The LitOLAP Project: Data Warehousing with Literature

Owen Kaser, Steven Keith* Daniel Lemire
UNB Saint John UQAM
owen@Qunbsj.ca, n7sh4@Qunb.ca lemire@acm.org

September 11, 2006

Keywords: on-line analytical processing, data warehouse, stylometrics, analogies

Abstract

The litOLAP project seeks to apply the Business Intelligence techniques of Data Ware-
housing and OLAP to the domain of text processing (specifically, computer-aided literary
studies). A literary data warehouse is similar to a conventional corpus, but its data is stored
and organized in multidimensional cubes, in order to promote efficient end-user queries. An
initial implementation exists for litOLAP, and emphasis has been placed on cube-storage
methods and caching intermediate results for reuse. Work continues on improving the query
engine, the ETL process, and the user interfaces.

1 Introduction

Computer-aided tools can enhance literary studies [I1], [12], and the litOLAP system aims to
support such studies by adapting the well-developed techniques of data warehousing (DW) and
on-line analytical processing (OLAP) [2]. These techniques are widely used to support business
decision making. DW involves assembling data from various sources, putting it into a common
format with consistent semantics, and storing it as multidimensional cubes to enable OLAP or
data mining. OLAP techniques enable user-guided browsing of multidimensional and aggregate
data. A business DW might integrate a merged company’s inventory and sales transactional data
over several decades, and its typical OLAP operations could include “rolling up” (i.e., “zooming
out”) from dates-by-week to dates-by-year or imposing range conditions (e.g., “omit 1983-1988
Manitoba data”). OLAP is for domain specialists, not IT professionals: the motto is “disks are
cheap, analysts are expensive.”

Building a DW over literary data (see Figure differs from creating a corpus or digital
library. The Extract-Transform-Load (ETL) stage retains only that information required to build
the ordained DW cubes. Thus the DW schema constrains the possible analyses, but anticipated
classes of queries can be fast. Dimensional hierarchies control allowable roll-ups, hence they are
crucial. Our Word dimension allows roll-up by stem, suffix, and (several layers of) WordNet [9]

*current affiliation: Innovatia Inc., Saint John, New Brunswick
In CaSTAO06, Fredericton, Canada, October 2006.



War ehouse

b . =7 cubel
Amazon.com web service ample

storage

Collection of texts
(Proj. Gutenberg)

cuben === cube?2

WordNet

Library of Congress

V arious data sources i i

user—driven queries, | cient
,-”" | application (interim)

s (including

User 1 .7 | web server)

User 2 g

Figure 1: Literary DW, with existing portions in boldface.

hypernyms, for instance. (For instance, WordNet hypernyms for “whale” include the category
“vertebrate, craniate”.)

As an example, our AnalogyCube was inspired by Turney and Littman [14]. It records how many
times, when a short sliding window passes over a text, the subsequence word;, joiningWord, words
is seen. For instance, the count for (whale, beneath, waves) is presumably higher in Moby Dick
than in Hamlet. Turney and Littman have mined corpora to discover word-based analogies; via
WordNet’s hypernyms, litOLAP supports exploration of category-based analogies. A fuller moti-
vation for litOLAP, our DW’s schema and some example queries are given elsewhere [5] [6]; this
poster primarily reports progress in implementing litOLAP.

OLAP using our DW can be contrasted with published text analyses that either required
substantial custom programming or had to fit within the narrower range of queries supported by
existing programs [13, 4] We do not believe that the software used for business OLAP can support
several of the literary analogy queries planned. Therefore, litOLAP includes a custom engine (see
Figure [2)) that processes our kinds of queries. End users do not interact directly with the engine,
so the custom query language (which supports the usual OLAP operations: slice, dice, roll-up as
well as some specialized operations) need not be easy to use — it must be fast.

2 Technical Aspects

Figure [2 shows the engine’s major components and technologies. After requesting that the engine
open some “base cubes”, the application formulates queries (XML in Java strings), passes them



Lemur Library (C++) of Storage Methods PostgreSQ
database
B+ tree cube rotated mem-mapped linear—hashing RDBMS cube
(QDBM B+ tree cube array/file cube (libpgxx
based) based)
put() put() put() put() put()
get() get() get() get() get()
rollup() rollup() rollup() rollup() rollup()
slice() slice() slice() slice() slice()
dice() dice() dice() dice() dice()

SWIG interface from C++ to Java/Python/O’Caml

storage

method
chooser

cube and
dimension
cache

metadata

querie

OLAP (XML) Uls

Cube
slice() D - Ul #1
dice() imension (Jython
rollup() rollDim()

glue()
ETL(

Core Engine (Java)

Figure 2: Custom OLAP engine.

to the engine, and eventually receives the results.

Development thus far has emphasized appropriate cube storage plus the pre-computation and
caching of intermediate values. Keith’s thesis [7] describes experiments with the storage methods
shown in Figure 2] There was no overall “best storage method”; rather, many factors affected
whether a particular operation was fast for a particular cube. For example, the B4+ Tree sliced
efficiently only on the first dimension, while the linear-hashing cube was able to slice equally well
on all dimensions. The storage-method chooser evaluates the properties of a cube (size, density,
number of dimensions, etc.) and will eventually use predictions of the expected operations’ fre-
quencies. (AnalogyCube is regularly sliced, for instance.) Its goal is selecting the most appropriate
storage method when a cube is created.

Intermediate cubes and dimensions are calculated during query processing. Earlier, a particular
subexpression may have been computed and the resultant intermediate cube may still be cached,
speeding up the query. Deciding which intermediate values to save (and also which possibly useful
intermediate values to precompute speculatively) is the well-studied materialized-view problem for
databases [3, [I]. Automatic rewriting of queries to use cached intermediates is hard and remains
to be added to the expression evaluator.

3 Status

Currently, the custom engine can answer a variety of “canned” test queries involving AnalogyCube
or a PhraseCube (similar to word n-grams), and ETL processes the plain-text files on the Project
Gutenberg [10] CD. Near-term enhancements include improving ETL quality, improving the



custom engine’s speed, and constructing a useful Ul so that we can get end-user feedback. Longer
term, the system needs to recognize when switching to specialized data structures(such as suffix
arrays [8]) is advantageous. We believe that the overall idea of applying OLAP to literary data is
promising. The initial custom engine is too slow for production use, but until more optimization
is attempted, its promise is unclear.

References

[1] Rada Chirkova, Alon Y. Halevy, and Dan Suciu. A formal perspective on the view selection
problem. The VLDB Journal, 11(3):216-237, 2002.

[2] E.F. Codd. Providing OLAP (on-line analytical processing) to user-analysis: an I'T mandate.
Technical report, E.F. Codd and Associates, 1993.

[3] Alon Y. Halevy. Answering queries using views: A survey. The VLDB Journal, 10(4):270-294,
2001.

[4] Patrick Joula, John Sofko, and Patrick Brennan. A prototype for authorship attribution
studies. Literary and Linguistic Computing, 21(2):169-178, 2006.

[5] Steven Keith, Owen Kaser, and Daniel Lemire. Analyzing large collections of electronic text
using OLAP. In APICS 2005, October 2005.

[6] Steven Keith, Owen Kaser, and Daniel Lemire. Analyzing large collections of electronic text
using OLAP. Technical Report TR-05-001, UNBSJ CSAS, June 2005.

[7] Steven W. Keith. Efficient storage methods for a literary data warehouse. Master’s thesis,
UNB, 2006.

[8] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches. SIAM
Journal on Computing, 22(5):935-948, 1993.

[9] George A. Miller, Christiane Fellbaum, Randee Tengi, Susanne Wolff, Pamela Wakefield,
Helen Langone, and Benjamin Haskell. Wordnet — a lexical database for the English language.
http://wordnet.princeton.edu/.

[10] Project Gutenberg Literary Archive Foundation. Project Gutenberg. http://www.
gutenberg.org/, 2006.

[11] Stephen Ramsay. Mining Shakespeare. In ACH/ALLC 2005. University of Victoria, June
2005.

[12] Michael Stubbs. Conrad in the computer: examples of quantitative stylistic methods. Lan-
guage and Literature, 2005.

[13] TAPoR Project. TAPoR prototype of text analysis tools. online: http://taporware.
mcmaster.ca/ taporware/betaTools/index.shtml, 2005. last accessed 27 June 2006.

[14] P. D. Turney and M. L. Littman. Corpus-based learning of analogies and semantic relations.

Machine Learning, 60(1-3):251-278, 2005.


http://wordnet.princeton.edu/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://taporware.mcmaster.ca/~taporware/betaTools/index.shtml
http://taporware.mcmaster.ca/~taporware/betaTools/index.shtml

	Introduction
	Technical Aspects
	Status

