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1. Introduction

The silviculture of hybrid poplars and other fast-growing tree species is a promising solution to reduce the
pressure on natural forests while maintaining wood supplies to industries. However, hybrid poplars are
very sensitive to competing vegetation and to inadequate soil conditions and fertility. Possible man-
agement tools include mechanical site preparation (MSP), vegetation control (VC), and fertilization.
Experimental plantations of hybrid poplars (one clone, Populus balsamea x Populus maximowiczii) were
established at eight formerly forested sites on acidic soil in the southern boreal forest of Quebec, Canada.
The objective was to test the response of hybrid poplars to the interaction of several silvicultural tools,
which has been rarely done. Four MSP treatments (in decreasing order of intensity: mounding, harrowing,
heavy disk trenching, light disk trenching) and a control (unprepared) were all combined with four differ-
ent frequencies of plant competition control by brushing (from never up to once a year). Fertilization with
N or N+P was also tested in three selected MSP treatments. After five years, hybrid poplar tree growth
among MSP treatments increased in the following order: unprepared < light disk trenching < heavy disk
trenching < harrowing < mounding. MSP was also essential in favouring early tree survival, as illustrated
by mortality rates of over 20% in unprepared plots and below 5% in all other MSP treatments. The effect
of competition control on hybrid poplar growth was greatest in the less intensive MSP treatments, where
competing vegetation was the most abundant. On the contrary, fertilization effect was significant only in
the most intensive MSP (mounding). Moreover, neither fertilization nor VC could compensate for inade-
quate soil preparation. Of all the silvicultural treatments tested, mounding provided the best tree growth
despite a nitrogen and carbon impoverished surface soil.

© 2010 Elsevier B.V. All rights reserved.

the low availability of land, plantations are being established on
marginal sites and in less than ideal conditions (Vande Walle et al.,

The use of fast-growing plantations on a small proportion of the
landscape is a promising silvicultural solution for reducing the pres-
sure on natural forests (Paquette and Messier, 2010). In the context
of the forest zoning management approach (Seymour and Hunter,
1992; Messier and Kneeshaw, 1999; Messier et al., 2009b), it has the
potential of expanding protected areas and areas under ecosystem
management (Baskent and Yolasigmaz, 2003), while maintaining
or even increasing wood supply (Binkley, 1997; Fox, 2000; Messier
et al., 2003). In several areas of the world, the fast-growing tree
species of choice belong to the genus Populus (Pontailler et al., 1999;
Christersson, 2006; Rodriguez et al., 2010). Populus trees, clones
and hybrids are very demanding in terms of nutrients, water and
light (Barnéoud et al., 1982; Mitchell et al., 1999; Paré et al., 2001).
However, because of the increasing interest in using these trees and
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2007), for instance at high latitudes of the northern hemisphere, i.e.,
in the boreal zone (Christersson, 1996; Larchevéque et al., 2010).
This important biome represents 11% of the Earth’s terrestrial areas
and includes 29% of the world’s forests (Weih, 2004).

To date, hybrid poplar plantations in northern latitudes,
for example in Sweden (Christersson, 2008, 2010) or in the
prairie-boreal forest transition region of central Canada (Block
et al., 2009; Pinno and Bélanger, 2009; Pinno et al., 2009; Amichev
et al., 2010), are all located on agricultural lands; only a few have
been tested on recently logged or otherwise formerly forested sites
of eastern Canada (Coll et al., 2007; Bona et al., 2008; Guillemette
and DesRochers, 2008; Sigouin, 2008). Hybrid poplar plantations
established at these sites, as opposed to agricultural lands, pose
further challenges in terms of soil fertility and tree nutrition since
forest soils do not have long histories of anthropogenic use and
fertilizer amendments the way agricultural soils do (Vande Walle
et al., 2007) and as such are often less fertile, at least in the
boreal zone. Selective tests of hybrid poplar clones adapted to the
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nutrient-poor, acidic soils and relatively rigorous climate of the
boreal forest have given encouraging results (Gagné, 2005, and P.
Périnet, personal communication). It seems that even in such harsh
conditions for poplar plantations, short rotations (<20 years) pro-
ducing large wood volumes are possible. In comparison, the typical
rotation for natural stands of trembling aspen (Populus tremuloides)
is 41-88 years (Pothier and Savard, 1998).

Unsuccessful plantations of fast-growing trees have often
been attributed to the selection of inappropriate soil manage-
ment techniques (Evans, 1999). Mechanical soil preparation (MSP)
can produce microsites that are appropriate for tree planting
(Sutherland and Foreman, 1995; Knapp et al., 2008), while reduc-
ing competing vegetation and generally improving tree growth
(Thiffault et al., 2003). In boreal zones, it is particularly benefi-
cial for increasing soil temperature (Orlander, 1987; Sutton, 1993;
Landhdusser, 2009), which in turn increases leaf, shoot and root
growth (Wan et al., 1999; Landhdusser et al., 2001). The impact
of MSP on soil fertility is more variable, sometimes improving
nutrient mobilization (Ross and Malcolm, 1982) and on other
occasions reducing it (Messier et al.,, 1995; Yildiz et al., 2010),
notably due to soil organic matter removal (Arocena, 2000; Gartzia-
Bengoetxea et al., 2009). Given that hybrid poplars have high needs
for resources, they are also known to be particularly sensitive
to competition (Stanturf et al., 2001; Kabba et al., 2007, 2009).
Competition control generally has positive effects on early devel-
opment of seedlings because the first few years are the most critical
for survival (Morris et al.,, 1993; Lof, 2000; Harrington, 2006).
The control of competing vegetation typically proves beneficial
to hybrid poplars (Stanturf et al., 2001), although experimental
results may diverge, with some pointing towards effectiveness
of the removal of aboveground vegetation only (Czapowskyj and
Safford, 1993) while others insist on the need to target below-
ground plant parts (Coll et al., 2007). Fertilization is also frequently
used to fulfill nutritional needs and to maximize tree growth
(Mitchell et al., 1999; du Toit et al., 2010). It is generally very effec-
tive in poplar plantations (Brown and van den Driessche, 2002,
2005; Guillemette and DesRochers, 2008) and has been exten-
sively studied (Coleman et al., 2006; Guillemette and DesRochers,
2008; Lteif et al., 2008; Patterson et al., 2009; Pearson et al.,
2010).

Although the aforementioned management tools, i.e., MSP, veg-
etation control (VC), and fertilization, have been the object of
several studies, very few have combined the three of them in a sin-
gle design looking at multiple interactions (Burgess et al., 1995;
South et al.,, 1995; Allen, 1996). One example of a three-factor
study comes from Nilsson and Allen (2003) and was conducted
in 18-year-old loblolly pine (Pinus taeda L.) plantations. Tree
growth benefited greatly from all treatments, but mostly from high
intensity MSP. Fertilization and VC interacted with MSP so that
their effects on pine growth differed depending on MSP intensity
(Nilsson and Allen, 2003). Similar results were obtained in a recent
study by Zhao et al. (2009) on 26-year-old stands of slash pine (Pinus
elliottii Engelm.).

The preceding examples were all concerned with coniferous
trees and were mostly conducted in the mild, temperate climate
of southeastern USA, with only one being conducted in the boreal
forest. Consequently, studies focusing on deciduous fast-growing
trees in a boreal context and looking at several silvicultural tech-
niques are currently lacking, which does not bode well considering
the growing interest in intensive silviculture in the boreal forest.
To ensure the success of these plantations, it is thus imperative
to assess which silvicultural tools will provide favourable soil
and environmental conditions. The main objective of this unique
study was to test the interactions of various MSP techniques,
VC frequencies and fertilizer applications within industrial-scale
experimental plantations of hybrid poplars established on former

boreal forest sites with cold, nutrient-poor, and acidic soils of the
Precambrian Shield.

2. Methods
2.1. Sites

Eight formerly forested sites were chosen in the Saguenay-Lac-
Saint-Jean region (between 48°08' and 48°43’ N, and between
71°05’' and 72°52’ W) of the province of Quebec, Canada. These
sites are located in the southern boreal forest, and original stands
consisted of balsam fir (Abies balsamea), trembling aspen (P. tremu-
loides), black spruce (Picea mariana), white spruce (Picea glauca),
and paper birch (Betula papyrifera). Soils are representative of Pre-
cambrian Shield settings characterized by coarse acidic soils, and
are classified as Orthic ferro-humic Podzols (Canada Soil Survey
Comittee, 1992) or Haplorthods (Soil Survey Staff, 1998). Mean
annual temperature for this region is 2.2 °C and mean annual pre-
cipitation is 1000 mm (of which 710 mm is rainfall), while mean
summer (June-September) temperature is 15.5 °C and mean sum-
mer precipitation (rainfall) is 107.5mm (Environment Canada,
2009).

2.2. Mechanical soil preparation (MSP)

Sites were whole-tree harvested in summer 2002; then, soils
were mechanically prepared in fall 2003 after the regenerating veg-
etation had been cleared with a brush saw in late summer. Five
techniques were tested, which represent an increasing gradient of
soil disturbance intensity at the tree or microsite level: no prepara-
tion (control), light disk trenching, heavy disk trenching, harrowing,
and mounding. In control plots, no soil preparation was done after
harvest and trees were planted directly wherever it was possible to
do so. Light disk trenching was done with a TTS Delta disk trencher
that involved two hydraulically driven rotating dented disks that
ran in parallel straight rows to remove the surface organic layer
(up to 20 cm deep) and expose the mineral soil in which trees were
planted. Heavy disk trenching used the same machinery, but three
runs of the machinery were done, with the first two runs perpen-
dicular to each other and the last one diagonal to these. Harrowing
followed the same three-run pattern, but the equipment involved
three rows of five 75-cm diameter disks pulled by a tractor. These
disks are larger and can dig much deeper into the soil than those
of the disk trencher. The disks were slightly inclined at an angle
that varied between disks and rows to ensure that the soil (both
the mineral and organic layers) was thoroughly mixed. Mounding
is a common treatment in Scandinavia and Canada (Orlander et al.,
1990; Sutton, 1993), and here it was done using a mechanical shovel
equipped with a 45-cm-wide bucket that dug deep into the soil
through the surface organic layer in order to retrieve mineral soil.
This mineral soil was then upturned over undisturbed soil to form a
mound about 30 cm in height and 50 cm in radius. In this manner, it
buried the original organic soil material and crushed the vegetation
beneath it. Trees were planted directly in, but slightly on the side
of the mound, and given the height of the mound the lower end
of a tree barely reached the organic layer. Each of these five treat-
ments covered a 1-ha plot and was repeated at each of the eight
sites (its placement relative to other treatments was randomized),
hence n=8 over a total of 40 ha of plantations (Fig. 1).

2.3. Tree planting

Bare-root, ~1-m-tall hybrid poplar tree cuttings of the 915319
clone Populus maximowiczii x Populus balsamifera (Périnet et al.,
2001) were obtained from a nursery operated by the Ministére des
Ressources naturelles et de la Faune du Québec at Grande-Piles, QC,
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Fig. 1. Example site (n=8) of treatment plots in the experimental hybrid poplar
plantations. Each of the four mechanical soil preparation (MSP) treatments and the
control covers 1 ha, and treatments are randomized within a site. The four vegetation
control (VC) subplots (randomized within each MSP plot) are: (i) never, (ii) once a
year at year 2, (iii) once a year atyears 1 and 3, and (iv) once a year at years 1,2 and 3.

Canada. The cuttings were produced in the spring from parent trees
in the nursery plantations, and cultivated over the summer in irri-
gated, fertilized, and weeded soil. This allowed them to develop a
substantial root system, which was subsequently groomed in the
fall when the cuttings were dormant, a state in which they were
kept until shipping to the field the next spring. The bare-root cut-
tings were hand-planted with a shovel in April 2004 at a depth
of 20-30cm and in straight rows at a spacing of 3m x 3 m (den-
sity=1100 trees ha~!). Throughout this text, the year of planting
will be considered as year 1.

2.4. Vegetation control (VC)

Competing herbaceous and woody plants were mechanically
removed by brushing (aboveground parts only), during or after
the peak of summer biomass production (mid-July to beginning
of August). The four VC treatments corresponded to four different
frequencies: (i) never, (ii) at year 3, (iii) at years 2 and 4, and (iv) at
years 2, 3, and 4. These treatments were tested using four 0.25-ha
(50 m x 50 m) subplots that were delineated and placed randomly
within each 1-ha MSP plot (Fig. 1), for a total of 160 subplots. Three
of these subplots were not used in further analyses because of mis-
allocated treatments, leaving 157 subplots. In this text, plots that
were never controlled for competition will be commonly referred
to as “unweeded”, in contrast to the other VC plots that will be
called “weeded”.

2.5. Fertilization

In July of year 5, two doses (0 as control and 400 g tree—1) of fer-
tilizers (N only, as 18-0-0; and N + P, as 18-46-0) were applied at the
base of selected trees. Each fertilizer treatment was replicated on
five trees chosen randomly in the VC subplot iii of two MSP treat-
ments (harrowing and mounding) and the control (unprepared)
across all eight sites. Care was taken not to choose adjacent trees,
thus they were separated by at least one tree row (i.e., 6 m apart).
These trees were located in the buffer zone of the 0.25-ha plots (see
Section 2.6), so as not to fertilize any tagged trees.

2.6. Growth surveys

Total height, diameter, and annual shoot lengths were measured
on 12 trees in each 0.25-ha subplot (see Section 2.4) in October of
years 3 and 5. These 12 tagged trees were chosen randomly within a
20m x 20 mareain the center of the subplot, leaving a 15-m strip on
all sides where no trees were tagged for measurements. This 15-m
strip was called the buffer zone. The subset of fertilized and unfer-
tilized trees (located in the buffer zone) was measured in October
of years 5 and 6.

2.7. Assessment of competition cover

In 2005, interspecific competition was assessed for six trees cho-
sen randomly among the 12 surveyed trees per 0.25-ha subplot at
all the sites in the two VC subplots that did not undergo brushing
that year, hence treatments i and ii. These treatments had never
been weeded between site preparation, tree planting and com-
petition surveying. Within a 1-m radius divided in four quadrats
around a hybrid poplar tree, the percentage of the area covered by
competition was visually evaluated and classified by plant type as
tree, shrub, herbaceous or grass. This was done separately for each
quadrat and subsequently averaged for the whole tree.

2.8. Foliar analyses

Leaves were sampled every year from years 3 to 5. In year 3, one
leaf from each of the 12 surveyed trees per 0.25-ha subplot was
pooled (157 samples). In year 4, leaves were sampled at all sites in
August in all four MSP treatments and the control and in two VC
treatments, (i) never and (iv) years 2-3-4. All 12 surveyed trees
were individually sampled in each subplot, and five leaves were
taken from each tree at regular intervals along the vertical length
of the crown. In year 5, sampling was repeated similarly to the
previous year, but only in the VC subplot iv. Fertilized trees were
sampled in August of years 5 and 6, and leaves from trees in a same
plot were pooled by treatment (unfertilized, N-fertilized, N+ P-
fertilized). Foliar samples from all years were oven-dried at 70°C
for 48 h. Total N was determined as for the soil samples on a LECO
CNS analyzer (LECO Corporation, St. Joseph, MI, USA), while phos-
phorus was determined following calcination at 500 °C and dilution
with hydrochloric acid (Miller, 1998). Phosphorus was analyzed by
flow injection analysis and ion chromatography (FIA; Lachat Instru-
ments, Milwaukee, WI, USA), and base cations by atomic absorption
and emission (Varian, model AA240FS, Palo Alto, CA, USA).

2.9. Soil analyses

2.9.1. General characteristics

Inyear 2, one mineral soil sample was taken, in the center of each
0.25-ha subplot, at a depth of approximately 15-20 cm, thus reach-
ing into the B-horizon. These mineral soil samples (n=157) served
to describe the plots and sites in a general way and ensure that het-
erogeneity had been reduced to a minimum when initially choosing
sites prior to mechanical soil preparation. These descriptive soil
data were thus not used in explaining tree growth responses to
the various treatments. Soil pH was analyzed in distilled water
and CaCl, (Hendershot et al., 2007). Exchangeable cations (K, Ca,
Mg, Al and Fe) were extracted using unbuffered 0.1 M BaCl, and
determined by atomic absorption and emission (Hendershot et al.,
2007). Soil particle size distribution (texture) was determined by
the hydrometer method (Gregorich and Beare, 2007) without pre-
treatment of the samples due to the low organic matter content,
coarse nature of the particles and low level of aggregation of the
samples.

In year 4, one soil pit was dug in the VC subplot iv of every 1-ha
MSP plot (n=40) to characterize vertical soil profiles; horizons were
identified and their thickness measured, while a sample was taken
from the B-horizon with a cylinder of known volume to later cal-
culate B-horizon bulk density. This sampling served in describing
the sites and not in explaining tree growth responses. Site means
of the general soil characteristics are presented in Table 1.

2.9.2. Physico-chemical characteristics

Soil penetrability, humidity, and temperature were assessed
during year 4, and were subsequently compared to tree growth
in trying to explain responses to the various treatments.
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Table 1
General soil characteristics of the mineral B-horizon (sampled at a depth of
15-20cm). Values are means for eight sites, with standard deviation.

Soil variable Site mean SD
Texture

Clay, % 5.0 1.2

Loam, % 24.7 4.9

Sand, % 70.3 4.8
CEC, cmolc kg1 227 2.4
pH 413 0.17
BS, % 53.3 16.1
Bulk density, g cm—3 1.05 0.16

In June of year 4, soil penetrability was evaluated at the base
of each of the 12 surveyed trees in the harrow and mound-
ing MSP treatments and the unprepared control (288 trees) with
a drop-hammer penetrometer (model PEM-1 from Roctest Ltd.,
Saint-Lambert, QC, Canada), where a weight of 4.5 kg was dropped
repeatedly from a height of 46 cm to drive a metal rod into the
ground; the depth reached by the rod after 10 hits represented
soil penetrability. Since rocks can hamper the efficiency of this
method, several trials were done around a tree to ensure adequate
representation of soil conditions.

In August of year 4, soil volumetric water content was mea-
sured with a TDR-300 soil moisture meter equipped with two
20-cm probes (Spectrum Technologies Inc., Plainfield, IL, USA). A
mean value per tree was obtained from four measurements taken
around the base of each of the 12 surveyed trees in the harrow
and mounding MSP treatments and the control at all sites (288
trees). Repeatability of water content measurements was verified
by sampling twice at seven 0.25-ha subplots found across three
sites, either before and after a rainy day or over a period of 2 weeks
in August of year 4; results of matched-pairs t-tests showed these
measurements to be satisfyingly similar despite the different con-
ditions in which they were taken.

Soil temperature was measured at the base of each tree with
a hand-held, 20-cm electronic thermometer probe. Measurements
were taken across all sites between June and August of year 4, and
were repeated 2-3 times over the season for each tree, approxi-
mately once per month. By doing so, temperature measurements
were satisfyingly consistent for individual trees. Data-logging tem-
perature sensors (Maxim Integrated Products, Sunnyvale, CA, USA)
were also placed at two sites in two VC subplots (i and iv) of all four
MSP treatments and the control. Soil temperature was measured
every 2 h from the beginning of June to the end of October of year
4, at depths of 2, 10 and 20 cm. The sensors’ data were compared
with the hand-held thermometer probe measurements to further
verify data reliability.

2.9.3. N mineralization rates

Tree growth responses to treatments were additionally sub-
mitted to the comparison with soil nutrients data, namely the
mineralization of N.

Potential N mineralization was assessed by comparing nitrate
(NO3) and ammonium (NHy) concentrations at the start and at
the end of a 6-week (from the beginning of July to mid-August of
year 4) closed-top in situ incubation with 30-cm-long PVC tubes
as described in Brais et al. (2002). Tubes were inserted in the sur-
face soil (0-20cm) at a distance of 30 cm from the base of three
trees per 0.25-ha subplot in two MSP treatments (harrowing and
mounding) and the control, and within those only the VC treat-
ments i and iv were used (144 trees). Ammonium and nitrate ions
were extracted with 2 M KCl and analyzed by flow injection analysis
and ion chromatography (FIA). Total C and N were determined by
combustion (1100°C) and infrared detection on a LECO CNS-2000
analyzer (LECO Corporation, St. Joseph, MI, USA).

2.10. Data treatment

In the experimental design, treatments were randomized at
each level (MSP, VC, fertilization), but the levels were not com-
plete since fertilization was only done within certain MSP and VC
treatments, and some soil variables were only measured in selected
treatments. Responses were thus treated separately when appro-
priate. Mean growth from 12 trees per 0.25-ha subplot was com-
pared across the eight sites by a mixed-effect analysis of variance,
using MSP treatments and the control (5 levels), VC treatments (4
levels) and the interaction of MSP and VC as fixed effects, site (n=8)
and plot (n=40) as random effects (indicative of the hierarchical
design), with probability levels resolved by Restricted Maximum
Likelihood (REML, see Searle et al., 1992; Wolfinger et al., 1994) and
submitted to post hoc Tukey HSD tests were justified. Absolute val-
ues of annual growth and the total cumulative 5-year (2004-2008)
growth were thus analyzed for tree height and diameter. In addi-
tion, to further assess the effects of competition control on growth,
the relative growth gain (RGG) was computed as the difference
between the cumulative 5-year growth of weeded (the most fre-
quent VG, iv) and unweeded subplots (VCi) within a same MSP plot,
divided by the growth of the unweeded subplot, and expressed as
a percentage. It was inspired by the relative growth rate and other
measures of relative growth presented by Hunt (1990). The RGG
was submitted to an ANOVA and post hoc Tukey HSD tests.

Shoot growth of fertilized trees (N and N + P fertilizations treated
either separately or jointly) in years 5 and 6 was compared with that
of unfertilized trees (the 12 tagged trees of Section 2.6) through
a mixed-effects analysis of variance; this was done separately
for each selected MSP treatments and the control. Both annual
shoot length and proportional height growth (current year’s height
divided by previous year’s height) of fertilized trees were tested,
again with mean growth per subplot.

Effects of MSP and VC treatments on soil properties (humid-
ity, temperature, penetrability, chemical content, N mineralization)
and foliar nutrition were analyzed through mixed models, similarly
to tree growth, and separately for each variable. Sample sizes may
have varied between variables (see particular sampling strategies
above). Potential N mineralization of NH4 and NO3 was estimated as
the difference between initial and final concentrations from in situ
incubation tubes.

Survival of trees was recorded as alive (0) or dead (1) for all
1884 trees during the biannual growth surveys. Mortality was fur-
ther assessed by noting time since death, in years (either 0 (still
alive) or dead for 1, 2, 3 or 4 years). Both were individually com-
pared with silvicultural treatments through a generalized linear
mixed model (GLMM) fitted with the Laplace method of likelihood
approximation (Bolker et al., 2009). Site and plot were added as
random effects, as in the growth mixed model above, but here sub-
plot (n=157) was added as well in order to simulate correlation
among trees within the same 0.25-ha subplot. Survival data was
best represented with the binomial distribution while time since
death was best represented with a Poisson distribution, for which
overdispersion (¢, variance divided by the mean) was satisfyingly
verified prior to GLMM analysis by fitting a simple linear model
without random effects.

Statistical analyses were conducted with the R software (R
Development Core Team, 2009), using a significance level of
o =0.05. General linear mixed models were constructed with the
“nlme” package and GLMMs with “Ime4”.

3. Results

Height growth of 5-year-old hybrid poplars was enhanced by
mechanical soil preparation (MSP) prior to planting. There was a
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Table 2

Detailed results of the mixed ANOVA comparing hybrid poplar height and diameter growth with treatments of mechanical soil preparation (MSP) and vegetation control
(VC) in a 3-level hierarchical design of site/plot/subplot. Subplot had no variance assigned to it because growth of individual trees was averaged within 0.25-ha subplots.

%variance is the proportion of total variance provided by a given source of variation.

Source of variation df SSE MSE %variance F-value P-value
Height growth
Fixed effects
Mechanical soil preparation (MSP) 4 628,326 157,081 72.8 19.4 <0.0001
Vegetation control (VC) 3 146,272 48,757 22.6 6.02 0.000696
MSP x VC 12 23,840 1987 0.9 0.245 0.995
Random effects
Block 7 15,582 2226 1.0
Plot 28 67,620 2415 1.1
Residuals 102 345,931 3391 1.6
Total 156
Diameter growth
Fixed effects
Mechanical soil preparation (MSP) 4 4126 1032 59.7 13.1 <0.0001
Vegetation control (VC) 3 1798 599 34.6 7.58 <0.0001
MSP x VC 12 242 20 1.2 0.256 0.995
Random effects
Block 7 190 271 1.6
Plot 28 1243 444 2.6
Residuals 102 746 7.31 0.4
Total 156
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Fig. 2. Effect of mechanical soil preparation (MSP) and vegetation control (VC) on
height growth (cumulative 5-year height growth) of hybrid poplars across four dif-
ferent MSP treatments and the control (unprepared). Values are means of trees from
8 sites, error bars are SE. MSP treatments and the control were all compared to each
other through a post hoc Tukey HSD, and different letters thus represent signifi-
cantly different means at o =0.05. The two most extreme VC treatments (at years
1-2-3, and never) are significantly different within each treatment.

significant difference between the different MSP treatments and
the control (Fig. 2, Table 2). The best growth was obtained in
the following order: mounding >harrowing > heavy disk trench-
ing > light disk trenching > unprepared (control). Unprepared plots
produced trees significantly shorter than all other MSP treatments
(Fig. 2). Growth in diameter at breast height (DBH) responded
to MSP treatments very similarly to height growth (Fig. 3 and
Table 2). The gradient of the effect of MSP on height and diam-
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Fig. 3. Effect of mechanical soil preparation (MSP) and vegetation control (VC) on
cumulative 5-yr diameter growth of hybrid poplars across four different MSP treat-
ments and the control (unprepared). See Fig. 2 for statistical details.

eter growth was likewise observed on annual growth (data not
shown). In early years the difference was most evident when com-
paring the most intensive treatment with the least intensive, i.e.,
mounding and unprepared. The first treatment produced annual
shoots of at least twice the length of the latter. Intermediate treat-
ments were relatively similar in the first year, and only started
differing later on. Any MSP treatment, even the least intensive
(light disk trenching), significantly reduced mortality in hybrid
poplars (<5%) compared with the absence of preparation, where
mortality rates were over 20% and trees died early after planting
(Fig.5). MSP also reduced the ground cover of competing shrubs and
herbaceous plants significantly compared with plots that were not
mechanically prepared prior to planting (e.g., herbaceous cover in
unprepared plots = 25.4%, SE=2; in other MSP treatments =9-15%,
SE=2; P<0.05).

Vegetation control (VC) by removal of aboveground parts of
competing herbaceous and woody vegetation increased height and
diameter growth of trees (Figs. 2 and 3, Table 2). The different fre-
quencies of VC affected growth in the following order: at years
2, 3 and 4>at year 3>at years 2 and 4>never (Figs. 2 and 3).
There was no significant interaction between MSP and VC in the
absolute values of tree height and diameter growth (MSP x VC, in
Table 2). Nevertheless, the relative gain in height growth due to VC
(RGG, which compared the two most extreme VC frequencies, i and
iv) varied significantly depending on MSP, ranging from 25% with
mounding to greater than 200% in unprepared plots (Fig. 4). Diam-
eter RGG, on the other hand, did not vary between MSP treatments.
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Fig. 4. Effects of vegetation control (VC) on the relative growth gain (RGG, the
difference between the cumulative 5-year growth of weeded and unweeded sub-
plots within a same MSP plot, divided by the growth of the unweeded subplot, and
expressed as a percentage).
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Table 3

Effect of fertilization (N and N +P combined) on annual (2008 and 2009) shoot growth and proportional growth (current year height divided by previous year height) of
hybrid poplars in two mechanical soil preparation (MSP) treatments and the control (unprepared). Values are means from all eight sites, with SE in parentheses. Probability
that the growth of fertilized trees is higher than that of unfertilized trees is the result of an analysis of variance.

MSP Shoot growth (cm) Prob [Fert > Non-Fert] Proportional growth Prob [Fert > Non-Fert]
Fertilized Unfertilized Fertilized Unfertilized
Year 5
Mounding 136.8 (10.5) 104.1 (9.1) 0.0094 1.53 (0.02) 1.38(0.02) 0.0005
Harrowing 106.1 (11.8) 92.4(12.4) 0.47 1.43(0.03) 1.32(0.04) 0.054
Control 67.2 (15.9) 58.4(16.4) 0.68 1.43(0.04) 1.36(0.03) 0.28
Year 6
Mounding 105.7 (5.9) 77.0 (10.4) 0.036 1.28 (0.02) 1.22(0.01) 0.023
Harrowing 84.9 (5.7) 61.2(7.1) 0.031 1.26 (0.02) 1.22(0.02) 0.14
Control 67.4(15.2) 91.1 (13.0) 0.22 1.31(0.04) 1.27 (0.03) 0.40
MSP Leaf mass (gleaf-1) Prob [Fert > Non-Fert] Leaf N(mgg1) Prob [Fert > Non-Fert]
Fertilized Unfertilized Fertilized Unfertilized
Year 5
Mounding 0.62 (0.03) 0.40 (0.01) <0.0001 23.3(1.3) 18.3(1.0) 0.0081
Harrowing 0.54 (0.04) 0.42 (0.03) 0.033 22.3(0.9) 17.4(0.9) 0.0019
Control 0.46 (0.04) 0.34(0.03) 0.027 22.0(0.5) 17.6 (0.8) 0.0006

In the three selected MSP treatments where it was applied,
there was no significant difference between N fertilization and N + P
fertilization (P> 0.3; data not shown). Therefore, all subsequent ref-
erences to “fertilized trees” combine both types of fertilization.
Annual shoot growth of fertilized trees was higher than that of
unfertilized trees during the year of fertilizer application (i.e., year
5). However, it was only significant in the mounding treatment
(P=0.009; Table 3). During that year, trees on mounds that received
fertilizers produced around 31% more shoot length, or grew 32 cm
higher, compared with unfertilized trees (Table 3). Proportional
height growth (current year height divided by previous year height)
of fertilized trees also improved significantly in mounded plots.
Harrowed trees also responded, albeit only slightly, to fertiliz-
ers when considering the proportional gain in growth (P=0.054).
Trees in both mounding and harrowing plots again showed greater
annual shoot growth due to fertilization the following year (i.e.,
year 6). However, mounding was again in year 6 the only treat-
ment to clearly respond in proportional height growth (P=0.023;
Table 3). Trees in unprepared plots did not respond favorably the
years following fertilization. Despite varying growth results, fertil-
ization significantly enhanced leaf mass and leaf N content in the
tested MSP treatments and the control (Table 3).

Effects of MSP showed a tendency to increase soil tempera-
ture and penetrability, whereas a decrease in soil water content
and total C and N concentrations (although the C/N ratio remained
constant) was observed with increasing intensity of soil prepara-
tion treatments (Table 4). MSP treatments were relatively similar
regarding potential mineralization rates of N (sum of NH4 and
NO3). Availability of other elements, as well as pH, cation exchange
capacity (CEC) and base saturation (BS), did not differ signifi-
cantly between MSP treatments (data not shown). Mechanical soil
preparation also reduced slightly the thickness of the residual,
post-treatment organic soil layer (for the four MSP treatments,
mean =7.9-8.8 cm; SE=between 0.6 and 1.7; n=8) compared with
the undisturbed FH horizon in unprepared plots (mean=10.1cm;
SE=1; difference marginally significant at 0.05<P<0.1). Com-
petition control, in contrast, had no significant effect on soil
variables (data not shown).Foliar nutrient content (mgg-! of Ca,
K, Mg, N, and P) during summer of all years varied across MSP
treatments to different extents depending on the nutrient. Cal-
cium and P foliar contents were similar among treatments, with
ranges of 55-75mgg~! and 13-16mgg~! (and P values between
treatments of 0.12 and 0.40, respectively). Foliar contents of K
(84-123mgg~1), Mg (14-21mgg-!) and N (13-15mgg~') var-

Table 4

Effects of mechanical soil preparation (MSP) on soil physical and chemical charac-
teristics. Measures were taken in the first 20 cm of surface soil. Values are means
across all eight sites, with SE in parentheses. For each soil characteristic, MSP treat-
ments and the control were all compared to each other through a post hoc Tukey
HSD, and different letters thus represent significantly different means at o =0.05.

Soil variable Mechanical soil preparation

Mounding Harrowing Unprepared

Temperature, °C 14.8(0.9)a 14.3 (0.6) ab 13.8(0.5)b
Humidity, % vol. 139(1)a 21.5(2)b 26.1(2)b

water
Penetrability, cm  28.5(2)a 21.1(1)b 23.8(2)ab
Total C, mgg™! 154 (3)a 46.0 (6) b 80.1(15)c
Total N, mgg! 0.797 (0.2) a 2.02(03)b 3.44(0.6) c
C/N 233(3)a 233 (1)a 22.6(0.9)a
Mineralized N, 0.0518 (0.02) a 0.0293 (0.01) a 0.0455 (0.02) a

mgg!

ied significantly between MSP treatments, and usually with higher
values in more intensive treatments producing better growth.
Unprepared plots always showed the lowest values.

4. Discussion

The silvicultural treatments tested in this study, particularly
MSP, affected several parameters that may in turn impact tree
growth, such as above- and belowground competition, soil chemi-
cal, physical and biological properties, as well as the distribution of
these properties in the soil. Moreover, the treatments interacted in
important ways to modify those parameters. This discussion will
focus on each silvicultural tool separately, and will also include
interactions when appropriate.

Considering the relatively harsh climatic and soil conditions in
the region of study, these hybrid poplar plantations performed
reasonably well when treated with the best available manage-
ment tools (i.e., mounding). The highest growth obtained was
slightly better than that of other studies on hybrid poplars con-
ducted in forested sites of Quebec (Coll et al., 2007; Guillemette and
DesRochers, 2008; Sigouin, 2008), but not as good as in forested
sites of Vancouver Island in Western Canada (van den Driessche,
1999; Brown and van den Driessche, 2005), and fairly comparable
to plantations established on agricultural sites in the transitional
zone between the prairies and the boreal forest of Central Canada
(Pinno and Bélanger, 2009; Pinno et al., 2009).
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4.1. Mechanical soil preparation

The gradient of increasing height growth across MSP treatments
paralleled the gradient of increasing MSP intensity. The slowest
growth was obtained at unprepared plots that retained the orig-
inal, undisturbed soil layers with a relatively thick organic layer.
The best growth was found among the strongly disturbed mounds
mostly made up of mineral soil with a buried organic horizon,
whereas intermediate growth was produced by varying intensities
of organic and mineral soil mixing (i.e., harrowing and disk trench-
ing). These results generally agree with previous studies on other
tree species that reported greater benefit to growth from intensive
MSP treatments (Nilsson and Allen, 2003; Landhdusser, 2009).

Another crucial benefit derived from MSP relates to the estab-
lishment and early survival of trees. In plots that were not
mechanically prepared prior to planting, mortality of hybrid
poplars was as high as 20%, a number also reported by Burgess
et al. (1995). Moreover, many of these trees died early, in the first
or second year after planting (as suggested by the higher time since
death, Fig. 5 and S. Bilodeau-Gauthier, personal observation). In
other MSP treatments, mortality was lower than 5% in general, and
even absent in mounded plots. In an intensive management per-
spective, where the production of every single seedling involves
substantial resources, MSP is therefore a necessity in Precambrian
Shield settings characterized by coarse acidic soils.

The MSP treatments used in this study also had an impact on
soil conditions. The more intensive MSP treatments reduced the
soil water content, but this was apparently not sufficient to ham-
per tree growth. MSP created microsites favourable to tree growth
and development, as emphasized by the present growth results
and as predicted in other studies (Orlander, 1987; Sutton, 1993;
Thiffault et al.,, 2003). These favourable microsites were notably
the consequence of improved soil penetrability and temperature.
Soil temperature was similar in mounds and harrowed plots but
higher than in unprepared plots, as also reported by Sigouin (2008).
A higher soil temperature can have positive effects on soil N miner-
alization (Grenon et al., 2004). Grenon et al. (2005) even suggested
that N mineralization rates were more important for tree growth
than total soil N reservoirs. Here, mounds produced the same
amount of mineralized N compared to other MSP treatments where
more organic matter was preserved. In contrast, mounds were
mostly composed of mineral soil, and exhibited the lowest total
N content of all MSP treatments. Therefore, mounding might have
seemed detrimental to tree growth because of this nutrient-poor
and drought-prone mineral soil in which the tree is initially planted.
Indeed, the removal of nutrient-rich organic matter was shown
to cause nutrient deficiencies and limit tree growth (Merino and
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Fig. 5. Mortality rate (%) and time since death (TSD; in years) per mechanical soil
preparation (MSP) treatment and the control (unprepared). A higher value of TSD
implies that a tree died early. Values are means of trees from 8 sites, error bars are
SE. MSP treatments and the control were all compared to each other through a post
hoc Tukey HSD, and different letters thus represent significantly different means at
a=0.05 (letters apply to both mortality rate and TSD, which vary equally along the
MSP gradient); a letter in parentheses implies a marginal difference (0.05<P<0.1).

Edeso, 1999), and Fang et al. (2008) recently highlighted the ben-
efits of nutrient-rich organic material for hybrid poplar growth.
Still, mounding created beneficial conditions for soil fertility since N
mineralization was equal to that in other MSP treatments. Although
this does not yet explain the greater growth yield attributable to
mounding, at least it suggests that this MSP technique is possibly
on par with others with regard to the N supply.

Because mounding created less compacted and warmer soil con-
ditions than harrowing and the control, root development in early
years could have been favored in mounds. This was shown through
visual observation of root excavations undertaken within all MSP
treatments and the control at the end of the first growing season
(data not shown) and as revealed by a series of non-destructive
root excavations undertaken during the fourth growing season on
45 trees within the mounding and control plots at all eight sites
(Bilodeau-Gauthier et al., submitted for publication). In these exca-
vations, trees growing on mounds systematically had substantially
larger root systems than trees from other MSP treatments. The
well-developed root system on mounds could also explain the
strong height response of the trees to an added nutrient supply.
Early root development in mounds has indeed been shown to be
a great asset for the subsequent success in height growth (Block
etal., 2006, 2009). In addition, the surface of mounds, with mineral
soil exposed, was generally almost devoid of competing vegeta-
tion for a few years after the treatment (Bilodeau-Gauthier et al.,
personal observations). The upheaval and exposure of the min-
eral soil seemed to efficiently reduce colonization by competing
species, areduction that is a typical benefit of mounding treatments
(Orlander et al., 1990).

Along the same lines, Messier et al. (2009a) observed, in a
split-root pot experiment where half of the pot was covered with
competing grasses while the other was bare, that fine-root biomass
of hybrid poplars was highly sensitive to the presence of compet-
ing roots despite adequate supplies of water and nutrients. Also,
Platt et al. (2004) observed positive responses in mountain beech
(Nothofagus solandri) seedlings after root competition removal,
with or without fertilizer additions, but no response to fertiliza-
tion alone. This again suggests that belowground competition for
nutrients can be strong and that trees benefit from fertilization the
most when competition is low (Kabba et al., 2007).

Furthermore, the underlying — and undisturbed - organic hori-
zon over which the mound was formed might represent a reservoir
of nutrients available to the tree once the roots are deep enough.
Because former vegetation is buried and possibly destroyed when
mineral soil is upturned to form the mound, this potential reservoir
is probably relatively devoid of competing roots from other plants.
Although the data presented in this paper showed the mound sur-
face soil to be less fertile than in other MSP treatments, further
investigation of deeper horizons will possibly reveal yet another
benefit of mounding.

4.2. Competition control

Competition control increased the height and diameter growth
of hybrid poplars, which is in accordance with previous reports on
aboveground vegetation removal for hybrid poplars (Czapowsky;j
and Safford, 1993; mowing treatments of Pinno and Bélanger,
2009). It should be noted, however, that the competition con-
trol treatments used here did not totally eliminate the competing
vegetation as opposed to other studies using herbicides or soil cul-
tivation (Coll et al., 2007; Sigouin, 2008; Pinno and Bélanger, 2009).
Notably, Coll et al. (2007) reported that 2-year-old hybrid poplars
planted at formerly forested sites gained nothing from mechanical
removal of aboveground plant parts, while there were great bene-
fits from herbicide applications that targeted competing roots. They
thus concluded that competition was strongest for soil nutrients at
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these sites and that competition control treatments needed to aim
at belowground plant parts. Nonetheless, shoot removal certainly
also impacts belowground plant parts by killing fine roots (Comas
et al., 2000) and by limiting water uptake.

The present study revealed responses of tree growth to above-
ground competition control that differed when combined to other
silvicultural management tools. Admittedly, this was not apparent
when looking at absolute values because the interaction termin the
mixed analysis of variance was not significant. However, by com-
paring relative growth values of trees in weeded and unweeded
plots, it appeared that the relative growth gain (RGG) due to VC
varied according to MSP treatment, but only for height and not
diameter. Indeed, the effect of competition control on hybrid poplar
growth was stronger in the less intensive MSP treatments. In unpre-
pared plots, mean height growth of weeded hybrid poplars was
more than 2-fold (200%) that of the unweeded trees, while in
mounding plots the RGG due to VC was only around 25% (Fig. 4).

A similar conclusion was reached by Burgess et al. (1995) after 7
years in Pinus strobus and P. glauca plantations in Ontario, Canada.
This emphasizes the idea that MSP itself is an efficient approach to
limiting competition for resources (Pehl and Bailey, 1983; Ross and
Walstad, 1986). As a result, removing plant competition where it
has previously been reduced by MSP has much less impact on the
development of target trees. Analogous to that are the results of
Pinno and Bélanger (2009), who reported that competition control
was less effective on unproductive, nutrient-poor sandy sites where
competition for soil resources was naturally low. In a study on pine
plantations, Nilsson and Allen (2003) observed that loblolly pine
growth was enhanced in early years due to herbicide control of
competing vegetation.

Because VC had no significant effect on soils, and because
removal of aboveground parts of plant competitors mainly impacts
aboveground competition, the effects of VC on tree growth reported
in the present study should represent mostly the response of trees
to changes in light competition intensity. When competing vege-
tation is controlled only at year 3, it has similar or slightly greater
benefits for hybrid poplars than control at years 2 and 4. This sug-
gests thatasilvicultural intervention at that time is not optimal, and
that the better results of the third-year brushing treatment would
represent a more efficient improvement in light availability from
competition removal.

4.3. Fertilization

Fertilization can provide a substantial improvement in short-
term growth, as suggested by the ~30% improvement in height
growth observed in fertilized trees during the application year
(Table 3). This is similar to other reports of hybrid poplar production
gains from fertilization of 21% (Heilman and Xie, 1993; Brown and
van den Driessche, 2002), 40% (Coleman et al., 2006), or even 62%
(Czapowskyj and Safford, 1993). Yet, in some very nutrient-limited
plantations, gains as high as 200% in tree biomass were obtained
(Coyle and Coleman, 2005). Nonetheless, it does not seem to be
universally effective since in this study the improvement was sig-
nificant only on mounds. Some explanations for this include (1) the
advantage of a larger root system in mounds (see discussion below)
that could allow quick and efficient absorption of the nutrient input,
and (2) the uptake of N and P by competing herbaceous plants in the
other MSP treatments or unprepared plots (see herbaceous cover
data in the results section). Overall, the results suggest that fer-
tilization may not be sufficient to compensate for inadequate soil
preparation. This was also proposed by Nilsson and Allen (2003),
who observed no effect of fertilization (at planting) in low intensity
MSP treatments, while in intensive MSP treatments it positively
influenced tree growth in later years, after crown closure. Shiver
et al. (1990) compared silvicultural treatments on Spodosols (Pod-

zols) with more fertile soil types, and concluded that fertilization
and competition control had more lasting effects on the cold, acidic,
nutrient-poor Spodosols.

In the present study, combining N with P fertilizer additions did
not result in greater growth, despite the fact that P was found to
be important in certain ecosystems (Abel et al., 2002; Trichet et al.,
2009). There has also been reports on the benefits of combining
N and P in other, possibly more nutrient-deficient stands (Blevins
et al,, 2006), notably some aspen (P. tremuloides) plantations in
Western Canada (van den Driessche et al., 2005) and cottonwood
clones in Washington State, USA (DeBell et al., 1990). In a study
that combined competition control and fertilization, Borders et al.
(2004) observed increased growth due to competition control in
the early years, while fertilization had lasting effects on growth
enhancement. In their fertilization trial, Amateis et al. (2000) mea-
sured only the height of dominant trees and, as a result, they
could not observe fertilizer effects on less than optimally devel-
oped trees, as we managed to do here with trees in unprepared
plots. Higher leaf mass and N content after fertilization are in accor-
dance with previous studies (Zhang and Allen, 1996; Zhang et al.,
1997; Coleman et al., 2006).

5. Conclusion

The results of this study have important implications for future
management strategies of hybrid poplar plantations in boreal
regions. The different techniques and management tools used here
interacted, with varying effects depending on the site conditions
induced by the treatments, in ways that can influence the decision
of using those techniques or not. Still, other considerations (e.g.,
socio-economical) might further influence the decision process.

Based on our results, we propose that forest managers prioritize
their management interventions as follows: mechanical soil prepa-
ration > aboveground vegetation control > fertilization. We suggest
this sequence because MSP has the greatest impact in creating
favourable soil microsites for planting, in reducing competing veg-
etation previously on site, and in promoting tree establishment,
survival and growth. VC and fertilization, as applied in this study,
could not compensate for inadequate MSP. When both of these
treatments were undertaken at unprepared sites, trees were about
half the height of those on mounds with neither VC nor fertilization.

The present results and suggestions are in line with the few
other studies that encompassed similar ranges of interacting tools,
albeit with different tree species in different environments (Nilsson
and Allen, 2003; Carter and Foster, 2006; Zhao et al., 2009). Among
the MSP treatments, mounding appears to offer better early results
due to rapid root development, high seedling survival, and substan-
tial N mineralization. In addition, its effects were still observable
after several years. The high sensitivity of hybrid poplar roots to
belowground competition may explain why MSP is so critical to
this species. In conditions where some VC is considered necessary,
it could be done only during the second year after planting to mini-
mize the cost and maximize the results. Finally, fertilization should
be considered only if intensive MSP is also done.
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