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Résumé

Les organisations humanitaires jouent un role crucial en menant des opérations
telles que la distribution rapide et efficace de produits essentiels aux populations
vulnérables touchées par une catastrophe naturelle. Les retards ou les échecs dans
la livraison de ces produits peuvent avoir des conséquences graves sur la santé et
le bien-étre des personnes sinistrées. Cette thése se concentre sur la conception de
Réseaux de Chaine d’Approvisionnement Humanitaire (RCAH) aprés une catas-
trophe naturelle, dans un contexte ot les ressources sont limitées et ot une grande
incertitude concernant les conditions dans les zones affectées ainsi que la gravité
de la crise complique la planification. Trois articles scientifiques sont présentés

traitant des enjeux décisionnels importants pour cette planification.

Dans le premier article, nous formulons et résolvons le probléme de conception
du RCAH en tenant compte de différentes sources d’incertitude. Plus précisé-
ment, nous proposons une méthodologie d’optimisation permettant de concevoir
un RCAH destiné a stocker et distribuer des produits critiques & une population
affectée sur un horizon temporel donné. Un modéle stochastique & deux étapes
est développé pour traiter l'incertitude liée & la demande, ainsi qu’aux capacités
de transport et de stockage au sein du réseau. Dans la premiére étape, des déci-
sions de conception, telles que la sélection des hubs, des services, des stocks et des
ressources de transport, sont prises, définissant ainsi la structure du RCAH pour
toute la durée de I'horizon de planification. Dans la deuxiéme étape, des décisions
opérationnelles liées au transport, au stockage et a ’allocation des produits sont
prises. Le modéle intégre également les impacts cumulatifs de la demande non

satisfaite en produits critiques au fil du temps.

Le deuxiéme article traite de 'ambiguité concernant les distributions probabilistes

inhérentes au contexte de planification du probléme de conception d’'un RCAH.



Aprés une catastrophe naturelle, les décideurs s’appuient sur des estimations de
paramétres incertains issues de diverses sources de données (par exemple, en-
quétes, images satellites, rapports gouvernementaux ou médias) pour planifier les
efforts de secours humanitaires. Cependant, ces estimations peuvent entrainer
des divergences significatives dans la maniére dont les paramétres incertains sont
formulés en tant que variables aléatoires, générant ainsi une ambiguité dans le
processus de planification. Cet article propose plusieurs approches d’optimisation
permettant de résoudre ce probléme en prenant explicitement en compte cette

ambiguité dans la conception du RCAH.

Les deux premiers articles supposent que la structure du RCAH reste inchangée
pendant I'horizon de planification, en raison de la complexité de la coordination
avec d’autres opérations humanitaires en cours (par exemple, 'enlévement des
débris) et du cott élevé d’acquisition de nouvelles ressources. Cela dit, certains
ajustements peuvent néanmoins étre envisagés par les organisations humanitaires
pour réajuster les plans établis et les rendre plus efficients lorsque de nouvelles

informations deviennent disponibles.

Par conséquent, dans le troisiéme article, nous proposons un modéle de conception
d’'un RCAH a plusieurs étapes permettant le transfert des ressources de transport
(par exemple, les camions) entre les services sélectionnés au sein du RCAH congu.
De plus, le modéle autorise la sélection de services de transport supplémentaires
a chaque étape de 'horizon de planification et repose sur une formulation du
processus de divulgation d’informations qui reflete de maniére plus réaliste ce qui

est observé sur le terrain.

Dans l'’ensemble, cette thése met en lumiére I'importance de considérer divers
facteurs dans le probléme de conception du RCAH. Un accent particulier est

mis sur la modélisation de la propagation de la demande non satisfaite, étant
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donné qu'un manque des commodités essentielles peut entrainer une propagation
de maladies. Le premier article souligne le role crucial du facteur de propagation
dans 'optimisation de l'efficacité du réseau. Le deuxiéme article met en avant la
nécessité de prendre en compte 'ambiguité dans le contexte informationnel lors
de la planification des opérations humanitaires. Plus spécifiquement, les résultats
obtenus suggérent que des approches robustes de modélisation sont essentielles
pour une prise de décision efficace. Enfin, le troisiéme article démontre la valeur
d’un modele a plusieurs étapes permettant d’adapter les ressources de transport

au fil du temps, améliorant ainsi la flexibilité et la réactivité du RCAH.

Ensemble, ces contributions renforcent la capacité a résoudre les problémes de
conception d’'un RCAH, permettant de concevoir des réseaux plus résilients et
adaptables suite a une catastrophe naturelle, réduisant ainsi les impacts attendus

sur les populations vulnérables des régions affectées.
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Abstract

Humanitarian organizations conduct crucial operations, such as the efficient and
timely distribution of critical supplies to vulnerable populations after a natural dis-
aster. Delays or failures in supply delivery can severely harm public health. This
thesis focuses on the design of a Humanitarian Supply Chain Network (HSCN)
in the aftermath of a natural disaster in a setting with limited resources and

uncertainty regarding regional conditions and the severity of the crisis.

In the first paper, we formulate and solve the HSCN design problem under various
sources of uncertainty. Specifically, we design an HSCN storing and distributing
critical supplies to an affected population over a given time horizon. A two-stage
stochastic model is developed to address uncertainty related to demand, as well
as transportation and storage capacities within the network. In the first stage,
design decisions, such as selecting hubs, services, inventory, and transportation
resources, are made, with the HSCN’s structure remaining fixed for the duration
of the planning horizon. In the second stage, operational decisions related to
transportation, storage, and supply allocation are made. The model also accounts

for the cumulative impacts of unmet demand for critical supplies over time.

The second paper addresses ambiguity concerning the probability distributions
used in the HSCN design problem. After a natural disaster, decision-makers rely
on estimates of uncertain parameters from various data sources (e.g., surveys,
satellite imagery, governmental reports, or media) to plan humanitarian relief
efforts. These estimates, however, may contain significant discrepancies, leading to
ambiguity in the planning process. The second paper proposes multiple modeling

approaches to handle this ambiguity in HSCN design.

The first two papers assume that the structure of the HSCN remains unchanged
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over the planning horizon due to the complexity of coordinating with other ongoing
humanitarian operations (e.g., debris removal) and the high cost of acquiring new
resources. In the third paper, we propose a multi-stage HSCN design model that
allows for the relocation of transportation resources (e.g., trucks) between selected
services within the designed HSCN. Additionally, the model allows the selection

of additional transportation services at each stage of the planning horizon.

This thesis demonstrates the importance of considering various factors in the
HSCN design problem, including spreading the demand, ambiguity in estimat-
ing uncertainty and leveraging more complex multi-stage models. The spread of
demand refers to the accumulation of unfulfilled demand over time, which can af-
fect future demands of all critical supplies with different intensities. For instance,
failing to deliver medication and preventing products necessary for infectious dis-
eases will increase the demand for these items (cumulative effect) and other items,
such as shelters to quarantine affected people (spreading effect). The first paper
highlights the significance of considering spreading the demand by introducing the
spread factor in optimizing the network’s efficiency. The second paper emphasizes
the need to account for ambiguity in the informational context of humanitarian
operations, suggesting that robust modeling approaches are essential for effective
decision-making. Finally, the third paper showcases the value of a multi-stage
model that adapts the transportation resources over time, ultimately improving
the HSCN’s flexibility and responsiveness. Together, these contributions advance
the design of a more resilient and adaptive HSCN in the aftermath of a natural
disaster, reducing the expected harm to the vulnerable population in the affected

region.



CHAPTER 1

INTRODUCTION

The number of natural disaster occurrences has been increasing over recent years,
leading to more demand for humanitarian relief operations over the globe. How-
ever, the financial resources of humanitarian organizations have not grown as
much (UNOCHA, 2021b), resulting in significant challenges when prioritizing and
allocating budgets. More than 75% of the humanitarian organizations expenses
in the relief operations are related to the design and operation of the relief supply
chain (Besiou & Van Wassenhove, 2020; Van Wassenhove, 2006; Stegemann &
Stumpf, 2018). Therefore, efficient design and operation of relief distribution net-
works are crucial to the success of humanitarian operations in response to natural
disasters. Besides the financial limitations, humanitarian organizations also lack
other necessary resources, including staff and means of transport, increasing the

importance of efficiency in the overall planning process.

In response to these challenges, a growing number of studies in recent years have
focused on addressing relief distribution planning problems. Emergency Manage-
ment (EM) is a multidisciplinary field that focuses on the planning and coordi-
nation of humanitarian operations to mitigate the impacts of natural disasters.
EM encompasses operations conducted both before (i.e., pre-disaster activities)

and after (i.e., post-disaster activities) the occurrence of such events. The pre-



disaster activities are divided into two parts, including the mitigation phase and
the preparedness phase. The mitigation phase activities focus on preposition-
ing the critical supplies, while the preparedness phase activities develop response
plans for a possible natural disaster. The post-disaster activities are divided into
three phases: response, short-term, and long-term. The response phase includes
humanitarian operations that are conducted in the first 72 hours after the natural
disaster occurs. Such operations include transferring the required search-and-
rescue equipment, removing debris from vital transportation routes, and restor-
ing critical infrastructure. The short-term recovery phase focuses on restoring
the affected region to its pre-disaster state by removing debris from all roads and
streets, restoring all infrastructure, and distributing critical supplies to the vulner-
able population. Therefore, additional activities, including damage assessments,
and budget and volunteer management, are also necessary for this phase. The
long-term phase, which may last several years, includes psychological support and

humanitarian assistance to the affected population.

This thesis focuses on the short-term recovery phase, specifically on the design
and operation of a Humanitarian Supply Chain Network (HSCN). An HSCN is a
physical network of hubs responsible for receiving, storing, and distributing criti-
cal supplies to vulnerable populations affected by a natural disaster over a defined
planning horizon. Transportation services support the movement of these sup-
plies between hubs, ensuring efficient operations. The designed HSCN ultimately
facilitates the delivery of critical supplies to the affected population within the

specified planning horizon.

This thesis comprises three scientific papers that address key issues related to the
design and operation of HSCNs. In the first paper, we consider the HSCN design
problem under uncertainty. Specifically, we consider uncertainty in the demands

of the vulnerable population, as well as the capacity of both the transportation



services and inventories of the designed network over the planning horizon. In this
context, sources of uncertainty may include a lack of information to accurately
assess the needs of the population, damage to infrastructure and its impact on
the ability to carry out required operations (such as transportation and stock
management), and the potential effects of secondary impacts, which can further
exacerbate the consequences of the natural disaster. The first paper introduces a
novel formulation to capture the cumulative effect of unmet demand across critical
supplies, highlighting the importance of accounting for interdependent shortages

of critical supplies in optimizing disaster relief operations.

The need and damage assessment procedures begin as soon as a natural disaster
occurs to estimate the value of uncertain factors in the HSCN design problem. The
value of uncertain parameters is calculated following a natural disaster utilizing a
variety of data sources. These information sources include polls, satellite images,
official documents, and the media. The derived estimations might differ, which
can cause ambiguity in the informational framework that underlies the planning
of humanitarian aid activities. The second paper examines different methods for
modeling inconsistent estimations obtained from multiple data sources while for-
mulating the HSCN design problem following a natural disaster. Four mathemati-
cal models are proposed that explicitly account for the uncertainty and ambiguity
that influence both the population’s needs and the network’s capacity for storage
and delivery. The findings highlight the necessity of using mathematical models
capable of addressing uncertainty and ambiguity, ensuring that HSCNs remain
resilient to both uncertainty and the ambiguity stemming from assessments per-
formed on multiple data sources with varying estimations of demand and resources

available.

One of the presumptions in the first two studies is that the planned HSCN struc-

ture will remain the same throughout the planning horizon. The complexity of



coordinating such adjustments with ongoing humanitarian efforts (such as debris
removal) and the higher expense of choosing new resources are the motivations

for such assumptions.

The third paper examines the benefits of incorporating evolving information dy-
namics (where contextual information about the effects of the natural disaster
becomes more accurate over time, reducing uncertainty) and demand spread into
the HSCN design problem. Specifically, it considers a setting where transportation
resources (e.g., trucks) can be relocated between HSCN services and additional
transportation resources can be employed during the planning horizon. We pro-
pose a three-stage stochastic model to design an HSCN under these conditions
and compare its performance with a two-stage counterpart. Additionally, we con-
duct experiments to evaluate the impact of varying spread factor values on the

obtained networks.

1.1 Literature Review

This section reviews the literature related to the HSCN design problem. Specifi-
cally, we review the literature related to the problem settings in Subsection 1.1.1,
which addresses the main issues related to planning and operating HSCNs. The lit-
erature on Service Network Design, one of the primary optimization methodologies
used to formulate and solve HSCNs, is reviewed in Subsection 1.1.2. Subsections
1.1.1 and 1.1.2 provide a comprehensive overview of the methodologies proposed
to address HSCNs and highlight the present thesis’s unique contributions. Finally,
Subsection 1.1.3 reviews the literature on the approaches to model and solve HSCN
design problems, providing a general overview of how optimization methods can

explicitly account for the uncertainty that may affect the informational contexts.



1.1.1 Humanitarian Supply Chain Network

The early attempts to solve the HSCN design problem adapted the existing meth-
ods for modeling and solving the commercial supply chain design models into the
HSCN design problem (Van Wassenhove, 2019). However, because of the pivotal
differences between commercial and humanitarian supply chains (Balcik & Bea-
mon, 2008), including the objectives pursued, availability of budget and resources,
and the level of uncertainty (Diabat et al., 2019; Hasani & Mokhtari, 2019, 2018;
Pishvaee & Razmi, 2012), a distinct line of research formed around the HSCN
design problem (Anaya-Arenas et al., 2014; Campbell et al., 2008).

As discussed by Anaya-Arenas et al. (2014); Balcik et al. (2016); Behl & Dutta
(2019), various humanitarian relief planning problems have been studied in the lit-
erature. One can divide humanitarian relief planning problems into the planning
optimization problems in pre-disaster and post-disaster phases (Anaya-Arenas
et al., 2014). The studies in the pre-disaster phase mainly focus on preparedness
activities, including locating warehouses and stockpiling critical supplies. These
studies aim to support the decision-making process in establishing the proper
response plans of humanitarian organizations concerning a probable natural dis-
aster occurring in the future (e.g. Yahyaei & Bozorgi-Amiri (2019); Bozorgi-Amiri
et al. (2013, 2012); Alem et al. (2016)). The location of the candidate warehouses
is considered known in the post-disaster planning phase, and the humanitarian
organizations use the existing infrastructure in the affected region. However, lo-
cating temporary facilities remains part of the decision-making process in the post-
disaster phase. In addition, the number of transportation vehicles, the assignment
of the beneficiaries to distribution centers, and the flow of critical supplies in the
designed network over the planning horizon are the post-disaster phase decisions

(e.g. Afshar & Haghani (2012); Tzeng et al. (2007); Noyan et al. (2016)). Post-



disaster planning studies seek to diminish the harm done to people’s health by

optimizing the distribution of critical supplies among vulnerable populations.

The structure of an HSCN consists of multiple layers. Here, a layer is referred to
as a collection of locations with comparable infrastructure, including storage and
role in the supply chain. The decisions made in different layers of an HSCN are
interrelated, increasing the complexity of the problem. The literature contains two
approaches for dealing with this complexity, including integrating the decisions
(e.g. Afshar & Haghani (2012)) and focusing on one layer of the HSCN (e.g.
Noyan et al. (2016)).

Another challenging aspect of the post-disaster HSCN design problem is dealing
with uncertainty. The uncertainty in the HSCN design problem has multiple
sources, including the secondary impacts of the natural disaster and a lack of
information regarding the assessments. When designing an HSCN, the additional
damages to the infrastructure and people’s health are unknown. For instance,
earthquake aftershocks could damage the roads in the region and increase the
number of deaths, injuries, and people relocated. Furthermore, gathering accurate
data regarding the affected population in each geographical region to assess the
demands is time-intensive. Therefore, the available demand data at the HSCN
design time contains uncertainty (Balcik et al., 2016; Behl & Dutta, 2019). Finally,
the information regarding the road conditions and available vehicles is limited at
the design time, and, therefore, the capacity of the roads and available vehicles
is also a source of uncertainty in the HSCN design problem (e.g., Adivar & Mert,
2010; Vitoriano et al., 2011).

Satisfying the demands of the affected population is the goal of relief distribution
planning. The literature identifies two approaches to addressing demand satisfac-

tion: complete satisfaction of the demand and maximizing demand satisfaction.



The first approach is common in the pre-disaster phase studies, and the planning
problem is solved with the aim of satisfying all the demands (Balcik & Beamon,
2008; Jabbarzadeh et al., 2014; Berkoune et al., 2012). The second approach is par-
ticularly relevant in situations where there are limitations on available resources
and high levels of demand. The goal is to minimize unsatisfied demand among the
affected populations by planning with the incorporation of a penalty parameter
for unmet demand (e.g., Ahmadi et al. (2015)). Furthermore, in a multi-period
planning setting, this approach allows unmet demand from a given period to be
carried over to the next period for fulfillment (e.g., Lin et al. (2011)). In planning
contexts where it may not be possible to satisfy the entire demand for critical
supplies, the lack of the latter (e.g., medication and mosquito nets) may result
in a spread of disease. This, in turn, increases demand for such supplies. While
those dynamics have been ignored in the literature, in practice, they may have a
severe effect on the performance of planning solutions. As such, this thesis puts
a particular emphasis on correctly modeling the spread of unmet demand. This
allows models to better capture the complexities of real-world disaster scenarios

and enhance the HSCN’s adaptability to changing conditions.

To estimate the uncertain parameters present in humanitarian planning models,
two general approaches are commonly used in the literature. The first approach
relies on the availability of historical data to provide estimates of the uncertainty,
while the second involves directly assessing the uncertain parameters using rel-
evant contextual information specific to the studied problem. Using historical
data to estimate the uncertainties is the go-to approach in pre-disaster relief plan-
ning problems. However, in post-disaster planning problems, the uncertainties
are estimated by assessments. This is due to the unique characteristics of each
natural disaster (Chen et al., 2011). Assessments, which are obtained through

a time-consuming process, are required for each potential location within the af-



fected region. Therefore, it is often more efficient to divide the region into smaller
sub-regions to facilitate the overall planning process. The assessments are then
performed in a sample set of points in each sub-region (Balcik & Yanikoglu, 2020;
Balcik, 2017). Finally, the estimated value for each uncertain parameter is gen-
eralized for the whole sub-region. Multiple data sources could be used in the
assessment process. These may include surveys, satellite imagery, governmental
reports, and media. However, the provided data by each data source requires ex-
pert interpretations, which is often done by the three-point estimating technique
(Hakimifar et al., 2021). When applying this technique, a set of recognized experts
(i.e., specific individuals or organizations knowledgeable about the affected region)
are asked to provide three estimates for each uncertain parameter, considering the
available data sources. These estimates define the minimum, most probable, and
maximum values for the parameters, thereby constructing a triangular distribu-
tion for each case (Benini et al., 2017). These probability distributions are then

used to estimate the possible values of the uncertain parameters.

Multiple experts assess uncertain parameters, relying on different data sources,
and their conclusions regarding the assessments may differ, which, in turn, can
lead to different probability distributions being defined for the parameters. Given
that all experts are highly regarded (i.e., the same level of confidence is assigned to
their perspectives), the inconsistent or conflicting estimates lead to ambiguity in
the decision-making process (Grass et al., 2023; Hosseinnezhad & Saidi-mehrabad,
2018). Such ambiguity adds another layer of complexity to the uncertainty in
HSCN design. The second study introduces four optimization models tailored for
ambiguity, enabling humanitarian organizations to make robust decisions despite

ambiguity in estimations.



1.1.2 Service Network Design

Service Network Design (SND) methods are the preferred approaches for solving
the network design problems that naturally arise in the planning of transporta-
tion systems. Specifically, SND problems focus on managing supply-related trans-
portation resources and defining the corresponding activities to design an efficient
a cost-effective network that satisfies the demand (Crainic & Hewitt, 2021). The
decisions involved in an SND problem are divided into two categories: the design
and flow decisions. The design decisions establish the transportation services that
are selected and their schedules. Here, services refer to routes connecting the ori-
gin and destination terminals associated with commodities, which represent the
demand requests for shipments. Services can either be direct links between origin-
destination pairs or paths involving intermediary terminals. Additionally, service
schedules can be fixed, determined by a specific frequency, or defined based on
given timing decisions. The flow decisions indicate the itineraries for the com-
modities, including the transportation time and path. Lastly, SND models can be
classified into two categories: deterministic SND models and SND models under

uncertainty.

In the deterministic setting, different modeling approaches have been proposed
based on the characteristics of the problem, including static, time-dependent, dy-
namic, frequency, and time-space SNDs (Crainic & Hewitt, 2021). The static
SND approach is suitable for addressing SND problems with fixed characteristics
(Chouman & Crainic, 2021). In static SND problems, parameter values remain
constant over time, and as a result, the time dimension is not considered. How-
ever, in time-dependent SND problems, the problem characteristics are subject
to change over time. For instance, the demand and quantity of available sup-

ply could change over the planning horizon. Consequently, the time dimension is
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explicitly incorporated into the modeling of time-dependent SND problems; see,

e.g., Andersen et al. (2009).

Crainic (2000) categorized SND problems based on their planning level into frequency-
based and dynamic SND models. Frequency SND focuses on strategic and tactical
level problems, e.g. Duan et al. (2019); Rothenbécher et al. (2016), whereas the
dynamic SND models are applied to operational-level problems. In frequency SND
problems, the objective is to determine the most appropriate services and their
frequencies over the planning horizon. Additionally, itineraries and restrictions
are established for the selected terminals in the designed network. In contrast,
dynamic SND focuses on scheduling the chosen services (Crainic, 2000). Schedul-
ing the services involves both service selection and the time interval a service is

transferred on an itinerary.

Researchers have also studied the effects of uncertainty when solving SND prob-
lems, see, e.g. Crainic & Hewitt (2021); Lanza et al. (2021); Lium et al. (2009,
2007). Demand has been the most studied uncertain parameter in SND prob-
lems; see, e.g. Lium et al. (2007); Bai et al. (2014); Crainic et al. (2016a); Ng
& Lo (2016). The literature includes both stochastic programming and robust
optimization methods for modeling and solving SND problems under uncertainty

(Bai et al., 2014; Wang & Qi, 2020).

1.1.3 Optimization Approaches Under Uncertainty

Two lines of research exist in the literature for modeling uncertainty in opti-
mization problems, including stochastic programming and robust optimization.
Stochastic programming requires the probability distribution of the possible re-
alizations of uncertain parameters to be available. However, robust optimization

is the method of choice when the information regarding the uncertain parame-
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ters is limited. In this approach, an uncertainty set is defined for all uncertain
parameters involved in the problem. Then, the counterpart of the problem is
defined as a min-max problem. In this min-max problem, a defined budget value
limits the domain of the uncertain parameters (Bertsimas et al., 2011; Goerigk &
Lendl, 2021). Finally, distributionally robust optimization has been specifically
designed for planning contexts where the underlying probability distributions are

ambiguous (Delage et al., 2018).

The research presented in this thesis assumes the availability of probability distri-
butions to formulate the uncertain parameters, derived from the assessment and
needs evaluation processes conducted by humanitarian organizations during the
planning of post-disaster operations. These distributions are then used to gen-
erate scenarios, capturing the random variability of uncertain parameter values
and enabling the formulation of solvable problems. The remainder of this section
focuses on how sampling techniques can be applied in conjunction with optimiza-
tion to address problems involving uncertainty, specifically through the techniques

defined by stochastic programming.

Stochastic programming is the preferred method for modeling and solving op-
timization problems when the uncertainty in the problem settings can be rep-
resented using random variables. In the context of HSCN, uncertainty is often
estimated through damage and demand assessments, which assess the impacts of
a natural disaster on the affected region. These assessments provide the basis for
generating probability distributions for the uncertain parameters. Scenario-based
sampling techniques then employ the estimated probability distributions to ap-
proximate the variability of the uncertain parameters in the model. The size of
the scenario set plays a critical role in the accuracy of the approximation. As the
number of scenarios increases, the representation of uncertainty improves, leading

to more precise solutions. However, in combinatorial optimization problems, the
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size of the scenario set is practically limited due to the exponential growth in
computational complexity, which can make large scenario sets computationally
intractable. The Sample Average Approximation (SAA) method (Kleywegt et al.,
2002) offers a practical solution by producing high-quality approximations while
keeping the computational effort manageable. Additionally, in-sample and out-
of-sample stability tests (Kaut & Wallace, 2003), provide a means to evaluate the
reliability of the solutions and assist in determining the optimal scenario set size
for the SAA approach. These stability tests ensure that the scenario sets used
for approximation provide accurate representation of the underlying uncertainty

distributions, increasing confidence in the results.

1.2 Research Studies Conducted

This section presents the three studies addressing key challenges in solving the
HSCN design problem, which constitute the core content of this thesis. Subsection
1.2.1 introduces the first study, which develops a two-stage stochastic model to
address cascading unmet demands. Subsection 1.2.2 presents the second study,
focusing on models to explicitly handle data ambiguity from conflicting sources.
Finally, Subsection 1.2.3 presents the third study, which proposes a dynamic three-
stage model integrating information updates and interdependent demand spread,

validated with real-world disaster data.

1.2.1 First Study: A Two-Stage Stochastic Model for Humanitarian Supply
Chain Network Design in Post-Disaster Recovery

The first paper of this thesis focuses on the design of a two-stage stochastic HSCN
for post-disaster recovery. This research addresses the uncertainty in demand and
capacity that arises in the aftermath of natural disasters. A key innovation in

this study is incorporating spread factor in the mathematical model, which ac-
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counts for the cumulative impact of unmet demand for one critical supply on
the demand for other critical supplies in subsequent periods. This feature cap-
tures the interdependencies between different critical supplies. In a post-disaster
environment, unmet demand for critical supplies, such as shelter, food, and hy-
giene kits, not only increases the immediate need for those critical supplies in
future periods but can also amplify the demand for other critical supplies. The
spread factor represents these effects, improving demand estimation accuracy and

resource allocation.

The paper presents a two-stage stochastic model to design and operate HSCNs
under uncertain conditions, using real-world data from the 2018 Indonesia earth-
quake to validate the approach. The research highlights the importance of model-
ing uncertainty in both demand and capacity to ensure the efficiency and effective-
ness of relief operations. It also introduces the spread factor as a novel approach
to representing the impact of unmet demand across time periods, significantly

affecting humanitarian aid planning.

The study also investigates the impact of budget uncertainty, revealing that while
a slight reduction in the available budget does not significantly affect the network’s
performance, a substantial budget shortfall can drastically increase the harm to

the affected population and reduce the overall effectiveness of the relief network.

This paper contributes to developing more resilient and efficient HSCNs by pro-
viding decision-makers with tools to improve the management of the relief distri-
bution in post-disaster recovery. The model proposed in this paper helps human-
itarian organizations optimize the allocation of limited resources, minimize harm
to the affected population, and improve the overall coordination of aid distribution

under uncertain conditions.
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1.2.2 Second Study: Addressing Ambiguity in Humanitarian Supply Chain
Network Design

The design of HSCN in the aftermath of natural disasters is a complex process
influenced by numerous sources of uncertainty. Humanitarian organizations typ-
ically rely on multiple data sources, such as satellite imagery, surveys, and gov-
ernmental reports, to assess damage and demand. These sources often provide
inconsistent or incomplete information, leading to ambiguity when performing as-
sessments to formulate the uncertain parameters that define the context in which

the HSCN design problem is to be solved.

This paper presents four optimization models that explicitly address the ambi-
guity resulting from inconsistent estimates obtained from multiple data sources
within the context of HSCN design. The proposed models include Minimiza-
tion of Expected Opportunity Loss (MIN-OppLoss), Minimization of Maximum
Data-Source Penalty (MIN-MaxDSPen), Minimization of Expected Data-Source
Penalty (MIN-ExpDSPen), and Minimization of Maximum Scenario Penalty. Each
model provides a different approach to managing ambiguity, varying in terms
of conservatism in handling the uncertainty present in the data. Here, MIN-
MaxDSPen corresponds to a special case of distributionally robust optimization.
While the classical approach suggests to remain robust against any distribution
that fits a prescribed mean and standard deviation, our approach uses a discrete
set of such distributions, corresponding to the distributions of the multiple data

sources.

The models are evaluated using a real-world dataset from the 2018 Indonesia
earthquake, providing insights into their effectiveness in mitigating the challenges

posed by ambiguity in post-disaster HSCN design problems.

The results indicate that MIN-ExpDSPen is particularly effective when the decision-
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maker places higher trust in the more pessimistic data source, while MIN-MaxDSPen
is more appropriate when the optimistic data source is favored. In cases where the
ambiguity pattern is unclear or when the decision-maker holds equal confidence in
both data sources, MIN-MaxDSPen consistently provides a robust solution across
various scenarios. The findings underscore the overall importance of explicitly

accounting for ambiguity in HSCN design problems.

1.2.3 Third Study: Information Dynamics and Demand Spread

The design of HSCN is a critical operation in the context of post-disaster humani-
tarian logistics. Establishing an effective mechanism for the timely distribution of
relief supplies to affected populations is essential. The dynamic nature of disaster
situations, characterized by the rapid evolution of demand and resource availabil-
ity, necessitates adopting a more flexible approach to HSCN design. This paper
introduces a novel three-stage optimization model for HSCN design that integrates
information dynamics and demand spread, addressing the inherent uncertainties

in demand and transportation capacity that arise in post-disaster settings.

In the literature, two-stage optimization is often used to model and solve HSCN
design problems, where the design decisions are made upfront, with little or no ca-
pacity to adjust based on evolving information. The three-stage model proposed
in this study provides an enhanced framework by incorporating an additional
decision-making stage that allows for adjustments to the transportation resources
as more information becomes available. This additional stage ensures that deci-
sions are not static but evolve as the disaster progresses, thereby improving the

HSCN’s operational efficiency.

The effectiveness of the proposed model is demonstrated through a series of ex-

periments conducted on a real-world dataset derived from the 2018 Indonesia
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earthquake. These experiments reveal several key advantages of the three-stage
model over the two-stage models. Notably, the three-stage model facilitates more
informed decision-making by allowing updates to transportation resource alloca-
tions during the operational phase of the disaster response, which results in more
efficient use of resources. The model’s ability to adjust to new information dur-
ing the early phases of disaster relief ensures that critical supplies are distributed

more effectively, leading to better outcomes for the affected population.

Furthermore, the integration of the spread factor into the model enhances its
capability to manage the interrelated nature of demand across multiple types of
critical supplies. The ability to model the effects of unmet demand across different
critical supplies allows the model to more accurately reflect the complexities of
real-world disaster scenarios, where the demand for one resource can influence the
availability and need for others. This feature not only improves the model’s accu-
racy but also provides a strategic advantage in optimizing supply chain operations

under uncertainty.

The experimental results confirm that the three-stage model outperforms the two-
stage models, particularly in terms of decision-making flexibility and resource allo-
cation efficiency. Although the three-stage model demands higher computational
efforts due to its increased complexity, the benefits of improved resource manage-
ment and adaptability to changing conditions outweigh the associated costs. This
suggests that the model provides a valuable tool for humanitarian organizations
tasked with coordinating disaster response efforts, where the ability to adjust to
evolving conditions dynamically is crucial for ensuring the timely and equitable

distribution of aid.



CHAPTER II

A TWO-STAGE STOCHASTIC POST-DISASTER HUMANITARIAN
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Abstract

We consider the planning problem of designing and operating humanitarian sup-
ply chain networks (HSCN) after natural disasters. Specifically, we focus on the
design of a three-layer network under demand and capacity uncertainty to support
short-term recovery, i.e., to distribute critical supplies to the affected population.
We aim to analyze the effect of unmet demand accumulating over the planning
horizon in order to better understand and respond to natural disasters. To this
end, we explicitly consider the impact of unmet demand through time under un-
certain conditions by introducing a spread factor. We develop a two-stage stochas-
tic model that retains the uncertainty pertaining to the demand along with the

transportation and storage capacities of the HSCN. Then, we apply our model to
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a case study using real-world data from the 2018 earthquake in Indonesia. Var-
ious aspects of the problem are studied over a set of experiments, including the
importance of modeling uncertainty, the effect of the budget on the solution per-
formance, and the role of the spread factor in the accurate understanding of the
crisis. According to the results obtained, considering lower values for the spread
factor parameter can irreparably misguide the decision-makers by an inaccurate
presentation of the crisis’ depth and consequently increase the damage caused to

people’s health.

Keywords: Stochastic programming; Humanitarian relief network; Tactical plan-

ning; Humanitarian supply chain; Post-disaster

2.1 Introduction

The United Nations Office for Coordination of Humanitarian Affairs (OCHA) an-
nually reports the global appeals and the annual funding for disasters and emer-
gencies. The global appeals present the financial requests of humanitarian orga-
nizations around the world each year. As for the annual funding, it refers to the
overall value of the appeals that are fulfilled. The highest percentage of covered
appeals in the last decade has been 65 percent (UNOCHA, 2021b). Furthermore,
OCHA reports that the total amount of annual appeals has increased from 8.9
billion US dollars in 2011 to 38.5 billion US dollars in 2020 (UNOCHA, 2021b)
thus indicating that humanitarian organizations are facing serious challenges re-
garding their budget to prepare and respond to natural disasters. Moreover, it
has been observed that 75 percent of the available funding to perform disaster
response is allocated to the design and the management of relief supply chains
(Besiou & Van Wassenhove, 2020; Stegemann & Stumpf, 2018; Van Wassenhove,

2006). After a natural disaster, humanitarian operations ultimately aim at reduc-
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ing harm to the affected population. Considering the limited available budget,
the efficiency of humanitarian operations directly impacts the received aid by the
affected population. This impact could be both on the level of satisfied demand
and the temporal aspect of aid delivery. The designed relief network with budget
constraints should deliver as many necessary goods as possible to the affected
population. Furthermore, the demands of the affected population must be sat-
isfied as soon as possible. The reason being the failure in delivery or delay in
satisfying demand harms the population’s health and spreads the demand (e.g.,
spreading disease). Therefore, improving the overall planning processes that de-
fine how the limited resources available to humanitarian organizations such as
budget, staff, and means of transportation are used to provide relief to affected
populations after a natural disaster occurs is an important and pressing issue. In
order to implement their aid plans and perform the required operations, human-
itarian organizations need to go through relief distribution networks. Given the
complexity of the underlying decisions, manual planning is likely to be rather in-
efficient. In particular, taking into consideration the probabilistic information for
uncertain parameters becomes a challenge for manual planners. Hence, there is
an undeniable need for dedicated optimization methods that enable organizations

to efficiently design and operate such networks.

Emergency Management. FEmergency Management (EM) is a field of study
that has received an ever-increasing amount of attention from scientists, motivated
by the desire to improve the efficiency of relief efforts provided to affected pop-
ulations following natural disasters. EM is a multidisciplinary field that focuses
on how humanitarian organizations should prepare for and respond to disasters
to distribute the required aid (Anaya-Arenas et al., 2014). EM activities can be
divided into two groups: pre-disaster and post-disaster. Pre-disaster activities

include mitigation and preparedness. The goal of pre-disaster activities is to re-
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duce the negative impacts of a possible disaster by pre-positioning critical supplies
(i.e., mitigation) and developing response plans in advance of the events happen-
ing (i.e., preparedness). As for post-disaster activities, they include three differ-
ent phases: response, short-term recovery, and long-term recovery (Holguin-Veras
et al., 2012). The response phase occurs in the first 72 hours that follow the occur-
rence of a natural disaster (UNOCHA, 2021a). During this phase, the necessary
equipment, critical supplies, and material necessary for both the search-and-rescue
operations and the emergency repairs to be performed on critical infrastructure
are transported to the affected region. The short-term recovery activities include
damage and impact assessments, debris removal, distribution of critical supplies,
restoration of critical infrastructure, and managing both the donations received
and the work performed by volunteers (Holguin-Veras et al., 2012). These ac-
tivities must be coordinated, which makes the short-term recovery a challenging
phase in the post-disaster period. For example, the design of a network to dis-
tribute the critical supplies requires the information obtained from the damage
and impact assessments performed. Furthermore, the priority choices made re-
garding debris removal must be coordinated with the selection of specific routes
to be used for the distribution of critical supplies. Planning all of these activities
in an integrated manner thus defines important challenges to be resolved. As for
the activities performed in the long-term recovery phase, they include restoring
infrastructure, providing psychological counseling to the affected population, and
delivering overall humanitarian assistance to the region that may be ongoing for

multiple years.

Distribution of critical supplies. In this study, our focus is on the short-term
recovery phase, which is conducted at a crucial point in the overall timeline of
the humanitarian activities performed post-disaster. It is important to note that

the short-term recovery phase occurs in an emergency state during which critical
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supplies are not sufficiently available to satisfy the demand, critical infrastructure
is not fully operational and the demand is at its extreme point (i.e., the affected
population’s demand for aid will peak following a natural disaster) (Holguin-Veras
et al., 2013). The choices made by humanitarian organizations regarding how the
available resources are used to perform this phase are paramount to the ultimate

success and positive impact of the aid that will be provided.

Once a natural disaster occurs, the distribution of critical supplies to vulnerable
populations defines some of the most challenging, vital, and complex operations
that are conducted by humanitarian organizations. First, the management of
such operations is particularly challenging because it involves various stakehold-
ers, whose actions need to be coordinated to successfully perform the required
critical supply distribution. The stakeholders include governments, military, hu-
manitarian organizations, donors, media, and volunteers (both local and interna-
tional). Coordination among stakeholders occurs at different levels. For example,
when a disaster happens, the affected region is oftentimes divided into subre-
gions where different humanitarian organizations will operate, thus enabling the
overall affected region to be better covered in terms of the aid provided. For se-
curity reasons, military personnel are often called upon to protect humanitarian
organizations, their staff, and volunteers when they are deployed in the field to
distribute the aid. Communication and coordination between the military and
humanitarian organizations is thus a pivotal part of the distribution of critical
supplies. Lastly, a coordinated effort between humanitarian organizations and
the media is also required to bring attention to the crisis that occurred which, in
turn, can be helpful to fundraise and collect the required budget for the necessary
operations to be performed. Second, the distribution of critical supplies is also
vital to the health conditions of the affected population post-disaster. Critical

supplies may include, for example, medical supplies, which are required to treat
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life-threatening injuries that directly occurred following the natural disaster. Fi-
nally, distribution planning is particularly complex in post-disaster humanitarian
settings. The complexity stems from the fact that decisions related to the invest-
ments in the required infrastructure, the selection of logistical services, and the
use of such services to perform the necessary distribution need to be made in an

informational environment that involves a high level of uncertainty.

Humanitarian Supply Chain Network. The distribution of critical supplies
is performed via the use of a Humanitarian Supply Chain Network (HSCN) (Hong
& Jeong, 2019; Tavana et al., 2018). An HSCN consists of a physical network of
hubs that are used to store, transport, and distribute critical supplies among the
vulnerable population post-disaster. In an HSCN, hubs are physical locations that
receive and store critical supplies in the network. Critical supplies are then trans-
ported between the hubs using transportation services. For brevity, we refer to
these as services from now on. In order to design an HSCN, humanitarian organi-
zations have to make a set of decisions, including the location of the hubs, resource
allocation both for hubs and services, and assignment of vulnerable populations
to hubs. Furthermore, on the operational level, humanitarian organizations must
take decisions related to both transportation and inventory levels Anaya-Arenas
et al. (2014). In this paper, we are interested in solving the problem of designing
an HSCN in the short-term recovery phase that will operate (i.e., receive, store,
and distribute critical supplies) over a given planning horizon. Specifically, our
aim is to design such a network, while explicitly considering the various sources
of uncertainty that directly affect the informational context in which these relief
operations are planned and executed. Sources of uncertainty may include a lack
of information regarding the needs assessments of the affected population, such
as uncertainty regarding the demography in the affected zone preventing an ex-

act evaluation of the demand for specific critical supplies, damage levels to the



23

infrastructure (e.g. road conditions, available vehicles, etc.) and overall effects of
possible secondary impacts, such as landslides following floods, and aftershocks

following an earthquake.

Contributions. In this paper, we propose a two-stage stochastic post-disaster
HSCN design model that enables the uncertainty related both to the demand
for aid and the available capacities for the chosen infrastructure and services to
be formulated. In the short-term recovery phase, it is paramount to service the
demand for critical supplies quickly. The reason being to limit the harm that may
spread and cumulate over the affected population. Our model thus proposes a

novel formulation to account for the effects unmet demands have over time.

Our model also expresses the correlated effects of unmet demands for different
critical supplies, which to the best of our knowledge has not been considered in
the existing literature on network design, facility location, and other supply chain

related planning problems.

Even though the model here proposed uses a linear coefficient to adjust the penalty
from one time-period to another, the use of spread factors results in a non-linear
demand behaviour over the planning horizon. Specifically, we assume that unmet
demand from one time-period is not only carried over to the next time-period, but
can further be amplified through the spread factor. This emulates, for example,
the spread of disease. Moreover, such spread factors are defined among all pairs
of commodities. For example, a failure of meeting the demand for shelters may

increase the future need for medical supplies.

The goal is then to design an HSCN that minimizes the expected total harm
caused by the unmet demands for the considered critical supplies over the planning
horizon. As such, the research questions we are aiming to answer in this paper

are as follows. How can the supply chain operations most efficiently be planned
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in the context of demand uncertainty and demand spread over time? How does
the demand spread impact the planning solution and the level of unmet demand?
How does a wrong estimate of the budget impact the planning solution and the
level of unmet demand? To assess the efficiency of our proposed stochastic model,
we develop a dataset linked to the 2018 Indonesia earthquake and conduct a
thorough numerical analysis. First, the importance of considering uncertainty in
the HSCN design problem is investigated by comparing the solutions obtained
by solving the proposed stochastic model when compared to its deterministic
counterpart. Then, the effects of explicitly incorporating the residual demands
over the planning horizon into our stochastic HSCN design model are evaluated in
terms of the overall performance of the humanitarian relief operations conducted.
Finally, to study the impacts that restrictive budgets may have on the performance
of the designed HSCN, a series of experiments are conducted where the stochastic

model is solved using different budget levels.

Outline. The remainder of this paper is structured as follows. In Section 2.2, we
provide a literature review on the topic. In Section 2.3, we describe the problem
setting. Section 2.4 details the two-stage stochastic post-disaster HSCN design
model that is developed. The numerical experiments and analyses are presented

in Section 2.5. Finally, we close the paper with the conclusion in Section 2.6.

2.2 Literature review

We now position our study within the existing literature. We review the related
work on both the considered problem and the optimization method that is pro-
posed to solve it. Thus, the focus of Subsection 2.2.1 is on supply chain network
design for humanitarian relief, where we review what aspects of the problem have

been studied in the context of designing and operating a supply chain to receive
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and distribute humanitarian relief to an affected population. In Subsection 2.2.2,
we review the studies dedicated to the development of Service Network Design
(SND) optimization methods. Specifically, we present the literature on both de-
terministic SND models and SND models under uncertainty, which present the

formulations previously proposed to model and solve similar problems.

2.2.1 Humanitarian Supply Chain Network

Early attempts to solve HSCN design problems focused on directly applying the
optimization methods originally developed for commercial supply chain applica-
tions (Van Wassenhove, 2019). However, these two general settings have sig-
nificant differences (Balcik & Beamon, 2008). For instance, the purposes and
objectives of these supply chains can be quite different. In a humanitarian set-
ting, the goal is to lessen the harm to people’s health by reducing the delivery
time (Diabat et al., 2019), expanding the coverage of the relief network (Hasani
& Mokhtari, 2019), and optimizing the usage of budget in the design and op-
eration of HSCN (Hasani & Mokhtari, 2018), as opposed to commercial supply
chains, which aim to minimize the cost of distribution and delivery (Pishvace &
Razmi, 2012). Furthermore, as previously evoked, when planning post-disaster
operations, humanitarian organizations are pressed for time and need to design
the supply chain quickly, using limited available resources, while facing high levels
of uncertainty in the informational planning context. Although these issues are
also important in commercial settings, their intensity might not reach the same
levels as observed when delivering humanitarian aid. Therefore, these differences
have motivated a separate line of research specifically dedicated to solving hu-
manitarian supply chain design problems (Anaya-Arenas et al., 2014; Campbell
et al., 2008).
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Various optimization methods have been developed to formulate and solve a wide
gamut of humanitarian relief planning problems, such as Anaya-Arenas et al.
(2014); Balcik et al. (2016); Behl & Dutta (2019), to improve the performance of
HSCNs. As previously mentioned, the scientific literature divides into two cate-
gories: optimization methods to solve problems related to either the pre-disaster
or post-disaster planning phases (Anaya-Arenas et al., 2014). Most studies in
the pre-disaster phase are dedicated to improving preparedness for possible catas-
trophic events that would require the deployment of humanitarian aid. In this
phase, the main focus is on developing methods that support the decision-making
processes involved in the location of warehouses and the stockpiling of critical
supplies as a preventive measure to react in a more efficient manner whenever hu-
manitarian organizations are called upon to provide aid, for example Alem et al.
(2016); Bozorgi-Amiri et al. (2012, 2013); Yahyaei & Bozorgi-Amiri (2019). In the
post-disaster planning phase, candidate warehouses are assumed known (i.e., hu-
manitarian organizations work with the existing infrastructure, which might have
been, in part, designed in the pre-disaster phase). Hence, the main focus tends
to support (via the use of optimization methods) the decision-making processes
involved in the location of temporary facilities, such as distribution centers, de-
termining the number of required vehicles to perform the distribution operations,
the assignment of beneficiaries to the distribution centers, and the management
of the flow of critical supplies (e.g. Afshar & Haghani (2012); Noyan et al. (2016);
Tzeng et al. (2007)). In the post-disaster planning phase, when designing the
HSCN, the overall goal is to distribute the aid in such a way as to alleviate the
harmful effects of the catastrophic event on the affected people’s health.

The post-disaster HSCN design problem here considered is both complex and
challenging to solve, mainly due to two reasons. First, the inherent complex-

ity stemming from the multiple decisions regarding the multi-level distribution
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network. Here, a level is defined as a set of locations with specific and similar
infrastructure (e.g. comparable storage capacities, locations serving the same pur-
pose in the supply chain, etc.) that are used for the storage and distribution of
the critical supplies. Second, the explicit representation of the various sources of
uncertainty faced in the planning context, which, in the literature, mostly con-
cerns the demand levels for critical supplies (Balcik et al., 2016; Behl & Dutta,
2019).

It is worthwhile to note that several other aspects may be relevant in the modeling
of certain HSCNs and impact their ideal network structure. Zeng et al. Tzeng
et al. (2007) proposed a multi-objective three-layer HSCN, including aspects of
costs, effectiveness, and fairness in the objective. Fairness and equity (see, e.g.
Anaya-Arenas et al. (2018); Ismail (2021); Noyan et al. (2016)) regarding the
distribution of critical supplies to a vulnerable population are also important in
this application context. However, considering that these aspects are not the main

focus of our work, we do not review the literature related to this branch.

Table 2.1 summarizes the approaches and key assumptions that were made in the
studies from the literature most related to our problem. The effects of unmet
demand for one critical supply on the level of demand for other critical supplies
have not been explicitly studied in the existing literature. However, such effects
are clearly important considering the nature and urgency of the demand that is
considered when solving the HSCN design problem in the post-disaster planning
phase. In particular, insufficient treatment of a disease in one time period may
cause the spread of the disease in subsequent time periods. Therefore, we propose
to explicitly model such cumulative effects, solving the problem in a multi-period
setting. Furthermore, when generally formulating the limited resources that are
available to humanitarian organizations to distribute aid post-disaster, either fixed

budget limits are added as hard constraints in the models, or, the objective func-
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tion simply aims to minimize the costs incurred by the operations conducted (thus
assuming that a sufficient budget is available). Although uncertainty regarding
the total amount of received donations has been studied before Falasca & Zobel
(2011), we are not aware of studies that explicitly consider the reception of dona-
tions distributed over the planning horizon and its effect on the considered design
problem. In this study, we thus formulate the pattern of receiving varying dona-
tions to define the available budget over multiple time periods and their overall
effect on both the design and distribution decisions to be made. Finally, we con-
sider the combined effects of solving the HSCN design problem when facing both
demand and capacity uncertainty. Depending on the nature and intensity of the
catastrophic event, these sources of uncertainty can certainly be simultaneously

observed when planning the aid in the post-disaster phase.
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Demand
Paper Phase Structure Objective Uncertainty
satisfaction
unmet demand
post- minimize unmet transferred to
Modeling integrated supply chain logistics seven layers none
disaster demand next time
in real-time large-scale disaster relief oper-
period
ations Afshar & Haghani (2012)
transportation unmet demand
pre- and minimize design cost
cost, demand, not transferred
A collaborative humanitarian relief chain post- three layers and penalty cost of
supplier to next time
design for disaster response (Shokr et al., disaster unmet demand
capacity period
2022)
ensures
post-
Logistics service network design for hu- 4 four layers minimize logistic costs demand demand is fully
isaster
manitarian response in East Africa (Du- satisfied
four et al., 2018)
Minimize cost, ensures
post-
Multi-objective optimal planning for de- a three layers minimize travel time, none demand is fully
isaster

signing relief delivery systems

et al., 2007)

(Tzeng

maximize satisfaction

satisfied

International disaster relief planning with

pre-disaster

three layers

minimize the cost and

maximizing the

fuzzy supply
quantity and

unmet demand

not transferred

credibility of satisfying procurement to next time
fuzzy credibility (Adivar & Mert, 2010)
the demand cost period
minimizing satisfied as
post- last-mile multi-criteria availability of much demand
A multi-criteria optimization model for
disaster distribution objective, cost, time, roads as possible
humanitarian aid distribution (Vitoriano
security, reliability (single period)
et al., 2011)
minimize unsatisfied unmet demand
post- demand and travel not transferred
Importance of fairness in humanitarian three layers none
disaster time, and maximize to next time
relief distribution (Anaya-Arenas et al.,
fairness and equity period
2018)
unmet demand
minimize fuzzy
post- transferred to
A possibilistic mathematical programming two layers transportation and deprivation
disaster next time
model to control the flow of relief com- deprivation costs cost
period
modities in humanitarian supply chains
(Ismail, 2021)
ensures
post- last-mile minimize
Transportation in disaster response opera- none demand is fully
disaster distribution transportation time
tions (Berkoune et al., 2012) satisfied
demand,
unmet demand
N supply, )
post- minimize mean and not transferred
Dynamic supply chain network design for two layers transportation
disaster variance of total costs to next time
the supply of blood in disasters: A robust cost and
period
model with real world application (Jab- capacity
barzadeh et al., 2014)
minimize unmet
unmet demand
demand, travel time
post- last-mile transferred to
A logistics model for emergency supply of and satisfaction rate none
disaster distribuiton next time
critical items in the aftermath of a disaster between points of
period

(Lin et al., 2011)

demand

Table 2.1: Summary of literature on humanitarian relief network design.
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2.2.2 Service Network Design

SND problems refer to a general class of network design problems that focus
on the supply-related resources and activities of transportation systems (Crainic
& Hewitt, 2021). A wide range of decisions are involved in SND optimization
models. These decisions can be grouped in two general categories: the design
and the flow decisions (Crainic & Hewitt, 2021). Design decisions involve: the
selection of services, i.e., the routes connecting the origins and destinations of the
commodities to be transported (which may either be direct links or paths involving
the use of intermediary terminals) and their schedules, which are either fixed based
on the service itself or, decided upon (i.e., frequency, timing, etc.). As for the flow
decisions, they involve setting the itineraries for the different commodities, which
establish how and when they are transported from their respective origins to their
final destinations. Typically, the objective is to design a service network that
is efficient and profitable while satisfying the demand. The literature on SND
models can be classified in two classes: deterministic (all relevant parameters
assumed known) or under uncertainty (at least one parameter being assumed to
randomly vary). In the following, we briefly review the literature on these two

classes of SNDs.

2.2.2.1 Deterministic Service Network Design

In the present Subsection, we review the different proposed modelling approaches
that properly formulate SND problems that appear in deterministic settings.
These include: static, time-dependent, dynamic, frequency, and time-space SNDs
(Crainic & Hewitt, 2021). Static SND models seek to design a service network
in a static setting where the problem characteristics remain fixed and, therefore,

the time dimension is not explicitly considered in the formulation (Chouman &
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Crainic, 2021). The school bus service network is an example of a static SND
where all problem characteristics remain the same for each day of operation. In a
time-dependent SND, the quantity of available supply, the level of demand, and
other problem characteristics can change over time. For instance, the demand for
transporting agricultural goods will increase during the harvest season compared
to the rest of the year. Thus, the time dimension needs to be explicitly considered

(see, e.g. Andersen et al. (2009)).

It should also be noted that SND problems can appear at all planning levels (i.e.,
strategic, tactical, and operational). Strategic planning defines a general guide
for the management of an organization based on stakeholders’ long-term priori-
ties and goals. Tactical planning focuses on shorter periods of time (i.e., yearly
or monthly) and provides an action plan to achieve the organization’s objectives
in the defined planning horizon. Finally, operational planning is performed on
the short-term (i.e., weekly or day-to-day). In Crainic (2000), SND problems
are divided according to their planning level and grouped into frequency or dy-
namic models. The strategic and tactical SND problems are the topic of study
in frequency formulations, e.g. Duan et al. (2019); Rothenbécher et al. (2016).
Frequency SND problems seek to find the best type of service and their frequen-
cies for the considered planning horizon, the itineraries, and the workload and
policies to be implemented at the terminals involved (Crainic, 2000). In contrast,
dynamic SND models are applied at the operational level (see, e.g. Wieberneit
(2008)), where the focus is on the scheduling of the services and their departure
times Crainic (2000). Lastly, in some applications, the explicit management of
resources may be an integral part of the SND problems. Resources to perform
the services, such as vehicles or workforce, can be located in different geographi-
cal points at different time periods throughout the considered planning horizon.

Thus, services that are selected and need to be performed on a given schedule,
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must also include the required resources. To efficiently formulate both the flow
of the commodities and the management of the resources, a time-space represen-
tation of the network, e.g. as developed in Andersen et al. (2009); Crainic et al.

(1984, 2016b)), is required.

2.2.2.2 Service Network Design under Uncertainty

Researchers have investigated the importance of considering uncertainty when for-
mulating and solving SND problems (see, for instance Crainic & Hewitt (2021);
Lanza et al. (2021); Lium et al. (2007, 2009)). The problem variant most stud-
ied in the literature assumes that demands are uncertain (see, for example Bai
et al. (2014); Crainic et al. (2016a); Lium et al. (2007); Ng & Lo (2016)). For
this problem variant, Lium et al. Lium et al. (2007) compared the solutions ob-
tained by solving a deterministic SND model when compared to its stochastic
variant. This study clearly showed that by applying an optimization approach
that explicitly considers uncertainty in demand, the designed networks included
characteristics that improved their overall adaptability to varying demand realiza-
tions. Specifically, it was observed that networks obtained by solving a stochastic
model included the options of: 1) alternative paths to connect the origins and des-
tinations of commodities and 2) consolidation options for multiple commodities
over specific arcs, which better hedged against random demand variations (i.e.,

commodity volumes).

Lanza et al. Lanza et al. (2021) studied the importance of considering travel
time uncertainty when solving an SND problem involving service quality targets.
Again, solution differences were observed when comparing the networks obtained
by applying deterministic optimization versus stochastic optimization. Specifi-

cally, it was observed that the solutions obtained by solving the deterministic
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model prioritized the one-stop services over the non-stop (or direct) services in an
effort to lower the fixed costs incurred. In contrast, when the stochastic model was
solved, the solutions obtained would select direct services as a means to reduce
the risk of paying additional costs due to possible operational delays. Overall, the
use of the stochastic optimization approach produced networks that were more
cost-efficient (i.e., reducing the sum of both the set-up costs and the penalties
incurred due to delays in the deliveries) when compared to their deterministic

counterparts.

Both stochastic programming and robust optimization have been applied to model
and solve SND problems that involve uncertainty (Bai et al., 2014; Hoyos et al.,
2015; Wang & Qi, 2020). Considering that our problem setting assumes that a
set of scenarios (that capture how the uncertain parameters may randomly vary)
is available, the selected approach is stochastic programming. When formulating
stochastic SND problems that appear at the tactical planning level, as highlighted
in the scientific literature, two-stage formulations are the approach of choice, for
example (Bai et al., 2014; Crainic et al., 2016a). Thus, the process by which un-
certain parameters become known is approximated by assuming that the values of
all stochastic parameters are observed in a single stage (i.e., the second). Such an
approach results in a model that is easier to solve, when compared to a multi-stage
formulation, while still providing the means to find a tactical planning solution
(i.e., network) that efficiently performs in the context of a randomly changing

informational context.

2.3 Problem description

In this section, we present the here considered HSCN design problem that we will

solve. First, Subsection 2.3.1 describes the general characteristics of the prob-
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lem, including the network structure, uncertain parameters, and both the tactical
and operational decisions involved. Then, Subsection 2.3.2 explains how budget
requirements are imposed in the present setting and how they affect the HSCN
design problem. Furthermore, this section also presents the various costs that
are incurred from the different decisions made in the problem. Finally, Subsection
2.3.3 defines the concept of demand, which includes the cumulative effect of unmet

demand over time, and its correlated effects on the critical supplies.

2.3.1 HSCN Design Problem

We study a multi-period HSCN design problem that involves tactical planning
decisions made by organizations in the short-term recovery phase of EM. We
consider a three-layer structure, as exemplified in Figure 2.1, which is a common
structure for real-world HSCNs (Séguin, 2019). Each layer consists of a set of
hubs with different characteristics, including the ports of entry, the warehouses,
and the Distribution Centers (DCs). A port of entry is the physical location
where the organization receives critical supplies, such as an airport, a seaport, or
a train station. A warehouse is a hub that relies on storage resources that can
hold critical supplies over several time periods. For instance, storage resources
could be classrooms in a school or a set of containers located on land. The
warehouses are more numerous than the ports of entry and are located closer to
the affected region. Finally, a DC is a physical location within walking distance
from beneficiary groups (i.e., a group of people relocated to a temporary site that
could be a school, a temporary camp, or any other building) that is used to hand
over the critical supplies to beneficiaries. We assume that each beneficiary group is
assigned to a single DC that is dedicated to the transfer of all the critical supplies
to satisfy (as much as possible) the expressed demand. The critical supplies

are transported between consecutive layers using services. We assume there are
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no services connecting the hubs in the same layer (i.e., no transshipments are
allowed). In addition, it is assumed that there are no direct services between the

ports of entry and the DCs.

Critical Supplies

Beneficiary Group

Warehouse

Distribution Center

Port of Entry

1@;?53%&“

Transportation
Service

Assignment

Affected area

Afiecled area

Figure 2.1: top: all available hubs, services, and assignments. bottom: selected

hubs, services, and assignments in an example HSCN.

The planning of the considered HSCN involves making a series of decisions that
determine the capacities of the network (i.e., the design decisions) and the use of
these capacities to perform the required humanitarian aid (i.e., the operational
decisions). To design the HSCN, one needs to select hubs and services capable
of transporting the critical supplies from the ports of entry to the DCs, select

resources for warehouses and services, and assign beneficiary groups to the DCs.
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Specifically, we first select a set of hubs and a set of services to connect them that
will be available for the considered time horizon. We then assign transportation
resources to the selected services, such as number of vehicles), and the storage
resources for the selected warehouses, for instance available space to be used or
the number of containers. Thus, the storage capacity of a warehouse is a decision
made by choosing the number of units of storage resources to be made available.
Likewise, the transportation capacity of a service is a decision made by selecting
the number of transportation resource units that define the operational capabili-
ties of the service (i.e., how much quantity of critical supplies can be transported).
Each transportation resource unit provides a fixed amount of capacity, and it is
possible to assign multiple transportation resources to each selected service. How-
ever, it is assumed that there is a limit on the total number of resources available
for each service (i.e., the locally available transportation supply is not infinite).
Each service has a pair of hubs as origin and destination. Furthermore, perform-
ing a service entails loading the critical supplies at the origin hub, transporting
them to the destination hub, and then returning to the origin hub to be able to
repeat the process. Finally, we assign each beneficiary group to a single DC to
ensure that the beneficiaries are able to pick up their critical supplies and know
exactly where to do so. A DC should be within a predefined walking distance
from a beneficiary group to be considered as a possible assignment to it. It is thus
assumed that at least one DC is within walking distance from each beneficiary
group. While each beneficiary group must be assigned to a single DC, each DC
can provide the critical supplies for multiple beneficiary groups. We assume the
design of the HSCN remains unchanged throughout the planning horizon. We

next define the operational decisions made over the considered horizon.

To properly characterize the relief operations, we first define the concept of a

time period in the HSCN design problem. Specifically, a time period is defined
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as the time required to perform the following operations: 1) receive a shipment
of critical supplies into the port of entry hubs, 2) transport these critical supplies
through the network until they reach the DCs, and 3) transfer the critical supplies
to the beneficiary groups to satisfy demand. Therefore, a period is assumed to
be the required time (e.g. a full week) to distribute the received shipment from
the entry points of the HSCN to the final destinations, which are the beneficiary
groups. Using this definition, the time horizon is discretized to produce a set of
periods that span the planning context. Therefore, the operational decisions made
at each time period include selecting the quantity of critical supplies transferred
through the selected services, the desired inventory levels of the warehouses, and

the quantity of the critical supplies allocated to the beneficiary groups at the DCs.

The decision-making process requires access to the value of a series of parameters,
including the demands for the critical supplies, the locations of the beneficiary
groups, the available budget, the set of available hubs, available services, and their
resources. While some of these parameters are known in advance, such as the loca-
tions of the beneficiary groups, the available hubs, the available budget, and thus
are deterministic, the values of other parameters for instance the demands are
uncertain at the moment the HSCN is designed. Vitoriano et al. Vitoriano et al.
(2011) highlighted the importance of considering the damage to the infrastructure
after the main event caused by the secondary impacts (e.g. fires, landslides, and
aftershocks). The occurrence of secondary impacts increases the levels of uncer-
tainty on different aspects of the HSCN design problem. Specifically, the selected
warehouses and their storage capacities might not be fully available (i.e., due to
damages) in subsequent periods. A similar observation can be made regarding the
selected transportation services and their capacities. Therefore, in this problem,
we consider these three sets of parameters as uncertain (i.e., the demands, the

available inventory resource of warehouses, and the available transport resource
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of services). In this case, an efficient HSCN should ideally provide a higher level of
flexibility (i.e., scheduled or planned adaption of the distribution operation to pos-
sible external circumstances affecting the influential components of the problem)
in light of the secondary impacts that may occur in the affected region (Saheb-
jamnia et al., 2017). In addition to the decrease of available warehouse capacity
due to secondary impacts, the damaged resources may also lose critical supplies
stored in the damaged part of the warehouses. Naturally, at each period, the total
amount of critical supplies stored at a warehouse cannot be greater than the re-
maining capacity of that warehouse. This clearly motivates the need to explicitly
consider the usable inventories of critical supplies that are available, both at the

beginning and end of each period, over the considered horizon.

2.3.2 Budget

In this subsection, we first introduce the costs related to the decisions made in
both the design and the operations conducted through the HSCN. We then discuss
how the overall budget requirements are imposed in the present problem. In this
case, there are two general types of costs, the fixed-costs, and the flow-costs.
The fixed-costs include those associated with the selection decisions: a) of hubs
(e.g. accounting for staff salary and maintenance), b) inventory resources, such
as security guards and rent, and c¢) transportation resources, for example drivers,
staff for loading and unloading the vehicles and security guards. The fixed-costs
are assumed to be paid only once at the moment when the selection decisions
are made. Regarding the transportation services, some expenses occur every time
they are used and are proportional to the quantity of critical supplies that are
transported (e.g. fuel cost). These expenses are referred to as the flow-costs of

the services.
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As for the budget involved in the HSCN design problem, it is assumed to include
two general parts: a) the initial budget and b) donations. The initial budget
is the amount available at the beginning of the planning horizon. It is often
made up of the amount that was planned in the preparedness phase of the pre-
disaster planning performed by the humanitarian organization. As for donations,
they represent the financial support that is received over the subsequent time
periods considered on the horizon. These will vary according to different aspects
related to the specific disaster (i.e., how much journalistic coverage it receives,
the severity of the event, the fund-raising activities of the organization, etc.). The
amount of donations received following a given disaster could be considered an
uncertain parameter. However, we assume that humanitarian organizations are
realistically able to estimate this amount using historical data. In all cases, our
proposed optimization model easily enables scenario analyses to be performed on
the budget parameters (as illustrated in Subsection 2.5.2.4). To impose the budget
constraints, it should first be observed that the amount of available budget is
dependent on the specific time period considered. Thus, the budget requirements
and the limits that they impose should directly apply to the decisions made at
each time period. Following this principle, the incurred fixed-costs are limited
by the initial budget, while the incurred flow-costs in each period are limited by
the remaining budget from the previous period and the donations received at the

current period.

2.3.3 Demand

We now define how the level of demand is calculated over the considered horizon.
The demands of each beneficiary group for specific critical supplies are assessed
based on the population in the considered zone, which is oftentimes uncertain at

the time when the design decisions are made (Council, 2007). However, these
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numbers can be estimated based on various data sources, such as the number
of residences, the number of beneficiaries, the intensity of the natural disaster,
and the overall resistance of the urban or rural infrastructure (Council, 2007). A
distinctive feature of our proposed model, when compared to those developed in
the related scientific literature, is how the cumulative adverse effects of unmet
demand of beneficiary groups are evaluated. Specifically, while operating the
HSCN, we might not be able to fully satisfy the demand of the beneficiary groups
at each considered time period. In turn, this may negatively affect the population’s
health for the beneficiary groups involved. For example, mosquito nets are pivotal
items in controlling malaria epidemics. If the demand for mosquito nets is not fully
satisfied, the epidemic spreads, and in turn the subsequent demand for mosquito
nets is further increased. Additionally, one may observe an increase in the demand
for malaria tests and medication. Therefore, unmet demands for a given critical
supply will cumulate and possibly worsen overtime, but they are also likely to
affect the demand for other critical supplies (i.e., there are correlated adverse

effects).

To evaluate the adverse effects of unmet demands, we first assume that each unit of
unmet demand for a given critical supply carries over to the following time period
along with a negative penalty representing its negative effects. Furthermore, we
introduce a series of spread factor parameters to measure how one unit of unmet
demand for a specific critical supply negatively affects the demand for the other
items in the following period. Specifically, let s¥* represent the effect of one unit
of unmet demand of critical supply &’ on the demand for the critical supply k in
the subsequent time period. To formulate the effects of unmet demands on the
demand level at the beginning of period ¢, we define the total demand, represented
by cift, for the critical supply k and for the beneficiary group [, as the sum of the

base demand and the residual demand carried over from ¢t — 1. The base demand,
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formulated as parameter th, represents the demand for the critical supply k, at
period ¢, expressed by the beneficiary group [, and it is considered uncertain. As
for the residual demand, it captures the negative effects on the level of demand in
the current period that are directly linked to the unmet demands carried over from
the previous period. Therefore, to obtain the total demand value, the following
formula is applied in the case of the critical supply k, at period t and for the

beneficiary group [:

d = e 3 R - YT ae, 2.1)

kK'eK i€Vpeo

As defined in Equation (2.1), czf/t_l represents the total demand of the beneficiary
group [ at period ¢t — 1 and dﬁlt*l defines the decision prescribing the amount
of critical supply k' that is delivered to the beneficiary group [ from the DC i
at period t — 1. Therefore, the spread factor s** is proportionally applied to
the amount of unmet demand of critical supply &’ at period ¢t — 1. Finally, the

overall objective pursued is to design an HSCN that minimizes the total expected

penalties of unmet demands over the defined planning horizon.

2.4 Optimization model

We begin this section by explaining our reasoning for choosing a two-stage model
to formulate the HSCN design problem. We then present the proposed mathe-
matical model. A stage refers to a specific moment within the time horizon at
which decisions are made while considering the informational context of that point
of time, i.e., the known parameters and the parameters that still remain uncer-
tain (stochastic). When formulating a tactical planning problem, it is common to
apply an approximation of the informational process by considering a two-stage

setting. The reasoning behind this choice being that one is primarily interested in
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determining what should be the tactical plan (i.e., the a priori or first-stage deci-
sions), while the operational decisions (i.e., the recourse or second-stage decisions)
are used to evaluate how the tactical plan can be implemented. The latter can
thus be defined as an approximation of the operators occurring in practice (i.e.,
decisions in the second stage being made under the assumption that all stochastic
parameters become known). Moreover, in humanitarian relief planning, one typi-
cally cannot assume that all information will be perfectly revealed at the end (i.e.,
the exact value of some parameters can remain unknown). This further justifies

the use of an approximation regarding how operations are conducted.

In the considered HSCN design problem, the value associated with the uncertain
parameters will be revealed as time elapses (e.g. demands become known as more
information arrives from the field). However, organizations cannot wait to obtain
all the contextual information before designing the HSCN, such as services may
not remain available if they are not booked in advance. Furthermore, the cost of
booking the hubs and the services may increase if their booking is delayed. On
the other hand, postponing the operational decision-making process will result
in better decisions being made considering that there will be less uncertainty
regarding the parameter values. Therefore, as advocated in the related literature
(Grass & Fischer, 2016b), we use a two-stage model where, in the first stage, the
design decisions of the model are made whereas, in the second stage, we include

the operational decisions for all periods.

We propose a model to design an HSCN that receives, stores and distributes
critical supplies, i.e., set K, among the beneficiary groups, i.e., set L, over a given
planning horizon, i.e., set 7. We design the HSCN by selecting a set of hubs
that are represented by set V', and a set of services, represented by set A. The
designed HSCN is then used to transport the critical supplies from ports of entry

to DCs over a known number of periods (i.e., t € T'). To model the uncertain
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parameters, we use a set, ¥, of scenarios. Each scenario is a realization of random
events associated with uncertain parameters. Table 2.2 introduces the sets used

to define the model.

Set Definition
Vi Set of ports of entry ¢ € V7.
Vw Set of warehouses i € Vyy .

\%>Ye] Set of DCs i € Vpe.

Set of all hubs ¢ € V, where V =V J Viw U Vbe-
Set of all services (i,j) € A.

Set of beneficiary groups [ € L.

Set of scenarios ¢ € V.

\%
A
L
K Set of critical supplies k € K.
LG
T

Set of periods t € T.

Table 2.2: Sets used in the optimization model.

The input parameters of our model are presented in Table 2.3. The total demand
for supply k € K for the beneficiary group [ € L in period ¢t € T in the scenario
1 € W is given by parameter dﬁf] The total demand value, as defined by Equation
(2.1), consists of the sum of the uncertain base demand, CZ%, and the unmet
demand from the previous period. Parameter s**" represents the spread factor,
indicating the impact of one unit of unmet demand of critical supply k& on the
demand of critical supply &’ in the subsequent time period. We define a penalty
parameter b* that indicates the penalty for one unit of unmet demand of critical
supply k. For example, a penalty unit for commodity “water” may refer to health
related units, a penalty for the commodity of a certain “medication” the unit may
refer to a sickness related unit and for a commodity “mosquito nets” the unit
may be related to potential future infection risk. The values of the penalties for
the critical supply need to be adjusted with regard to the specific catastrophic

event that occurred, the geographical characteristics of the affected region, the

current weather, and other components affecting the demands. For instance, the
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penalty for food may be higher than for shelter in the dry season, but this relation
may change during the rain season as shelter becomes more valuable. The model
then minimizes the total expected penalty for all beneficiary groups over all time

periods, computed using the defined scenarios.

Deterministic Parameters

Parameter Definition

fij Cost of selecting one unit of transportation resource of service (i, j) € A.
fi Cost of selecting one unit of inventory resource for warehouse i € V.
fi Cost of selecting a hub i € V.
o Cost of transporting one unit of critical supplies k € K, by service (,7) €
” A.
Ui Capacity of one unit of transportation resource of service (3, j) € A.
Uj Capacity of one unit of inventory resource of warehouse i € Vyy .
m; Maximum number of inventory resources available for warehouse i € Vyy .
Maximum number of transportation resources available for service (4, j) €
" A
ot Maximum quantity of critical supplies k£ € K that can be delivered to the
s port of entry i € V; at period t € T.
bk The penalty for one unit of unmet demand of critical supply k € K.
20 The initial budget.
2t The received donation amount at the beginning of period t € T'.
Y Spread factor of one unit of unmet demand of critical supply k& € K on

critical supply k' € K.

Parameters of the scenario-based stochastic model

Parameter Definition

Dy Probability of scenario ¢ € W.

. Percentage of available inventory resources of hub ¢ € V| at period t € T,
Giv in scenario ¥ € W.

. Percentage of available transport resources of service (i, j) € A, at period
Jiju t € T, in scenario ¢ € W.

ot The base demand of beneficiary group [ € L, for critical supplies k € K,
dw at period t € T, in scenario @) € U.
gkt Total demand of beneficiary group [ € L, for critical supplies k € K, at

1y

period t € T, in scenario i € W.

Table 2.3: Model input parameters.

As shown in Table 2.2 the set of all hubs V is divided into three subsets: the set
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of the ports of entry V7, the set of warehouses Vjr and the set of DCs V. There
is a fixed cost f; for selecting a hub. Furthermore, there is a fixed-cost fz to select
each unit of inventory capacity resources for each hub. The capacity of one unit of
inventory in the warehouse i € Vjy is represented by u;. The effects associated with
the secondary impacts on the hubs are modelled as uncertain capacity parameters.
Specifically, the uncertain parameter gfw represents the percentage of the available
storage resources of the warehouse i € Vyy, at period ¢t € T', in scenario ¢ € V. At
the beginning of each time period, damaged inventory capacity is discarded, given
that it is not usable anymore. To consider this change in the inventory level, we
use two inventory variables: one at the beginning and the other at the end of each
time period. The inventory level of a warehouse at the beginning of period ¢ is
denoted by variable ffj and the inventory level of a warehouse at the end of the
period is given by variable rfj We represent the import capacity of each port of
entry by the parameters nft, Vi € Vi, k € K,t € T, which limits the output flow
of each port of entry, for each critical supply at each time period. In addition,
the parameter z' denotes the financial donations received in period t € T, with 2°

representing the initial budget.

Parameter fij is the fixed-cost for selecting one unit of transportation capacity
resource for service (4, j) € A. Parameter u;; indicates the capacity of one unit of
transportation resource for service (¢,5) € A. In addition, parameter ¢}; indicates

the flow-cost of the service (7,j) € A for a unit of critical supply k.

The list of decision variables are presented in Table 2.4. In the first stage, we
model tactical decisions including the selection of hubs, represented by the bi-
nary decision variables y;,7 € V', and the selection of services, represented by
the binary decision variables x;;, (i,7) € A. We also select the capacity of ware-
houses and services, represented by the integer decision variables ¢;,7 € Vi and

T;j, (1,7) € A, respectively. Furthermore, the binary decision variable a; repre-
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sents the assignment of beneficiary group | € L to DC ¢ € Vpe. In the second
stage, three groups of continuous decision variables are used. The flow decision
variables, j?fw’ (1,7) € A7 € VU indicate the quantity of critical supplies k € K
transported through each service in each period t € T', and the allocation decision
variables c‘z%,i € Vpe,l € Lk € K,t € T,v € ¥ determine the amount of each
critical supply that will be delivered to each beneficiary group. The continuous
decision variables fﬁf and rfj indicate the inventory level of warehouse ¢ € Vyy for

critical supply k € K in scenario v € ¥ at the beginning and end of period ¢t € T,

respectively.

First Stage

Variable Definition

zi; € {0,1} | 1if service (¢,7) € A is selected to be part of the HSCN; 0 otherwise.
yi € {0,1} | 1if hub i € V is selected to be part of the HSCN; 0 otherwise.
Tij € NO Number of units of transport resources selected for service (z,j) € A.
9; € NO Number of units of inventory resources selected for hub ¢ € Vyy .

a;; € {0,1} | 1 if beneficiary group ! € L is assigned to DC i € Vp¢; 0 otherwise.

Second Stage

Variable Definition

Quantity of critical supply k € K transferred through service (i,j) € A

zkt >0
Ty = at period t € T in scenario ¢ € W.

s >0 Quantity of critical supply k € K at period ¢t € T allocated to beneficiary
iy = group | € L from DC i € Vp¢ in scenario ¢ € .

S Inventory level (in number of units) of critical supply k € K at warehouse
. i € Vi at the end of period ¢t € T in scenario ¢ € V.

S0 Inventory level (in number of units) of critical supply k € K at warehouse
= i € Vi at the beginning of period t € T in scenario ¢ € .

Table 2.4: Decision variables of the two-stage stochastic model.

In the following, the first and second stage (i.e., recourse) models are introduced.
The first stage model seeks to design an HSCN minimizing the expected penalty
of the recourse function over the set of scenarios W. The recourse function, rep-

resented by Q, (2,79, a), defines the second stage that selects the operational deci-
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sions for a specific scenario 1) € ¥ to minimize the penalty of unmet demand over

the planning horizon.

min szwa(j’ U,a) (2.2)
Yev
s.t.
2551‘]’ S Yi + Yj V(Z,j) € A> (23)
Ji <myy; Vi€ Vi, (2.4)
Ty < myjxy; V(i, ) € A, (2.5)

Z fiyi + Z it + Z fistiy < 2°, (2.6)

i€V iEW (i,j)EA

 ay=1 Viel, (2.7)
1€Vpeo

a; < y; Vi € VDC> Vil e L, (28)

i'ij S NO7 :gz € N07 Tij € {07 1}7 Yi € {07 1}7

ag €4{0,1}, Vie V, VY(i,j) € A.

Where Q. (2,9, a) is defined as follows:

Qu(E, §,a) :=min Yy Y 0> (dif - Y all) (2.10)

teT keK €L i€Vbe



s.t.

Y oE <wygl, iy, V(i,j) €A VEET,
keK

ily,
(Ji)eA

alt <dff, VieVpe,VieL, Vke K VteT,

doall <> ah VieVpo,Vke K, VLT,

llw
leL JjeEW

di =i+ 3 s - S akth), Wle L Vke K, VteT,

k'eK i€Vpe

Zfzyz+2fzyz+ Z flszj—i_z Z ZC

eV iceW (i,7)€A t'=1 (i,j)eAkeK

zo—i-Zzt/, Vte T,

t'=1

it < PPl i e Vi, YE € K, VYt e T,

Jw— Jy

> i <wugl g VieVw, VEET,
keK

> okt <wgl g VieVw, VteT,
keK

=ik Nl N M Wje Vi, VEE K, VEET,

zyw
(i,5)€A (j)eA

d o <nft VieV, VkeK, VteT,

(i,7)EA

akt < Z Ujig§injiail, Vi e Vpo, Vle L, Vk e K, Vt €T,

k —kt'
j l]w -
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(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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_kt _k kt Akt ;o4
Tig, 2 0, agy, = 0, vy =0, 757 > 0, V(i, j) € 4,

VieV,Vke K, VteT.

(2.22)

The Objective Function (2.2) minimizes the expected recourse value (i.e., the ex-
pected total penalty for unmet demands). Constraints (2.3) ensure that a service
can only be selected if its origin and destination hubs are part of the HSCN.
Constraints (2.4) indicate that inventory resources at a warehouse can only be
selected if that warehouse is also part of the HSCN. Similarly, Constraints (2.5)
indicate that the selection of transportation resources for a service is conditional
to it being included in the HSCN. The initial budget, which limits the total cost
incurred for the selected hubs and services and their resources in the first stage,
is imposed by Constraints (2.6). Constraints (2.7) indicate that each beneficiary
group should be assigned to a single DC, whereas Constraints (2.8) prohibit as-
signing beneficiary groups to DCs that are not part of the HSCN. Finally, the
necessary integrality requirements and bounds imposed on the first stage decision

variables are included by Constraints (2.9).

In the second stage, the operational decisions are made. The Objective Func-
tion (2.10) minimizes the total penalty associated with the unmet demands for
all beneficiary groups over the entire planning horizon. Constraints (2.11) are the
service capacity Constraints, ensuring that, at each period, the quantity of criti-
cal supplies transported by each service is limited to its assigned transportation
capacity. After transferring the critical supplies to the DCs, they are allocated to
the beneficiary groups. Constraints (2.12) impose the critical supply limits that
are available at each DC to serve the beneficiary groups that are assigned to it.
To impose the non-anticipativity requirements in each period, the allocated quan-
tity of critical supplies to each beneficiary group is limited by its demand at that
period which is enforced by Constraints (2.13). Constraints (2.14) ensure that in
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each DC, the total quantity of allocated critical supplies is limited by the quantity
that is available at that DC. Constraints (2.15) compute the total demand at each
period as the summation of the base demand and the residual demand multiplied
by the spread factor. Constraints (2.16) are the budget Constraints that limit the
cumulative expenses at a given time period to be less than equal to the sum of

the initial budget and the donations received up to that time period.

Constraints (2.17) indicate that the inventory level at the beginning of each period
is limited by the inventory level at the end of the previous time period. At each
period, the inventory level for a warehouse cannot exceed its inventory capacity.
These limits are imposed by Constraints (2.18) and (2.19). The inventory level
for a hub at the end of a period is computed based on its inventory level at the
beginning of the period plus the quantity of critical supply that is received at the
hub minus the quantity of critical supply that is delivered from it. Constraints
(2.20) calculate the inventory level for each warehouse at the end of each period.
The ports of entry do not have inventory capacity, therefore all received critical
supplies at a period must be sent to the warehouses. Since we have a limit on
the maximum level of critical supplies that can be received at each port of entry
from international humanitarian organizations and other donors, the output flow
of critical supplies at each port of entry must not exceed such level. Constraints
(2.21) ensure that these limits are imposed in all periods. Finally, Constraints

(2.22) define the bounds of the variables used in the second stage.

2.5 Experimental results

In this section, we design and apply a series of numerical experiments to study
the performance of the proposed model on a practical HSCN design problem

(derived using a particular case study). Subection 2.5.1 introduces the considered
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case study, obtained using real-world data from Indonesia’s 2018 earthquake. In
Subsection 2.5.2 we present the numerical experiments that are conducted and
the detailed results obtained on the case study. Subsection 2.5.2 reports lower
and upper bounds when the introduced optimization model is used to solve the
considered problem instances, as well as stability results related to the size of
the used scenario samples. This subsection also investigates the importance of
explicitly considering the uncertainty when solving the problems, as well as the
impact of the available budget and the spread-factor on the performance of the
designed HSCN over the planning horizon. Finally, Section 2.5.3 summarizes the

managerial insights obtained from the experiments conducted in Section 2.5.2.

2.5.1 Data generation for the case study

Our case study focuses on the 2018 earthquakes in Indonesia. On the 29th of
July 2018, a 6.4 magnitude earthquake occurred on the island of Lombok. This
earthquake had more than 1,500 aftershocks, three of which were particularly
strong: a 7.0 magnitude earthquake on the 5th of August 2018, a 5.9 magnitude
earthquake on the 9th of August 2018, and a 6.4 magnitude earthquake on the 26th
of August 2018. These earthquakes caused 564 deaths, 1,584 injured, and 445,343
people displaced into more than 2,700 camps (i.e., beneficiary groups) (IFRC,
2021a). Immediately after the earthquakes, Indonesia’s government announced a
state of emergency, which ended on the 26th of August 2018, by declaring the
transition to the long-term recovery phase. We here consider this period of 28
days as the short-term recovery phase of our planning problem. The planning
horizon is then divided into four periods, each period being one week-long. To
model the demands associated with the locations of the beneficiary groups, we
used a data set made available by the International Organization for Migration

(IOM) (IOM, 2019), which indicates the number of individuals and households



52

associated with the beneficiary group locations. Our study focuses on a specific
part of the island of Lombok (Pringgabaja, Suela, and south of Aikmel), where
13,177 individuals were displaced into 71 beneficiary groups.

The International Federation of Red Cross and Red Crescent Societies (IFRC)
and its local partner Palang Merah Indonesia (PMI) are among the active hu-
manitarian organizations in the region. We analyzed the “Emergency Plan of Ac-
tion Operation" reports and “Operation Update" provided by the IFRC (IFRC,
2021a) to better understand the region’s state and the challenges it faced regard-
ing the humanitarian operations after the earthquake. Based on these reports,
we located the ports of entry and the warehouse locations that IFRC and PMI
used in their HSCN. Furthermore, we also learned that PMI signed agreements
with third-party logistics companies to use their fleets to transport critical sup-
plies over their HSCN (IFRC, 2021a). The airport on the island was damaged,
which allowed only small airplanes to land. Hence, the larger aircrafts transport-
ing supplies would land at the Surabaya airport, located on the Java island (IFRC,
2021a), and most of the critical supplies were then shipped to Lombok by boats.
The IFRC used four points of entry, including: Serang port, Gresik port, and
Juanda International Airport on Java island, and Lombok airport on the Lombok
island. It further had six warehouses on Lombok. According to the IFRC reports,
water was provided to beneficiaries via 21 water trucks operated from a single
location on the island. Considering that the water supply came from a different
relief network (which did not share resources with the rest), this study focuses
on the following types of critical supplies: shelter, food, and hygiene (e.g. soap,
toilet paper, and sanitary pads) (IFRC, 2021a). For these three critical supplies,
we consider unit penalty values of 5, 2 and 3, respectively. Each household has
a demand of 1 unit for shelter and hygiene items, while their demand for food

corresponds to a total of 28 units (which corresponds to 1 unit per day, given
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that the total planning horizon spans 28 days). As such, providing food has the

highest priority in the objective function.

In order to standardize and harmonize the critical supplies in emergency op-
erations, the International Federation and the International Committee of the
IFRC have published the standard products catalog (IFRC, 2021b). This catalog
presents the details regarding all critical supplies, including weight, volume, and
the number of beneficiaries each unit can support during a given time frame (if
applicable). Using this catalog, we were able to calculate the amount of critical

supplies required for each individual or household during each period.

Although we extracted the values of multiple parameters from the IFRC reports,
accurate values for some parameters were missing. Additional sources were thus
needed to complete our data set. To evaluate the service capacities and associated
costs, we consulted local vehicle rental websites. We first chose two types of trucks
(i.e., medium duty trucks for services between ports of entry and warehouses
and pick-up trucks for services between warehouses and DCs) from the available
trucks and calculated the fixed-cost and the flow-cost for renting the trucks using
the pricing information from the website. However, since the reported costs on
the website were priced for one delivery between each origin and destination,
we defined a service resource between an origin and destination pair to operate
only one delivery per period. Specifically, for the flow-cost, we multiplied the per
kilometer cost of transporting the critical supplies obtained from the local website
by the distance between the hubs. To calculate the distances between the different
locations, we used an online routing engine (Luxen & Vetter, 2011) that operates
on the OpenStreetMap data. We were thus able to evaluate both the walking and
the driving distances between the different geographical locations (i.e., the driving
distance between the ports of entry and warehouses, the driving distance between

warehouses and DCs, and the walking distance between the DCs and beneficiary
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groups).

Another set of parameters that were not mentioned in the IFRC reports are the
locations of the DCs. Hence, we generated a set of possible DC locations to com-
plete our data set as follows. It is first assumed that beneficiaries will, most likely,
have to walk to the DCs to acquire their critical supplies. Therefore, the best
candidate locations for the DCs are those that are close to the beneficiary groups.
Hakimi Hakimi (1964) showed that in a given graph if one is interested in finding
the specific location that minimizes the total distance between the selected loca-
tion and all nodes in the graph then the location will necessarily be one of the
nodes. When applying this result to the present case, the location that minimizes
the total distance from all beneficiary groups is necessarily among the beneficiary
group’s location. Therefore, all beneficiary group locations are potential candi-
dates for the DC locations. In order to reduce the number of candidate locations
for the DCs, we clustered the beneficiary groups using the DBSCAN algorithm
(Ester et al., 1996). DBSCAN is a density-based clustering algorithm that clus-
ters the beneficiary groups based on two parameters: a parameter indicating the
neighbourhood radius for the DCs to be included in the same cluster and a param-
eter specifying the minimum number of neighbours within each cluster, impacting
the cluster’s density. Different values for these two parameters result in different
clusters. As typical in clustering analysis, a domain expert then selects the clus-
ter most useful in practice (Mendes & Cardoso, 2006). Figure 2.2 presents the
locations of the beneficiary groups and the four candidate locations for the DCs
that were obtained following the cluster analysis that was performed using the

DBSCAN algorithm.
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Figure 2.2: Original beneficiary groups and their respective clusters presented on
the OpenStreetMap (OpenStreetMap contributors, 2022). The blue circles
represent the beneficiary groups and the red circles indicate the distribution

centers.

Scenario generation

In order to approximate the two-stage stochastic programming and, to study the
performance of the obtained solution, we require a set of scenarios that properly
captures the probable variations of the uncertain parameters’ values. Since each
natural disaster is a unique event that is often different from previous ones (Chen
et al., 2011), relying on experts’ opinions is a common approach to formulate
the uncertainty that humanitarian organizations face when planning operations
(Karimi & Hiillermeier, 2007). The experts’ opinions are obtained based on the
damage assessments conducted after a natural disaster occurs. Since the damage
assessments are time-consuming, the affected region is often divided into smaller
sub-regions where the assessments are conducted in a sample set of locations (Bal-
cik, 2017; Balcik & Yanikoglu, 2020). Considering that we do not have access to
specific assessments, we simulate the experts’ opinions to characterize the param-
eter uncertainties. Expert estimations for humanitarian operations are commonly

given by a triangular distribution for each uncertain parameter (Benini et al.,
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2017; Grass et al., 2023; Hakimifar et al., 2021), including an optimistic value,
a pessimistic value, and a most likely value. We therefore simulate the experts’
predictions for the values of the uncertain parameters using this three-point es-
timation technique. We consider a total of three experts, each of which provides
their assessments for each uncertain parameter (thus providing a specific triangu-
lar probability distribution for each stochastic parameter assessed by each expert).
The explicit values provided by each expert were randomly generated using the
available dataset. Specifically, we assume that the available dataset of the un-
certain parameters obtained from the humanitarian organizations’ websites is a
realization of the triangular distributions provided by the experts. Therefore,
while the characteristics of the triangular distributions are chosen randomly, the
minimum and maximum values of distributions embrace this realization. Finally,
we assume that the same confidence level was associated to each expert’s assess-
ments. We thus generated an equal number of scenarios from the expert-specific
distributions. Furthermore, the probability of occurrences of the scenarios is as-

sumed to be equal.

Ground Truth

A total of 1000 scenarios sampled from the triangular distributions provided by
the three experts (334 first expert, 333 second expert, 333 third expert) were
used to represent the ground truth (i.e., an accurate approximation of how the
stochastic parameters can randomly vary). However, given the complexity of the
proposed model, solving it using all the scenarios that define the ground truth is
not computationally tractable. Therefore, we use the Sample Average Approxima-
tion (SAA) (Kleywegt et al., 2002) method to generate more manageable scenario
sets which can be used to efficiently solve the two-stage stochastic model. Yet,

it is crucial to assess the effects of the sample size on the in-sample stability and
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out-of-sample stability of the solutions obtained (Kaut & Wallace, 2003). After
choosing an appropriate sample size (i.e., one that provides a satisfactory level of
stability), the problem can be solved by generating a scenario set with the pre-
scribed size and then evaluating the obtained solution using the ground truth to

assess its expected performance in practice.

2.5.2 Computational Results

In this subsection, we report the numerical results for the two-stage stochastic
model in the context of the considered case study. We start by studying the
effects of varying the number of scenarios on the solutions obtained by solving
the two-stage model by performing in-sample stability and out-of-sample stability
analyses (Kaut & Wallace, 2003) in Subsection 2.5.2.1. Then in Subsection 2.5.2.2,
we obtain lower and upper bounds for the planning solution over the considered
ground truth. Since that capacity and demand are the uncertain parameters, we
separately study the effects of each of these parameters on the obtained solution.
In Subsection 2.5.2.3, we compare the performance of the solution obtained from
our two-stage model with its counterpart models in which the uncertain parame-
ters are replaced with their deterministic counterparts. In our problem, we assume
that the available budget is known beforehand. In Subsection 2.5.2.4, we evaluate
the effects of the available budget. Finally, in Subsection 2.5.2.5, we study the ef-
fects of the spread factor and compare the different solutions induced by changing
the values of the spread factor. The implementations are done using the Pyomo
software package (Hart et al., 2011, 2017) on a machine with Intel €5-2630 v4 2.2
GHz CPU and 256 GB of memory.
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2.5.2.1 In- and Out-of-Sample Stability

In this subsection, we explore the impact of the number of scenarios used to solve
the HSCN problem on the obtained solution. When solving a two-stage model,
increasing the number of scenarios obtained using an appropriate sampling method
improves the approximation of the uncertain parameters. However, in practice,
the resulting optimization problem should remain solvable in a reasonable amount
of time. Solving an optimization problem with distinct sets of scenarios (even of
the same size) may lead to different solutions. We now consider both the in-
sample and out-of-sample stability to analyze the effect of sample size on the
final solution quality. An in-sample stability test evaluates the stability of the
obtained solutions over different scenario sizes in terms of their reported objective
function value. Likewise, an out-of-sample stability test evaluates the stability of
the expected objective function value of the obtained solutions over the ground

truth.

To evaluate the in-sample stability, we solve our two-stage model with a specific
number of scenarios with 15 different randomly generated scenario sets. Then,
we calculate the average and standard deviation of the objective function values.
By repeating this process for different scenario numbers, we study the effect of
the number of scenarios on the in-sample stability of the studied problem. Table
2.5 represents the results obtained, indicating that, as the number of scenarios
increases, the standard deviation significantly decreases, which translates as an
increase in the in-sample stability. As the number of scenarios increases from 10 to
50, the Coefficient of Variation (CV) (i.e., the ratio of the standard deviation to the
average) is reduced from 5.72% to 3.36%. Furthermore, as the number of scenarios
increases to 200, the CV decreases to 2.03%. Considering the computational

cost of using 200 scenarios compared to 50 and the slight reduction over the CV
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value, 50 is the best candidate for the following experiments. Since the average
objective function values in this table are calculated over small scenario sets (not
the ground truth), they are not indicative of the quality of the obtained solutions.

The abbreviation O.F. in the following tables stands for the objective function.

standard deviation of O.F.
number of average of O.F. value
value
scenarios
10 7,168.60 410.70
20 7,210.70 439.40
30 7,315.50 370.34
50 7,138.60 240.25
100 7,466.50 285.35
200 7,258.90 147.73

Table 2.5: The in-sample stability analysis results.

In addition to the in-sample stability, we also study the out-of-sample stability of
the problem over different scenario sizes. In a similar process, we apply the first-
stage solutions obtained from the in-sample stability test on the entire ground
truth and calculate the average value and the standard deviation of the objective
function over all 15 solutions obtained for each scenario size. Table 2.6 presents
the results obtained by repeating this process for different scenarios sizes. Here the
objective function value refers to the entire ground truth and therefore indicates
the quality of the solutions. According to the presented data in Table 2.6, by
increasing the scenario size from 10 to 50, CV decreases from 2.34% to 0.03%.
However, by increasing the scenario size to 200, CV decreases to 0.00%, which
is negligible compared to the computational cost of using 200 scenarios. Based
on the results of these two tables, we select 50 as the number of scenarios for
our problem and use it in all following experiments, given its acceptable standard

deviation both in in-sample and out-of-sample stability tests.
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standard deviation of O.F.
number of average of O.F. value
value
scenarios
10 7,419.40 173.92
20 7,303.57 7.55
30 7,302.88 8.50
50 7,299.70 2.33
100 7,299.09 0.42
200 7,298.76 0.19

Table 2.6: The out-of-sample stability analysis results.

2.5.2.2 Bounds and Value of Stochastic Information

We now compute both an upper and a lower bound for the HSCN problem. To
obtain a lower bound, the Wait-and-See (WS) variant of the problem is solved
(Madansky, 1960; Tintner, 1955). In the WS, the value of the uncertain parame-
ters is considered known (i.e., the implicit assumption being applied here is that
one can wait until all uncertain parameters become known before optimization is
applied). We therefore obtain the WS objective function value by solving each
scenario of the ground truth individually and then averaging over their optimal

solution values.

As an upper bound, we solve the deterministic version of the problem by replacing
the uncertain parameters with their expected values (Dantzig, 1955; Madansky,
1960). Then we apply the solution to the ground truth scenarios to calculate the
expected objective function value of the deterministic solution, represented by
EEV. Table 2.7 indicates the calculated upper and lower bounds over the ground
truth.
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Concept Value
EEV (upper bound) 7,954.42
WS (lower bound) 7,298.36

Table 2.7: Upper and lower bounds for our problem.

We now calculate the Expected Value of Perfect Information (EVPI) (Birge &
Louveaux, 2011), representing the possible improvement of the objective function
value if the exact realizations of the uncertain parameters were known. We use
the objective function value obtained in Subsection 2.5.2.1, on the ground truth

as follows:

EVPI =RP—-WS =7299.70 — 7298.36 = 1.34.

Such a small value of EVPI indicates that the two-stage stochastic problem op-
timized on the 50 considered scenarios finds a solution that performs quite well
on average, and having access to perfect information only marginally reduces the
penalty in the objective function. Next, we investigate whether it is worth solv-
ing the stochastic problem instead of its deterministic counterpart. We therefore
calculate the Value of Stochastic Solution (VSS) (Birge & Louveaux, 2011), rep-
resenting the objective function gain by explicitly considering the uncertainty in

the model:

VSS =FEEV — RP =7954.42 — 7299.70 = 654.72.

Such a high VSS value suggests that solving the stochastic variant may signifi-
cantly improve the solution quality and is certainly worthwhile, considering that

the objective function value is linked to population health.
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2.5.2.3 Importance of modeling uncertainty

To study the effects of the considered uncertain parameters on the solutions, we
now solve our two-stage model under three different settings. The first setting
replaces the uncertain capacity parameters with their expected values. There-
fore, the only remaining uncertain parameters in the model are the demands. In
the second setting, we replace the uncertain demand parameters with their ex-
pected values, but the capacity parameters remain uncertain. In the third setting,
both parameters are considered uncertain. Table 2.8 presents the average objec-
tive function values and their standard deviations over 15 runs for each setting.
Analyzing the objective function column, the best results are obtained on the
setting where both the capacity and demand parameters are uncertain. Particu-
larly, considering the capacities as uncertain parameters leads to a considerable
improvement in the average value of the objective function. Next, by compar-
ing the standard deviation of these three settings, we conclude that considering
the uncertainty of demand and capacity in the optimization model considerably

improves the out-of-sample stability of the solution.

Standard Deviation of
Capacity Demand Average Value of O.F. OF
uncertain expected value 7,319.49 29.21
expected value uncertain 7,730.76 194.69
uncertain uncertain 7,299.70 2.33

Table 2.8: Effect of modeling uncertainty on the optimal solution of the

stochastic model (using 50 scenarios over 15 runs).
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2.5.24 Impact of available budget

It is expected that the available budget plays a pivotal role in the quality of the
final solution obtained as it limits the design and operational costs that are paid
for each stage and time period. As we mentioned in the introduction, the final
amount of donations received is often less than the amount initially requested.
Therefore, we now analyze the impact of a possible budget shortage on the per-
formance of the designed HSCN. Such analysis helps decision-makers to evaluate
the robustness of the designed HSCN. To this end, we define two parameters for
the budget: the amount the decision-makers anticipate, which is denoted 2., (i.e.,
the expected budget), which we distinguished from the actual budget z,. (i.e., the
amount actually received). The questions that we are investigating through this
experiment are: (1) How does a HSCN perform if we expect a budget of z.,,, but
the actual budget turns out to be z,4? (2) How would the HSCN perform if we
knew the actual budget value at the design time and the HSCN is thus designed

using zge: !

To answer the first question, we investigate the case where we design the HSCN
using zegp, but the available budget in practice is 2z,4. In this part of the experi-
ments, we first solve the two-stage model using the z.,, as the budget. We then
update the budget to z,. and apply the designed HSCN on the ground truth. Ta-
ble 2.9 summarizes the results obtained in this experiment. In order to be able to
track the expected penalty over the planning horizon, it is calculated separately
for each time period. In the first row of Table 2.9, the value of the expected
budget is equal to the actual budget (i.e., the expected budget at design time is
received during the operation). As represented in the per period penalty column,
unlike in other periods, the second period has a very low penalty, indicating that

almost all the demand in this period is satisfied. In the second row, the actual
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budget is set to 80 percent of the expected budget leading to an increase in the
expected penalty over all periods. The per-period penalty for this budget has a
similar pattern as in the first row. When comparing the total penalty of the first
two rows, one observes that: when the actual budget is reduced by 20 percent
the increase in the overall penalty is only marginal. This observation proves very
useful to decision-makers in the present setting. For example, in the context of
our specific case study, this amount (corresponding to 20 percent of the origi-
nal budget) may find a more effective use in other operations of the short-term
recovery phase not considered in this planning problem. In the third row, the
actual budget is reduced to 60 percent of the expected budget, resulting in a high
increase in the expected penalty of the HSCN. It is also observed that most of
this increase belongs to the first two periods. In order to reduce the impact of
the spread factor on subsequent periods, the planning solution prefers to satisfy
the demand in the early periods as much as possible, when the budget is limited.
Finally, in the last row, with an actual budget equal to 40 percent of the expected
budget, there is an even higher increase in the expected penalty on the HSCN

performance.
actual budget O.F. value zeqp per period
total O.F. value zexp
Zact First Period Second Period Third Period Fourth Period
Zeaxp 2,116.92 10.30 2,850.16 2,322.78 7,300.16
0.8zexp 2,147.75 10.57 2,871.15 2,333.28 7,362.75
0.6zexp 13,903.64 6,042.45 2,986.34 2,608.43 25, 540.86
0.4zexp 134,238.84 134,843.53 3,065.40 3,330.40 275,478.17

Table 2.9: Effect of budget on the optimum solution of the stochastic model

(average over 15 runs using 50 scenarios).

In the second part of the experiment, the value of the actual budget at the design
time is assumed known. Therefore, we solve the two-stage model using different

values of z,, and apply the obtained HSCN to the ground truth. Figure 2.3
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compares the obtained results of the two parts of the experiment. The impact of
using ze, at design time on the objective function value is negligible compared
to the effect of the budget deficit indicating that a lack of budget cannot be
compensated by a more prudent planning.

-10° ‘ ‘

|:| |:| budget = zezp
s [0 buaget = zace ||

objective function value

0 | | — | | — I:lm

1 1 1 1
Zexp 0.8zcxp 0.6zcqp 0.4zcqp

actual budget value

Figure 2.3: Penalty (objective function value) of the designed HSCN using 2.,
as budget (blue) and using z,. as budget (red) over the ground truth with
budget zqe-

2.5.2.5 Impact of the spread factor

In this subsection, the effects of the spread factor value (representing, e.g. the

contagion level of diseases) on the performance of the obtained solution are stud-

ied.

We consider two different budget values, z and 2z. For each budget level we
evaluate three values for the spread factor: 0 (i.e., no spread), the identity matrix
(represented by I), and 2/. For the sake of the experiment, we assume that the

unmet demand of each critical supply only impacts itself (but not other supplies)
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in the subsequent time periods (as represented by the identity matrix).

Table 2.10 represents the results of this experiment. To better analyze the effect
of the spread factor on the HSCN’s performance, we present the expected penalty
separately per period and in total. An interesting pattern in the results is that, as
the spread factor increases, the expected penalty shifts from early time periods to
the end of the planning horizon. This is explained by the model’s effort to avoid
unmet demand early in order to avoid excessive spread over time. The results of
this experiment are also visualized in Figure 2.4. As the spread factor increases,
the impact of a higher budget on improving the objective function value decreases.
An important observation in this experiment is that considering a lower value for
the spread factor parameter can irreparably misguide the decision-makers on the

performance of the designed HSCN.

Objective Function Objective Function Value (per period)

Spread Budget Value(Total) First Period Second Period Third Period Fourth Period
Factor

0 z 2,093.54 2,085.57 7.97 0.00 0.00

0 2z 0.90 0.90 0.00 0.00 0.00

I z 7,300.16 2,116.92 10.30 2,850.16 2,322.78

1 2z 3,881.29 0.00 0.00 1,989.06 1,892.23

21 z 14,858.83 7.32 0.00 5,078.27 9,773.23

21 2z 13, 540.26 0.15 0.00 4,516.25 9,023.86

Table 2.10: Effect of spread factor on the performance of the HSCN performance

(average over 15 runs using 50 scenarios).
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Second Stage Expenses (per period)

First Stage
Spread Budget First Period Second Period Third Period Fourth Period
Expenses
Factor
0 z 60, 098.44 12,682.30 10, 896.03 10,913.85 10, 809.37
1 z 58,628.16 12,428.91 11,500.73 11,417.99 11,424.22
21 z 57,794.27 12,428.92 11,521.51 11,909.61 11,745.70

Table 2.11: Effect of spread factor on the expenses of the optimized HSCN

(average over 15 runs using 50 scenarios).

Table 2.11 represents the expenses in each stage in this experiment. The first stage

expenses represent the HSCN design costs and the second stage expenses represent

the operational costs in each period. The results indicate the importance of the

spread factor as the first stage expenses of the designed HSCN with a spread

factor value of 0 are considerably higher than models with a non-zero spread

factor parameter. In other words, while the model can afford to spend more on

the HSCN design when the spread is low, it tends to spend more on controlling

disease (i.e., unmet demand) when the spread is high.
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Figure 2.4: Impact of spread factor and available budget on the performance of

the HSCN.

Given that the real spread-factor may not be known exactly to the planner, we
now investigate the potential impact of under- or overestimating the spread factor
on the performance of the designed network. To this end, we solved the problem
assuming three different spread factor levels (0, I, and 2I) and then evaluated
the planning solutions under the assumption that any of those spread factors
may occur in practice. Figure 2.5 visualizes the heatmaps and the total penalties
obtained from this experiment. One observes that underestimating the spread
factor can have a disastrous effect on the total penalty. In contrast, overestimating
the spread factor seems to hold little risk, since it only marginally increases the
penalty if, in reality, a smaller spread is present. This suggests that the planner
should rather assume a high spread factor in the planning model, which holds a

smaller down-side risk as doing the opposite (i.e., assuming a small spread factor).
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Figure 2.5: Heat-maps indicating the impact of overestimating or
underestimating the spread factor value on the performance of the designed
network. The spread factor value used to solve the model is represented by s,
while the real spread factor used to evaluate the solution is s, resulting in

expected penalty p.

Finally, Table 2.12 characterize the best HSCNs obtained using different values
for the spread factors. As the spread factor increases, the number of selected
hubs and services reduces. The same holds true for the number of inventory
and transport resources as the spread factor increases. These results support the

previous conclusion obtained from Table 2.11, showing a decrease in the first stage
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expenses as the spread factor values increase. However, as represented in Figure
2.4, the changes in the obtained solution cannot fully compensate for the increase

in the expected penalty caused by the increase of the spread factor values.

warehouse service
spread factor point of entry warehouse DC service
resources resources
0 3 3 17 4 15 116
I 2 3 14 4 12 106
21 2 3 14 4 12 100

Table 2.12: Characteristics of the best HSCNs obtained by different spread

factor values.

2.5.3 Managerial Insights

Based on the proposed model and the experimental results, we can derive several
managerial insights for humanitarian organizations dealing with the here consid-

ered HSCN design problem:

1. As the HSCN design problem includes a high level of uncertainty, using
an appropriate number of scenarios to analyze in-sample and out-of-sample

stability is crucial to obtain a reliable and valid solution.

2. Although the stochastic model is more challenging to solve than its deter-
ministic counterpart and, ultimately, requires higher computational times
from the solver, the solution obtained using the stochastic model is more
flexible and thus adaptable to the random fluctuations that lead to the dif-

ferent realizations of the uncertain parameters.

3. An overestimation of the available budget may have dire effects on the total
penalty in the objective function (see Section 5.2.4., “Impact of available

budget”). For example, while a 20% decrease of the budget has almost no
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effect on the overall penalties within our case study, a 40% decrease more
than triples the expected penalty, and a 60% decrease results in a more
than 30-times higher penalty. This illustrates that the overall harm to the

affected population exponentially increases as the budget decreases.

4. Underestimating the spread factor for unmet demand may severely compro-
mise the health of the affected population (see Section 5.2.5., "Impact of the
spread factor"). In our case study, ignoring or underestimating the spread
factor results in unnecessary high penalties in certain regions. Specifically,
assuming no spread factor (i.e., S = 0) in the optimization model, while, in
fact, there is a high spread (i.e., S = 2I), results in a tenfold increase of the
total penalty (from 2093 to 20256). In contrast, overestimating the spread
factor seems to hold little risk. Assuming a high spread factor (i.e., S = 21),
while, in fact, there is no spread (i.e., S = 0) results in a marginal penalty

increase (from 2093 to 2115).

2.6 Conclusion

A fast and effective humanitarian response post-disaster is essential to avoid last-
ing negative effects on the affected communities. Effective use of the available
response budget is therefore of the utmost importance. In this work, we have
proposed a two-stage stochastic model to solve the HSCN design problem after
a natural disaster to cover the aid provided over a given planning horizon. We
propose a new approach to model the demand in a multi-period HSCN design
problem setting that is more realistic. Our approach introduces a spread factor,
which addresses the effects of each critical supply’s unmet demand on all critical

supplies’ demand in the subsequent time periods.

The proposed two-stage stochastic optimization model was numerically evaluated
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in a case study based on the 2018 earthquake that occurred in Indonesia. The in-
stances used for this case study were derived using real-world data gathered from
the grey literature published by IFRC and PMI following this catastrophic event.
This data was further complemented by information collected via local commercial
websites to estimate the missing parts of the dataset. The stochastic optimiza-
tion model was then used to formulate the considered problem while explicitly
accounting for both demand and available capacity (both logistical infrastructure
and transportation services) uncertainty. In order to provide an accurate rep-
resentation of the uncertainty, we generated a ground truth consisting of 1000

scenarios sampled from the distributions of the uncertain parameters.

Multiple experiments were designed and conducted using the proposed model.
The results demonstrate the importance of considering uncertainty and the pro-
posed spread factor in the HSCN design problem. Compared to its deterministic
counterpart, the proposed stochastic model provided improved solution quality in
terms of the objective function value as evaluated on the ground truth and its
out-of-sample stability. The experiments also highlight the benefits of using the
spread factor to provide decision-makers with insights regarding the crisis’ depth

and potential development over time in the affected region.

Furthermore, we studied the effect of budget shortages on the expected perfor-
mance of the designed HSCN. In the investigated case study, the results suggest
that the designed HSCN may be able to resist a certain level of budget shortage.
However, as the shortage level increases the HSCN’s expected performance may
quickly decrease to an unacceptable level. Such experiments may help decision-
makers to identify a more appropriate amount for the budget. The additional bud-
get, which does not lead to a noticeable reduction in the unmet demand penalties
considered, may therefore be allocated to other operations for more efficient use.

The methodology introduced in this paper can thus assist the decision-makers
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by providing them with a better understanding of the crisis and how aid can be

efficiently distributed.

In future work, one may extend the proposed methodology by considering other
relevant aspects of the problem setting. Specifically, introducing concepts of fair-
ness and equity when formulating the objective function would appear as a par-
ticularly impactful and challenging avenue of research to pursue. Additionally,
investigating how ambiguity, which may affect the formulation of the uncertain
parameters, would also appear as a relevant path of investigation. Finally, one
may also consider uncertainty in some of the parameters currently considered

deterministic, for example, the total quantity of available critical supplies.



CHAPTER III

HANDLING AMBIGUITY IN STOCHASTIC HUMANITARIAN SUPPLY
CHAIN NETWORK DESIGN
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Abstract

The design and operation of Humanitarian Supply Chain Networks after a natural
disaster are among the most complex activities conducted by humanitarian orga-
nizations, involving different sources of uncertainty. Typically, the assessments
of damage and the resulting demand for resources in the affected region are esti-
mated using different data sources (e.g. surveys and satellite imagery). However,
inconsistent estimates of uncertain parameters obtained from the use of multiple
data sources may result in ambiguity, posing difficulties to define the planning
problem. We here aim to mitigate such ambiguity by developing four mathe-
matical models that deal with ambiguity with varying degrees of conservatism
regarding the obtained estimations of the uncertainty. The performance of each
proposed model is evaluated, considering two data sources across four ambiguity
patterns and 20 problem instances generated using real-world data from the 2018

Indonesia earthquake. The results highlight the benefits of the Minimization of
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Maximum Data-Source Penalty when the ambiguity pattern is unknown and the

decision-maker has equally high confidence in all data sources.

Keywords: Humanitarian Supply Chain; Humanitarian Relief Network; Stochastic

Programming; Ambiguity; post-disaster; Aid Planning

3.1 Introduction

In 2013, the total amount of funding requested by humanitarian organizations
worldwide was 12.8 billion US dollars (UNOCHA, 2021b). However, the total
amount of donations received by humanitarian organizations in the same year
was 8.3 billion US dollars (UNOCHA, 2021b), accounting for only 65% of the
requested funding. In all other years of the previous decade, the satisfaction rate
of requested annual funding requested by humanitarian organizations was even
lower. Since then, the total amount of funding requests of humanitarian organi-
zations has increased to 51.6 billion US dollars (UNOCHA, 2021b) in 2022, from
which only 29.7 billion US dollars was provided, covering 57.5% of the requested
amount. These numbers indicate severe budget shortages for humanitarian orga-
nizations. Three-quarters of the expenses of humanitarian organizations are re-
lated to the logistics of humanitarian relief operations (Besiou & Van Wassenhove,
2020; Van Wassenhove, 2006; Stegemann & Stumpf, 2018). An efficient manage-
ment of available resources for humanitarian relief operations is thus paramount
for efficiently providing relief to the affected population. This includes allocating
the available budget over time, the effective use of the available staff to perform
and support the humanitarian operations, and the planning of the transportation

operations to distribute critical supplies.

Effective distribution planning of critical supplies among vulnerable people after a

natural disaster is crucial, given its direct impact on the population’s health. The
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required planning is complex and mandates coordination among several stake-
holders, while a series of crucial decisions need to be made to ensure operational
success. A major complexity of the planning process stems from the high level
of uncertainty in the informational environment in which tactical decisions, such
as those related to infrastructure and logistics services, are made. Furthermore,
a considerable multitude of stakeholders, including the governments, military,
donors, and humanitarian organizations, require coordination at multiple levels.
For example, when a disaster happens, the affected region is oftentimes divided
into subregions where different humanitarian organizations will operate. This en-
ables a better coverage of the affected region. For security reasons, military per-
sonnel are often called upon to protect humanitarian organizations, their staff, and
volunteers when deployed in the field to distribute aid. Communication and co-
ordination between the military and humanitarian organizations is thus a pivotal
part of the distribution of critical supplies. Lastly, a coordinated effort between
humanitarian organizations and the media is also required to bring attention to
the crisis that occurred, which, in turn, helps to fundraise and collect the required

budget for the necessary operations.

In this paper, we are specifically interested in the design and operation of a Hu-
manitarian Supply Chain Network (HSCN) after the occurrence of a natural disas-
ter over a defined planning horizon. An HSCN is defined as a physical network of
hubs that are used to receive, store, and distribute critical supplies among the vul-
nerable population, where transportation services are planned to move the critical
supplies. The design of an HSCN requires a comprehensive understanding of vari-
ous parameters, including geographic and demographic data, financial constraints
(e.g. the budget), and the availability of essential resources. While the values of
some of these parameters are known at the design time, the values of others (e.g.,

demand, transportation, and storage capacities) are uncertain and estimated dur-
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ing the assessments of damages and needs. Such assessment of damages and needs
starts immediately after the disaster, evaluating the damaged infrastructures and
demand of affected populations (Balcik, 2017; Balcik & Yanikoglu, 2020). The
assessment process must operate quickly to provide the required information to
decision-makers. Given that on-site assessments of all impacted locations within
a constrained timeframe are not feasible, supplementary data sources are em-
ployed to expedite the procurement of essential information. A data source (e.g.
surveys, satellite imagery, governmental reports, and media) is a database from
which data is collected or retrieved to help define probabilistic models accounting
for uncertain components involved in the HSCN design problem. Hence, a finite
set of probabilistic models is available to estimate the uncertain parameters in
the HSCN design problem. Although a high level of confidence is observed for
such obtained probabilistic models, they may have discrepancies, directly causing
ambiguity in the informational context in which the planning process of humani-
tarian relief operations occurs. As such, ambiguity in the HSCN design problem
is a problem setting in which inconsistent probability distributions are associated
with the uncertain parameters (Langewisch & Choobineh, 1996). For instance,
Grass et al. (2023) discuss a real-world humanitarian relief problem from Syria
where two data sources provide estimations on the level of demand and in some

demand points, the estimations barely overlap.

As a result, we are here interested in solving an HSCN design problem with dis-
crepancies in the estimations of parameter uncertainty characterization obtained
from various data sources. Specifically, we here consider uncertainty for param-
eters concerning demand and in both transportation and storage capacity. We
propose four distinct optimization models with varying levels of conservatism,
incorporating the inherent ambiguity in the HSCN design problem. This contri-
bution advances the understanding and set of available tools for HSCN design by



78

accounting for ambiguity in the studied problem. We are specifically interested in
identifying the circumstances in which the proposed models are a superior choice
to the commonly used two-stage stochastic model in the literature that does not
explicitly account for such ambiguity. To this end, we conduct a comprehen-
sive empirical evaluation, assessing the performance of the proposed optimization
models. These experiments are performed with two different data sources and
encompass four unique ambiguity patterns. Moreover, the utilized instances are
generated from a 2018 Indonesian earthquake dataset, ensuring that the findings

have practical relevance.

The remainder of the paper is structured as follows. Section 3.2 covers the lit-
erature on handling uncertainty in HSCN design problems and the modeling of
uncertainty and ambiguity in general. Section 3.3 is dedicated to the problem
definition. The proposed models are introduced in Section 3.4. The experiments

and results are discussed in Section 3.5. Finally, we conclude in Section 3.6.

3.2 Literature review

In this section, we position our study within the existing literature. We review the
literature on both the humanitarian relief problems under uncertainty and the op-
timization methods proposed to model and solve them. Subsection 3.2.1 presents
a literature review on uncertainty in humanitarian relief studies, discussing the
sources of uncertainty, the assessment process to obtain the required informa-
tion after a disaster, and the ambiguity in estimating the uncertain parameters
involved in humanitarian relief planning. Subsection 3.2.2 then reviews the rele-
vant Operations Research literature on different approaches to model uncertainty,

including Stochastic Programming and Robust Optimization.
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3.2.1 Uncertainty in humanitarian relief

The design of an HSCN necessitates access to geographical and demographical
data, as well as information regarding the availability of critical supplies and other
essential resources (e.g. budget) for humanitarian relief distribution operations.
While some information is known at the design phase (e.g. the available routes
connecting hubs), some crucial information (e.g. the capacity of each route for
transportation) becomes available over time. It is crucial to consider such uncer-
tainty in the design process, providing adaptability to the changing circumstances
(e.g. varying realizations of demand), allocating resources more effectively, and
enhancing disaster response, ultimately saving lives and reducing the impact of

the disaster on the affected populations.

Demand is the most common and often the most impactful uncertain compo-
nent in humanitarian relief studies (Balcik & Beamon, 2008; Donmez et al., 2021;
Anaya-Arenas et al., 2014). Additional sources of uncertainty in humanitarian re-
lief problems include a lack of information on the affected population, the urban
or rural structure of the affected region, and the intensity of the natural disaster
and its secondary impacts (e.g. landslide or aftershock). Further uncertain com-
ponents in humanitarian relief studies are travel time, supply, network reliability,
shipping cost, and shipping capacity (Anaya-Arenas et al., 2014; Tofighi et al.,
2016; Daneshvar et al., 2023).

Damage and demand assessments are conducted after the natural disaster, provid-
ing probabilistic models that represent the uncertain components of the planning
problem. Considering the limited time and a lack of resources available for the
assessments, the affected region is divided into smaller subregions, and the as-
sessments are taken by sampling sites in each subregion (Balcik & Yanikoglu,

2020; Balcik, 2017). In addition to the data obtained from on-site visits, other
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data sources are also available for the assessments. Data sources in humanitarian
relief problems either need experts’ interpretation (e.g. satellite imagery, me-
dia) or belong to previous natural disasters in the region (e.g. historical data)
(Yanez-Sandivari et al., 2021). Previous disasters’ data sources are mostly used
in pre-disaster studies (Balcik et al., 2019). However, since each natural disaster
has unique characteristics (Chen et al., 2011), post-disaster studies rely more on

the experts’ interpreted data sources from the current natural disaster.

Benini et al. (2017) explain different types of responses provided by experts in as-
sessments during humanitarian operations, including probability, continuous scale,
and scalar quantity estimations. Probability estimation is a single-value estima-
tion often used to estimate the likelihood of occurrences of an event. In continuous
scale estimation, the expert indicates a range or a single value over a defined scale,
estimating the uncertain components. Finally, scalar quantity is a three-point es-
timation method, including the minimum, maximum, and most probable values.
The obtained data points form a triangular distribution representing the uncertain
components (Hakimifar et al., 2021), providing higher accuracy than the former
estimations. In this paper, we use the triangular distribution estimation method.
A set of discrete scenarios is then generated from distributions estimating the
value of uncertain components (Grass & Fischer, 2016a; Gutjahr & Nolz, 2016;
Grass et al., 2023). Although the obtained estimations can be made with a high
level of confidence, they might have discrepancies, resulting in ambiguity within
the HSCN design problem. The common approach in the literature is to use
stochastic programming to model the uncertainties. However, such an approach
does not reflect the discrepancies between different data sources and could result
in a sub-optimal solution based on each individual data source (Grass et al., 2023;
Benini et al., 2017). To this end, Grass et al. (2023) propose a machine learning

approach that leverages graph clustering and stochastic optimization techniques
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to address the challenges faced by humanitarian decision-makers in a shelter loca-
tion problem with ambiguity affecting the demands. Specifically, their approach
replaced the expectation function in the stochastic model with an aggregation
function alongside scenario clustering, which enabled the ambiguity to be ana-
lyzed. However, the developed optimization method did not directly model the
informational ambiguity but rather addressed it indirectly through the clustering

analysis.

In contrast, our work is different at both the application and the methodological
level. First, we focus on a different planning problem, i.e., HSCN design, for
which we propose alternative optimization models that explicitly formulate and
directly account for the ambiguity that is present. Second, we do not limit our
models to stochastic programming, but rather require a combination along with
robust optimization, and goal programming techniques, offering varying levels
of ambiguity-averse perspectives to the decision-maker, depending on the chosen

optimization approach that is used.

3.2.2 Uncertainty and ambiguity in operations research

We first review stochastic programming and robust optimization, both approaches
are used to model and solve optimization problems with uncertainties. We then
discuss goal programming, a mathematical optimization technique that can be

used in optimization problems with multiple conflicting objectives.

Stochastic programming is the paradigm of choice for problems with uncertain
components that can be formulated, with a high level of confidence, by probabil-
ity distributions. In contrast, robust optimization is employed when the statistical
information regarding the uncertain components of the problem is limited (e.g.,

only the upper bound and lower bounds of the probability distribution are avail-
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able).

In stochastic programming problems (Birge & Louveaux, 2011), a set of scenar-
ios (i.e., random realizations) generated from the probability distributions of the
uncertain components represent the probabilistic outcomes of the uncertain pa-
rameters. However, probability distributions are not always available. Ben-Tal
& Nemirovski (1998) introduce the concept of robust optimization, considering
the possible realizations of uncertain parameters regardless of their probability
distribution. To control the level of conservatism of the obtained solutions, the
authors defined an uncertainty set (i.e., a predefined range of potential variations
of uncertain parameters) that prevents all uncertain components from taking their
worst-case values simultaneously, reducing the level of conservatism of the orig-
inal max-min model introduced by Wald (1945). Further uncertainty sets are
used in the literature, including polyhedral, norm-bounded, interval and chance-
constrained uncertainty sets (Pluymers et al., 2005; Ben-Tal & Nemirovski, 2002;
Abedor et al., 1995). The choice of uncertainty set depends on the nature of the
problem and the level of conservatism or robustness desired in the optimization
process. The polyhedral uncertainty set is defined by linear constraints, restrict-
ing the potential values of uncertain parameters (Pluymers et al., 2005). The
norm-bounded uncertainty set is used where the magnitude of deviation is known
but not the direction (Abedor et al., 1995). When only bounds on uncertain
parameter values are known, the interval uncertainty set is used (Ben-Tal & Ne-
mirovski, 2002). Using a chance-constrained probability set involves defining a
probability distribution for uncertain parameters and setting constraints limiting

the probability of violating the constraints below a specified threshold.

Finally, our work is also related to goal programming (Charnes & Cooper, 1957),
a technique used to balance multiple conflicting objectives. Variations of goal pro-

gramming have been used in the literature, including its combination with stochas-
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tic programming (Aouni et al., 2012) and robust goal programming (Ghahtarani
& Najafi, 2013). In this study, we consider an HSCN design problem with the
estimation of uncertain parameters obtained from multiple data sources, and op-
timizing the model based on each data source could be seen as a different goal.
Hence, we use goal programming to propose a model that explicitly accounts
for uncertainty and ambiguity in the HSCN design problem; see Minimization of

expected opportunity loss approach in Section 3.4.2.

3.3 Problem description

In this section, we present the here-considered HSCN design problem. Specifically,
this section introduces the general characteristics of the HSCN design problem un-
der uncertainty, including the network structure, both deterministic and uncertain

parameters, and the decisions involved.

An HSCN is a physical network of hubs connected by transportation services
(Daneshvar et al., 2023). The designed HSCN receives, stores, transports, and
distributes critical supplies to beneficiary groups over a defined planning horizon,
aiming to minimize the harm to people’s health caused by unmet demand. Here,
we introduce the terminology used in the rest of the paper. The target population,
called beneficiary groups, is the relocated people who live in temporary shelters
such as camps, schools, and sports centers. We divide the planning horizon into
operational time frames, referred to as time periods. A time period indicates
the required amount of time during which a shipment is received, stored, and

distributed in the affected region, plus the time that beneficiaries consume them.

Each beneficiary group needs a set of supplies that are called critical supplies.
Some critical supplies are provided only once during the first period (e.g. tent

and blanket), and others at every period (e.g. food). The beneficiary groups
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pick up the critical supplies from physical locations called Distribution Centers
(DC). Failure to satisfy the demand for each critical supply causes a penalty.
The required quantity of each critical supply for each individual or household is
known (IFRC, 2021b), but the number of individuals in each beneficiary group
is uncertain. The source of this uncertainty is due to both a lack of information
and the possibility of change in the number of individuals in each group over time
caused by secondary impacts (e.g. aftershocks following an earthquake, landslide
following a flood). Therefore, the exact level of demand may never be available

and is considered uncertain.

A high level of demand and limited resources typically prevent the HSCN from
fully satisfying the demand of the beneficiary groups. The portion of demand
that is not satisfied is denoted as unmet demand. Each unit of unmet demand
negatively affects the level of demand in the next period, the degree of which can
be accounted for by using the notion of a spread factor (Daneshvar et al., 2023).
For instance, in the natural disasters that happen during pandemics, lack of access
to face masks and alcohol-based disinfectants results in the spread of the epidemy
and increases the demand for test kits and related medication (Sakamoto et al.,
2020). The spread factor indicates the impact of one unit of unmet demand of a
critical supply on the demand level for critical supplies in the next period. The
demand in each period is therefore defined as the sum of a base demand calcu-
lated based on available estimations and a residual demand, which is the effect of
unmet demand in the previous period. Equation (3.1) computes the total demand
CZ;“ of beneficiary group [ for critical supply k at period ¢. In this equation, df*
represents the base demand of beneficiary group [ for critical supply k at period

~k't—1

Kk represents the spread factor of critical supply &’ on supply k, and a;

t, s
represents the allocated critical supply &’ to beneficiary group [ from DC i at

period t — 1.
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Figure 3.1: An HSCN illustration. Top: all available hubs, services, and
assignments. Bottom: a designed HSCN, including the selected hubs, services,

and assignments in an example HSCN planning solutions.

We consider a three-layer structure HSCN, as exemplified in Figure 1. The first

layer of hubs consists of ports of entry that receive critical supplies from interna-
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tional humanitarian organizations. The second layer of hubs includes warehouses.
A warehouse is a hub that receives critical supplies from ports of entry, stores
them and sends them to the third layer of the HSCN, which consists of DCs.
There is a fixed cost to use each selected hub for the considered planning horizon.
In addition to the fixed cost of selecting a hub, there is an additional fixed cost
for reserving the inventory resources available at selected warehouses. Inventory
resources are only available at the warehouses, with the possibility to store critical
supplies over the considered planning period. A unit of inventory resources could
be a classroom in a school or a container located in a field used as a temporary
warehouse. The fixed cost associated with utilizing inventory resources within
warehouses is proportional to the requested capacity allocation at each respective
warehouse, subject to the maximum available storage capacity of the warehouse.
Each beneficiary group is assigned to a DC where it can pick up its allocated criti-
cal supplies at each time period. Transportation services move the critical supplies
between selected hubs. We assume that each transportation resource commutes
only between its origin and destination hubs, returning to its origin hub after de-
livering the critical supplies. The total transportation capacity between two hubs
is given by the sum of the transportation services between these hubs. A unit of
transportation resources could be a truck, a boat, a train wagon, or a helicopter.
There is a fixed cost (e.g. for drivers, staff, and security escorts) for selecting
each unit of transportation resources, as well as a variable flow cost (e.g. fuel)
proportional to the travel distance of the transportation resources. The total costs
incurred by the design decisions are limited by the initial budget available at the
time of the design. Over the subsequent periods, the humanitarian organization
receives donations for operational expenses (e.g. flow cost). Unused budget at

any time period is carried over to the next period.

In the aftermath of a natural disaster, the extent of the impact of the event on the
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affected population (e.g. demand) and state of the region (e.g. transportation and
inventory capacities) is uncertain. Over time, additional information may become
available, reducing the contextual uncertainty (e.g. conducting direct observa-
tions in the affected region might enable a more accurate quantification of the
needs of the affected population). However, humanitarian organizations cannot
afford to wait for such information to plan and deploy the aid. Rapid responses
are crucial to minimize harm in the affected region. Furthermore, the local re-
sources necessary for the HSCN design might be notably scarce, and delaying the
procurement of such resources could lead to an inflationary spiral (Holguin-Veras
et al., 2012). Therefore, critical decisions regarding the structure and capacities of
the HSCN need to be made amidst uncertainty, while other decisions concerning
the allocation of the available resources can be made once additional information
is obtained and uncertainty levels are diminished. We here consider a two-stage
setting where the first decision stage occurs at the beginning of the planning hori-
zon when the HSCN is designed under a rather high level of uncertainty. For
the second stage (when the operational decisions are made), we assume that all

stochastic parameters (e.g. demand and transportation capacity) become known.

The scenarios (i.e., realizations of the uncertain parameters) are generated us-
ing the probability distributions obtained from assessments conducted in the re-
gion. However, as multiple data sources (e.g. satellite imagery and governmental
reports) are involved in the assessments, the probability distributions obtained
might have inconsistencies, resulting in ambiguity. Specifically, when different
assessments are performed using different data sources to quantify the same de-
mands, they may yield different random distributions. Recalling that the same
level of confidence is assigned to all assessments, the ambiguity arises from the
uncertainty about which probabilities should be used during the planning pro-

cess. In the next section, we present optimization models that explicitly account
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for such sources of ambiguity when solving the here-considered problem.

3.4 Optimization model

In this section, we propose a variety of optimization models that explicitly deal
with the ambiguity that stems from inconsistent estimations of the uncertain
components obtained from various data sources. Subsection 3.4.1 recalls how the
HSCN problem is formulated as a two-stage stochastic optimization model under
the general assumption that a single data source is used to generate a single
scenario set W. Then, in subsection 3.4.2, we introduce a series of optimization
models that explicitly consider the ambiguity faced in the HSCN design problem
under study.

3.4.1 HSCN design model

We model the HSCN design problem as a two-stage stochastic model, introduced
in Daneshvar et al. (2023). In this model, the hubs and transportation services are
selected from available hubs, represented by the set V', and services, represented
by the set A. The set of hubs contains three subsets, including the port of entry
hubs, V;, the warehouse hubs, Vj;-, and the DC hubs, Vpo. The selected hubs and
services will be part of the HSCN network over the entire planning horizon. The
planning horizon consists of a sequence of time periods represented by the set T
The designed HSCN is used to distribute a set of critical supplies, represented by
the set K, among the beneficiary groups which are represented by the set L, over
the planning horizon. In order to model uncertain parameters, we use scenarios
generated from estimations provided by data sources. In the HSCN design model,

a set of scenarios are generated from a single data source, represented by W.

There are some costs related to the design and some others for the operation of
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the HSCN. The former includes the cost of selecting hubs, represented by the
parameter f;, ¢ € V', the selection cost of the inventory resources assigned to
warehouses, represented by the parameter fi, 1 € Viy, and the cost of selecting

transportation resources for services, represented by the parameter fij, (1, 7) € A.

k
15

We model the operational cost by the parameter c¢};, which represents the cost
of transporting one unit of critical supply k& € K by service (i, j) € A. The
parameter u;; illustrates the capacity of one unit of transportation resource of the
service (i, j) € A, and the parameter u;, i € Vi expresses the capacity of one
unit of inventory resources. The parameter m;; defines the maximum number of
transportation resources available for the service (i, j) € A, and the maximum
number of inventory resources available for the warehouse 7 € Vjy is indicated by

the parameter m;.

The parameter 2z° represents the initial budget, and the parameters 2! indicates
the received donations at each period ¢t € T. The parameter n}* demonstrates
the maximum quantity of each critical supply £ € K that can be made available
at a point of entry hub ¢ € V; at period t € T. The parameter gfw represents
the percentage of available inventory resources of hub i € Vi at period t € T,
in scenario 1» € ¥. Furthermore, the parameter gfjw indicates the percentage of
available transportation resources of service (i, j) € A at period ¢t € T'. The base
demand for critical supply k € K of a beneficiary group | € L at period t € T in
scenario ¥ € V¥ is represented by the parameter dﬁz The parameter b* specifies
the penalty of unmet demand for the critical supply k € K. The parameter s¥'*
represents the spread factor for one unit of the critical supply & € K over the
critical supply k£ € K. Finally, the parameter cZﬁZ illustrates the total demand
of the beneficiary group [ € L for the critical supply £ € K at period t € T in

scenario ¢ € W.
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Table 3.1: Decision variables of the two-stage stochastic model.

First-stage

x;; € {0,1} 1 if service (7,7) € A, is selected to be part of the HSCN; 0 otherwise.
y; €{0,1}  1if hub i € V, is selected to be part of the HSCN; 0 otherwise.
#;; € NO Number of units of transport resources selected for service (i,j) € A.
9; € NO Number of units of inventory resources selected for hub ¢ € V.

ag € {0,1} 1 if beneficiary group [ € L, is assigned to DC i € Vp¢; 0 otherwise.

Second-stage

a’cfjd >0 Quantity of critical supply k € K transferred through service (7, 7) € A
at period ¢ € T in scenario ¢ € .

dff; >0 Quantity of critical supply k£ € K at period t € T allocated to beneficiary
group [ € L from DC ¢ € Vpe in scenario ¢ € V.

rﬁf >0 Inventory level (in number of units) of critical supply k € K at warehouse
1 € Viy at the end of period ¢ € T in scenario ¢ € W.

ffj >0 Inventory level (in number of units) of critical supply k& € K at warehouse

i € Viy at the beginning of period ¢ € T in scenario ¢ € V.

Table 3.1 defines the decision variables of our model. Starting from the decision
variables that are made in the first stage, the decision variable x;; indicates if the
service (7, j) € A is included in the HSCN, and the decision variable &;; denotes
the number of transport resources that are assigned to the service. Likewise,
the decision variable y; takes value 1 if the hub ¢ € V is part of the network,
and 0 otherwise. Decision variable g; indicates the number of inventory resources
assigned to the warehouse ¢ € Vj. Finally, decision variable a; takes value 1 if

the beneficiary group [ € L is assigned to the DC i € Vpe, and 0 otherwise.

The following are the second-stage decision variables of the model. The decision

variable fffw indicates the quantity of the critical supply k£ € K transferred at
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period t € T on service (i, j) € A in scenario ¢ € V. Furthermore, the decision
variable EL’?“ indicates the quantity of critical supply k € K allocated to beneficiary
group [ € L at period t € T from DC i € Vp¢ in scenario ¢ € W. 7F represents the
level of inventory of warehouse ¢ € Vyy, for critical supply k£ € K at the beginning
of period t € T in scenario ¥ € ¥, and the decision variable rﬁz represents the

inventory level at the end of that time period.

min prQd,(a?,g,a) (3.2)
=

st. 2wy <wyi+y; Vi, j) €A, (3.3)
Ty <mywg; V(i,7) € A, (3.5)

Zfzyz + Z fzyz + Z flsz_y < 2 (36)

% ieW (i,7)EA

 an=1 viel, (3.7)

i€Vpo

a;; < Y Vi € Voo, Vi e L, (38)
f%ij S N07 gz S NO; xij € {07 1}7 Yi € {07 1}7ail € {07 1}7 VZ € ‘/7 v(Z7L7) € A<39)

Where Q) (%,9,a) calculates the minimum penalty over the defined periods for
the scenario ¢ € ¥ with first stage decision variables values being fixed to z, 7, a

Qy(2,9,a) is defined as follows:

Qu(#, 9, a) :==min Y Y by (djf, — Y all), (3.10)

teT keK leL i€Vpe
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> E <uygl, iy V(i) €A VEET, (3.11)
keK
L <> g, myian, Vi€ Vpe, V€L Vk € K, Vt €T, (3.12)
(jyi)eA
ay, < dfl, Vi€ Vpe, Vle L, Vke K, VteT, (3.13)
doall =Y &l VieVpe,Vke K, VteT, (3.14)
leL jeW

dff = dif+ Y s EdET =Y ay'™"), VielL,VkeK,VvteT,(3.15)

kKeK i€Vpe

YLy fa+ Y f”:czﬂrz SN dalt < +Z . VteT,(3.16)

eV ieW (i,5)€A t'=1 (i,j)€eAkeK t'=1

P <ttt Vje Vi, Vke K, VteT, (3.17)
D <ug iy Vi€ Vi, VEET, (3.18)
keK

er < u]gjwy] Vje Vi, VteT, (3.19)
keK

= fkt + Z a:w Z xﬂw’ Vi € Vw, Vk € K, vt €T, (3.20)

Jw
(i,5)€A (Jr)eA

S @ <nft VieV, Vke K VteT, (3.21)

(i,j)€A

L

Zg, >0, a, >0, >0, 71 >0, Y(i,j) € A, Vie V, Vk € K, Vt € T.(3.22)
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As a two-stage HSCN design model, the objective function (3.2) minimizes the
expected penalty of unmet demand over the set of scenarios W. Constraints (3.3)
indicate that only services with selected hubs at their origin and destination are
permitted for selection. Constraints (3.4) limit the number of inventory resources
at each warehouse to the maximum available inventory resources at that ware-
house. Similarly, constraints (3.5) limit the number of transportation resources
for each transportation service to the maximum number of available transporta-
tion resources for that transportation service. Constraints (3.6) limit the total
cost of selecting hubs and assigning resources to warehouses and transportation
services to the initial budget. Constraints (3.7) ensure that each beneficiary group
is assigned to exactly one DC. Constraints (3.8) limit the assignment of benefi-
ciary groups to DCs that are selected to be part of the HSCN. Constraints (3.9)

indicate the bounds of the decision variables.

The objective function (3.10) minimizes the total penalty of unmet demand over
the planning horizon for a given scenario ¢. Constraints (3.11) limit the quantity
of transported critical supplies over services to the available capacity of services at
each time period. Constraints (3.12) ensure that the allocated amount of critical
supplies to each beneficiary group from each DC are limited by the maximum
amounts of the critical supplies received by the DC at each period. Constraints
(3.13) limit the allocated critical supplies to each beneficiary group to the total
demand of that beneficiary group at each period. Constraints (3.14) ensure that
the total quantity of critical supplies that are delivered to each DC is equal to the
total quantity of critical supplies allocated to beneficiary groups at each period.
Constraints (3.15) formulate the total demand of each beneficiary group for each
critical supply at each period as the summation of the base demand and the
residual demand of that critical supply. Constraints (3.16) ensure that the amount

for the overall costs of the first stage and first ¢ periods that is paid, is limited by
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the summation of the initial budget and the received donation up to that period.

Constraints (3.17) restrict the inventory level of each critical supply at each ware-
house at each period by its level at the end of the last period. Constraints (3.18)
limit the inventory level of critical supplies at the beginning of each period to
the available inventory capacity of that warehouse in that period. Similarly, Con-
straints (3.19) limit the inventory level of critical supplies at the end of each period
to the available inventory capacity of that warehouse in that period. Constraints
(3.20) indicate the inventory level of critical supplies at the end of each period as
the sum of the inventory level at the beginning of that period and the received
quantity of critical supplies at that period minus the quantity of shipped critical
supplies to DCs at that period. Constraints (3.21) ensure that the quantity of
shipped critical supplies from each port of entry is limited by the capacity of each
port of entry at that period. Constraint (3.22) are the non-negativity requirements

imposed on the all the second-stage decision variables.

3.4.2 Proposed HSCN design models

The HSCN design model ignores the ambiguity in the obtained estimates from
multiple data sources. This subsection introduces the HSCN design models that
explicitly handle the discussed ambiguity in the problem and provide alternative

optimization methods for the HSCN design model.

Assume the decision-makers should make a series of decisions, represented here
by x € X, X indicating the feasible set for the decisions while facing uncertainty
represented here by parameter vector . We further assume F'(x, §) represents the
function the decision makers seek to optimize and computes the penalty obtained
by using the decision vector x when the uncertain parameters get the value £. Let

there be e data sources with Wy, U,, ..., U, being their corresponding scenario sets.
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The set containing all scenario sets obtained from available data sources is called
the ambiguity set (Bayraksan & Love, 2015), represented by P := {W¥, Uy, ..., U }.
We then define solution x}, i € {1,2,...,e} as the solution that obtains the mini-

mum expected value of function F(x,§) for all possible values of £ € ;:
x; €arg mi)r(l]Ege\pi [F(x,&)], Vie{l,2,....e} (3.23)
xe
Assuming e = 1, then (3.23) delivers a single solution xj. However, we have e
data sources available, and we assume that:
x; #x; Vi#j and i,j€{l,2, .. e}

We define the opportunity loss of i’th data source when using solution x, repre-
sented by €;(x), as the disparity between minimum expected value derived from
the optimal solution «] and the attained value when using solution x, mathemat-

ically formulated as:

€i(®) = Becw, [F (2, )] — Beew,[F (7, ).

Then, we assume, employing the optimal solution 7, derived from considering
scenario set W;, within the optimization function associated with the scenario set

W, results in a significant opportunity loss:
&) >>e(x]) =0 Vi, je{l,2, .. e}
One then seeks to find a single solution x* such that:

e X and e(x")=0 Vie{l,2,..e}.
Minimization of expected opportunity loss

We first present a goal programming (Charnes & Cooper, 1957) approach where

minimizing data source-specific expected penalties are treated as distinct goals to
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reach. We refert this model to one of Minimization of expected opportunity loss
(MIN-OppLoss). Its objective (3.24) is defined as the total expected opportunity
loss by associating the same weight to the deviations from each data source-specific

target value.
min )  Ecew, [F(,€)] — Ecew, [F (2], €)] (3.24)
i=1

The second part of the objective, E¢cy, [F(x], )], being a constant, can be removed

from the formulation, making objectives (3.24) and (3.25) equivalent.
min ) Beeu, [F(2,§)] (3.25)
i=1

This model is equivalent to the commonly used model in the literature (Daneshvar
et al., 2023) that does not specifically consider ambiguity in the HSCN design
problem. In other words, its considered distribution is defined as the union of the

individual distributions of the various data sources.

In order to define the MIN-OppLoss model, one can replace the objective function
(3.2) with the objective function (3.26). In an alternative view, Minimization of
expected opportunity loss approach could be interpreted as the equivalent of the
HSCN design model where W is replaced by Wroe. In (3.26), pe represents the
probability of scenario £ if data source VU is providing the accurate estimation of

uncertain parameters.

minz [Z pd,Qd,(f,g],a)] (3.26)

=1 '(/16\1/1'

subject to Constraints (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.9).
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Minimization of Maximum Scenario Penalty

Using the classical robust optimization approach (Soyster, 1973), minimizing the
worst-case scenario outcome using the scenario set Wiy = Ule V.. In other
words, it provides a robust solution against uncertainties by considering the most

adverse outcome while maintaining feasibility:

min max F(x,¢§). (3.27)

kg ge\ljtotal

We refer to this model as the MIN-MazScenPen model by scenario. The obtained
solution is expected to perform worse compared to other presented models on
most of the realization of uncertain parameters while resulting in less harm in

extreme scenarios.

Developing the Minimization of Maximum Scenario Penalty model is achieved by
introducing an auxiliary decision variable, ©, in the objective function, replacing
the original objective function (3.2). Additionally, the constraint (3.29) is added
to the first stage of the model, limiting the objective function value based on the
penalties associated with each scenario in the scenario set Wr. Furthermore,

constraint (3.30) indicates the bounds of the decision variable ©.

min © (3.28)

subject to constraints (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.9), (3.29), and (3.30).

S) Z Qw<:i7g7 CL), Vw € ‘Ijtotal (329)

e > 0. (3.30)
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Minimization of Expected Data-Source Penalty

The MIN-MaxScenPen model focuses on extreme cases, leading to overly cau-
tious decisions and not capturing the full range of possible scenarios. To ex-
pand the number of scenarios involved in the solution using the concept of data
source, we propose a model Minimization of Expected Data-Source Penalty (MIN-
ExpDSPen), which is based on robust optimization and aims to minimize data
source level expected penalty. The MIN-ExpDSPen model defines an objective
that minimizes the maximum expected penalty of data source-specific scenarios

within the ambiguity set, as presented by objective (3.31):

min max Eeey, [F(a, )] (3.31)
The aim of this objective is to find a solution x that minimizes the highest level

of expected penalty among the scenario sets in P.

In this model, the objective function (3.32) replaces the objective function (3.2).
Furthermore, we add the constraint (3.30) to the first stage of the model. Con-
straints (3.33) ensure that the objective function value of the first stage is more
than the expected penalty of the designed HSCN over the scenario set generated

from estimations obtained from each data source.
min © (3.32)
subject to constraints (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.9), (3.30) and:

0> puQuld,ira), Yi=1,2 ¢ (3.33)
PeY;
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Minimization of Maximum Data-Source Penalty

While MIN-OppLoss approach minimizes the expected penalty over scenarios from
all data sources, it does not consider the variance of the opportunity loss. In other
words, the obtained HSCN may perform inadequately over some data sources and
very well on others. In contrast, the here proposed model Minimization of Mazx-
imum Data-Source Penalty (MIN-MaxDSPen), grounded in robust optimization,
aims to address the variability in opportunity losses among scenario sets in P.
Consequently, this method minimizes the maximum opportunity loss within each

data source’s scenario set, as depicted in objective (3.34).

min i Eecy, [P (@, ] ~ Eecw, [F(. ). (3:34)
Objective (3.34) provides a solution z with the minimum opportunity loss among

all data sources.

To model this approach, the objective function (3.35) replaces the objective func-
tion (3.2). The range of the expected penalty in the HSCN design problem defines
the domain of ©. Therefore, the domain of the decision variable © defined by con-
straint (3.30) is in the range of positive real numbers. Constraints (3.36) in the
first stage ensure that the value of auxiliary decision variable © is always more
than the gap between the expected penalty of designed HSCN in this model and
HSCNs designed by HSCN design model using ¥;, Where ¢ could point to any

data source from 1 to e.

min © (3.35)
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subject to constraints (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.9) and:

0> pu(Qu(d, 9, a) — Qu(d;,9;,a)), Vi=1,2,...e.  (3.36)
ey,

3.5 Experimental results

In this section, we design and apply a set of experiments to study the performance
of the proposed models for the HSCN design problem. Subsection 3.5.1 introduces
the data set, including the characteristics of the natural disaster, the affected
region, the sources used in the data preparation, and the scenario generation.
Subsection 3.5.2 presents the experimental results, including a Pareto frontier
analysis, a ranked-based analysis, and a comparative performance analysis over the
solutions obtained by executing the proposed models on the introduced instances.

Finally, managerial insights are presented.

3.5.1 Data set

We use a data set (Daneshvar et al., 2023) from the 2018 earthquake in Lombok
island at Indonesia. More than 1500 aftershocks have been recorded in the region
but most of them were weak shakes. The most important quakes in the region
are presented in Table 3.2. The earthquake forced 445,343 individuals to relocate
into 2,700 camps on Lombok and the neighboring islands. The Indonesian gov-
ernment announced a state of emergency from July 29th to August 26th, which
is here considered as the planning horizon. We divide the planning horizon into
4 time periods, each presenting a week during the state of emergency. The In-
ternational Organization for Migration (IOM) has published the list of all camps
including the location and number of individuals in each camp (IOM, 2019). In

this study, we consider 349 beneficiary groups on the island with a total popula-
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tion of 52,128 individuals in 15,993 households. Considering that clean water was
distributed among beneficiary groups from local resources using 21 water trucks
(IFRC, 2021a), we only consider shelter, food, and hygiene packs as the critical
supplies that are brought in from outside the affected region and to be transported
and distributed using the designed HSCN. We use the standard required quan-
tity of each critical supply (IFRC, 2021b) per individual or per household that is
calculated and published by the International Federation of Red Cross and Red
Crescent Societies (IFRC).

Table 3.2: Most important earthquakes on Lombok island in 2018.

earthquake date strength

main earthquake 2018/07/29 6.4 Richter magnitude scale

first strong aftershock 2018,/08/05 7.0 Richter magnitude scale

second strong aftershock 2018/08/09 5.9 Richter magnitude scale

third strong aftershock ~ 2018/08/26 6.4 Richter magnitude scale

Palang Merah Indonesia (PMI) is the local branch of IFRC in Indonesia which was
responsible for the distribution of critical supplies in the affected region. We used
the published reports of IFRC and PMI to complete our data set (IFRC, 2021a).
According to these reports, PMI used four ports of entry and six warehouses in
their HSCN. Furthermore, PMI signed contracts with third-party companies to
transport critical supplies among the hubs. However, since the details of the
contracts are not included within the reports of the IFRC and PMI, we consulted
the local transportation companies’ websites for the cost and capacity of their

services.

Since the locations of the DCs are not provided in the IFRC reports, we use the
DBSCAN algorithm (Ester et al., 1996) to generate DCs using the beneficiary
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groups as the candidate locations. The DBSCAN algorithm uses two parameters:
the epsilon parameter that denotes the neighborhood radius of the DCs in the
same cluster, and the minimum number of neighbors to cluster the beneficiary
groups based on distance and density. The value of these parameters is set by

a domain expert, leading to the most appropriate cluster for the study problem

(Mendes & Cardoso, 2006).

The transportation costs are calculated based on the driving distance between
hubs. The walking distances between beneficiary groups for the DBSCAN algo-
rithm are obtained from an online routing engine (Luxen & Vetter, 2011), which

operates on the OpenStreetMap.

In addition to the data associated with the deterministic parameters, the demand
and damage assessments provide the necessary information to estimate the un-
certain parameters, including demand, transportation, and inventory capacities.
Since the assessments are time-consuming processes, the affected region is divided
into smaller sub-regions (e.g., 81 sub-regions in this case study) to speed up the
process, and the damage and demand assessments are performed on a set of lo-
cations sampled from each sub-region (Balcik & Yanikoglu, 2020; Balcik, 2017).
In the following experiments, we assume two data sources are available, providing
estimations on the value of uncertain parameters. The estimations derived from
these two data sources are inconsistent, with the first data source always yielding

more pessimistic estimates than the second data source.

3.5.1.1 Ambiguity Patterns

We here focus on four different ambiguity patterns, illustrated in Figure 3.2, which
characterize the different relationships that two different distributions can have

to each other. Ambiguity pattern (a) represents the estimations provided by two
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data sources, each with a high level of uncertainty and no overlap, causing a high
level of ambiguity. Ambiguity pattern (b) contains the same level of uncertainty
as ambiguity pattern (a), as they both have the same range of estimation for
uncertain parameters. However, as the estimations provided by the two data
sources overlap, the level of ambiguity in (b) is lower than (a). The mode of the
distributions in the ambiguity pattern (c) is the same as in the ambiguity pattern
(a). However, the range of the distributions in (c) is less than (a), reducing both
uncertainty and ambiguity levels. Finally, the probability distributions presented
in ambiguity pattern (d) have the same range as ambiguity pattern (c), but there
is no gap between the two distributions, reducing the ambiguity in (d) compared
to (c). We can consider each of these four distinct ambiguity patterns for each

problem instance.

Probability
Probability

04
Available Capacity Available Capacity

(a) Ambiguity pattern (a), wide (b) Ambiguity pattern (b), wide
uncertainty range without overlap uncertainty range with overlap
(c¢) Ambiguity pattern (c), tight (d) Ambiguity pattern (d), tight
uncertainty range with gap uncertainty range without gap

Figure 3.2: The four considered ambiguity patterns for two data sources.
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3.5.1.2 Scenario Sampling

As we do not have access to the raw assessment data of the earthquake on Lom-
bok Island, we simulated triangular distributions (Hakimifar et al., 2021; Benini
et al., 2017). The minimum and maximum values of the triangular distributions
are set within the range of the data gathered from humanitarian organizations’
websites IFRC (2021a). To approximate the proposed models, as well as to eval-
uate the performance of the obtained solutions, a set of scenarios is required that
effectively captures the different variations of the uncertain parameters. Assum-
ing the same confidence level for all data sources used to obtain the probability
distributions, an equal number of scenarios are generated from each probability
distribution. Furthermore, we consider equal probability for all scenarios gener-
ated from each triangular distribution. A total of 3000 scenarios are generated
from each data source (6000 per problem instance), which we here assume to rep-
resent the ground truth (i.e., an accurate estimation of the possible realization
of the uncertain parameters). However, since solving such a problem would be
computationally intractable, using the Sample Average Approximation method
(Kleywegt et al., 2002), we generate smaller scenario sets (i.e., sample scenario
sets) with 300 scenarios per data source and solve the models for such smaller
scenario sets. Each instance is then composed of two ground truths (one per data

source) and two sample scenario sets.

3.5.1.3 Instance Generation

We generate multiple problem instances, each including one ground truth and
one sample scenario set. FEach instance is generated using the data from the
2018 earthquake in Indonesia. First, a subset of the beneficiary groups containing

at least 80 percent of the 349 beneficiary groups is randomly selected for each
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instance to enhance the variability among instances. The DBSCAN algorithm
then generates the candidate DCs. Two or three candidate warehouses and points
of entry are selected at random, and a set of candidate services is added between
hubs in different layers. Finally, the available budget depends on a budget ratio
parameter relative to the population size. Equation (3.37) defines how the budget

ratio is formulated.

L+
population

budget ratio = (3.37)

The first ten instances are generated with a budget ratio of 640, as used in
(Daneshvar et al., 2023). Ten additional instances are generated with a bud-
get ratio of 512, computed by considering only 80 percent of the former budget

ratio. This amounts to a total number of 20 instances.

3.5.2 Computational Results

This section presents the experimental results to determine the most suitable
model for decision-makers to adopt under each ambiguity pattern, and based on
their preference for either optimism or conservatism. To this end, we first analyze
the Pareto frontier to evaluate the dominance of the obtained solutions in Section
3.5.2.1. Then, a ranking analysis is carried out in Section 3.5.2.2 to identify the
best performing models under different ambiguity patterns. Finally, a comparative
performance analysis complements the previous studies in Section 3.5.2.3, iden-
tifying average performance of the models and their relative performance to the

competing models. Managerial insights are then summarized in Section 3.5.2.4.

The data for the above-mentioned analyses is prepared as follows. For each
instance-ambiguity pattern, the sample scenario sets are used to obtain two so-

lutions, each using one of the data sources. The solutions are then evaluated
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using the corresponding instance’s ground-truth scenario set. In some instances,
resources and budgets are sufficiently high, causing all models’ solutions to have
negligible differences in performance and to satisfy almost all the demand. In
the following experiments, we exclude instances with a percentage difference of
2% (i.e., the best and worst solution evaluation gap is less than two percent
of the best solution). The reason is that such a small percentage gap provides
limited insights into the relative efficacy of the alternative models. With equal
confidence levels attributed to both data sources in each instance, the following
analysis presents findings outlined according to the evaluation results of the stud-
ied instances. The implementation employs the Pyomo software package (Hart
et al., 2011, 2017), executed on the Calcul Québec servers with a computational

infrastructure featuring 6 CPU cores and 256 GB of memory.

3.0.2.1 Pareto Frontier Analysis

The Pareto frontier represents the set of optimal solutions where enhancing one
criterion comes at the expense of another, highlighting the inherent trade-offs in
multi-objective decision-making problems. In the here-studied problem, we have
two ground-truth scenario sets, with the expected penalty of each solution for
each ground-truth serving as one criterion. To better understand the models’
relative performance in different ambiguity patterns, we calculated the number of
instances each model locates on the Pareto frontier. The Pareto frontier consists
of all feasible solutions that are not dominated by any other feasible solution. A
solution is dominated if another solution is better for at least one objective and
no worse for the others. Figure 3.3 outlines the proportion of instances within

each model wherein a solution is attained on the Pareto frontier.
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Figure 3.3: The percentage of instances each model’s solution was on the Pareto

frontier.

None of the models consistently attains Pareto optimality. Considering the am-
biguity patterns (c) and (d), it is noteworthy that the MIN-OppLoss and MIN-
MaxDSPen models consistently reside on the Pareto frontier (i.e., the solution is
not dominated by any other solution for any criteria). However, for ambiguity
pattern (a), only the MIN-OppLoss model consistently lies on the Pareto fron-
tier, while MIN-MaxDSPen lies on the frontier most of the time. Meanwhile, for
ambiguity pattern (b), the MIN-MaxDSPen model consistently lies on the Pareto

frontier.

While no model obtains nondominated solutions for all ambiguity patterns, MIN-
OppLoss and MIN-MaxDSPen solutions are always nondominated when only con-
sidering ambiguity patterns (c) and (d). While such an attribute indicates the
value of MIN-OppLoss and MIN-MaxDSPen models, in many real-world HSCN
problems, indicating the ambiguity pattern is a complex task. We hence perform
additional experiments to gain more insights into the proposed models that are

valid for all ambiguity patterns.
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3.5.2.2 Ranking Analysis

Our interest lies in tracing the individual performance of models concerning each
data source. To this end, we now analyze the ranking of solutions obtained by the
models across various instances. This approach affords an understanding of how

effectively the models address each element of the multi-objective optimization

problem.
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Figure 3.4: The ranking distribution of modes over the 20 instances on the first

data source.
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Figure 3.5: The ranking distribution of modes over the 20 instances on the

second data source.

We evaluate the proposed models’ solutions by ranking them according to their
performance on the GTs, and then computing the frequency with which each
model’s solution obtains each rank. This procedure is carried out independently
for each data source. Figure 3.4 and Figure 3.5 represent the ranking distributions
of models for the first and second data sources, respectively. According to Figure
3.4, considering the first data source, MIN-ExpDSPen has the highest probability
of providing the best-performing solution. Furthermore, Figure 3.5 indicates that

MIN-MaxDSPen has the highest probability of providing the best solution when
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considering the second data source. Therefore, in a problem setting where the
decision-makers are biased toward one of the data sources, regardless of the am-
biguity pattern, the best choise is MIN-ExpDSPen when biased towards the first

data source, and MIN-MaxDSPen when biased toward the second data source.

3.5.2.3 Comparative Performance Analysis

Within the context of the ranked-based analysis, it is noteworthy that none of the
models consistently attain the highest ranking. For instance, when considering the
first data source in the ranked-based analysis of ambiguity pattern (a), for 30%
of instances, the MIN-ExpDSPen model fails to secure the first rank. To provide
a clearer picture of which optimization models yield the most efficient results
overall, we conduct a series of comparative analyses that directly assess the results
obtained using each proposed model relative to the top-ranked model in each
case. The motivation for these analyses is to offer decision-makers insights into
the potential risks associated with selecting a particular optimization approach
based on the observed trends of the ranking results. Moreover, in instances with
equal confidence levels associated with the available data sources, the utility of
the ranking analysis diminishes. We, therefore, use the performance gap (p-gap)
and absolute performance gap (abs-p-gap) to evaluate the performance of the
introduced models in all instances and across the considered ambiguity patterns.
The evaluation of each solution represents the expected penalty of the solution
over the ground truth. Therefore, the evaluations are converted to the p-gap,
enabling comparisons to be conducted across the instances. For each instance, we
identify the Best Evaluation Value (BEV) as the lowest penalty evaluated on the
ground-truth among all four models. Then, equation (3.38) calculates the p-gap
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of each model.

p-gap = [(model’s evaluation — BEV)/BEV] % 100 (3.38)

Furthermore, the absolute gap between solutions obtained from different models,
abs-p-gap is calculated as the gap between the model’s evaluation and BEV, see

equation (3.39).

abs-p-gap = [(model’s evaluation — BEV)] (3.39)

Table 3.3 presents the results of this experiment, including the average abs-p-gap
and penalty over considered instances. The table is structured to show results for

each data source separately, followed by the total mean across both data sources.

For each model and metric, results are presented separately for the first and second
data sources. Each row represents the average absolute performance gap (abs-p-
gap) and expected penalty for the specified model and ambiguity pattern. The
“mean" columns provide the average values obtained for all ambiguity patterns

for each data source.

The “Total mean" section shows the overall average values for both data sources
combined, providing a comprehensive view of the models’ performance across all

data sources.

To increase the readability of the table, the total penalty values in Table 3.3 have

been scaled down by a factor of one million.

When considering the first data source, the MIN-ExpDSPen model has the lowest
abs-p-gap mean values, outperforming other models when using the uncertainty

estimations provided by the first data source in the evaluation. MIN-ExpDSPen
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Table 3.3: The average abs-p-gap and expected penalty values (in millions) over

the studied problem instances

Model Metric ~ pattern (a) pattern (b) pattern (¢) pattern (d) mean
FIRST DATA SOURCE
abs-p-gap 5.38 444 0.01 479  24.42
MIN-OppLoss
penalty 248.38 158.40 301.47 136.80 211.26
abs-p-gap 9.29 52.6 0.00 29.1 22.74
MIN-MaxScenPen
penalty 257.84 174.22 306.48 141.22 219.94
abs-p-gap 8.54 10.20 1.50 36.7 14.23
MIN-ExpDSPen
penalty 247.18 156.64 300.22 134.74 209.69
abs-p-gap 4.67 26.7 0.00 46.5 19.46
MIN-MaxDSPen
penalty 257.06 166.76 318.20 146.44 222.11
SECOND DATA SOURCE
abs-p-gap 75.9 59.9 87.4 425 66.42
MIN-OppLoss
penalty 174.84 31.17 34.15 45.44 71.4
abs-p-gap 14.7 1.80 374 49.5  25.85
MIN-MaxScenPen
penalty 167.41 42.11 39.93 53.17  75.65
abs-p-gap 26.3 1.55 57.9 58.8  36.13
MIN-ExpDSPen
penalty 177.40 36.96 39.77 50.48 76.15
abs-p-gap 8.51 0.0 23.8 374 17.42
MIN-MaxDSPen
penalty 171.28 27.96 29.73 42.56  67.88
BOTH DATA SOURCES
abs-p-gap 40.64 52.15 43.71 45.2 45.42
MIN-OppLoss
penalty 211.61 94.78 167.81 91.12 141.33
abs-p-gap 11.99 27.2 18.70 39.3  24.29
MIN-MaxScenPen
penalty 212.63 108.17 173.21 97.20 147.79
abs-p-gap 17.42 5.88 29.7 4775  25.18
MIN-ExpDSPen
penalty 212.29 96.8 170.00 92.61 142.92
abs-p-gap 6.59 13.35 11.90 4195 18.44
MIN-MaxDSPen
penalty 214.17 97.36 173.97 94.5 144.99
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seeks to find a solution that minimizes the expected penalty of the data source
with the highest expected penalty, hence outperforming other models when eval-
uated on the first (pessimistic) data source. Similarly, considering the second
data source, the MIN-MaxDSPen outperforms other models. In particular, for
the second data source, the conservative models, including MIN-ExpDSPen and
MIN-MaxScenPen, have relatively high mean values. Furthermore, the MIN-
OppLoss model does not explicitly consider data-source ambiguity. Therefore,
MIN-MaxDSPen outperforms other models when the evaluation is performed on

the optimistic data source.

Finally, the “Total mean" section presents the overall mean across both data
sources. In other words, the values in the "Total mean" section indicate the
opportunity loss over the instances considered. MIN-MaxDSPen has the least

abs-p-gap value, making it an attractive option under data-source ambiguity.

Figure 3.6 presents the performance profile of the here studied models. The top
figures represent the performance profile over one data source, and the figure at
the bottom shows the performance profile when considering both data sources.
In these figures, the x-axis represents the threshold of the p-gap, and the y-axis
indicates the percentage of instances with a lower p-gap than the value indicated
on the x-axis. The performance profile of the first data source indicates that the
MIN-ExpDSPen model has the best p-gap for about 90 percent of the instances.
For the remaining instances, its p-gap becomes rather high when compared to
the other models. The second data source performance profile indicates that the
MIN-MaxDSPen model outperforms other models by a considerable margin for
almost 90% of the instances. Finally, the performance profile over both data
sources suggests that MIN-MaxDSPen is superior to all other models, followed
by MIN-OppLoss. Both the MIN-ExpDSPen and the MIN-MaxScenPen models
underperform the other models. Overall, MIN-MaxDSPen shows clear benefits
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under data source ambiguity, being the best performing model for most instances.

For problem instances where it is not the best-performing model, it underperforms

other models less than its competitors do.
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Figure 3.6: Performance profile of the studied models considering either one or

3.5.24

both data sources.

Managerial Insights

The following managerial insights can be summarized from the conducted exper-

iments, providing a valuable understanding of the presented models accounting
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for the here-studied ambiguity in the HSCN design problem.

1. Regardless of the level of risk aversion, under data source ambiguity, explic-
itly accounting for such ambiguity in the HSCN design problem has eco-
nomic advantages on average and mitigates risk, alleviating the worst-case

outcome (see, e.g., Table 3.3 and Figure 3.6).

2. In problem settings with a low level of uncertainty and ambiguity (i.e., am-
biguity patterns (c) and (d)), which translate into a planning context where
there is a higher level of confidence regarding the estimations obtained, MIN-
OppLoss (the most popular approach in the literature) and MIN-MaxDSPen
solutions are always on the Pareto frontier, representing the best trade-offs

between the estimations obtained from the data sources (see Figure 3.3).

3. The MIN-ExpDSPen model, regardless of the ambiguity pattern, has the
highest probability of obtaining the best solution when assessed based on
the information obtained from the pessimistic (first) data source (see Figure
3.4, Table 3.3 and Figure 3.6). As such, if a decision-maker is interested
in hedging the risk based on the most pessimistic assessments, this is the

approach of choice.

4. The MIN-MaxDSPen, regardless of the ambiguity pattern, has the highest
probability of obtaining the best solution when assessed based on the infor-
mation obtained from the optimistic (second) data source (see Figure 3.5,
Table 3.3 and Figure 3.6). This conclusion aligns with the fact that MIN-
OppLoss does not explicitly consider ambiguity, whereas MIN-ExpDSPen
and MIN-MaxScenPen are conservative models prioritizing the pessimistic

data source.

5. According to the data presented in Table 3.3 and Figure 3.6, in situations

where no bias towards a specific data source is evident and the ambiguity
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pattern remains indistinct, the MIN-MaxDSPen model emerges as the most

favourable choice.

3.6 Conclusion

In this paper, we have proposed four optimization methods, including Minimiza-
tion of expected opportunity loss (MIN-OppLoss), Minimization of Maximum
Data-Source Penalty (MIN-MaxDSPen), Minimization of Expected Data-Source
Penalty (MIN-ExpDSPen), and Minimization of Maximum Scenario Penalty, that
explicitly account for ambiguity caused by inconsistent estimates of uncertain pa-
rameters obtained from multiple data sources involved in the demand and damage
assessments in the context of solving the HSCN design problem. We then compare
the performance of the proposed models over four different ambiguity patterns
with two data sources on 20 instances extracted from a real-world data set on the

2018 Indonesia earthquake.

The results obtained and analysis performed led us to the following conclusion. In
an HSCN design problem with narrow uncertainty and ambiguity (e.g. ambiguity
patterns (c) and (d)), then MIN-MaxDSPen and MIN-OppLoss models could be
used as their solutions always fit on the Pareto frontier, indicating a solution
that is not dominated by solutions obtained from other models. Furthermore,
if the ambiguity pattern is unknown and the decision-makers are slightly biased
toward one of the two data sources, then the following applies: if they are biased
toward the pessimistic data source, they should use MIN-ExpDSPen, and if biased
toward the optimistic data source, they should use MIN-MaxDSPen. Finally, if no
information is available regarding the ambiguity pattern with the same confidence
level toward the data sources, then the decision-makers should use the MIN-

MaxDSPen model.
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This paper opens several research directions on the impact of ambiguity in HSCN
design problems. Of particular interest is the question of how to design and
adjust the HSCN in response to evolving patterns of ambiguity as new information
becomes available throughout the planning horizon. Another research line would
involve considering a varying level of confidence in the data sources while also
considering a higher number of data sources directly leading to higher levels of

complexity in the ambiguity patterns.



CHAPTER IV

THE BENEFITS OF CONSIDERING INFORMATION DYNAMIC AND
DEMAND SPREAD IN HUMANITARIAN SUPPLY CHAIN NETWORKS

Abstract

This study considers the Humanitarian Supply Chain Network (HSCN) planning
problem following natural disasters, focusing on the uncertainties in demand and
capacity. The goal is to study the value of increasing stages (i.e., decision-making
points over the time horizon) when modeling the post-disaster HSCN design prob-
lem. This study proposes a three-stage stochastic model that allows for dynamic
adjustments to transportation resources based on evolving information obtained
over time. The primary objective is to assess the value gain using a three-stage
model incorporating flexibility to adjust the designed HSCN during the relief op-
eration compared to its two-stage counterpart commonly applied in the literature.
Experiments conducted using real-world data from the 2018 Indonesia earthquake
demonstrate the advantages of our model over its two-stage counterpart. Specif-
ically, the evaluation results indicate the solution obtained from the proposed
three-stage model transfers resources only in 33% of the scenarios. In comparison,
the two-stage counterpart transfers resources in 79% of scenarios, a time-intensive
process requiring complicated management operations. The findings highlight

that incorporating an additional stage enables better resource utilization, reduces
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unmet demand, and enhances adaptability to uncertainty. Our model also consid-
ers the cumulative and spreading effects of unmet demand across time and critical
supplies, providing a more realistic representation of real-world settings. While
the three-stage model incurs higher computational costs, the resulting decision

quality and operational efficiency improvements justify its application in practice.

Keywords: Humanitarian Supply Chain, Stochastic Programming, Humanitarian

Relief Distribution, Post-disaster

4.1 Introduction

Relief distribution for vulnerable people after the onset of a natural disaster is a
pivotal operation conducted by humanitarian organizations. Its importance in-
creases with the frequency of natural disasters over the years, impacting more
people worldwide (Mani et al., 2003). Meanwhile, humanitarian organizations
encounter intensified budgetary restrictions due to a lack of proportional dona-
tion growth relative to their escalating financial needs (UNOCHA, 2021b). For
instance, the global appeals (i.e., the amount of budget humanitarian organiza-
tions require for one year) amounted to 37.6 billion US$ in 2021, whereas only
20.1 US$ was provided to humanitarian organizations, covering only 54% of the
annual appeal (UNOCHA, 2021b). More than 75 percent of humanitarian or-
ganizations’ budget is used to design and operate relief supply chains (Besiou
& Van Wassenhove, 2020; Van Wassenhove, 2006; Stegemann & Stumpf, 2018);
hence, a shortage of budget results in a lack of access to critical supplies by people
affected by natural disasters, negatively impacting their health. The insufficiency
of financial resources reduces humanitarian organizations’ ability to deliver critical
supplies (e.g. shelter, food, and hygiene), deepening the harm to people. There-

fore, optimizing the distribution of critical supplies using the available budget and
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resources is crucial to limit such harm.

Humanitarian organizations design and operate Humanitarian Supply Chain Net-
works (HSCN) (Tavana et al., 2018; Hong & Jeong, 2019) to distribute critical
supplies among vulnerable populations affected by natural disasters. The design
and operation of an HSCN are particularly challenging and complex because of
the limited available resources and budget in the affected region, and the demand
being at its peak (i.e., many people need access to survival essentials) (Holguin-
Veras et al., 2013) and coordination with other humanitarian operations is required
to minimize the harm. In addition, the decision-making process is conducted in
a setting with a high level of uncertainty regarding the situation in the region.
Damage and demand assessments are therefore conducted in the affected region
to obtain information on the level of damage, available resources and the level
of demand (Balcik, 2017; Balcik & Yanikoglu, 2020). Various data sources (e.g.,
media, governmental documents, satellite imagery) are used in the assessments
to estimate the probability distribution of the problem’s uncertain components,

which decision-makers then use to design and operate the HSCN.

The complexity of coordinating humanitarian operations necessitates the imme-
diate establishment of the HSCN following a natural disaster. However, more
information about the region’s state becomes available later in time, and some
HSCN design characteristics (e.g., transportation resources) could be adjusted
over the planning horizon accordingly. On the other hand, the cost of purchasing
resources for the HSCN increases over time due to a significant demand for such re-
sources. This results in a trade-off between purchasing lower-priced transportation

resources and delaying decision-making for information with lower uncertainty.

In the literature, stochastic programming is the predominant approach for model-

ing and solving the HSCN design problem (Anaya-Arenas et al., 2014). Existing
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literature has modeled HSCN problems as two-stage stochastic planning frame-
works, which involve making facility location and capacity allocation decisions
in the first stage and operational decisions, such as transportation and distri-
bution, in the second stage. A stage denotes a distinct point within the time
horizon at which decisions are made, considering the informational context at
that moment. This includes both the known parameters and those that remain
uncertain, representing the stochastic elements of the decision-making process.
However, in real-world settings, uncertainty is often revealed incrementally over
time, making three-stage models or even more detailed multi-stage frameworks
more accurate in capturing the problem’s dynamics. Stochastic programming in
its two-stage form provides an approximation by using the second stage to adapt
decisions based on realized uncertainties, but it may fall short of fully addressing
the progressive nature of uncertainty revelation and decision-making in practice.
The proposed models typically involve making design decisions in the first stage,
followed by a set of scenarios in the second stage, representing possible realiza-
tions of uncertain parameters. These scenarios enable the model to account for
fluctuations in uncertain parameters when providing a solution. In this paper,
we propose a three-stage stochastic model to solve the HSCN design problem,
which incorporates an additional decision-making stage, allowing for updates to
the transportation resources as more information becomes available. This addi-
tional stage ensures that decisions evolve with the progression of the disaster,
thereby enhancing the operational efficiency of the HSCN. Moreover, our model
incorporates the spread factor, which accounts for how unmet demands for critical
supplies at one stage affect future demand at subsequent stages, providing a more
dynamic and flexible approach. While increasing the number of stages brings the
model closer to real-world decision-making processes, it also introduces greater
complexity, demanding more computational resources and time to solve. This

paper investigates the benefits of increasing the number of stages when modeling
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the HSCN design problems by proposing a three-stage model and comparing its

performance to its two-stage counterpart.

The rest of this paper is organized as follows. We present a survey of the related
literature in Section 4.2. We describe the problem setting in Section 4.3. The
three-stage post-disaster HSCN design model is introduced in Section 4.4. Section
4.5 presents the numerical experiments and analyses. Finally, the conclusion in

Section 4.6 completes the paper.

4.2 Literature Review

In this section, we review the literature on the HSCN design problem. Within
the broader domain of humanitarian logistics, the study of relief network design is
divided into pre-disaster and post-disaster phases, representing two critical phases
in humanitarian operations, each posing distinct challenges and requiring tailored
solutions. In the pre-disaster phase, emphasis is placed on preparedness and
proactive measures to enhance the efficiency of response efforts in the event of a
catastrophic event. Studies in this phase often focus on strategic decisions such
as warehouse location selection, stockpiling strategies, and resource allocation to
optimize readiness and response capabilities. Conversely, the post-disaster phase
is characterized by urgency, uncertainty, and resource constraints. Relief networks
must rapidly deploy aid to affected areas while navigating disrupted infrastructure
and elevated demand. Research in this phase typically addresses decisions such as
temporary facility location, transportation resources allocation, beneficiary groups
assignment, and supply chain management under uncertainty to expedite relief

distribution and alleviate human suffering effectively.

The design of humanitarian relief networks post-disaster poses significant chal-

lenges due to the urgent need to distribute aid efficiently amidst uncertainty and
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limited resources. The rest of this section explores the uncertain parameters,
objective functions, and solutions considered in addressing the post-disaster hu-

manitarian relief network design problem.

Designing an HSCN involves uncertain parameters estimated post-disaster through
assessments (Balcik, 2017; Balcik & Yamkoglu, 2020). Multiple data sources (e.g.,
surveys and satellite imagery) are used to obtain probabilistic models for the un-
certain parameters. However, discrepancies in estimations obtained from various
data sources can cause ambiguity (Langewisch & Choobineh, 1996). For instance,
Grass et al. (2023) noted demand estimates in Syria from different data sources
that barely overlap. Daneshvar et al. (2024) proposed four optimization models to
consider such ambiguity in the HSCN design problem. In this paper, the authors
consider the possibility of adapting the HSCN design to the evolving information

received over the planning horizon.

Various uncertain parameters impact the design of post-disaster humanitarian re-
lief networks, including the lack of information on affected populations, the urban
or rural structure of affected regions, and the intensity of the natural disaster and
its secondary impacts (Anaya-Arenas et al., 2014; Tofighi et al., 2016). Travel
time, supply availability, network reliability, shipping cost, and shipping capac-
ity also contribute to uncertainty in relief operations (Anaya-Arenas et al., 2014;
Tofighi et al., 2016; Daneshvar et al., 2023). However, the most common and
impactful uncertainty lies in demand estimation, where accurate predictions are
crucial for effective resource allocation (Balcik & Beamon, 2008; Dénmez et al.,

2021; Anaya-Arenas et al., 2014).

The effects of unmet demand for critical supplies on the demands in subsequent
periods have been modeled in various ways in the literature. Shokr et al. (2022)

modeled the unmet demand as a penalty in the objective function but did not
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transferred the unmet demand to the next period. However, (Silva et al., 2024)
considered both a penalty for unmet demand and the cumulative nature of un-
met demand by adding the unmet demand to the demand of the next period.
Daneshvar et al. (2023) not only considered the penalty of unmet demand but
also modeled the effect unmet demand for one critical supply has on the level of

demand for other critical supplies.

The literature reveals a diversity of objective functions aimed at improving the
performance of humanitarian relief networks. These objectives often differ from
those in commercial supply chains, emphasizing outcomes such as minimizing un-
met demand, optimizing distribution coverage, and enhancing budget utilization
(Diabat et al., 2019; Hasani & Mokhtari, 2019, 2018). Some studies integrate
multiple objectives, including cost minimization, travel time reduction, and satis-
faction maximization (Tzeng et al., 2007). Additionally, fairness and equity con-
siderations have gained attention, aiming to distribute critical supplies equitably

among vulnerable populations (Anaya-Arenas et al., 2018; Ismail, 2021).

Various optimization methods have been employed to address the complexities
of post-disaster humanitarian relief network design. These methods encompass
stochastic programming and robust optimization to account for uncertainty (Grass
et al., 2023; Benini et al., 2017). Studies have proposed multi-layer network struc-
tures, dynamic supply chain designs, and collaborative relief chain models to op-
timize resource allocation and distribution efficiency (Afshar & Haghani, 2012;

Dufour et al., 2018; Shokr et al., 2022).

The literature on post-disaster humanitarian relief network design reflects a con-
certed effort to address the unique challenges posed by uncertainty, limited re-
sources, and urgent time constraints. By considering uncertain parameters, di-

verse objective functions, and innovative solutions, researchers aim to enhance the
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effectiveness and efficiency of relief operations, ultimately mitigating the impact

of disasters on affected populations.

4.3 Problem Definition

We now formally define the here considered HSCN design problem. The key as-
pects of the problem, including the structure of the network, uncertain parameters
and decision variables, are introduced in Subsection 4.3.1. Then, Subsection 4.3.2
outlines the budgetary settings and the subsequent limitations on the HSCN de-
sign problem. Finally, the notion of demand and the correlated effect of unmet

demand on critical supplies are presented in Subsection 4.3.3.

4.3.1 HSCN Structure

We study a tactical multi-period HSCN design problem faced by humanitarian
organizations after a natural disaster. An HSCN is a physical network of hubs
that receive, store, and distribute critical supplies to beneficiary groups over a
defined planning horizon. The critical supplies required for the beneficiary groups
vary based on the type of natural disaster, the geographical characteristics of the
affected region, and the season. The International Federation of Red Cross and
Red Crescent Societies (IFRC) has published a catalog indicating the demand of

vulnerable people for each critical supply.

We adopt a three-layer structure for HSCN, representing a common configuration
in practice (Séguin, 2019). Figure 4.1 illustrates an example HSCN structure,
with the top diagram presenting all available hubs, services, and assignments,
while the bottom diagram shows the HSCN with the selected hubs, services, and
assignments. A layer is a set of hubs with specific characteristics designed to

carry out part of the relief distribution operation. The hubs in the first layer are
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ports of entry (e.g. airport, seaport, train station), where the critical supplies
are received and sent to the second layer of the HSCN. Each port of entry has a
capacity for receiving the critical supplies determined based on its infrastructure.
For instance, a small port has a lower capacity to receive critical supplies than
an international airport. The second layer of the HSCN consists of warehouses.
A warehouse receives the critical supplies from the ports of entry, stores them,
and sends them to the third layer. Each warehouse has inventory resources (e.g.,
classrooms, containers), and the quantity of these resources is decided upon at the
design time. Finally, Distribution Centers (DC) belong to the third layer of the
HSCN structure. Each DC can provide critical supplies for multiple beneficiary
groups, but each beneficiary group is assigned to one DC. The reason being the
complexity of the coordination required with other humanitarian operations (e.g.,
debris removal) and the lack of access to the beneficiary groups for communication

because of the infrastructural damages.
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Figure 4.1: Top: all available hubs, services, and assignments. bottom: selected

hubs, services, and assignments in an example HSCN

The complexity of the coordination among the humanitarian operations (e.g.,
debris removal), the urgency of the relief distribution, and the competition among
humanitarian organizations to acquire resources force some decisions to be made
right after the natural disaster occured. These decisions include selecting the
hubs, transportation services, number of transportation and inventory resources
and assigning the beneficiary groups to the DCs. A transportation resource is
a vehicle with a capacity used by a transportation service that moves critical
supplies from an origin into a destination hub and then returns to the origin hub
to repeat the process. The remaining decisions are primarily operational and

made over the planning horizon. These decisions include the quantity of critical
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supplies received at ports of entry, stored at warehouses, assigned to beneficiary
groups at DCs, and the quantity of critical supplies transferred by transportation

resources.

In this study, we consider the possibility of relocating the transportation resources
between services over periods in response to the new information available to im-
prove the performance of the HSCN. We also consider the possibility of adding
new transportation resources in response to the demand over the planning hori-
zon. Regardless, the cost of adding new transportation resources after the design
time will considerably increase. The reason being the lack of access to available
resources, as there is a high demand for such resources in the aftermath of a natu-
ral disaster. The transportation resources update decisions are made over the first
period, and the new structure will be in effect in the second period. The reason
for considering only one update to the network structure is that the majority of
the demand happens in the first few days after the natural disaster (e.g. shelter,
blanket), and hence, updating the network in the first period would have the most
effect on the performance of the HSCN designed. We also limit the updates to
the selected transportation services at the design time (i.e., no new transportation

service is added to the network).

The HSCN must be designed quickly after a natural disaster to start the relief
distribution operation, reducing the damage and harm to people’s health. How-
ever, multiple sources of uncertainty exist in the aftermath of a natural disaster,
including a lack of access to accurate information necessary for relief operations
(e.g., demographical distribution data), damaged infrastructure, and secondary
impacts (e.g., aftershocks, landslides), which causes uncertainty regarding the
value of some parameters involved in the HSCN design problem, including the de-
mand and the capacity of both storage and transportation resources. Over time,

more information is available regarding the region’s state, and the estimation of
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the uncertain parameters improves.

4.3.2 Budget

The design and operation of the HSCN incur some costs associated with the
decisions made, limited by the available financial resources referred to as budget.
Humanitarian organizations have some financial resources available to respond to
natural disasters, and they also receive financial aid, which will be available over
time. We refer to the budget available at the design time as the initial budget
and the financial resources that become available during the planning horizon as

donations.

Since in the here studied HSCN design problem, the structure of the HSCN can be
updated over time, the design expenses include the fixed cost of selecting hubs and
services at the design time, as well as the fixed cost of relocating the transportation
resources or adding extra transportation resources during the planning horizon.
The initial budget limits the costs related to design decisions at the design time.
The operating expenses are the flow cost and are proportional to each critical
supply for each service, calculated per unit of distance (e.g. km). The expenses
incurred by design decisions during the planning and the costs related to the
operational decisions are limited by the available budget (i.e., donations received

plus the remaining budget of previous periods) at each period.

4.3.3 Demand

In the HSCN design problem, demand is considered an uncertain parameter due
to the variability in the population sizes of each beneficiary group. This uncer-
tainty necessitates that demand be computed proportionately to the respective

group populations. Moreover, the demand is characterized by its cumulative and
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spreading nature. Specifically, any unmet demand for a critical supply not only
escalates the demand for the same supply in the subsequent time period but also
heightens the demand for other critical supplies. The spread factor (Daneshvar
et al., 2023), presented as s¥'kquantifies the degree to which unmet demand for
a specific critical supply &’ influences the demand for another critical supply k.
Using the spread factor provides the possibility to understand better how short-
ages in one period amplify challenges in the next. Equation (4.1) defines the total
demand d*'] of beneficiary group [ for critical supply k in period t¢.

I S T (1)

k'eK i€Vpo

In this formulation, d*'l symbolizes the base demand of beneficiary group [ for
critical supply k at period t, s*'* captures the spread factor reflecting the influence

~1 represents the allocation of critical

of critical supply k' on supply k, and afl't
supply &’ from distribution center ¢ to beneficiary group [ during period ¢t — 1. In

the next Section, we propose a mathematical model for the HSCN design problem.

4.4 Mathematical Model

In the HSCN design problem, the value of uncertain parameters is revealed over
time by the availability of more information from the field. However, humanitar-
ian organizations must make design decisions early after a natural disaster due
to the competition to acquire limited available resources in the field by differ-
ent organizations. Furthermore, the cost of booking resources increases as fewer
resources will be available over time. However, postponing the operational deci-
sions results in better decision-making as more information is available during the
decision-making process. In the here-studied HSCN design problem, it is possible

to adjust the design of the HSCN to leverage the information obtained over time.
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All in all, we propose a three-stage model where, in the first stage, the design
decisions are made. In the second stage, the decisions regarding updating the
HSCN design, as well as the operational decisions of the first period, are made,
and the third stage contains the operational decisions of the remaining periods. In
the following, we introduce the sets, presented in Table 4.1, parameters, presented
in Table 4.2, and decision variables, presented in Table 4.3, used in the proposed

optimization models.

Table 4.1 presents the sets involved in the mathematical model. In this table,
V' presents the set of all candidate hubs, including the ports of entry,V;, the
warehouses, Vyi-, and the DCs, Vpe. Furthermore, A is the set of services, L is
the set of beneficiary groups, K is the set of critical supplies, ¥ is the set of all

scenarios, and T' is the set of periods.

In this model, the decisions related to the structural design of the HSCN are made
in the first stage right after the occurrence of the natural disaster. Furthermore,
the second-stage decisions are made at the end of the first period, including the
structure update decisions and the operational decisions of the first period. The
reason for locating the second stage at the end of the first period is that the first
two periods contain the highest level of demand, and the structure update could
improve the efficiency of the relief operation of the remaining periods using the
available information at the end of the first period. Finally, the third stage con-
tains the operational decisions of the remaining periods which are made at the
end of the last period. In the first stage of the model, there is a high level of
uncertainty and only the value of deterministic parameters are available. How-
ever, in the second stage, the first period’s uncertain parameters are also known,
reducing the level of uncertainty. Finally, in the third stage, the values of all
parameters are known. In the following, we introduce the sets, presented in Table

4.1, parameters, presented in Table 4.2, and decision variables, presented in Table



4.3, used in the proposed optimization model.

Definition

T

T3

Set of ports of entry i € Vj.

Set of warehouses i € Vyy .

Set of DCs ¢ € Vpe.

Set of all hubs ¢ € V, where V =V Viw U Vpe-
Set of all services (i,j) € A.

Set of beneficiary groups | € L.

Set of critical supplies k € K.

Set of scenarios ¢ € V.

A subset of scenarios ¢ € ¥, that cross node o on the
second stage of scenario tree, where ¥ = [JS_, U;.
Set of periods in the first stage {0} € T1.

Set of periods in the second stage t € T, where Th C
T.

Set of periods in the third stage t € T3, where T3 C T'.
Set of periods ¢t € T, where T' = T> |J T5.

Table 4.1: Sets used in the optimization models.
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Table 4.1 presents the sets involved in the mathematical model. In this table,

V' presents the set of all candidate hubs, including the ports of entry,V;, the

warehouses, Vi, and the DCs, Vpe. Furthermore, A is the set of services, L is the

set of beneficiary groups, and K is the set of critical supplies. The set of scenarios

generated from the data sources is represented by W. Furthermore, ¥, present the

set of scenarios that pass through node o € {1, 2, ..., e} in the second stage of the

scenario tree. Finally, T is the set of time periods, involved in the second stage,

presented by T3, and periods in the third stage, presented by T3. T3 is a set define

to unify the formulation notaion and does not include any operational periods.
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Deterministic Parameters

Parameter Definition

. Cost of selecting one unit of transportation resource of service (3,j) € A
fij at the design time, t € Tj.

ot Cost of selecting one unit of transportation resource of service (3,j) € A
fij at the first period, t € T5.

f,‘ Cost of selecting one unit of inventory resource for warehouse i € Vyy .

fi Cost of selecting a hub i € V.

. Cost of transporting one unit of critical supply k € K, by service (4,5) €
K A.

Ujj Capacity of one unit of transportation resource of service (¢,7) € A.

Uj Capacity of one unit of inventory resource of warehouse i € Vyy .

m; Maximum number of inventory resources available for warehouse ¢ € Vyy .

. Maximum number of transportation resources available at the design time
i for service (i,5) € A, t € Ty.

. Maximum number of transportation resources available at the first period
i for service (¢,5) € A, t € Ts.

ot Maximum quantity of critical supplies k € K that can be delivered to the
s port of entry ¢ € V; at period t € T'.

bk The penalty for one unit of unmet demand of critical supply k € K.

20 The initial budget.

2t The received donation amount at the beginning of period ¢t € T'.

b/ Spread factor of one unit of unmet demand of critical supply k& € K on
* critical supply k' € K.

e number of nodes in the second stage of the scenario tree.

Parameters of the scenario-based stochastic model

Parameter Definition
Dep Probability of scenario ¢ € W.
. Percentage of available inventory resources of hub ¢ € V| at period t € T,
Jiv in scenario ¢ € W.
. Percentage of available transport resources of service (¢, j) € A, at period
Yiju t € T, in scenario ¢ € V.
e The base demand of beneficiary group I € L, for critical supplies k € K,
W at period t € T, in scenario @ € U.
gkt Total demand of beneficiary group [ € L, for critical supplies k € K, at
Iy

period t € T', in scenario ¢ € W.

Table 4.2: The parameters of the HSCN design problem.

The parameters of the models are introduced in Table 4.2. For each transportation
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resource (i,7) € A, there are two selection costs, including the selection at the

£0

i, and at the first period, represented by fJ;. The

design time, represented by i
other fixed cost is associated with selecting one unit of inventory resource for
warehouse ¢ € Vyy, indicated by ﬁ The other fixed cost is the selection cost
of the hub 7 € V indicated in the model by f;. The flow cost of transporting
one unit of critical supply k € K, using the service (i,j) € A is represented by
cfj The capacity of one unit of transportation resource of service (i,j) € A is
indicated by wu;;, and w; presents the capacity of one unit of inventory resource of
warehouse ¢ € Vjy. The maximum number of inventory resources of warehouse
i € Vi are presented by m;, and mg; and m;; show the maximum number of
transportation resources available for service (i,j) € A at the design time and
first period respectively. The maximum quantity of critical supplies k£ € K that
can be delivered to the port of entry i € V; at period ¢ € T is indicated by n}.
The penalty associated with one unit of critical supply k € K is presented by b*.
The initial budget and the received donations at each period are presented by 2°
and 2!, respectively, where ¢t € T. The last deterministic parameter is presented

by s* indicating the spread factor of one unit of unmet demand of the critical

supply k € K on the critical supply &' € K.

In the following models, p, indicates the probability of scenario ¢¥» € W. The
available inventory resources of hub ¢ € V| at period ¢t € T', in scenario ¥ € VU is
presented in percentage by gfw. Furthermore, the percentage of available transport
resources of service (i,7) € A, at period t € T', in scenario ¢ € ¥ is shown by gfjw.
Finally, dj and cfﬁz present the base demand and the total demand of beneficiary
group [ € L, for critical supplies & € K, at period ¢ € T, in scenario ¥ € ¥

respectively.

In this study, a scenario tree is employed to represent the structure of the problem

under consideration. Figure 4.2 illustrates the scenario tree of a three-stage model
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with four time periods and six scenarios. This model’s first stage corresponds to
the t = 0, indicating that, at this point, the operational periods have not started
yet. The second stage encompasses the first time period, while the third stage
spans the remaining time periods, namely t=2, 3, and 4. In the scenario tree,
all scenarios converge at a single node in the first stage, indicating that decisions
made at this stage are uniform across all scenarios. In the second stage, the tree
branches such that scenarios 1, 2, and 3 share a common node, as do scenarios
4, 5, and 6, necessitating identical decision variables within each respective group
of scenarios. By contrast, in the third stage, the scenario tree fully branches out,

allowing each scenario to have independent decision variables.

First Stage t=0

Second Stage  t=1

Third Stage _|

Scenario Scenario Scenario  Scenario Scenario Scenario

Figure 4.2: A sample scenario three with three stages and four time periods.
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First Stage

Variable Definition
, 1 if service (4,5) € A is selected to be part of the HSCN; 0 otherwise, where ¢ € T1,
iy © .13 in scenario 1 € W.
1 if hub 7 € V is selected to be part of the HSCN; 0 otherwise, where t € T, in
yp, € {0,1} )
scenario 1 € U.
” o Number of units of transport resources selected at the design time for service (i, 7) €
Tige © N A, where t € T, in scenario ¢ € W.
o 0 Number of units of inventory resources selected for hub ¢ € Vi, where t € T, in
Vi © N scenario 1 € U.
1 if beneficiary group ! € L is assigned to DC i € Vp¢; 0 otherwise, where t € T1, in
aﬁlw € {0,1} ]
scenario 1 € U.
Second Stage
Variable Definition
» o Number of units of transport resources added for service (i,5) € A, where ¢t € T», in
iy © N scenario 1 € U.
. o Number of units of transport resources transferred from service (¢/,j') € A to service
Virgtigu © N (4,7) € A, where t € T, in scenario @) € W.
S0 Quantity of critical supply k € K transferred through service (i,j) € A at period
Ty t € Ts, in scenario ¢ € W.
W >0 Quantity of critical supply k& € K at period t € T» allocated to beneficiary group
iy = l € L from DC i € Vp¢, in scenario ¢ € V.
S 0 Inventory level (in number of units) of critical supply k € K at warehouse 7 € Vi at
K the end of period t € T, in scenario 9 € W.
S Inventory level (in number of units) of critical supply k € K at warehouse i € Vi at
W the beginning of period ¢ € T», in scenario ¥ € W.
Third Stage
Variable Definition
VR Quantity of critical supply k € K transferred through service (i,j) € A at period
Uy t € T3, in scenario ¢ € U.
i >0 Quantity of critical supply k& € K at period t € T3 allocated to beneficiary group
iy = l € L from DC i € Vp¢, in scenario ¥ € U.
S Inventory level (in number of units) of critical supply k € K at warehouse i € Vi at
R the end of period ¢ € T3, in scenario ¢ € W.
s Inventory level (in number of units) of critical supply k € K at warehouse 7 € Vi at
K the beginning of period ¢ € T3, in scenario ¢ € V.

Table 4.3: Decision variables of the proposed three-stage stochastic model.

Table 4.3 provides the list of decision variables of the HSCN design problem. This
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table includes three parts describing the decision variables in each stage of the

proposed three-stage model. In the proposed model, the operations decisions are

divided between the second and third stages. Hence, some decision variables are

repeated in both the second and third sections of the table.

s.t.

minZ]w Z Z vt Z(dﬁz - Z a%)

Ypew teT keK leL 1€Vpe

2$§j'¢ S yf¢ + y;w V(Z,]) € A> vt € T17 vw € \117

Uiy < miysy, Vi€ Vi, teTy, Vi eV,

Tijp <miay, Y(i,j) € A VteTy, VeV,

St + > filly + Y fhil, <20 teT, W e,

eV €W (i,5)€A

d dh=1 VIEL teT, Ve,

1€Vpo

gy < Ypy Vi€ Vpe, Vi€ L, t €Ty, Y €,

Z xmw — uljgz]¢< Z At, + Z /UZIJ ijp ’Uf;i’j’w%
t'eTy JT» ij'eA

V(i,j) € A, V" € Ty, Yt €T, Y € U,

St Y Vet = 0, V(i j) € A, Vt € Ty, Vi € U,(4.10)

t'eTy UT2 i'j'eA

@%w < mgj:cgjw V(i,j) € A, Vt € Ty, Vop € U,

(4.11)
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_f}z} < Z Z mﬂuﬂgjw zlw, Vi € Vpe, VI € L,
(Gi)eAt e UTs (4.12)

VeEe K, VteT, t" €T, VY € U,

aff < dﬁz, Vi € Vpe, VIEL, Yk e K, Vte T, Vi € U, (4.13)
Z@Z <Z% , VieVpe,Vke K, YteT, Y eV, (4.14)
leL JjeEW

dit =i+ 3 SR - N Akt vie L, vk ek,
ek i€Vpo (4.15)

Ve T, Vi e,

Zfi%/l*‘ Zfzyup+ Z Z fg/Af;uﬂ‘Z Z ZCZ Zt; <

eV i€Viy t'eTh UT> (i,5)€A t'=1 (i,j)eAkeK

t (4.16)
D43 WEeT, e, WeT,
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<Ml e iy, Vk € K, VEET, V€T, (4.17)
Zr < u]gwy]w VieViy, VteT, Vi € U, (4.18)
keK
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keK
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(i,j)€A (ji)EA (4.20)
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(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

Ui/j’ijdl = Ui’j’ijx v¢’ X - \Ijo, S {1, ...,6}, V<Z, j) c A, V(i/, j/) c A, (428)

=kt
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Ly Ix

P =M x €W, 0 € {1,...,e}, Vi € iy, Vk € K,t € Ty,

7,1/, 7‘X

A t77 0 At” 0 t77 t77 t”
xijd) € N ’ yzq/) S N ) wijz/} € {Oa ]-}7 yu{; S {07 1}7 ailz/; € {Oa ]-}7
At 0o .t 0
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Tij, 2 0, @y, >0, my >0, 770 >0, V(i j) € A,

(4.31)

(4.32)

(4.33)

Vi',jYe A, VieV,Vke K, Vt e T, Vt' € Ty, Va” € T}, YVl € L, Vi) € V.
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The objective function (4.2) minimizes the expected penalty over all scenarios
Y € V. Constraints (4.3) make the selection of services conditional to selecting
both their origin and destination hubs. The limits on the number of inventory
resources at each warehouse are enforced by constraints (4.4). Furthermore, the
number of selected transportation resources at the first stage is limited by con-
straints (4.5). Constraint (4.6) assures the initial budget constraint is respected.
Constraints (4.7) guarantee each beneficiary group is assigned to one DC, and
constraints (4.8) guarantee such DC is part of the HSCN. Constraints (4.9) limit
the services transported critical supplies’ quantity to the capacity of the service
at each period. Constraints (4.10) limit the number of transportation resources
leaving a service by its available transportation resources. The number of added
transportation resources to each service at the second stage is limited by con-
straints (4.11). Constraints (4.12) limit allocating the critical supplies to bene-
ficiary groups at DCs. Constraints (4.13) ensure non-anticipativity, limiting the
allocated critical supplies to each beneficiary group up to their demand at each pe-
riod. The flow constraints (4.14) guarantee that the allocated critical supplies to
beneficiary groups at each DC are limited by the received critical supplies by the
DC. The level of demand for each period of T is calculated in constraints (4.15).
Constraints (4.16) limit the expenses to the available budget at each period. Con-
straints (4.17) limit the inventory level of the warehouses at the beginning of
each period by its inventory level at the end of the previous period. Constraints
(4.18) and (4.19) confine the inventory level of warchouses by their inventory ca-
pacity. The inventory level of warehouses at the end of each period is calculated
by constraints (4.20). Constraints (4.21) bound the received critical supply at
each port of entry by the maximum capacity of the port of entry. Constraints
(4.22)-(4.26) enforce the non-anticipativity constraint of first stage decision vari-
ables and constraints (4.27)-(4.32) enforce non-anticipativity constraint for second

stage decision variables, ensuring the value of decision variables in each node of
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the scenario tree are equal across scenarios. Finally, constraints (4.33) present the

bounds of the decision variables.

4.5 Experiments

In this section, we present the dataset and experiments designed and applied to
answer the research questions considered in this paper. Subsection 4.5.1 introduces
the dataset, including the characteristics of the natural disaster, sources used in
the dataset compilation, and generating scenarios. Furthermore, we present the
performed experiments in Subsection 4.5.2, evaluating the value of allowing update
decisions during the operational phases compared to making update decisions at
the design (first) stage. In this subsection, we also compare the solution obtained
from the proposed three-stage model with its two-stage counterpart, assessing
their performance based on the two defined metrics. Finally, Subsection 4.5.3
provides the managerial insights obtained from the experiments conducted in this

section.

4.5.1 Dataset

We generate a dataset using collected data from the earthquake that occurred in
Lombok Island, Indonesia, in 2018. The region experienced over 1500 aftershocks,
among which four were the most intense shocks, including the main earthquake
on July/29 with 6.4 My, (i.e., Richter magnitude scale), the first strong aftershock
with 7 M}, on Aug/05, the second strong aftershock with 5.9 My on Aug/09, and
the third strong aftershock with 6.4 M, on Aug/26. As a result of the earthquake,
445,343 individuals relocated to 2700 camps located on Lombok island and the
neighboring islands. Responding to the critical situation after the earthquake, the

Indonesian government declared a state of emergency from July 29th to August
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26th, which we define as the planning horizon. We set the length of each period
to one week resulting in four periods in the planning horizon. The International
Organization for Migration (IOM) has published a comprehensive list of all camps,

including their locations and the number of individuals in each camp (IOM, 2019).

For this study, we selected 96 beneficiary groups on the island. There were 20,950
households (74,246 individuals) residing in these beneficiary groups during the
planning horizon. The critical supplies involved in the dataset are shelter, food,
and hygiene packs. Since the clean water had a separate distribution network
(IFRC, 2021a), we exclude it from critical supplies considered within this dataset.
To calculate the base demand for the critical supplies, we use the standard required
quantity of each critical supply per individual or household, as determined and
published by the International Federation of Red Cross and Red Crescent Societies
(IFRC, 2021b).

We gathered the location of six warehouses and four points of entry from the
reports published by Palang Merah Indonesia (PMI), the local partner of the IFRC
in Indonesia, during their operation on Lombok Island (IFRC, 2021a). According
to the published reports, the PMI outsourced the transportation of critical supplies
to third-party companies. Thus, we consulted the local transportation companies’

sources to obtain the cost and capacity of the provided services.

To generate candidate locations for the DCs, we used the DBSCAN algorithm
(Ester et al., 1996) to cluster the beneficiary groups. The DBSCAN has two
parameters, the epsilon and the minimum number of neighbors. Variating the
parameters leads to various clustering solutions, so a domain expert would choose
the best clustering for the study problem (Mendes & Cardoso, 2006). The former
indicates the radius of the obtained clusters, and the latter denotes the clusters’

density. After indicating the location of the hubs and beneficiary groups, we
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calculate the driving distances between hubs and the walking distance between
the beneficiary groups (as input parameters of the DBSCAN algorithm). We
derived the necessary distances utilizing an online routing engine (Luxen & Vetter,
2011) that computes both walking and driving distances between points using

OpenStreetMap.

Generating scenarios using a scenario tree involves several steps to capture un-
certainties in decision-making. First, relevant data is collected, and probability
distributions for uncertain parameters are determined. These distributions gener-
ate multiple realizations of parameter values, each forming a node in the second
stage of the scenario tree. For each second-stage node, further realizations for the
third stage are generated using conditional probability distributions, expanding
the tree. This results in a comprehensive set of scenarios that capture a range of

possible outcomes and their associated probabilities.

4.5.2 Experimental Results

This section includes the experiments designed and conducted in the context of
the considered case study. First, Subsection 4.5.2.1 investigates the appropriate
number of scenarios for the following experiments using in-sample and out-of-
sample stability analysis. Then, Subsection 4.5.2.2 examines the benefit obtained
by adjusting the HSCN design over the planning horizon compared to the fixed-
design models in the literature (Daneshvar et al., 2023). Then, Subsection 4.5.2.3
evaluates the performance of the three-stage model and its two-stage counterpart
over various spread-factor values. Finally, Subsection 4.5.2.4 compares the cost-

benefit of the three-stage model proposed here and its two-stage counterpart.
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4.5.2.1 Stability Analysis

This section includes the in-sample and out-of-sample stability analyses (Kaut
& Wallace, 2003) of the proposed model. Different solutions may result from
solving a problem with distinct scenario sets of equal size. Yet, increasing scenario
numbers via appropriate sampling reduces such differences (enhances uncertain
parameter approximation) and increases the generated instance’s computational
cost, including required hardware and time. Thus, we are interested in the number
of scenarios that balance estimation quality and computational cost. Assessing
both in-sample and out-of-sample stability examines sample size effects on final
solution quality. In-sample stability examines solution consistency across varied
scenario sizes based on reported objective function values, while out-of-sample

stability tests for consistency on the ground truth.

We first choose three different number of scenarios (125, 250, and 500) to perform
the in-sample stability test. In the scenario tree used to generate the scenarios,
every five scenarios share a node in the second stage. Then, for each number
of scenarios, we solve the proposed three-stage model 15 times, each time with
different randomly generated scenarios. The average and standard deviation of the
objective function value is reported in Table 4.4. To perform the out-of-sample
stability test, we calculate the expected penalty of using solutions obtained in
the in-sample stability test over the ground-truth scenarios. The ground truth
comprises 3,000 scenarios, with 600 nodes in the second stage of the scenario tree
and five nodes in the third stage for each node in the second stage. Similar to the
in-sample-stability test, we calculate the average and standard deviation of the

expected penalty of the solution, presented in Table 4.5.
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Number of scenarios mean std

125 62,828 5,452
250 65,662 4,221
500 64,128 2,962

Table 4.4: The results obtained from the in-sample stability test of the

three-stage model (over 15 runs).

Number of scenarios mean std
125 65,701 1,577
250 64,595 582
500 64,500 611

Table 4.5: The results obtained from the out-of-sample stability test of the

three-stage model (over 15 runs).

Contrary to the out-of-sample stability test, the objective function values in the
in-sample stability test are calculated on different scenario sets; therefore, we can-
not use the mean value as a comparison point between different scenario sizes.
However, the standard deviation could be used to compare the fluctuation in the
objective function value caused by the number of scenarios used when solving the
problem. The in-sample stability test results in Table 4.4 indicate that the stan-
dard deviation of objective function values reduces from 5,452 for 125 scenarios
to 2,962 for 500 scenarios. Furthermore, the average objective function value in
the out-of-sample stability test reduces from 65,701 for 125 scenarios to 64,500
for 500 scenarios, showing a 1.83% improvement in the objective function value
of the solutions obtained when tested on the ground truth scenario set. Also, the
standard deviation of the objective function values has reduced from 1,577 for
125 scenarios to 611 for 500 scenarios, indicating a 61.26% improvement. Based
on the observed results of this experiment, we use 500 scenarios to perform the

following experiments.
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4.5.2.2 Value of Adjusting Transportation Resources

The update decisions involve adjusting the design of the HSCN to accommodate
demand by adding new transportation resources and relocating existing ones.
Furthermore, over time, the availability of transportation resources declines while
their associated costs rise within the region. Consequently, update decisions are

considered only in the first period.

This experiment employs two two-stage models to explore the potential advantages
of postponing the update decisions from the design phase to the second stage. The
first model, referred to as SSUD (i.e., second-stage update decision), is a relaxed
version of the three-stage model introduced in Section 4.4, with constraints (4.27)
to (4.32) (the non-anticipativity constraints) relaxed. The second model, referred
to as FSUP (i.e., first-stage update decision), incorporates the update decisions in
the first stage by adding the following constraints to the original two-stage model,

enforcing the update decisions to be made in the first stage.
By = Ty VO, X € T, V(I j) € A, (4.34)
Virjrije = Uiz YU, X € ¥, V(7, j) € A, V(7 §) € A, (4.35)

Five hundred scenarios are generated and used to solve all three models, obtain-
ing one solution per model to compare the SSUD, FSUD, and three-stage models.
The solutions are then applied to the ground-truth scenario set. To evaluate the
solutions, we use the three-stage model presented in Section 4.4 while fixing the
decision variables of the first stage using the solutions’ values. Table 4.6 presents
the expected penalty obtained by applying the solutions on the ground-truth
scenarios. The result indicates that the SSUD outperforms the FSUD model,

suggesting that humanitarian decision-makers could improve the performance of
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their HSCN with a slight increase in computational time when choosing SSUD
over the FSUD model. However, when comparing the SSUD and the three-stage
models, the latter demonstrates superior performance, with a 4.81% improvement
in the expected penalty. While this improvement comes at a computational cost
of 14.89%, it provides a more robust and detailed framework for decision-making
by incorporating additional flexibility in the timing of update decisions. This sug-
gests that adopting the three-stage model could significantly improve outcomes for
humanitarian decision-makers in terms of unmet demand and network resilience.
It would also make it a more effective approach in contexts where computational

resources are not a limiting factor and decision precision is paramount.

Model Solution Calculation Expected Penalty on
Time (sec) the Ground-Truth

FSUD 1,101 70,295
SSUD 1,867 67,504
Three-Stage 2,145 64,258

Table 4.6: The computation time to obtain a solution and the expected penalty
when the solution is applied on the ground truth for FSUD, SSUD, and

three-stage models.

In the following subsection, we study the possible advantages of using a three-stage

over the two-stage SSUD model.

4.5.2.3 The impact of the spread factor

The spread factor models the impact of each critical supply’s unmet demand

on all critical supplies’ demands in the next period (Daneshvar et al., 2023).
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This section evaluates the spread factor’s impact on the model’s computational
time. Following, we evaluate the impact of increasing spread factor value on the
performance gap between the SSUD and three-stage models. The performance
gap is the percentage increase in the expected penalty value when transitioning
from the three-stage to the SSUD model. This metric quantifies the relative
performance loss associated with simplifying from the three-stage to the SSUD
model, highlighting the benefits of additional stages in reducing the expected
penalty. Changes in the spread factor variations generate new instances, making
direct comparisons of expected penalties between instances unattainable. Using
the performance gap, we obtain a normalized measure to assess the significance

of additional stages across different spread factor values.

To conduct a structured analysis, we define two series of values for the spread
factor: one set of diagonal variations to capture the impact of unmet demand for
each critical supply on itself (cumulative effect) in the next period and another set
of non-diagonal variations to reflect the impact of unmet demand of each critical

supply on other critical supplies (spreading effect) in the next period.

We use the following formulation to generate variations of spread factor values.

spread factor =111 4+ Tl(J — 1) (4.36)

In this context, I represents the identity matrix, with ones on the diagonal and
zeros elsewhere, and J is a matrix with all entries equal to one. Also, II; is the
parameter indicating the intensity of the cumulative effect, and Il; represents the
spreading effect’s intensity. The spread factor I indicates that the unmet demand
of each critical supply transfers to the next period without increase. We define
the spread variation factor, where the cumulative variations are represented by

[T, taking 1, 1.25, 1.5, 1.75, and 2 with Il; equal to zero, resulting in spread
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factor values of I, 1.25I, 1.51, 1.75I, and 2I, respectively. For the spreading
effect variations, we set II; equal to one with Il taking 0, 0.25, 0.5, 0.75 and 1,
resulting in spread factor values of I, 14+0.25(J—1), I+0.5(J—1), I+0.75(J —1I),
J, respectively. This structure enables us to systematically examine how unmet
demand impacts propagate both within and across critical supplies in subsequent

time periods.

Cumulative Effect Spreading Effect

Value of II;  Value of II;  Time (hours) Value of II; Value of II; Time (hours)

1.00 0.00 0.58 1.00 0.00 0.58
1.25 0.00 1.25 1.00 0.25 2.00
1.50 0.00 3.00 1.00 0.50 5.50
1.75 0.00 7.00 1.00 0.75 20.00
2.00 0.00 10.00 1.00 1.00 20.00

Table 4.7: Cumulative and Spreading Effects on Spread Factors and

Computational Time

Table 4.8 presents the performance improvement in the expected penalty over
the ground truth made when using the three-stage over the SSUD model. The
results are reported for variations of spread factor values considering the cumu-
lative and spreading effects separately. The results show that the percentage of
improvement decreases for higher values of the spread factor for both cumulative
and spreading effects variations. The results indicate that when demand increases
without corresponding adjustments in budget and resources, the performance of
the SSUD and three-stage models converges, underscoring the critical importance
for decision-makers to ensure the availability of adequate budget and resources to

maintain effective humanitarian relief operations.
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Cumulative Effect Spreading Effect

Value of II; Value of Il three-stage improvement Value of II; Value of IIy  three-stage improvement

(percent) (percent)
1.00 0.00 4.80 1.00 0.00 4.80
1.25 0.00 4.67 1.00 0.25 4.67
1.50 0.00 1.56 1.00 0.50 1.57
1.75 0.00 0.21 1.00 0.75 1.74
2.00 0.00 0.79 1.00 1.00 1.80

Table 4.8: Performance gap obtained on various variations of spread factor,

comparing the three-stage and SSUD models.

4.5.2.4 Solution analysis

This section evaluates the proposed models by examining the solutions obtained
on a problem instance with 500 scenarios. First, this analysis compares the dis-
tinct design decisions made in each solution, presenting the critical differences
between the two networks. Then, the solutions are evaluated based on the up-
dates required in each HSCN designed over the planning periods when assessed
against the ground-truth scenario set. By examining the number of scenarios in
ground truth that have updated the designed HSCN to align with the observed

demand, we better understand each solution’s robustness and flexibility.

Table (4.9) compares the number of transportation resources each model selects
in HSCN designed by the FSUD, SSUD, and three-stage models. When com-
paring the total transportation resources units selected in each designed HSCN,
all three networks are close to each other. However, the distribution of these re-
sources is different among HSCNs. Specifically, FSUD is overinvested compared
to SSUD and Three-Stage in Lombok Airport to Kayanagan transportation and
underinvested in ObelObel #2 to DC #104 and from Lombok Airport to ObelO-
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bel #2. Comparing SSUD and Three-Stage HSCNs, the HSCN designed by SSUD
has more transportation resources on the road from Lombok Airport to ObelO-
bel #1 and ObelObel #1 to DC #104, but the three-stage designed HSCN has
more transportation resources on the roads from Lombok Airport to ObelObel #2
and from ObelObel #2 to DC #104. The three-stage model demonstrates a more
efficient resource allocation than the other two models. It selects fewer transporta-
tion and inventory resources, resulting in a more optimized budget allocation and
greater flexibility in operational expenses. Notably, the three-stage model does
not allocate any inventory resources, emphasizing the influence of its structural
design. This approach reduces the expected penalty when evaluated against the
ground-truth scenarios, highlighting the model’s effectiveness in minimizing de-
sign costs while maintaining flexibility in resource deployment. An important
insight for decision-makers is that spending less on design while leveraging the
more complex three-stage structure to better estimate the real-world information

flow has enabled the three-stage model to achieve the best results.

In the previous section, we compared the solutions provided by the FSUD, SSUD,
and three-stage models, noting the distinct outcomes associated with each ap-
proach. In this section, we further evaluate the performance of the SSUD and
three-stage models by introducing two key performance indicators (KPIs), a quan-
titative basis for comparing their relative strengths and weaknesses. The first KPI
focuses on the number of ground truth scenarios in which new transportation re-
sources are added to the HSCN during the first period. Adding new resources
in the first period is more costly than the first stage, and there is an increased
risk of resource shortages. Consequently, a solution that minimizes the number of

scenarios requiring new resources in the first period is considered superior.

Figure 4.3 illustrates the distribution of scenarios in which new transportation

resources are added in the first period. The SSUD solution has 175 scenarios that
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Parameter From To FSUD | SSUD | Three-Stage
Kayangan DC #104 61 51 50
ObelObel #1 DC #104 68 62 51
ObelObel #2 DC #104 0 18 28
Mataram Port Kayangan 64 62 61
Mataram Port ObelObel #1 6 1 1
Transportation Resources
Mataram Port ObelObel #2 0 6 5
Lombok Airport Kayangan 21 8 7
Lombok Airport ObelObel #1 76 72 60
Lombok Airport ObelObel #2 0 15 28
Total Transportation Resources 296 295 291
Kayangan 2 0 0
ObelObel #1 0 0 0
Inventory Resources
ObelObel #2 0 1 0
Total Inventory Resources 2 1 0

Table 4.9: The transportation and inventory resources acquired by the studied

models.

add new transportation resources, whereas the three-stage solution has 130 sce-

narios with added transportation resources. Furthermore, the SSUD solution adds

more resources in scenarios with added resources than the third-stage solution.

Therefore, based on this KPI, the three-stage model exceeds the SSUD solution.
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Figure 4.3: Comparison of the distribution of scenarios across the number of
added transportation resources in the first period when evaluating the SSUD (a)

and three-stage solution (b) on the ground truth.

The second KPI discussed in this section is the number of scenarios in which
transportation resources are relocated between selected services in the designed
HSCN. While no direct cost is associated with relocating transportation resources,
this task requires complex logistical management. Given the limited telecommu-
nication access in the affected region, solutions involving fewer scenarios of such
relocation are preferred. Figure 4.4 illustrate the number of ground truth scenar-
ios where transportation resources are transferred in the first period for the SSUD
and three-stage solutions, respectively. When evaluating the SSUD solution, the
number of scenarios with transferred resources is 2.63 times greater than in the
three-stage solution (2345 and 890 scenarios for the SSUD and three-stage mod-
els, respectively). Furthermore, in scenarios where resource transfer occurs, the
number of relocated resources is significantly higher when evaluating the SSUD
solution compared to the three-stage solution. Overall, the solution obtained by
the three-stage model performs better in terms of both the expected penalty and
the defined KPIs.
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Figure 4.4: The distribution of scenarios across number of transferred
transportation resources between selected services in the first period when

evaluating the SSUD (a) and three-stage solution (b) on the ground truth.

4.5.3 Managerial Insights

The following insights highlight how humanitarian decision-makers can leverage
the proposed model in this paper to enhance planning and optimize relief opera-

tions in a region affected by a natural disaster.
Flexibility in Decision Timing During Crises

In fast-moving humanitarian emergencies, resource requirements can change rapidly.
The experiments show that deferring design update decisions until the operational
phase (i.e., the first period) can lead to better outcomes (see Table 4.6 in Sec-
tion 4.5.2.4). Specifically, both SSUD and three-stage solution evaluations show
that postponing decisions until the disaster’s early response phase allows for more
effective adaptation to evolving needs, reducing costs and improving response ef-

ficiency.

Enhanced Decision-Making with a Three-Stage Model
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Adaptive planning is a valuable approach for humanitarian logistics teams. Our re-
sults indicate that the three-stage model, though more computationally intensive,
provides a superior solution by adjusting the design based on updated informa-
tion over time (see Figure 4.3 and 4.4 in Section 4.5.2.4). This flexibility enables
decision-makers to better respond to unforeseen changes in the disaster’s pro-
gression and resource availability, ensuring that resources are allocated optimally

throughout the relief operation.
Considering Spread Factor in Post-Disaster Situations

The spread factor, reflecting the effects of unmet demand across different time
periods, directly impacts the complexity of logistics planning. In uncertain dis-
aster settings, where unmet needs could have both cumulative and spreading ef-
fects, the three-stage model performance provides an advantage over its two-stage
counterpart, the SSUD model (see Table 4.7 and 4.8 in Section 4.5.2.4). However,
humanitarian decision-makers should be mindful of the exponential increase in
computational time when considering higher spread factor values with spreading

effect, balancing the need for precision with practical time constraints.
Efficient Resource Allocation and Logistics in Crisis Zones

The three-stage model’s superior distribution of transportation resources demon-
strates its value for resource-limited disaster response efforts (see Figure 4.3 and
4.4 in Section 4.5.2.4). This can guide decision-makers to design more balanced,
effective HSCNs that reduce costs while ensuring that affected populations are

serviced promptly, a key factor in maintaining the flow of aid.
Minimizing Costs by Postponing Transportation Resource Additions

The three-stage model’s ability to reduce the number of new transportation re-

sources needed during the first period is particularly valuable (see Figure 4.3 in
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Section 4.5.2.4). In humanitarian logistics, where resources are often scarce and
costs are high, minimizing the need for additional transportation units can lead

to significant savings and more efficient resource use during the relief operations.
Reducing the Need for Transportation Resource Transfer

The proposed three-stage model also highlights the advantage of minimizing the
transferring the transportation resources during the relief operation (see Figure 4.4
in Section 4.5.2.4). Relocating resources can be time-consuming in regions with
limited infrastructure. The three-stage model’s ability to minimize this logistical
challenge provides an operational benefit, ensuring that resources remain in place

where they are most needed and streamlining the logistics effort.

In summary, the proposed three-stage model provides clear advantages in terms
of adaptability, resource optimization, and cost management for humanitarian
logistics decision-makers looking to improve the efficiency and effectiveness of
their operations. By using the proposed three-stage model, decision-makers can
better handle the uncertain nature of disaster response, ensuring that resources
are deployed where they are most needed and at the right time. The insights
from this study can directly support more informed, tactical decision-making in

real-world humanitarian operations.

4.6 Conclusion

In this paper, we proposed a three-stage model for designing an HSCN to man-
age the distribution of critical supplies after a natural disaster. The model is
built to accommodate the inherent uncertainty of post-disaster environments, en-
abling dynamic adjustments to transportation resources as more information be-
comes available. We compared the three-stage model with traditional two-stage

approaches and explored its effectiveness in improving HSCN design by reducing
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unmet demand and minimizing the associated expected penalty. Our results show
that the three-stage model significantly outperforms the two-stage counterparts,

particularly in managing demand and resource allocation uncertainties.

The experimental results highlighted the substantial benefits of making design
decisions dynamically during the operation phase. The three-stage model demon-
strated improved flexibility and decision-making by delaying update decisions un-
til more data became available during relief operations. This approach reduced
the need for unnecessary investment in transportation resources and minimized
logistical inefficiencies. Additionally, the model was able to better adapt to the
evolving situation, making the best use of available resources throughout the plan-
ning horizon. Specifically, when evaluating on the ground truth, the three-stage
model transferred the transportation resources on in 33% of scenarios whereas its
two-stage counterpart transferred transportation resources in 79%. Considering
the managerial complexity and time-intensive nature of transferring transporta-
tion resources during the relief operation, the three-stage model demonstrates a
clear advantage over its two-stage counterpart. This advantage is further evi-
dent in the expected penalty, which reflects the third-stage model’s more efficient

distribution of critical supplies.

For future research, exploring heuristic approaches, such as progressive hedging
(Rockafellar & Wets, 1991; Crainic et al., 2011; Sarayloo et al., 2023), would be
beneficial to make the three-stage model more computationally tractable for real-
world instances with larger datasets and more complex scenarios. Furthermore,
an extension of this model could include a multi-objective optimization framework
that balances cost reduction, resource allocation efficiency, and humanitarian fair-
ness in the distribution of critical supplies. Refining these aspects could improve

the model for practical use in disaster response planning and execution.



CHAPTER V

CONCLUSION

Section 5.1 summarizes the research conducted on the design and operation of
HSCNs in the context of post-disaster relief and consolidates the key findings and
contributions of the three studies presented throughout the thesis, highlighting
the importance of addressing uncertainty and ambiguity. Furthermore, Section 5.2
outlines several directions for future research, emphasizing the need for continued
advancements in modeling techniques, computational methods, and the practical

application of these models in real-world disaster response scenarios.

5.1 Summary

The design and operation of HSCNs following a sudden natural disaster is critical
to ensuring that essential critical supplies are delivered to vulnerable populations
in a timely manner. The consequences of delivery delays or insufficient access
to critical supplies can significantly impact the health and well-being of affected
individuals. However, designing an efficient HSCN is challenging due to the high
level of uncertainty inherent in both demand and available resources. These un-
certainties, compounded by the ambiguity stemming from assessments performed
using multiple data sources, necessitate advanced modeling approaches that can

accurately capture the complexities of post-disaster logistics.
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This thesis includes three studies aimed at improving the design and operation
of HSCNs in disaster response contexts. Each study addresses a different aspect
of HSCN design under uncertainty and ambiguity, providing a comprehensive

framework for optimizing humanitarian logistics in post-disaster settings.

The first study proposes a two-stage mathematical model for the HSCN design
problem, which captures both demand and resource uncertainties in a natural
disaster context. A novel formulation is introduced to model demand in a way
that accounts for the cumulative effect of unmet demand across multiple critical
supplies. This approach addresses the dynamic and interdependent nature of
demand during disaster relief operations, where shortages in one critical supply
can exacerbate demands for others. The study demonstrates the importance of
directly incorporating these effects into the optimization process to achieve more

accurate and responsive supply chain designs.

The second study expands on the first by exploring the role of ambiguity in hu-
manitarian supply chain models. The study develops models that account for
different ambiguity patterns in demand and capacity assessments. Through a
series of experiments, the study compares the performance of these models and
highlights the impact of different ambiguity patterns on the optimal design of the
HSCN. The findings underscore the need for robust optimization techniques that
can handle both uncertainty and ambiguity, ensuring that HSCNs are resilient
to fluctuations in resource availability and the accuracy of demand and resource

estimations.

The third study further advances the HSCN design problem by incorporating the
ability to update the HSCN’s structure over time. A three-stage model is proposed
that allows for the dynamic adjustment of transportation resources in response to

evolving conditions during the disaster response phase. This flexibility includes
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adding new transportation resources and reallocating existing ones to optimize
HSCN performance as new information becomes available. The study compares
the performance of this three-stage model with the traditional two-stage approach,
showing that allowing for updates to the HSCN structure significantly improves
the network’s responsiveness and overall effectiveness in meeting the fluctuating
demand and resources. Through extensive experimentation, the study demon-
strates that the three-stage model outperforms the two-stage model, especially in

contexts where timely adjustments to resource allocation are crucial.

Together, these three studies provide valuable insights into the design and op-
eration of HSCNs in post-disaster scenarios. By addressing the challenges of
uncertainty, ambiguity, and the dynamic nature of disaster response, the research
contributes to developing more effective and flexible humanitarian logistics mod-
els. The findings emphasize the importance of incorporating cumulative demand
effects, considering the role of ambiguity in data, and allowing for real-time up-

dates to the network structure to optimize relief operations.

In conclusion, the research presented in this thesis offers a comprehensive frame-
work for designing and managing HSCNs under complex and uncertain conditions.
The proposed models provide humanitarian organizations with the tools needed
to make informed decisions during disasters, ensuring that critical supplies are

delivered to those in need in the most efficient and effective manner possible.

5.2 Future Work

This thesis addressed the critical issue of optimizing HSCNs under parameter
uncertainty and distributional ambiguity, particularly in post-disaster relief op-
erations. The aim was to develop and evaluate mathematical models to assist

humanitarian organizations in designing efficient and adaptable HSCNs, reducing
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harm to the affected populations using available budgets and resources. While sig-
nificant progress was made in developing two-stage and three-stage models, there
remains potential for further research and improvements in several areas, includ-
ing research on more realistic modeling of the planning problems, research on
efficient solution methods, and research on technology transfer into humanitarian

organizations.

More realistic planning models. From a modeling perspective, Section 3 pro-
posed four mathematical models to mitigate the ambiguity caused by inconsistent
estimates of uncertain parameters obtained from multiple data sources by devel-
oping four mathematical models with varying degrees of conservatism. One area
for future research considers a varying level of confidence in the data sources while
also considering a higher number of data sources. While this is easily incorporated
into stochastic programming models, integrating such varying confidence in the

data-sources is still rather unexplored in robust optimization.

While the models presented in this thesis incorporate uncertainty in post-disaster
humanitarian planning, they still do not fully integrate the dynamic and evolving
nature of information revelation in real-world use cases. Specifically, for the two-
stage models, the assumption that uncertain parameter values become available
in the second stage estimates the continuous progression of information revelation
over time. As humanitarian organizations refine their assessments, future research
could focus on developing adaptive frameworks that allow organizations to update
their HSCN designs in multiple stages as new information becomes available over
time. Future work could explore multi-stage models that better align with the
evolving data and incorporate adaptive mechanisms, reflecting the multi-stage

refinement of assessments as more information becomes available.

Finally, Section 2 experiments on the spread factor, which captures the cumulative
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effect of unmet demand on future critical supply needs, indicate the overestima-
tion of the spread factor is preferable over underestimating it. Future research
exploring whether this assumption holds in broader contexts or across different

types of natural disasters would be an important contribution to the literature.

Efficient solution methods. Another potential avenue is applying more ad-
vanced solution methodologies to handle more complex instances of the HSCN
design problem. As disaster scenarios scale up, both in terms of affected popula-
tions and demands, the computational complexity of solving multi-stage models
increases. Further, considering multi-stage variants of the here considered plan-
ning problems, going beyong three-stage models as proposed in Section 4, will
further degrade the tractability of the corresponding optimization models. Here,
general-purpose MIP solvers are unlikely to solve those models in reasonable com-
puting times, requiring the development of specialized solution methods. Explor-
ing heuristic or metaheuristic approaches are promising avenues. For example,
progressive hedging (Rockafellar & Wets, 1991; Crainic et al., 2011; Sarayloo et al.,
2023) and Benders decomposition (Harjunkoski & Grossmann, 2001; Rahmaniani
et al., 2017) have been shown to be appropriate for multi-stage mixed-integer
programming formulations even for large problem instances. Such methods could
equip humanitarian organizations with the tools to handle large-scale operations

where traditional exact methods struggle due to computational limitations.

Technology transfer into humanitarian organizations. This thesis has in-
troduced a series of models for HSCN design under uncertainty and ambiguity.
Integrating these models into humanitarian organizations’ planning and operat-
ing frameworks is an essential direction for future work. Moving from theoretical
models to practical applications requires robust mathematical formulations and a
deep understanding of the operational realities faced by organizations in the field.

While the models presented in this research provide valuable insights, translat-
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ing them into actionable strategies for humanitarian organizations will require
extensive testing, validation, and adaptation to real-world conditions. A crucial
next step will be to conduct assessments within actual humanitarian operations
to evaluate the applicability and effectiveness of these models in diverse disaster
scenarios. This involves working closely with field practitioners to ensure the mod-
els align with operational constraints, resource availability, and logistical realities.
Furthermore, integrating these models into humanitarian organizations’ decision-
making pipelines will be a significant challenge, as it often involves multiple stake-
holders and decision points across different operations levels. Understanding how
to inject these models into the pipeline, transforming them from conceptual tools

to operational assets, represents an important avenue for future research.
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