the interaction of producing and scrounging with local, sociallearning effects. 

l discovered that the rule of thumb we used allowed for behavioural flexibility and 

complex population dynamics from the simplest producer-scrounger model (com­

pare this to Dubois et al. 2010), and the effect of effective group sizes on population 

outcomes is an important glimpse into how real populations might organize them­

selves. This model also represents the simplest spatial producer-scrounger model 

that l am aware of. 
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Finally, Chapter VI demonstrates that the method of representing the landscapes 

upon which foragers interact can have a significant impact; l discovered that ESS 

values and flock geometry showed (sometimes dramatic) changes as a function of 

the underlying geometry, and l used this to make an argument about the ecologi­

cal validity of current empirical and simulation work on this social foraging game. 

The producer-scrounger game is a model of exploitative behaviour that extends far 

beyond birds on an aviary grid; wider non-human and human animal questions of 

foraging, mating, and resource transfer in general (Giraldeau and Dubois 2008) will 

be affected by the issues raised in this chapter and my thesis in general. 

VII.1.2 Information use 

The producer-scrounger game is, fundamentally, a game about information use in 

its various forms, and the chapters ofmy thesis explore this aspect to the models in 

depth. Exploration of the use oflearning rules as mechanisms for personal informa­

tion gathering led to an elaboration of our understanding of the conditions under 

which social foragers will favour personal information use or reject it in favour of 

specialization and fixed strategies; the results l present suggest that group size will 

be an important determinant of information use in social foraging, a fact with impli­

cations for empirical work which is typically done with small group sizes (Giraldeau 

and Dubois 2008). 

Social information is the explicit topic of Chapters III and V. Here, social in­

formation was found to be an important point of contention in the arms-race be­

tween prey and predators when allowed to co-evolve (Chapter lIn, and learning so­

cially with a simple rule of thumb in a local neighbourhood was shown to provide 

a method of regulating population dynamics that came with great complexity and 

power. 

Even Chapter IV contains an implicit (and powerful) effect of information use. 

The personality trait boldness, when coupIed with the producer and scrounger tac­

tics, responded to environmental conditions by evolving more (shy scroungers) or 

less (bold producers) attention to social information. In fact, it could be argued that 

populations composed of bold producers represents a complete breakdown of the 

producer-scrounger system, and raises questions for the interplay between person­

ality and the maintenance of social foraging dynamics. 
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The results presented in aIl four chapters imply the need for integrative work to 

examine the shifting and possibly conflicting demands and gifts of each source of 

information on foraging individuals, a problem 1will return to in section VII.2. 

VII.l.3 Spatial social foraging 

It can hardly be said that spatial effects have been ignored in behavioural ecology 

(e.g. Lima and Zollner 1996), but with sorne notable exceptions (Ruxton 1995; Barta 

et al. 1997; Flynn and Giraldeau 2001; Beauchamp 2008) the issue has received less 

attention in relation to social foraging. Spatial effects, both in terms of resource 

distribution and relationships among foragers, were an important component in 

each producer-scrounger model 1 developed for this thesis. The work in Chapter 

II demonstrated that specialization in tactic use may be related ta group size (which 

was itself a function of grid size), and Chapter III showed that prey evolved their spa­

tial distribution to manipulate their predators' behaviour. Scrounging in the model 

in Chapter IV was directly related to patch density (echoing past results such as Rux­

ton 1995; Beauchamp and Giraldeau 1997, which show that sparse patches reduce 

scrounging) and boldness as 1modelled it is an inherently spatial trait, as bold indi­

viduals move away from the group and shy individuals stay close to it. Boldness and 

other personality traits may allow natural selection to adapt individual responses to 

conditions imposed not only by the physical spatial environment but also the social 

spatial environment, and the social spatial environment is the subject of Chapter 

'Y,where increasing effective group sizes had a strong effect on the sustainability of 

social foraging outcomes. 

The purest example of a spatial effect arises in Chapter VI, where 1 showed that 

the way in which we represent patches (or other resources) in space, the landscape 

geometry, has significant effects on the predictions of the producer-scrounger mode!. 

The producer-scrounger game is studied largely in restricted aviary situations with 

small populations ofbirds on regular, square grids, and theoretical work (in the form 

of simulations) adopts the same landscape assumptions. In this light, the trans­

fer of the body of producer-scrounger knowledge - to both realistic foraging situa­

tions across a variety of species and to broader questions where the game serves as 

a model of exploitative behaviour in general - is in question. 
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VII.2 Future research 

The chapters of my thesis have raised as many questions as they have answered, 

a situation which 1 find eminently enjoyable. In this last section, 1 put forth my 

thoughts on the directions that future work might take. 

VII.2.l Thoughts on models 

The producer-scrounger game is a simple game, but that simplicity is deceptive; 

there remain many avenues for elaboration and exploration. In Chapters II and V, f 

1 investigated learning rules and rules of thumb as mechanisms for learning and in­

formation use, and there is much to be done. Empirically, both chapters provide the 

chance for simple and informative tests to be carried out. For example, the discus­

sion in Chapter II pointed out that the optimal rule evolved in many cases featured a 

large residual for producing, suggesting that reducing producer tactic use should be 

difficult even if the payoffto producing is dramatically diminished. The results from 

that chapter also suggest that specialization should depend on group size; creating 

flocks large enough to distinguish this effect might be difficult in laboratory work, 

but if it can be achieved (or studied in field work) the model makes clear predictions 

about foraging behaviour. 

Theoretically, work is ongoing regarding the structure of optimallearning rules. 

The results in Chapter II extend those found in Beauchamp (2000), but that and pre­

vious efforts have focused on a smail set of arbitrary rules culled from the existing 

literature. By using higher-order techniques in evolutionary computation such as 

genetic programming, the space of possible mIes can explored for even better can­

didate rules, which can then be tested in the same way as 1have done in this thesis, 

and then matched to empirical observations oflearning to determine fit. 

The work in Chapters II and V meet in the words of McNamara and Houston 

(2009), who said: 

However, the world is not as simple as this or any other mode!. The 

number of situations is too vast to expect the optimal decision for every 

situation to evolve. Instead, it is likely that animals will evolve rules that 

perform weil on average in their natural environment. These rules might 

be simple and might not be exactly optimal in any situation [... ] (p.67l). 
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As Chapter V shows, simple rules can generate complex patterns of behaviour 

and intricate population dynamics, and work by others has shown that complex 

rules may not out-perform simple rules in social foraging tasks (e.g. Arbilly et al. 

2010). Thus, it would seem that the search for simple mechanisms underlying be­

haviour in social foraging will be a fruitful area of future exploration. Further, ex­

tending the spatial structure of the models in both Chapters V and VI to model more 

realistic situations (whether space is represented as geometry or social relationships) 

can only be of benefit to the field of social foraging. There is also a creative tension 

between the results of Chapter IV; wherein a personality variable drives the spatial 

arrangement of foragers, and Chapter VI, in which the spatial arrangement of for­

agers changes as a function of landscape geometry with no other mechanism re­

quired; exploring the role of mechanisms such as learning and personality in the 

maintenance ofbehavioural dynamics will require remembering that simpler mech­

anisms - or even a complete lack of such - may have as much explanatory power as 

more complicated explanations. 

The study in Chapter III is another starting point for future work in the producer­

scrounger family of models. The coevolution of predator-prey dynamics presented 

in this paper might easily be extended to account for additional traits, or made more 

specifie by focusing on specifie pairs (or groups!) of species. For instance, the prey 

in the model are likely to be represented best by plants or other non-moving or slow­

moving prey (e.g. Avgar et al. 2008), but extending the model to allow the same co­

evolution with moving prey should be achievable; this could represent, as an ex­

ample, lions hunting wildebeest or zebra (Scheel and Packer 1991; Barnard 1984). 

Another example in this vein is the evolution of dispersal in predator-prey systems 

(Taylor 1990); adding a dispersal mechanism into the model 1present in Chapter III 

would be an interesting modification. The potential of this modelling methodology 

to explore such complicated coevolutionary questions is exciting. 

Chapter IV sought to find a within-population dimorphism in personality and 

social foraging (bold producers and shy scroungers) that it proved impossible to 10­

cate; the question is, 'why'? Future work on this needs to bridge the gap between the 

empirical observations on social foraging geese that show this relationship (Kurvers 

et al. 2010) and theoretical work showing that negative frequency-dependent selec­

tion is a suitable'mechanism to drive the evolution of animal personality (Wolf et al. 

2007; Wolf and Weissing 2011). Environmental variation is often proposed as an im­
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portant force in the evolution of learning (Stephens 1987; Shettleworth et al. 1988; 

Stephens 1991), and though informai tests (unpublished data) of our model did not 

find such an effect a more thorough investigation should be done. 

VII.2.2 Integrating information use 

Much empirical work has been done on information use in behavioural ecology 

(Galef and Giraldeau 2001; Danchin et al. 2004), but producer-scrounger models 

have not made similar strides, and 1believe that future work can progress from the 

studies presented in this thesis. For example, tension between personal and social 

sources of information can lead to problems such as 'informational cascades' (Gi­

raldeau et al. 2002; Rieucau and Giraldeau 2011), in which (incorrect) socially ac­

quired information overwhelms personal information and results in a sub-optimal 

decision. Learning rules and rules of thumb, exploring the use of personal and so­

cial information, provide a rich area to model such phenomena in a social foraging 

context and determine the characteristics of an interface between sources of infor­

mation. 

VII.2.3 Foraging ahead, spatially 

1 believe that spatial structure will have an important part to play in future work on 

producer-scrounger modelling, both in the relationships between foragers and in 

the structure of the landscape. Between foragers, Barta et al. (1997) was among the 

first to point out the possibilities of spatial relationships within flocks of producers 

and scroungers, and Beauchamp (2008) studied the effects of spatial structure ex­

plicitly. In Chapter V, 1 used a cellular automata to create a simpler spatial model 

which 1 believe could form the basis for sorne of the future work in this area; for 

example, probabilistic updating rules could be used, or the effect of different neigh­

bourhood types might be investigated. Empirical work on this question will also 

be important, but it will be necessary to use new species or modify current experi­

mental designs to study larger groups and more varied spatial environments than is 

currently used in the majority of published work. 

The results of Chapters II and V both suggest an effect of increasing group size 

(effective or absolute) and their interaction should be tested: does increasing spe­
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cialization at larger group sizes lead to a break down of social foraging behaviour in 

the same ways that large effect group sizes did in the sociallearning model? If so, 

this would provide an important point of contact between the sociallearning and 

learning rules models that could help bridge the two. 

In regards to landscape dynamics, further work investigating the performance 

of producer-scrounger models in more realistic landscapes will be important, and 

adding in factors such as spatial autocorrelation (Va1cu and Kempanaers 2010) will 

greatly enhance the realism of the models. By way of illustration, we can imagine 

spatial autocorrelation in patch distribution (dumping) and ask how this would af­

fect the outcome of individual-based models such as those l have used in this the­

sis. Integration with reallandscapes as modelled with GIS (geographical information 

system) data would also be an exciting area of development for spatial social forag­

ing models (Lima and Zollner 1996). 

VIL3 Conclusion 

The producer-scrounger game has been studied deeply (Giraldeau and Livoreil1998; 

Giraldeau and Dubois 2008), but the possibilities for new research seem endless. In 

this thesis, l have presented research that stands as my attempt to contribute to the 

realization of a small fraction those possibilities, focusing largely on the themes of 

information use and spatial structure. Along the way l have investigated the po­

tential of learning mechanisms and rules of thumb in social foraging, connected 

the personality trait of boldness to producing and scrounging, and explored the co­

evolution of predators and prey information dynamics. In the final estimation, l 

believe that the findings of this work may have a significant effect on the evolution 

of producer-scrounger theory and empirical work for time to come. 



165 

VII.4 Bibliography 

Arbilly, M., Motro, D., Feldman, M. W, and Lotem, A. (2010). Co-evolution of 

learning complexity and social foraging strategies. journal of Theoretical Biology, 

267 (4) :573-581. 

Avgar, T., Giladi, 1., and Nathan, R. (2008). Linking traits of foraging animals to spatial 

patterns ofplants: social and solitary ants generate opposing patterns of surviving 

seeds. Ecology Letters, 11:224-234. 

Barnard, C. J. (1984). Producers and scroungers : Strategies ofexploitation and para­

sitism. Chapman & Hall, London. 

Barta, Z., Flynn, R., and Giraldeau, L.-A. (1997). GeometlY for a selfish foraging 

group: a genetic algorithm approach. Proceedings of the Royal Society ofLondon. 

Series B, Biological Sciences, 264: 1233-1238. 

Barta, Z. and Giraldeau, L.-A. (1998). The effect of dominance hierarchy on the use 

of alternative foraging tactics: a phenotype-limited producing-scrounging game. 

Behavioural Ecology and Sociobiology, 42:217-223. 

Beauchamp, G. (2000). Learning rules for social foragers: Implications for the 

producer-scrounger game and ideal free distribution theory. journal of Theoreti­

cal Biology, 207:21-35. 

Beauchamp, G. (2008). A spatial model of producing and scrounging. Animal Be­

haviour, 76:1935-1942. 

Beauchamp, G. and Giraldeau, L.-A. (1997). Patch exploitation in a producer­

scrounger system: test of a hypothesis using flocks of spice finches (Lonchura 

punctulata). Behavioural Ecology, 8:54-59. 

Caraco, T. and Giraldeau, L.-A. (1991). Social foraging: Producing and scrounging in 

a stochastic environment. journal ofTheoretical Biology, 153:559-583. 

Danchin, É., Giraldeau, L.-A., Valone, T. J., and Wagner, R. H. (2004). Public informa­

tion: from nosy neighbors to cultural evolution. Science, 305:487-491. 



166 

Dubois, E, Morand-Ferron, J., and Giraldeau, L.-A. (2010). Learning in agame con­

text: strategy choice by sorne keeps learning from evolving in others. Proceedings 

of the Royal Society ofLondon. Series B, Biological Sciences, 277:3609-3616. 

Flynn, R. and Giraldeau, L.-A (2001). Producer-scrounger games in a spatially ex­

plicit world: Tactic use influences flock geometry of spice finches. Ethology, 

107:249-257. 

Galef, B. G. and Giraldeau, L.-A. (2001). Social influences on foraging-in vertebrates: 

causal mechanisms and adaptive functions. Animal Behaviour, 61:3-15. 

Giraldeau, L.-A. and Dubois, E (2008). Social foraging and the study of exploita­

tive behaviour. In Brockmann, H. J., Snowdon, C. T, Roger, T J., Naquib, M., 

and Wynne-Edwards, K. E., editors, Advances in the study ofbehavior, volume 38, 

pages 59-104. Elsevier. 

Giraldeau, L.-A and Livoreil, B. (1998). Game theory and social foraging. In 

Dugatkin, L. A. and Reeve, H. K., editors, Game theory and animal behaviour., 

pages 16-37. Oxford University Press, New York. 

Giraldeau, L.-A, Valone, T J" and Templeton, J. J. (2002). Potential disadvantages 

of using socially acquired information. Philosophical Transactions of the Royal 

Society, Biological Sciences, 357: 1559-1566. 

Harley, C. B. (1981). Learning the evolutionarily stable strategy. Journal ofTheo retica1 

Biology, 89:611-633. 

Kurvers, R. H., Prins, H. H., van Wieren, S. E., van Oers, K., Nolet, B. A, and Yden­

berg, R. C. (2010). The effect ofpersonality on social foraging: shy barnacle geese 

scrounge more. Proceedings of the Royal Society of London. Series B, Biological 

Sciences, 277 (1681) :601-608. 

Lima, S. L. and Zollner, P. A (1996). Towards a behavioral ecology of ecologicalland­

scapes. Trends in Ecology & Evolution, Il (3): 131-135. 

Mathot, K. J. and Giraldeau, L.-A (2010). Within-group relatedness can lead to 

higher levels of exploitation: a model and empirical test. Behavioural Ecology, 

21(4):843-850. 



167 

McNamara, J. M. and Houston, A. 1. (2009). Integrating function and mechanism. 

Trends in Ecology & Evolution, 24(12):670-675. 

Ranta, E., Peuhkuri, N., Laurila, A., Rita, R, and Metacalfe, N. B. (1996). Producers, 

scroungers, and foraging group structure. Animal Behaviour, 51:171-175. 

Rieucau, G. and Giraldeau, L.-A. (2011). Exploring the costs and benellts of social 

information use: an appraisal of current experimental evidence. Philosophical 

Transactions of the Royal Society, Biological Sciences, 366(1567):949-957. 

Ruxton, G. D. (1995). Foraging in flocks: non-spatial models may neglect important 

costs. Ecological Modelling, 82:277-285. 

Scheel, D. and Packer, C. (1991). Group hunting behaviour of lions: a search for 

cooperation. Animal Behaviour, 41:697-709. 

Shettleworth, S. J., Krebs, J. R., Stephens, D. W, and Gibbon, J. (1988). Tracking a 

fluctuating environment: A study of sampling. Animal Behavior, 36:87-105. 

Stephens, D. W (1987). On economically tracking a variable environment. Theoreti­

cal Population Biology, 32:15-25. 

Stephens, D. W (1991). Change, regularity, and value in the evolution of animal 

learning. Behavioral Ecology, 2(1):77-89. 

Taylor, A. D. (1990). Metapopulations, dispersal, and predator-prey dynamics: an 

overview. Ecology, 71 (2) :429-433. 

Tracy, N. D. and Seaman JL, J. W (1995). Properties of evolutionarily stable learning 

rules. Journal ofTheoretical Biology, 177:193-198. 

Valcu, M. and Kempanaers, B. (2010). Spatial autocorrelation: an overlooked con­

cept in behavioral ecology. Behavioral Ecology, 21(5):902-905. 

Vickery, W L., Giraldeau, L.-A., Templeton, J. J., Kramer, D. L., and Chapman, C. A. 

(1991). Producers, scroungers, and group foraging. The American Naturalist, 

137(6):847-863. 

Wolf, M., van Doorn, G. S., Leimar, O., and Weissing, F. J. (2007). Life-history trade­

offs favour the evolution of animal personalities. Nature, 447 (581-585). 



168 

Wolf, M. and Weissing, F. J. (2011). An explanatory framework for adaptive personal­

ity differences. Philosophical Transactions of the Royal Society, Biological Sciences, 

365:3959-3968. 




