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Abstract

Two subdivision schemes with Hermite data on Z are studied. These
schemes use 2 or 7 parameters respectively depending on whether Hermite data
involve only first derivatives or include second derivatives. For a large region
in the parameter space, the schemes are convergent in the space of Schwartz
distributions. The Fourier transform of any interpolating function can be com-
puted through products of matrices of order 2 or 3. The Fourier transform
is related to a specific system of functional equations whose analytic solution
is unique except for a multiplicative constant. The main arguments for these
results come from Paley-Wiener-Schwartz theorem on the characterization of
the Fourier transforms of distributions with compact support and a theorem of
Artzrouni about convergent products of matrices.
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1 Introduction

Hermite interpolatory subdivision schemes have been introduced by Merrien [10, 11]
and Dyn-Levin [5, 6]. These authors studied the C*-convergence of these schemes.
What we would like to do here is to compute the Fourier transform of these inter-
polants and to provide an additional tool for studying these schemes and for gener-
ating functions which are not necessarily of class C! or C?.
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As we will see, it is possible to define the notion of convergence of Hermite in-
terpolatory subdivision schemes in the space of Schwartz distributions. The study
of the convergence of these schemes on the space D(R)' can be done through the
Fourier transform provided that sufficiently general results about convergence of in-
finite products of matrices are available. We came to this approach after previous
works of Deslauriers-Dubuc [3] and of Deslauriers-Dubois-Dubuc [4]. These authors
considered interpolatory subdivision schemes which were not of Hermite type how-
ever. In this situation, the Fourier transform allowed the study of the convergence of
some schemes with the help of products of trigonometrical polynomials (and not of
matrices).

We would like to point out two previous works that use harmonic analysis and
which have points in common with our article. A first analysis has been written by
Hervé [7] about wavelets in two or more dimensions. He did not study convergence
conditions, but he was involved in products of matrices. Another analysis, in sub-
division schemes this time, is due to Kobbelt [8]. He proved a general convergence
criterion for arbitrary interpolatory schemes via discrete Fourier transform (instead
of the Fourier integral transform).

We now summarize the contents of the paper. In Section 2, we study a first
Hermite interpolation scheme on R of a function and its first derivative with data on
Z. This scheme called HS21 depends on two parameters o and 3. We first recall the
conditions which insure C''-convergence on R. Then we evaluate the Fourier transform
of the interpolating functions and we give the first properties. The Paley-Wiener-
Schwartz theorem on the characterization of the Fourier transform of a distribution
with compact support and a convergence theorem of infinite products of matrices
proposed by Artzrouni allow us to conclude to the convergence of the scheme in the
space of distributions D(R)’ for a large region in the parameter space: 3 € (—3,1)
with no restriction on o. Moreover, the Fourier transforms of two basic distributions
in the Hermite subdivision scheme is the unique (except for a multiplicative constant)
analytic solution of a system of two functional equations.

Section 3 is devoted to the study of a second scheme where we interpolate not
only a function and its first derivative but also its second derivative. This scheme
is called HS22 and depends on 7 parameters: (; and oy, 3;,vi, ¢t = 2,3. We prove
analogous properties to the previous scheme depending on the parameters introduced
in the algorithm. In particular, we get a satisfactory convergence in distribution of
the scheme when 3, and v3 € (=3/2,1/2),v3 € (=3/2,1/2), 1+ 202 =72 + 273 =1
and no restriction on as, 3. Most proofs are similar to the previous ones. However,
a few matrix tools must be improved.

2 The Hermite subdivision scheme HS21

We recall Merrien’s construction [10]. We suppose that the function f and its first
derivative p are known on Z. Precisely, we have two sequences {yx, Y} }rez and we
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suppose that f(k) =y, p(k) = y;- We build f and p on Z/2" by induction. At step
n, set h = 1/2" and D, = {x = jh,j € Z}. If a = jh and b = (j + 1)h are two
consecutive points of D,,, we compute f and p at © = (a+b)/2 which is the midpoint
of [a, b] by the formulae:

f(z) M + ah[p(b) — p(a)] 0
plx) = (1- g)f(b) ; f(a) I BP(G) ;p(b)

Hence f and p are defined on D, ;. The construction depends on two parameters o
and 3. When we iterate the process, we define f and p on the set of dyadic numbers
Do, = |JD,, which is dense in R. For some values of the parameters the functions
f and p may be uniformly continuous on D, so that they may be extended to R ;
sometimes we have in addition: p = f’. In these cases the algorithm is said to be C'-
convergent.

If we define UT"L = p((i+1)27") — p(i27")

( 2"(f((+1)27") = f(i27) = (p((i +1)277") + p(i27")) /2 )

it is easy to prove that: U2 = AyUl and U2, = AU} where

1

L 1—

A = < gggﬂ e Hﬁﬁ) > ,&¢ = +1. Then the scheme is C'-convergent if and only
T4 T2

if the generalized spectral radius of {A;,A 1} is < 1. An equivalent condition is

that there exists a matrix norm || - || such that: ||A || < 1,¢ = £1. This result can
be proved by techniques which are described in [11]. Details on generalized spectral
radii can be found in Daubechies-Lagarias [2], but one knows that their evaluation is
difficult or even impossible.

Remark 1: If « = —1/8, f = —1/2, then f is the Hermite interpolating cubic
polynomial between two consecutive integers. When o« = —1/8, f = —1, then f is
the quadratic interpolating spline with knots on Z/2.

2.1 Elementary properties of HS21

We describe some elementary properties of Hermite subdivision schemes. We will use
those properties later. The first one is the linearity of the scheme.

Lemma 1 Let {yk, Yy, Uk, U fhez be 4 sequences. Assume that both pairs (f,p) and
(f p) are built by the subdivision scheme from: f(k) =y, p(k) = y;, f(k) = U,
p(k) = i, then the pair of functions (f + f,p + p) are obtained by the subdivision
scheme from the sequences: {yx + Uk, Yi. + Uy }kez-

Similarly, if ¢ € R, the pair of functions (cf,cp) is obtained by the scheme from
the sequences: {cyk, cyp. trez-

Then we have a second lemma about translation and scale change.



Lemma 2 Let {y, y} }rez be two sequences from which we build the pair of functions
(f,p) by the subdivision scheme with f(k) = yx, p(k) = y,.. If ¢ € Z, then the
pair of functions (f(x + c),p(x + ¢)) is obtained by the scheme from the sequences:

{yk-i-ca y;ngc}kEZ-
The pair of functions (f(x/2),p(x/2)/2) is built from the sequences:

{f(k/2),p(k/2)/2} kez-

There are two basic solutions of our recursive system (1): the first one is the pair
(fo, o) which is solution of (1) with data fo(k) = k0, po(k) = 0,k € Z and the second
one is the pair (fy, p;) which is solution of (1) with data fi(k) = 0,p1(k) = k0, k € Z.
These two pairs are important because with linear combinations of their tranlates we
can get all solutions (f,p) of (1). For any dyadic number z:

oo

) = D0 UM ole — k) + p(k) filx — k)]
e 2)
ple) = D7 [f(k)pole = k) + p(k)pa(w = )]

Notice that both sums are finite as the supports of f;, p;,i = 0,1 lie in the set [—1, 1].
Now, using relation (1) which is applied to the pair of functions

(f(x) = fo(2/2),p(x) = po(x/2)/2) and then to the pair (fi(z/2),p1(x/2)/2), after

evaluations of the functions fo, po, fi,p1 at the half-integers, we obtain a system of

functional equations for fy, po, f1, p1.

folz/2) = Lfolz = 1)+ folz) + 3 folz +1) = FEAlz — 1)+ FEAlz + 1),
po(/2)/2 = gpo(r —1) +po(x) + 3po(w +1) — —Bpl(l"—l)Jrl%pl(xﬂLl)a
file/2) = —afole=1)+afol@e+1)+5file = 1)+ 3fi(@) + Fhe+1),
p(@/2)/2 = —apy(x —1) +apo(x + 1) + §pi(x — 1) + 5pi(2) + i (e + 1),

2.2 Fourier transform of HS21

In this section, we suppose that the system (3) of functional equations is valid not
only whenever x is a dyadic number, but also whenever x is an arbitrary real num-
ber. Moreover we assume that fo, po, f1,p1 € L'(R). Now, we compute the Fourier

transform f of a function f by
:/ fz)e " dz.

Using this Fourier operator on each equation of the system (3), we get:

(58 = v (Bigm ) (38 ) -2sem (RE)- o
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where "
A(€) = ( s+ 2cosé z%ﬂsing )

tasin & i+§cos§

We have two vector equations in (4). To study them, we now look at the product
of matrices:

Po(§) = A(£/2)A(E/4) ... A(€/2"). (5)
Precisely, we look for conditions on the parameters «, 3 to get convergence of the
sequence of matrices P,(£). This convergence should happen for every real or complex

value of £. The study of this sequence for complex values of ¢ is motivated by a
generalization of Paley-Wiener theorem as proposed by Schwartz [12].

Theorem 3 (Schwartz) Let F be a continuous function on the real axis which is
the Fourier transform of a tempered distribution T. The support of T is contained in
[—C, C] if and only if F' may be extended on the complex plane to an entire function
of exponential type < C.

We recall that an entire function F'(2) is of exponential type < C' if

log |F
lim sup o8| F(2)] <C.

To study the convergence of the matrix products P, (), we will need a lemma to
bound the moduli of the elements of P, (£). We will also need a convergence criterion
which has been found by Artzrouni [1].

Lemma 4 Let || - || be a matriz norm on the space of complex matrices of order d,
Cd*d and let A, be a sequence in this space such that ||Ay|| < 1+ e, with e, > 0.
Set Py = 1,P, = P, 1A,,n = 1,2,.... Then ||P,| < eXi=1%% qnd the modulus of

each component of P, is bounded by Ce>k=1% where C is a constant which depends
only on the matriz norm || - ||.

Proof: Since we notice that 1+ ¢, < e°", we get the first result by induction.

Then, for A = (a;;) € C%¢, we choose a new vector norm N(A) = max{|a;|}.
We know that there exists a constant Cy such that for all A € C%*¢ N(A) < Cy||4].
Then we get the second upper bound. O

Theorem 5 (Artzrouni) Let ||-|| be a matriz norm on C 4%, Let M, be a sequence
in C™4 such that for all n € N,||M,|| = 1 and for all m € N the sequence of
matrices My, M, .1 ... M,, n > m converges. If N, is a sequence in C%¢ such that

o.¢]
Z || N, — My, || < oo, then the sequence of matrices N1Ns ... N, converges.

n=1

We are now ready for the main result.



Theorem 6 If —5 < (3 < 3, then for all complex numbers £ the sequence of matrices
P, (&) defined in (5) converges and the convergence is uniform on any bounded domain.
As functions of &, the four components of the limit matriz P(£) are entire functions
of exponential type < 1.

Proof: Let us start by proving that the moduli of all components of P,(z) are
uniformly bounded whenever z € €2, a bounded domain in C.
If A= (a;;)is a matrix in C?*?, we recall that ||A]||« = max;{|a;1|+ |asx|}. Then,
we use Lemma 4 with the matrices A,, = A(z/2") and the sequence
0 = max{0, sup (||A(z/2%) o — 1)].
|z|€eQ
If the components of the matrix A(z) are a;;(z), these functions are analytic at z = 0
with A(0) = < (1) & ) therefore £, = O(1/2") (remembering the hypothesis —5 <
(< 3). Lemma 4 sh%ws that the moduli of all components of the matrices P,(z) are
uniformly bounded whenever z € €.

Now, we prove that for all z € C, the sequence of matrices P,(z) converges. Let
M,, be the sequence of constant matrices M = M, = A(0) and define the sequence
N, = A(z/2"). We know that ||N,, — M,,||c = O(1/2"). Moreover ||M|| = 1 and
with the hypothesis on 3, the sequence M* k > 0 converges. All the hypotheses of
Theorem 5 are satisfied, therefore the sequence P,(z) converges.

As the sequence P,(z) converges to a matrix P(z) and as the moduli of the com-
ponents of the matrices P,(z) are uniformly bounded whenever z € €2, the Lebesgue
dominated convergence theorem and the Cauchy formula give us the proof that all
the components of the matrix P(z) are analytic in z and that the convergence of the
sequence P,(z) to P(z) is uniform on Q.

Finally, let us verify that each element of the matrix P(z) is an entire function of
exponential type. Firstly, there exists a real positive number C' which depends on the
parameters a, 3 such that for all z € C, ||A(2)||sc < Ce/*l. Secondly, we know that
there exists a real positive number M (depending on the parameters again) such that
for all z € C, |z] < 1,||P(2)]]e0 < M.

Let z be a complex number such that 2" < |z] < 2"+
As P(2) = A(2/2)A(z/4) ... A(z/2")P(z/2""), we obtain the bound

n

1P(2)]o0 < [1P(2/2" oo [ TIIAGz/29) 10 < M [[Ce**'] < MCme.
k=1 k=1
log || P(2)]]s0
2|
P(z) are entire functions of exponential type < 1. O
The Paley-Wiener theorem implies the following corollary:

Hence limsup,_,., < 1 and the functions composing the matrix

Corollary 7 Let us assume that —5 < 3 < 3. Then each function composing the
limit matriz P(z) = lim P,(2) is the Fourier transform of a distribution whose support
lies in the interval [—1,1].



2.3 Schwartz distributions associated with the scheme

We will link the computation of Fourier transforms of the previous subsection with the
limit matrix P(£). This link will come from four sequences of Schwartz distributions.
We set

T™ = 2—an,~(m/2 Yooy i = 0,1,
. 1 — . .
UZ( ) == Q_Hsz(m/2 )5771/2”77’:0717

where 0, is the Dirac distribution at point h defined by d0,,(¢) = ¢(h).
Notice that these sums are finite and that the distributions are compactly sup-
ported, the supports of f;, p;;i = 0,1 being in [—1,1].
We evaluate the Fourier transform of these four distributions:
Ti(n) (6) — Ti(”)(efiﬁm), Ui(n) (6) — Ui(n)(efi&n),i _ 0, 1.

Hence using the equalities (3), we verify that two simple inductions link both Fourier
transforms through the matrix A(¢). Indeed,

. 1 .

+1 _ n+1

T00) = g 3 folm/ 22 ) em
m

In this last equation, we substitute to fo(m/2""!) by means of the first equation of

system (3) with x = m/2™ to obtain a first recursion:

T30 () =[5 + 3 cos(STR(E/2) + 7

—B . &
L sin(3)T7(€/2)

Similarly, we can evaluate Tl(n+1)(§) using the third equation of system (3) again
at x = m/2" and we get a second recursion:

1 () = insin($)T3(E/2) + [ + 4 cos(STT(E/2)

Both recursions may be linked in a single vector recursion through the matrix
A(£/2):
T(n—l-l) ¢ T(n) £/2
S | = 2,2 ©)
(3 1 (€/2)
Similarly, with the second and fourth equations of system (3), we obtain a second

vector recursion:
oy ) U3 (€/2)
(K“%a)‘”““”(U@@n> o



and .
) =rre (1) )
( () ) !
()
The vector sequence | 9, @) converges to the first column of the matrix P(§).
1

Theorem 8 If —5 < [ < 3, then each sequence of distributions Ti(n) converges to a
distribution T;, i = 0,1. The vector (Ty(£), Ti(€))T is the first column of the matriz

P(&).

Proof: Let ¢ a C'*°-function with bounded support, we have the inversion formula

d(r) = 3= [ (€)e~¢dE. So for i =0, 1,

T0) = o 3 Fim/2)6(m/2)

= L[ ede)e

2
As n tends to oo, we get lim,,_, Ti(n)(¢) = % fﬁi+1,1(—§)$(§)d§ = T;(9).
((p11(£), p21 (€))7 is the first column of P(£).) Hence Ti(n) converges to T;. From that,
it follows that the Fourier transform Tl(f) is lim,, Ti(n) (&) = pit12(£). O
We are ready to prove that the subdivision scheme is always convergent in the
space of distributions D(R)" whenever —5 < (3 < 3. In the following, we use Schwartz

notation for the translation operator 7, where A is a real number. If ¢ is a function
in C§° and if T is a distribution, then 7,¢(x) = ¢(z — h) and 7,7 (¢) = T(7_19).

Theorem 9 Let us assume that —5 < < 3. If we build the pair (f,p) by the
subdivision scheme (1) from the data {yg, v} }rez, then the sequence of distributions

1 o0
F, = o Z f(m/2")0m on converges to the distribution
m=—00
oo
F= Z [k To + Yy, Tl
k=—00



Proof: Let ¢ be a function in C*° with support in [—N, N], then
F.(¢) = 5 N2 van F(m/2M)¢(m/2™). We use relation (2) to get:

N2™ N+1

PE(G) = > D [uefo(m/2" = k) + ypfi(m/2" = B)](m/2")

= S [fo(m/2") + g fi(m/2")]6(m /2" + k)

= 2" > [Ty + T (1)

k=—N-1

As n tends to infinity, the limit of the sequence Fy,(¢) is

o0

> o + vimTi)(9).

k=—00

O

Theorem 10 If —3 < (3 < 1, then both sequences of distributions Uén), Ul(n) converge
respectively to the distributions T3, T] which are the derivatives of the distributions

Ty, T

Proof: Using both relations (5) and (7), we have:
r(n)
(5 ) -2rvomem (2)
B _onp 1(§)< i=8 sin(¢/2") )
() " L3 cos(€/2")
WO\ Z =B (IO ) 1B GO | oo
) )2 () 2 \ 0"V

Fr(n) n 1—k)
([fo (5)> 52 (0 ( e k>8>+0( max(L, 1)

If |14 4| < 2 which is the hypothesis, then the right member of the last vector equation
tends to the column vector whose components are i£Ty(€),i€T1(€). They are the two

respective limits of the sequences Ué") (€), Uén) (€). Using the inverse Fourier transform

on each sequence, it is clear that Uén), Ul(") converge respectively to the distributions
T8,T7. O



Theorem 11 Let us assume that —3 < 3 < 1. If we build the pair (f,p) by the

subdivision scheme (1) from the data {yx, Y trez, then the sequence of distributions
1 o0

G, =— Z p(m/2")0p on converges to the distribution

m=—0oo

G= > [wnTy+yimTi).

k=—o00

Proof: The proof is similar to that of Theorem 9. O

We conclude this subsection by a comment of the referee. It is amazing that there
is no restriction on the parameter a in Theorems 8-11. We think that this is typical
of convergence in distribution and that for some values of a, C*-convergence will not
happen.

2.4 A characterization of Fourier transforms TO,TI

In this subsection, we characterize the pair of functions Ty(€),T1(€) without using
infinite iteration of the subdivision scheme for two systems of initial data.

Theorem 12 If —5 < 3 < 3, then (Tg(f),ﬂ(g) is the unique pair of analytic func-
tions (o(&), #1(£)) which is a solution of the vector equation

?o(2) ) _ $o(¢)
(e ) =40 (18 ) 1o
and which satisfies ¢o(0) = 1.

Proof: Under the hypothesis —5 < 3 < 3, we know that the sequence of matrices
P,(&) converges. The limit P satisfies the equation P(2£) = P(§)A(§) as it can be
seen from Equation (5). By Theorem 8, (Ty(€),T1(€))T is the first column of the
matrix P(€), it follows that ¢o(€) = Tp(€), ¢1(€) = Ti(€) provide a solution to the
system of equations (10). Moreover we have (Vn € N)To(n) (0) =1, hence ¢(0) = 1.

Let (o, ¢1) be a pair of analytic functions solution of (10) and such that ¢,(0) = 1.
By setting £ = 0 in equation (10), we have that ¢;(0) = 0 (because  # 3). We ex-
pand the functions ¢o(&), ¢1(§) and the components a;;(§) of the matrix A(§) in power
series of &:
Do) = Lo 867", 41(6) = it $17E", ayy(€) = Yoo g aiyén.
Then we substitute these expansions in system (10). We develop the products and
we reorganize the result in terms of powers of £&. We use the hypothesis
?0(0) = 1,$1(0) = 0 to compute the Maclaurin series of the functions ¢, ¢; recur-
sively, for n =1,2,3,.. .

2 n
o= QD e df)/(2" — au(0)),i=1,2 (11)

j=1 k=1
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Notice that a1,(0) = 1,a92(0) = (1 + 3)/4. Therefore ¢y and ¢, are uniquely deter-
mined and are respectively Ty and T;. O

Remark 2: In this last theorem, the analyticity hypothesis on the functions ¢, ¢; is
critical. If one uses the continuity hypothesis combined with the values of ¢4(0), ¢1(0)
one does not have a unique solution of system (10). Kuczma proved in a general way
in his book ([9], p. 245, Theorem 12.1), that the set of solutions of a system of type
(10) depends on an arbitrary function.

3 The Hermite subdivision scheme H 522

We will see how we can generalize the previous results to the scheme H S22 which is
based on bisections that use not only the values of a function and of its first derivative
but also the values of its second derivative. We recall Merrien’s construction [11]. If
the values of a function f, and of its first and second derivative p, s are known on 7Z,
we build the functions f,p and s by a recursion on n as in the previous section. If
a=7/2" and b = (j 4+ 1)/2™ are two successive points of D,,, we compute f,p and s
at the midpoint © = (a + b)/2 by the formulae:

Fl@) = 1/20/(8) + ()] + ashlp(b) — p(a)] + ash?[s() + 5(a)
o) = BT goa) + o) + Bahls() - s(a)] (12)

h
st@) = PP )+ (o)

The algorithm is said to be C*-convergent if, for any data {yx, ¥}, y§ }rez, the three
functions f,p, s can be extended from D, to R with f € C*(R), p = f" and s = f".
The second author found a necessary condition to get C%-convergence (Proposition 3
in [11]):

8ay + 16a3 = —1, 0, + 205 = 1,7 + 273 = 1.

We will find again the last two conditions later in the convergence theorems in the
space of distributions. If these conditions are satisfied, then the algorithm depends
only on 4 parameters: «s, 31, 33 and 7s.

As for HS21, with this necessary hypothesis, a necessary and sufficient condition
to get C*-convergence is p(X) < 1 where ¥ = {A;, A ;} and

% £Y2 0

A= e(3+28,-2) 1-2 e26 | ,e+1.
148 -8 e(ltda+2) 2-5

An equivalent condition is that there exists a matrix norm ||-|| such that: [|A.|] < 1, = £1.

The proof of this result is given in [11].

Remark 3: For some values of the parameters, the function f on each interval
[k, k + 1],k € Z is a usual polynomial or a piecewise polynomial. For example:
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1. g =—5/32,a3 =1/64, 6, = 15/8, s = —7/16, 5 = 1/32, 7y, = 3/2,
v3 = —1/4, then f is the Hermite interpolating quintic polynomial on each
interval [k, k + 1],k € Z,

2. ap = _23/1447 Q3 = 5/2887 61 = 9/47 52 = _5/87 63 = 1/167 Y2 = 3/27
v3 = —1/4, then f is the cubic spline with knots at Z/3,

3. ap = =5/32, a3 = 1/64,0) = 2,0, = —1/2, 83 = 1/24,v, = 3/2,v3 = —1/4,
then f is the quartic spline with knots at Z/2.

3.1 Elementary properties of H522

Of course, we have lemmas equivalent to Lemma 1 and 2 on linearity, translation and
scale change for the scheme H S22 ; they are not written again.

As for HS21, we introduce three basic solutions for the recursive system (12):
the triples f;, p;, s;,7 = 0,1, 2 which are solutions of (12) with data,

fo(k) = 5k,0;p0(k) =0, So(k) =0,
Vk € Z, fi(k) =0,pi(k) = Ik, s1(k) =0,
fg(k') = 0,p2(1€) = 0, Sz(k) = (Sk,70.

Then, for any construction produced by (12), we have for any dyadic number z:

fx) = Y k) folz — k) +pk) fi(e — k) + s(k) folz — k)] \
p(x) = Y [f(F)polx — k) +p(k)pi(z — k) + s(k)pa(z — k)] 5 (13)
s(r) = Y [f(K)so(@ — k) +p(k)si(x = k) + s(k)sa(x — k)]

From these formulae we can deduce a system of functional equations:

fo(/2) = folx =1)/2+ fo(z) + folz +1)/2 + %[_fl(x — 1)+ fi(z +1)]
fi(@/2) = oof[—folw = 1)+ folz + 1))+ 2 file — 1) + S i) + Zfi(z +1)
+&[=falz = 1) + fo(z + 1)]
f(2/2) = aslfo(z = 1)+ folw + D]+ Z[ fi(z — 1) + fi(z + 1)]
+ R fole — 1) + 1 fola) + B oz + 1)

and similar equations in terms of p; and s; (cf (3)).
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3.2 Fourier transform of H S22

When the Fourier operator is applied to each equation of the system (14) and to
similar equations for p;, s;, we obtain

G W2\ { pole) PolE/2)

M© | =ae | mEm | n© | =2 | weEr .

f2(§) f2(£/2) p2(§) p2(£/2)
S0(€) $0(€/2)
51(6) | =4A(E/2) [ 51(€/2) ], (15)
$2(€) $2(£/2)

where
%—i—%cosg i%sinf 0
A(€) = iopsiné  }+ %cosg i sin €
a3 cos & i%sinf £+ 2 cos¢

Therefore, again, we will have to study the sequence of matrix products:

Bu(§) = A(E/2)A(E/4) - A(£/27). (16)

Using Lemma 4 and Theorem 5, we prove a similar theorem to Theorem 6 and its
corollary. But before that, we must change the matrix norm.

Let © = (01,60,,...,0;) be an element of R? with positive §;. We define a new
norm || - [l on C? by || X|le = max;—1 4(6;|z;]), X € C? It is easy to prove that the
associated matrix norm satisfies [|Alle = max; ) 0;/0;|a;;| whenever A = (a;;) lies
in C94. Obviously if ) = ... = 0; = 1, we obtain the usual norm || ||s.

Theorem 13 If —5/2 < f, < 3/2 and if —=9/2 < 3 < 7/2, then for any complex
number £, the sequence of matrices P,(€) defined in (16) converges and the conver-
gence 1s uniform on any boounded domain. The nine components of the limit matrix
P(&) are entire functions of exponential type < 1.

Proof: We proceed as in Theorem 6 except that on C?, we use the norm || X||e
with © = (1, 1,65) where 65 is chosen small enough to get 0s|as| + |1/8 + v3/4| < 1.
Then it is easy to prove that ||A(2/2")]le < 1+ O(1/2") in the disk |z| < R.

1 0 0

Notice that A(0)=| 0 1+2 0 so that ||A(0)||e = 1 with the above
Q3 0 % + 1_3

condition on #5.
By induction, we prove that
1 0 0
[A(0)]" = 0 (5 +53)" 0 ,n>1,
(R L) B N (R O



1 0 0
therefore, using the hypothesis, this sequence converges to the matrix 0 00
0 0

— a3
l+%_1
We can complete the proof as in the previous section because the hypotheses of The-
orem 5 are satisfied. O

Corollary 14 If —=5/2 < 5 < 3/2 and if —9/2 < 73 < 7/2, then each component
of the limit matriz P(z) = lim P,(z) is the Fourier transform of a distribution with
support in the interval [—1,1].

3.3 Schwartz distributions associated to H522
We introduce 9 sequences of distributions in Schwartz sense:
T = LS fi(m)2) 6, i = 0,1,2,

Uz(n) — 2% Zmpz(m/Qn)(sm/gn,Z =0,1,2,
Vi(n) _ 2% - si(m/2n)5m/2”ai =0,1,2.

When we compute the Fourier transform of these distributions, we obtain:

€ =T e ), U7() = UM (e ), VW () = Vi (e ).

7 )

Then using the equations (14), we may verify that three recursions link these Fourier
transform through the matrix A(&):

Ty () Ty"(€/2) (3 U5 (€/2)
) [ =AE2) | T1ME2) || e | =242 | TVeE2) |
730 (©) 737(¢/2) U3 (€) 03" (¢/2)
V() Vi (€/2)
V) | =4AE/2) | V(g/2) (17)
NG AR
1 (¢) L\ (U 0\ (V%) 0
As | {7 (0) 70 (1 | e (0),wede-
7 (¢) 07\ RN !
duce that

and
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73" (€) 0 Vi (€) 0
UM | =22P) | 1 ], | V™) | =4"R©)| 0 |. (18)
03" (€) 0/ \M© !
Like Theorems 8 and 9 for HS21, we have the two following theorems whose
proofs are similar.

Theorem 15 If —5/2 < 33 < 3/2 and if —9/2 < 3 < 7/2, then the three sequences
of distribAutionsATé"), Tl(n), T converge respectively to the distributions Ty, Ty, Ty. The
vector (Ty(€), Ti(£), To(€))T is the first column of the matriz P(€).

Theorem 16 We suppose that —5/2 < 33 < 3/2 et —9/2 < 3 < 7/2. If we build the
triple (f,p,s) by the subdivision scheme (12) from the data {yx, Yy, Yy trez, then the

1 oo
sequence of distributions F, = o Z f(m/2")d,, 20 converges to the distribution
m=—00
o.¢]
F= Z [k To + v Th + ypmi o).
k=—00

To study the convergence of the sequences Ui(n) and Vi(n),z’ = 0,1,2, we need a
new lemma which gives the convergence of an infinite product of matrices.

1 00
Lemma 17 Let M = | a b 0 | € C33 with |b] < 1,|d| <1 then
0 c d
1 0 0
lim Mt = 5 00
n—-+0oo ac
anaa O 0

Proof: By induction, we obtain that for all n > 2 and b # d

1 0 0

M"™ = a% b 0

ac —b" —d" b —d™ n

ﬂ(11—b - ll—d) g d

and for b = d,

1 0 0

M" = all__b; b" 0

ac(n_l)lzz:(:l)g"71+1 enb™ 1

It is now easy to conclude. O
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Theorem 18 If —3/2 < [y < 1/2 and —3/2 < 3 < 1/2 then both sequences Ui(n)
and V;-("),i =0, 1,2 converge respectively to U; and V.

If we add By + 20, =1, then U; =T],i=0,1,2

Moreover, if we add v + 273 =1, then V; =T/',1 =0,1, 2.

i 2 9
Proof: Let us set t, = Tl(") Ay = Ul(”)  Up = X71(”) . With (17), we
e 9a P
get
1 1/2 + cos(&/2™)/2
tn = Pn_lA(§/2n) 0 = Pn—l iOéZ sm(§/2”)
0 o cos(&/2")
= [1/2+ cos(£/2")/2)tn—1 + ge=rice Sin(£/2™)un_1 + g=r v cos(£/2")vy_1.

Similarly, we obtain:

B fs 1

Up = 252n sin(§/2" )ty -1 + [1/2 + B2 cos(€/2")Jup—1 + 7,52” Sln(f/Qn) — Un—1,
v, = i%Q” sin(€/2™")up 1 + [1/2 + v3 cos(€/2™) v 1.
tn tn—l
These equations can be written in a vector form: U, | =N, | tUp_1 where
Up, Up—1
1/2+cos(§/2")/2  giriassin(E/2")  p=riag cos(E/2")
N, = | i8omsin(¢/2")  1/2+4 Bacos(£/2") Byt sin(€/2")
0 i52"sin(£/2")  1/24y3cos(§/27)
1 0 0
Setting M = i%f 1/2 + B 0 and using the previous lemma and the

0 i€ 1/2 + 73
hypothesis on 3, and 73, we get that the sequence M™ converges.
We choose a matrix norm || - ||@ = (1, 0,,03) with 05 and 05 such that:

05
92|B1§| +11/2 + 32| < 1 then —| §| +[1/2 + 3| < 1.

Now ||M]|le = 1 and ||M — N le = O(1/2™). Using again Theorem 5 we con-
clude that the sequence N,N,_;...N; converges, so that the sequence (t,,u,, v,)T
converges to (¢, u,v)T.

When we reach the limit, then u = i2.6t+(1/2+ Bo)u and v = i 2&u+(1/2+73)v.
2575 and v = i1jz273 &u. By the inverse Fourier transform,

This can be written u = il_ﬁgﬂ

we have the convergence result for Ui(") and Vi(”),i =0,1,2.

16



With the additional hypothesis 6; + 26, = 1, we have u = i£t,
therefore U; =T],i = 0,1, 2.
Finally, if moreover v5 4+ 273 = 1, then v = i€u so that V; =71/ ,i =0,1,2. O
Now we have a last theorem on the convergence of derivatives of distributions as
we had for HS21.

Theorem 19 We suppose that —3/2 < B3 < 1/2,-3/2 < 3 < 1/2 and (y + 20, =
1,72+ 2v3 = 1. If we build the triple (f,p,s) by the subdivision scheme (12) from the

1
data {Yk, Yi, Yp trez, then the sequence of distributions G,, = on p(m/2")6pm jon
converges to the distribution G = Z [y Ty + vk DT + yeiTs),
k=—00

1 oo
and the sequence of distributions H, = o Z s(m/2")6m on converges to the dis-

m=—0oQ

tribution H = Z [ykaTél + yLTleﬂ + yZTszﬂ]-

k=—o00

3.4 A characterization of Fourier transforms TO,Tl, T

We characterize the triple of functions ¢;(€) = T;(€),i = 0, 1, 2 without computing all
the subdivision scheme for three triples of initial data.

Theorem 20 If —5/2 < 3> < 3/2 and —9/2 < v3 < 7/2, then (Ty(€), T1(€), T(€)) is
the unique triple of analytic functions (¢o(€), d1(&, P2(€))) which is a solution of the
vector equation

P0(2¢) $o(€)
$1(26) | = A | a(E) |, (19)
$2(2€) $2(€)

and which satisfies ¢o(0) = 1.

Proof: One must first notice that the matrix A(0) is a lower triangular matrix
whose diagonal components are successively 1,1/4 4+ 3/2,1/8 + v3/4. The proof that
(o = To, 1 = T1, ¢2T2)) which is a solution of the vector equation (19) is entirely
similar to that one of Theorem 12. By setting £ = 0 in Equation (19),we also remark
that (75(0),71(0)71(0))7 is a column eigenvector for the eigenvalue 1 of the matrix
A(0).

Now, let (¢o, ¢1, P2) be a triple of analytic functions solution of (19) and such that
¢0(0) = 1. As in Theorem 12, we expand the functions ¢y, ¢1, ¢o and the components
of A(§) in power series of :

Bi(€) = 2 oMEm i =1,2,3; A() = 100, €n A,
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When we substitute 0 to £ in equation (19), we obtain that (¢o(0), ¢1(0), ¢2(0))”
is a column eigenvector for the eigenvalue 1 of the matrix A(0). Since A(0) is trian-
gular with only one 1 on its main diagonal, this eigenvector is unique when its first
component is 1. Hence ¢;(0) = Ti(O),i = 0,1,2. By replacing ¢; with their powers
series in the system (19), by developing the products and reorganizing the results in
terms of powers of £, we obtain the series of equations depending on n =1,2,3,...:

d)(()n) " ¢gn—]]:)

2o [ =D oA o | (20)
d)(n) k=0 ¢(n—k)
2 2

Since for all n > 0, the matrix 2] — A(0) has an inverse, all the components in
the expansions of ¢En),i = 0,1, 2 are uniquely determined. Hence ¢; = Tz-,i =0,1,2.
(I

4 Conclusion

We defined the notion of convergence in distribution of Hermite subdivision schemes
and we studied two classes of subdivision schemes for their convergence. For each
class, we were able to find a large region of the parameter space for which distribu-
tional convergence happens. Is it possible to enlarge the region for which convergence
in distribution will be verified? More generally, is it possible to find simple necessary
and sufficient conditions for distributional convergence for any Hermite subdivision
scheme?

After defining Hermite subdivision schemes on the space of distributions, one
may think of many other questions. One of these is the following. In the scheme
HS11, can one characterize the largest region of the parameters «, 3 such that for
the corresponding Fourier transforms T, 71, [+ E)|Ti(6)PdE < o0,i = 0,17
This characterization would be useful to specifying all interpolating functions f of
the scheme such that f and f" are in L*(R).
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