
Explicit Reflection in Prolog-Tutor

Josephine Tchetagni, Roger Nkambou, GDAC, Computer Science Department, UQÀM,
Montréal, Québec H3C 3P8 Canada
josephine.tchetagni@licef.teluq.uqam.ca, nkambou.roger@uqam.ca

Jacqueline Bourdeau, LICEF Research Center, Télé-Université, Montréal, Québec H2T 3E4
Canada
bourdeau@licef.teluq.uquebec.ca

Abstract. This paper describes a reflection-based approach for open learner modeling (OLM). Tutoring
dialogues are used by learners to explicitly reveal their own knowledge state to themselves. Dewey's theory of
reflective thinking is used to create tutorial strategies which govern these dialogues. Drake's specification of
critical thinking, associated to a defined set of skills, is used to define tutoring tactics implementing these
strategies. The main contribution of this approach to OLM is that it provides a set of principled and reusable
tutorial strategies and tactics to promote reflection, as they are based on domain independent theories.
Furthermore, an evaluation of such a principled approach to OLM is straightforward in certain cases, as it refers
to theories which already provide evaluation criteria. The approach is integrated in Prolog-Tutor, an existing
intelligent tutoring system for Logic Programming. This paper presents a qualitative study of the resulting
system, based on think-aloud protocols. A result analysis reveals that explicitly fostering reflection supports
reflection based OLM and provides landmarks to explain its manifestations. However, the results also suggest
that this openness may be less helpful when used by learners who have already honed a high level of proficiency
in logic programming.

Keywords. Reflection, open learner modeling, tutoring dialogues

INTRODUCTION

Metacognition enforces learning within a domain, as well as knowledge transfer across domains. Open
learner modeling (OLM) is a recent research trend in learner modeling. OLM advocates the
stimulation of metacognition by allowing learners to access, consult and interact with their own
models (Cumming & Self, 1991). Metacognition is sometimes defined as the "awareness of one's own
cognitive processes and cognitive state" (Flavell, 1979). Thus, reflective thinking can be considered
the foundation of a metacognitive activity as participants observe their own learning process. Schön
(1983) describes two types of reflections: reflection-in-action and reflection-on-action. Open learners'
models are mostly used as tools to elicit reflection-on-action. Learners can examine their mastery level
of the skills pertaining to a field of study or their level of knowledge of a field of study (Bull, McEvoy,
& Reid, 2003; Zapata-Rivera & Greer, 2003); they can view peers' models in order to support
collaborative learning, reflect by viewing (Vassileva, McCalla, & Greer, 2003) and edit their model in
order to modify or negotiate its content (Bull & Pain, 1995).

The current conceptions of open learners' models do not explicitly promote reflection-in-action.
Reflection-in-action prepares the learner to capture the contents of a learning domain, the reasoning
strategies specific to that domain, the tutors' expectations, etc. Most importantly, reflection-in-action

introduces learners to their own cognitive state. Tutoring dialogues are generally the preferred tactics
to support open learner modeling for reflection-in-action in ITSs. However, researchers have often
outlined the fact that the reflective activities that emerge from tutoring dialogues are a side effect of
the interactive nature of these dialogues (Dimitrova, 2003). The question which arises from that
remark is that these interactive dialogues should embed goals which explicitly aim at promoting
students' reflection. One must ensure that learners effectively mirror their mental state pertaining to a
field of study and tutoring dialogues could embed goals which explicitly aim to foster students'
reflection. Two main properties are desirable in such dialogues: (1) their structure should warrant a
coherent and continuous focus towards a learning goal and (2) their contents (the communicative acts)
should provide concrete evidence that, besides leading learners to construct a successful answer to a
problem, they allow them to reflect on the targeted skills. To achieve this, one approach consists of
interpreting a theory of reflective thinking while modeling these tutoring dialogues. The challenge of
defining reflection has been studied by several scholars over the years. Lewin's model of action
research is oriented towards reflection during problem-solving in social and organizational settings
(Lewin, 1948). This model would be inappropriate in the context of one-on-one tutoring dialogues in
Intelligent Tutoring Systems (ITSs), since it intrinsically relies on the dynamics of social interactions.
John Dewey also suggested a theoretical basis for reflection in an educational context (Dewey, 1933).
Dewey's pioneering work on a theory of reflection relies on logical and philosophical arguments to
explicitly articulate the components of reflection. This theory has been widely recognized and it
served as an inspiration for most contemporary models of reflection in experiential learning (Kolb,
1984) and professional education (Schön, 1983).

This paper follows from an earlier work on an approach to support explicit reflective thinking in
Prolog-Tutor, an Intelligent Tutoring System (ITS) for logic programming (Tchetagni, Nkambou, &
Bourdeau, 2005). At first, Prolog-Tutor supported OLM by fostering reflection-in-action implicitly,
using a tutoring dialogue. The purpose of this paper is to introduce explicit reflection in Prolog-Tutor
using Dewey's theory of reflective thinking. The advantage of such an approach is that the conception
of tutorial strategies and tactics which promote reflection is based on formal principles. Henceforth,
these strategies and tactics can be formally justified, reused and assessed using those principles. This
new version of Prolog-Tutor, enhanced by introducing explicit reflection will be referred to as ER-
Prolog-Tutor.

The remainder of the paper is organized into four sections. The next section describes the main
features of Prolog-Tutor, outlining how the system enables OLM by fostering reflection implicitly.
The following section presents ER-Prolog-Tutor, the result of integrating explicit reflection in Prolog-
Tutor as a principled mean to promote reflection based OLM. After that, there is a section which
describes the system architecture and implementation which underlie the features of Prolog-Tutor and
of ER-Prolog-Tutor. The next section summarizes the results of a qualitative study of explicit
reflection in ER-Prolog-Tutor. The goal of the study is to analyze the extent to which ER-Prolog-Tutor
can actually trigger learners' reflections as explained by Dewey. Results from tape-recorded
participants using think-aloud protocol are analyzed and they suggest explanatory hypotheses about
four main points: (1) the characterization of how reflection is manifested when learners interact with
ER-Prolog-Tutor's tutoring dialogues and how they access their own mental state when doing so; (2)
the awareness of explicit reflection when learners interact with such dialogues; (3) the arising
reflection patterns that deviate from Dewey's theory when using those ER-Prolog-Tutor tutoring
dialogues; (4) the impact of ER-Prolog-Tutor system implementation on the benefits of its use to
stimulate reflection. The final section of the paper outlines the lessons drawn from the study.

GENERAL DESCRIPTION OF PROLOG-TUTOR

Prolog-Tutor is an ITS intended to support learning of basic notions in logic programming. Prolog
allows formalizing declarative knowledge and implementing reasoning processes about this
declarative knowledge. Learning basic notions in Prolog generally bears on: (1) learning the
vocabulary of the data structures used to represent information (e.g. how is declarative knowledge
expressed in Prolog?) and (2) learning the principles governing the reasoning algorithms on those data
structures.

Prolog integrates four basic data structures1: variables, constants, compound
terms, Horn clauses. Higher level concepts could be associated to these data structures:
facts (based on compound terms), Prolog rules (based on Horn clauses) ,
knowledge bases (based on facts and Prolog rules) and goals (as facts to prove
using a knowledge base). Two main algorithms support the simulation of reasoning in Prolog:
unification and resolution: unification allows the verification of a fact in a Prolog
knowledge base and resolution implements logical proofs using unification to this
end.

Different abilities may be applied to these data structures and algorithms. For example, to acquire
resolution as a concept (or to "understand how resolution is used to prove a goal"), it
suffices to "understand unification". However, to acquire resolution as a procedure (or to
"perform the proof of a goal using resolution"), one must "understand how resolution is
used to prove a goal" and to "perform/apply unification". Taking this into account, these data
structures and algorithms are considered as knowledge elements. In the framework of this paper,
associating a knowledge element with an ability defines a logic programming skill (Nkambou,
Frasson, & Gauthier, 2003). The set of skills represented in Prolog-Tutor includes the skills related to
Prolog vocabulary and those related to the unification and resolution algorithms. Table 1
presents the skills which are related to proving a goal using resolution in Prolog (also called
"resolve a goal" in Table 1).

In order to apply the resolution algorithm, a learner should be able to: interpret a fact as a
goal to be proven, use a Prolog rule to solve a goal, manipulate a Prolog rule to prove a
goal, etc. Notice that the skills are defined here using action verbs which apply to a knowledge
element in the field of study. The main advantage of defining a skill this way is that as abilities are
generic processes, pedagogical strategies and tactics to support reflection on a skill could be designed
based on these abilities, regardless of the corresponding knowledge element. Thus, as domain contents
are independent, these strategies and tactics are reusable across domains.

Prolog-Tutor pedagogical actions focus on enabling OLM by fostering reflection on skills
diagnosed as being the cause of learners' shortcomings. This section introduces the basic components
of Prolog-Tutor, the pedagogical model being emphasized as it sustains OLM in this system.

1 For clarity, the font ''Courier New'' depicts expressions that are proper to Prolog Language or to PROLOG-
TUTOR

Table 1
Skills related to the "resolution of a goal" in Prolog

Prolog Skill Knowledge Element Skill According to
Bloom's and Gagne's

Taxonomies

Interpret a (Fact) as a goal to be proven Fact Understand
Propositions

Use a (Prolog-Rule) to resolve a
goal

Prolog Rule Apply Principles

Manipulate a (Prolog Rule) to resolve a
goal

Prolog Rule Apply Principles
Apply Procedures

Use a (Knowledge base) to resolve a
goal

Knowledge Base Apply Principles

Understand (Back-Tracking) to resolve
a goal

Back-Tracking Understand Concepts

Use (Back-Tracking) to resolve a
goal

Back-Tracking Apply Principles

Execute (Back-Tracking) to resolve a
goal

Back-Tracking Apply Principles
Apply Procedures

Prolog-Tutor Domain Model

The choice of the knowledge representation approach of the learning domain was motivated by the
cognitive diagnosis procedures applied by the system. Cognitive diagnosis in ITS provides various
types of information: learners' knowledge state, causes of learners' errors and forecasting of learners'
future actions in problem solving. In Prolog-Tutor, these inferences are supported by a causal model
defining causal relationships among the skills represented in the learning domain (Figure 1).
Moreover, diagnosis reasoning binds observations and explanations together. A number of
explanations may apply to a single observation and consequently require the identification of the most
plausible explanations. Bayesian networks are appropriate knowledge representation approaches to
support diagnosis reasoning: they allow representations of causal relations and account for the
uncertainty when reasoning about such relations (Pearl, 1988).

Creating the domain model was a two-step process. First, causal relations between the considered
skills were identified. Two lecturers in logic programming in the Department of Computer Sciences at
the University of Quebec in Montreal performed this task. Prolog can be considered a well structured
domain as, quite often, more complex skills are built from simpler skills. As presented in this paper,
Prolog-Tutor focuses on the topic pertaining to prove a goal using resolution. A goal proof is built on
the application of the resolution procedure, which itself is built upon simpler skills such as "apply
unification of two compound terms", "understand unification as a concept", "use a knowledge base",
"understand the concept of bound variable", etc. A total of twenty-six (26) such skills were identified
and integrated into the domain model; among these skills, fifty-seven relations were identified with a
maximal number of three causal relations between two skills. Second, these causal relations were

quantified by associating conditional probabilities to each of them, using an expert centric approach
(Mayo & Mitrovic, 2001). These probabilities were established using the intuition and experience of
both lecturers. Figure 2, for example, presents a portion of the Prolog-Tutor domain model. There is a
causal link between the skills "Apply the Unification of two compound terms", the "Use a Bound
Variable", "Apply Unification" and "Articulate the structure of a Compound Term".

Apply Unification

Apply Resolution

Causal link in Prolog-Tutor
domain model

Fig.1. Example of Causal Link between Two Skills in Prolog.

Most of the time required to build the domain model was spent in this second phase. The
posterior probabilities of each node had to be set for all the possible values of its parents, which was
rather challenging in the presence of more than two parent nodes. The time required for assigning
these probabilities was not tracked. However, the process was long enough to reveal some shortcuts to
resolve in subsequent versions of Prolog-Tutor. First, the probabilities were assigned subjectively thus,
their validation remains an issue. Second, the fact that the probabilities were encoded manually
questions the scalability of the Bayesian approach: what would happen if more skills were
incorporated in the system? These two issues could be addressed by using a data centric approach to
build the Bayesian network (Mayo & Mitrovic, 2001). In that case, both the structure and conditional
probabilities of the network are gathered from data collected from real-world evaluations of the tutor
or of a human tutor. In the case of this investigation, the corpus of data necessary to generate these
probabilities was not available. The logic programming topic selected was very specific (proof of
a goal using resolution) and did not require a large number of skills so the hard-coding solution
was a fair compromise.

Prolog-Tutor Learner's Model

Two types of diagnosis inference are expected in Prolog-Tutor: update learners' knowledge state (what
is the mastery level of a given skill?) and explain learners' errors (why does a learner experience
difficulties with specific elements?). Updating the learner's knowledge state consists of establishing
the probability of mastering the skills represented in the domain model. Diagnosing learner's errors
consists of finding the most probable explanations for these errors (for instance, the lack of a certain
skill). When using Bayesian networks, these two types of inferences are automatically handled by the
Belief updating and Belief revision algorithms (Pearl, 1988).

Diagnosing the Learners' Knowledge State

When updating the learners' knowledge state, the mastery of a skill can be represented by a binary
random variable: a value of 1 means that the skill was successfully mastered while a value of 0
indicates the contrary. This part of the learner's model represents the probability that each skill is
mastered (state of mastery equals 1). Diagnosing the learner's knowledge state consists of updating the
probabilities that each skill is mastered, based on the learner's actions. For example, every time
learners successfully complete an exercise or correctly respond to a question, positive evidence is
registered by the Bayesian network associated with the domain model. Every time evidence is
registered, it is propagated throughout the network to allow computing future probabilities of all the
nodes in that network. Figure 2 illustrates such propagation.

Fig.2. Updating a Learner's Model with Bayesian Deduction.

The learner fails to apply the Unification of two Compound Terms and this stands as
negative evidence related to the skill "Apply Unification of two Compound Terms". This
evidence is propagated through the network and new probabilities are computed. For example, the
posterior probability of mastering the skill "Use a Bound Variable" decreases from 0.4 to 0.31, in
the situation illustrated in Figure 2.

Diagnosing Learners' Difficulties

Diagnosing learners' difficulties occurs when learners fail to answer a question while interacting with
the system. Each question in Prolog-Tutor is related to a specific skill or to a set of skills. First, skills
are diagnosed. Whenever learners do not provide one of the expected answers, negative evidence is
registered in the Bayesian network: the values of the nodes representing the diagnosed skills are set to
0 (skill not mastered). The next step consists of finding an explanation for that observation: find the
network state with the highest joint probability, given that the values of the nodes associated to the
diagnosed skills are set to 0. In Figure 3 for example, the goal is to find the state of the network which
best explains the fact that the node "Apply Unification of two Compound Terms" is associated
with a 0 value (skill not acquired). Three network states are simulated with the value of the node
"Apply the Unification of the arguments of two Compound Terms" (node labeled as D) fixed
at 0. For example, the first network state includes the node values A = 1, B = 1, C = 1, D = 0 and its
joint probability equals 0.0054. The network state with the greatest joint probability is represented by
the node values A = 0; B = 0; C = 1; D = 0. Thus, the lack of the "Use a Bound Variable" and
"Apply the Unification of the arguments of two Compound Terms" skills best explains the fact
that the learner has difficulties unifying two Compound Terms. The next section describes how
Prolog-tutor makes use of tutoring dialogues to diagnose learners' knowledge state and errors.

Fig.3. Bayesian Induction to Diagnose Learners' Errors.

Using Tutorial Dialogues for Learner Modeling

Learners interact with Prolog-Tutor in two ways. First, they can consult general contents pertaining to
a skill (e.g., definitions, examples, explanations). Second, they can complete exercises where they
must elicit logic programming skills. Learner modeling builds upon evidence collected in exercise-
based training. The construction of the solutions to these exercises is incremental, based on tutoring
dialogues. These dialogues include questions intended to diagnose logic programming skills, hence

learners' answers can be used as evidence of their level of acquisition. Figure 4 presents an English
translation of the typical interface for a tutoring dialogue in Prolog-Tutor. The exercise statement lies
in the upper left-hand corner of the interface. In this case, learners must apply a resolution to
prove a goal: they must find the values of variables X and I so that the f a c t
x_has_illness(X,I) be true, given a Prolog knowledge base. This knowledge base
is defined in the upper right-hand corner of the interface. The tutoring dialogue appears on the bottom
part of the interface. The "Implementation" section of this paper presents a detailed description of the
Prolog-Tutor interface commands.

The tutoring dialogue is composed of a two-level hierarchical structure. On the first level (called
D1 in the remainder of the text), each question corresponds to a sub-problem associated with the
current exercise. This sub-problem is explicitly associated with a skill that must be elicited in order to
provide a successful solution. Therefore, these questions are considered diagnostic questions (DQ).
The learner's answer to a DQ determines how the dialogue evolves: if the response is correct, the next
DQ is addressed; otherwise, the tutor focuses the interaction on the skill associated to that DQ in order
to determine which aspect of that skill is problematic for the learner.

Fig.4. Learner Modeling in Prolog-Tutor Using a Tutoring Dialogue.

Learners who fail to answer D1 Level DQs correctly indicate their lack of the skill associated to
that DQ or that they fail to understand the DQ. Indeed, a learner can signal that a question is not
understood by clicking on a "Don't Understand" button provided on the user interface of the tutoring
dialogue (Figure 4). In cases where a diagnosis is made with respect to a skill, the tutoring strategy
consists of focusing the learning process on that skill, rather than continue constructing the problem
solution. If a diagnosed skill contains sub-skills, the second level of the hierarchical structure is
triggered as a sub-dialogue. The sub-dialogue of the D1 dialogue level is called D2. Three tactics can
be considered to determine the sub-skills that need to be focused on at Level D2. The sequential tactic

consists of focusing on all the sub-skills sequentially. The adaptive tactic consists of focusing on sub-
skills for which the probability of mastery is below a given threshold. The "most-probable-
explanation" (MPE) tactic uses Pearl's Belief revision algorithm to identify the lacking sub-skills
which best explains the absence of the diagnosed skill (Tchetagni & Nkambou, 2004). In each case,
the questions asked at level D2 correspond to the sub-skills that are chosen to be focused on. The
choice of any such strategy must be set manually by the author before a learning session begins.

Example of a Diagnosis Based on the Tutoring Dialogue

In Figure 4, the tutor asks the learner a question related to (the skill) Use a Prolog-Rule while
applying resolution to prove a goal (question labeled D1-DQ1 in the illustration): [what is the
first element of the prolog knowledge base which corresponds to that goal?]. If the learner fails
to answer, the system: (1) diagnoses that the corresponding skill may be lacking and (2) generates a
sub-dialogue in order to provide the learner with an insight into this skill through an articulation of the
sub-skills that are most probably responsible for the learner's obvious difficulties. In this case, the sub-
dialogue addresses two skills (with the questions respectively labeled D2-DQ1 and D2-DQ2 in the
illustration): Identifying a Prolog-Rule and Use a Prolog-rule with a goal to solve.

Here, the dialogue structure includes two pedagogical goals. First, each DQ in D1 allows the
system to diagnose learners' difficulties directly. Second, each DQ in D2 gives the learner the
opportunity to reflect implicitly on the skills identified as lacking at the preceding level. This nesting
of dialogue levels is relevant because the system performs an interactive diagnosis which fosters an
implicit reflection and each question at Level D2 is also associated with a skill so that the cognitive
diagnosis is continuously refined, confirmed or invalidated.

Prolog-Tutor Pedagogic Model: Openness of the Learner Model

The pedagogical module of Prolog-Tutor focuses on stimulating metacognition on skills diagnosed
during learner modeling. To support the learner's metacognition, two approaches are used to access the
learner model. In the first approach (OLM based on reflection-on-action), learners can view and
interact with a representation of their cognitive states as interpreted by the system. In the second
approach (OLM based on reflection-in-action), tutoring dialogues are used to sensitize learners to their
own cognitive state in a given learning situation in Prolog-Tutor. Indeed, this approach to OLM can be
used by learners to prepare subsequent interactions with the representation of their cognitive state by
the system.

OLM in Prolog-Tutor through Reflection-on-Action

Learners can consult and modify two main components when consulting their model: a representation
of the long term knowledge state and a learning trace indicating relevant information about their last
training session.

Figure 5 presents an example of a representation of a learner's long term knowledge state in
Prolog-Tutor. For each logic programming skill represented in the domain model, the long term
knowledge state indicates the following: its probability of mastery (computed by the Bayesian
network), the learners' score (in percentage of success) for exercises which require that skill and the
percentage of times that the learner performed an exercise where that skill intervenes. Such data is

intended to provide more insight about a given probability. It provides cues about the number of times
that this probability is computed by the system, based either on direct evidence from the learner or on
Bayesian inferences. The left-hand side column indicates the list of skills contained in the domain
model. The column in the middle indicates the probability of mastery of each skill and the right-hand
side column summarizes the diagnostic sources of the column in the middle using the pair (success
percentage, direct exposure).

Each part of a learner's model could be opened separately. Above, a summary of the learner's
knowledge state is presented in three columns with (left to right): skills; probability of mastery;
percentage of success for each skill

Fig.5. OLM in Prolog-Tutor: Consulting a Learner's Long Term Knowledge State.

For a given learner, two kinds of information are included in a learning trace: the posterior
probability of mastering each skill, based solely on evidence from previous training sessions
(regardless of the long term probability of mastery) and a representation of all of the learner's actions
during the last training session. Figure 6 presents an interface which illustrates the learning trace. The
left-hand side lists the identifiers of the skills represented in the Prolog-Tutor domain model. Each
skill identifier is preceded by a coloured square indicating information pertaining to the diagnosis of
the corresponding skill in the last learning session: a red square means that a learner provided an
erroneous response, a green square shows that the learner successfully answered the question and a
grey square indicates the absence of evidence. The right-hand section of the interface comprises two
horizontal panels. The upper panel reports the contents of the tutoring dialogue during the last training
session, represented as numbered questions and answers. Each tutor question is also labeled with the

name of the underlying tutoring strategy in order to stimulate reflection. The bottom panel provides
learners with tools that allow them to influence the contents of their model. When a skill is selected on
the left-hand side of the interface, this bottom panel presents the long and short term probabilities of
mastery for that skill and the source of the last diagnosis whose result included that skill (the source is
identified by the interaction learning trace number where the diagnosis was performed). For example,
in Figure 6 the short term probability of mastering the skill "Apply Unification of two
Compound Terms" is 0 since the learner failed to answer the last question which required that skill.
Notice that for this learner, the long term probability of acquiring that skill equals 0.1748. In order to
involve them in their diagnosis, learners are allowed to influence their model using the interface of the
short term learner's model. For a given skill, they may eventually judge that their mastery level is
superior to that indicated (In Figure 6 they would click on the "I do not agree" button). The use of this
button triggers the launch of a control exercise requiring that skill which learners must take in order to
justify their claim. If the control exercise is successfully completed, the tutoring system updates the
learner's model accordingly. The data on the bottom panel could also be useful for human tutors to
detect phenomena such as guessing (when there is a large difference between the long and short term
probabilities of mastering a skill).

Fig.6. OLM in Prolog-Tutor using the Learning Trace.

Giving learners the opportunity to analyze their cognitive state as interpreted by the system is
pedagogically valuable as it may provide insights into their understanding of the learning domain
through reflection-on-action. This paper suggests that learners' prior preparation to this analysis could
improve performance. One way to prepare learners for consulting their model consists of promoting an
insight into their understanding of the domain at the onset of their training in the system, through
reflection-in-action.

OLM in Prolog-Tutor through Implicit Reflection-in-Action

In Prolog-Tutor dialogues, each question should be sufficiently suggestive so that it fosters a hidden
(implicit) reflection which could then remedy the cause of the learner's error: re-examine data
pertaining to the current state of the problem, recall a principle pertaining to the domain, apply a
principle in order to produce an answer. In the example, depicted in Figure 4, Level D1-DQ: "What
is the first element of the knowledge base that should be used to solve the g o a l
has_illness(Peter,I)" is suggestive as it may hint to the learner that the knowledge base
should be scanned sequentially according to the syntactical form of that goal. In order to understand
the question, the learner must reflect on the principle which is required to elicit the skill "use a
Prolog-Rule in the proof of a goal based on resolution":

[IF the HEAD of a PROLOG-RULE is UNIFIABLE with the GOAL to prove, THEN
use that PROLOG-RULE to perform the RESOLUTION]

The sub-dialogue illustrated in Figure 4 tackles reflection on the first sub-skill of the skill [Use
a Prolog-rule in the proof of a goal based on resolution], namely the [Identify a
Prolog-rule] skill. The purpose is to create a situation where learners must become aware of the
concept of "prolog-rule" in order to consider their understanding of that concept by themselves.
In this example, the learner has to identify a prolog-rule in the context of the proof of a goal.
The tutor asks the learner to indicate the "Head" of the prolog-rule that should be used indeed, to
prove the current goal.

It is likely that a reflective process implicitly takes place through the use of this tutorial dialogue.
However, from a pedagogical perspective, this approach does not ensure that the learner truly elicits
the targeted skills. The next section describes ER-Prolog-Tutor, a version of Prolog-Tutor where
reflection-in-action based OLM is supported using Dewey's theory of reflective thinking to explicitly
promote that reflection.

OLM IN ER-PROLOG-TUTOR THROUGH EXPLICIT REFLECTION

In the previous description of Prolog-Tutor, even though the presence of reflective thinking relies on
the interrogative nature of the interactions, there is no guarantee that reflection actually occurs. Our
goal is to design the sub-dialogues of the Prolog-Tutor tutoring dialogue structure (at Level D2) so that
they explicitly trigger reflection. When tutorial strategies are not based on a specific learning or
teaching model, they are difficult to justify, select, reflect upon and improve (Ford, 1987). Our
objective is to derive generic and reusable tutoring strategies and tactics from the principles of
Dewey's theory and to implement them in ER-Prolog-Tutor, the Prolog-Tutor version where tutoring
dialogues explicitly foster learners' reflection. A tutoring strategy defines a tutor's goal or sub-goal

towards a learning state, given a learner's current knowledge state; a tutorial tactic defines the means
by which a tutoring strategy is to be achieved: the surface manifestation of a strategy in terms of
tutoring actions (Ohlsson, 1987). The tutorial strategy in ER-Prolog-Tutor is designed by defining the
goal of each question in the tutoring sub-dialogues at Level D2 in order to elicit a component of
reflective thinking. The corresponding tactics are based on the idea that the contents of these dialogues
refer to the nature of the skill on which the learner reflects (the skill diagnosed at Level D1), as
defined in Gagne's taxonomy of skills (Gagne, 1992).

Pedagogical Strategies for Explicit Reflection: Dewey's Theory

According to Dewey (Dewey, 1933), reflective thinking refers to the occurrence of neither ideas nor
judgments. Reflection pertains to the way in which a belief was used to construct a conclusion. A
conclusion is drawn on the grounds of reasoning and a set of evidence which supports that reasoning.
Dewey identified five components of reflective thinking. The first component consists of a
contradictory/controversial/obscure experience of a situation, where learners must reason in order to
draw out an acceptable conclusion/explanation. The second component refers to an intellectualization
process triggered by the controversial situation/experience: it implies a formal definition/identification
of the conditions (the facts) which cause the contradiction/controversy/obscurity. The third component
relates to the process of proper reflection: it consists of pondering upon the facts of a situation in order
to reach an acceptable conclusion. The fourth component is facultative and refers to internal reflection:
the reflective learner can mentally process related ideas in order to infer further hypotheses. Finally,
the fifth component is the result of reasoning, which consists of selecting a single conclusion amongst
those applicable to solve the situation presented at the first step. This conclusion could eventually be
tested if it does not consistently follow from the facts which characterize the situation.

The first component of reflective thinking requires that learners' curiosity be stimulated in a
learning situation. The second component emphasizes the importance of explicit analysis of facts in a
learning situation, as in a scientific experimentation. The third component integrates the learning
situation and the learning domain: conclusions must be built by reflecting upon the basis of the facts of
that situation, using the domain knowledge. The fourth component is similar to the third since it
concerns reasoning, but it also allows the introduction of the effect of experience in the reasoning. The
fifth component allows the proper completion of the reflection process by verifying the drawn
conclusion. Four tutoring strategies are suggested to encompass these goals: (1) Elicit curiosity, (2)
Identify the relevant facts and conditions of the learning situation contents, (3) Draw a solution from
the learning situation by linking the identified facts to some principles, concepts, heuristics or past
experience in the learning domain (this strategy could be reified at any step of the reflection), (4)
Evaluate the correctness of the solution, given the facts and the domain principles identified.

Pedagogical Tactics to Enable Explicit Reflection in Prolog-Tutor

In order to enable the tutorial strategies for explicit reflection defined above, we propose to design the
sub-dialogues of ER-Prolog-Tutor (Level D2) so that they explicitly trigger reflection on the skill
associated to the corresponding diagnosis question at the upper level (Level D1). When the system
diagnoses that a learner lacks knowledge about a particular skill (indicated by diagnosis questions used
at Level D1, the first hierarchical level of the dialogue), its goal is to elicit an explicit reflection

pertaining to the acquisition of that skill (using tutorial strategies for explicit reflection to guide the
nature of the questions at Level D2, the second hierarchical level of the dialogue).

Consequently, the sub-dialogue is designed in such a way that it interprets Dewey's components
of reflective thinking. However, this dialogue model should also achieve a certain degree of generality
in interpreting Dewey's components on the basis of the nature of a skill rather than specifically for the
Prolog domain. A skill can be sufficiently general (regardless of the context in which it is used) to be
defined with respect to a skill taxonomy, which gives a principled description of its learning
properties. The following interpretation method was selected: first, determine the goal of the reflective
process regarding each type of skill and second, infer how (to interpret) the components of reflective
thinking can be used to reach these goals. Concerning the goal of reflection on a particular type of
skill, Dewey outlined that the intellectual activities which underlie the process of judgment are
analogous to reflective thinking. Therefore, Drake's (1976) description of the goals of judgment is
relevant, since these goals are defined specifically for concepts, principles and arguments as presented
in Table 2.

Table 2
Skills and Objectives of Reflective Thinking (Drake, 1976)

Skill Objective of Reflective Thinking
- Identify a concept Determine if a concept instance classification is adequate; verify the

meaning; recognize the attribute; justify an erroneous classification.
-Apply, Use
Principles

Verify statement confirms/contradicts; identify premises
/consequences.

-Verify Arguments End up with contradiction/confirmation; determine assumptions/
consequences.

Then, a dialogue model for each targeted skill must be designed as a tactic to enable a strategy of
reflection. The interpretation of the reflective process uses the characteristics of a skill as defined in a
taxonomy. Using Gagne's taxonomy, a model of explicit reflective thinking about a principle is
presented in Table 3.

Table 3
A Generic Tactic for Explicit Reflection on a Principle

Reflect on the Application of Principle P1
Goal of the Reflection: Determine whether a statement confirms or contradicts P1

Steps Interpretation in the Context of 'Applying a Principle'
Problematic
Situation and

Intellectualization

1- Describe several facts to which the principle could be applied.
2- Outline the possible facts which could be drawn from the situation.

Reasoning on the
Principle

1- Make a statement S which corresponds to the targeted conclusion.
2- Verify whether P1 contradicts or confirms S.

Evaluation
(Optional)

1- If S is an acceptable conclusion, no need for evaluation.
2- If S is an unacceptable conclusion, show the contradiction to the learners
by having them evaluate S with P1.

This model stems from the fact that a principle is invoked in two possible ways: by the presence
of the conditions to which it applies or by the presence of the consequences that it implies. In ER-

Prolog-Tutor, this model is applied when a learner is unable to answer correctly a Level D1 question.
At Level D2, the sub-dialogues articulate the components of Dewey's reflection according to the
nature of the skill diagnosed at Level D1. Most of the skills considered in ER-Prolog-Tutor pertain to
the knowledge, use and application of a principle. For this reason, the model depicted in Table 3
applies to most of the system's sub-dialogues.

Concerning the presentation of a problematic and confusing situation, learners are presented with
an assertion (which is related to the skill diagnosed at Level D1) where they have to indicate whether
they agree or disagree. In general, the right response requires the use and application of a principle.
Concerning the intellectualization of a problematic situation, if agreeing with the assertion is correct,
the learner is asked to identify the facts that generally correspond to the conditions and to the
prerequisites of the principle to use and to apply in order to reach the conclusion (the
agreement/disagreement with the previous assertion). As for the reflection reasoning components: if
the learners' position is correct (agree or disagree with an assertion presenting a problematic situation),
they are asked to provide intellectualized facts with their position; if the learners' position is incorrect,
they are asked a series of questions designed to lead them to contradict themselves, given the facts that
they have intellectualized and the principle which applies to that specific case. Let us consider Figure
7 for example. The learner has difficulties finding the first element of a Prolog knowledge
base that is used for the proof of a goal based on resolution. In the following sub-dialogue,
the system states that the prolog-rule

"has_illness(X,I):-symptom(X,S)…"

should be the first element to use in order to prove the given goal and learners must indicate whether
they agree (presentation of a problematic situation where the learner is forced to take a position).
Then, the system asks the learner to identify the head element of that prolog-rule
(intellectualization of the fact necessary to use and apply the principle corresponding to the right
answer). The system finally asks the learner to establish whether this head element can be unified
with the goal being proven (reasoning on the foundation of the fact that has been intellectualized),
using a specific interface to articulate unification. Notice that the fourth component of Dewey's
reflection (evaluation) was not used in this implementation of ER-Prolog-Tutor. We believe that it is
most appropriate for contexts with richer contents and greater quantities of alternative solutions.

Explicit reflection is introduced in ER-Prolog-Tutor using tutorial strategies and tactics from two
formal theories. The strategies are based on the components found in Dewey's theory of reflection.
The tactics implementing these strategies are built according to the epistemic nature of the skill
pertaining to reflection, using Gagne's epistemology and referring to Drake's theory of critical
thinking. The advantage of such an approach is that it is based on formal principles and this stands as
the main contribution of this paper. Therefore, the tutoring strategies and tactics used to promote
explicit reflection in ER-Prolog-Tutor are systematic and reusable: the tutoring strategies are generic
by themselves since they follow from a theory; the tutoring tactics apply to well defined sets of skills,
namely, Gagne's intellectual skills. Thus, provided that the contents of a domain are modeled in terms
of such type of skills, those tactics could be applied. More precisely, Intelligent Tutoring Systems for
domains for which contents are expressed in terms of concepts, principles and laws could import the
tactics presented here (for example: computer programming, language learning – more precisely,
grammar – physics whose contents can be easily expressed in those terms).

Fig.7. OLM in ER-Prolog-Tutor: a Tutoring Dialogue for Explicit Reflection.

IMPLEMENTATION

This section describes the implementation of the main components of Prolog-Tutor and ER-Prolog-
Tutor: the domain, the learner, the communication and the pedagogical modules. Tutoring dialogues
are part of the pedagogical model as tools to promote reflection and they also integrate the
communication model as the medium of interactions evolving between a learner and the system. For
the sake of simplicity, any description concerning Prolog-Tutor in this section also applies to ER-
Prolog-Tutor, unless an explicit distinction is stated.

The Domain Module

The domain module comprises: a representation of the domain skills and the relations between each of
them, a learning resource and a learning objective. A learning resource can be an exercise to complete
or another instructional activity such as a request for definitions, examples or explanations. A learning
objective is linked to a skill. XML-based metadata permitted the implementation of these
representations. Causal relations among the skills and the corresponding conditional probabilities are
materialized through an XML structure that is compatible with the data entry of the JavaBayes library
algorithms from Cozman's Bayesian library (Cozman, 2001). Such algorithms were used to support
the Bayesian inferences applied in the domain model to support learner modeling.

Learning Objectives

Learning objectives can be named, uniquely identified (with IDs) and associated with one or many
learning activities. Learning activities are also named and uniquely identified and they are linked with
one or many resources, which are described in separate XML files. They are uniquely identified,
named and associated with a skill and linked with a Java class which represents its interface and
dynamics. This representation of the relations between learning objectives, activities, resources and
skills is inspired from the CREAM Model (Nkambou et al., 2003). This model permits a formal
organization of learning sessions.

A learning objective is reached by executing one or many learning activities. Learning activities
take place when learners use and interact with learning resources.

Learning Resources

ER-Prolog-Tutor comprises two types of learning resources: static and dynamic learning resources.
Static resources materialize learning activities where learners grasp instructional content pertaining to
the objective targeted by this activity; dynamic resources, also called "intelligent resources",
materialize practical exercises where learners interact with the system in a more sustained manner in
order to solve these exercises (using tutoring dialogues). At this time, ER-Prolog-Tutor implements
one (1) type of exercise in Logic Programming, which carries on "the proof of a goal
using resolution" based on a Prolog knowledge base. Two instances of such type are
implemented: one instance pertaining to a proof of a goal using resolution and which
results in a (Prolog) Failure and which does not involve any back-tracking; one instance
pertaining to a proof of a goal using resolution and which results in a (Prolog)
Success after back tracking.

Dynamic resources define the contents of the corresponding tutoring dialogue. These contents
will be used by the communication and the pedagogical modules to conduct a tutorial dialogue. The
representation of these resources in the domain module defines the contents of the corresponding
dialogue as well as its encoding in the system.

1. Representation of the Dynamic Resources Contents

In dialogues, each tutor utterance consists of two components: a discourse marker and some contents
(Moser & Moore, 1996). The discourse markers signal the focus of the current tutor's utterance:

tutorial strategy underlying a dialogue question, tutor feedback, summary of a sub-dialogue. For
example, each question representing the "intellectualization" phase of reflection as a tutorial strategy is
preceded by the utterance: "Now, I want you to examine the important data of this situation". Prolog-
Tutor includes four types of utterances: questions representing a tutorial strategy which aims to
promote reflection, feedback expressions, expressions representing a summary of a sub-dialogue and
expressions representing answers to learners' queries.

Concerning the utterances linked to tutorial strategies, the questions corresponding to the steps
towards a solution (implicit reflection) or the presentation of a problematic situation (explicit
reflection) were hard-coded since their contents highly depend on the exercise instance at hand. For
the other tutorial strategies (articulation of sub-skills in implicit reflection, intellectualization and
reasoning phases in explicit reflection), the system includes a set of class libraries intended to support
frames based definition of the contents of other tutor's utterances. The approach presented in this paper
is intended to reflect the application of Gagne's skills. The frames are conceived as fill-in-the-blank
forms intended to represent typical questions pertaining to a given skill. These forms must be
instantiated by an author using the data of a specific exercise. For example, one way to consider a
certain principle consists of linking specific problem data with a general domain principle (its
premises or its conclusion). An example of this question pattern is designed as follows:

• Intellectualization: ["What are"|"What is"] + <Facts> + <Contextual utterance>
• Reasoning: link facts and premises/conclusion of a principle.

 ["Are these"]+ <Verb representing the premise/conclusion of principle>
 ["What is the result of "]+ <condition representing a premise> + <Facts>

Constructing the tutoring dialogue contents for the first exercise in Prolog-Tutor revealed many
different ways of formulating questions to reason about a principle. In order to maintain the choice of
a frame based representation, an extensive analysis of several instances of Logic Programming
exercises using tutoring dialogues would have been necessary. This step also revealed that a more
comprehensive approach which integrates the principles to generate natural language was necessary to
use those frames: for example Mann and Thompson's Rhetorical Structure theory (Mann & Thompson,
1988). Therefore, a natural language analysis of the learners' answers would have become necessary as
well. The contents of the tutor utterances have been hard-coded as a short term compromise to delay
solving the expensive natural language challenges. However, given its long term benefit for the system
scalability, the use of natural language in Prolog-Tutor is an important trend for further research.

A six-slot frame is used to represent a question in a Prolog-Tutor tutoring dialogue. It also
integrates the three other types of utterances that can be expressed by the tutor. The frames include: (1)
the text representing the contents of the dialogue question, (2) the skill which could be verified with
that question, (3) in case of a sub-dialogue query, the component of reflective thinking triggered by
this question (ER-Prolog-Tutor) or the position of this question in the sub-dialogue for implicit
reflection (Prolog-Tutor), (4) a set identifying the expected answers to that question, (5) a set of texts
representing the two types of feedback for that question, (6) a set of texts consisting of different types
of explanations pertaining to that question (predefined answers to "Why", "How do I answer", "I don't
understand…" questions and statements from the learner). The expected answers are encoded on the
basis of the type of the corresponding question: specific questions which are formulated in such a way
that learners only have to type the exact answer, "unification questions" where the set of
expected answers represents all the valid operations of that unification, "back-tracking

questions" where the set of expected answers represents the parameters of the specific back-
tracking in question.

2. Validation of Hard-coded Questions of Dynamic Resources Tutoring Dialogues

The dialogue questions were created by two lecturers in Logic Programming (one of whom is a co-
author of this paper) through an iterative process. For each iteration, the dialogue questions were
submitted on a paper-and-pencil form separately to two undergraduate students in Computer Sciences.
These students were instructed to annotate each question with appropriate comments if they believed
they were not sufficiently clear. Enhancing the clarity of these questions was the main goal of this
validation process. The questions were continuously improved, until no more comments were
encountered.

Combining Learning Objectives and Learning Resources

CREAM learning sessions are planned dynamically with a Petri network while all versions of Prolog-
Tutor involve static planning. Relations between learning objectives, instructional activities and
resources are specified manually. Static planning conducts a syntactic analysis (parsing) of the XML
representation of a learning session structure. This makes it possible to identify each type of element
in a learning session as well as their specific representation in the system interface. One future
improvement to this aspect will consist of adding the possibility of exploiting the learners' model and
other information in order to support dynamic curriculum planning.

The Learner Module

The learner module integrates two static components (a short-term representation of a learner's
knowledge and a learning trace) and two dynamic components (two Bayesian inferences algorithms
which make it possible to construct the learner's model). The static component content is stored into
text files which are parsed when the learner's interface model is launched. The Bayesian inference
algorithms were adapted from the JavaBayes library (Cozman, 2001). Two other algorithms were
added to complete the inferences. The first additional algorithm is a response parser which processes
each learner's action to ensure it can be read by the Bayesian algorithms. The second additional
algorithm completes the operations associated with the ''Belief updating'' algorithm. Its purpose is to
take into account the previous probability of mastery associated to each skill when computing the new
probability.

Analyzing Learners' Responses

The parser of the learner's answer must detect whether a learner's response is correct. The Bayesian
inference algorithm uses this response characterization as input. The response parser is specific to each
exercise as the evaluation of a learner's response is intrinsically linked to the data of a specific
exercise. This allows preserving the generality and the reusability of the diagnostic inferences by
separating them from the data that is specific to a learning activity. The response parser incorporates
three syntactic processing algorithms each intended to analyze answers to a specific type of question
as defined in the domain module. The first algorithm processes the answers to specific questions,
simply comparing the text representing the learner's answer to each of the expected answers, until a

match is found (pattern matching). The second algorithm processes answers pertaining to
Unification of two predicates. Indeed, learners use a specific interface to perform
unification operations in order to: (1) indicate if it is a (Prolog) success or failure, (2)
the corresponding substitutions in case of a (Prolog) success, (3) the conflicts responsible for
the failure in case of a (Prolog) failure. Using these inputs, the system processes learners'
responses using the answer encoded in the domain module which corresponds to the relevant question.
The third algorithm processes answers related to the proofs of the sub-goals of a goal based
on back-tracking. These answers are also entered using a specific interface where learners
indicate: the predicate (a fact representing a goal or a sub-goal) to which the back
tracking is applied, the fact or the Horn-clause of the knowledge base from which the
search will restart, the sought variable if there are more than one in the predicate. The system
takes this data and processes it in order to compare it with the expected answers encoded in the
domain module. Notice that the identification of partially correct answers is not yet supported.

Updating the Learner Model

In order to complete diagnostic inferences related to the learner's skills, the result of the analyzer is
transmitted and used as evidence in the Bayesian network associated to the domain model. The entry
point of that evidence corresponds to the skill associated with the question whose answer was
analyzed. Belief updating is performed by default whereas Belief revision is triggered only if the
analysis reveals that the learner's answer is incorrect. The original version of Belief updating computes
posterior probabilities of Bayesian Network nodes, without taking into account evidences entered into
that network earlier. Indeed, before updating a learner's probability of mastering a skill, previous
evidence indicating whether the learner has acquired the skill must be considered. A heuristic is
applied to posterior probabilities of a learner's mastery of a skill, every time they are computed, in
order to account for the past probabilities. At the Nth updating of the learner knowledge state, the
following formula is applied to compute the new probability of mastering each skill:

ProbabilityLTAc(ζ)N = [ProbabilityLTAc(ζ)N-1 * (N-1)+ProbabilityCTAc(ζ)N]]/N where:
- ProbabilityLTAc(ζ)N is the long term probability of mastering the skill

ζ at the Nth updating of the learner model.
- ProbabilityCTAc(ζ)N is the short term probability of mastering the skill

ζ at the Nth updating of the learner model.

Such formulas are necessary as the Bayesian network used is not temporally dynamic (Reye,
2004): new Bayesian updates do not take into account previous updates and evidence. These formulas
are used to consider earlier inferences about each skill, through past interactions with the learner: upon
the Nth update, the load of past inferences is considered by multiplying the resulting probability
(ProbabilityLTAc(ζ)N-1) by (N-1). This value is added to the actual inference or posterior probability
(ProbabilityCTAc(ζ)N) before being weighted by the factor representing all the established inferences
(N).

The Communication Module

When learners complete exercises, they communicate with the system through structured graphic
interfaces which makes it possible for them to provide answers to specific questions. Thus, the system
must be able to ask questions and understand learners' answers. Two types of interfaces support the
realization of training exercises: a main interface and a set of secondary interfaces which are launched
only if a specific need comes up. The main interface supports the development of a tutorial dialogue.
The secondary interfaces are customized in order to execute specific operations. For example, Figure 7
depicts a customized interface which allows a learner to articulate a unification operation as a
step towards the proof of a goal using resolution in a Logic Programming exercise.
Figure 5 illustrates the main interface of Prolog-Tutor. The main exercise statement (question) is
printed on the top left-hand side of the main interface. The data that might be used to construct a
solution are printed on the top right-hand side of the main interface. In Figure 4, a Prolog
knowledge base is used by learners to construct the solution to a problem related to the proof
of a goal using resolution in Logic Programming. The bottom part of that interface has
three components. The contents of the tutoring dialogue (tutor's questions, learner's answers) are
printed on the center part. The left and right bottom sections of the interface provide learners with the
tools they need to communicate with the system. This section describes the communicative acts that
evolve in Prolog-Tutor using its main interface.

How Does Prolog-Tutor Initiate Dialogues with Learners?

In order to maintain the focus towards the pedagogical goal of acquiring a skill, the tutor controls the
interaction with learners while they solve exercises. The tutor triggers the dialogue by printing the first
tutorial dialogue question taken from the pedagogical module as explained in the following section.
The tutoring dialogue questions are printed on the bottom center section of the exercise interface
(Figure 4). Each question put forth to the learner is followed by a legend indicating the elements of the
main interface that can be used to provide an answer.

How Can Learners Answer Questions?

Learners answer questions through the commands on the bottom right-hand side of the Prolog-Tutor
main interface. Using the "Direct Answer" command, they formulate specific answers to specific
questions (defined in the domain module). For example, the question "What is the next Horn-clause
relevant for this proof?" is specific and the learner is instructed to type in the answer directly, using
the "Direct Answer" command. Using the "Result" command, they articulate the substitutions
associated with a unification which succeeds by default. Indeed, many questions in
Prolog-Tutor – especially in sub-dialogues – require learners to only compute specific variables
substitutions. The "Result" command loads an interface presenting all of the variables that
should be substituted in a unification operation and which queries learners to enter the
appropriate substitution values. Answering some questions often necessitates other specific
interfaces. In that case, a blue button is appended by the system after printing such questions (see
Figure 7, last question of the tutoring dialogue). Learners use that button in order to answer using
multiple choices forms, specific interfaces supporting the articulation of backtracking operations,

etc. Finally, learners can select the "I do not know" command to indicate that they are unable to answer
a question.

How Does Prolog-Tutor Provide Feedback?

When a learner's answer is correct, the system generates positive feedback and continues the tutoring
dialogue. When an answer is not matched with the predefined set of expected answers, the system
yields negative feedback and provides learners with a possibility to access two explanations: a general
explanation followed by a contextual explanation related to the diagnosed skill. Learners are given the
choice to consult these explanations by using the "Receive Explanation" command (see Figure 4). The
general explanation addresses the default properties of the skill in question. The contextual
explanation describes the use of that skill in the particular context of the sub-problem associated to the
corresponding DQ question. When learners fail to answer correctly, the explanations are not provided
immediately in order to leave them the opportunity to decipher meaning by themselves in the
subsequent sub-dialogues.

How Does Prolog-Tutor Support Mixed-Initiative Dialogues?

Prolog-Tutor must understand a variety of learners' needs besides those identified by the cognitive
diagnosis. Learners can initiate three types of questions to indicate the following facts (Figure 4): that
they do not understand a question (using the "I do not understand…" command), that they do not
know how to use the interface in order to answer a question (using the "How do I answer?" command)
or that they do not understand the rationale behind the question in the context of the current problem
(using the "Why?" command). The system uses the domain module code of the corresponding question
in order to respond to the learner's request, since such queries from learners contain predefined
answers. From a pedagogical perspective, the third type of question is the most important while the
other two could be considered as requests for hints. Indeed, another pedagogical goal of using tutoring
dialogues is to better understand learners, and to have them acquire or hone a skill. It is therefore
important that they always understand the line of reasoning which characterizes the direction of the
tutoring dialogue and its relationship with the exercise currently at hand.

Learners can also visualize the resolution tree associated to the proof that is actually
performed by the learner, using the "Resolution Tree" command on the bottom left-hand side of the
main interface. In that case, the system loads an image which represents that resolution tree.

Finally, learners can examine a representation of the learning domain at any time using the
"Domain Model" command on the bottom right-hand side of Prolog-Tutor main interface (Figure 4).
The system loads a hierarchical representation of the Prolog-Tutor domain in terms of skills and sub-
skills. The icons representing the skills that support answering the current question are emphasized.
Learners can click on an icon associated to a skill to obtain a brief related explanation.

The Pedagogical Module

The pedagogical module uses tutorial dialogues to open learners' reflection towards their own
cognitive states. Consequently, it should integrate structures and processes to manage these dialogues.
This section describes the dialogue maintenance mechanisms enabled to support reflection in Prolog-

Tutor and in ER-Prolog-Tutor. Tutoring dialogues are managed by a three-layered architecture similar
to Zinn, Moore and Core's 3-tier architecture (Zinn, Moore, & Core, 2002):

- The top layer generates a high-level sequential dialogue plan which represents the predefined steps
towards building a solution to an exercise.

- The middle layer supports adaptive planning to adjust the top layer dialogue plans to the current
tutorial context.

- The bottom layer is responsible for generating tutor's utterances; interpreting learners' responses
and establishing their correctness.

These three layers correspond to three levels of interventions: the top layer dialogue plan
integrates Logic Programming skills in a sequential solution building process of an exercise; the
adaptive algorithms of the middle layer modify the top layer sequential dialogue plan using learners'
models, the bottom layer controls dialogue turn-taking in order to manage explicitly reflective
interactions in ER-Prolog-Tutor and mixed-initiative interactions in general.

How Does Prolog-Tutor Generate Tutorial Dialogue Plans for a Solution Building
Process?

The top layer of the dialogue management system has a predefined sequential plan. This plan
represents the flow of the steps that will be initiated in order to build the solution of an exercise. Every
predefined high-level plan has only one type of tutorial action which consists of asking questions to
the learners. These questions are intended to support training on Logic Programming skills while
trying to solve an exercise. Table 4 presents an example of a sequential dialogue plan. For a given
exercise, the top layer uses the corresponding representation of dynamic resources in the domain
model to construct a sequential dialogue plan.

Table 4
A predefined sequential dialogue plan

<predefined-plan id = p1_exercisePL2>
<ask-question n=q1> <skill=identification of the proof></ask-question>
<ask-question n=q2> <skill=use Horn Clause></ask-question>
<ask-question n=q3> <skill = define sub-proofs></ask-question>

</predefined-plan >

How Does Prolog-Tutor Use the Learner Model to Adapt Tutoring Dialogue Plans?

The middle layer of the dialogue management system uses information from the short-term learner
model, from the long-term learner model and from the bottom layer of the dialogue management
architecture to adapt the default sequential plan from the top layer.

The short term model keeps track of the correctness of learners' answers to dialogue questions in
the current training session. When a learner fails to answer the current question correctly, the adaptive
algorithm modifies the predefined dialogue in order to focus reflective thinking on the corresponding
skill. This is supported by inserting sub-dialogues in the predefined plan. When implicit reflection is
enabled, this sub-dialogue articulates the sub-skills of the skill associated to the incorrect question.
When explicit reflection is enabled, the sub-questions prepared for the learner are intended to foster
the components of Dewey's reflection. Once again, the representation of dynamic resources in the

domain model is used to extract the appropriate tutorial utterances for this sub-dialogue. Table 5
presents an example of an adapted plan for implicit reflective thinking on the skill "use a Horn-
clause" for the proof of a goal. In Prolog-Tutor specifically (with implicit reflection), the tutor can
further diagnose which questions should be addressed in a sub-dialogue. A negative evidence is sent to
the Bayesian Network associated with the domain model; the "most-probable-explanation" algorithm
is invoked on the JavaBayes library, the sub-skills which best explain the learner's incorrect answer are
known. Therefore, the system will ask the learner only those sub-dialogue questions which are
associated to a skill identified as one of the most probable explanations of the learner's failure.

The short term learner's model is also used to alter the sequence of the predefined plan. In a given
session, once a learner answers correctly a question associated with a given skill, all the subsequent
questions which require that same skill will be skipped.

Table 5
An adapted dialogue plan using the short term learner's model

<adapted-plan id = p1_exercisePL2>
<ask-question n=q1> <skill=identification of the proof></ask-question>
<ask-question n=q2> <skill=use Horn Clause></ask-question>

<enable-sub-dialogue =p1_exercisePL2.q2.sd> </enable-sub-dialogue>

<ask-question n=q3> <skill = define sub-proofs></ask-question>
</adapted-plan >

The long-term learners' model represents the probability of mastery for each skill considered in
the domain model. This part of learners' models is used to modify the sequential flow of questions
from the top layer of the dialogue plan. This adaptation of the sequential flow consists of skipping
questions whose associated skill is estimated as "probably acquired". A skill is "probably acquired" by
a learner if the associated probability of mastery in his long term model is superior to a predefined
threshold δ. Table 6 illustrates adaptive planning in Prolog-Tutor, based on the long term learner
model. The left-hand side column represents the result of a sequential predefined dialogue plan. The
second column represents the result of an adapted plan. Question T3 is associated with the skill
"understand intuition-of-using-Prolog-Rule". This long-term learner model indicates that the
probability that the learner has mastered that skill is superior to the predefined threshold. Thus, an
adaptive plan drops Question T3 from the predefined sequential dialogue plan. Moreover, the learner
succeeded in answering Question T1, which is associated to the skill "use a Prolog-Rule" and this
information is recorded into the short-term learner model. Question T5 is also associated to that skill.
Since the short term learner's model indicates that this skill is likely to be acquired for the time being,
an adaptive plan also removes Question T5 from the predefined sequential dialogue plan. Thus, the
adapted dialogue plan starts with Question T1 and continues directly with Question T7. However,
there remains a problem since Question T7 is not contextualized anymore (its predecessor questions in
the predefined sequence were dropped). In order to keep it clear for learners, the system should re-
contextualize it as much as necessary, as illustrated in the right-hand side column of Table 6.

Table 6
Adapting a tutoring dialogue using the long term learner's model

Predefined Dialogue Plan Adapted Dialogue plan without
Re-contextualization

Adapted Dialogue Plan with
Re-contextualization

[T1] What is the first element of your knowledge
base that could be used to prove
grand_father(X,john)

[S2] grand_father(X,Y):- father(X,Z), father(Z,Y)

[T1] What is the first element of
your knowledge base which
corresponds to the GOAL to
prove
[S2] grand_father(X,Y):-
father(X,Z), father(Z,Y)

[T1] What is the first element of
your knowledge base which
corresponds to the GOAL to
prove
[S2] grand_father(X,Y):-
father(X,Z), father(Z,Y)

[T7] Solve this sub-goal!
[S4] I do not understand

First Contextualization

[T7] One of your sub-goal has
been identified. Solve this goal!
[S2] I do not understand

[T3] Right. If you use this prolog-rule, what would
you do next?
[S 4] Solve the new goals father(X,Z) and
father(Z,john)
[T5] Ok. What element of the knowledge base would
you use to solve father(X,Z)
[S6] father(valery,john)
[T7] Solve this sub-goal!
[S7] X= Valery, Z=John.
[T8] Right. And what about father(Z,John)
[S8] Z= Stephen
[T8] Not really. The variable Z used in father(X,Z) is
the same as the one used in father (Z,John)
….

Second Contextualization

[T7] You have two sub-goals in
order to complete this proof. The
first is father(X,Z). Solve this
goal!
[S2] I do not understand

Therefore, dialogue plan adaptation requires that a certain number of parameters be
predetermined, which can become a laborious task. Let us consider that the tutorial dialogue just asked
Question I and that according to the learner model information, the following question would be
Question J (with J being equal to I+2). To ensure intelligible questions, the dialogue manager must be
able to link Questions I and J (What happened between both questions?). This bridge requires
predefined expressions to allow summarizing the events that occurred between the introductions of
Question I and J. These contextual bridges make it possible to justify Question J since it did not
directly follow Question I. How many bridges are necessary for a dialogue composed of N questions?
For Question K in the tutorial dialogue, (N-K) links must be anticipated. Thus for all the questions, a
number of contextual links equivalent to ∑i=1,…, (N-1) (N-i) should be anticipated. Moreover, each bridge
may consist of several expressions which incrementally reveal the context of the current question. In
the example shown in Table 5, the bridge between T3 and T7 contained two (2) contextual
expressions. Therefore, if an average of m expressions compose one bridge, this further increases the
amount of contextual links required. For this reason, adaptation algorithms were implemented, but
their exploitation remains potential given the large quantity of information necessary and the fact that
every question is hard-coded in Prolog-Tutor. This issue has been described in a previous work
(Tchetagni & Nkambou, 2006).

How Does Prolog-Tutor Manage Turn-Taking in Reflective and Mixed Initiative
Interactions?

Prolog-Tutor uses a mechanism analogue to a finite state automaton to manage turn taking. The
process is also similar to dialogue games since the intentionality of the tutor interventions have
specific meanings. This approach relates to that of STyLE-OLM as each move indicates what it is
intended to do and who should do it (Dimitrova, 2003). Our perspective differs however since some
moves are intended to explicitly promote reflection; in STyLE-OLM, dialogue moves are intended to
support diagnosis interactions and reflection is considered a side effect of such interactions.

The intentional actions that are supported in the dialogue are represented by the following states:
present-problem-with-statement, trigger-fact-identification, link-fact-to-conditions, link-fact-to-
conclusion which support interactions pertaining to explicit reflection; challenge-on-skill, challenge-
on-sub-skill which support interactions pertaining to higher-level dialogue or to implicit reflection;
ask-how, ask-why, ask-not-understood, help-learner which support mixed-initiative interactions;
answer-question, feedback-to-answer which support all types of interaction.

The turn-taking dynamic is based on a set of rules defining the moves that are allowed between
the states. These moves are applied to execute the tutoring action represented in the middle layer plan.
Every time an action from the middle layer plan is executed, it is then removed from it. For example,
if the first action of the middle-layer plan consists of asking a question, the appropriate question is
fetched from the domain module and passed to the communication module which posts it on the
learner's interface. Then the following moves are allowed only from the learner: answer-question, ask-
how, ask-why, ask-not-understood.

Conclusion

The previous sections describe basic Prolog-Tutor and ER-Prolog-Tutor concepts as well as their
actual implementation. Certain of these elements can be analyzed to study their impact on the intended
pedagogy of the system. The main goal of these tutorial dialogues is to explicitly stimulate reflection
using principles from a theory of reflective thinking. The originality of this contribution is that the
basis of the theory also provides principles likely to serve as landmarks to assess this approach to
promote reflection. ER-Prolog-Tutor was qualitatively evaluated with a group of graduate and
undergraduate students in Computer Sciences at the University of Quebec in Montreal. The remainder
of the paper focuses on this study.

QUALITATIVE STUDY OF ER-PROLOG-TUTOR

This paper shows how metacognition through OLM is enabled in a tutoring system, based on the
fundamental principles of Dewey's theory of reflective thinking. One of the main advantages of such a
principled approach is that a set of formal criteria are naturally available for analysis during an
evaluation. A qualitative study of ER-Prolog-Tutor was performed. Its goal was to examine whether
these dialogues actually caused reflection according to Dewey's perspective. The extent to which the
learners' actions and reactions echo reflective thinking as defined by Dewey was analyzed. Two main
aspects were analyzed: the way in which reflection manifests itself in ER-Prolog-Tutor and whether
this manifestation corresponds to the features of Dewey's theory of reflective thinking. This section

describes a qualitative study addressing explicit reflection in ER-Prolog-Tutor as well as the results
generated.

Methodology: the Think-Aloud Protocol

The events pertaining to reflective thinking are of a cognitive nature. Therefore, studying their
manifestations requires a glance at the internal processes which evolve during reflection. The interest
of this type of study lies in the description, the characterization and the justification of the nature of
some artifacts that are produced in research (Murray, 1993). In that case, qualitative approaches to
evaluation are more appropriate, as they allow investigating a phenomenon in order to explain its
manifestations (Miles & Huberman, 2003). Considering Murray's (1993) classification of qualitative
approaches to ITS evaluation, the current study was designed to observe and qualify a phenomenon. In
this particular case, a group of participants was observed and tape-recorded while they performed an
exercise in ER-Prolog-Tutor. "Think-aloud" protocols are put into practice as a means to externalize
the mental processes which take place while a task unfolds (VanLehn, 1988). In this study, the data
collection was preceded by a three-step process: participant selection, application of the participation
procedure and presentation of the instrument of evaluation.

Participants

A valid characterization of explicit reflection in ER-Prolog-Tutor necessitates that potential
participants know the Prolog language sufficiently well to carry out an exercise with this program. Six
students in Computer Sciences, Educational Sciences and Computational Linguistics took part in the
experimentation with ER-Prolog-Tutor. Participants were recruited by means of an advertisement
indicating the goals and conditions of the experimentation in the Computer Sciences Department of
University of Quebec in Montreal. Prior to the experiment, participants' proficiency with respect to
Prolog was assessed by the experimenter (herself a lecturer in Prolog Programming). Two participants
were undergraduate students in Computer Sciences who had taken an introductory course in Prolog.
They demonstrated abilities to understand and apply Prolog concepts and principles, but they were not
able to use these abilities to model reasoning problems as well as a Prolog expert would. Their mastery
level of Prolog was considered "Excellent"2. Another participant, an undergraduate student in
Computational Linguistics uses Prolog regularly at work as well as in other programs of his own. His
mastery level was assessed as "Expert"3. One participant was a Computer Sciences professional who
had taken an introductory course in Prolog and uses Prolog at work. His mastery level was assessed as
"Expert". One participant was a graduate student in Computer and Cognitive Sciences who had taken
an introductory course in Prolog and experienced Prolog only once in the context of that course. His
mastery level was established as "Good"4. The last participant was a graduate student in Educational
Sciences who used Prolog in his research in Linguistics. His mastery level was established as
"Excellent".

2 Excellent mastery level: Someone who understands the concepts and principles of Prolog and who
automatically knows when and how to use them and how apply them.
3 Expert mastery level: Someone who can use Prolog as a programming tool for an application in an arbitrary
domain where artificial intelligence is necessary: linguistic, medicine, education, etc.
4 Good mastery level: Someone who knows the concepts and principles of Prolog and who may know how to
apply them.

Procedure

The participants were asked to use ER-Prolog-Tutor to realize an exercise related to the proof of a
goal using resolution. The experimentation proceeded in two phases. First a pre-test was
administered to all participants. Second, the pre-test was followed by an interaction with ER-Prolog-
Tutor. The purpose of the pre-test was to assess the participants' mastery level of Prolog language in
the specific case of the proof of a goal based on resolution. The purpose of the actual
interaction with Prolog-Tutor was to externalize the participants' numerous thoughts as they completed
the exercise. Therefore, each participant was requested to think aloud while interacting with ER-
Prolog-Tutor, while their voices were tape-recorded for further analyses. Externalizing one's own
thoughts can be difficult, especially in an individual training context. To provide support to
participants during the think-aloud process, they were given a guide suggesting to (try to) read out
loud each question in the tutoring dialogue, self-explain the goal of each question, express any feeling
of ambiguity with respect to each question, express any fact which – they thought – was related to a
previous question, express any disambiguation, express any reflection about Prolog concepts and
principles, express – as often as possible – awareness of the pedagogical approach associated with the
tutoring dialogue in the system. The recorded sessions of all six participants lasted eight hours.

Instruments

As mentioned earlier, two instances of exercises are actually implemented in ER-Prolog-Tutor. For
this study, the most complex exercise was used. This exercise pertains to the proof of a goal
using resolution which results in a (Prolog) Success, but only after operating a back-
tracking in the Prolog knowledge-base. The main instrument for this evaluation is the tutoring
dialogue of ER-Prolog-Tutor associated to that exercise.

This dialogue comprises a set of questions asked to the learner. Each question in such a dialogue
has two levels of interactions, labeled D1 and D2. Level D1 supports the incremental construction of a
solution to the exercise. It also allows the system to directly diagnose learners' difficulties since the
corresponding question is explicitly associated to a skill. Level D2 is a sub-level of D1 that is triggered
if a learner fails to answer Level D1 correctly. Questions in Level D2 echo the components of
reflective thinking according to Dewey. Their purpose is to stimulate an explicit reflection on the skill
that was diagnosed at the corresponding Level D1. In this particular experiment, four diagnosis
questions were designed at Level D1 of the tutoring dialogue. Each of these four questions contained a
sub-dialogue. All four sub-dialogues comprise a different number of questions to explicitly foster
reflective thinking at Level D2. Table 7 presents the second question at Level D1 (Table 7, Q1) of the
tutoring dialogue used in this experiment and the corresponding sub-questions at Level D2. In the
predefined sub-dialogue corresponding to Q1, three components of reflective thinking are targeted at
Level D2: presentation of a problematic situation (Table 7, Q1.S), intellectualization (Table 7,
Q1.Intellect1, Q1.Intellect2), asserting a conclusion based on reasoning (Table 7, Q1.Assert1). One
notices that in this interpretation of Dewey's theory, four questions were necessary to externalize three
components of reflective thinking. Thus, the number of questions at Level D2 will rely on the
interpretation of Dewey's theory for the specific skill associated to the question at the corresponding
Level D1.

PRESENTATION AND ANALYSIS OF THE RESULTS

According to Miles and Huberman (2003), qualitative data analysis unfolds into three main steps after
data collection: coding, compilation and analysis. This section explains how the gathered data was
coded, compiled and analyzed in order to relate the participants' mental behavior to reflective thinking
as defined by Dewey.

Coding Data

In order to detect some patterns of reflective thinking while the participants answered the D2 level
dialogue questions, the first task consisted of relating each of these questions to a step of reflective
thinking and labeling it accordingly. The second task consisted of analyzing the tapes recorded during
the experiment. A set of codes was established a priori and ad hoc by the authors in an attempt to
characterize some manifestations of Dewey's main stages of reflection.

Table 8 presents an excerpt of the participants' answers to the questions asked by the tutor during
the sub-dialogue presented in Table 7 (the participant is labeled as P_1 in Table 8).

The last column indicates the codes that best represented the nature of the participant's answer,
according to the researchers. In that same column, the codes which appear in italics point to a behavior
that differs from the one that the corresponding dialogue question aimed to promote. According to this
coding, the first participant demonstrated the following behaviors: he directly responded to the
presentation of a problematic situation without any reaction of surprise or confusion (RDC code, Line
Q1.S); he clearly identified the key facts of the problem underlying that situation, even if he had
questioned these facts previously (OBS_Q code, Line Q1.Intellect; OBS_E code, Line Q1.Intellect2);
he provided a final answer to the situation by discussing the facts rather than formally referring to
some domain principle, law, concept or acknowledged heuristic of reasoning (R_Arg code, Line
Q1.Assert). Moreover, other reactions were noticed even if the dialogue questions were not intended
to externalize them. At Line Q1.Intellect (intended to bring out the relevant facts necessary to prove
the goal has_illness(peter,M), a participant stated that "one should verify that the facts
symptom(X,S) and cause(S,M) are both true". This declaration relates to the principle
specifying that "the proof of a goal using a Horn clause consists in the proof of the facts included in
its tail" to the data of the exercise currently in hand. The R_E code is used to label behaviors
indicating that a participant is binding a Prolog principle with the data of the current exercise. In
conclusion, the first participant's recorded information for this sub-dialogue of the experiment was
encoded as [RDC] ➠ [OBS_Q, R_E] ➠ [OBS_E] ➠ [R_App].

Analysis

Analyzing participants' recorded think-aloud conversations has four main goals. Firstly, we would like
to establish the extent to which the tutoring dialogue actually triggered the manifestation of reflective
thinking from Dewey's point of view. Therefore, the recordings of all participants are examined in
order to identify, for each sub-dialogue question, an event which can be interpreted as an occurrence
of the corresponding component of reflection. Secondly, we would like to establish the extent to which
the participants are aware of the tutoring approach (that is to stimulate reflection) within the tutoring
dialogue and how they benefit from this awareness. Therefore, for each sub-dialogue intended to
explicitly stimulate reflection, the recordings are examined in order to identify a reaction indicating

that the participant understands why the system is asking the corresponding questions. Thirdly, we
would like to examine behaviors that emerged from the interaction with ER-Prolog-Tutor while not
predicted by Dewey's theory. Therefore, for each sub-dialogue question, the recordings are examined
in order to identify reactions that do not correspond to the component/step of reflection that it is
supposed to stimulate. Lastly, we would like to relate the impact of the implementation of the tutoring
dialogue in ER-Prolog-Tutor on the stimulation of reflection as perceived by the participants.
Therefore, an informal interview was carried out with each participant. During that period, participants
were given the opportunity to express their personal perception of the tutoring dialogue in ER-Prolog-
Tutor.

Table 7
Evaluation of ER-Prolog-Tutor5 with ER: Sample of a Tutoring Dialogue

Sub-Dialogue
Number

Components of
Reflective
Thinking

D1 Level Questions Code

Let's continue: Could you indicate the first element of
the given knowledge base which can be used for this
proof?

Q1

D2 Level Questions for Explicit Reflection

Situation

The Prolog rule "has_illness(X, M): -
symptom(X, S), cause(S, M)" must be used to
solve the goal corresponding to the Prolog request ?-
has_illness(peter, M). Do you agree?

Q1.S

Intellectualization
The Horn clause "has_illness(X, M):-
symptom(X, S), cause(S, M)" expresses a rule.
Why? Identify its conditions and consequences
respectively.

Q1.Intellect1

Intellectualization

Let's observe the "consequence" in the Horn clause
"has_illness(X, M):- symptom(X, S),
cause(S, M)". Is it unifiable with the goal to
resolve?

Q1.Intellect2

SD1

Reasoning
Could you demonstrate how the two compound terms
have been unified?

Q1.Assert1

Manifestation of Reflective Thinking in ER-Prolog-Tutor

Results from the analysis of the participants' records suggest that the sub-dialogues for explicit
reflection in ER-Prolog-Tutor may catalyze reflective thinking. However, the extent to which the
manifestation of reflection in ER-Prolog-Tutor corresponds to the intrinsic reflective behavior in
Dewey's philosophy remains to be examined in order to characterize the quality of reflection in this

5 The original questions were in French. The questions presented in Table 4 were originally in French.

tutoring system. Therefore, the meaning of the patterns of the encoded thoughts may provide more
insight in to their nature. Table 9 shows the compiled frequencies of occurrence of the defined codes
of behavior associated to each component of Dewey's reflection, from the analysis of the tape records.
These observed codes are presented in a preferential order in Table 9: since they correspond to various
manifestations of each component of reflective thinking, some of them represent these components
more meaningfully. P_i stands for participant number i ,i varying from 1 to 6. In the following section,
proportions are used as evidence to represent the ratio of occurrences of a specific behavior over all
the observed behaviors.

Table 8
Transcribed Excerpt of the First Participant's Record

Question Transcription of P_1's Answers Encoding

Q1
[P_1] The first element may be has_illness(X,M) :-
symptom(X,S), cause(S,M)

Q1.S
[P_1] Oh ! Yes, I agree since has_illness(X,M)… Ah! One
can find it in the knowledge base.

RDC

Q1.Intellect1

[P_1] The consequence of this rule? And its conditions? Its
consequence? Ok, at least the conditions are symptom(X,S)
and the causes (S,M). The consequence? Ah! It is true, one
should verify that symptoms(X,S) and that cause(S,M) are
both true.
[Reads Prolog-Tutor's feedback]
[P_1] I don't understand this.
[Requests an explanation from the system and reads it]
[P_1] Ah! Ok, now I get the meaning of "consequence".

OBS_Q,
R_E

Q1.Intellect2

[P_1] Why is he asking me this question? Hummm... because
unification is a central operation. I think that the proof of the fact
has_illness(X,M) will succeed only if symptoms and causes
are True. So the rule should be unified with the goal. Ok. Yes,
they can be unified.

OBS_E

Q1.Assert1

[P_1] Ok. For the functors. The functors has_illness and
has_illness are identical. The arguments. Ah! We have two
arguments in each term so it's Ok. The variables. I will unify X
with Peter. M is M and we will keep it as is.

R_Arg

Table 9
Dewey's Reflective Behaviors: Frequencies of Occurrences

Number of Occurrences Observed for each
Participant

Total Number of
Times each

Reflection Phase
Was Stimulated

Code of the
Components of

Reflection
P_1 P_2 P_3 P_4 P_5 P_6

Total Number of
Occurrences

Presentation of a problematic/confusing situation 25

HT 0 1 1 0 1 1 4

DAT 0 0 0 0 1 0 14

RDC 4 3 3 4 3 3 20
Intellectualization of a problematic situation 21

OBS_Q 2 0 0 1 1 0 4
OBS_E 2 3 3 1 2 3 143
OBS_R 0 0 0 1 1 1 3

Reasoning to provide a solution to a problematic situation 49
R_Pr 1 0 0 1 0 1 3
R_E 2 3 2 1 1 2 11
R_App 3 5 5 5 5 5 28
R_V 0 0 0 1 0 0 1
R_Arg 1 1 0 1 0 1 4

6

R_0 0 0 1 0 1 0 2
Patterns of reasoning (Co-occurring codes for reasoning behavior) 21

[R_Pr, R_App] 1 0 0 1 0 0 2
[R_E, R_App] 2 3 2 1 1 2 11
[R_Pr,R_E, R_App] 1 0 0 0 0 0 1

Not Applicable

Other combinations 2 1 1 1 1 1 7
LEGEND
Code Meaning

HT
• Hesitation and interrogation before answering the question
• Interrogation about the goal of a tutoring dialogue question

DAT • Disagreement with an assertion from the ER-Prolog-Tutor when asking a question
RDC • Direct response to a tutoring dialogue question (no hesitation, no questioning)

OBS_Q
• Self-questioning about the relevant information related to the question asked: facts of the problem,

conditions, and prerequisites for the use or the application of a domain law/principle

OBS_E
• Stating of relevant information on the question asked which is generally the information necessary to build

an answer to the question
OBS_R • Restating a question that has been asked
R_Pr • Evocating a principle, a law, a heuristic, a concept to answer a question

R_E
• Explanation of the application: a domain principle, a law, a heuristic, a concept to answer a question:

relating the intellectualized facts (determined in a phase of intellectualization) to the prerequisite of the
principle, of the law, of the heuristic, of the concept

R_App
• Direct use or application of a principle, a law, a heuristic, a concept to answer a question: formulating the

answer by only evoking the intellectualized facts
R_V • Indicating that the premises or implications of a domain principle, a law, a heuristic, a concept are violated

R_Arg
• Formulation of an answer on the basis of a general argumentation without a formal reference to a domain

principle, a law, a heuristic, a concept to answer a question
R_0 • Evocating a principle, a law, a heuristic, a concept to answer a question

1. Presentation of a Problematic Situation

As far as the presentation of a problematic situation is concerned, 25 instances of behaviors were
encoded in the analysis of the (transcribed) participants' answers to all questions intended to present a
problematic and a confusing situation. In Table 9, a direct answer of the participants (RDC code) was
encoded 20 times from a total of 25 encoded behaviors (4/5 or a ratio of 0.8). Table 9 also shows that
4 of 25 behaviors (a ratio of 0.16) were encoded as manifesting a participant's disagreement with the
way in which the tutor presented a situation (code DAT). Moreover, 1 of 25 behaviors (a ratio of 0.04)
was encoded as a manifestation of a hesitation from the participant (code HT) before answering.
Thus, there was very little evidence that these situations caused confusion or a controversy, as these
behaviors are desirable from the outset of reflection, according to Dewey's theory. This can be
explained by two hypotheses. Firstly, the level of complexity of the skills targeted – precisely those
skills that are related to the proof of a goal using resolution – may appear to be easily handled
given the relatively advanced mastery levels of the participants. Secondly, the nature of the skills
related to the proof of a goal using resolution is either conceptual or procedural. These skills
are generally enabled in well structured problems contexts. Therefore, it would be difficult to define a
really problematic/unusual situation in exercises related to this task. In order to solve this question,
two main suggestions were proposed by the participants during their debriefing. First, they suggested
applying this view of reflection in a domain that is more complex than Logic, richer in contents and in
potential real world applications. Likewise, the evaluation of ER-Prolog-Tutor with novices in Logic
Programming would also be relevant. Thus, it was also suggested to diversify the ways in which the
questions are presented in the tutoring dialogues of ER-Prolog-Tutor at Level D2. For example, a
participant noticed that even when targeting basic skills, presenting the solution of an exercise and
asking learners to build a reasoning process for that solution may be more likely to create confusion
than if questions are asked in a classic way.

2. Intellectualization Phase of Reflective Thinking

Concerning the intellectualization of the situations presented to the participants, a total of 21 behaviors
were encoded in the analysis of the (transcribed) participants' answers. Most of the dialogue questions
targeting key information in these situations achieved their goal. In Table 9, 14 of 21 behaviors (a ratio
of 0.67) were encoded as manifesting an effective identification of relevant facts of these problematic
situations (code OBS_E). As well, 4 of 21 behaviors (a ratio of 0.19) were encoded as manifesting
participants' interrogations about these facts (code OBS_Q). Finally, in 3 of 21 behaviors (a ratio of
0.14) participants repeated the current question or previous questions in order to get a better grasp of
these facts (code OBS_R).While these ratios indicate that the corresponding sub-dialogue questions
enabled a real intellectualization, we believe that this intellectualization is useful for learners only if
they are aware of its purpose with respect to the problematic situation stated earlier. In fact, during the
8 hours of recording, the intellectualization questions appeared too explicit. Participants almost always
wondered about the goal of the system in asking those questions. Thus, these questions were so
centered on the significant facts of the problem that in certain cases, the participants may not have
been able to connect them to the main, upper level purpose of the exercise. The next section on
"Awareness of Reflective Thinking" addresses the topic of reflection awareness during tutoring
dialogues.

3. Reasoning Phase of Reflective Thinking

For the reasoning phase, the participants' reactions to questions aimed at formulating an answer to a
problematic situation on the basis of a concept, a principle, a law, or an acknowledged heuristic in the
domain were sought. A total of 49 such behaviors were encoded. According to Table 9: 3 of 49
behaviors (a ratio of 0.061) were encoded as the enunciation of a Prolog principle, law or heuristic
(code R_Pr); 11 of 49 behaviors (a ratio of 0.22) were encoded as a binding of that principle (concept,
law or heuristic) to relevant facts of the current exercise (code R_E); 28 of 49 behaviors (a ratio of
0.57) were encoded as a direct application of that principle, law or heuristic (R_App code); 1 of 49
behaviors (ratio of 0.02) was encoded as an expression of the fact that the premises or the implications
related to a domain principle, law, heuristic, are violated (code R_V); 4 of 49 behaviors (ratio of
0.081) were encoded as formulations of an answer on the basis of a general argumentation without a
formal reference to a domain principle, a law, a heuristic (code R_Arg); 2 of 49 behaviors (ratio of
0.041) were encoded as direct formulations of an answer without any reference to the intellectualized
facts or to a domain principle, a law, a heuristic, a concept (code R_0). Considered individually, these
ratios are not meaningful from the perspective of Dewey's Theory. Behavior patterns are sought
because they allow the differentiation between the direct application of a principle (or of a law, the use
of a concept or a heuristic) and the direct application of a principle after having clearly stated it and
related it to the facts that have been intellectualized. From the perspective of Dewey's reflection, this
differentiation is significant insofar as the goal is to stimulate founded reasoning. For example,
applying a principle after stating it and relating it to the key points of a situation confirms the
acquisition of three skills: (1) the knowledge of this principle (code R_Pr), (2) the ability to use it
adequately (given the facts associated with the situation, one can recognize that this principle should
be used) and (3) the ability to apply it properly (given the facts associated with the situation, one can
apply the principle in question in order to generate an answer). However, the direct application of a
principle (by directly formulating an answer without relating the facts intellectualized to the principle)
does not allow drawing such a conclusion, since it can simply arise from chance or from compiled
knowledge.

4. Patterns of Behavior in the Reasoning Phase of Reflective Thinking

The last group of codes in Table 9 (patterns of reasoning) presents the co-occurring codes
corresponding to reasoning behaviors. A total of 2 of 49 behaviors (ratio of 0,041) indicate a formal
enunciation of a principle (law, concept or heuristic) before applying to the current question (co-
occurring codes [R_Pr, R_App]). In fact, only 2 of 28 instances (ratio of 0.071) applications of a
principle (law, concept or heuristic) were preceded by a formal enunciation. A total of 11 of 49
behaviors (ratio of 0.22) relate a principle (law, concept or heuristic) pertaining to the situation at
hand, without formally enunciating it (co-occurring codes [R_E, R_App]). Indeed, 11/28 (ratio of
0.39) applications of a principle (law, concept or heuristic) were preceded by making a link between it
and the current question in the tutoring dialogue. A single behavior of 49 (a ratio of 0.02) was encoded
as the application of a principle (law, concept or heuristic) after having related that principle with the
corresponding question in the tutoring dialogue and after its formal enunciation (co-occurring codes
[R_Pr, R_E, R_App]). Thus, one of 28 instances of application of a principle (law, concept or
heuristic) follows its enunciation and its relation with the relevant facts in the current question (ratio of
0.035). This means that 14/28 (a ratio of 0.5) applications of a principle are performed directly without
enunciating it or relating it to the corresponding situation. From our perspective, the ultimate goal of

an authentic reflection process is to reason explicitly (by stating a principle for example) on the basis
of relevant facts. It was thus essential that the participants formally indicate the basis of their answers
(the domain principle, law, concept, or acknowledged heuristic) with respect to the facts that were
identified in the phase of intellectualization, hence the importance of reasoning patterns of the form (in
order of importance): [R_Pr, *], [R_E, *]. The relative majority of the direct applications or uses of
the elements of the domain being learned (for example direct application of a principle without first
stating it) can be explained by the participants' proficiency in Prolog. It is possible that their skills had
reached a certain degree of compilation (Anderson, 1983), which renders the formulation of an answer
automatic, once the key elements of a problem have been identified. Indeed, the think-aloud protocols
reveal that if one is able to identify the key points of a situation and formulate a solution by relating
these points to some domain element, then learners probably master certain skills even if no concept,
law, principle, or heuristic is stated formally.

Awareness of Reflective Thinking

Stimulating learners' reflection is of interest only if they are aware of this, especially when it is
enabled through a tutoring dialogue. Indeed, unless the goal of each dialogue question is understood,
stimulating reflection may be unfruitful as the learner may spend too much time struggling to
understand where the tutor is trying to lead him. In order to understand the extent to which the
participants were aware of the pedagogical approach of the tutoring dialogue, the recordings were
examined to identify the reactions which can reveal the participants' understanding of the reflective
purpose of the sub-dialogues.

First, three main facts were sought as they were considered to attest that a participant understood
the goal of a sub-dialogue: (1) appropriate interpretation of the purpose of a dialogue question or of
the purpose of the pedagogical approach that they perceive through the tutoring dialogue at Level D2
(R_A_BUT code), (2) appropriate interpretation of the purpose of a dialogue question or of the
purpose of the pedagogical approach that he perceives through the tutoring dialogue at Level D2, after
that the experimenter has provided a brief hint in that respect (R_A_BUTExp code) and (3)
inappropriate answer to a question (from the experimenter) regarding the purpose of a dialogue
question or the purpose of the pedagogical approach that they perceive through the tutoring dialogue at
Level D2 (R_NA_BUT code).

Secondly, we tried to identify the moment where participants started to understand the purpose of
the sub-dialogues. This observation is relevant in order to judge the impact of reflection on the training
experience with ER-Prolog-Tutor since reflection is initiated by the system rather than by a learner (a
priori). We believe that fostering this phenomenon is beneficial only when it is carried out
consciously, the learner being conscious of the relevance of each micro-action with respect to the
original main goal of the exercise (solving a problematic situation).

An analysis of the transcribed records reveals that most participants are conscious that the goal of
the system is to lead them to carry out a reflection process on the skills associated to the problem
being solved. Five of six participants appropriately interpreted the goal of each sub-dialogue at Level
D2, at least once (4 behaviors per participants from P_1 to P_3 and 5 behaviors per participants for
P_4 and P_5 were encoded as R_A_BUT; at least 1 R_A_BUT was encoded per sub-dialogue for each
participant). For 4 participants (mastery levels: 2 experts, 1 good, 1 excellent), the experimenter had to
intervene at least once (no more than twice) to help them understand the goal of certain questions in
the sub-dialogues (R_A_BUTExp code). This distribution may be explained by the relatively high

mastery levels of the participants. They may have been confused by the explicit and detailed questions
found in the sub-dialogues. The experimenter's interventions were intentionally vague. They were
limited to asking the participant what he thought was the goal of the current question at Level D2. An
inappropriate interpretation of the goal of the questions in the sub-dialogues of Level D2 (R_NA_BUT
code) was encoded for 3 participants (1 for each mastery level: expert, good, excellent), at least once
and at most twice (by the participant whose mastery level was assessed "good"). Since most of the
participants ended up understanding the goal of each sub-dialogue, this distribution was explained
again by their high proficiency and perhaps by the emphasized explicitness of the corresponding
questions.

Learners must be aware of their reflective process as soon as possible in order to maximize its
benefits. This fact led us to examine the moments at which the participants expressed or demonstrated
their understanding of the pedagogical approach underlying the sub-dialogues of the Level D2. For
each sub-dialogue at Level D2, the question name and number for which a participant's answer
included a reaction suggesting an understanding of the pedagogical approach to stimulate reflection
have been sought (R_A_BUT or R_A_BUTExp codes). The tutoring dialogue of this experiment
comprised 4 questions associated with a D2 Level sub-dialogue:

- The first sub-dialogue comprised 3 questions. All the participants understood its reflective goal
when answering the third question.

- The second sub-dialogue included 4 questions. The first participant understood its reflective
goal at the fourth question while others understood it by the second question (this means that on
average, the reflective goal is understood at the second question).

- The third sub-dialogue contained 2 questions and its goal was understood by all participants
only when they answered the second question.

- The last sub-dialogue involved 3 questions. Two participants understood its goal by the second
(P_4) and first (P_6) questions respectively. The four remaining participants understood the sub-
dialogue only when they reached the third question.

These observations suggest that participants became aware of reflective thinking rather late in the
course of the sub-dialogues. They mostly completed more than half of the sub-dialogues without
understanding the purpose of the sub-dialogue questions. Two characteristics of the sub-dialogues at
Level D2 could explain this fact: its structure and content. Concerning the structure of the tutoring
dialogue, the participants suggested - during the informal interview that followed the experimentation
- to introduce each sub-dialogue at the Level D2 with an explicit description of its goal with respect to
the global goal of the main exercise. Concerning the contents of the tutoring dialogue, the inflated
explicitness of the questions for intellectualization may be an important factor. For example, a re-
examination of Table 9 indicates that participants really intellectualize the problematic situation which
is presented to them in sub-dialogues 14 out of 21 times (code OBS_E: stating relevant information in
the situation associated with the question currently asked; a ratio of 0.67 of all encoded behaviors with
this respect). The intellectualization phase generally occurs in the middle of the reflective process
(Dewey, 1933). Consequently, according to the results above, certain participants intellectualize a
problematic situation without necessarily knowing/understanding the purpose of this
intellectualization (since most of the time, reflection becomes conscious after the middle of the sub-
dialogue). In fact, the corresponding questions are so explicit that they may cause the participants to
focus on them rather than to focus on their relationship with the main, upper level purpose of the
exercise. One way to remedy this weakness of the content of the tutoring dialogue is to encourage

participants to use the "Why?" command more often in the ER-Prolog-Tutor interface. When this
command is used, the system explains the relevance of the current question being asked in the tutoring
dialogue as well as its relationship with the original goal of the main exercise.

Unpredicted Characteristics of Reflection in ER-Prolog-Tutor

Various components of reflective thinking surfaced at unexpected moments in the reflective sub-
dialogues:

- 3 behaviors were encoded as perplexity (code PX, 2 occurrences) and as hesitation (code HT, 1
occurrence) when faced with a specific question intended for intellectualization.

- 18 behaviors were encoded as self questioning about the facts of a situation (code OBS_Q, 8
occurrences), identification of the facts of a situation (code OBS_E, 6 occurrences), repetitions
of the current or of the previous questions (code OBS_R, 4 occurrences). These behaviors were
encoded from answers to several questions which were all intended for stating a grounded
conclusion.

- 20 behaviors were encoded as the enunciation of a principle (code R_Pr, 1 occurrence), the
binding of a principle with relevant facts related to the current question in the sub-dialogue
(code R_E, 5 occurrences), the direct application of a principle (code R_App, 14 occurrences).
These behaviors were encoded from answers to questions which belong to Level D1.

Such manifestations were not foreseen when designing the tutoring dialogue in ER-Prolog-Tutor.
The most frequent of such unexpected manifestations of reflective thinking correspond to
intellectualization and reasoning (respectively 18 and 19 occurrences, compared to 2 occurrences only
for manifestation of confusion after the presentation of a problematic situation). This can be explained
by suggesting that reflective thinking may spontaneously appear in a teaching context centered on an
interrogative interaction with the learner, even if the matter studied is not particularly problematic.
However, explicit reflection should remain a pedagogical goal, in order to make learners articulate
their knowledge, at least to promote a mental analysis of their own cognitive state with respect to a
domain learned.

Impact of the Implementation of ER-Prolog-Tutor on Reflective Thinking

All participants of this ER-Prolog-Tutor study were interviewed after interacting with the system. The
interviews revealed that certain characteristics of the implementation of ER-Prolog-Tutor influenced
their experience and consequently, their perception of the underlying pedagogical approach which
underlies the system. Two such characteristics have the most significant impact: the main
communication interface of the system and the level of complexity of the exercise selected for the
experiment.

Concerning the main interface of ER-Prolog-Tutor, participants suggested making it more
representative of a pedagogy that fosters explicit reflection. Concretely, externalizing a hierarchical
classification of the questions of the tutoring dialogue, as to emphasize the fact that the questions at
Level D2 are sub-questions of questions at Level D1, would be a significant step in that direction.
Likewise, enabling more explicit feedback through an emotional agent for example, would enhance
communication with the learner. The importance of the system feedback stems from the fact that they

could have been used to explain the goal of sub-dialogues (fostering explicit reflection on a skill
diagnosed at the Level D1) without burdening the contents of the interactions.

As for the level of complexity of the exercises used in this experiment, participants indicated that
it would be appropriate for a beginner-level learner in Logical Programming. Participants selected for
this investigation were highly proficient in this field. Thus, they recognized that the main benefit from
their experience is that the pedagogical approach in ER-Prolog-Tutor forced them to articulate their
knowledge, revealing significant elements of the domain that they took for granted or that they thought
were mastered (implicitly), whereas it was not the case.

Summary of the Analysis and Lessons Learned

Results from the analysis of the participants' records suggest that the sub-dialogues for explicit
reflection in ER-Prolog-Tutor may catalyze reflective thinking. However, a certain number of factors
need to be studied further in order to confirm an absolute correspondence between learners' behavior
while interacting with ER-Prolog-Tutor tutoring dialogues and reflection in the perspective of Dewey's
theory.

Concerning the presentation of a problematic situation, there was little evidence that the situations
presented in Prolog-Tutor always induced the targeted cognitive conflict needed to trigger reflection.
This could be explained by the fact that the corresponding questions were not sufficiently problematic
given the participants' level of proficiency in Prolog. Unconventional presentation of questions to
learners (for example, providing an answer to an exercise and asking participants to build the
corresponding reasoning) and higher level questions (which demand using higher level skills such as
analysis, evaluation, creation skills) could promote the presentation of more challenging situations
when introducing an exercise.

The behavior patterns observed for the intellectualization phase reveals that the dialogue
questions reached their intended goals: the participants identified the relevant facts of the problem at
hand. However, in the context of reflection, this explicit identification is useful only if the learner is
aware of its purpose which is, in this case, to obtain an explicit representation of a problematic
situation by isolating relevant facts. We learned that participants intellectualize problematic situations
without necessarily knowing/understanding the purpose of this intellectualization. Questions for
intellectualization appeared so explicit that they may have caused the participants to focus on them
rather than on their relationship with the main, upper level purpose of the exercise. One way to remedy
this weakness of the content of the tutoring dialogue would be to encourage participants to use more
often the "Why?" command in the ER-Prolog-Tutor interface. Another way is to introduce each sub-
dialogue at the Level D2 with an explicit description of its goal with respect to the global goal of the
main exercise.

During the reasoning phase, many observed behaviors correspond to the direct applications or to
the direct uses of the elements of the domain being learned (for example the direct application of a
principle without even stating it). This can be explained by the participants' proficiency in Prolog in
the sense that their mastery level had reached a certain degree of compilation (Anderson, 1983), which
renders the formulation of an answer automatic, once the key elements of a problem have been
identified. The lessons learned from the results of the study pertaining to the presentation of a
problematic situation and to the reasoning phase provide some hints about the variables that could be
considered in a future evaluation of ER-Prolog-Tutor. First of all, such an experimental study should
involve several groups of learners, each group corresponding to a single level of proficiency with

respect to the logic programming skills involved in the study. This approach would allow examining
some hypotheses that may explain or qualify more precisely the results from the current study: (1) the
perception of a problematic situation depends of the complexity of the question which in turn is a
function of the learner's proficiency level (for example, exercises whose purpose is to learn how to
build a knowledge base in Prolog from the description of a real world situation in natural
language); (2) the pattern of reasoning is more articulated with a less proficient learner. Indeed, the
direct application of a domain principle or law was the behavior most frequently observed in the
reasoning phase of this study. An experimental study could settle whether more skilled learners
express less explicitly the reasoning that support their answers and vice-versa for less skilled learners.

Finally, the implementation of ER-Prolog-Tutor may itself contribute to better promote explicit
reflection. Making the goal of ER-Prolog-Tutor more obvious to learners may help them understand
the pedagogical approach of the system, thus favouring an earlier awareness of what is going on. The
learner interface could be enhanced by explicitly labelling the dialogue moves which implement
tutorial tactics that explicitly foster reflection. Along the same line, as pointed out in the previous
section, further work on the implementation of ER-Prolog-Tutor is needed especially for integrating
exercises which require the use of more advanced skills.

Concerning the impact of the implementation of ER-Prolog-Tutor, the lesson learned concerns the
importance of the ergonomic factor and the contents of ER-Prolog-Tutor. Learners' interface in ER-
Prolog-Tutor could be enhanced to support an earlier awareness of the underlying tutoring tactics.
Considering the contents of ER-Prolog-Tutor, the results lead us to consider the integration of
problems or exercises requiring more advanced skills. The more complex an exercise is, the longer it
could take to foster explicit reflection while building a solution. An experimental study could then
examine the extent to which explicit reflection remains pedagogically meaningful and stimulating for
learners no matter how much time is needed to complete the solution to an exercise.

More generally, the analysis presented concerns a study which evolved in an experimental
context. ER-Prolog-Tutor was not used and evaluated in a real world educational setting. Implanting
ER-Prolog-Tutor in such a context would introduce the evaluation of the educational impact or of the
efficiency of fostering explicit reflection. Indeed, the observation of specific reflective behaviors at
unexpected moments in the current study suggest that reflective thinking may spontaneously appear in
an interactive and interrogative pedagogical context, even if the topic of study is not particularly
challenging. A further study should focus on the comparison of the reflection patterns resulting from
implicit and explicit reflection respectively. How could the educational benefits from each approach
be characterized? Is there a significant difference? If so, what are the advantages of each approach? A
long-term experimental study would allow comparing the performance of at least two groups of
learners who would each use either ER-Prolog-Tutor or Prolog-Tutor over a long term period.

Limitations of the Study

The study could be considered a preliminary analysis of ER-Prolog-Tutor that allowed a general
evaluation of its reflective features. Certain aspects remain to be enhanced for a more compelling
evaluation of that system, most of which pertain to the experimental settings.

Many studies point to participants' inability to articulate the reasons behind their actions using a
think-aloud protocol. As explained, the participants in this study received general instructions to help
them articulate the relevant information. In order to obtain further data, in a more reliable manner,
other means for capturing participant's thoughts could be introduced. For example, self-explanation

tools could be used after answering each question in the tutoring dialogue. In a subsequent study,
audio-video recordings of participants interacting with the system could also be introduced as an
additional source of data to substantiate tape recordings.

The codes used to analyze the tape recordings were established ad hoc by the experimenter. In
order to state their validity objectively, encoding procedures in qualitative studies must involve several
coders. A kappa coefficient measure would then be used as an indication of the level of agreement
among the coders, supporting the meaningfulness of the final codes (Carletta, 1996).

The number of participants in this study was obviously small. Further studies are required for
several reasons. First, the limited amount of data in this study prevented us from explaining certain
observations based on the participants' mastery levels since most of them were relatively proficient.
Secondly, the level of difficulty of the exercises in ER-Prolog-Tutor suggests that explicit reflection
would be more helpful for novice logic programmer participants. No systematic difference was
noticed between the participant with a good mastery level and the participants classified as experts.
This may be explained by the fact that for participants with high proficiency in Prolog, ER-Prolog-
Tutor is still useful as a tool to help them articulate their knowledge. Third, the efficiency of
diagnostic algorithms could be observed on the basis of learners' reactions during tutorial dialogues
and during their interactions with concrete representations of their model. A comparative study could
be conducted to measure the effect of the tutorial dialogue contents, by resorting to an expert other
than the author who designed such contents.

These limitations do not invalidate the present study though. This evaluation contributed to
estimating the extent to which reflection happens in ER-Prolog-Tutor. Its results suggest that reflection
may surface in the current implementation of the system; however, a perfect correspondence with
Dewey's reflection remains to be established or at least characterized. We rather consider that the
above limitations provide matter for further studies. The methodology used to evaluate ER-Prolog-
Tutor should be improved, at least by overcoming the shortcomings cited above. Other factors that
indirectly influence the methodology should be examined as well, namely, the validity of the contents
of ER-Prolog-Tutor tutoring dialogues. In this implementation, this validity was assessed by two
lecturers in Logic Programming and by one undergraduate student in Computer Sciences. Building
validity based on a larger set of actors is suitable for a better context of evaluation. A significant
number of participants should be gathered in order to account for the lessons learned from the analysis
above. Overcoming these limitations will allow us to substantiate and complete the conclusions of the
current study.

RELATED WORK

Open learner modeling approaches have received great attention not only because of their
computational advantage, but also because of their potential educational benefits as initiators of
learners' reflection (Self, 1990). Learners' opened models as tools to promote learner reflection-on-
action are used in several ways. In presentation methods, a learner can examine an overview of his
level of mastery on the skills or of his level of coverage of the topics of the domain learned (Bull &
Nghiem, 2002; Cimolino, Kay, & Miller, 2003; Mitrovic & Martin, 2002). The expected reflection
consists of encouraging the learners to recognize their strength and their weaknesses. Reflection also
consists of viewing the model of a peer learner in order to promote collaborative learning (Hansen &
McCalla, 2003). Another method of reflection allows learners to view and edit their models in order to

change their contents (Dimitrova, 2002). In this case, reflection is expected because before changing
the contents of their models, honest learners will have to contemplate their understanding of the
domain. Certain approaches allow learners to modify the contents of their models on the basis of a
negotiation with the system. In this case, learners have to justify the changes that they wish to make to
their models. The arguments used for this justification are a form of reflection since learners will be
increasingly attentive to the elements of the domain that are represented in their models. Besides,
tutoring dialogues as the medium of open learner modeling through reflection-in-action have been
extensively used in ITSs: with natural language processing components as in: Auto-Tutor (Person,
Graesser, Kreuz, Pomeroy, & Group, 2001), Atlas-Andes (Rosé et al., 2001), Geometry-Explanation-
Tutor (Aleven, Popescu, & Koedinger, 2003), and with menu-driven components as in CATO
(Ashley, Desai, & Levine, 2002), Ms. Lindquist (Heffernan & Koedinger, 2002).

ER-Prolog-Tutor supports OLM through reflection-on-action using a presentation approach
similar to (Bull & Nghiem, 2002). However, our method differs from this by suggesting a probability
of mastery of a skill as the subject of reflection, rather than a percentage of wrong and of correct
answers for each concept. In that perspective, ER-Prolog-Tutor opens the contents of learners' models
to foster reflection at a more abstract level, in a way more similar to that of Corbett and Anderson
(1995) and that of Zapata-Rivera and Greer (2003). However, these latter systems do not support the
modification of learners' models content by a formal negotiation with the system, while ER-Prolog-
Tutor does. In our case, that negotiation is enabled by allowing a learner to modify their probability of
mastery by solving an exercise focused on that skill. Another formal approach to negotiating learners'
model contents is supported in STyLE-OLM (Dimitrova, 2002) where during a dialogue with the
system, the learner has to show their mastery level of a concept. While both approaches find their way
to promote reflection-on-action, the rationale of negotiation of learners' model contents in ER-Prolog-
Tutor is to strengthen their commitments to their own assertions since they will have to support them
by performing specific exercises without the help of the system.

The original contribution of this paper carries on its perspective of OLM through reflection-in-
action in ER-Prolog-Tutor. Indeed, two issues pertain to the use of tutoring dialogues to promote
metacognition through reflection have been addressed in this paper. First, they should be conducted in
a coherent manner so that the learner is always aware and focused towards a learning goal or at least,
towards a solution. Second, the reflective activities which emerge from these tutoring dialogues are a
side effect of their interactive nature. There is not always concrete evidence of their occurrence
(Dimitrova, 2003). Indeed these dialogues should not only allow the learner to construct the right
solution to a problem, they should also explicitly elicit the skill which underlies the construction of
that solution (Aleven et al., 2003). Furthermore, enabling metacognition efficiently requires the
explicit modeling and an explicit practice of its elements (Schoenfeld, 1987). None of the tutoring
dialogue based systems mentioned above explicitly consider both of these issues at once. Their
tutoring dialogues allow learners to build the desired answer. However a question remains, "What
happened exactly? Was it assimilation of knowledge, a lucky guess or an explicit insight into the skills
to be learned and used?" Auto-Tutor's tutoring dialogues are based on a formal structure of dialogue
moves which represent several pedagogical tactics, but which structure fails to warrant explicit
reflection on a specific skill. Andes Physics tutor uses knowledge construction dialogues (KCD) to
guide the learner towards a solution (VanLehn et al., 2005). However the nature of what is actually
processed and the manner in which it is processed are integrated into very specific questions
pertaining to a specific skill, traced from a task graph in Andes. Learners' reasoning and learners'
reflection are not explicitly articulated through the system as ER-Prolog-Tutor strives to do. The

Geometry-Explanation-Tutor supports an intuitive approach to explicit reflection in the context of
reflection-on-action: learners self-explain their solution of a geometry problem by describing in their
own words how they have applied a principle. Our approach is more formal as it uses Dewey's theory
of reflection to guide the modeling of tutoring strategies. Learners are given more freedom in
externalizing their reflection process in the former case. ER-Prolog-Tutor carries learners throughout
several phases of reflection. We consider that these two perspectives contribute to fostering reflection
at different levels: Geometry Explanation Tutor approach could be seen as more appropriate to
independent, self-conducted, mature learners; ER-Prolog-Tutor would be more appropriate for novice
and less confident learners. Dimitrova's interactive approach to OLM uses a set of dialogue "moves" to
support learners' interactions with their model (Dimitrova, 2002). These dialogue "moves" represent
communicative acts to stimulate reflection; however, the meaningfulness of these acts is not formally
supported by an appropriate theory or by an underlying logic which is aimed towards an explicit
reflection as in ER-Prolog-Tutor. Ms Lindquist tutoring dialogue reflects tutoring strategies for
representing different approaches in constructing a solution to algebraic problems. While these
approaches are interactive, their link to reflection-in-action is not clearly defined as is the case with
ER-Prolog-Tutor's strategies. MIRA's reflection assistant approaches reflection from a more global
stand-point by supporting the learning of the main metacognitive behaviors: auto-evaluation, self
monitoring, planning (Gama, 2004). These behaviors apply to the global learning process while the
approach presented in this paper is directed towards reflection on a specific task for some specific
types of skills (Gagne's intellectual skills).

Furthermore, a number of empirical studies have investigated reflection in tutoring systems. The
evaluation of the MIRA system was concerned with how learners' metacognition changes as a result of
interacting with a reflection assistant (Gama, 2004). This experimental study differs from the
qualitative study presented in this paper since its goal is to evaluate the benefits of metacognitive
activities on the learning experience. Most importantly, the evaluation of the reflection assistant in
MIRA focuses on generic metacognitive skills (problem understanding and knowledge monitoring,
selection of metacognitive strategies, and evaluation of the learning experience). The evaluation of
ER-Prolog-Tutor concerns the reflection process properly without a link with the corresponding
learning experience. An evaluation involving Andes Physics tutor investigated whether informal
reflection questions led to better conceptual understanding and increased problem-solving ability in
Andes Physics Tutor (Katz, Allbritton, & Connelly, 2003). Our qualitative study investigates whether
questions explicitly aimed at triggering reflection actually do support reflective thinking. While
evidence of reflection may suggest a better conceptual insight and understanding, this question is not
explicitly addressed here. Similarly, Woolf and colleagues evaluated the impact of using a general
platform for inquiry learning to assess learning on participants' reasoning skills: critical thinking skills
and inquiry skills (Woolf et al., 2002). This platform is analogous to the platform of ER-Prolog-Tutor
in that it provides tools to learn by emulating explicitly the phases of a scientific inquiry. However, the
study of that platform does not question the inquiry process as it is the case for reflection in the study
of ER-Prolog-Tutor.

Finally, ER-Prolog-Tutor learners' models are conceived as an overlay built from Bayesian
inferences on the domain model which was designed as a Bayesian Network. Bayesian reasoning is a
relevant approach to support inferences under uncertainty. Combining domain overlays and Bayesian
networks has already been used in learner modeling approaches in ITS. ER-Prolog-Tutor learner
model updates are similar to the approaches of Collins, Greer and Huang (1996) and to that of Martin
and VanLehn (1995). However, the structure of our network is not hierarchical as in the former case.

As well, there is only one type of node in an ER-Prolog-Tutor network which represents all domain
skills (apply a prolog principle, understand a Prolog concept, etc.) while Martin and VanLehn's
network differentiates between several kinds of nodes to represent learners' reasoning and learner's
mental states as accurately as possible for a specific problem. The diagnosis of learners' errors is
similar to the method used by Conati, Gertner and VanLehn (2002) as a heuristic analogous to belief
revision is used in that paper. They also used Bayesian networks to form a prognosis of learners'
reasoning and actions while problem solving. However, in that case, prognosis was intended to
support coached problem solving and in ER-Prolog-Tutor, this pedagogical philosophy is replaced by
the stimulation of reflective thinking.

CONCLUSION

This paper presented two philosophies for making learners aware of their own cognitive state, using
the conceptual features of Prolog-Tutor, an ITS for Logic Programming. The first philosophy
corresponds to OLM based on reflection-on-action where learners consult the contents of their model
in an ITS. The second philosophy is substantiated by OLM based on reflection-in-action. In order to
enhance the quality of learner's interactions with their models (which is reflection-on-action based
OLM), reflection-in-action based OLM is presented as a preliminary stage which allows them to
become aware of the knowledge elements of the domain learned and most importantly, of their
cognitive state with respect to these elements. After a general presentation of Prolog-Tutor, the paper
focused on reflection-in-action based OLM through the introduction of tutoring dialogues that
explicitly promote reflection in that system (ER-Prolog-Tutor). Dewey's components of reflective
thinking were used to define strategies as the goals of questions for reflection: using Drake's analogy
between critical thinking and reflection, we were able to specify these strategies more precisely with
respect to each type of skill found in the Gagne's taxonomy. Based on the goals associated to these
tutorial strategies, the tutorial tactics for explicit reflection were defined according to one type of
Gagne's skills. These tactics were implemented as the contents of questions that are asked in the
explicitly reflective sub-dialogues. As these questions refer to the nature of the skill on which the
learner reflects (as defined by Gagne's taxonomy) and to the nature of reflection (as defined by
Dewey's theory). An advantage of that approach to OLM is that the underlying strategies and tactics
are transferable to other learning domains, as long as these domains' contents are expressed in terms of
skills derived from Gagne's skills taxonomy. ER-Prolog-Tutor dialogues are original as their design is
based on Dewey's theory of reflective thinking, in order to explicitly promote OLM through reflection-
in-action. AIED researchers in artificial intelligence in education have often pointed out that when
tutorial strategies are not based on a specific learning or teaching model, they are difficult to justify, to
select, to reflect upon and to improve (Ford, 1987; Mizoguchi & Bourdeau, 2000). This contribution
proposes an answer to that issue in the context of OLM through reflection-in-action. Another rationale
for the principled approach which characterizes our contribution is that a set of formal criteria are
naturally available for analysis during an evaluation.

A formal qualitative study of ER-Prolog-Tutor was conducted using think-aloud protocols. Four
main points were analyzed: (1) the characterization of the manifestation of Dewey's reflection process
when interacting with its tutoring dialogue for explicit reflection, (2) the importance of being aware of
thinking reflectively while interacting with its tutoring dialogue, (3) a characteristic of reflection that
is not predicted in Dewey's theory of reflection, and (4) the impact of the implementation of ER-

Prolog-Tutor on the benefit of stimulating reflection through it. The participants' think-aloud protocol
recordings enabled the identification of patterns of mental behavior witnessing the occurrence of
reflective thinking according to Dewey. The study shows that the intellectualization and reasoning
components of Dewey's reflection actually took place as in Dewey's philosophy, while the component
related to the presentation of a problematic situation did not really cause confusion to the participants.
The participants' proficiency in Logic Programming was presented as the best explanation for that
observation. The participants ended up understanding the pedagogical purpose of the sub-dialogues of
ER-Prolog-Tutor, although it occurred generally late in the course of each such sub-dialogue. Despite
the formal structure of the sub-dialogues of ER-Prolog-Tutor, reflective thinking did not always
appear according to this model. The interrogative nature of a tutorial interaction may enable a
component of reflection, even if it is not planned in that particular interaction. One of the main
enlightening aspects of the study is that the relevance of reflective thinking may depend on the level of
proficiency by the learner, with respect to the skill to which that reflection relates, as well as the level
of complexity of the training context in which it is held. This introduces two main research questions
namely, how reflective tutoring dialogues (especially those integrated in ER-Prolog-Tutor) could be
improved to foster the awareness of reflection as early as possible, and how reflective thinking could
be explicitly stimulated (based on Dewey's theory) for higher level skills (such as the construction of a
knowledge base in Prolog, given the description of a corresponding situation). These questions
are the main research directions that this evaluation has indicated for future work.

REFERENCES

Aleven, V., Popescu, O., & Koedinger, K. (2003). Towards tutorial dialog to support self-explanation: adding
natural language understanding to a cognitive tutor. In U. Hoppe, F. Verdejo & J. Kay (Eds.) Artificial
Intelligence in Education, Proceedings of the 11th International Conference, AIED2003 (pp. 39-46).
Amsterdam: IOS Press.

Anderson, J. (1983). The Architecture of Cognition. Cambridge, MA: Harvard University Press.
Ashley, K., Desai, R., & Levine, R. (2002). Teaching case-based argumentation concepts using dialectic

arguments vs. didactic explanations. In S. Cerri, G. Gouardères & F. Paraguaçu (Eds.) Intelligent Tutoring
Systems, Proceedings of the 6th International Conference, ITS2002 (pp. 585-595). Berlin: Springer.

Bull, S., & Nghiem, T. (2002). Helping Learners to Understand Themselves with a Learner Model Open to
Students, Peers and Instructors. In P. Brna & V. Dimitrova (Eds.) Intelligent Tutoring Systems. Proceedings
of Workshop on Individual and Group Modelling Methods that Help Learners Understand Themselves (pp.
5-13).

Bull, S., & Pain, H. (1995). Did I say what I think I said, and do you agree with me?: inspecting and questioning
the Student Model. In J. Greer (Ed.) Proceedings of World Conference on Artificial Intelligence in
Education (pp. 501-508). Charlottesville, VA: AACE.

Bull, S., McEvoy, T., & Reid, E. (2003). Learner models to promote reflection in combined desktop PC/Mobile
Intelligent learning environments. In U. Hoppe, F. Verdejo & J. Kay (Eds.) Proceedings of Workshop on
Learner Modelling for Reflection, Supplementary Proceedings of the 11th International Conference,
Volume V, AIED2003, (pp. 199-208).

Carletta, J. (1996). Assessing agreement on classification tasks: the kappa statistic. Computational Linguistics,
22(2), 249-254.

Cimolino, L., Kay, J., & Miller, A. (2003). Incremental Student Modelling and Reflection by Verified Concept
Mapping. In S. Bull, P. Brna & V. Dimitrova (Eds.) Proceedings of Workshop on Learner Modelling for
Reflection, Supplementary Proceedings of the 11th International Conference, Volume V, AIED2003 (pp.
219-227).

Collins, J. A., Greer, J. E., & Huang, S. X. (1996). Adaptive assessment using granularity hierarchies and
bayesian nets. In C. Frasson, G. Gauthier & A. Lesgold (Eds.) Intelligent Tutoring Systems, Proceedings of
the 3rd International Conference, ITS96 (pp. 569-577). Berlin: Springer.

Conati, C., Gertner, A., & VanLehn, K. (2002). Using Bayesian networks to manage uncertainty in student
modeling. User Modeling and User-Adapted Interaction, 12(4), 371-417.

Corbett, A., & Anderson, J. (1995). Knowledge tracing: modeling the acquisition of procedural knowledge. User
Modeling and User-Adapted Interaction, 4, 253-278.

Cozman, F., G. (2001). The JavaBayes system. The ISBA Bulletin, 7(4), 16-21.
Cumming, G., & Self, J. A. (1991). Learner modeling in collaborative intelligent educational systems. In P.

Goodyear (Ed.) Teaching Knowledge and Intelligent Tutoring (pp. 85-104). New Jersey: Ablex Publishing
Corporation Norwood.

Dewey, J. (1933). How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process.
Boston: Heath & Company.

Dimitrova, V. (2002). STyLE-OLM: interactive open learner modeling. International Journal of Artificial
Intelligence in Education, 13, 37-58.

Dimitrova, V. (2003). Diagnostic interactions that promote learner reflection. In S. Bull, P. Brna & V. Dimitrova
(Eds.) Proceedings of Workshop on Learner Modelling for Reflection, Supplementary Proceedings of the
11th International Conference, Volume V, AIED2003 (pp. 228-237).

Drake, A., J. (1976). Teaching Critical Thinking: Analyzing, Learning and Teaching Critical Skills. Danville:
Interstate.

Flavell, J. H. (1979). Metacognition and cognitive monitoring: a new area of cognitive-developmental inquiry.
American Psychologist, 34, 906 - 911.

Ford, L. (1987). Teaching strategies and tactics in intelligent computer aided instruction. Artificial Intelligence
Review, 1(3), 202-215.

Gagne, R. (1992). The Conditions of Learning and Theory of Instruction. New York: Holt, Rinehart & Winston.
Gama, C. (2004). Metacognition in interactive learning environments: the reflection assistant model. In F.

Paraguaçu, J. C. Lester & R. M. Vicari (Eds.) Intelligent Tutoring Systems, Proceedings of the 6th
International Conference, ITS2004 (pp. 668-677). Berlin: Springer.

Hansen, C., & McCalla, G. (2003). Active Open Learner Modelling. In S. Bull, P. Brna & V. Dimitrova (Eds.)
Proceedings of Workshop on Learner Modelling for Reflection, Supplementary Proceedings of the 11th
International Conference, Volume V, AIED2003 (pp. 248-257).

Heffernan, N., & Koedinger, K. (2002). An intelligent tutoring system incorporating a model of an experienced
human tutor. In S. Cerri, G. Gouadères & F. Paraguaçu (Eds.) Intelligent Tutoring Systems, Proceedings of
the 6th International Conference, ITS2002 (pp. 596-608). Berlin: Springer.

Katz, S., Allbritton, D., & Connelly, J. (2003). Tutoring that takes place after a problem has been solved.
International Journal of Artificial Intelligence in Education, 13, 79-116.

Kolb, D. (1984). Experiential Learning: Experience as the Source of Learning and Development. Englewood
Cliffs, NJ: Prentice-Hall Inc.

Lewin, K. (Ed.). (1948). Resolving Social Conflicts: Selected Papers on Group Dynamics. New York: Harper &
Row.

Mann, W., & Thompson, S. (1988). Rhetorical structure theory: toward a functional theory of text organisation.
Text, 8(3), 243-281.

Martin, J., & VanLehn, K. (1995). A bayesian approach to cognitive assessment. In P. Nichols, S. Chipman & R.
L. Brennan (Eds.) Cognitive diagnostic assessment (pp. 141-165). Hillsdale, NJ: Erlbaum.

Mayo, M., & Mitrovic, A. (2001). Optimising ITS Behaviour with Bayesian Networks and Decision Theory.
International Journal of Artificial Intelligence in Education, 12, 124-153.

Miles, M. M., & Huberman, A. M. (2003). Analyse des données qualitatives, traduction de la 2e édition
américaine. Bruxelles: De Boeck.

Mitrovic, A., & Martin, B. (2002). Evaluating the Effects of Open Student Models on Learning. In P. De Bra, P.
Brusilovsky & R. Conejo (Eds.) Adaptive Hypermedia and Adaptive Web-Based Systems (pp. 296-305).
Berlin: Springer-Verlag.

Mizoguchi, R., & Bourdeau, J. (2000). Using Ontological Engineering to Overcome Common AI-ED Problems.
International Journal of Artificial Intelligence in Education, 11, 107-121.

Moser, M., & Moore, J. (1996). Towards a synthesis of two accounts of discourse structure. Computational
Linguistics, 22(3), 410-419.

Murray, T. (1993). Formative qualitative evaluation for "exploratory" ITS research. Journal of Artificial
Intelligence in Education, 4(2/3), 179-207.

Nkambou, R., Frasson, C., & Gauthier, G. (2003). CREAM-Tools: An authoring environment for knowledge
engineering in intelligent tutoring systems. In T. Murray, S. Blessing & S. Ainsworth (Eds.) Authoring
Tools for Advanced Technology Learning Environments: Toward cost-effective adaptive, interactive, and
intelligent educational software (pp. 269-308). Dordrecht: Kluwer Academic Publisher.

Ohlsson, S. (1987). Some principles of intelligent tutoring. In R. W. Lawler & M. Yazdani (Eds.) Learning
Environments and Tutoring Systems (Vol. 1, pp. 203-237). Norwood, New Jersey: Ablex Publishing.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo,
CA.: Morgan Kaufman Publishers.

Person, N., Graesser, A., Kreuz, R., Pomeroy, V., & Group, T. R. (2001). Simulating human tutor dialog moves
in AutoTutor. International Journal of Artificial Intelligence in Education, 12, 23-39.

Reye, J. (2004). Student modeling based on belief networks. International Journal of Artificial Intelligence in
Education, 14, 63-96.

Rosé, P., Jordan, P., Ringenberg, M., Siler, S., VanLehn, K., & Weinstein, A. (2001). Interactive conceptual
tutoring in Atlas-Andes. In J. D. Moore, C. L. Redfield & W. L. Johnson (Eds.) Artificial Intelligence in
Education, Proceedings of the 10th International Conference, AIED2001 (pp. 255-266). Amsterdam: IOS
Press.

Schoenfeld, A. H. (1987). What's all the fuss about metacognition? In A. H. Schoenfeld (Ed.) Cognitive Science
and Mathematics Education (pp. 189-215). Hillsdale: Lawrence Erlbaum Associates.

Schön, D., A. (1983). The Reflective Practitioner. How Professionals Think in Action. London: TempleSmith.
Self, J. (Ed.). (1990). Bypassing the intractable problem of student modelling. Norwood, NJ: Ablex.
Tchetagni, J., & Nkambou, R. (2006). Elaborating the Context of Interactions in a Tutorial Dialog. In R.

Dapoigny & A. Moonis (Eds.) Advances in Applied Artificial Intelligence, 19th International Conference
on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE06 (pp. 848-
858). Berlin: Springer.

Tchetagni, J., & Nkambou, R. (2004). Diagnosing learner errors in a web based environment using the MPE. In
V. Uskov (Ed.) Web Based Education, Proceedings of the 3rd IASTED Conference, WBE2004 (pp. 135-
145). Calgary, Canada: ACTA Press.

Tchetagni, J., Nkambou, R., & Bourdeau, J. (2005). Supporting student reflection in an intelligent tutoring
system for logic programming. In J. Kay, A. Lum & J.-D. Zapata-Rivera (Eds.) Artificial Intelligence in
Education, 12th International Conference, AIED2005, Proceedings of the Workshop on LeMore (pp. 42-
51).

VanLehn, K. (1988). Student modeling. In M. Polson, C. & J. Richardson (Eds.) Foundations of Intelligent
Tutoring Systems (pp. 55-78). Hillsdale: Laurence Erlbaum.

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., et al. (2005). The Andes physics
tutoring system: lessons learned. International Journal of Artificial Intelligence in Education, 15(3), 147-
204.

Vassileva, J., McCalla, G., & Greer, J. (2003). Multi-agent multi-user modelling in I-Help. User Modeling and
User Adapted Interaction, 13(1), 179-210.

Woolf, B., Reid, J., Stillings, N., Bruno, M., Murray, D., Reese, P., et al. (2002). A General Platform for Inquiry
Learning. In S. Cerri, A., G. Gouardères & F. Paraguaçu (Eds.) Intelligent Tutoring Systems, Proceedings
of the 6th International Conference, ITS2002 (pp. 681-697). Berlin: Springer.

Zapata-Rivera, J.-D., & Greer, J. (2003). Analyzing student reflection in the learning game. In S. Bull, P. Brna &
V. Dimitrova (Eds.) Proceedings of Workshop on Learner Modelling for Reflection, Supplementary
Proceedings of the 11th International Conference, Volume V, AIED2003 (pp. 288-298). Amsterdam: IOS
Press.

Zinn, C., Moore, J., & Core, M. (2002). A 3-Tier planning architecture for managing tutorial dialogue.
Intelligent Tutoring Systems, Proceedings of the 6th International Conference (pp. 574-584). Berlin:
Springer.

