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RESUMÉ 

Les travaux récents sur la relation entre la biodiversité et le fonctionnement des 
écosystèmes ont souligné certains des aspects les plus dynamiques du fonctionnement des 
écosystèmes, tout en reconnaissant que la diversité répond à la fois aux variations le long de 
gradients environnementaux et à la dispersion des espèces entre les communautés locales. 
Les définitions de la diversité ont été de plus en plus caractérisés en intégrant la notion de 
traits fonctionnels et ont reconnu la nature flexible de la distribution des traits dans une 
communauté. Les chapitres de cette thèse se concentrent sur des questions liées à la façon 
dont la distribution des traits de la communauté est définis, comment ils peuvent informer les 
écologistes sur les processus associés à l'assemblage de la communauté, comment la 
composition des communautés pourrait changer sous différentes ampleurs de dispersion, et 
comment la fonctionnalité pourrait interagir avec la disponibilité des éléments nutritifs pour 
influencer le fonctionnement global de la communauté. Chaque chapitre va présenter l'un de 
ces thèmes dans les communautés zoo- et phytoplanctonique, qui emploient des analyses des 
données déjà recueillies, études de terrain et des expériences contrôlées en mésocosme. Les 
objectifs de cette thèse spécifiques sont: (1) de comparer les différentes mesures de la 
diversité (taxonomique et fonctionnelle) dans leur capacité de rendre compte de la biomasse 
dans les communautés de diatomées benthiques et planctoniques, (2) d'identifier un seuil de 
dispersion, au-delà duquel différentes communautés de zooplancton pourrait commencer à 
homogénéiser la composition, (3) de mieux comprendre les communautés de zooplancton 
naturelles en focusant sur les modèles de distribution dans les traits fonctionnels pour 
examiner les signes de filtrage ou de de compétition dans l'habitat en tant que facteurs 
influençant la structure de la communauté, et (4) de vérifier si la diversité fonctionnelle et la 
disponibilité des nutriments interagissent dans la production phytoplanctonique. En général, 
les mesures fonctionnelles de la diversité n'ont pas été surutilisées pour les mesures 
taxonomiques afin de modéliser le fonctionnement des écosystèmes, ils ont souvent permis 
de mieux comprendre les mécanismes qui sous-tendent les relations de l'importance. En 
outre, les processus de dispersion et les interactions locales ont tous deux été jugés influents 
dans la structure des communautés de zooplancton. La dispersion expérimentale de plus de 
1% a été jugée suffisante pour ouvrir une homogénéisation de la composition, et, sur le 
terrain, les filtres rel iés à J'habitat onl été jugés plus influents que la compétition dans la 
définition de la diversité fonctionnelle du zooplancton. Finalement, aucune preuve 
n'implique la diversité fonctionnelle alguale comme étant un moteur important de la 
production primaire, ce qui suggère une redondance fonctionnelle qui pourrait définir les 
communautés phytoplanctoniques à des niveaux modestes de la richesse des espèces. 

Mots clés: diversité fonctionnelle, fonctionnement des écosystèmes, zooplancton, 
phytoplancton, dispersion 



SUMMARY 

Recent work on the relation between biodiversity and ecosystem functioning has 
emphasized some of the more dynarnic aspects of ecosystem functioning, recognizing that 
diversity responds both responds ta changes along environmental gradients and to the 
dispersal of species between local communities. Definitions of diversity have also 
increasingly been characterized with respect to key functional traits, and have acknowledged 
the flexible nature of community trait distributions. The chapters of this thesis focus on 
questions associated with how community trait distributions are best defined, how they might 
inform ecologists on processes associated with community assembly, how community 
composition might change under. different magnitudes of dispersal, and how functional 
diversity might interact with nutrient availability to influence overall community functioning. 
Each chapter will explore one of these themes in freshwater zoo- and phytoplankton 
communities, employing analyses of previously collected data, field studies, and controlled 
mesocosm experiments. Specific objects are to (1) compare different measures of diversity 
(both taxonomie and functional) in their capacity to account or biomass production in benthic 
and planktonic diatom communities, (2) identify a threshold level of dispersal, beyond which 
different zooplankton communities rnight begin to homogenize in composition, (3) 
investigate natural zooplankton communities for dispersion patterns in functional traits to 
look for signais of either habitat filtering or competition as being drivers of community 
structure, and (4) ascertain whether functional diversity and nutrient availability interact in 
driving phytoplankton community production. In general, whi le functional measures of 
diversity were not found to dramatically outperform taxonomic measures in accounting for 
ecosystem functioning, they often allowed for greater insight into mechanisms underlying 
relations of importance. Further, dispersal processes and local interactions were both found to 
be influential in structuring zooplankton communities. Experimental dispersal magnitudes in 
excess of 1% were found to be sufficient to initiate homogenization in composition, and, in 
the field, habitat filters were found to be more influential than competition in defining 
zooplankton functional diversity. Finally, no evidence implicated planktonic algal functional 
diversity as being an important driver of primary production, suggesting functional 
redundancy may define phytoplankton communities at modest levels of species richness. 

Key Words:	 functional diversity, ecosystem functioning, zooplankton, phytoplankton, 
dispersal. 



0.1 

INTRODUCTION
 

Background information 

In recent years, work done on the relation between biodiversity and ecosystem 

functioning has taken on a more expansive perspective, integrating potentially mitigating 

considerations of environmental context and dispersal processes. Such investigations have 

provided insight into how and why community diversity might be important in maintaining 

community processes and functioning. Specifically, more ecologists have begun to advocate 

the use of a trait-based perspective (Diaz & Cabido 2001, Lavorel & Garnier 2002, Norberg 

2004, Petchey et al. 2009), and have acknowledged that community trait distributions are 

maJleable, dependent on both the filtering potential of environmental variables and influxes 

of species dispersing from other localities (Norberg 2004, Leibold et al. 2004). An extension 

to this line ofthinking situates ecological communities within the context of complex 

adaptive systems, wherein ecosystem-level functions are a consequence of both the different 

factors maintaining diversity and of an autonomous selection process, differentiating among 

numerous potential trait distri butions (Norberg 2004). Other current 1ines of research have 

also begun to emphasize the bi-directionality of relations between diversity and community 

productivity, reconciling the historical view of biodiversity as a consequence of productivity 

with the more recent idea that a diverse group of species might more efficiently convert 

resources into new tissue, and act as a driver ofproductivity (Worm & Duffy 2003, Gross & 

Cardinale 2007, Cardinale et al. 2009a, 2009b). The metacommunity concept (reviewed in 

Leibold et al. 2004), which emphasizes how the connectedness of local systems might 

influence community structure, has also prompted more ecologists to consider the importance 

of larger scale processes, and to think about how this kind of connectivity might affect the 

response of communities to changes in environmental conditions. What these different 

frameworks have in common is that they emphasize the dynamic nature of trait distributions 

and ecosystem-level functions, and they evoke several questions that each of the different 

chapters ofthis thesis will address: 
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Chapter 1 How are community trait distributions best defined and quantified? 

Chapter II How influential are dispersal processes in influencing community 
composition? 

Chapter III What local conditions are important in determining community 
structure? 

Chapter IV How might resource avaiJability and functional diversity jointly 
affect ecosystem functioning? 

Chapter 1 is primarily concerned with exploring the question of whether trait-based 

approaches are weil suited for quantifying biodiversity. Specifically, it includes a 

comparison of different measures of functional diversity, comparing them with more 

conventionaUy-used taxonomic measures of diversity to see if functional approaches afford 

any advantage in accounting for ecosystem functioning in freshwater diatom communities. 

Results From this chapter were used to make decisions on how diversity was computed in the 

remaining three chapters. Chapter Il focuses exclusively on dispersal processes in 

zooplankton communities (Leibold & Norberg 2004, Cottenie el al. 2003,2004), and 

describes an experiment used to find a threshold value of dispersal, beyond which 

zooplankton communities begin to converge in structure. For this experiment, local 

environments were standardized among to communities to allow for an exclusive 

exam ination of the intluence of dispersal processes. Com plementing this work, Chapter III 

emphasizes the im portance of environmenta 1 cond itions in driving the functional diversity of 

zooplankton communities. It is comprised of a field study of 54 lakes in the Eastern 

Townships ofsouthern Quebec that spanned a gradient in limnological conditions. The 

primary goal of Chapter III is to look for patterns of functional trait dispersion across these 

lakes, and to use those patterns to make inferences about whether habitat filtering or 

competition might be the primaI)' structuring process in freshwater zooplankton 

communities. Chapter IV represents a return biodiversity-ecosystemfunctioning relations in 

phytoplankton communities, and describes an experiment where functional diversity and 
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nutrient concentrations were manipulated to look for an interaction between the two variables 

in determining phytoplankton community functioning. In this way, Chapter lV allows for an 

examination of both how local conditions can influence functional diversity, and also how the 

presence of multiple functional types might be important for the overall functioning of 

phytoplankton communities. 

The following sections will present some of the foundational work underlying each 

of these four thesis chapters, with an emphasis on the literature associated with both phyto

and zooplankton communities, as they were the model systems used throughout this thesis. 

These introductory sections will be followed by summaries of the methods used and 

approaches taken in exploring these topics. 

0.1.1 Why is functional diversity im portant? 

Functional diversity is a way of describing biodiversity that focuses on the 

morphological, physiological, or behavioural qualities that can be used to differentiate among 

species, depicting both how they respond to environmental variables, and how they 

contribute to ecosystem-leveJ phenomena (Diaz & Cabido 2001, Lavorel & Garnier 2002, 

Naeem & Wright 2003, Hooper et al. 2005, Petchey & Gaston 2006, 2009). ln providing ail 

of this extra ecological information, functional measures of diversity provide a more suitable 

means of discriminating among species than more traditionally used, taxonomically-based, 

measures of diversity like species richness, and have been consistently found to out-perform 

them in direct comparison (Til man et al. 1997, Petchey et al. 2004, Petchey et al. 2009). One 

particular advantage of functional diversity is that its use allows for the simultaneous 

integration of a suite of traits thought to contribute to ecosystem functioning (Diaz & Cabido 

2001, Hooper et al. 2002, Schmid et al. 2002, Walker & Langridge 2002, Naeem & Wright 

2003). Still, even though the traits present in a community are thought to be Jargely what 

determine ecosystem properties (Chapin et al. 1997, Chapin et al. 2000, Norberg 2004, 
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Hooper et al. 2005), there remains general disagreement as to how functional diversity should 

be calculated (Mouillot et al. 2005a, but see Petchey et al. 2009, Poos et al. 2009). 

Some researchers advocate the use of functional group richness, whereby species are 

split into groups based on their traits. The problem with this approach, however, is that it has 

been demonstrated to carry high potential for arbitrary group assignment (see Petchey 2004), 

as it can be difficult to determine how different species must be to necessitate the formation 

of a new group. A more popular recent approach has been the use of distance-based 

measures of functional diversity (Walker et al. 1999, Petchey & Gaston 2002, Mason et al. 

2005, Mouillot et al. 2005, Petchey & Gaston 2006, Podani & Schmera 2006) that measure 

the separation among species in an n-dimensîonal trait space. Specific computational details 

on how species are grouped and how distances are measured differ widely among measures, 

and studies have shown that some of these methodologîcal decisions can significantly impact 

results (see Poos et al. 2009, Petchey et al. 2009). In addition, these measures offunctional 

diversity provide no guidelines for trait selection. There is currently no objective means for 

deciding what traits should be measured and included in a given analysis. Some work has 

demonstrated how changing the number of traits will affect relations between functional and 

taxonomic diversity (Petchey & Gaston 2002, Rosenfeld 2002, Petchey & Gaston 2006), 

where the inclusion ofmore traits will make the relation increasingly linear, but such an 

anatysis will not necessarily help researchers decide which traits to include in a given study. 

Some approaches have advocated computing functional diversity for ail combinations of 

traits, and then testing each novel combination to see which model has greatest explanatory 

power relative to an ecosystem function of interest (see Blackburn et al. 2005), while others 

have used stepwise multiple regression procedures to look for collinearity among traits (see 

Chapter 1), and prescribed elimination for those traits that make no statistical contribution to 

model fit. Perhaps the best advice, however, is to try to ensure that ail selected traits have 

some relevance for the selected ecosystem function. Still, assessing relevance can be 

difficult; and beyond that there is no guarantee that ail of the variables of importance will 

even have been measured. Though some ofthese issues are discussed by Petchey et al. 
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(2009), the matter of trait selection for studies using functional diversity remains largely 

unresolved and will continue to be the source of substantial debate. 

0.1.2 Functional diversity in the plankton 

[n recent years, several studies have described functional traits of interest for both 

zoo- and phytoplankton communities. Barnett el al. (2007) provided a review of laboratory 

and observational studies on zooplankton feeding and life history and compiled a number of 

ecologically important traits (qualitative and quantitative) for the freshwater zooplankton of 

North America. Both cladocerans and copepods were considered, arid listed traits that had 

substantial coverage for both groups included: mean body [ength, predator evasion strategy, 

feeding strategy, habitat use, and trophic group. Barnett el al. (2007) demonstrated that 

functional groupings derived from a distance-based measure for functional diversity (FD; 

Petchey & Gaston 2002,2006) did not always accord with taxonomically derived species 

associations (Barnett & Beisner 2007). They further showed that relationships with functional 

measures of diversity showed higher levels of explained variance with reference to a series of 

environ mental variables than taxonomic diversity, and, thus, they advocated its development 

and use in future work with zooplankton communities. 

Several authors have also written about the use of functional measures of diversity 

for the phytoplankton (Reynolds 2002, Weithoff 2003). Though Reynolds (2002) advocates 

for the separation of phytoplankton into functional groups based on their traits, he identifies 

several traits of interest, differentiating groups of algae according to habitat type and 

tolerances to key environmentaJ variables like light, phosphorus, and nitrogen. Weithoff 

(2003) describes the functional traits most important to phytoplankton as being those 

associated with processes like growth, sedimentation, lossesto grazing, and nutrient 

acquisition. Among these general classes, Weithoff (2003) suggests the use of traits 1ike size, 

capacity for nitrogen fixation, mixotrophy, or phagotrophy, demand for silica, motility, and 

shape. He argues that these traits provide an objective means of classifying the functional 
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attributes of aIl phytoplankton and advocates the use offunctional measures of diversity in 

exp!oring ecological problems. 

0.1.3 Dispersal processes in the zooplankton 

Chapter II focuses primarily on exploring the importance of dispersal processes in 

zooplankton communities. This topic was reviewed by Leibold & Norberg (2004) who 

applied the metacommunity framework to zooplankton communities to explain how dispersal 

might shape community structure and how composition might differ across a landscape of 

lakes or ponds. They explain that dispersal-limitation is likely to be greater in lakes than in 

ponds, owing to a !esser connectivity between lake communities, and they discuss the 

consequences of these differences in the context of community responses to environmental 

change. The topic of dispersal limitation in the zooplankton, however, and the relative 

influence of regional vs. local factors in driving community structure, is a topic that has 

received considerable attention in recent years (e.g. Shurin el al. 2000, Cottenie and De 

Meester 2003,2004 Cottenie el al. 2003, Beisner el al. 2006), generating mixed opinion on 

the subject. 

One suggested means of differentiating among local (predation, competition, 

responses to environmental variables) and regional (dispersal) processes in determining the 

structure of communities has been to examine the shape of curves relating local to regional 

species richness (Srivastava 1999, Hillebrand 2005, Hillebrand & Bleckner 2002, Shurin el 

al. 2000; but see Mouquet el al. 2003). A linear reJationship implies that dispersal limitation 

might be the most important factor affecting community structure while a saturating curve 

indicates local control. Shurin et al. (2000) found that when comparisons of zooplankton 

communities were adjusted for differences in spatial scale, the relationship between local and 

regional species richness was often linear, suggesting that dispersal limitation might be more 

important than previously thought. Despite this finding, however, they suggested that much 
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evidence exists supporting the importance of local interactions (see Lukaszewski et al. 1999). 

Further evidence for the importance of dispersal in zooplankton communities has come from 

observational studies in ponds (Chase 2003, Cottenie et al. 2003) and in lakes (Beisner et al. 

2006), which confirm the importance of metacommunity processes in structuring 

zooplankton communities. 

Knowing that dispersal processes might be influential in shaping zooplankton 

community structure, it is important to note the potential for anthropogenic acceleration of 

the rates ofzooplankton exchange (reviewed in Bohanak & Jenkins 2003) and to be aware of 

the consequences for local communities. Havel & Medley (2006) assert that expanded 

commerce has made the global dispersal of cladocerans easier, and they found that river 

connections among reservoirs increase zooplankton dispersal rates relative to what might be 

accomplished by wind and rain alone. In fact, some estimates show that the increased rate of 

modern invasions by exotic species to be in excess of 50,000 times that of normal historical 

levels (Hebert & Critescu 2002). Clearly such changes to dispersal rates could drastically 

alter current understanding of the drivers ofzooplankton community structure, and 

establishes a strong impetus for further study ofspecific dispersal rates that might be 

influential in initiating biological homogenization (Olden 2004). 

0.1.4 The im portance of local factors in the zooplankton 

Convergent structure in isolated communities subjected to similar environments 

would validate the importance of local conditions in community assembly. Recent 

experimental work has been conducted along these lines, investigating whether zooplankton 

communities subjected to common environmental regimes converged to a common structure 

(Beisner & Peres-Neto 2009). Results were idiosyncratic depending on the zooplankton 

group analyzed, but convergence in structure was common under particular trophic 

configurations. For instance, lower variability between communities was found when 
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populations were large enough that competitive processes, for example, were able to 

overshadow stochastic ones, and when the presence of a specialist predator was able to 

minimize variability in prey populations. Observational work in lake zooplankton has also 

shown the contribution of local factors to determining local community structure, 

highlighting the influence of pH in lakes recovering from wide-spread acidification 

(Lukaszewski et al. 1999, Binks & Amott 2005) and total phosphorus in other regions 

(Beisner et al. 2006). 

0.1.5 Inferring the importance of local interactions based on community structure 

The last section illustrated how local conditions can be infJuential in determining the 

structure of zooplankton communities. Given consistency in biologicaJ responses to 

environmental conditions, patterns in community structure among local communities can 

allow for the development of inferences as to the dominant assembly processes determining 

community composition. For example, a number ofrecent studies investigated patterns of 

species co-occurrence to determine the relative influence of habitat filtering or competition in 

determining community structure (see Tofts & Silvertown 2003, Webb et al. 2002, Losos et 

al. 2003, Cavendar-Bares et al. 2004, Kozak et al. 2005, Homer Devine & Bohannan 2006, 

Swenson et al. 2006, Helmus et al. 2007a, Helmus et al. 2007b, Hardy et al. 2008, Vamosi el 

al. 2008). Much ofthis work has focused on examining the phylogenetic relatedness of co

occurring species, assuming that species that are more closely related within a phylogeny will 

share ecologically important traits because of evolutionary conservation of characters (see 

Blomberg et al. 2003). Communities with species that are more closely related than expected 

by chance will be considered under-dispersed, implicating environmental filtering in 

restricting species membership, such that only species with similar tolerances (and associated 

traits) will be found in that habitat. Conversely, communities composed of species that are 

more distantly related than expected by chance will be considered over-dispersed, implicating 

competition in limiting the similarity in traits of co-occurring species by competitive 

exclusion (Elton 1946, Diamond 1975). Of course, the same inferences can be made when 
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directly investigating the dispersion patterns associated with the distribution offunctional 

traits. As \Vas described earlier, functional traits are influentiaJ in determining wh ether a 

given species can persist in a particular community by describing how species respond both 

to one another and to the abiotic environment (Lavorel & Garnier 2002, Norberg 2004, 

Petchey & Gaston 2006). So, communities with a functional diversity lower than expected 

by chance would be considered functionally under-dispersed, and communities with a higher 

functional diversity than expected by chance would be functionally over-dispersed, 

implicating habitat filtering and competition, respectively, as key drivers of community 

composition. 

Of course, habitat fiitering and competition can be occurring simultaneously in the 

sa me community at different spatial and taxonomic scales (Cavendar-Bares el al. 2006, 

Helmus el aI.2007a), and it is important to test different aggregations of data for such effects. 

Likewise, it is important to consider how environmental variables can drive phylogenetic or 

trait dispersion signais (see Helmus el al. 2007a), as they can sometimes mask, or even 

provide insight into, the environmental circumstances that favour the detection of one signal 

or the other. Zooplankton communities are known ta be influenced by a number of 

environmental variables including pH (Lukaszewski el al. 1999, Klug el 01.2000, Binks el al. 

2005, Frost el al. 2006), algal community structure (Reynolds 1997, Leibold 1999, Brett el 

al. 2000, Butzler & Chase 2009), and total phosphorus (Dodson 1992, Waide el al. 1999, 

Dodson el al. 2000, Jeppeson el al. 2000, Beisner el al. 2006, Barnett & Beisner 2007, Heino 

2008), and it is necessary ta test for the influence of the levels ofthese environmental 

variables on dispersion signais to verify the circumstances under which habitat filtering is 

having the greatest impact on communities, or that most favour competitive interactions 

between species with similar traits. 
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0.1.6 Biodiversity and ecosystem functioning in phytoplankton 

Investigations over the past 20 years into relations between biodiversity and 

ecosystem functioning have Jed to the general consensus that species functional 

characteristics have a strong influence over ecosystem properties (reviewed in Hooper et al. 

2005). Much of the work along these lines has been focused on relations between diversity 

and productivity, with recent studies highlighting the potential for bi-directionality in this 

relation. Under this scheme, productivity stands as both a cause and a consequence of 

biodiversity patterns (see Worm & Duff)t 2003, Gross & Cardinale 2007, Cardinale et al. 

2009a, 2009b), as species are known to be dependent on nutrient availability for growth, and 

diversity can allow for the more efficient conversion ofnutrients into new tissue ifthere is 

complementarity in functions. Knowing how strongly algal systems can respond to 

environmental factors (Turner et al. 1995, Cottingham & Carpenter J998, Litchman 1998, 

Leibold J999, Dodson et al. 2000, Klug et al. 2000, Klug & Cottingham 2001, Klug 2001, 

Klug 2002, Chase and Leibold 2002. Chase 2007, Butzler & Chase 2009), and that their 

diversity can impact community production (Downing & Leibold 2002, but see Zhang & 

Zhang 2006) phytoplankton communities can present excellent systems for testing how 

responses to environmental variables might influence relations between diversity and 

productivity. 

Nutrient gradients have been shown to exel1 substantial control over the composition 

of phytoplankton communities. In so doing, they are 1ikely to modulate functional groups 

and have the potential to affect primary production. Interlandi & Kilham (2001) conducted an 

observational study where they found that phytoplankton diversity was highest where 

resources were the most limiting, emphasizing how resource competition is an important 

factor in structuring phytoplankton communities. Research conducted during a whole-Iake 

enrichment experiment by Cottingham & Carpenter (1998) demonstrated that eutrophication 

initiated shifts in the dominant groups of phytoplankton. In addition, results From this study 

showed that eutrophication cou Id influence aggregate, community-level measures of 
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functioning like chlorophyll a concentrations and primary productivity. Likewise, in an 

observational study spanning a nutrient gradient in fishless ponds, LeiboJd (1999) found a 

positive relation between nutrient level and phytoplankton cell size, a result mirrored in the 

study by Cloern & Dufford (2005). Finally, across many lakes Watson el al. (1997) found 

that phytoplankton biomass increased with total phosphorus (TP) availability, both for the 

aggregated community and within important taxonomie groupings (e.g. chlorophytes, 

chrysophytes, cryptophyes, cyanophytes, diatoms, and dinophytes). Most groups increased in 

biomass with increasing TP, but with different rates of accumulation. Sorne groups, 

however, showed no relationship at ail with TP, while others showed a quadratic response, 

peaking at intermediate nutrient levels. It is thus clear that different functional groups of 

phytoplankton respond differently to nutrient availability. Taken in concert with the other 

studies referring to phytoplankton diversity responses to phosphorus availability, these results 

suggest that nutrient availability and functional diversity could indeed interact to have an 

effect on community productivity. 

Zhang & Zhang (2006), conducted a microcosm experiment where algal commllnities 

were exposed to two levels ofnutrient availability and a temperature perturbation. Their goal 

was to test how manipulations in both species richness and nutrient availability affected the 

relations between biodiversity and community productivity. They found little evidence for a 

biodiversity effect on biomass production in either nlltrient-rich or nutrienl poor microcosms, 

but noted compensatory growth after the temperatllre perturbation in the nlltrient poor 

environments, citing a nutrient effect on a diversity-stability relation. Even though this lack 

of a positive relation between diversity and prodllctivity might seem like a departure from 

expectation, it is important to note that theÎr species richness manipulation was restricted to 

six species, ail from the same taxonomic division of green algae. It is distinctly possible that 

the presence of more species, From more fllnctionaJ groups, might offer a broader potential 

range of functions, and lead to the detection of a relation between di versity and ecosystem 

functioning. 
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The idea that phytoplankton diversity might not be important for ecosystem 

functioning, however, and that they might exhibit substantial functional redundancy, is 

worthy of exploration. Loreau (2004) argues that functional redundancy is incompatible with 

species-coexistence, as competitive interactions in a given system should exclude all but the 

best competitor. Spatial and temporal variability, however, could allow for some functional 

redundancy at sma!1 scales, a notion that is compatible with Hutchinson's resolution to the 

paradox of the plankton (Hutchinson 1961). Hutchinson (1961) argued that equilibrium 

states were un likely to form in planktonic systems, where currents and a lack of spatial 

structure might prevent any stable, long-term interaction among species. In the absence of 

such stabilîty, one might expect that functionally redundant species might be able to co-exist 

to some degree in the turbulent waters of the phytoplankton, in the absence of particularly 

strong environ mental gradients that would restrict species based on their tolerances to 

environmental variables. This assertion runs contrary to that of Passy & Legendre (2008), 

who argued that the lower niche dimensionality of planktonic, relative to benthic, systems 

should force comparably stronger niche differentiation there, and result in higher 

complementarity in the phytoplankton. Of course, both of these scenarios are dependent on 

the ecosystem function selected and the traits measured and chosen to account for this 

ecosystem function. 1t is, therefore, clear that functional diversity patterns, and their relations 

with dîfferent measures of ecosystem functioning are topics wOlthy of exploration in the 

phytoplankton. 

To summarize, the chapters in this thesis will explore topics associated with 

measuring functional diversity, and how different measures are best applied within zoo- and 

phytoplankton communities. They will also be used to explore the influence of dispersal 

processes, and how local environmental variables might shape the functional structure of 

zooplankton communities. Finally, they will also address biodiversity-ecosystem functioning 

relations in phytoplankton communitîes, focusing in particular on how nutrient availability 

and functional diversity might interact in shaping overall phytoplankton community 

production. The following section wi Il describe the approaches employed and methods used 

in exploring these topics throughout the thesis. 
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0.2 Approaches used 

0.2.1 Data collection 

The data underlying the four chapters included in this thesis were assembled from 

diverse sources, including previously published work, novel field experiments, and field 

studies. The data for Chapter 1are taken from work previously published in the field of 

paleolimnology (see Philibert & Prairie 2002, Enache & Prairie 2002), and are comprised of 

diatom counts taken from sediment cores from 65 lakes in western Quebec (Abitibi and 

Haute-Mau ricie regions), extruded from the first centimetre of sediments. As such, they 

represent benthic and planktonic diatom communities aggregated over severa] years leading 

up to the year 2000 sampling date. The work for Chapter 1 involved implementing a novel 

analysis to further explore this previously collected data, examining relations between 

different measures ofbiodiversity and ecosystem functioning, measured as total diatom 

biomass production. The different measures ofbiodiversity included were species richness, 

and two measures of functional diversity: trait variance (Norberg et al. 200 l, Norberg 2004) 

and FD (Petchey & Gaston 2002, 2006). 

The data for Chapters II and IV were derived from novel field experiments conducted 

using zoo- and phytoplankton communities conducted in mesocosm tanks of 80 Land 1000 L 

respectively. In both instances, naturally-occurring plankton communities were collected 

from lakes in the Eastern Townships of Quebec, and both experiments were conducted 

outdoors, in order to enhance the realism of the experiments. The experiment described in 

Chapter II ran for twelve weeks to ensure multiple generations for even the longest lived 

species of copepods, not to mention the more rapid Iy reproducing cladocerans and roti fers. 

The experiment described in Chapter rv ran for six weeks, allowing for tens of generations of 

algal species, that replicate themselves on the scale of hours to days. 
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The data for Chapter III were derived from a field study of a series of lakes in 

southern Quebec, spanning a broad geographic range and diversity in limnological 

conditions. The advantage of the field study was in aliowing for an investigation of 

zooplankton communities as they are found in nature, without the Joss of species that might 

not be amenable to experimental manipulation. In addition, since one of the key features of 

this study was to examine how fllnctional dispersion patterns are driven by characteristics of 

local environments, the field study allowed for the measurement of a series of pertinent 

environmental variables that varied substantiaJJy among lakes from four different regions 

within Quebec. 

As was alluded to in the previous paragraph, one of the primary goa ls of the 

experiments conducted in Chapters Il and IV was to maximize their realism. The first step in 

doing so was to collect aIl plankton from localiakes, introdllcing communities into 

experimental settings as they are found in lakes, respecting natural aggregations and 

proportions ofspecies. This practice allowed both ofthese experiments the fuli, natural, 

range of zoo- and phytoplankton functional diversity, with abundant species dominating 

commllnity composition and rare species remaining at least initially rare. In addition, 

conducting experiments olltdoors allowed for exposure to precipitation and typical circadian 

cycles, as closely matching the conditions in lakes as possible without sacrificing the 

experimental control that such a setup affords. 

Much has been published on the importance of introducing more realistic elements 

into studies examining biodiversity-ecosystem functioning relations. ln particular, some 

scientists have advocated using natural species combinations in experimental work (Naeem 

2008), as was done for the experiments included in this thesis. Other work has emphasized 

how important an appreciation of the temporal scale ofan experiment can be when 

interpreting ofresults, demonstrating that some patterns might only become apparent on 

annual scales (Stachowitz eL a!. 2008) as opposed to the shorter duration of many laboratory 

experiments. It is for this reason that the two experiments described in this thesis were 
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carried out in such a way as to include at least one full generation of the longest lived species, 

and measures were taken to ensure that the experiments were as realistic as they could be. 

0.2.2 Microscopy 

Plankton identification and enumeration was necessary for samples collected for 

Chapters Il, Ill, and IV. Standard practices were Llsed in ail three instances. Zooplankton 

were counted using dissecting (20-32x) and upright (200-400x) microscopes, and samples 

were counted exhaustively for Chapter II, and were sub-sampled for Chapter III, until 200 of 

the most abundant species had been enumerated. Phytoplankton species were identified using 

ao Olympus inverted microscope (200x-400x), and were counted according to the protocol 

defined by the United States Geological Survey - National Water Quality Assessment 

(http://water.usgs.gov/nawqal). Sub-samples of 10 ml or 25 ml (depending on sample 

density) were added to a tubular Utermohl counting chamber, and were allowed to settle for a 

minimum of 12 hours. Organisms were identified to the species level and were counted 

within random fields at 400x magnification, and counts were conducted until 300 natural 

units (individuals or colonies) were identified. Once the minimum required natural units 

were counted, a further scan was made for rare species using a single transect made at 200x 

magnification. 

0.2.3 Characterizations offunctional diversity 

Among the most prominent analytical themes running throughout the chapters of this 

thesis is the use of functional measures of diversity in Chapters l, Ill, and IV. Each chapter 

followed slightly differeot methods in both computing functional diversity and in selecting 

traits used in analysis, and these differences warrant discussion here. Chapter l was meant to 

compare different measures of functional diversity with a measLire oftaxonomic diversity in 
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their capacity to account for the variation in a single measure of diatom community 

functioning, community biomass. Measures of functional diversity incillded FD (Petchey & 

Gaston 2002, 2006) and trait variance (Norberg et al. 200 l, Norberg 2004), the former 

chosen for its rising popularity in the ecologicaJ literature, and the latter chosen as a relatively 

under-used measure with several interesting properties (see Chapter 1for details). Neither of 

these measures of functional diversity were empIoyed in Chapters III and IV, in favour of a 

si ightly different, methodologically simpler method. As described in Chapter l, FD (Petchey 

& Gaston 2002, 2006) is a distance-based measure of functionaJ diversity, measured as the 

sum of the branch lengths separating species on a functional dendrogram generated based on 

the distances between species in an n-dimensional trait space. There are a nllmber of 

methodological considerations associated both with selecting a distance meaSllre used to 

differentiate species based on their traits, and in the cillstering algorithm llsed to build the 

functional dendrogram (see Podani & Schmera 2006, Petchey & Gaston 2006), and studies 

have shown some of these decisions to have non-trivial consequences for the interpretation of 

results (Poos et al. 2009). FD was used in Chapter 1to facilitate comparison with other 

studies that have explicitly tested the performance of different measures offunctional 

diversity. Chapters III and IV, however, feature a slightly different measure of functional 

diversity, and, in so doing, avoided some of the previously mentioned melhodological 

choices by not using any clustering algorithm at ail. Instead, in these chapters, functional 

diversity was computed as the average pair-wise distance separating species in the n

dimensional trait space, derived using Gower's Index for its capacily to combine nominal and 

categorical traits in a single consideration of functional diversity (Podani & Schmera 2006). 

Using this measure for functional diversity was a compromise between using a measure of 

fllnctional diversity that behaves similarly to more commonly used measures Iike FD, but 

avoids some of the methodological concerns associated with its underlying decisions. 

Trait selection practices also differed between thesis chapters, with Chapter 1 

employing functional response traits, and Chapters III and IV employing functional effect 

traits. The distinction between these two classes of traits is discussed in several reviews (see 

Lavarel & Garnier 2002, Naeem & Wright 2003), but, in general, effect traits describe how 
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species contribute to a given ecosystem function, while response traits express how species 

respond to some feature of the environment. The effect traits used to describe zoo-and 

phytoplankton species in Chapters fIl and IV incJuded traits such as mean body size and 

feeding types for zooplankton communities and cell size and pigment types, for example, in 

phytoplankton communities. Conversely, in Chapter I, diatom traits were characterized as 

species responses (computed as optima) to severa] environmentaJ variables of interest, 

includ ing total phosphorus, total nitrogen, and pH, among others. One of the reasons the 

phytoplankton communities studied in Chapter 1were treated differently From the 

phytoplankton communities in Chapter IV is that Chapter 1dealt exclusively with diatoms, 

while Chapter IV included full phytoplankton communities spanning at least five broad 

classes of algae (chlorophytes, chrysophytes, cryptophytes, cyanophytes, and diatoms). As a 

result, the traits of importance for phytoplankton communities (see Reynolds 2002, Weithoff 

2003) might not be sufficiently variable when so narrowly focused on diatoms. for example, 

no diatoms fix nitrogen, they ail have a requirement for siJica, are non-motiJe, are obligately 

photosynthetic, and they ail have the same pigment type. Given the restricted options among 

such functional effect traits, traits were instead quantified according to the responses of 

different species to important environmental variables, a standard practice in paleo

JimnoJogy. The merits ofthis choice are further discussed in Chapter J. 

Also of note was the decision to not consider functional traits at ail in Chapter [1. 

The reason behind this choice stemmed From the inclusion of rotifers in analyses. Rotifers 

\Vere sufficiently differentfrom the other species of crustacean zooplankton included in 

Chapter II that it was difficult to find functional traits that could apply to this full 

zooplankton community. This chapter focused instead on the impact of dispersal processes 

on defining the composition of different communities, using the ordination procedure, non

metric multidimensional scaling (NMDS) to reduce the number of axes in comparisons made 

between communities .. 
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0.3 Summary 

The main objecti ve of th is thesis was to independently investigate several of the 

factors known to be important in driving community structure and ecosystem functioning, 

using plankton communities as model systems. In particular, different chapters were 

designed to focus on how trait distributions are best calculated and how they relate to 

plankton ecosystem functioning, how dispersal might be influential in homogenizing 

community structure, how local factors can be used to make inferences as to the drivers of 

community structure, and how resource availability and functional diversity might interact in 

driving ecosystem functioning. The four chapters of this thesis will meet these objectives in 

the following ways: 

Chapter 1 - This chapter focuses on a comparison between two measures of functional 

diversity and one measure of taxonomic diversity in accounting for total primary production 

in diatom communities. Results were discussed within the context of how functional traits 

might altow for increased insight into the mechanistic foundations underlying biodiversity

ecosystem fUllctioning relations, indicating which traits might be most influential in driving 

community biomass production 

Chapter 2 - This chapter focuses on an experiment lIsing zooplankton communities, designed 

to determine how dispersal processes alone might influence zooplankton community 

composition, and involved a search for a threshold value of dispersal, beyond which different 

communities might begin to homogenize in composition. Results are discussed within the 

context of anthropogenic acceleration of zooplankton dispersal rates, and the potential 

influence this acceteration might have on often dispersal-limited zooplankton communities. 
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Chapter 3 - This chapter focuses on a field study in freshwater looplankton communities, 

using the co-occurrence ofspecies and their functional traits to make inferences as to the 

determinants of zooplankton community structure. Results are discussed within the context of 

habitat filters of partieular importance for zooplankton, and how they might restriet species 

based on their toleranees. 

Chapter 4 - This chapter presents an experiment involving manipulations ofboth 

phytoplankton funetional diversity and nutrient availability, testing for a potential interaction 

between theses variables in driving total algal commllnity production. Results are discllssed 

with an emphasis on the range of functional diversity that might be influential in affecting 

overalJ commun ity function ing. 
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1.1 Summary 

Recent work has begun to emphasize the benefit of using functional measures when 

relating biodiversity to ecosystem functioning. In this study, we investigated the extent to 

which functional diversity might be related to summed biovolume in community assemblages 

of 212 species of diatoms collected from 65 temperate lakes in western and central Quebec, 

Canada. We quantified functional diversity as both the total path-length of a functional 

dendrogram (FD) and as the variance in species traits (TV) for a given community. Selected 

traits included both species size and species responses to a set of environmental variables 

known to be influential for diatom communities. Species richness, as weil as both FD and 

TV were positively associated with total diatom primary production at the Jevel of the entire 

diatom community, suggesting that diversity in response types (particularly to total 

phosphorus and pH) is important for diatom community production. WhiJe the results 

indicate that functional measures of diversity did not provide enhanced explanatory power 

over species richness, we argue that an exploration of functional traits allows for potentially 

greater insight into the mechanistic foundations underlying biodiversity-ecosystem 

functioning relations, indicating which traits might be most influential in driving community 

primary production 
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1.2 Introduction 

A considerable portion of the literature devoted to the study of the relation between 

biodiversity and ecosystem functioning has used species richness as its primary measure of 

biodiversity. While it might be relatively simple to calculate, species richness provides little 

information as to what species are doing in a community (Petchey 2004), and thus does littJe 

to explain why biodiversity might be important for ecosystem functioning (Diaz & Cabido 

2001). Characterizing systems according to their functional traits, however, enhances our 

ecological understanding by allowing for a description ofwhat species are doing in a given 

community as drivers of ecosystem-level phenomena (Diaz & Cabido 200 l, Loreau et al. 

2001, Schmid, et al. 2002, Norberg 2004). 

Functional diversity is usually described using a suite of species traits that are 

thought to contribute to ecosystem functioning (Diaz & Cabido 200 l, Hooper et al. 2002, 

Schmid et al. 2002, Walker & Langridge 2002, Naeem & Wright 2003). It has been 

suggested that the traits present in a community might be largely what determine ecosystem 

properties (Chapin et al. 1997, Chapin et al. 2000, Norberg 2004, Hooper et al. 2005), but the 

broad use of functional diversity is made problematic by the general lack of agreement as to 

how it should be calculated (Mouillot et al. 2005a, but see Petchey et al. 2009, Poos et al. 

2009), and by the fact that aggregate measures of functional diversity are not as weil 

developed and studied as those for taxonomie diversity (e.g. species richness, Shannon

Weiner index, indices of evenness etc.) (Petchey & Gaston 2002, but see Heino et al. 2005, 

Mason et al. 2005, Mouillot et al 2005b, Roy et al. 2005). Despite recent progress, however, 

the relationship between taxonomie and functional diversity remains poorly understood for 

many commun ity types (Diaz & Cabido 200 l, Enquist et al. 2002, Naeem 2002, Hooper et 

al. 2005, Micheli & Halpern 2005; but see Petchey & Gaston 2002). 
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One way to investigate how completely species richness represents functional 

diversity is to compare their respective capacities to account for the variation in measures of 

ecosystem functioning. Before making such comparisons, however, it can be fruitful to 

consider ways in which taxonomic and functional diversity might differ, and whether 

anything is gained by using more complicated, functionaJ, measures of diversity. As 

mentioned earlier, functional measures are meant to quantify speeies charaeteristics to 

aceount for how species are eontributing to a given ecosystem funetion. The underlying 

rationale is that their use might provide greater insight into the mechanistic foundations for 

biodiversity-eeosystem funetioning relations. Still, there celtainly are cireumstances under 

whieh funetional diversity may provide little extra explanatory power relative to species 

richness. For example, Micheli & Halpern (2005) found a strong, positive relation between 

taxonomie and functional diversity in a marine kelp forest system, suggesting high levels of 

funetional eomplementarity in that system. Sueh a result might suggest that the effort 

required in formulating a funetional measure of diversity might not translate into increased 

insight in that system. Alternatively, Walker et al. (1999) found similar complementarity (or 

dissimilarity) in function among dominant plant species on a range land savannah, but 

redundaney when rarer speeies were taken into aeeount. They argued that functional 

redundancy can be just as important as functional diversity in understanding how ecosystem 

funetioning might respond to ehanging conditions. In sueh a circumstanee, a eomparison of 

fllnetional and taxonomic measures of diversity in explaining a measllre of eeosystem 

functioning is important to gain a more complete understanding of which components of 

diversity are most important in driving an aggregate property of the eommunity. Clearly, 

relations between funetional and taxonomie diversity can be highly idiosyneratic between 

community and ecosystem types, and are worth exploring in order to develop a more 

complete understanding of the meehanisms underlying biodiversity-ecosystem funetioning 

relations. 

In the current study, we explore relations between different measures of diversity and 

ecosystem functioning in freshwater diatom communities in boreallakes using two recent 

measures of funetional diversity: FD (Petehey & Gaston 2002, 2006), and trait variance (TV; 
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1.3 

Norberg et al. 200 l, Norberg 2004). We characterized functional diversity using response 

traits varying along a continuous gradient, an approach that has been advocated by several 

authors (Walker et al. 1999, Petchey & Gaston 2002, Weithoff2003, Norberg 2004) because 

it can be helpful in avoiding the potential for arbitrary assignment of species to functional 

groups (Petchey 2004, Petchey et al. 2009). Our specifie goal was to compare species 

richness with FD or TV in their relative capacities to account for variation in total biomass 

production of diatom communities to ultimately determine whether anything is gained by 

quantifying diversity from a functional perspective. 

Materials & Methods 

Sediment samples were collected from 65 lakes in western Quebec, Canada (Abitibi 

and Haute Mauricie regions). Sample collection, chemical analysis, taxonomy, and the 

counting of ail diatom samples were done by M. Enache and A. Philibert (see Philibert & 

Prairie 2002, Enache & Prairie 2002 for details on sampling procedures). Lakes From the 

Abitibi region were sampled twice between June and August of 1996 or 1997 (Enache & 

Prairie 2002) and lakes From the Haute Mauricie region were sampled three times in June, 

July, and early October of 1996-1997 (Philibert & Prairie 2002). Core samples were taken 

with a gravity corer in the deepest part of each lake. Diatom communities were enumerated 

from the top 1 cm of each sediment core (extruded in the field). Diatom communities were 

composed of both benthic species and pelagie species that sank out of the water column. Ail 

analyses were conducted on both the fully aggregated community and for the benthic and 

planktonic communities on their own. 

Diatom communities were enumerated according to a protocol described by Philibert 

(2002), and a minimum of 500 diatom valves were counted and identifled for each sample. 

Biovolumes for the 214 species of diatoms were compiled largely from values collected for 

the USGS NA WQA survey (http://water.usgs.gov/nawqa/). Species for which biovolume 
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values could not be found were assigned the average biovolume of congeneric species (~20% 

of total species). Physical and chemical measurements of the water column of each lake were 

taken concurrently with the sediment samples and included measures of total phosphorus 

(TP), total nitrogen (TN), pH, dissolved organic carbon (DOC), and dissolved carbon dioxide 

(C02). These variables were chosen for analysis because previolls work established their 

importance for these diatom communities (Enache & Prairie 2002, Philibert & Prairie 2002). 

pH was measured directly in the lake, while integrated epilimnetic samples were collected 

and brought back to the lab for nutrient analyses (Philibert & Prairie 2002, Enache & Prairie 

2002). DOC was measured by infrared gas analysis after sample acidification and sparging, 

followed by Pt-catalyzed oxidation at 7000 Celsius on a Shimadzu T500 analyzer. TP was 

measured using the molybdenum blue method (Stainton et al. 1977) after autoclaving with 

potassium persulfate, and TN was treated similarly after alkaline persulfate digestion and 

autoclavivng (D'Elia et al. 1977). Dissolved CO2 concentrations were obtained from pH, 

temperature, and alkalinity measurements (Gran titration) following Stumm & Morgan 

(1981), after correction for ionic strength. 

Most of the study lakes were relatively shallow (median maximum depth = 10m), but 

they varied widely in surface area (0.09-19.72 km 2) and in chemical and trophic status 

(Philibert & Prairie 2002). Water colour ranged from clear to dark with DOC ranging from a 

minimum of 1.75 mg/L to a maximum of 18.45 mg/L (median = 6.93 mg/L). Lakes also 

ranged from oligotrophic to highly eutrophic, with minimum total phosphorus of2.8 /lgiL to 

a maximum of 52 /lg/L (median = 8.7 /lg/L), and TN ranged from 79 /lgiL to 1490 ~lg/L 

(median=240.8 ~lg/L). The lakes also spanned a wide pH gradient of 4.06-8.01 (median = 

6.27). Most lakes were dimictic except for those that were too shallow to stratify (Philibert 

2002, Philibert & Prairie 2002). 

Species richness and two measures of functional diversity were computed for each 

lake. The functional diversity measures were chosen based on their prominence in the 

literature and applicability to this data set, and included trait variance (TV; described in 
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Norberg el al. 2001, Norberg 2004), and FD (described in Petchey & Gaston 2002, 2006). 

Trait variance is a measure of the variance of a community trait distribution along a gradient 

of continuously varying values. Since it quantifies the total breadth of a trait distribution, it 

essentially accounts for the breadth of functions represented by a given community. FD 

measures the total path-Iength of a functional dendrogram constructed using traits of interest. 

The use of FD is advantageous because it can be computed multi-dimensionally, 

incorporating several continuous gradients of functional traits into a single measure of 

community functional diversity. 

1.3.1 ChoiceofTraits 

Functional traits were primarily characterized as responses to a su ite of 

environmentaJ variables known to be important for the diatoms in this data set. Generally 

speaking, functional traits can be characterized according to both functional responses and 

functional effects (Lavorel & Garnier 2002, Naeem & Wright 2003, Norberg 2004). The 

former define how species differ in their responses to different elements of the environment, 

and the latter define how species might differ in the ways they influence aggregated measures 

of ecosystem functioning. Weithoff (2003) provided a list of functional traits thought to be 

important in defining phytoplankton communities. That list was largely comprised of 

functional effect traits like size, motility, capacity for nitrogen fixation, shape, but also 

demand for silica. Since the analyses described here were conducted on a single group of 

species, the diatoms, they do not differ enough with respect to most ofthese traits to allow for 

meaningflll characterization of functional traits in terms of effects. Tnstead, we opted to 

differentiate between species on the basis oftheir responses to a suite of environmental 

variables. This decision found further justification when considering that the diatom 

communities were counted From the first centimetre of sediment samples, which can 

represent severa] years of accumulated individuals. Over the course of several years, in a 

highly seasonal environment sllch as the Boreal region, a lake can experience considerable 

variability in inter- and intra-seasonal variation in lake physico-chemistry. Tt stands to reason 
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that if diversity is related to primary production in a given community over longer intervals, 

accumulated biomass might be highest when a lake includes species that can respond to a 

variety of environmental conditions that change through time. Thus, quantifying species 

functional traits with reference to their responses to key environmental variables provides an 

excellent match for the ecosystem function of interest for this study. 

Response traits were, therefore, quantified as trait optima computed for each species 

relative to total nitrogen (TN), total phosphorus (TP), pH, dissolved organic carbon (DOC), 

and dissolved carbon dioxide (C02) using a weighted average formula, a standard practice in 

paleolimnology and multivariate community analyses (ter Braak & Juggins 1993; previously 

published in Philibert 2002 and Philibert & Prairie 2002). Trait variance was computed by 

measuring the variance in functional trait types for each community based on the 

representation of the species found therein. FD was computed using the same set ofresponse 

traits that served as the basis for our calculation of TV with the addition of a single effect 

trait, species size. These traits were compiled for ail 212 species, were standardized with a 

mean of 0 and a variance of l, organized into a matrix, and clustered in a dendrogram 

representing the overall diversity for the region (for details, see Petchey & Gaston 2002, 

2006). Trait matrices were included for ail combinat ions ofthese six functional traits, with 

the model accounting for the highest level of explained variance retained for final 

consideration. The functional diversity of each community was quantified as the sum of the 

branch lengths from the regional dendrogram that corresponded to that community. 

Computations were performed in R v2.2.0 using functio~s made available by O.L. Petchey 

(http://www.shef.ac.uk /personal/ %wenpetchey; see Petchey & Gaston 2006 for details). 

1.3.2 Statistical Analysis 

Standard [east squares regression was used to compare relations of FD and species 

richness with ecosystem functioning, measured as summed biovolume·of each diatom 
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community. The use of summed biomass is a standard practice in studies examining relations 

between biodiversity and ecosystem functioning (see Chapin et al. 1998, Schmid et al. 2002, 

Van Ruijven & Berendse 2004, Schlaepfer et al. 2005, Thompson el al. 2005). Since our 

communities consisted of both benthic (165) and pelagic (47) species of diatoms (Philibert & 

Prairie 2002b), we considered biodiversity and ecosystem functioning relations in the broader 

diatom community, and independently for benthic and planktonic compartments, using 

summed benthic and planktonic biovolumes respectively. It should be noted, however, that 

while the pelagic species were numerically dominant in 70% of the lakes included in 

analysis, the bulk of the species richness occurred in the benthic compartment. Still, given 

the relative shallowness of the lakes, ail species would have been exposed ta similar water 

chemistry, justifying the choice to define functional traits according to diatom responses to 

key environmental variables even in the benthos. 

Since trait variance (TV) does not allow for a single, multi-dimensional measure of 

functional diversity encompassing a suite of traits, multiple regression models were lIsed ta 

investigate the combined effect of the variance in the five response traits on summed 

community biovoJume. These multiple regression models afforded an opportllnity ta 

investigate the importance of trait selection for the comparisons between biodiversity and 

ecosystem functioning. Backward elimination multiple regression (P to exit 0.05) was used 

to remove pred ictor variables that least affected the fit of the mode l, allowing the data to 

decide on the optimal suite of traits for comparison with species richness. A comparison of 

the different models allowed for a determination of the fllnctional traits most important for 

diatom commllnity primary production. When compared with FO, however, where there is 

no strict statistical means of differentiating among traits used for analysis, the only alternative 

is to build separate regional dendrograms for al! (58) combinations of traits. Of these 

combinations, we present the model with the best explanatory power, and discuss in the 

context of the traits selected by the backward step-wise multiple regression procedure lIsed ta 

build the best TV models. Explained variance for ail regressions was adjusted using a ratio 

of mean squares instead ofsum of squares (R2adJ, and all regress ion ana lyses were condllcted 

in JMP IN vS.I. 
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lA Results 

104.1 Full Diatom Community 

When the full diatom community was considered, there were positive relations 

between species richness, TY, and FD with summed biovolume (see Figure l, Table 1). FD 

explained the greatest fraction of the variance in summed community biovolume, and the best 

model after ail possible combinations of traits were considered included species size and 

responses to ail five environmental variables TN, TP, pH, DOC, and CO2 (Figure 1a; N=65; 

TN: R2
adj =OJO, p<O.OOl). Species richness explained the next greatest fraction of the 

variance in summed biovolume (Figure lb; N=65; TN: R2
adj=O.27, p<O.OOI). In the case of 

trait variance, the backward step-wise procedure resulted in the removal of two response 

traits (TN, CO2) with the resulting model ofTYTP+pH+DOC, accounting for a marginally smaller 

fraction of expiained variance (Table 1; N=65; R2
adj=O.23, p<O.0004). Further examination 

ofTY models for individual traits showed significant relations between trait variance and 

community biovolume only for TYTP and TYpH (see Table 1). 
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Figure 1: Relations between (a) FD and summed community biovolume 
and (b) Species Richness and summed community biovolume 

1.4.2 Benthic and Planktonic Compa11ment 

Patterns when only benthic species and biovolumes were considered were consistent 

with results for the whole diatom community. Once again, FD explained the greatest fraction 

of the variance in benthic summed biovolumes when ail traits were retained in the model 

(Figure 2; N=65; R2
adj=O.54 p<O.OO 1). Species richness showed only marginally smaller 

explanatory value (Figure 2; N=65; R2
adj=O.53 p<O.OOI). Once again, In the case of trait 

variance, the backward step-wise procedure resulted in the removal of two response traits 

(TN, COz) with the resulting model ofTVTP+pH+Doc, accounting, this time, for a much smaller 

fraction of explained variance (Table 1; N=65; RZ 
adj=O.20, p<O.OO 1). Further examination of 

TV models for individual traits showed significant relations between trait variance and 

community biovolume only for TVTP and TVpH (see Table 1) 

When only planktonic species were considered, positive relations were observed 

between ail three measures of diversity and planktonic summed biovolumes, but with a much 
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smaller fraction of explained variance accounted for. In the plankton, trait variance explained 

the greatest fraction of the explained variance in summed biovoJume. Th is time, the 

backward stepwise procedure resulted in the removal oftwo response traits (TN, DOC) with 

the resulting model of TVTP+pfH02 comprising the best model (Figure 2; N=65; R2
adj=O.20 

p<O.OOI). Further examination of TV mod.els for individual traits showed significant 

relations between trait variance and community biovolume for TVTN, TVTP, and TV pH (see 

Table 1). Species richness accounted for the second greatest fraction of the variance in 

summed planktonic biovolume (N=65; R2'dj=O.16 p<O.OO 1). No combination of traits 

provided a significant association between FD and summed planktonic biovolume, but we 

present the model incorporating ail traits for consistency with previous sections (N=65; 

R\dj=O.O l, p>ü.ü5). 
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When compared directly compared using at-test, results show a higher mean species 

richness when only benthic species were considered (Mean M=10.8, SE=O.61) than when 

only the plankton were considered (M=6.7, SE=0.62) (p<O.OO 1). The opposite pattern was 

true for FD. When compared d irectly compared using at-test, results show a higher mean 

FD among planktonic (M=0.20, SE=O.l 0) than found among benthic species (M=0.17, 

SE=O.I 0) (p=0.025). 
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1.5 Discussion. 

Investigating the utility of functional measures of diversity in the context of relations 

between biodiversity and ecosystem functioning has become an increasingly popular topic in 

the ecologicalliterature in recent years. Work along these lines has been predominantly 

conducted in terrestrial plant and sorne mammalian communities, with a relative dearth of 

evidence stemming from phytoplankton communities where they might be of critical 

importance because of the key role phytop lankton play in aquatic food chains and global gas 

fluxes. One recent study of biodiversity-ecosystem functioning relations in benthic biofilms 

provided evidence for a relation between species richness and production (Vanelslander et al. 

2009), but this study focused only on benthic species and did not consider diversity from a 

functional perspective. Our primary finding is that diversity (taxonomic and functional) is 

positively related to at least one measure of ecosystem functioning, the production of total 

biomass. Further, both greater species richness and greater diatom functional diversity were 

related to increased biomass production across a landscape of lakes. Given that functional 

diversity was quantified largely in terms of responses to key environmental variables, these 

results indicate that communities that included species representing a range in optimal 

responses to lake physico-chemistry were those that accrued greater total biomass over the 

several years accumulated in the top layer of lake sediment. 

That the included measures of functional diversity did not account for an appreciably 

greater prop0l1ion of variance in summed biomass than taxonomic diversity ran contrary to 

our expectations. As mentioned above, it is thought that functional measures of diversity 

should outperform taxonomic measures in accounting for ecosystem functioning because 

they define how species differ from one another on a functional basis. In the case of this 

diatom community, the chosen measure of functional diversity largely defined the extent to 

which different species were paItitioning the lake chemical habitat with respect to five 

environmental variables. We predicted that in capturing this extra information, functional 

diversity measures should have outperformed species richness in explaining phytoplankton 
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standing crop. Our result, however, is not without precedent. Blackburn el al. (2005) found 

no appreciable increase in variance explained by FD (under any combination of candidate 

traits) over species richness when reconciJing predatory mammal diversity with bird 

extinction along a chain of islands. These results differ from those of Petchey el al. (2004) 

who found FD to be superior to species richness in explaining above-ground biomass 

production for biodiversity manipulations in European grasslands and others who also 

demonstrated the increased proficiency of functional measures of diversity relative to more 

traditionally used taxonomie measures in terrestrial plant communities (Tilman el al. 1997, 

Hector el al. 1999, Naeem el al. 1999). 

Since the derivation of functional measures of diversity can entail considerably more 

work than simply using species richness as a measure of diversity, the Jack of a difference 

between functional and taxonomic diversity in accounting for ecosystem functioning might 

lead one to believe that species richness serves as an equal measure to functional diversity in 

diatom communities. We wou Id argue, however, that explorations of functional diversity 

might ultimately allow for a better understanding of the mechanistic underpinnings of 

biodiversity-ecosystem functioning relations, such as the one we observed here. When 

dealing with functional diversity, the consideration ofwhich traits to include is always one of 

the primary methodological issues of importance (Petchey el al. 2009). Our methodology 

allowed us to use the data to help make the decision of trait inclusion. In the case ofTY, we 

used backward stepwise multiple regression in our analyses, using the stepwise procedure to 

eJiminate traits that were not contributing to model fit. ln the case of FD, we incorporated 

trait matrices includ ing ail combinations of traits and narrowed our final choice of traits 

according to which models aJJowed for highest explained variance linking functional 

diversity and ecosystem functioning. Our results indicated that the best FD models were 

those that incillded the full suite of traits, indicating that al! ofthese traits were representative 

of variables that were important in defining the niche of these diatoms. ln the case ofTY, 

however, diatom responses to TP and pH were consistently retained after the backward 

stepwise procedure (responses to DOC and to CO2 were also retained in the benthic and 

planktonic models respectively). ln addition, when regressed individually against sllmmed 
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biovolume, diversity in responses to TP and pH were consistently the only variables to show 

any significant positive relation. These results suggest that a diversity of diatom responses to 

pH and total phosphorus were especially important for diatom community biomass 

production in these Boreallake communities, and are consistent with the well-established 

relation between phytoplankton biomass and total phosphorus. Our results thus provide 

information that would have gone unconfirmed had we restricted our exploration of 

biodiversity-ecosystem functioning relations to taxonomic measures of diversity. 

The fact that we did not find consistency in trait retention between our two measures 

of functional diversity can 1ikely be attributed to computational details. As mentioned above, 

there is no strict statistical tilter associated with the procedure of exploring every 

combination of traits for inclusion in the FD computation, while the backward stepwise 

multiple regression used for calculating TV allows for the elimination of collinear variables. 

We considered this elimination of numerically superfluous variables in combination with the 

results for the individual TV regressions as evidence that diversity in responses to TP and pH 

were particularly important for diatom community biomass production. To truly confirm this 

inference, it wou Id be necessary to conduct a controlled experiment where community 

composition and environmental variables could be more explicitly manipulated. Still, given 

the potential for increased insight into the mechanistic basis underlying biodiversity and 

ecosystem functioning relations, we advocate the exploration of functional measures of 

diversity whenever possible, even in cases when these measures do not necessarily enhance 

statistical explanatory power because they will enhance ecologicalunderstanding. 

With reference to diatom functional traits, however, we include the caveat that our 

trait set might not be exhaustive in accounting for our chosen measure of ecosystem 

functioning. One palticularly notable omission would be responses to silica, an 

environmental variable that has been used in studies linking environmental variables to 

diatom cOl11ll1unity composition (see Fallu & Pienitz 1999, Ruhland & SmoI2002). Still, 

silica concentration has been omitted from other similar studies in favour of other variables 
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including water colour and alkalinity (Fallu et al. 2002). Silica data were unfortunately not 

available in this data set, but we can argue that it would be a more criticaJ trait had this study 

focused on a larger phytoplankton community, where demand for silica would differentiate 

the diatoms from ail other species of phytoplankton. Still, we are aware that the inclusion of 

additional response traits might have allowed for a more complete description of the 

relationship between functional diversity and ecosystem functioning in these diatom 

communities, and we would encourage future exploration along these lines. 

An additional interesting pattern that warrants explanation is the disparity in results 

in benthic and planktonic compartments of the diatom community. The primary difference 

was the stronger relation between FD and species richness with summed biovolumes in the 

benthic, relative to the planktonic, compartment. In fact, there was no signification relation 

between FD and summed biovoJume in the planktonic compartment at aIl, suggesting that 

relations at the level of the whole diatom community were largely driven by the more 

speciose benthic community, as opposed to the numerically dominant planktonic community. 

In examining Figure 2, the c1ear difference between benthic and planktonic compartments is 

in the series of lakes that show palticularly high planktonic biovolumes at relatively low to 

intermediate Jevels of diversity. This result is in agreement with work conducted by Passy & 

Legendre (2007) in stream communities, who demonstrated that biovolumes should peak at 

intermediate to high leveJs of species diversity in the benthos, but at low levels of species 

diversity in the plankton. They attributed this difference to the higher niche dimensionality 

of benthic habitats relative to comparably more homogenous planktonic zones. Passy & 

Legendre (2000) argued that lower-Ievel dimensionality in the plankton should force 

comparably stronger niche differentiation there and result in higher niche complementarity 

among planktonic species. Passy & Legendre (2007) note that this kind ofniche 

differentiation works particuJarly weil with respect to nutrient sequestration, which provides 

a 1ink to the response traits used in our study. In one respect, these ideas are supported byour 

results, where the benthos showed higher taxonomic diversity than the plankton, and the 

plankton showing higher functional diversity (FD) than the benthos. Our results do not, 

however, show that the more functionally diverse plankton communities are the ones that 
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produce the grea,test biovolumes. One hypothesis we can extend to explain this pattern is that 

since planktonic habitats in lakes are prone to fluctuating environmental conditions with 

periodic turbulent water mixing, episodically favourable conditions for planktonic diatoms 

were created during which they attained disproportionately high biovolumes (e.g. Reynolds 

1984). Such situations may be less likely to occur in the comparably stable benthos in 

smaller lakes, which could account for the more consistent relation between diversity and 

summed biovolumes in that environ ment. ft should be noted, however, as mentioned in the 

section on trait selection, that this is another circumstance when a functional measure of 

diversity provided insight into diversity-function relations that would have been missed when 

considering diversity from a taxonomie perspective alone. 

1.6 Conclusion 

'vVe have demonstrated that biomass production in full diatom communities increases 

with both taxonomie and functional diversity. These results suggest that diversity in species 

that respond differently to critical environmental variables is important for diatom 

community production. 'vVe have also shown that, at Jeast numerically, species richness is an 

adequate replacement for at least two measures of functionaJ diversity (FD and TV) in these 

same lake diatom communities. Despite the relatively equivalent numerical performance of 

these measures of diversity, however, we argue that the pursuit of functional measures of 

diversity is fruitful in that it can inform us about the traits that are impoliant for different 

measures of ecosystem functioning, which can allow for a deeper understanding of what 

environmental factors might be most influential in defining aggregate measures of 

commllnity performance. For future work, we would advocate the inclusion of functional 

measllres of diversity when studying phytoplankton communities, and sllggest collecting data 

on as many functional traits as possible in order to have the most informed possible 

perspective on why biodiversity might be contributing positively to different measures of 

ecosystem function ing. 
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Table l: Trait Variance Models - The explanatory power of different trait variance (TV) 

models including the best combinations of traits as selected by the backward stepwise 

procedure. The best models for each community type are in boldo 

Full Community Benthos Plankton 

Trait Variance Models R2 
adj P R2 

adj P R2 
adj P 

TP, TN, pH, DOC, CO2 0.22 0.0014 0.18 0.005 0.018 0.005 

TP, pH 0.\8 0.007 0.19 0.005 0.04 0.18 

TP, pH, DOC 0.23 0.0004 0.20 0.0008 0.03 NS 

TP, pH, CO2 0.18 0.0017 0.18 0.0018 .20 0.0008 

TN 0.0002 NS 0.02 NS 0.06 0.01 

TP 0.\3 0.002 0.06 0.03 0.04 0.04 

pH 0.13 0.002 0.16 0.005 0.0\ NS 

DOC 0.000\ NS 0.003 NS 0.00\ NS 

CO2 0.03 NS 0.0009 NS 0.06 0.02 



CHAPTER II: ASSESSING THE IMPACT OF DISPERSAL ON ZOOPLANKTON 
COMMUNITY STRUCTURE 

2.1 Surnmary 

Whether Jocal processes such as adaptation to environmental conditions or regional 

processes like dispersal are more important in defining zooplankton community structure is 

currently unclear. This chapter focuses on an experiment meant to examine how dispersal 

processes alone might influence zooplankton cornmunity composition. Using a gradient of 

experimentally imposed dispersal a mesocosm experi ment was conducted to ascertain what 

level of dispersal is necessary to homogenize three initially different zooplankton 

cornmunities from lakes of comparable physical and chemical composition. Ten replicate 

groups of these three communities were exposed to two dispersal events over the course of a 

twelve week experiment, with experimenta1 treatments reflecting a gradient of dispersal 

magnitude, ranging from comp1etely unmixed cornmunities to cornmunities that exchanged 

10% total volume. WhiJe the cornmunities in unmixed control treatments showed divergent 

or null trajectories, dispersal magnitudes in excess of -1 % total community volume were 

sufficient to result in significant community convergence. These results are discussed within 

the context of anthropogenic acceleration of zooplankton dispersal rates, and the potential 

influence this acceleration might have on dispersal-limited zooplankton communities. 

2.2 Introduction 

A substantial portion of the modern ecological literature has been devoted to
 

ascertaining whether local cornmunity processes, like competition, predation, and adaptation
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to local environments, or regional processes, like dispersal, are most influential in 

determining the structure of ecological communities. The realization that both processes may 

be important to varying degrees for different communities at different times has led to an 

organization of the various drivers of community structure within the metacommunity 

concept. Metacommunities are local communities that are linked across landscapes by 

dispersal (see Leibold et al. 2004 for a review, Leibold & Norberg 2004 for 

metacommunities and zooplankton). Among the advantages of employing a metacommunity 

framework is that it allows ecologists to study how both local and regional processes impact 

aspects of community assembly. For instance, the structure of local commllnities can be 

shaped by factors like predation, competition, or local distllrbances, but also by the arrivai of 

dispersing colonists, or nutrient fluxes from neighbouring systems. Of course, both ofthese 

processes could be simliitaneously influential, and the study of metacommllnities allows for 

the organization of these various influences along axes of importance. This study will focus, 

in particular, on the impoI1ance of dispersal for the structure of experimentally maniplilated 

zooplankton commllnities, a group for whom the relative importance of local vs. regional 

processes has been broadly discussed (see Shllrin et al. 2000, Cottenie and De Meester 2003, 

2004, Beisner et al. 2006). 

Several stlldies have been conducted to ascertain the relative importance of local 

commllnity proccsses (competition, predation, and adaptation to local abiotic conditions) and 

regional processes (dispersal) in deterrnining the structure of zooplankton commllnities. 

Sorne authors have sllggested that inferences can be made by examining the shape of the 

curves relating local and regional species richness (Srivastava 1999, Hillebrand 2005, 

Hillebrand & Bleckner 2002, Shurin et al. 2000; but see Mouqllet et al. 2003). A linear 

relationship implies that dispersal limitation might be the most impol1ant factor affecting 

cornmunity structure while a saturating curve indicates local control. Shurin et al. (2000) 

found that when comparisons of zooplankton communities were adjllsted for differences in 

spatial scale, the relationship between local and regional species richness was often linear, 

suggesting that dispersal limitation might be more important than previously thought. 

Despite this finding, however, they suggested that much evidence exists sllpporting the 
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importance of local interactions. In agreement are the results of Lukaszewski et al. (1999), 

who found that local interactions were most important in structuring zooplankton 

communities. Later work confirmed that even while zooplankton dispersal via diapausing 

eggs can be important in regulating emergent community structure, local conditions were still 

important in regulating the conditions under which the eggs might hatch (Binks & Arnott 

2005). Likewise, even though Cottenie & De Meester (2003) established that spatial 

variables were important in determining patterns ofzooplankton species richness, they found 

no specifie relationship with connectivity variables, dispersal pathways, and species richness. 

These results were validated in an experiment that manipuJated the physical environment and 

found that dispersal only served to enhance the importance of local conditions in determining 

community structure (Cottenie & De Meester 2004). Similarly, Soininen et al. (2005) also 

concluded that local environmental conditions might be the most important factor in 

determining yearly phytoplankton community assembly (another passively dispersing group), 

but Beisner et al. (2006) show almost equal importance of dispersal and local conditions for 

zooplankton communities. 

On the contralY, Chase (2003a) used an observational study of pond zooplankton 

communities to show the importance of dispersal in influencing zooplankton community 

structure. He found that more connected habitats showed increased local richness, but 

decreased beta diversity relative to less connected habitats, showing that dispersal can serve 

to homogenize communities. Other studies have focused on partitioning the effects of local 

and regional processes in structuring zooplankton communities. While Cottenie et al. (2003) 

also emphasized the importance of local conditions, they found a distinct metacommunity 

structure in their pond communities, a result validated by Beisner el al. (2006) who were able 

to pa11ition an effect of spatial variables on zooplankton species richness from local 

environmental conditions, suggesting dispersal limitation in zooplankton, a result that Jenkins 

& Buikema (1998) also demonstrated in an experimental pond system. Further evidence for 

dispersal limitation in freshwater plankton communities can be found in a review by Bohanak 

& Jenkins (2003) who place more emphasis on dispersal potential than actual patterns. 
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Still, despite the arguments provided for dispersal limitation in the zooplankton, 

severaJ authors have argued that anthropogenic drivers of zooplankton dispersal wililead ta 

an acceleration relative to more natura!, passive means (reviewed in Bohanak & Jenkins 

2003). The often assumed potential for plankton dispersal by animal vectors has been 

demonstrated to not be a particularly influential means of affecting change in zooplankton 

community structure (Shurin 2000, Caceres & Soluk 2002, Vanschoenwinkel 2008). Havel 

and Medley (2006), however, claim that expanded commerce has made the global dispersal 

of cladocerans easier, and they have found that river connections among reservoirs increase 

zooplankton dispersal rates relative to what might be accomplished by wind and rain alone. 

ln fact, some estimates show that the increased rate of modern invasions by exotic species to 

be in excess of 50,000 times that of normal historicalleveJs (Hebett & Critescu 2002). In 

addition, Cohen & Shurin (2003) provided experimental evidence for the rapid dispersal of 

zooplankton over short distances «60m). Even though the distances were short, the surface 

area of the experimental pools was also small, and they stated an expectation that the results 

they described would scale up to larger systems. Other studies have suggested that dispersal 

limitation will only be important in zooplankton communities early in succession (Louette & 

De Meester 2005, Louette et al. 2006), and only over larger scales (Havel & Shurin 2001). 

Still, when considering how increased zooplankton dispersal might affect aggregate 

community properties, Michels et al. (2001) found that dispersal rates, while high, were not 

sufftcient to affect population dynamics in target ponds in the summer. They provided the 

caveat, however, that the importance of dispersal might be greater in the spring, when water 

flows are higher. Il would also stand to reason that the influence ofzooplankton dispersal 

might be stronger when considering the anthropogenic influences mentioned above. 1t might 

be reasonable to assume that such potentially accelerated zooplankton dispersal cou Id lead to 

eventual ubiquity in species distributions and dominance of local conditions in dictating 

zooplankton community structure, and the potential success with which invasions are Jikely 

to take hold (Shurin 2000). 
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To investigate this unresolved issue further, sorne recent studies have examined 

whether communities subjected to corn mon environmental regimes will converge to a 

common structure (Beisner & Peres-Neto 2009). Convergent structure in isolated 

communities subjected to similar environments would validate the importance of local 

conditions in community assembly, but divergent structure might emphasize the importance 

of other processes. Fukami et al. (2005) manipulated the initial community structure of 

grassland communities and allowed natural colonization to proceed. They found that 

communities converged in terms oftheir traits, but that species identities remained targely 

different. Similarly, Langenheder et al. (2006) examined whether bacterial community 

assembly is deterministic or based on metacommunity processes like dispersal. They found 

that bacterial communities from different sources diverged in composition and in specific 

enzyme activity, even when grown under similar conditions. Communities still converged, 

however, in terms of broader ecosystem functions like respiration and production. Likewise, 

Jenkins & Buikema (1998), noted divergence in zooplankton community structure but found 

no difference in community level measures such as species richness, total biomass or 

abundance, or any of several measures of ecosystem functioning. These results suggest that 

local and metacommunity processes might both be important, but perhaps at difference scales 

(Fukami et al. 2005). 

This study was meant to further investigate the issues associated with the importance 

of dispersal for zooplankton community structure. An investigation of the literature, 

however, clearly shows divided opinion on importance of dispersal as a determinant of 

zooplankton community structure in natural systems. Even though several studies have 

found evidence for dispersal-limitation in zooplankton, there is little doubt that anthropogenic 

influences cou Id speed dispersal processes beyond natural rates, carrying the potential for 

community-level shifts in composition. Because shifts in community state are characterized 

by significant changes in relative abundances of dominant species, studying the different 

circumstances under which shifts in composition occur can provide insight into the factors 

important in dictating community assembly. Current understanding suggests that state shifts 

can OCClII' under two different circumstances: when population densities change within an 
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unchanging environment (via dispersal), and when environmental parameters change such 

that population densities change accordingly (Schroeder et al. 200S, Beisner et al. 2003). 

When investigating the former circumstance, it is imperative that the communities und el' 

consideration are exposed to identical environmental circumstances (chemical characteristics, 

trophic status, etc.; Chase 2003a, Petraitis & Latham 1999). Community state variables can 

indicate changes in community structure defined by population abundances (Jenkins & 

Buikema 1998), shifts in food web configurations (Chase 2003b), and variation in aggregate 

measures of ecosystem functioning like productivity or respiration (Potts et al. 2006). 

Knowing how much propagule exchange between communities is required to precipitate 

shifts in community structure would provide key insight into how aquatic communities might 

change with increased anthropogenically-imposed dispersal, both in terms of community 

structure and in aggregated measures of community functioning. This current study was 

designed to investigate the former circumstance, whereby population densities are exposed to 

potential change via dispersal, and to determine whether there is a threshold level, below 

which communities remain unchanged by the arrivaI of dispel'sing species. 

2.3 Materials and Methods 

2.3.1 Collection of plankton communities 

The three different zooplankton communities used in the experiment were collected 

from three lakes in the Eastern Townships of southern Quebec (Lake Baldwin, Lake Des 

Monts, and Lake D'Argent). These lakes were selected because they had similar physico

chem ical and habitat characteristics (see Table 1), but were dominated in biomass by 

different zooplankton communities (Barnett 2006). The three unconnected lakes were 

separated by an average of 55 km, and were thus far enough apart on the landscape to 

minimize the chances that passive dispersers like zooplankton could be shared between them 
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(Havel et al. 2002, De Meutter et al. 2007). ln terms of biomass, Lake Des Monts was 

dominated by large cladocerans, Lake D'Argent was dominated by rotifers, and Lake 

Baldwin was dominated by copepods. As such, the three zooplankton communities included 

in the experiment were taxonomically distinct from one another, des pite having come from 

very similar habitats. 

Zooplankton innocula were collected by integrated vertical net hauls in the deep 

station of each lake using a 53 !-lm mesh net (1.5 m long with a 0.30 m opening) to ensure the 

capture of roti fers. The zooplan kton samples from each of the three lakes were transpolted 

back to the experimental site in lake water, and each community was randomly re-distributed 

(ten 1 L aliquots from a well-mixed carboy) into ten 80 L plastic mesocosm tanks (0.70 x 

0.45 x 0.40 m) at natural densities. Ali 30 tanks were counter-sunk into the ground at 0.40 m 

depth to mitigate extreme diel temperature changes. Because the zooplankton communities 

were introduced in their own lake water, the phytoplankton community representative of each 

lake was also incorporated into each tank. The balance of the 80 L of each tank was filJed 

with equal parts offiltered water (36 um mesh) from mesotrophic Lake Memphremagog (the 

body ofwater local to the experiment site) and nutrient-poor well-water; the resultant nutrient 

status of the mixed water closely matched that of the three source lakes. The reason each tank 

was filled with the combination of the same filtered lake- and well-water was to ensure that 

the three different plankton communities were being introduced into environments that were 

as similar as possible. This was necessary in order to focus the experiment exclusively on the 

importance of dispersal processes in order to eliminate potentially confounding effects of 

physico-chemical habitat-filtering. After introduction of the plankton communities into their 

mesocosm tanks, the communities were left for three weeks. This interval was meant to 

allow for the extirpation of ail species not amenable to survival in the experimental 

environments, so that subsequent extinctions could be attributed to species interactions 

associated with dispersal events, and not be confounded by experimental artefacts. 
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2.3.2 Experimental Design 

The experimental communities were exposed to a gradient of imposed dispersal, 

representing increasing volumes of exchange among treatments (see Figure 1a). The 30 

mesocosm tanks were divided into ten groups ofthree tanks, with each group having one tank 

representative of each of the three sampled lakes (Baldwin, Des Monts, D'Argent). Each 

group was assigned to one of the seven magnitudes of dispersal, which ranged from 0 % ta 

10% total mesocosm volume (0 ml, 8 ml, 40 ml, 80 ml, 1 L, 4 L, and 8 L). Three of these 

dispersal magnitudes were replicated once (8 ml, 80 ml, 8 L) while the others (0 ml, 40 ml, 1 

Land 4L) were not replicated (see Figure 1a). Each dispersal event involved the removal of 

the prescribed volume ofwell-mixed water from each tank. These aliquots were mixed in a 

common vessel and the mixed solution was then re-introduced into each of the three tanks in 

the same proportions as the initial removal (see Figure 1b). For example, for the 1 L 

dispersal treatment, 1 Lof well-mixed water was extracted from each tank of that group, 

mixed together in a common vessel, and 1 L of the newly mixed sample was returned to each 

tank. The removal ofa fixed volume ofwater to simulate dispersal has been used previously 

(Fontaine & Gonzalez 2005, Cadotte & Fukami 2005), and ensures that the probability for 

the transfer of species between tanks is in proportion to their native relative abundances, as 

would occur via natural dispersal corridors between lakes. Previous work that has 

manipulated zooplankton dispersal has focused on dispersal rates anywhere between 5-140% 

(see Howeth & Leibold 2008), and found that it was the presence, but not the magnitude, of 

dispersal that was impOitant. In light of these results, we elected to focus our dispersal 

gradient on much smaller magnitudes of dispersal. We chose values between 0 and 10% total 

volume based on a modelling study examining the impact of dispersal on diversity patterns 

(Loreau et 01.2001) and on work previously done in experimental rotifer communities (A. 

Gonzalez, personal communication). 
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Figure 1: Experimental Design for Chapter II - (A) Illustration of 
7 dispersal treatments with replication for 8 ml, 80 ml, and 8L 
treatments. (B) Illustration of dispersal events involving the 
removal of a prescribed volume fl'om each of the three tanks, 
mixing in a common vesse l, and then re-allocation of that volume 
into the same three tanks. (C) Timeline for experiment indicating 
timing of 2 dispersal events. The experiment concluded after 12 
weeks. 

The total duration of the experiment was 12 weeks (June 19-5eptember 4, 2006), 

with dispersal events occurring after weeks three and seven. Weekly samples were taken of 

the weil mixed zooplankton community, with samples from weeks 1,3, 5, 7, 8,9, 10, and Il 

used for analysis. Tanks were thoroughly stirred before sampling and samples were taken 

from the middle of each tank using two, 250 ml bottles. These 500 ml were filtered for 

zooplankton, which were preserved in 75% ethanol. Zooplankton (cladocerans, copepods, 

and rotifers) were identified using an Olympus upright (200-400x) microscope, and ail 
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samples were exhallstively counted. For each sample, macrozooplankton were identified to 

the species level, while rotifers were identified to the genus leveJ and ail individuals were 

counted. In ail, 49 taxa were identified (see Appendix A for species list). In addition, on each 

sampling occasion, a light/dark bottle procedure for oxygen measurements was used to assess 

total primary prodllctivity in each tank. Since zooplankton are the primary consumers in lake 

ecosystems, it was of interest to examine the effects of changing community composition on 

primary productivity as a measure of ecosystem functioning. Ail tanks were also measured 

weekly for various physico-chemical variables, incillding total phosphorlls (TP), total 

nitrogen (TN), pH, and temperature. Ail physico-chemical samples were drawn from 0.2 m 

below the tank surface lIsing 10 ml test tubes. Concentrations of TP were measured 

spectrophotometrically by the molybdenum blue method after persulfate digestion (Griesbach 

& Peters 1991). Concentrations of TN were analyzed using segmented flow analysis and 

were also determined spectrophotometrically after cadmium redllction and creation of an azo 

dye (D'Elia el al. 1977). Temperature and pH measurements were taken with a YSI-6600 

datasonde. These measurements were taken to ensure that aIl communities continued to be 

exposed to comparable habitats. 

2.3.3 Data Analysis 

The primary goal of analysis was to identify a threshold level of dispersal below 

which community structure might be unaffected by dispersing species. To this end, a matrix 

of species abundances was compi led for each mesocosm. Matrices were organized according 

to dispersal treatment (seven groups, three of which had one replicate), and comparisons were 

made between the three communities in each dispersal group. Since any given mesocosm 

included a minimum of seven and a maximum of 33 taxa, NMDS (non-metric multi

dimensional scaling) ordination was used to reduce the data to a maximum of 4 principal 

axes. NMDS ordination is weil suited to non-normal or particularly heterogeneous data, 

tending not to inf1ate the impoltance of rare species, and is a prudent choice for many 

ecological datasets (Leps & Smilauer 1999). Each ordination was repeated 10 times to 
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ensure the selected dimensionality was stable. To determine the extent of community 

convergence within dispersal treatments, we calculated the compositional similarity between 

the three communities using the Sorensen index, chosen because of its heightened sensitivity 

to heterogeneous datasets (Leps & Smilauer 1999). Average pair-wise distances separating 

each of the three communities were computed for each time step within each dispersal 

treatment. These values were taken as a measure of how community similarity changed and 

were regressed against time. A negative relation between similarity and time indicated 

convergence among the three communities for a dispersal treatment. A positive relation 

reflected community divergence, and no relation between variables reflected no trend in 

community similarity with time and dispersal. The 0 and 8 ml (0% and 0.0001 % total 

volume) dispersal treatments served as relative controls, and acted as a basis for comparison 

with the more heavi Iy mixed treatments. If these dispersal treatments showed convergence in 

community structure, particu larly the unmixed treatment, then. it would have been difficult to 

ascribe convergence in more heavily mixed treatments to the effects of dispersal. A threshold 

level of dispersa 1sufficient for in itiating commun ity homogenization was indicated by a 

transition from null or positive community-time relations to negative relations between 

similarity and time. Ali ordinations were conducted in PC-ORD version 4.0, and ail 

regressions were conducted in JMP version 7.0 (SAS Institute Inc, 2008) 

Beyond the primary objective of the identification of a threshold value of dispersal 

sufficient to begin homogenization of different communities, we sought to identifY particular 

species or genera that had disproportionate effects on community configurations in 

experimental treatments that did not conform to general patterns. To this end, we used 

Kendall's coefficient of concordance (W) to identifY groups of significantly associated 

species or genera within communities from one time step to the next (Legendre 2005). The 

goal was to look for taxa from communities at one particular time-step that might be 

particularly influential in shaping the composition ofcommunities at the next time step. 

Because the source communities were characterized by initially different taxonomic 

categories of zooplankton, dispersal events were 1ikely to introduce new species into each 

community. We sought to identify species most influential in instigating any potential 
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compositional shifts (presumably only in dispersal treatments beyond the threshold for 

significant community convergence). The use of Kendall's W allows for the identification of 

groups of correlated species using a permutation test to identify the contribution of each 

species to the overaJl statistic. In this way, communities are compared in their overaJl 

concordance from one time step to the next, with species exhibiting high values of W 

identified as those having contributed most strongly to future community compositions. If 

particular species have consistently high values ofW, palticularly in highly dispersed 

treatments, they will have been the ones most closely associated with community 

homogenization resulting from dispersal, and will provide interesting context for discussion 

of overall trends in community similarity with dispersal. Kendall 's W analysis was conducted 

in MATLAB version 7.7 (MATLAB & Simulink 2008). 

2.4 Results 

204.1 Results of the Convergence Test 

Focussing initially on the low volume dispersal treatments (0 ml - 80 ml), for the 0 

ml treatment (Fig. 2a), there was no relation between community similarity and time 

(R2=0.11, p=OAI). Conversely, in one of the 8 ml dispersal treatments (Fig. 2b) a negative 

relation between similarity and time (R2=0.11, p<O.OOOI) was observed. The second 

replicated set of tanks in this treatment (8 ml(2); Fig. 1c), however, showed no significant 

relation (R2=0.2], p=0.24). The 40 ml dispersal treatment (Fig 2d) showed the only positive 

relation between compositional similarity and time (R2=0.SO, p<O.OS). The 80 ml dispersal 

treatment showed a return ta no relation between similarity and time in both replicated sets of 

tanks (R2=0.OS, p=0.S6, and R2=0.00, p=0.99, Fig 2e, f respectively) presenting a similar 

result. 
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Figure 2: Relations between eompositional similarity and 
time in the low-dispersal treatments: (A) a ml (8) 8 ml, 
(C),8 ml (2), (D) 40 ml, (E) 80 ml, and (F) 80 ml(2). 

Conversely, the \ L dispersal treatment (Fig. 3a) showed a strongly negative relation 

between eompositional similarity and time (R2=0.83, p<O.OOO 1). When aIl 8 weeks were 

eonsidered, the 4 L dispersal treatment (Fig. 3b) showed no relation between eompositional 

similarity and time (R2=0.006, p=0.844), but did show a negative relation (R2=0.72, p<O.OS) 

over the first nine weeks. The 8 L dispersal treatment (Fig. 3e) also showed a negative 

relation between eompositional similarity and time (R2=O.84, p<O.OO\), as did the set of 

replieate tanks (8 L(2); Fig 3d; R2=O,96, p<O.OOO\). 
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Figure 3: Relations between compositional similarity and 
time in (A) 1L(8)4 L, (C), 8L, and (D) 8 L(2) dispersal 
treatments. 

2.4.2 Results ofKendall's W 

Two dispersal treatments showed results that seemed to contradict a general pattern 

and were investigated for the contribution of individual species to subsequent community 

composition. In the first case, the 8 ml dispersal treatment, which showed a negative relation 

between compositional similarity and time (Fig. 2b), had two rotifer genera that showed 

significant values: MonostylulI1 (W=0.44; p<O.O 1) and Trichocera (W=O.37; p<O.OS). 
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The second instance occurred in the 4 L dispersal treatment, a treatment which 

exhibited no strong relation between community similarity and time ail eight weeks were 

considered (Fig. 3b). Individuals of the genus Chydorus contributed significantly to 

subsequent community compositions (W=0.40; p<O.OO 1). 

2.4.3 Mesocosm Physico-chemistry 

Average values for physico-chemical variables of interest general ly matched those 

found in source lakes (see Table 1) and did not differ significantly between experimental 

treatments. Total phosphorus across ail mesocosm tanks was slightJy elevated relative to the 

source lakes at an average of 25.62 !lglL with no significant di fferences among dispersal 

treatments (ANOVA: n=360, p=0.38). Average total nitrogen was also higher relative to 

source lakes with an average across ail mesocosm tanks of 0.49 gm/L with no significant 

differences among dispersal treatments (ANOVA: n=360, p=0.96). Average temperature 

across ail mesocosm tanks was 19.8 oC, which closely matched the average temperature of 

source lakes (see Table 1) and did not differ significantly among dispersal treatments 

(ANOVA: n=360, p=0.0.71). Average pH across ail mesocosm tanks was 8.48 with no 

significant differences among dispersal treatments (ANOVA: n=360, p=0.60), and pH values 

in mesocosm tanks closely matched those found in the source lakes (see Table 1). Average 

dissolved oxygen atso did not differ across experimental treatments (ANOV A: n=360, 

p=0.095). 

2.4.4 Ecosystem Functioning 

Oxygen super-saturation occurred in ail light bottles, with no appreciable reduction 

in oxygen in dark bottles, resulting in no net di fferences in either total or net primary 

production, or community respiration between mesocosms (ANOV A: n=360, p=0.48). This 



53 

result is likely methodological in nature having used bottles that were inappropriately small 

for the algal concentrations found in the mesocosm tanks. These results will not be discussed 

as we do not believe them to have any bearing on how ecosystem functioning may have 

differed among the different dispersal treatments. 

2.5 Discussion 

The objective of this study was to determine a threshold level of dispersal sufficient 

to prompt convergence in the structure of initially different zooplankton communities and 

begin to homogenize their composition. As this effOlt was exploratory in nature, we 

employed a large gradient in dispersal treatments in an attempt to cover as broad a range in 

dispersal magnitudes as possible. Of course, there are limitations to such an approach, which 

will be discussed in sorne detail below. Still, results indicate a sharp demarcation between 80 

ml and 1 L dispersal treatments, representing 0.1 - 1.25% of total mesocosm volume, where 

relations between compositional similarity and elapsed time transitioned from being non

significant to significantly negative. That increased dispersal should begin to homogenize 

communities is not surprising and is consistent with the results presented by Cadotte (2006) 

for bacterial communities. The true interest of the results of this study, however, come in the 

identification of a threshold value for dispersal necessary to elicit convergence, which was 

identified at ~ 1% total community volume. The implications of these results will be 

discussed in greater detail below, but it is important to first identify the treatments that 

contradicted the general pattern. 

Despite the consistent nature of the majority of the results, there were clear 

deviations in the general pattern for two of the dispersal treatments: one of the 8 ml dispersal 

treatments and the 4 L dispersal treatment. In both cases, a closer examination of the species 

that were exchanged proved illuminating. ft should first be noted that there were several 

cosmopolitan species represented in nearly aIl experimental tanks. Iwo of the most 
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universally abundant of these species were the calanoid copepod Leptodiaptomus minutus 

and the cyclopoid copepod Acanthocyclops vernalis. Having two such species that were 

universally abundant, in concert with the presence of other species that attained high 

abundances, present the potential to bias communities with otherwise different community 

constituents to patterns of apparent convergence. We believe this is what occurred in the 8 ml 

dispersal treatment that showed an anomalous trend for convergence in community 

simi larity. 

While most of the low dispersal treatments showed either a positive or no significant 

relation between compositional similarity and time, one of the 8 ml dispersal treatments 

exhibited a strongly negative relation between the two variables. After a closer examination 

of the species abundances for this treatment, it is clear that the high abundances of the two 

ubiquitous copepods combined with the high abundances of individuals from two rotifer 

genera (Monostylum & Triehoeera) that dispersed after community mixing. Both rotifers 

were relatively uncommon at the outset of the experiment, and were initially found only in 

one tank. After the first dispersal event, however, they both came to be found in ail three 

tanks, eventllally constituting ~20% of total abundances. These results were confirmed by 

the Kendall's W analysis, which attributed significant contributions to community 

composition to both rotifer species. Taken together, these two rotifers, in addition to the 

ubiquitously abundant two copepods, came to dominate abundances in the 8 ml dispersal 

treatment and inf1ated the community similarity relative to the other lesser-dispersed 

treatments. Evidence more consistent with a lack of species exchange indicative of low 

magnitudes of dispersal came in the identification of several species, which, while relatively 

common in the broader experiment, were not transferred among communities. These species 

included the cladocerans Ceriodaphnia laeustris, Ceriodaphnia retieulata, and Chydorus sp. 

Given that the two rotifers mentioned previously species attained higb abundances within the 

treatment while several other species remained restricted to their original tanks, we suggest 

that the convergence in community structure noted in this 8 ml dispersal treatment is more 

likely to ref1ect stochasticity than a trlle deviation from the pattern of non-convergence seen 

in other treatments with lower dispersal magnitudes. 
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Likewise, the 4 L dispersal treatment also represented a deviation from the pattern 

noted for other highly dispersed treatments. Unlike the 1 L, 8 Land 8 L(2) treatments, the 4 L 

dispersal treatment did not exhibit a negative relation between compositional similarity and 

time. Figure 2 shows that the deviation from the negative pattern is c1early evident when 

highlighting the data points corresponding to weeks 10 and Il. Before that time, the three 

communities ofthis treatment were on a clear convergent trajectory, which diverged after 

week nine. Once again this deviation in the general pattern can be explained by 

investigating species identities, and can be attributed to high abundances attained bya single 

species. In this case individuals from the genus Chydorus attained particularly high 

abundances in a single community within the treatment, and disproportionately affected the 

convergence pattern noted for the first nine weeks of the experiment within this treatment. 

As with the two rotifers noted in the previous example, the test for Kendall's W assigned a 

significant value to Chydorus sp. in this treatment. Given this evidence, we believe once 

again that this case does not represent a true deviation from the general pattern described in 

this experiment, but represents a stochastic event. 

These two examples illustrate one of the problems associated with work in 

zooplankton mesocosms: that stochastic events may commonly affect zooplankton 

community structure to sorne degree (Beisner & Peres-Neto 2009). They also speak to one of 

the problems associated with experimental designs that sacrifice replication for a greater 

diversity in experimental treatments. Both instances suggest that care must be taken in the 

interpretation of results from such stud ies. Given that deviations of these treatments from the 

general pattern were resolved using biological explanations, however, we believe that neither 

represent a true break in the general observed patterns, and instead ref1ect the kind of 

stochasticity often noted in zooplankton mesocosm experiments (Beisner & Peres-Neto 

2009). 
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Previous work has examined the effects of dispersal on the diversity and structure of 

zooplankton communities (Cottenie et al. 2003a, Cottenie et al. 2003b, forbes & Chase 

2002, Kneitel & Miller 2003), and dispersal has been identitied for its capacity to induce 

similarity in community structure of connected communities (Cottenie et al. 2003, Forbes & 

Chase 2002, Cottenie & De Meester 2004). Other work, however, has shown no signiticant 

effects of immigration on any measure of diversity or community composition (Forrest & 

Arnott 2006). In that particular case, as was the case in Cottenie et al. (2003), environmental 

factors were found to contribute just as strongly to zooplankton community composition. We 

believe this is one of the strengths of our study: that the control of our experimental setting 

allowed us to neutralize potential effects of physico-chemical habitat tiltering. In our study 

there were no appreciable differences in key habitat factors between communities, allowing 

us to attribute any changes in commun ity structure to the impact of dispersal events. In 

addition, we were able to identify a threshold value of approximately 1% total volume of 

water as being the amount of exchange between communities that might be required to 

prompt convergence in community structure. These results are particularly interesting when 

appreciated within the context of the biological homogenization that is occurring on a global 

scale (see Olden et al. 2004). The true danger as identitied by Olden et al. (2004) is that 

biological homogenization leads to a reduction of diversity among regions, with 

cosmopolitan species start to become more widespread. Resultant food-webs could also 

become more simpl itied, leading to increased rates of species extirpation and consequent 

changes in both ecosystem functioning and in the reliability of ecosystem services across 

broad spatial scales. Other work has begun to highlight the potentialutility of studying 

propagule movement, highl ighting the bias of ecological research to often study only post

dispersal processes (Lee & Chown 2009, Wilson et al. 2009). Such work is important from a 

management perspective as Lee & Chown (2009) were studying the impact of dispersal of 

alien plant species to relatively isolated Antarctic habitats, where intra-regional 

homogenization is already staliing to take place. In order to bridge the results of this study to 

natural systems, however, it will be neces'sary to understand how the dispersal magnitudes 

described as being influential here might relate to natllral, or anthropogenically impacted, 

corridors for dispersal. As mentioned previously, Cohen & Shllrin (2003) asserted that 

resuJts from their small scale study ofzooplankton dispersal could be scaled up to appJy to 
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more ecologically realistic communities. Other efforts have attempted ta quantify dispersal 

rates of zoaplankton in natural communities (see Yanschoenwinkel 2008, De Meutter et al. 

2007), but comparing these results at different scales ofresolution could prove problematic. 

We identify as an avenue for future research applying the threshold dispersal magnitudes 

identified in this experiment to volumes exchanged behveen lakes ta verify their applicability 

to natural lake systems, to alJow for a more comprehensive understanding of how dispersal 

might affect community structure on a landscape scale. 

2.6 Conclusion 

ln summary, dispersal magnitudes in excess of -1 % were sufficient to begin to 

homogenize zooplankton communities in their composition. This result is important, both in 

light of work that has demonstrated metacommunity processes to be important in driving 

zooplankton cammunity structure, and knawing the patential for anthropagenic influences ta 

accelerate dispersal rates in aquatic cammunities. 
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Tabte 1: Physico-chemical characteristics of source lakes. 

Lake Total Total pH Surface Max Temperature 

Phosphorus Nitrogen Area (km2 
) Depth (Degrees 

(JlglL) (mglL) (m) Celsius) 

D'Argent 14.1 0.38 7.8 0.96 15.9 13 

Baldwin 15.3 0.41 8.1 0.27 8.2 15 

Desmonts 14.1 0.36 7.9 0.26 6.1 21 



CHAPTER 3: USlNG FUNCTIONAL TRAITS TO lNVESTIGATE THE 
DETERMlNANTS OF ZOOPLANKTON COMMUNITY STRUCTURE 

3.1 Summary 

Among the central aims of community ecology is to develop a better understanding 

of the various processes contributing to community assembly. With this aim in mind, recent 

work has exp10red the phylogenetic relatedness of co-occurring species, inherently relying on 

the assumption that ecological characteristics will be similar among species sharing a close 

evolutionary relationship. Habitat filtering has been invoked as driving community structure 

when co-occurring species are more closely related th an expected by chance (under

dispersion), and competition has been inferred as a structuring agent when co-occurring 

species are less closely related (over-dispersion). In both cases, species functional traits are 

important in defining interactions, and this chapter will use a field study to explore 

determinants of zooplankton community structure. Zooplankton community composition 

data were collected for 54 lakes spanning a geographic and several large limnological 

gradients in southeni Quebec, and were explored using five functional traits defining 

zooplankton feeding and habitat preferences. At both the level of the full zooplankton 

community, and when focusing only on cladocerans, signais were only found for functional 

trait under-dispersion, implicating habitat filters as the predominant driver of zooplankton 

community composition. Results are discussed within the context of particularly important 

habitat fiJters, which included total phosphorus, total nitrogen, total chlorophyll, pH and Jake 

altitude. 
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3.2 Introduction 

Understanding the rules associated with community assembly has long been a central 

pursuit in ecology and recent reviews have advocated linking patterns of species distributions 

with processes associated with species co-existence (Agrawal el al. 2007). Still, adequately 

defining what patterns witl inform us as to the nature of actual assembly rules remains a 

challenge (Weiher & Keddy 1999, Webb el al. 2002, Leibold el aI.2004). It can be useful to 

think about assembly rules as processes that dictate community composition (Weiher & 

Keddy 1999), including filtering processes based on species tolerances to the environment 

(recent example; Silvertown el aI.2006), and competitive interactions that limit the similarity 

of constituent species (Elton 1946, Diamond 1975). Understanding which of these processes 

might be most influential under different circumstances could even aJlow for prediction of 

local community composition from pools of regionally available species (Weiher & Keddy 

1999). In an effort to infer assembly rules on the basis of local community composition, a 

spate of recent work has begun to investigate the phylogenetic relatedness of co-occurring 

species (see Tofts & Silveliown 2003, Webb el al. 2002, Losos el al. 2003, Cavendar-Bares 

el al. 2004, Kozak el al. 2005, Homer Devine & Bohannan 2006, Swenson el al. 2006, 

Helmus el al. 2007a, Helmus el al. 2007b, Hardy el al. 2008, Vamosi el al. 2008). Central to 

these investigations is the assumption that species that are more closely related within a 

phylogeny will share ecologically important traits because of evolutionary conservation of 

characters (see Blomberg el al. 2003). As a result, a community that is composed of species 

that are more closely related than expected by chance will be considered under-dispersed, 

impJicating environmental filtering in restricting species membership, such that only species 

with similar tolerances (and associated traits) will be found in that habitat. Conversely, a 

community that is composed of species that are more distantly related than expected by 

chance will be considered over-dispersed, implicating competition in limiting the similarity 

in traits of co-occurring species by competitive exclusion (Elton 1946, Diamond 1975). 
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The same inferences about community assembly made when examining 

phylogenetic patterns of dispersion can be applied to studies investigating the distribution of 

functional traits across communities. After ail, functional traits are influential in determining 

whether a given species can persist in a particular community by defining their ecological 

interactions: how species respond to one another and to the abiotic environment, and how 

species collectively contribute to ecosystem processes (Lavorel & Garnier 2002, Norberg 

2004, Petchey & Gaston 2006). lt is also important to note that it is possible to find signais 

for both habitat filtering and competition occurring simultaneously at different taxonomic and 

spatial scales (Cavendar-Bares el al. 2006, Helmus el aI.2007a). Cavendar-Bares el al. (2006) 

found that habitat filtering was more important at broader spatial scales than when the focal 

area of study was reduced. SimiJarly, they found evidence for under-dispersion, and habitat 

filtering, when they aggregated ail varieties of woody plants, but observed patterns of over

dispersion, and competition, when they considered more restricted lineages (e.g.just species 

of Oak). Likewise, in work conducted on sllnfish communities, Helmus el al. (2007a) found 

evidence for over-dispersion at small spatial scales, and under-dispersion at broader spatial 

scales (see also Weiher & Keddy 1999, Silvertown el aI.2005). They also highlighted the 

influence of environmental variables in dispersion signal detection, whereby initial analyses 

found no discernable pattern, but signaIs for over-d ispersion were noted after accollnting for 

common responses to certain environmental gradients. In particular, common responses to 

two limnological variables, water clarity and latitude (a correlate for water temperature), 

masked the underlying influence of competition in the sunlish community. These results 

indicate that once cel1ain environmental elements, for which many species share a common 

preference, are accounted for, dispersion signais might become apparent where they were 

once obscured. Peres-Neto el al. (2001), also demonstrated the impo11ance of considering the 

influence of environ mental variables in describing patterns in spider assemblages, 

demonstrating that effects attributed to competition under unconstrained models became 

insign ificant in models that incorporated details on habitat preference. Both of these 

examples demonstrate the importance of interpreting trait dispersion signaIs within the 

context of impOt1ant environmental gradients. 
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Accordingly, this study will involve the exploration of signais for functional trait 

dispersion in zooplankton communities, with a focus on how these signais might respond ta 

broad geographic and limnological gradients. Zooplankton communities are particularly 

amenable to studies ofthis kind as they are known to respond strongly to environmental 

variables (Lukaszewski et al. 1999, Narberg 1999, Shurin 2000, Cottenie et aI.2003), compete 

with one another for resources (see Norberg 2000), and can be readily defined according to a 

series of ecolagically relevant functional traits (see Barnett & Beisner 2007, Bamett et al. 

2007). Further, recent work has emphasized that zooplankton communities are structured by 

a nearly equal combination of dispersal processes and local interactions (Beisner et aI.2006). 

This study will focus on the local interactions important in defining zooplankton community 

structure, concentrating on the potential for competitive exclusion among functionally similar 

species, or the filtering effects of environmental variables in med iating patterns of congeneric 

co-existence. Specifically, it will invalve an investigation of functional dispersion patterns 

based on traits associated with zooplankton feeding and habitat preference, and will use 

emergent patterns to make inferences as ta the determinants of zooplankton community 

structure, discussed within the context of environmental variables of particular influence. 

3.3 Materials & Methods 

Fifty-four lakes were chosen from four regions in Southern Quebec: The Eastern 

Townships (24), The Laurentians (20), Chaudiere-Apalaches (5), and Outaouais (5) (see 

Figure 1). These regions span a broad geographical range and gradient in limnological 

conditions (see Table J), and were sampled for crustacean zooplankton in July 2005 in the 

deepest zone, and were collected across ail lakes within a 1 month period. Zooplankton were 

sampled by integrated vertical net hauls, starting at one meter above the sediments, using a 56 

}lm mesh net (2 m long with a 0.5 m opening) and were fixed in 75% ethanol. Crustacean 

species (cladocerans and copepods) were identified using Olympus dissecting (20-32x) and 

upright (200-400x) microscopes. Species were counted in sub-samples until 200 individuals 

of the most common species had been enumerated. Successive sub-samples were taken until 
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no new species were found in two consecutive efforts (see Appendix 3 for a fuillist of 

identified species). 

For each lake, a suite of limno10gical characteristics was measured including 

maximum and average depth, volume, surface area, altitude, shoreline length, pH, total 

phosphorus (IP), total nitrogen (TN), dissolved organic carbon (DOC), and chlorophyll a. 

Samples for TP, TN, and DOC were ta ken from 0.5 m below the surface of each lake using a 

2-L van Dom bottle. Concentrations ofTP were measured spectrophotometrically by the 

molybdenum blue method after persulfate digestion (Griesbach & Peters 1991). 

Concentrations ofTN were analyzed using segmented flow analysis and were also 

determined spectrophotometrically after cadmium reduction and creation of an azo dye 

(D'Elia et al. 1977). Samples taken for DOC were filtered using 0.45 )lm surfactant free 

membrane filters and were measured following sodium persulfate oxidation using a mode! 

lOlO TOC analyzer (01 Analytical, College Station, Texas). Values for pH were measured 

using a YSI-6600 datasonde and total chlorophyll a was determined using a Fluoroprobe, an 

instrument that fluorometrically measures the concentrations of several spectral classes of 

phytoplankton. 
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Figure 1: Regions sampled for zooplankton: Eastern 
Townships, Laurentians, Chaud iere-Appalaches, and 
Outaouais (map generated using Google Earth). 

3.3.1 Functional Traits 

Functional traits were selected based on a review that synthesized laboratory and 

observational work on feeding and life history of the freshwater zooplankton of North 

America (Barnett et al. 2007). A subset of the traits described by Barnett et al. (2007) was 

used in this study, and included aIl traits with sufficient coverage for the species identified in 

the 54 study lakes. In sum, five traits were chosen: mean body length, feeding strategy, 

predator defense, habitat type, and trophic group. Mean body length (mm) was the only 

quantitative trait, and was chosen for its strong correlation with ecologically important 

characteristics like feed ing and population growth rates (Haney 1985, Nandini & Sarma 

2003), for which data were only sparsely available for the species included in this study. 

Feeding type describes how species obtain food and is a categorical variable consisting of six 

classes: B-filtration (Bosmina-type: characterized by horizontal swimming and less 
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developed filtering apparatus on thoracic appendages), C-filtration (Chydorus-type: feeding 

is primarily accomplished by scraping algal particles From surfaces), D-filtration (Daphnia

type: done From a stationary position with feeding apparatus on 3'ct and 4th legs), S-filtration 

(Sida-type: similar to D-type except that filtering apparatus is located on the first five legs), 

raptorial (where prey is actively captured and killed), and stationary suspension (a more 

passive process with less Frequent swimming). Predator defense describes different 

adaptations for avoiding predation and is a categorical variable with five classes: rapid 

swimming, reduced swimming, protective sheath, pausing and jumping, and mechanical 

(defined by structures that prevent ready consumption by predators). Habitat type de fines 

where species can be most frequently encountered in lakes and is a categorical variable with 

two classes: littoral and pelagic. Although aIl samples were collected in central locations, 

littoral species were often found likely because of lateral mixing in deeper lakes or owing to 

an extended littoral zone throughout shallower lakes. Trophic group refers to species' 

feeding preferences, and is an ordinal variable with five classes: herbivore, herbivore

omnivore, omnivore, omnivore-carnivore, carnivore. The establishment of the transitional 

groups was meant to differentiate between species that, while technically omnivorous, still 

showed a relative preference for herbivory or carnivory (see Barnett et al. 2007). For a full 

summary of species and functional traits, see Table 2. 

3.3.2 Statistical Approach 

Analysis of functional dispersion patterns for each lake was based on caJculations of 

functional diversity using the five traits mentioned previously. Species-Ievel analyses 

garnered no significant results, so presence-absence data were aggregated to the genus level 

for subsequent analysis and consideration here, with 20 genera comprising the regional pool. 

The primary reason for aggregation at the genus level was that congeneric species did not 

differ for four of the five functional traits used in analysis (feeding strategy, predator defense, 

habitat type, and trophic group), and would thus show no functional differences at the species 

level. To accommodate the aggregation at the genus level, the trait representing mean body 

length was calculated as the average among ail congeneric species. Functional diversity was 
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computed for each lake using Gower's Index and was based on the average pair-wise 

distance separating ail genera. Gower's Index was used as it allows for the use of both 

nominal and categorical variables (see arguments in Podani & Schmera 2006) in a single 

measure of functional diversity. We used this simple measure of functional diversity instead 

of other, more widely used, dendrogram-based measures (see Petchey & Gaston 2006) to 

avoid sorne of the associated methodological decision issues that have been shown to 

dramatically affect results (see Poos et al. 2009). The statistical significance of observed 

functional diversity values for each lake was assessed via comparison with values computed 

for 999 randomJy assembled communities. Random communities were generated by 

permuting genera from the regional pool. For example, if a lake contained six genera, they 

would serve as the basis for the functional diversity calculation for that lake, which would be 

compared against the functional diversity of 999 randomly generated aggregations of six 

genera, drawn at random from the remaining pool of fourteen genera. Lakes would be 

cOlisidered functionally over-dispersed if observed values for functional diversity were 

significantly higher than those of the randomly generated communities, and would be 

considered functionally under-dispersed if observed values were Iower than those for 

randomly generated communities. Analyses were conducted for both the full zooplankton 

community and for the cladoceran community only. Functional diversity calculations and the 

permutation procedure were done in MATLAB version 7.7 (MATLAB & Simulink 2008). 

Observed functional diversity scores were then standardized relative to the variance 

in the data by subtracting from them the mean values of functional diversity of the randomly

generated communities (Gotelli & McCabe 2002). Signiflcant negative values indicate under

dispersion, whereas significant positive values indicate over-dispersion. Non-significant 

values, negative or positive, are also informative as they can indicate tendencies toward over

or under-dispersion, but they also inform where the local combinations were 

indistinguishable from randomly generated communities. These standardized values were 

then regressed against a suite of environmental variables to determine the influence of 

various potential environmental filters on trait-dispersion scores. Significant values from 

regression analysis would identify environmental variables of interest, and provide insight 
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into the effects of habitat filtering if signaIs for trait under-dispersion are pervasive. As listed 

above, limnological variables included maximum and average depth, volume, surface area, 

altitude, shoreline length, pH, total phosphorus (TP), total nitrogen (TN), dissolved organic 

carbon (DOC), and chlorophyll a. Ail regressions were conducted in JMP version 7.0 (SAS 

!nstitute Inc, 2008). 

3.4 Results 

3.4.1 Dispersion patterns across aillakes 

For the full community, 1J of 54 lakes showed functional diversity values that were 

significantly lower than for the randomly generated communities (see Table 2). No lakes 

showed functional diversity values that were significantly higher than for the randomly 

generated communities. Of the lakes that showed significantly lower functional diversity, 

there was no consistent regional pattern, with six lakes coming from the Laurentians (30%), 

three from the Eastern Townships (13%), and one from each of Chaudiere-Appalaches (20%) 

and Outaouais (20%). (see Table 3 for summarized results). 

For the cladoceran community, 16 of 54 lakes showed functional diversity values that 

were significantly lower than for the randomly generated communities (see Table 2). No 

lakes showed functional diversity values that were significantly higher than for the randomly 

generated communities. Again, there was no regional pattern among the lakes that showed 

significantly lower functional diversity, with five lakes coming from the Laurentians (25%), 

eight from the Eastern Townships (30%), two from Chaudiere-Appalaches (40%), and one 

from Outaouais (20%) (see Table 3 for summarized results). Additionally only 3 genera were 

not universally represented in ail four regions: Leydigia, Polyphemus, and Chydorus, 

suggesting that the majority of species had at least an opportun ity ta reach ail of the lakes. 
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3.4.2 Regressions with Limnological Variables 

There were no significant relations between limnological variables and standardized 

values of functional diversity when the whole zooplankton community was considered. When 

only cladocerans were considered, however, significant positive relations were noted for TP 

(R2=0.19, p<O.OO 1; Figure 1a), TN (R2=0.IS, p<O.OO 1; Figure 1b), chlorophyll a (R2=0.17, 

p<O.OOl; Figure lc), pH (R2=0.OS, p<0.05; Figure Id) ,and a significant negative relation 

was noted for altitude (R2=0.14, p<O.O 1; Figure 1e). A multiple regression model where 

standardized functional diversity values were regressed against ail five environmental 

variables also yielded a significant association (R2=0.29, p<O.O 1). 
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Figure 2: Relations between standardized functional similarity 

and (a) TP, (b) TN, (c) chlorophyll a, (d) pH, and (e) altitude. 
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3.5 Discussion 

For whole zooplankton assemblages, ~20% of lakes showed a signal for trait under

dispersion with observed functional diversity values that were 10wer than in the randomly 

generated communities. No lakes exhibited signal for trait over-dispersion (functional 

diversity greater than expected by chance). Likewise, when only cladocerans were 

considered, trait under-dispersion was found in -30% of lakes, with no lakes showing 

evidence for trait over-dispersion. These results indicate that at least a subset of the 

zooplankton community is structured by processes suggestive of habitat filtering as opposed 

to competition. These results are consistent with those of Homer-Devine & Bohannan 

(2006), who also detected significant signais for under-d ispersion, and, thus, evidence for 

habitat filtering, in a series of bacterial microcosms; results also mirrored by those of Webb 

(2000) and Cavendar-Bares (2006). Unlike the results ofCavendar-Bares, however, our 

study showed qualitative consistency at different scales oftaxonomic resolution, with signaIs 

for under-dispersion becoming even more common when only cladoceran communities were 

considered. Other studies that have examined the dispersion signais of functional traits have 

noted either no evidence for trait dispersion in defining old field plant communities (Schamp 

et al. 2007), or signaIs for over-dispersion among tree species in an Amazonian rainforest 

(Kraft et al. 2008), indicating high levels of idiosyncrasy across systems. 

Still, it is important to note that the majority of communities examined here (80% 

when the whole community was considered and ~ 70% of communities when only 

cladocerans were considered) were indistinguishable in their fllnctional diversity from 

randomly assembled communities. These results suggest the influence of some other process 

in structuring zooplankton communities in the majority of lakes across the four regions 

stlldied. It is also important to note, however, that even those lakes showing no significant 

signal for dispersion in functional traits can .be discussed in the same context as those that 

did, particularly in light oftheir responses to environmental gradients. The standardization 
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procedure of subtracting functional diversity scores of randomly assembled communities 

from ail observed scores still show whether lakes inclined toward a signature of habitat 

filtering (if the standardized score was negative) or a signature of competition (if the 

standardized score was positive). The data show that most lakes, particularly when only 

cladocerans were considered, exhibited negative scores, indicating an inclination toward 

habitat filtering as the more inflllentiai structuring force in those communities. 

Whell trait dispersion signaIs for the cladoceran community were considered, five 

limnological variables of interest were related to standardized values for cladoceran 

functional diversity: TP, TN, Chi a, pH, and altitude. Lakes in which the strongest signaIs for 

linder-dispersion were found were those that were consistentJy the most nutrient-poor, had 

the lowest concentrations of algal prey, the Jowest pH, and were found at the highest 

altitudes. Previous work has demonstrated the capacity for these variables ta filter 

zooplankton communities. Changes in zooplankton composition have been commonly noted 

with respect to changes in pH (Lukaszewski et al. 1999, Klug et al. 2000, Binks et al., 2005, 

Frost et al. 2006), with higher acidity often excluding species of Daphnia in particular. 

Changes in nutrient levels (TP & TN), and subsequent responses of a/gal communities (Chi 

a) have also been shown ta impact zooplankton commllnity composition (Barnett & Beisner 

2007). Nutrient availability caI1 have a direct impact on several algal community 

characteristics like abundance, size, and composition (Reynolds 1984, Klug et al. 20002, 

LeiboJd 1999), and these changes in the algae can in turn influence the zoopJankton 

community composition. (Reynolds 1997, Leibold 1999, Brett et al. 2000, ButzJer & Chase 

2009). These results are in agreement with those of Heino (2008), who demonstrated that 

phosphorus was an important driver of macro-invertebrate functional groups, and with those 

of other studies that bave shown TP to be the most important environmental predictor of 

crustacean zooplankton community structure, (Dodson et al. 2000, Jeppeson et al. 2000, 

Beisner et al. 2006). Previous work has also demonstrated an influence of altitude on the 

community composition of crustacean zooplankton (Rautio 1998). Taken together, these 

results are in line with the argument that habitat filtering was influential in shaping the 

community structure of the zooplankton communities in our lakes. 01igotrophic conditions 
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were consistently noted in lakes where cladoceran functional diversity was significantly 

lower than expected by chance. Given that habitat filtering was most prominent in the most 

01 igotrophic lakes, and that the se lakes were also those with the lowest chlorophyll 

concentrations, it is reasonable to postulate that a relatively reduced access to phytoplankton 

prey restricted the cladoceran community composition, ultimately reducing the functional 

diversity in these lakes relative to randoIlîly assembled communities, filtering the community 

composition according to tolerances. Similar responses to acidity also seem to have 

prompted a reduction in cladoceran functional diversity relative to what one might expect by 

chance, fUlther implicating the structuring influence of habitat filtering. 

Of note is the fact that there were no significant relations between standard ized 

functional diversity values and limnological variables at the level of the broader zooplankton 

community. The response to environmental gradients emerged only after the removaJ of 

copepods From the analysis. This result indicates that environmental gradients that might be 

most important in determining copepod community structure might be different From those 

important to cladoceran communities or might not have been measured. For example, 

previous experimental work on crustacean zooplankton communities has shown different 

tolerances to acidity between cladocerans and copepods. For example, a freshwater 

mesocosm experiment conducted in an Ontario lake involved the reductions of ambient pH to 

< 6, which resulted in a significant reduction in Daphnia populations with no such effect on 

copepod species (Binks et al. 2005). lt is possible that the range in conditions encountered 

by the zooplankton in the 54 study Jakes here did not exceed the tolerances for any of the 

copepods, and further study with a larger set of lakes, or focus on different environmental 

variables, might reveal similar signais of habitat filtering in their communities. 

It is impoliant to note, however, as was mentioned previously, that the attribution of 

habitat filtering as the prime factor shaping zooplankton structure in these four regions in 

southern Quebec is only an inference. Given the relations with limnological variables, the 

consistency of these results with previous work in zooplankton communities, and that the 
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results were robust at two levels of taxonomie resolution, it is a reasonable assumption to 

make, but no certain conclusions can be drawn. Emerson & Gillespie (2008) review a series 

of alternative explanations to habitat filtering and competition as explanations for 

phylogenetic dispersion patterns. For example, patterns of phylogenetic under-dispersion 

have been attributed to facilitative interactions between species or stochastic disturbance but 

we are aware of no reason to invoke either as potential alternative explanations in this case. 

It is also impoliant to be aware that the influence of ail five environmental variables 

of importance only accounted for 30% of the variance in the standardized values of 

functional diversity, suggesting the potential importance of other explanatory variables in 

shaping the structure of zooplankton communities. Beisner et al. (2006), who studied 18 of 

the Eastern Township lakes included in this study, noted that among other planktonic 

organisms (including phytoplankton and fish), zooplankton were the group most influenced 

by metacommunity processes, exhibiting responses to both habitat filters and dispersal 

processes. Even though most zooplankton genera were found in ail four studied regions, 

indicating that the majority of genera at least had the opportunity to reach the vast majority of 

study lakes it is possible that avenues for dispersal influenced the functional distribution 

patterns described here, and some appreciation for spatial processes might help to explain 

differences in functional composition among communities whose diversity was 

indistinguishable from the random assemblages. Still, given the nature of the data analysed 

here, it is also possible that spatial factors might not have accounted for an increased 

explained variance, as Beisner et al. (2006) also found no explanatory power of spatial 

variables when only presence-absence data were considered, suggesting that dispersal does 

not limit the number of individuals present in a given region, but rather the probability with 

which species might arrive. Nevertheless, an important caveat for this kind ofstudy is an 

awareness that unmeasured variables might improve overall explanatory power. For 

instance, the presence of predators (both veliebrate or invertebrate) might be another 

important environmental filter determining zooplankton distributions. In addition, future 

work with zooplankton could include focus on functional traits that differentiate species with 

respect to their dispersal abilities. Beisner et al. (2006) partitioned spatial data according to 
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overland vs. watercourse distances separating lakes, and a recognition ofwhich species might 

have a particu laI' affinity for either of these processes might al low for further functional 

differentiation, and improved explanatory power in understanding functional community 

composition. 

As mentioned earlier, when interpreting the results of studies inferring assembly 

processes based on dispersion patterns, it is important to be aware of which studies use 

functionaI traits and which studies use phylogenetic data. Cadotte et al. (2008,2009) used 

both phylogenetic and functional diversity to account for plant community productivity, and 

found that phylogenetic measures consistently outperformed functional measures in 

explanatory capacity. In agreement with Swenson & Enquist (2009), they found general 

disagreement between functional and phylogenetic approaches within the same system, and 

argued for the superiority of phylogenetic measures, noting that they might encompass 

numerous aspects of function accumu\ated over the course of a shared evol utionary history 

that could be lost in functional diversity measures based on restricted collections of traits. 

While phylogenetic measures of diversity might, in this way, be more inclusive, Swenson & 

Enquist (2009) argue that an explicit consideration of traits might better account for the 

functional underpinnings of species coexistence under particular circumstances. In general, 

however, we would argue that the future of such work would be best served by employing a 

combination of functional and phylogenetic approaches (see Westoby 2006), further 

exploring the evolutionary conservation of traits (see Kembel 2009), with an emphasis on 

comparing traits that may or may not be phylogenetically constrained. Such a focus on the 

lability of traits, and how they might respond to different environmentaI drivers could allow 

for an exploration of how dispersal processes and the influence of local habitat filters might 

interact within a metacommunity framework, and offer a more dynamic understanding of the 

determinants of community structure. 
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3.6 Conclusion 

In summary, the primary contribution ofthis study is in examining functional 

dispersion patterns of zooplankton commun ities across 54 freshwater lakes from four regions 

in Southern Quebec, and in discussing these results within the context of how environmental 

filters might influence genus-Ievel co-existence patterns. In general, habitat filtering was the 

primary contributor to functional community structure, with no statistically significant signal 

for competition in any lakes, a pattern that was robust across two levels of taxonomie 

resolution including the full macro-zooplankton community, and cladocerans as a group. 

Among cladocerans, limnological characteristics implicated as being the most important 

habitat filters included total phosphorus, total nitrogen, chlorophyll a, pH, and lake altitude, 

with oligotrophic conditions, low chlorophyll concentrations, low pH and high altitude 

contributing to the lowest levels of functional diversity. 
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Table 1: Range in limnological characteristics for ail 54 study lakes. 

Limnological Characteristic Minimum value MaximumValue 

Maximum Depth (m) 1.8 84 

Volume (m3
) 2.85xl0î l.7x 109 

Surface area (km 2) 0.1 18.7 

Altitude (m) 160 485 

Shoreline (m) 1.3 40 

pH 6.6 8.8 

TP ()lgIL) 5.4 98.4 

TN (mg/L) 0.2 1.1 

DOC (mg/L) 2.1 18.3 

Chlorophyll a ()lglL) 0.43 24.2 
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Table 2: Cladocerans and copepods encountered in this study and their functional traits. 
Functional traits were taken from Barnett et al 2007. 

Lenglh Trophie heding 
Speeies (mm) Predator Defense Habitat Group Type 

Cladocerans 

Alona sp. 0.41 Pausing & Jumping Littoral Herbivore C-Filtration 

Ceriodaphnia laeustris 0.46 Rapid Swimming Pelagie Herbivore D-Filtration 

Ccriodaphnia retieulala 0.93 Rapid Sv;,imming Pelagie Herbivore D-Filtration 

Daphnia ambigua 0.80 Rapid Swimming Pelagie Herbivore D-Filtration 

Daphnia eatawba 1.41 Rapid Swimming Pelagie Herbivore D-Filtration 

Daphnia dentifera 126 Rapid Swimming Pelagie Herbivore D-Filtration 

Daphnia longiremis 091 Rapid Swimming Pelagie Herbivore D-Filtration 

Daphnia mendotae 1.08 Rapid Swimming Pelagie Herbivore D-Filtration 

Daphnia parvula 067 Rapid Swimming Pelagie Herbivore D-Filtration 

Daphnia puliearia 1.61 Rapid Swimming Pelagie Herbivore D-Filtration 

Daphnia retroeurva 1.01 Rapid Swimming Pelagie Herbivore D-Filtration 

Diaphanosoma 
Icuehtenbergianum 0.65 Pausing & Jumping Pelagie Herbivore S-Filtralion 

Holopedium gibberum 1.04 Proteetive Sheath Pelagie Herbivore S-Filtration 

Leydigia quadrangularis 0.46 Meehanieal Littoral Herbivore S-Fillration 

Eubosmina eorregoni 0.44 Redueed Swimming Pelagie Herbivore B-F iltration 

Eubosmina longispina 0.37 Redueed Swimming Pelagie Herbivore B-Filtration 

Eu bosmina longispina-oriens 0.39 Redueed Swimming Pelagie Herbivore B-Filtration 

Neobosmina tubieen 0.53 Redueed Swimming Pelagie Herbivore B-Filtration 

Sinobosmina freyi 035 Reduced Swimming Pelagie Herbivore B-Filtration 

Sinobosmina liederi 0.34 Redueed Swimming Pelagie Herbivore B-Filtration 

Polyphemus pedieulus 0.89 Meehanieal Pelagie Carnivore Raptorial 

Chydorus 0.29 Pausing & Jumping Lilloral Herbivore C-Filtration 
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Length Trophie Feeding 
Speeies (mm) Predator Defense Habitat Group Type 

Copepods 

Aeanthoeyelops robustus 0.87 Pausing & Jumping Pelagie Omnivore Raptorial 

Aeanthoeyclops vernalis 0.74 Pausing & Jumping Pelagie Omnivore Raplorial 

Cyelops selltifer 1.08 Pausing & Jumping Pelagie Omnivore Raptorial 

Diaeyelops bieuspidatus 
thomasi 0.83 Pausing & Jumping Pelagie C-Omnivore Raptorial 

Eueyelops speratus 090 Pausing & Jumping Littoral H-omnivore Raptorial 

Mesoeyelops edax 0.97 Pausing & Jumping Pelagie C-Omnivore Raptorial 

Tropoeyelops prasinus 0.51 Pausing & Jumping Pelagie H-omnivore Raptorial 

Current 
Episehura laeustris 153 Pausing & Jumping Pelagie C-Omnivore cruiser 

Stationary 
Leptodiaptomus minutus 0.84 Pausing & Jumping Pelagie Omnivore suspension 

Stalionary 
Leplodiaptomus sicilis 1.21 Pausing & Jumping Pelagie Herbivore suspension 

Stationary 
Skistodiaptomus oregonensis 1.14 Pausing & Jumping Pelagie Omnivore suspension 
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Table 3: Standardized functional diversity scores (Z) for each lake and their associated 

significance values. Negative values occurred where observed functional diversity was less 

than functional diversity for the average randomly generated community. Positive values 

occulTed where observed functional diversity was greater than the functional diversity of the 

average random Iy generated community Values are presented for the entire zooplankton 

community and the cladoceran community. Rows with a significant value are highlighted 

and marked with an asterisk. 

Region Lake Whole Community Cladoceran 

Z p Z P 

Laurentians En Coeur -2.391 0.026 * -1.3 86 0.065 

Laurentians Cromwell -20407 0.031 * -0.779 0.167 

Laurentians Croche -1.929 0.055 -0.974 0.124 

Laurentians Achigan -1.229 0.091 -0.923 0.197 

Laurentians Montagne Noir -0.643 0.21 -1.102 O. \18 

Laurentians Boeuf -1.558 0.101 -1.575 0.034 * 

Laurentians Ludger -2.220 0.036 * -2.242 0.008 * 

Laurentians Pin Rouge -1.550 0.091 -1.569 0.026 * 

La urentians Dupuis -1.548 0.083 -0.794 0.157 

Laurentians Masson -\.704 0.073 -1.37 J 0.064 

La urentians Nord -1.577 0.081 -2.195 0.005 * 

Laurentians Walfred -2.276 0.041 * -0.290 0.386 

Laurentians Echo -1.866 0.043 * 0.068 0.516 

Laurentians Renaud -2.060 0.026 * -00466 0.316 

Laurentians Grand Lac Noir -1.2 J 8 0.095 -0.872 0.20i 

Laurentians Bleu -lAi 0 0.093 0.042 0.514 

Laurentians Seize Iles -1.307 0.088 -1.357 0.068 

Laurentians Conelly -1.346 0.065 -0.395 0.36 
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Laurentians Morency -1.799 0.074 0.412 0.653 

Laurentians Truite -1.424 0.115 -1.996 0.049 * 

Outaouais Desormeaux -0.654 0.178 0.021 0.505 

Outaouais Noir -1.488 0.089 -0.280 0.432 

Outaouais Victoria -0.030 0.371 -2.044 0.038 * 

Outaouais Heney 0.058 0.499 -2.140 0.008 * 

Outaouais Vert -1.850 0.048 0.120 0.55 

Chaudière-
Applaches Caribou 0.124 0.532 -0.447 0.344 

Chaudière-
Applaches Nicolet -2.827 0.021 * -0.121 0.462 

Chaudière-
Applaches Coulombe 1.157 0.876 -2.115 0.008 * 

Chaudière-
Applaches Huit 0.892 0.816 -1.475 0.077 

Chaudière-
AppJaches Est 0.259 0.603 -0.326 0.376 

Estrie Argent 1.204 0.899 -2.009 0.049 * 

Estrie Drolet 1.221 0.897 -2.l77 0.03 * 

Estrie Petit Brompton 1.177 0.891 -1.068 0.112 

Estrie Vert -1.850 0.048 * -0.005 0.497 

Estrie Memphremagaog -0.001 0.457 -1.049 0.157 

Estrie Brome 0.223 0.559 -1.071 0.17 

Estrie Massawippi -0.184 0.426 -0.463 0.333 

Estrie Waterloo -1.884 0.04 * -0.505 0.336 

Estrie A la Truite -1.563 0.096 -1.597 0.031 * 

Estrie O'Maliey -2.407 0.03 J * -0.926 0.098 

Estrie Des Monts 1.505 0.94 -2.296 0.029 * 

Estrie Parker -0.031 0.498 -0.551 0.307 
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Estrie St. Georges 0.775 0.768 -0.532 0.312 

Estrie Lovering 0.676 0.746 -2.476 0.027 * 

Estrie Stukely 1.222 0.895 -0.976 0.114 

Estrie Bowker 1.183 0.901 -2.052 0.047 * 

Estrie Trois Lacs 0.499 0.681 -0.317 0.416 

Estrie Fitch 0.621 0.681 -0.995 0.166 

Estrie Tom Cod 0.610 0.755 0.538 0.714 

Estrie Simoneau -0.758 0.181 -1.100 0.042 * 

Estrie Orford 1.301 0.911 -1.926 0.054 

Estrie Fraser 1.402 0.932 -2.220 0.035 * 

Estrie Lyster 0.685 0.756 -0.938 0.l22 

Estrie Baldwin 1.187 0.891 -0.944 0.188 



CHAPTER 4: INVESTIGATING THE INTERACTION BETWEEN FUNCTIONAL 
DIVERSITY AND EUTROPHICATION IN MODULATING PHYTOPLANKTON 
COMMUNITY PRODUCTIVITY 

4.1 Summary 

Few topics in ecology have been explored more extensively in recent years than how 

the diversity of a system might influence its productivity. This chapter will involve an 

exploration of this theme in phytoplankton communities, adopting an experimental approach 

where functional diversity and nutrient supply are both manipulated to test for a potential 

interaction between the diversity in functional traits and resource availability in influencing 

total community production. Phytoplankton communities were colJected from three lakes in 

southern Quebec spanning a nutrient gradient and were combined in various proportions to 

create treatments of high and )ow functional diversity. In addition to this diversity treatment, 

a three levels of nutrient availability were established and communities were compared in 

their overallieveis of taxonoIlÙc and functional diversity, as weIl as in their capacity to 

produce oxygen and total phytoplankton biomass. Results indicated no relations between 

biodiversity and ecosystem functioning under any nu trient treatment. Further. the general 

lack of diversity-productivity relations, in addition to a saturating relation between taxonomie 

and functional diversity were highly indicative of functional redundancy among the plankton 

at modest levels of species richness, indicating that species loss would only affect ecosystem 

functioning when communities are reduced to very low levels of phytoplankton diversity. 

4.2 Introduction 

Relations between biodiversity and ecosystem functioning have received 

considerable attention in the ecologicalliterature in recent years (see Hooper et al. 2005, 

Balvanera et al. 2006 for recent reviews), leading to a general consensus that species 
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functional characteristics have a strong influence over ecosystem properties (Hooper et al. 

2005). Much of this work has focused on the influence of different measures of biodiversity 

on community production, and recent efforts have highlighted the potential for bi

directionality in this relation, with productivity standing as both a cause and a consequence of 

biodiversity patterns (see Worm & Duffy 2003, Gross & Cardinale 2007, Cardinale et al. 

2009a,2009b). Under the so-called "multivariate productivity-diversity hypothesis", 

biodiversity both responds to nutrient avaiJability and can help shape community productivity 

if diversity contributes to the efficiency with which nutrients are convelted into growth. (see 

Cardinale et al. 200%). Algal systems provide an excellent venue for investigating the bi

directionality of diversity in influencing ecosystem functioning as their richness patterns have 

been shown to both respond along gradients of nu trient availability (see Leibold 1999, 

Dodson et al. 2000, Chase & Leibold 2002, Butzler & Chase 2009), and to influence primary 

production (Chapter 1, Downing & Leibold 2002, but see Zhang & Zhang 2006) and nutrient 

uptake rates (Streibel & Behl 2009). In view of these facts, the experiment described in this 

study will involve manipulations of both functional diversity and resource availability to see 

how these two factors may jointly, or independently, influence ove ra Il ecosystem 

functioning. 

Nutrient gradients have been shown to exert control over the composition of 

phytoplankton communities. In so doing, they are likely to modulate the functional groups 

represented, with the potential to affect primary production. Interlandi & Kilham (2001) 

conducted an observational study where they found that phytoplankton diversity was highest 

where resources were the most limiting, emphasizing how resource competition is an 

important factor in structuring phytoplankton communities. Research conducted during a 

whole-Iake enrichment experiment by Cottingham & Carpenter (1998) demonstrated that 

eutrophication initiated shifts in the dominant groups of phytoplankton. In addition, results 

from this study showed that eutrophication cou Id influence aggregate, community-level 

measures of functioning like chlorophyll a and primary productivity. Likewise, in an 

observationa 1study spann ing a nutrient grad ient in fishless ponds, Leibold (1999) found a 

positive relationship between nutrient level and phytoplankton cell size, a result mirrored in 
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the study by Cloern & Dufford (2005). Finally, aeross many lakes Watson et al. (1997) 

found that phytoplankton biomass inereased with total phosphorus (TP) availability, both for 

the aggregated eommunity and within important taxonomie groupings (e.g. ehlorophytes, 

ehrysophytes, eryptophyes, cyanophytes, diatoms, and dinophytes). Most groups increased in 

biomass with increasing TP, but with different rates ofaccumulation. Some groups, 

however, showed no relationship at ail with TP, while others showed a quadratic response, 

peaking at intermediate nutrient levels. It is thus clear that different functional groups of 

phytoplankton respond different to nutrient availabi lity. Taken in concelt with the other 

studies referring to phytoplankton diversity responses to phosphorus availability, these results 

suggest that nutrient availability and functional diversity could indeed interact to have an 

effect on community productivity. 

This thesis chapter will be concerned with investigating whether nutrient availability 

(phosphorus) and functional diversity interaet in determining phytoplankton community 

functioning. An experimental approach will be described, expand ing on the work of Zhang 

& Zhang (2006), who conducted a microcosm experiment where algal communities were 

exposed to two levels of nlltrient availability and a temperature perturbation. Their goal was 

to test how manipulations in both species richness and nutrient availability affected the 

relations between biodiversity and community productivity and stability. They found little 

evidence for a biodiversity effect on biomass production in either nutrient-rich or nutrient 

poor microcosms, but noted compensatory growth after the temperature 'pelturbation in the 

nutrient poor environmentsciting a nutrient effect on a diversity-stability relation. Even 

though this lack of a positive relation between diversity and productivity might seem like a 

departure From expectations, it is important to note that their species riehness manipulation 

was restricted to six species, all From the same taxonomie division of green algae. Our study 

included phytoplankton eommunities collected From lakes in the Eastern Townships of 

southern Quebec, in their naturallevels of diversity and abundances, and th us offers a 

broader potential range of functions and applicabil ity to natllral phytoplankton communities. 

Flirther, diversity manipulations were From a functional, as opposed to a taxonomie, 

perspective, including algae from lakes spanning a trophic gradient. Reynolds et al. (2000) 
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affirm that while there is no clear evidence that particuJar species of phytoplankton are 

uniquely selected by d ifferent combinations of environmental conditions, there is little doubt 

that there are phytoplankton functional traits that respond preferentially to oligotrophic or 

eutrophic conditions. As such, the experiment described here will focus on how 

phytoplankton diversity-productivity relations might differ among communities characterized 

by high and low levels of functional diversity and exposed to a gradient in nutrient 

availability. 

4.3 Materials & Methods 

4.3.1 Assembly of Experimental Communities 

Phytoplankton communities were collected from three lakes in the Eastern 

Townships of southern Quebec. The lakes spanned a nutrient gradient from oligotrophic 

(Lake Stukely, -6 !-!g/L ), to mesotrophic (Lake Memphremagog, -15 !-!g1L ), to hyper

eutrophic (Lake Tomcod, -80 !-!g1L). These lakes were chosen for their range in nutrient 

conditions and different phytoplankton communities (M.L. Longhi and B.E. Beisner, 

unpublished data). Phytoplankton innocula were collected from Lake Stukely and Lake 

Tomcod on a single day in late July from the deepest point. Phytoplankton innocula 

represented species from across the entire photic zone, collected using a 2-L van Dom bottle. 

Vpon removal, each sam pIe was filtered through a 35 !Jm mesh to exclude ail mature 

zooplankton; the use of a smaller mesh would have excluded larger diatoms and other 

colonial species of phytoplankton, reducing the potential range of phytoplankton diversity. 

Zooplankton were removed in order to lessen the risk of total herbivory within the confines 

of mesocosm tanks. In sum, 36 L (spread evenly over the photic zone of both lakes) were 

removed from each lake, stored in two, 18 L carboys for transpolt to the experimental site 

(located 200 m from Lake Memphremagog). 
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The experiment was conducted in 18 cylindrical (1.5 m tall, 1 m radius), 1000 L 

capacity mesocosm tanks. Each tank was filled to 500 L with water pumped directly from 

Lake Memphremagog, filtered through a 35 ~m mesh. As a result, ail 18 mesocosm tanks 

had a large complement of phytoplankton from Lake Memphremagog. Nine of these 18 

tanks wou Id only include species from Lake Memphremagog and would comprise a low 

diversity treatment. The other nine included 8 Leach of the combined innocula collected 

from Lakes Stukely and Tomcod that had been mixed together in a large container. Innocu la 

were added on day 0 of the experiment and these nine tanks formed the high diversity 

treatment. Given that the three lakes differed so strongly in their nutrient environments, and 

that previous work done on the phytoplankton taxonomy of these lakes revealed that the 

identity and functional nature of the speeies in the three lakes differed substantially (M.L. 

Longhi and B.E. 8eisner, unpublished data), we expected both the functional and taxonomic 

diversity to be higher in the high diversity treatment. 

Details of the experimental design are depicted in Figure 1. The experiment 

consisted ofboth diversity and nutrient manipulations, comprising two diversity and three 

nutrient treatments. Of the nine mesocosm tanks in each diversity treatment, three replicates 

were alloeated to eaeh ofthree nutrient treatments: oligotrophic, mesotrophic, and eutrophie. 

These nutrient treatments refleeted the nutrient status of the three source lakes (Stukely, 

Memphremagog, and Tomcod). rn order to estabJish the nutrient levels refleetive of 

oligotrophie, mesotrophie and eutrophic environments (since tank media consisted of Lake 

Memphremagog water), phosphorus in the form of KH2P04 and nitrogen in the form of 

NaNO) with an N:P ratio of25: 1 were added. Nutrient additions were carried out after 

measuring the ambient levels of total phosphorus in each tank (see analytical methods 

below), and adding the required amount of nutrients, setting oligotrophic tanks to ~ 10 Ilg/L 

(TP), mesotrophic tanks to ~20 ~g/L (TP), and eutrophie tanks to ~60 ~gIL (TP). Nutrient 

additions were done only once on day 0, and phosphorus and nitrogen concentrations were 

monitored throughout the experiment following the analytieal methods outlined below. 
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The experiment ran for a total of six weeks. Following the first three weeks of the 

experiment, each mesocosm tank was exposed to an acidity press perturbation where the pH 

was reduced from -8 to -4.7 (acidification levels determined based on Turner et al. 1995, 

Fischer et al. 2001 a, Fischer et al. 200 \b, Klug et al. 2002). Acidification can have 

important consequences for phytoplankton community composition (Turner et al. 1995, Klug 

et al. 2000) as changes in pH can initiate shifts between different taxonomie classes of 

phytoplankton. If species exhibit variable productivity under different nutrient regimes 

(Watson et al. 1997), extirpation of acid sensitive species could precipitate community-Ievel 

changes in productivity. Thus, this press perturbation was meant to serve as an additional test 

for relations between functional diversity and ecosystem functioning under different 

conditions ofnutrient availability. Reductions in pH were achieved by adding drops of 10% 

H2S04 to each well-mixed mesocosm tank until the desired pH was attained. After the one

time perturbation, mesocosm tanks were left to return to a more neutral pH on their own 

trajectories. 
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Figure 2: Experimental Design for Chapter fJI- Two-way 
factorial design with two diversity treatments (high and low) and 
three nutrient treatments (oJigotrophic, mesotrophic, eutrophie), 
each replicated three times for a total of \8 tanks. Experimental 
duration was 6 weeks with a pH perturbation occurring after 
week 3. (A- Stukelylake, B- Lake Memphremagog, C- lake 
Tomcod). 

4.3.3 Data Collection and Analytical Methods 

Water samples (1 L) were coJlected each week from each mesocosm tank using a 

plastic bottle and were taken from the centre of each tank 0.5 m below the surface. From 

each 1 L sam pie, 125 ml were preserved in Lugol 's iod ine for identification and enumeration 

of species and the remainder was used for measurements of total and dissolved phosphorus 

(TP, TOP) and nitrogen (TN, TON). Phosphorus concentrations were measured 

spectrophotometrically by the molybdenum blue method after persulfate digestion (Griesbach 

& Peters 1991). Nitrogen concentrations were analyzed using segmented flow analysis and 
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were also determined spectrophotometrically alter cadmium reduction and creation of an azo 

dye (D'Elia el al. 1977). Temperature was also monitored in situ to ensure consistency 

between tanks, and was measured using a HOBO thermistor, suspended in the middle of each 

tank, weighted to the bottom with a 0.5 m length of fishing wire. 

Each week, measurements were also taken to assess the daily primary production of 

each community. Oxygen concentrations were measured at their minimum at dawn 

(approximately 05h00) and at peak oxygen production times (approximately II h30) (as 

estimated in a tank where a YSI-6600 datasonde ran continuously). Primary production was 

recorded as the difference between maximum and minimum concentrations for each 

mesocosm tank. These estimates for primary production were used as a measure of 

ecosystem functioning for each community. Another measure used for estimating ecosystem 

functioning was total phytoplankton biomass production across ail species computed from 

microscope counts (see next section). A third estimate of ecosystem functioning was 

bacterial production as reflected in decomposition rates. Previous work has shown that 

bacterial and algal communities may compete for phosphorus (Klug 2005) and that there are 

marginally significant interactions between phytoplanklon biomass and bacterial production 

(Cottingham el al. 1997). Thus, the responses of bacterial production as reflected in 

decomposition rates in different nutrient treatments may provide further evidence of changes 

in phytoplankton community functioning. Decomposition was measured by tracking the 

biomass lost from detritus bags (two per tank) over the course of the experiment. Each 

detritus bag contained a mixture of fallen tree leaves (mostly maple, oak, and ash) colJected 

from the forest floor near Lake Memphremagog that had been dried for 24 hours in an 80 oC 

oyen. Once dry, 5 grams of leaves was weighed and placed in a bag made from mosquito 

mesh. Precise weights varied by up to 100 Ilg, so each values were recorded for each bag's 

contents at the beginning and the end the experiment. Two bags were added to each tank, to 

allow the destructive sampling of one of them prior to the acidification (in case the reduction 

in pH also affected rates of detrital breakdown). The difference in detrital weight belween 

the beginning and the end of the experiment was used as proxy measure ofbacterial 

community production. The three measures of ecosystem functioning used (oxygen 
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production, biomass production, bacterial decomposition), have been shown previously to be 

better predictors of community and ecosystem responses to environmental change than 

population-Ievel measures (Cottingham & Carpenter 1998, Scheffer el al. 2003). 

Phytoplankton species were identified using an Olympus inverted microscope (200x

400x), and were counted according to the protocol defined by the United States Geological 

Survey - National Water Quality Assessment (http://wateLusgs.gov/nawqa/). Sub-samples 

of 10 ml or 25 ml (depending on sample density) were added to a tubular Utermohl counting 

chamber, and were allowed to settle for a minimum of 12 hours. Organisms were identified 

to the species level and were counted within random fields at 400x magnification. The 

number of fields counted ranged from a minimum of 12 to a maximum of35, and counts 

were conducted until 300 natural units (individuals or colonies) were identified. Once the 

minimum required natural units were counted, a further scan was made for rare species using 

a single transect made at 200x magnification. In ail, 41 species were identified, from eight 

major phytoplankton groups (Diatoms, chlorophytes charophytes, chrysophytes, 

cryptophytes, cyanophytes, dyanof1agellates, and euglenoids). (see Appendix C for full list) 

4.3.4 Functional Traits 

Functional traits were selected based on previous work discussing their application in 

phytoplankton communities (Weithoff 2003, Reynolds 2002). Traits considered for inclusion 

were those most directly related to the processes of growth, sed imentation, and grazing 

losses, identified by Weithoff (2003) as the main processes of impoltance in quantifying the 

functioning and performance of phytoplankton populations. In particular, cand idate traits for 

analysis included: the nominal trait of species biovolume; the binary traits of capacity for 

nitrogen fixation, demand for silica, capacity for mixotrophy, ability to fonn colonies, and 

edibility by zooplankton; the ordinal variable of motility (non-motile, f1agellated, or 

operation of a gas vacuole); and the categorical variable pigment type (green, blue-green, 
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brown, mixed). Of these potential traits, three were selected for their strong potential to 

contribute to the measures of ecosystem functioning selected for this study. First, biovolume 

is a trait that represents different physiological activities 1ike growth (Weithoff 2003), and is 

a particularly effective trait for differentiating among communities as phytoplankton can span 

size differences up to tive orders of magnitude. Second, given the range in nutrient 

availabil ity found among the experimental treatments, a capacity for mixotrophy (an ability 

for different species to digest prey in addition to deriving energy From photosynthesis) could 

be a valuable trait for differentiating among communities exposed to different levels of 

resource availability, and their resulting overalileveis of productivity (Weithoff2003). 

Third, pigment type was retained for analysis for its potential to allow for complementarity in 

light-harvesting capacities among different pigment groups within a community, another 

quality with the potential to account for differences in primary production. 

4.3.5 Calculating functional diversity and statistical analysis 

Functional diversity was computed for each mesocosm tank using Gower's Index and 

was quantitied as the average pair-wise distance separating ail species in a given community 

(see Chapter 3). Gower's Index was used as it allows for the combination ofboth nominal 

and categorical variables (see arguments in Podani & Schmera 2006) in a single measure of 

functional diversity. We used this simple measure of functional diversity instead of other, 

more widely used, dendrogram-based measures (see Petchey & Gaston 2006) to avoid some 

of the associated methodological decision issues that have been shown to dramatically affect 

results (see Poos et al. 2009). Functional diversity calculations were done in MATLAB 

version 7.7 (MATLAB & Simulink 2008). 

Community stability was assessed in two ways. The tirst involved a comparison 

between species richness, functional diversity, and al! measures of ecosystem functioning 

among diversity and nutrient treatments between weeks three and four (pre- and post
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perturbation). The second was done by looking at a measure of temporal variability in 

summed biomass, and how it related to different measures of diversity. Temporal variability 

in summed biomass was measured using co-efficients of variation (CV), computed as the 

standard deviation in summed biomass divided by the mean biomass compllted for each 

community for the six sampling dates. This means of investigating stability assumes that 

communities most affected by the perturbation woilld be those most variable in commllnity 

biomass over the course of the experiment. 

Diversity treatments were compared in both their species richness and functional 

diversity to verify the effectiveness with which the diversity treatments were established. 

Species richness and functional diversity were also compared among nutrient treatments. 

Measures of ecosystem functioning including primary production, biomass production, and 

decomposition, were also compared between diversity and nlltrient treatments. Ali 

comparisons were made using factorial and two way (repeated measures) ANOVA, where 

inde pendent effects of diversity and nutrient treatments were investigated in add ition to their 

interactions and effects of time. Additional comparisons were made between functional 

diversity and oxygen and biomass production using least squares regression. Functional 

diversity was also regressed aga inst species richness across ail corn mun ities. Ali regressions 

and ANOVA were conducted in JMP version 7.0 (SAS Institute Inc, 2008). 

4.4 Results 

Across ail six weeks of the experiment, both species richness and functional diversity 

were significantly higher in the high diversity treatment (see Table 1). There were no 

significant differences, however, in primary production, biomass production, nor bacterial 

production among diversity treatments (see Table 1). 



With respect to nutrient treatments, species richness was significantly higher in 

oligotrophic relative to mesotrophic or eutrophic treatments, but there were no differences 

among nutrient treatments for functional diversity (see Table 2). In terms ofmain effects of 

nutrients on ecosystem functioning measures, there were no significant differences among 

nutrient treatments for primary production, biomass production, or bacterial production (see 

Table 2). 

There was a significant interaction between diversity and nutrient treatments for 

species richness (ANOVA; F=5J, P<O.O 1), but not for functional diversity (ANOV A; 

F=O.3I, P=ns), primary production (ANOVA; F=O.OS, P=ns), biomass production (ANOV A; 

F=O.67, P=ns), or bacterial production (ANOV A; F=OJ l, P=ns) Time was not a significant 

interaction term in any comparison. 

There was no significant relation across ail mesocosm tanks between primary 

production and species richness (R2=O.004, p=O.S2; Figure 2a), primary production and 

functional diversity (R2=O.007, p=O.39; Figure 2b), biomass production and species richness 

(R2=O.02, p=O.19; Figure 2c), or biomass production and functional diversity (R2=O.03, 

p=OAO; Figure 2d). 
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Figure 2: Relations between biodiversity and ecosystem 
functioning. (a) species richness vs. oxygen production, (b) 
functional diversity vs. oxygen production, (c) species richness 
vs. summed biovolume, (d) functional diversity vs. summed 
biovolume. 

Between the weeks before and after experimental acidification (three and four), there 

were significant reductions in species richness (13.5 to 10.6; ANOYA, F=7. 19, P=O.O 1) and 

functional diversity (ANOYA, F=5.48, P=0.02), but no concomitant significant reductions in 

neither primary production (ANOY A, F=0.15, P=ns) nor biomass production (ANOY A, 

F=2.3, P=ns). 

There was, however, a significant saturating relation between functional diversity and 

species richness (R2=0.59, p<O.OO 1; Figure 4) with a plateau evident at approximately 10 

species. 
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Figure 4: Relation between functional diversity and species 
richness. 

4.5 Discussion 

Contrary to results often reported for terrestrial communities (see Tilman et al. 2001), 

and in agreement with the results ofZhang & Zhang (2006) we found no evidence for 

relations between biodiversity and ecosystem functioning in phytoplankton communities. 

Results show that diversity treatments did differ signifïcantly in their taxonomic and 

functional diversity, with greater diversity found in the high diversity treatment, but that these 

results did not translate into differences in ecosystem functioning. These results were 

confirmed by the total lack of relations between any measure of biodiversity and any measure 

of ecosystem functioning, and run contrary to previous work in phytoplankton communities 

in streams, where Passy & Legendre (2006) found peaks in summed biovoJume occurring at 

low Jevels of species richness among planktonic species. Previous work in experimental 

mesocosms by Downing & Leibold (2002) also noted increased oxygen and phytoplankton 

production at higher levels of experimentally manipulated diversity, but these results might 

not be directly comparable to the ones reported here. The diversity treatments established by 

Downing & Leibold (2002) comprised fewer species that were distributed among multiple 
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trophic groups (including macrophytes and invel1ebrate grazers in addition to phytoplankton). 

As a result, compositional effects were often just as influential as species richness effects in 

their experi ment. That decomposition did not di ffer between nutrient and diversity 

treatments is in line with results reported by Cottingham et al. (1997), who did not find 

strong evidence for an interaction between bacterial community processes and phytoplankton 

responses to enrichment. 

Further, we also noted no differences among nutrient treatments in ecosystem 

functioning, and even though species richness was greater in oligotrophic relative to 

mesotrophic and eutrophic nutrient treatments, resource availabiJity appeared to have no 

effect on functional diversity. These results also ran contrary to expectations, as 

experimel)tal nutrient enrichment has been shown to lead to increases in algal biomass 

(Blumenshine et al. 2007, Cottingham et al. 1997). When ail these resu Its are considered 

together, knowing that diversity had no effect on any measure of ecosystem functioning, and 

that this trend was not influenced at ail by resource availability, a strong case can be made for 

high levels offunctional redundancy starting at relatively low levels ofspecies richness (~JO 

species) in these phytoplankton communities. Previous work has compared taxonomic and 

functionaJ diversity to determine levels of functional redundancy (Petchey & Gaston 2002, 

Micheli & Halpern 2005), and this same approach detected strong evidence for redundancy 

here. There was a clear, saturating relation between species richness and functional diversity, 

where functional diversity increased rapidly at low levels of species richness reaching a 

maximum at around ten species. Interestingly, work done in species poor phytoplankton 

using species thought to be complementary in functioning has shown positive relations 

between biodiversity and ecosystem functioning (Power & Cardinale 2009). These results do 

not contradict those presented here, as functional saturation appears to have occurred at 

diversity Jevels higher than presented in the work by Power & Cardinale (2009). One 

challenge for future work will be in reJating the resuJts of this experimental work to natural 

communities in order to identify the circumstances under which their results might lend 

insight into applied agendas. 
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Loreau (2004) states that functional redundancy is incompatible with species co

existence, such that complementarity would be required to prevent competitive exclusion 

among species redundant in function., He also argues, however, that spatial and temporal 

environmental variability might allow for sorne measure of functional redundancy at small 

spatial or temporal scales (Loreau 2004), and this argument might support the apparent 

evidence for functional redundancy in our phytoplankton systems. In his original 

presentation of the paradox of the plankton, Hutchinson (1961) argued against the likelihood 

for competitive exclusion in the phytoplanktotl, asserting that equilibrium states are rarely 

encountered in nature, and are unlikely to form in planktonic systems (also see Naselli-Flores 

2003), where currents and a lack of spatial structure should prevent the consistency of 

in teractions regu ired for competi tive excl us ion. Sti Il, j ust because functiona 1red undancy 

might be feasible in planktonic systems, does not necessarily mean it is dominant. Further 

supporting evidence for functional redundancy in these phytoplankton communities is 

apparent however from the analyses of the community responses to an acidification 

perturbation. Our results show that species richness and functional diversity dropped in the 

week after acidification, but that this reduction in diversity was not accompanied by changes 

in any l11easure of ecosystem funclioning. Interestingly, species richness dropped from a 

mean of 13 in the weeks leading up to acidification to 10 in the week after acidification, the 

same value that coincides with the saturation point on the plot indicative of functional 

redundancy. The reduction in diversity resulting from the perturbation was insufficient to 

prompt any change in community functioning, indicating that lost species might have been 

redundant in function for the aggregated measures of community performance measured in 

this study. Had the perturbation more strongly restricted the number of species, il is possible 

that reductions in species diversity might have been met with concomitant reductions in 

ecosystem functioning, after having affected non-redundant species 

It should also be noted that the lack of diversity-productivity relations noted in this 

experiment is consistent with the results of the first chapter of this thesis, which explored 

diversity-biomass production relations in diatoms, and found a positive relation at the scale of 
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the full diatom community. When broken down into benthic and planktonic compartments, 

however, sign ificant positive relations were retained among the benthos, but disappeared 

when only the planktonic species were considered. These results are in line with those of 

Cardinale et a (2009b), who described periphyton algal biomass as being an increasing 

function of species richness. That the y found this relation for benthic species further speaks 

to the argument that an increased spatial structure in the benthos, which is relatively lacking 

in the phytoplankton, might allow for the kind of functional complementarity underlying a 

positive diversity-productivity relation in algae. 

Of course, any discussion of functional redundancy vs. functional complementarity 

will depend heavily upon trait selection. It is possible that the results reported here are 

entirely contingent upon the three traits (size, capacity for mixotrophy, and pigment type) that 

were used. In fact, it has been argued that redundancy is more likely to become apparent in 

systems as fewer traits are lIsed to differentiate among species (Rosenfeld 2002). In addition, 

as is the case in any study employing functional diversity, there may be traits that were not 

accounted for that could have allowed for increases in explanatory power. As was noted 

previously, however, these three traits in particular were chosen for their potential 

applicability to the chosen ecosystem functions, as should always be the case in studies 

relating biodiversity to ecosystem functioning. 

Finally, it is not aJways clear how effectively experimental reslilts can be generalized 

to other systems. Some ecologists have argued that relations between biodiversity and 

ecosystem functioning will not be meaningful for micro-organisms as they are often thought 

to be ubiquitous in their distribution (Finlay et al. 1997, Finlay 2002, Finlay & Fenchel 

2002). Recent work, however, has shown that important gradients exist in algaJ distributions 

(Vyverman et al. 2007, Verleyan et al. 2009). Furthermore, it is clear that algaJ species were 

not ubiquitously distribllted across the lakes sampled for inclusion in this experiment, as the 

diversity treatments, which incillded species from different lakes, differed signifîcantly in 

both species richness and functional diversity. The lack of augmentation in functioning 
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despite the increased diversity in the high diversity treatment indicates neutrality, at least for 

the selected traits and functions. 

It is also worth noting that scientists have questioned the applicability of 

experimentaI work to natural systems (Jiang et al. 2009), stating that studies investigating 

relations between biodiversity and ecosystem functioning can often under- rather than over

estimate relations relative to real systems (Ouffy 2009), and that the shorter time-scales of 

experimental work might only reveal a subset of the interactions that might occur in the 

longer term in the field (Stachowitz et al. 2008). Given the steps taken in this experiment to 

closely approximate field conditions, such as including full species complements taken from 

locallakes, and having the experiment l'un for several generations of the representative 

species, we believe that these results could scale meaningfully to natural communities (see 

Smith et al. 2005). Still, we believe that biodiversity-ecosystem functioning experiments 

warrant further exploration in field settings, including a more explicit exploration of the 

extenl of functional redundancy vs. niche dimensionality in these communities. 

4.6 Conclusion 

This study focused on an experiment meant to explore how biodiversity and 

ecosystem functioning relations might interact with nutrient availability in phytoplankton 

communities. No relations were found between functional diversity and primary or biomass 

production, with no appreciable effect nutrient availabi lity in either case. Subsequent 

comparisons of functional and taxonomie diversity were indicative of high levels of 

functional redundancy in these phytoplankton communities for even modest levels of species 

richness. Resu Ils were comparable lo those found for biod iversity-ecosystem functioning 

relations found in Chapter 1 for planktonic diatoms, and indicate that species Joss would have 

to be profound to affect change in phytoplankton community functioning. 
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Table 1: Differences in diversity and ecosystem functioning between high and low diversity 

treatments 

High Diversity Low Diversity F P 

Species Richness 13.77 +/- 0.49 10.35 +/- 0.46 25.19 <0.001 

Functional Diversity 0.30 +/- 0.003 0.28 +/- 0.007 6.21 0.01 

Primary Production 0.37 +/- 0.025 0.38 +/- 0.027 0.11 ns 

Biomass Production 1.2E05 +/- 2.6E4 lAE5 +/- 2.8E4 0.17 ns 

Bacterial production 1.3 +/- 0.06 1.11 +/- 0.06 0.14 ns 

Table 2: Differences in diversity and functioning between oligotrophic, mesotrophic and 

eutrophic nutrient treatments. 

Oligotrophic Mesotrophic Eutrophic F P 

Species Richness 13.67 +/- 0.60 11.61 +/- 0.60 10.31 +/-0.60 7.25 0.001 

Functional 0.30 +/- 0.004 0.30 +/- 0.004 0.29 +/- 0.004 2.43 ns 

Diversity 

Primary Production 0.39 +/- 0.03 0.37 +/- 0.03 0.37 +/- 0.03 0.17 ns 

Biomass Production 1.2E5 +/- 3.1E4 1.1 ES +/- 3.2E4 1.8E5 +/- 3.2E4 1.12 ns 

Bacterial production 1.16 +/- 0.07 1.08 +/- 0.07 1.11 +/- 0.07 0.31 ns 
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CONCLUSIONS 

As mentioned in the introduction, the primaI)' goals to be met in this thesis incillded 

investigations of commllnity trait distributions, describing how they might be best defined 

and quantified, how they might relate to different measllres of ecosystem functioning, and 

how these relations might be inflllenced by nlltrient availability. In addition, it involved an 

exploration of variolls determinants of commllnity structure, examining in inde pendent 

chapters how dispersal can initiate homogenization in community composition, and how 

local environmental conditions can influence community functional diversity. Each chapter 

focused on one of these goals and provided insight into the structure and functioning of both 

zooplankton and phytoplankton communities. 

The primary conclusion of Chapter l was that biomass production in a full diatom 

community increased with both taxonomie and functional diversity. Interestingly, however, 

this relation between diversity and ecosystem functioning held only for benthic, but not 

planktonic, diatoms. These results were matched by those ofChapter IV, which also showed 

no relation between functional or taxonomie diversity with primary production, biomass 

production, or bacterial production in phytoplanktonie eommunities when compared at both 

the seale of ind ividual mesocosm tanks, or al the level of diversity treatments. Taken 

together, these results indicate that fllnetional redundancy might be pervasive in 

phytoplankton communities, as evideneed by the saturating relation between funetional 

diversity and species richness in Chapter IV. This functional redundancy in the plankton is 

likely supported bya laek of spatial structure relative to what is found in the benthos, and 

sllggests that speeies losses in the phytoplankton would have to be profound in order to 

influence aggregate measures of community funetioning. 
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Another similarity between Chapters 1and IV is in the relative explanatory power of 

functional and taxonomic measures of diversity. Results from Chapter 1ran contrary to 

expectations as species richness performed just as weil as functional diversity in accounting 

for variation in summed diatom biovolume despite not describing species with respect to 

ecoJogically relevant traits. Likewise, functional diversity did not outperform species 

richness in accounting for ecosystem functioning in Chapter IV. These results appear to 

indicate that species richness might stand as an adequate proxy measure for functional 

diversity in phytoplankton communities. Still, despite their numerical similarity, there was 

substantial evidence indicating that a consideration of functional traits provided added insight 

into both algal communities. In the case of Chapter l, functional diversity was calculated 

using traits describing species responses to environmental variables known to be important to 

diatoms. Results indicated that biomass production in benthic communities was highest in 

communities composed of species optimized by different levels of key environmental 

variables. Even though a description ofthese functional traits did not necessarily result in an 

improved description of community functioning, the exercise of trait selection revealed 

which response traits were most impoltant in describing diatom biomass production. 

Responses to total phosphorus and pH were most consistently retained, both in the stepwise 

regression procedure used to select traits for TV, and in the practice of investigating ail 

combinations of traits to determine the best possible explanatory model using FD. In the case 

of Chapter IV, the most compelling evidence for functional redundancy in phytopJankton 

communities came in an examination of how functional diversity varied with species 

richness. In both cases, despite not out-performing taxonomic measures of diversity, 

qllantifying species in terms oftheir fllnctional traits allowed for an improved understanding 

of how species related to ecosystem functioning, and provided information that would have 

been missed if only species richness were considered. It is for this reason that it is important 

to include functional measures of diversity in future work relating measures of biodiversity to 

ecosystem functioning in phytoplankton systems. 

Functional measures of diversity also proved informative in investigations of the 

determinants of zooplankton community structure. The primary result of Chapter III was in 
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the dominance of habitat filtering, relative to competition, in explaining patterns of functional 

trait dispersion across a landscape of lakes. These results were robust across two scales of 

taxonomie resolution, with habitat filters remaining influential when the full zooplankton 

community was narrowed to an exclusive consideration of c1adocerans. The true novelty of 

this work, however, was in the identification of environmental variables that most strongly 

contributed to the identification of habitat filtering as driving functional trait dispersion 

patterns. Among cladocerans, the environmental filters of greatest importance were nutrient 

and chlorophyll concentrations, pH, and altitude. These environmental variables, however, 

only accounted for -30% of the variance in the functional trait dispersion patterns, suggesting 

the existence of other drivers ofzooplankton community structure, such as dispersal. 

While spatial variables were not explicitly explored in Chapter III, the results of 

Chapter Il demonstrated the importance of dispersal in driving the structure of zooplankton 

communities. The primat")' contribution of Chapter II was in the identification of a threshold 

value of dispersal (-1 % total volume), below which communities are less likely to 

homogenize in composition. This result is important, both in light of work that has already 

demonstrated metacommunity processes to be drivers of zooplankton community structure, 

and knowing the potential for anthropogenic influences to accelerate dispersal rates in aquatic 

communities, potentially leading to harmful consequences of biological homogenization. 

In conclusion, the work presented in this thesis has certainly provided insight into the 

factors determining the structure and functioning ofplankton communities by identifying 

contributions of both local and regional processes to defining zooplankton community 

structure, and describing how biodiversity might contribute to phytoplankton community 

functioning. In a more general sense, however, it also offers results that are more broadly 

applicable within community ecology, by demonstrating the utility offunctional measures of 

diversity, and in exploring how trait distributions can change under different environmental 

reglmes. Both of these results suggest the importance of integrating a dynamic consideration 
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of community trait distributions into future explorations of community structure and 

functioning, across aIl community and ecosystem types. 
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APPENOIX A
 

Species and genera identified for the experiment described in Chapter II.
 

Cladocerans 
Oaphnia catawba 
Oaphnia ambigua 
Oaphnia longiremis 
Oaphnia mendotae 
Ceriodaphnia lacustris 
Ceriodaphnia affinis 
Ceriodaphnia reticulata 
Sinobosm ina 1iederi 
Sinobosmina freyii 
Polyphemus pediculus 
Holopedium gibberum 
Chydorus brev ilabris 
Leydigia sp. 

Copepods 
Acanthocyclops vernaIis 
Acanthocyclops robustus 
Cyc\ops scutifer 
Oiacyclops bicuspifatus 
Eucyclops sperratus 
Mesocyclops edax 
Tropocyclops prasinus 
Harpactacoid sp. 
Leptodiaptomus minutus 
Epischura lacustris 

Rotifers 
Polyarthra sp. 
Asplanchna sp. 
Synchaeta sp. 
KeratelJa erlinae 
Keratella cochlearis 
KerateJ 1a crassa 
Kelicottia longispina 
Gastropus sp. 
Trichotrian sp. 
Lepadella sp 
BdelJoidea sp. 
Monostylum sp. 
Trichocera sp. 
Bipalpus sp. 
Lecane sp. 
Lecanidae sp. 2 
Euchlanis sp. 
Euchlanis sp. 2 
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APPENDIX B
 

Genera represented in the field study described in Chapter III. 

Daphnia 
Ceriodaphnia 
Sinobosmina 
Eubosmina 
Neobosmina 
Polyphemus 
Holopedium 
Diaphanosoma 
Chydorus 
Alonella 
Leydigia 

Copepods 
Acanthocyc lops 
CyC!ops 
Diacyclops 
Eucyclops 
Mesocyclops 
Tropocyc lops 
Leptodi·aptomus 
Epischura 
Skistodiaptomus 
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APPENDIX C 

Species and genera identified for the experiment described in Chapter IV. 

Chlorophytes Diatoms Cryptophytes Cyanophytes Chrysophytes 

Ankistrodesmus sp. Cyclotella sp. Chroomonas sp. Anabaena sp. Chromulina sp. 

Chlamydomonas sp. Melosira sp. Cryptomonas sp. Aphanocapsa sp. Chrysococcus 
sp. 

Cosmarium sp. Fragillaria sp. Ketablepharis sp. Aphanothece sp. Dinobryon sp. 

Kirchnerie lia sp. Navicula sp. Rhodomonas sp. Coelosphaerium sp. Malomonas sp. 

Pediastrum sp. Stephanodiscus sp. Cyanodiction sp. 

Scenedesmus sp. Synedra acus Microcystis viridis 

Slaurastrum sp. Synedra nana Microcystis 2 

Gonium sp. Synedra rumpens Woronichiana sp. 

Dimophococcus sp. 

Mougeotia sp. 
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