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Résumé

Les organisations humanitaires jouent un rôle crucial en menant des opérations

telles que la distribution rapide et efficace de produits essentiels aux populations

vulnérables touchées par une catastrophe naturelle. Les retards ou les échecs dans

la livraison de ces produits peuvent avoir des conséquences graves sur la santé et

le bien-être des personnes sinistrées. Cette thèse se concentre sur la conception de

Réseaux de Chaîne d’Approvisionnement Humanitaire (RCAH) après une catas-

trophe naturelle, dans un contexte où les ressources sont limitées et où une grande

incertitude concernant les conditions dans les zones affectées ainsi que la gravité

de la crise complique la planification. Trois articles scientifiques sont présentés

traitant des enjeux décisionnels importants pour cette planification.

Dans le premier article, nous formulons et résolvons le problème de conception

du RCAH en tenant compte de différentes sources d’incertitude. Plus précisé-

ment, nous proposons une méthodologie d’optimisation permettant de concevoir

un RCAH destiné à stocker et distribuer des produits critiques à une population

affectée sur un horizon temporel donné. Un modèle stochastique à deux étapes

est développé pour traiter l’incertitude liée à la demande, ainsi qu’aux capacités

de transport et de stockage au sein du réseau. Dans la première étape, des déci-

sions de conception, telles que la sélection des hubs, des services, des stocks et des

ressources de transport, sont prises, définissant ainsi la structure du RCAH pour

toute la durée de l’horizon de planification. Dans la deuxième étape, des décisions

opérationnelles liées au transport, au stockage et à l’allocation des produits sont

prises. Le modèle intègre également les impacts cumulatifs de la demande non

satisfaite en produits critiques au fil du temps.

Le deuxième article traite de l’ambiguïté concernant les distributions probabilistes

inhérentes au contexte de planification du problème de conception d’un RCAH.
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Après une catastrophe naturelle, les décideurs s’appuient sur des estimations de

paramètres incertains issues de diverses sources de données (par exemple, en-

quêtes, images satellites, rapports gouvernementaux ou médias) pour planifier les

efforts de secours humanitaires. Cependant, ces estimations peuvent entraîner

des divergences significatives dans la manière dont les paramètres incertains sont

formulés en tant que variables aléatoires, générant ainsi une ambiguïté dans le

processus de planification. Cet article propose plusieurs approches d’optimisation

permettant de résoudre ce problème en prenant explicitement en compte cette

ambiguïté dans la conception du RCAH.

Les deux premiers articles supposent que la structure du RCAH reste inchangée

pendant l’horizon de planification, en raison de la complexité de la coordination

avec d’autres opérations humanitaires en cours (par exemple, l’enlèvement des

débris) et du coût élevé d’acquisition de nouvelles ressources. Cela dit, certains

ajustements peuvent néanmoins être envisagés par les organisations humanitaires

pour réajuster les plans établis et les rendre plus efficients lorsque de nouvelles

informations deviennent disponibles.

Par conséquent, dans le troisième article, nous proposons un modèle de conception

d’un RCAH à plusieurs étapes permettant le transfert des ressources de transport

(par exemple, les camions) entre les services sélectionnés au sein du RCAH conçu.

De plus, le modèle autorise la sélection de services de transport supplémentaires

à chaque étape de l’horizon de planification et repose sur une formulation du

processus de divulgation d’informations qui reflète de manière plus réaliste ce qui

est observé sur le terrain.

Dans l’ensemble, cette thèse met en lumière l’importance de considérer divers

facteurs dans le problème de conception du RCAH. Un accent particulier est

mis sur la modélisation de la propagation de la demande non satisfaite, étant



xi

donné qu’un manque des commodités essentielles peut entraîner une propagation

de maladies. Le premier article souligne le rôle crucial du facteur de propagation

dans l’optimisation de l’efficacité du réseau. Le deuxième article met en avant la

nécessité de prendre en compte l’ambiguïté dans le contexte informationnel lors

de la planification des opérations humanitaires. Plus spécifiquement, les résultats

obtenus suggèrent que des approches robustes de modélisation sont essentielles

pour une prise de décision efficace. Enfin, le troisième article démontre la valeur

d’un modèle à plusieurs étapes permettant d’adapter les ressources de transport

au fil du temps, améliorant ainsi la flexibilité et la réactivité du RCAH.

Ensemble, ces contributions renforcent la capacité à résoudre les problèmes de

conception d’un RCAH, permettant de concevoir des réseaux plus résilients et

adaptables suite à une catastrophe naturelle, réduisant ainsi les impacts attendus

sur les populations vulnérables des régions affectées.
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Abstract

Humanitarian organizations conduct crucial operations, such as the efficient and

timely distribution of critical supplies to vulnerable populations after a natural dis-

aster. Delays or failures in supply delivery can severely harm public health. This

thesis focuses on the design of a Humanitarian Supply Chain Network (HSCN)

in the aftermath of a natural disaster in a setting with limited resources and

uncertainty regarding regional conditions and the severity of the crisis.

In the first paper, we formulate and solve the HSCN design problem under various

sources of uncertainty. Specifically, we design an HSCN storing and distributing

critical supplies to an affected population over a given time horizon. A two-stage

stochastic model is developed to address uncertainty related to demand, as well

as transportation and storage capacities within the network. In the first stage,

design decisions, such as selecting hubs, services, inventory, and transportation

resources, are made, with the HSCN’s structure remaining fixed for the duration

of the planning horizon. In the second stage, operational decisions related to

transportation, storage, and supply allocation are made. The model also accounts

for the cumulative impacts of unmet demand for critical supplies over time.

The second paper addresses ambiguity concerning the probability distributions

used in the HSCN design problem. After a natural disaster, decision-makers rely

on estimates of uncertain parameters from various data sources (e.g., surveys,

satellite imagery, governmental reports, or media) to plan humanitarian relief

efforts. These estimates, however, may contain significant discrepancies, leading to

ambiguity in the planning process. The second paper proposes multiple modeling

approaches to handle this ambiguity in HSCN design.

The first two papers assume that the structure of the HSCN remains unchanged
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over the planning horizon due to the complexity of coordinating with other ongoing

humanitarian operations (e.g., debris removal) and the high cost of acquiring new

resources. In the third paper, we propose a multi-stage HSCN design model that

allows for the relocation of transportation resources (e.g., trucks) between selected

services within the designed HSCN. Additionally, the model allows the selection

of additional transportation services at each stage of the planning horizon.

This thesis demonstrates the importance of considering various factors in the

HSCN design problem, including spreading the demand, ambiguity in estimat-

ing uncertainty and leveraging more complex multi-stage models. The spread of

demand refers to the accumulation of unfulfilled demand over time, which can af-

fect future demands of all critical supplies with different intensities. For instance,

failing to deliver medication and preventing products necessary for infectious dis-

eases will increase the demand for these items (cumulative effect) and other items,

such as shelters to quarantine affected people (spreading effect). The first paper

highlights the significance of considering spreading the demand by introducing the

spread factor in optimizing the network’s efficiency. The second paper emphasizes

the need to account for ambiguity in the informational context of humanitarian

operations, suggesting that robust modeling approaches are essential for effective

decision-making. Finally, the third paper showcases the value of a multi-stage

model that adapts the transportation resources over time, ultimately improving

the HSCN’s flexibility and responsiveness. Together, these contributions advance

the design of a more resilient and adaptive HSCN in the aftermath of a natural

disaster, reducing the expected harm to the vulnerable population in the affected

region.



CHAPTER I

INTRODUCTION

The number of natural disaster occurrences has been increasing over recent years,

leading to more demand for humanitarian relief operations over the globe. How-

ever, the financial resources of humanitarian organizations have not grown as

much (UNOCHA, 2021b), resulting in significant challenges when prioritizing and

allocating budgets. More than 75% of the humanitarian organizations expenses

in the relief operations are related to the design and operation of the relief supply

chain (Besiou & Van Wassenhove, 2020; Van Wassenhove, 2006; Stegemann &

Stumpf, 2018). Therefore, efficient design and operation of relief distribution net-

works are crucial to the success of humanitarian operations in response to natural

disasters. Besides the financial limitations, humanitarian organizations also lack

other necessary resources, including staff and means of transport, increasing the

importance of efficiency in the overall planning process.

In response to these challenges, a growing number of studies in recent years have

focused on addressing relief distribution planning problems. Emergency Manage-

ment (EM) is a multidisciplinary field that focuses on the planning and coordi-

nation of humanitarian operations to mitigate the impacts of natural disasters.

EM encompasses operations conducted both before (i.e., pre-disaster activities)

and after (i.e., post-disaster activities) the occurrence of such events. The pre-
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disaster activities are divided into two parts, including the mitigation phase and

the preparedness phase. The mitigation phase activities focus on preposition-

ing the critical supplies, while the preparedness phase activities develop response

plans for a possible natural disaster. The post-disaster activities are divided into

three phases: response, short-term, and long-term. The response phase includes

humanitarian operations that are conducted in the first 72 hours after the natural

disaster occurs. Such operations include transferring the required search-and-

rescue equipment, removing debris from vital transportation routes, and restor-

ing critical infrastructure. The short-term recovery phase focuses on restoring

the affected region to its pre-disaster state by removing debris from all roads and

streets, restoring all infrastructure, and distributing critical supplies to the vulner-

able population. Therefore, additional activities, including damage assessments,

and budget and volunteer management, are also necessary for this phase. The

long-term phase, which may last several years, includes psychological support and

humanitarian assistance to the affected population.

This thesis focuses on the short-term recovery phase, specifically on the design

and operation of a Humanitarian Supply Chain Network (HSCN). An HSCN is a

physical network of hubs responsible for receiving, storing, and distributing criti-

cal supplies to vulnerable populations affected by a natural disaster over a defined

planning horizon. Transportation services support the movement of these sup-

plies between hubs, ensuring efficient operations. The designed HSCN ultimately

facilitates the delivery of critical supplies to the affected population within the

specified planning horizon.

This thesis comprises three scientific papers that address key issues related to the

design and operation of HSCNs. In the first paper, we consider the HSCN design

problem under uncertainty. Specifically, we consider uncertainty in the demands

of the vulnerable population, as well as the capacity of both the transportation
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services and inventories of the designed network over the planning horizon. In this

context, sources of uncertainty may include a lack of information to accurately

assess the needs of the population, damage to infrastructure and its impact on

the ability to carry out required operations (such as transportation and stock

management), and the potential effects of secondary impacts, which can further

exacerbate the consequences of the natural disaster. The first paper introduces a

novel formulation to capture the cumulative effect of unmet demand across critical

supplies, highlighting the importance of accounting for interdependent shortages

of critical supplies in optimizing disaster relief operations.

The need and damage assessment procedures begin as soon as a natural disaster

occurs to estimate the value of uncertain factors in the HSCN design problem. The

value of uncertain parameters is calculated following a natural disaster utilizing a

variety of data sources. These information sources include polls, satellite images,

official documents, and the media. The derived estimations might differ, which

can cause ambiguity in the informational framework that underlies the planning

of humanitarian aid activities. The second paper examines different methods for

modeling inconsistent estimations obtained from multiple data sources while for-

mulating the HSCN design problem following a natural disaster. Four mathemati-

cal models are proposed that explicitly account for the uncertainty and ambiguity

that influence both the population’s needs and the network’s capacity for storage

and delivery. The findings highlight the necessity of using mathematical models

capable of addressing uncertainty and ambiguity, ensuring that HSCNs remain

resilient to both uncertainty and the ambiguity stemming from assessments per-

formed on multiple data sources with varying estimations of demand and resources

available.

One of the presumptions in the first two studies is that the planned HSCN struc-

ture will remain the same throughout the planning horizon. The complexity of
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coordinating such adjustments with ongoing humanitarian efforts (such as debris

removal) and the higher expense of choosing new resources are the motivations

for such assumptions.

The third paper examines the benefits of incorporating evolving information dy-

namics (where contextual information about the effects of the natural disaster

becomes more accurate over time, reducing uncertainty) and demand spread into

the HSCN design problem. Specifically, it considers a setting where transportation

resources (e.g., trucks) can be relocated between HSCN services and additional

transportation resources can be employed during the planning horizon. We pro-

pose a three-stage stochastic model to design an HSCN under these conditions

and compare its performance with a two-stage counterpart. Additionally, we con-

duct experiments to evaluate the impact of varying spread factor values on the

obtained networks.

1.1 Literature Review

This section reviews the literature related to the HSCN design problem. Specifi-

cally, we review the literature related to the problem settings in Subsection 1.1.1,

which addresses the main issues related to planning and operating HSCNs. The lit-

erature on Service Network Design, one of the primary optimization methodologies

used to formulate and solve HSCNs, is reviewed in Subsection 1.1.2. Subsections

1.1.1 and 1.1.2 provide a comprehensive overview of the methodologies proposed

to address HSCNs and highlight the present thesis’s unique contributions. Finally,

Subsection 1.1.3 reviews the literature on the approaches to model and solve HSCN

design problems, providing a general overview of how optimization methods can

explicitly account for the uncertainty that may affect the informational contexts.
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1.1.1 Humanitarian Supply Chain Network

The early attempts to solve the HSCN design problem adapted the existing meth-

ods for modeling and solving the commercial supply chain design models into the

HSCN design problem (Van Wassenhove, 2019). However, because of the pivotal

differences between commercial and humanitarian supply chains (Balcik & Bea-

mon, 2008), including the objectives pursued, availability of budget and resources,

and the level of uncertainty (Diabat et al., 2019; Hasani & Mokhtari, 2019, 2018;

Pishvaee & Razmi, 2012), a distinct line of research formed around the HSCN

design problem (Anaya-Arenas et al., 2014; Campbell et al., 2008).

As discussed by Anaya-Arenas et al. (2014); Balcik et al. (2016); Behl & Dutta

(2019), various humanitarian relief planning problems have been studied in the lit-

erature. One can divide humanitarian relief planning problems into the planning

optimization problems in pre-disaster and post-disaster phases (Anaya-Arenas

et al., 2014). The studies in the pre-disaster phase mainly focus on preparedness

activities, including locating warehouses and stockpiling critical supplies. These

studies aim to support the decision-making process in establishing the proper

response plans of humanitarian organizations concerning a probable natural dis-

aster occurring in the future (e.g. Yahyaei & Bozorgi-Amiri (2019); Bozorgi-Amiri

et al. (2013, 2012); Alem et al. (2016)). The location of the candidate warehouses

is considered known in the post-disaster planning phase, and the humanitarian

organizations use the existing infrastructure in the affected region. However, lo-

cating temporary facilities remains part of the decision-making process in the post-

disaster phase. In addition, the number of transportation vehicles, the assignment

of the beneficiaries to distribution centers, and the flow of critical supplies in the

designed network over the planning horizon are the post-disaster phase decisions

(e.g. Afshar & Haghani (2012); Tzeng et al. (2007); Noyan et al. (2016)). Post-
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disaster planning studies seek to diminish the harm done to people’s health by

optimizing the distribution of critical supplies among vulnerable populations.

The structure of an HSCN consists of multiple layers. Here, a layer is referred to

as a collection of locations with comparable infrastructure, including storage and

role in the supply chain. The decisions made in different layers of an HSCN are

interrelated, increasing the complexity of the problem. The literature contains two

approaches for dealing with this complexity, including integrating the decisions

(e.g. Afshar & Haghani (2012)) and focusing on one layer of the HSCN (e.g.

Noyan et al. (2016)).

Another challenging aspect of the post-disaster HSCN design problem is dealing

with uncertainty. The uncertainty in the HSCN design problem has multiple

sources, including the secondary impacts of the natural disaster and a lack of

information regarding the assessments. When designing an HSCN, the additional

damages to the infrastructure and people’s health are unknown. For instance,

earthquake aftershocks could damage the roads in the region and increase the

number of deaths, injuries, and people relocated. Furthermore, gathering accurate

data regarding the affected population in each geographical region to assess the

demands is time-intensive. Therefore, the available demand data at the HSCN

design time contains uncertainty (Balcik et al., 2016; Behl & Dutta, 2019). Finally,

the information regarding the road conditions and available vehicles is limited at

the design time, and, therefore, the capacity of the roads and available vehicles

is also a source of uncertainty in the HSCN design problem (e.g., Adıvar & Mert,

2010; Vitoriano et al., 2011).

Satisfying the demands of the affected population is the goal of relief distribution

planning. The literature identifies two approaches to addressing demand satisfac-

tion: complete satisfaction of the demand and maximizing demand satisfaction.
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The first approach is common in the pre-disaster phase studies, and the planning

problem is solved with the aim of satisfying all the demands (Balcik & Beamon,

2008; Jabbarzadeh et al., 2014; Berkoune et al., 2012). The second approach is par-

ticularly relevant in situations where there are limitations on available resources

and high levels of demand. The goal is to minimize unsatisfied demand among the

affected populations by planning with the incorporation of a penalty parameter

for unmet demand (e.g., Ahmadi et al. (2015)). Furthermore, in a multi-period

planning setting, this approach allows unmet demand from a given period to be

carried over to the next period for fulfillment (e.g., Lin et al. (2011)). In planning

contexts where it may not be possible to satisfy the entire demand for critical

supplies, the lack of the latter (e.g., medication and mosquito nets) may result

in a spread of disease. This, in turn, increases demand for such supplies. While

those dynamics have been ignored in the literature, in practice, they may have a

severe effect on the performance of planning solutions. As such, this thesis puts

a particular emphasis on correctly modeling the spread of unmet demand. This

allows models to better capture the complexities of real-world disaster scenarios

and enhance the HSCN’s adaptability to changing conditions.

To estimate the uncertain parameters present in humanitarian planning models,

two general approaches are commonly used in the literature. The first approach

relies on the availability of historical data to provide estimates of the uncertainty,

while the second involves directly assessing the uncertain parameters using rel-

evant contextual information specific to the studied problem. Using historical

data to estimate the uncertainties is the go-to approach in pre-disaster relief plan-

ning problems. However, in post-disaster planning problems, the uncertainties

are estimated by assessments. This is due to the unique characteristics of each

natural disaster (Chen et al., 2011). Assessments, which are obtained through

a time-consuming process, are required for each potential location within the af-
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fected region. Therefore, it is often more efficient to divide the region into smaller

sub-regions to facilitate the overall planning process. The assessments are then

performed in a sample set of points in each sub-region (Balcik & Yanıkoğlu, 2020;

Balcik, 2017). Finally, the estimated value for each uncertain parameter is gen-

eralized for the whole sub-region. Multiple data sources could be used in the

assessment process. These may include surveys, satellite imagery, governmental

reports, and media. However, the provided data by each data source requires ex-

pert interpretations, which is often done by the three-point estimating technique

(Hakimifar et al., 2021). When applying this technique, a set of recognized experts

(i.e., specific individuals or organizations knowledgeable about the affected region)

are asked to provide three estimates for each uncertain parameter, considering the

available data sources. These estimates define the minimum, most probable, and

maximum values for the parameters, thereby constructing a triangular distribu-

tion for each case (Benini et al., 2017). These probability distributions are then

used to estimate the possible values of the uncertain parameters.

Multiple experts assess uncertain parameters, relying on different data sources,

and their conclusions regarding the assessments may differ, which, in turn, can

lead to different probability distributions being defined for the parameters. Given

that all experts are highly regarded (i.e., the same level of confidence is assigned to

their perspectives), the inconsistent or conflicting estimates lead to ambiguity in

the decision-making process (Grass et al., 2023; Hosseinnezhad & Saidi-mehrabad,

2018). Such ambiguity adds another layer of complexity to the uncertainty in

HSCN design. The second study introduces four optimization models tailored for

ambiguity, enabling humanitarian organizations to make robust decisions despite

ambiguity in estimations.
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1.1.2 Service Network Design

Service Network Design (SND) methods are the preferred approaches for solving

the network design problems that naturally arise in the planning of transporta-

tion systems. Specifically, SND problems focus on managing supply-related trans-

portation resources and defining the corresponding activities to design an efficient

a cost-effective network that satisfies the demand (Crainic & Hewitt, 2021). The

decisions involved in an SND problem are divided into two categories: the design

and flow decisions. The design decisions establish the transportation services that

are selected and their schedules. Here, services refer to routes connecting the ori-

gin and destination terminals associated with commodities, which represent the

demand requests for shipments. Services can either be direct links between origin-

destination pairs or paths involving intermediary terminals. Additionally, service

schedules can be fixed, determined by a specific frequency, or defined based on

given timing decisions. The flow decisions indicate the itineraries for the com-

modities, including the transportation time and path. Lastly, SND models can be

classified into two categories: deterministic SND models and SND models under

uncertainty.

In the deterministic setting, different modeling approaches have been proposed

based on the characteristics of the problem, including static, time-dependent, dy-

namic, frequency, and time-space SNDs (Crainic & Hewitt, 2021). The static

SND approach is suitable for addressing SND problems with fixed characteristics

(Chouman & Crainic, 2021). In static SND problems, parameter values remain

constant over time, and as a result, the time dimension is not considered. How-

ever, in time-dependent SND problems, the problem characteristics are subject

to change over time. For instance, the demand and quantity of available sup-

ply could change over the planning horizon. Consequently, the time dimension is
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explicitly incorporated into the modeling of time-dependent SND problems; see,

e.g., Andersen et al. (2009).

Crainic (2000) categorized SND problems based on their planning level into frequency-

based and dynamic SND models. Frequency SND focuses on strategic and tactical

level problems, e.g. Duan et al. (2019); Rothenbächer et al. (2016), whereas the

dynamic SND models are applied to operational-level problems. In frequency SND

problems, the objective is to determine the most appropriate services and their

frequencies over the planning horizon. Additionally, itineraries and restrictions

are established for the selected terminals in the designed network. In contrast,

dynamic SND focuses on scheduling the chosen services (Crainic, 2000). Schedul-

ing the services involves both service selection and the time interval a service is

transferred on an itinerary.

Researchers have also studied the effects of uncertainty when solving SND prob-

lems, see, e.g. Crainic & Hewitt (2021); Lanza et al. (2021); Lium et al. (2009,

2007). Demand has been the most studied uncertain parameter in SND prob-

lems; see, e.g. Lium et al. (2007); Bai et al. (2014); Crainic et al. (2016a); Ng

& Lo (2016). The literature includes both stochastic programming and robust

optimization methods for modeling and solving SND problems under uncertainty

(Bai et al., 2014; Wang & Qi, 2020).

1.1.3 Optimization Approaches Under Uncertainty

Two lines of research exist in the literature for modeling uncertainty in opti-

mization problems, including stochastic programming and robust optimization.

Stochastic programming requires the probability distribution of the possible re-

alizations of uncertain parameters to be available. However, robust optimization

is the method of choice when the information regarding the uncertain parame-
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ters is limited. In this approach, an uncertainty set is defined for all uncertain

parameters involved in the problem. Then, the counterpart of the problem is

defined as a min-max problem. In this min-max problem, a defined budget value

limits the domain of the uncertain parameters (Bertsimas et al., 2011; Goerigk &

Lendl, 2021). Finally, distributionally robust optimization has been specifically

designed for planning contexts where the underlying probability distributions are

ambiguous (Delage et al., 2018).

The research presented in this thesis assumes the availability of probability distri-

butions to formulate the uncertain parameters, derived from the assessment and

needs evaluation processes conducted by humanitarian organizations during the

planning of post-disaster operations. These distributions are then used to gen-

erate scenarios, capturing the random variability of uncertain parameter values

and enabling the formulation of solvable problems. The remainder of this section

focuses on how sampling techniques can be applied in conjunction with optimiza-

tion to address problems involving uncertainty, specifically through the techniques

defined by stochastic programming.

Stochastic programming is the preferred method for modeling and solving op-

timization problems when the uncertainty in the problem settings can be rep-

resented using random variables. In the context of HSCN, uncertainty is often

estimated through damage and demand assessments, which assess the impacts of

a natural disaster on the affected region. These assessments provide the basis for

generating probability distributions for the uncertain parameters. Scenario-based

sampling techniques then employ the estimated probability distributions to ap-

proximate the variability of the uncertain parameters in the model. The size of

the scenario set plays a critical role in the accuracy of the approximation. As the

number of scenarios increases, the representation of uncertainty improves, leading

to more precise solutions. However, in combinatorial optimization problems, the
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size of the scenario set is practically limited due to the exponential growth in

computational complexity, which can make large scenario sets computationally

intractable. The Sample Average Approximation (SAA) method (Kleywegt et al.,

2002) offers a practical solution by producing high-quality approximations while

keeping the computational effort manageable. Additionally, in-sample and out-

of-sample stability tests (Kaut & Wallace, 2003), provide a means to evaluate the

reliability of the solutions and assist in determining the optimal scenario set size

for the SAA approach. These stability tests ensure that the scenario sets used

for approximation provide accurate representation of the underlying uncertainty

distributions, increasing confidence in the results.

1.2 Research Studies Conducted

This section presents the three studies addressing key challenges in solving the

HSCN design problem, which constitute the core content of this thesis. Subsection

1.2.1 introduces the first study, which develops a two-stage stochastic model to

address cascading unmet demands. Subsection 1.2.2 presents the second study,

focusing on models to explicitly handle data ambiguity from conflicting sources.

Finally, Subsection 1.2.3 presents the third study, which proposes a dynamic three-

stage model integrating information updates and interdependent demand spread,

validated with real-world disaster data.

1.2.1 First Study: A Two-Stage Stochastic Model for Humanitarian Supply
Chain Network Design in Post-Disaster Recovery

The first paper of this thesis focuses on the design of a two-stage stochastic HSCN

for post-disaster recovery. This research addresses the uncertainty in demand and

capacity that arises in the aftermath of natural disasters. A key innovation in

this study is incorporating spread factor in the mathematical model, which ac-
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counts for the cumulative impact of unmet demand for one critical supply on

the demand for other critical supplies in subsequent periods. This feature cap-

tures the interdependencies between different critical supplies. In a post-disaster

environment, unmet demand for critical supplies, such as shelter, food, and hy-

giene kits, not only increases the immediate need for those critical supplies in

future periods but can also amplify the demand for other critical supplies. The

spread factor represents these effects, improving demand estimation accuracy and

resource allocation.

The paper presents a two-stage stochastic model to design and operate HSCNs

under uncertain conditions, using real-world data from the 2018 Indonesia earth-

quake to validate the approach. The research highlights the importance of model-

ing uncertainty in both demand and capacity to ensure the efficiency and effective-

ness of relief operations. It also introduces the spread factor as a novel approach

to representing the impact of unmet demand across time periods, significantly

affecting humanitarian aid planning.

The study also investigates the impact of budget uncertainty, revealing that while

a slight reduction in the available budget does not significantly affect the network’s

performance, a substantial budget shortfall can drastically increase the harm to

the affected population and reduce the overall effectiveness of the relief network.

This paper contributes to developing more resilient and efficient HSCNs by pro-

viding decision-makers with tools to improve the management of the relief distri-

bution in post-disaster recovery. The model proposed in this paper helps human-

itarian organizations optimize the allocation of limited resources, minimize harm

to the affected population, and improve the overall coordination of aid distribution

under uncertain conditions.
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1.2.2 Second Study: Addressing Ambiguity in Humanitarian Supply Chain
Network Design

The design of HSCN in the aftermath of natural disasters is a complex process

influenced by numerous sources of uncertainty. Humanitarian organizations typ-

ically rely on multiple data sources, such as satellite imagery, surveys, and gov-

ernmental reports, to assess damage and demand. These sources often provide

inconsistent or incomplete information, leading to ambiguity when performing as-

sessments to formulate the uncertain parameters that define the context in which

the HSCN design problem is to be solved.

This paper presents four optimization models that explicitly address the ambi-

guity resulting from inconsistent estimates obtained from multiple data sources

within the context of HSCN design. The proposed models include Minimiza-

tion of Expected Opportunity Loss (MIN-OppLoss), Minimization of Maximum

Data-Source Penalty (MIN-MaxDSPen), Minimization of Expected Data-Source

Penalty (MIN-ExpDSPen), and Minimization of Maximum Scenario Penalty. Each

model provides a different approach to managing ambiguity, varying in terms

of conservatism in handling the uncertainty present in the data. Here, MIN-

MaxDSPen corresponds to a special case of distributionally robust optimization.

While the classical approach suggests to remain robust against any distribution

that fits a prescribed mean and standard deviation, our approach uses a discrete

set of such distributions, corresponding to the distributions of the multiple data

sources.

The models are evaluated using a real-world dataset from the 2018 Indonesia

earthquake, providing insights into their effectiveness in mitigating the challenges

posed by ambiguity in post-disaster HSCN design problems.

The results indicate that MIN-ExpDSPen is particularly effective when the decision-
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maker places higher trust in the more pessimistic data source, while MIN-MaxDSPen

is more appropriate when the optimistic data source is favored. In cases where the

ambiguity pattern is unclear or when the decision-maker holds equal confidence in

both data sources, MIN-MaxDSPen consistently provides a robust solution across

various scenarios. The findings underscore the overall importance of explicitly

accounting for ambiguity in HSCN design problems.

1.2.3 Third Study: Information Dynamics and Demand Spread

The design of HSCN is a critical operation in the context of post-disaster humani-

tarian logistics. Establishing an effective mechanism for the timely distribution of

relief supplies to affected populations is essential. The dynamic nature of disaster

situations, characterized by the rapid evolution of demand and resource availabil-

ity, necessitates adopting a more flexible approach to HSCN design. This paper

introduces a novel three-stage optimization model for HSCN design that integrates

information dynamics and demand spread, addressing the inherent uncertainties

in demand and transportation capacity that arise in post-disaster settings.

In the literature, two-stage optimization is often used to model and solve HSCN

design problems, where the design decisions are made upfront, with little or no ca-

pacity to adjust based on evolving information. The three-stage model proposed

in this study provides an enhanced framework by incorporating an additional

decision-making stage that allows for adjustments to the transportation resources

as more information becomes available. This additional stage ensures that deci-

sions are not static but evolve as the disaster progresses, thereby improving the

HSCN’s operational efficiency.

The effectiveness of the proposed model is demonstrated through a series of ex-

periments conducted on a real-world dataset derived from the 2018 Indonesia
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earthquake. These experiments reveal several key advantages of the three-stage

model over the two-stage models. Notably, the three-stage model facilitates more

informed decision-making by allowing updates to transportation resource alloca-

tions during the operational phase of the disaster response, which results in more

efficient use of resources. The model’s ability to adjust to new information dur-

ing the early phases of disaster relief ensures that critical supplies are distributed

more effectively, leading to better outcomes for the affected population.

Furthermore, the integration of the spread factor into the model enhances its

capability to manage the interrelated nature of demand across multiple types of

critical supplies. The ability to model the effects of unmet demand across different

critical supplies allows the model to more accurately reflect the complexities of

real-world disaster scenarios, where the demand for one resource can influence the

availability and need for others. This feature not only improves the model’s accu-

racy but also provides a strategic advantage in optimizing supply chain operations

under uncertainty.

The experimental results confirm that the three-stage model outperforms the two-

stage models, particularly in terms of decision-making flexibility and resource allo-

cation efficiency. Although the three-stage model demands higher computational

efforts due to its increased complexity, the benefits of improved resource manage-

ment and adaptability to changing conditions outweigh the associated costs. This

suggests that the model provides a valuable tool for humanitarian organizations

tasked with coordinating disaster response efforts, where the ability to adjust to

evolving conditions dynamically is crucial for ensuring the timely and equitable

distribution of aid.
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Abstract

We consider the planning problem of designing and operating humanitarian sup-

ply chain networks (HSCN) after natural disasters. Specifically, we focus on the

design of a three-layer network under demand and capacity uncertainty to support

short-term recovery, i.e., to distribute critical supplies to the affected population.

We aim to analyze the effect of unmet demand accumulating over the planning

horizon in order to better understand and respond to natural disasters. To this

end, we explicitly consider the impact of unmet demand through time under un-

certain conditions by introducing a spread factor. We develop a two-stage stochas-

tic model that retains the uncertainty pertaining to the demand along with the

transportation and storage capacities of the HSCN. Then, we apply our model to
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a case study using real-world data from the 2018 earthquake in Indonesia. Var-

ious aspects of the problem are studied over a set of experiments, including the

importance of modeling uncertainty, the effect of the budget on the solution per-

formance, and the role of the spread factor in the accurate understanding of the

crisis. According to the results obtained, considering lower values for the spread

factor parameter can irreparably misguide the decision-makers by an inaccurate

presentation of the crisis’ depth and consequently increase the damage caused to

people’s health.

Keywords: Stochastic programming; Humanitarian relief network; Tactical plan-

ning; Humanitarian supply chain; Post-disaster

2.1 Introduction

The United Nations Office for Coordination of Humanitarian Affairs (OCHA) an-

nually reports the global appeals and the annual funding for disasters and emer-

gencies. The global appeals present the financial requests of humanitarian orga-

nizations around the world each year. As for the annual funding, it refers to the

overall value of the appeals that are fulfilled. The highest percentage of covered

appeals in the last decade has been 65 percent (UNOCHA, 2021b). Furthermore,

OCHA reports that the total amount of annual appeals has increased from 8.9

billion US dollars in 2011 to 38.5 billion US dollars in 2020 (UNOCHA, 2021b)

thus indicating that humanitarian organizations are facing serious challenges re-

garding their budget to prepare and respond to natural disasters. Moreover, it

has been observed that 75 percent of the available funding to perform disaster

response is allocated to the design and the management of relief supply chains

(Besiou & Van Wassenhove, 2020; Stegemann & Stumpf, 2018; Van Wassenhove,

2006). After a natural disaster, humanitarian operations ultimately aim at reduc-
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ing harm to the affected population. Considering the limited available budget,

the efficiency of humanitarian operations directly impacts the received aid by the

affected population. This impact could be both on the level of satisfied demand

and the temporal aspect of aid delivery. The designed relief network with budget

constraints should deliver as many necessary goods as possible to the affected

population. Furthermore, the demands of the affected population must be sat-

isfied as soon as possible. The reason being the failure in delivery or delay in

satisfying demand harms the population’s health and spreads the demand (e.g.,

spreading disease). Therefore, improving the overall planning processes that de-

fine how the limited resources available to humanitarian organizations such as

budget, staff, and means of transportation are used to provide relief to affected

populations after a natural disaster occurs is an important and pressing issue. In

order to implement their aid plans and perform the required operations, human-

itarian organizations need to go through relief distribution networks. Given the

complexity of the underlying decisions, manual planning is likely to be rather in-

efficient. In particular, taking into consideration the probabilistic information for

uncertain parameters becomes a challenge for manual planners. Hence, there is

an undeniable need for dedicated optimization methods that enable organizations

to efficiently design and operate such networks.

Emergency Management. Emergency Management (EM) is a field of study

that has received an ever-increasing amount of attention from scientists, motivated

by the desire to improve the efficiency of relief efforts provided to affected pop-

ulations following natural disasters. EM is a multidisciplinary field that focuses

on how humanitarian organizations should prepare for and respond to disasters

to distribute the required aid (Anaya-Arenas et al., 2014). EM activities can be

divided into two groups: pre-disaster and post-disaster. Pre-disaster activities

include mitigation and preparedness. The goal of pre-disaster activities is to re-
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duce the negative impacts of a possible disaster by pre-positioning critical supplies

(i.e., mitigation) and developing response plans in advance of the events happen-

ing (i.e., preparedness). As for post-disaster activities, they include three differ-

ent phases: response, short-term recovery, and long-term recovery (Holguín-Veras

et al., 2012). The response phase occurs in the first 72 hours that follow the occur-

rence of a natural disaster (UNOCHA, 2021a). During this phase, the necessary

equipment, critical supplies, and material necessary for both the search-and-rescue

operations and the emergency repairs to be performed on critical infrastructure

are transported to the affected region. The short-term recovery activities include

damage and impact assessments, debris removal, distribution of critical supplies,

restoration of critical infrastructure, and managing both the donations received

and the work performed by volunteers (Holguín-Veras et al., 2012). These ac-

tivities must be coordinated, which makes the short-term recovery a challenging

phase in the post-disaster period. For example, the design of a network to dis-

tribute the critical supplies requires the information obtained from the damage

and impact assessments performed. Furthermore, the priority choices made re-

garding debris removal must be coordinated with the selection of specific routes

to be used for the distribution of critical supplies. Planning all of these activities

in an integrated manner thus defines important challenges to be resolved. As for

the activities performed in the long-term recovery phase, they include restoring

infrastructure, providing psychological counseling to the affected population, and

delivering overall humanitarian assistance to the region that may be ongoing for

multiple years.

Distribution of critical supplies. In this study, our focus is on the short-term

recovery phase, which is conducted at a crucial point in the overall timeline of

the humanitarian activities performed post-disaster. It is important to note that

the short-term recovery phase occurs in an emergency state during which critical
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supplies are not sufficiently available to satisfy the demand, critical infrastructure

is not fully operational and the demand is at its extreme point (i.e., the affected

population’s demand for aid will peak following a natural disaster) (Holguín-Veras

et al., 2013). The choices made by humanitarian organizations regarding how the

available resources are used to perform this phase are paramount to the ultimate

success and positive impact of the aid that will be provided.

Once a natural disaster occurs, the distribution of critical supplies to vulnerable

populations defines some of the most challenging, vital, and complex operations

that are conducted by humanitarian organizations. First, the management of

such operations is particularly challenging because it involves various stakehold-

ers, whose actions need to be coordinated to successfully perform the required

critical supply distribution. The stakeholders include governments, military, hu-

manitarian organizations, donors, media, and volunteers (both local and interna-

tional). Coordination among stakeholders occurs at different levels. For example,

when a disaster happens, the affected region is oftentimes divided into subre-

gions where different humanitarian organizations will operate, thus enabling the

overall affected region to be better covered in terms of the aid provided. For se-

curity reasons, military personnel are often called upon to protect humanitarian

organizations, their staff, and volunteers when they are deployed in the field to

distribute the aid. Communication and coordination between the military and

humanitarian organizations is thus a pivotal part of the distribution of critical

supplies. Lastly, a coordinated effort between humanitarian organizations and

the media is also required to bring attention to the crisis that occurred which, in

turn, can be helpful to fundraise and collect the required budget for the necessary

operations to be performed. Second, the distribution of critical supplies is also

vital to the health conditions of the affected population post-disaster. Critical

supplies may include, for example, medical supplies, which are required to treat
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life-threatening injuries that directly occurred following the natural disaster. Fi-

nally, distribution planning is particularly complex in post-disaster humanitarian

settings. The complexity stems from the fact that decisions related to the invest-

ments in the required infrastructure, the selection of logistical services, and the

use of such services to perform the necessary distribution need to be made in an

informational environment that involves a high level of uncertainty.

Humanitarian Supply Chain Network. The distribution of critical supplies

is performed via the use of a Humanitarian Supply Chain Network (HSCN) (Hong

& Jeong, 2019; Tavana et al., 2018). An HSCN consists of a physical network of

hubs that are used to store, transport, and distribute critical supplies among the

vulnerable population post-disaster. In an HSCN, hubs are physical locations that

receive and store critical supplies in the network. Critical supplies are then trans-

ported between the hubs using transportation services. For brevity, we refer to

these as services from now on. In order to design an HSCN, humanitarian organi-

zations have to make a set of decisions, including the location of the hubs, resource

allocation both for hubs and services, and assignment of vulnerable populations

to hubs. Furthermore, on the operational level, humanitarian organizations must

take decisions related to both transportation and inventory levels Anaya-Arenas

et al. (2014). In this paper, we are interested in solving the problem of designing

an HSCN in the short-term recovery phase that will operate (i.e., receive, store,

and distribute critical supplies) over a given planning horizon. Specifically, our

aim is to design such a network, while explicitly considering the various sources

of uncertainty that directly affect the informational context in which these relief

operations are planned and executed. Sources of uncertainty may include a lack

of information regarding the needs assessments of the affected population, such

as uncertainty regarding the demography in the affected zone preventing an ex-

act evaluation of the demand for specific critical supplies, damage levels to the
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infrastructure (e.g. road conditions, available vehicles, etc.) and overall effects of

possible secondary impacts, such as landslides following floods, and aftershocks

following an earthquake.

Contributions. In this paper, we propose a two-stage stochastic post-disaster

HSCN design model that enables the uncertainty related both to the demand

for aid and the available capacities for the chosen infrastructure and services to

be formulated. In the short-term recovery phase, it is paramount to service the

demand for critical supplies quickly. The reason being to limit the harm that may

spread and cumulate over the affected population. Our model thus proposes a

novel formulation to account for the effects unmet demands have over time.

Our model also expresses the correlated effects of unmet demands for different

critical supplies, which to the best of our knowledge has not been considered in

the existing literature on network design, facility location, and other supply chain

related planning problems.

Even though the model here proposed uses a linear coefficient to adjust the penalty

from one time-period to another, the use of spread factors results in a non-linear

demand behaviour over the planning horizon. Specifically, we assume that unmet

demand from one time-period is not only carried over to the next time-period, but

can further be amplified through the spread factor. This emulates, for example,

the spread of disease. Moreover, such spread factors are defined among all pairs

of commodities. For example, a failure of meeting the demand for shelters may

increase the future need for medical supplies.

The goal is then to design an HSCN that minimizes the expected total harm

caused by the unmet demands for the considered critical supplies over the planning

horizon. As such, the research questions we are aiming to answer in this paper

are as follows. How can the supply chain operations most efficiently be planned
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in the context of demand uncertainty and demand spread over time? How does

the demand spread impact the planning solution and the level of unmet demand?

How does a wrong estimate of the budget impact the planning solution and the

level of unmet demand? To assess the efficiency of our proposed stochastic model,

we develop a dataset linked to the 2018 Indonesia earthquake and conduct a

thorough numerical analysis. First, the importance of considering uncertainty in

the HSCN design problem is investigated by comparing the solutions obtained

by solving the proposed stochastic model when compared to its deterministic

counterpart. Then, the effects of explicitly incorporating the residual demands

over the planning horizon into our stochastic HSCN design model are evaluated in

terms of the overall performance of the humanitarian relief operations conducted.

Finally, to study the impacts that restrictive budgets may have on the performance

of the designed HSCN, a series of experiments are conducted where the stochastic

model is solved using different budget levels.

Outline. The remainder of this paper is structured as follows. In Section 2.2, we

provide a literature review on the topic. In Section 2.3, we describe the problem

setting. Section 2.4 details the two-stage stochastic post-disaster HSCN design

model that is developed. The numerical experiments and analyses are presented

in Section 2.5. Finally, we close the paper with the conclusion in Section 2.6.

2.2 Literature review

We now position our study within the existing literature. We review the related

work on both the considered problem and the optimization method that is pro-

posed to solve it. Thus, the focus of Subsection 2.2.1 is on supply chain network

design for humanitarian relief, where we review what aspects of the problem have

been studied in the context of designing and operating a supply chain to receive
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and distribute humanitarian relief to an affected population. In Subsection 2.2.2,

we review the studies dedicated to the development of Service Network Design

(SND) optimization methods. Specifically, we present the literature on both de-

terministic SND models and SND models under uncertainty, which present the

formulations previously proposed to model and solve similar problems.

2.2.1 Humanitarian Supply Chain Network

Early attempts to solve HSCN design problems focused on directly applying the

optimization methods originally developed for commercial supply chain applica-

tions (Van Wassenhove, 2019). However, these two general settings have sig-

nificant differences (Balcik & Beamon, 2008). For instance, the purposes and

objectives of these supply chains can be quite different. In a humanitarian set-

ting, the goal is to lessen the harm to people’s health by reducing the delivery

time (Diabat et al., 2019), expanding the coverage of the relief network (Hasani

& Mokhtari, 2019), and optimizing the usage of budget in the design and op-

eration of HSCN (Hasani & Mokhtari, 2018), as opposed to commercial supply

chains, which aim to minimize the cost of distribution and delivery (Pishvaee &

Razmi, 2012). Furthermore, as previously evoked, when planning post-disaster

operations, humanitarian organizations are pressed for time and need to design

the supply chain quickly, using limited available resources, while facing high levels

of uncertainty in the informational planning context. Although these issues are

also important in commercial settings, their intensity might not reach the same

levels as observed when delivering humanitarian aid. Therefore, these differences

have motivated a separate line of research specifically dedicated to solving hu-

manitarian supply chain design problems (Anaya-Arenas et al., 2014; Campbell

et al., 2008).
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Various optimization methods have been developed to formulate and solve a wide

gamut of humanitarian relief planning problems, such as Anaya-Arenas et al.

(2014); Balcik et al. (2016); Behl & Dutta (2019), to improve the performance of

HSCNs. As previously mentioned, the scientific literature divides into two cate-

gories: optimization methods to solve problems related to either the pre-disaster

or post-disaster planning phases (Anaya-Arenas et al., 2014). Most studies in

the pre-disaster phase are dedicated to improving preparedness for possible catas-

trophic events that would require the deployment of humanitarian aid. In this

phase, the main focus is on developing methods that support the decision-making

processes involved in the location of warehouses and the stockpiling of critical

supplies as a preventive measure to react in a more efficient manner whenever hu-

manitarian organizations are called upon to provide aid, for example Alem et al.

(2016); Bozorgi-Amiri et al. (2012, 2013); Yahyaei & Bozorgi-Amiri (2019). In the

post-disaster planning phase, candidate warehouses are assumed known (i.e., hu-

manitarian organizations work with the existing infrastructure, which might have

been, in part, designed in the pre-disaster phase). Hence, the main focus tends

to support (via the use of optimization methods) the decision-making processes

involved in the location of temporary facilities, such as distribution centers, de-

termining the number of required vehicles to perform the distribution operations,

the assignment of beneficiaries to the distribution centers, and the management

of the flow of critical supplies (e.g. Afshar & Haghani (2012); Noyan et al. (2016);

Tzeng et al. (2007)). In the post-disaster planning phase, when designing the

HSCN, the overall goal is to distribute the aid in such a way as to alleviate the

harmful effects of the catastrophic event on the affected people’s health.

The post-disaster HSCN design problem here considered is both complex and

challenging to solve, mainly due to two reasons. First, the inherent complex-

ity stemming from the multiple decisions regarding the multi-level distribution
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network. Here, a level is defined as a set of locations with specific and similar

infrastructure (e.g. comparable storage capacities, locations serving the same pur-

pose in the supply chain, etc.) that are used for the storage and distribution of

the critical supplies. Second, the explicit representation of the various sources of

uncertainty faced in the planning context, which, in the literature, mostly con-

cerns the demand levels for critical supplies (Balcik et al., 2016; Behl & Dutta,

2019).

It is worthwhile to note that several other aspects may be relevant in the modeling

of certain HSCNs and impact their ideal network structure. Zeng et al. Tzeng

et al. (2007) proposed a multi-objective three-layer HSCN, including aspects of

costs, effectiveness, and fairness in the objective. Fairness and equity (see, e.g.

Anaya-Arenas et al. (2018); Ismail (2021); Noyan et al. (2016)) regarding the

distribution of critical supplies to a vulnerable population are also important in

this application context. However, considering that these aspects are not the main

focus of our work, we do not review the literature related to this branch.

Table 2.1 summarizes the approaches and key assumptions that were made in the

studies from the literature most related to our problem. The effects of unmet

demand for one critical supply on the level of demand for other critical supplies

have not been explicitly studied in the existing literature. However, such effects

are clearly important considering the nature and urgency of the demand that is

considered when solving the HSCN design problem in the post-disaster planning

phase. In particular, insufficient treatment of a disease in one time period may

cause the spread of the disease in subsequent time periods. Therefore, we propose

to explicitly model such cumulative effects, solving the problem in a multi-period

setting. Furthermore, when generally formulating the limited resources that are

available to humanitarian organizations to distribute aid post-disaster, either fixed

budget limits are added as hard constraints in the models, or, the objective func-
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tion simply aims to minimize the costs incurred by the operations conducted (thus

assuming that a sufficient budget is available). Although uncertainty regarding

the total amount of received donations has been studied before Falasca & Zobel

(2011), we are not aware of studies that explicitly consider the reception of dona-

tions distributed over the planning horizon and its effect on the considered design

problem. In this study, we thus formulate the pattern of receiving varying dona-

tions to define the available budget over multiple time periods and their overall

effect on both the design and distribution decisions to be made. Finally, we con-

sider the combined effects of solving the HSCN design problem when facing both

demand and capacity uncertainty. Depending on the nature and intensity of the

catastrophic event, these sources of uncertainty can certainly be simultaneously

observed when planning the aid in the post-disaster phase.
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Paper Phase Structure Objective Uncertainty
Demand

satisfaction

Modeling integrated supply chain logistics

in real-time large-scale disaster relief oper-

ations Afshar & Haghani (2012)

post-

disaster
seven layers

minimize unmet

demand
none

unmet demand

transferred to

next time

period

A collaborative humanitarian relief chain

design for disaster response (Shokr et al.,

2022)

pre- and

post-

disaster

three layers

minimize design cost

and penalty cost of

unmet demand

transportation

cost, demand,

supplier

capacity

unmet demand

not transferred

to next time

period

Logistics service network design for hu-

manitarian response in East Africa (Du-

four et al., 2018)

post-

disaster
four layers minimize logistic costs demand

ensures

demand is fully

satisfied

Multi-objective optimal planning for de-

signing relief delivery systems (Tzeng

et al., 2007)

post-

disaster
three layers

Minimize cost,

minimize travel time,

maximize satisfaction

none

ensures

demand is fully

satisfied

International disaster relief planning with

fuzzy credibility (Adıvar & Mert, 2010)

pre-disaster three layers

minimize the cost and

maximizing the

credibility of satisfying

the demand

fuzzy supply

quantity and

procurement

cost

unmet demand

not transferred

to next time

period

A multi-criteria optimization model for

humanitarian aid distribution (Vitoriano

et al., 2011)

post-

disaster

last-mile

distribution

minimizing

multi-criteria

objective, cost, time,

security, reliability

availability of

roads

satisfied as

much demand

as possible

(single period)

Importance of fairness in humanitarian

relief distribution (Anaya-Arenas et al.,

2018)

post-

disaster
three layers

minimize unsatisfied

demand and travel

time, and maximize

fairness and equity

none

unmet demand

not transferred

to next time

period

A possibilistic mathematical programming

model to control the flow of relief com-

modities in humanitarian supply chains

(Ismail, 2021)

post-

disaster
two layers

minimize

transportation and

deprivation costs

fuzzy

deprivation

cost

unmet demand

transferred to

next time

period

Transportation in disaster response opera-

tions (Berkoune et al., 2012)

post-

disaster

last-mile

distribution

minimize

transportation time
none

ensures

demand is fully

satisfied

Dynamic supply chain network design for

the supply of blood in disasters: A robust

model with real world application (Jab-

barzadeh et al., 2014)

post-

disaster
two layers

minimize mean and

variance of total costs

demand,

supply,

transportation

cost and

capacity

unmet demand

not transferred

to next time

period

A logistics model for emergency supply of

critical items in the aftermath of a disaster

(Lin et al., 2011)

post-

disaster

last-mile

distribuiton

minimize unmet

demand, travel time

and satisfaction rate

between points of

demand

none

unmet demand

transferred to

next time

period

Table 2.1: Summary of literature on humanitarian relief network design.
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2.2.2 Service Network Design

SND problems refer to a general class of network design problems that focus

on the supply-related resources and activities of transportation systems (Crainic

& Hewitt, 2021). A wide range of decisions are involved in SND optimization

models. These decisions can be grouped in two general categories: the design

and the flow decisions (Crainic & Hewitt, 2021). Design decisions involve: the

selection of services, i.e., the routes connecting the origins and destinations of the

commodities to be transported (which may either be direct links or paths involving

the use of intermediary terminals) and their schedules, which are either fixed based

on the service itself or, decided upon (i.e., frequency, timing, etc.). As for the flow

decisions, they involve setting the itineraries for the different commodities, which

establish how and when they are transported from their respective origins to their

final destinations. Typically, the objective is to design a service network that

is efficient and profitable while satisfying the demand. The literature on SND

models can be classified in two classes: deterministic (all relevant parameters

assumed known) or under uncertainty (at least one parameter being assumed to

randomly vary). In the following, we briefly review the literature on these two

classes of SNDs.

2.2.2.1 Deterministic Service Network Design

In the present Subsection, we review the different proposed modelling approaches

that properly formulate SND problems that appear in deterministic settings.

These include: static, time-dependent, dynamic, frequency, and time-space SNDs

(Crainic & Hewitt, 2021). Static SND models seek to design a service network

in a static setting where the problem characteristics remain fixed and, therefore,

the time dimension is not explicitly considered in the formulation (Chouman &
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Crainic, 2021). The school bus service network is an example of a static SND

where all problem characteristics remain the same for each day of operation. In a

time-dependent SND, the quantity of available supply, the level of demand, and

other problem characteristics can change over time. For instance, the demand for

transporting agricultural goods will increase during the harvest season compared

to the rest of the year. Thus, the time dimension needs to be explicitly considered

(see, e.g. Andersen et al. (2009)).

It should also be noted that SND problems can appear at all planning levels (i.e.,

strategic, tactical, and operational). Strategic planning defines a general guide

for the management of an organization based on stakeholders’ long-term priori-

ties and goals. Tactical planning focuses on shorter periods of time (i.e., yearly

or monthly) and provides an action plan to achieve the organization’s objectives

in the defined planning horizon. Finally, operational planning is performed on

the short-term (i.e., weekly or day-to-day). In Crainic (2000), SND problems

are divided according to their planning level and grouped into frequency or dy-

namic models. The strategic and tactical SND problems are the topic of study

in frequency formulations, e.g. Duan et al. (2019); Rothenbächer et al. (2016).

Frequency SND problems seek to find the best type of service and their frequen-

cies for the considered planning horizon, the itineraries, and the workload and

policies to be implemented at the terminals involved (Crainic, 2000). In contrast,

dynamic SND models are applied at the operational level (see, e.g. Wieberneit

(2008)), where the focus is on the scheduling of the services and their departure

times Crainic (2000). Lastly, in some applications, the explicit management of

resources may be an integral part of the SND problems. Resources to perform

the services, such as vehicles or workforce, can be located in different geographi-

cal points at different time periods throughout the considered planning horizon.

Thus, services that are selected and need to be performed on a given schedule,
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must also include the required resources. To efficiently formulate both the flow

of the commodities and the management of the resources, a time-space represen-

tation of the network, e.g. as developed in Andersen et al. (2009); Crainic et al.

(1984, 2016b)), is required.

2.2.2.2 Service Network Design under Uncertainty

Researchers have investigated the importance of considering uncertainty when for-

mulating and solving SND problems (see, for instance Crainic & Hewitt (2021);

Lanza et al. (2021); Lium et al. (2007, 2009)). The problem variant most stud-

ied in the literature assumes that demands are uncertain (see, for example Bai

et al. (2014); Crainic et al. (2016a); Lium et al. (2007); Ng & Lo (2016)). For

this problem variant, Lium et al. Lium et al. (2007) compared the solutions ob-

tained by solving a deterministic SND model when compared to its stochastic

variant. This study clearly showed that by applying an optimization approach

that explicitly considers uncertainty in demand, the designed networks included

characteristics that improved their overall adaptability to varying demand realiza-

tions. Specifically, it was observed that networks obtained by solving a stochastic

model included the options of: 1) alternative paths to connect the origins and des-

tinations of commodities and 2) consolidation options for multiple commodities

over specific arcs, which better hedged against random demand variations (i.e.,

commodity volumes).

Lanza et al. Lanza et al. (2021) studied the importance of considering travel

time uncertainty when solving an SND problem involving service quality targets.

Again, solution differences were observed when comparing the networks obtained

by applying deterministic optimization versus stochastic optimization. Specifi-

cally, it was observed that the solutions obtained by solving the deterministic
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model prioritized the one-stop services over the non-stop (or direct) services in an

effort to lower the fixed costs incurred. In contrast, when the stochastic model was

solved, the solutions obtained would select direct services as a means to reduce

the risk of paying additional costs due to possible operational delays. Overall, the

use of the stochastic optimization approach produced networks that were more

cost-efficient (i.e., reducing the sum of both the set-up costs and the penalties

incurred due to delays in the deliveries) when compared to their deterministic

counterparts.

Both stochastic programming and robust optimization have been applied to model

and solve SND problems that involve uncertainty (Bai et al., 2014; Hoyos et al.,

2015; Wang & Qi, 2020). Considering that our problem setting assumes that a

set of scenarios (that capture how the uncertain parameters may randomly vary)

is available, the selected approach is stochastic programming. When formulating

stochastic SND problems that appear at the tactical planning level, as highlighted

in the scientific literature, two-stage formulations are the approach of choice, for

example (Bai et al., 2014; Crainic et al., 2016a). Thus, the process by which un-

certain parameters become known is approximated by assuming that the values of

all stochastic parameters are observed in a single stage (i.e., the second). Such an

approach results in a model that is easier to solve, when compared to a multi-stage

formulation, while still providing the means to find a tactical planning solution

(i.e., network) that efficiently performs in the context of a randomly changing

informational context.

2.3 Problem description

In this section, we present the here considered HSCN design problem that we will

solve. First, Subsection 2.3.1 describes the general characteristics of the prob-
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lem, including the network structure, uncertain parameters, and both the tactical

and operational decisions involved. Then, Subsection 2.3.2 explains how budget

requirements are imposed in the present setting and how they affect the HSCN

design problem. Furthermore, this section also presents the various costs that

are incurred from the different decisions made in the problem. Finally, Subsection

2.3.3 defines the concept of demand, which includes the cumulative effect of unmet

demand over time, and its correlated effects on the critical supplies.

2.3.1 HSCN Design Problem

We study a multi-period HSCN design problem that involves tactical planning

decisions made by organizations in the short-term recovery phase of EM. We

consider a three-layer structure, as exemplified in Figure 2.1, which is a common

structure for real-world HSCNs (Séguin, 2019). Each layer consists of a set of

hubs with different characteristics, including the ports of entry, the warehouses,

and the Distribution Centers (DCs). A port of entry is the physical location

where the organization receives critical supplies, such as an airport, a seaport, or

a train station. A warehouse is a hub that relies on storage resources that can

hold critical supplies over several time periods. For instance, storage resources

could be classrooms in a school or a set of containers located on land. The

warehouses are more numerous than the ports of entry and are located closer to

the affected region. Finally, a DC is a physical location within walking distance

from beneficiary groups (i.e., a group of people relocated to a temporary site that

could be a school, a temporary camp, or any other building) that is used to hand

over the critical supplies to beneficiaries. We assume that each beneficiary group is

assigned to a single DC that is dedicated to the transfer of all the critical supplies

to satisfy (as much as possible) the expressed demand. The critical supplies

are transported between consecutive layers using services. We assume there are
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no services connecting the hubs in the same layer (i.e., no transshipments are

allowed). In addition, it is assumed that there are no direct services between the

ports of entry and the DCs.

Figure 2.1: top: all available hubs, services, and assignments. bottom: selected

hubs, services, and assignments in an example HSCN.

The planning of the considered HSCN involves making a series of decisions that

determine the capacities of the network (i.e., the design decisions) and the use of

these capacities to perform the required humanitarian aid (i.e., the operational

decisions). To design the HSCN, one needs to select hubs and services capable

of transporting the critical supplies from the ports of entry to the DCs, select

resources for warehouses and services, and assign beneficiary groups to the DCs.
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Specifically, we first select a set of hubs and a set of services to connect them that

will be available for the considered time horizon. We then assign transportation

resources to the selected services, such as number of vehicles), and the storage

resources for the selected warehouses, for instance available space to be used or

the number of containers. Thus, the storage capacity of a warehouse is a decision

made by choosing the number of units of storage resources to be made available.

Likewise, the transportation capacity of a service is a decision made by selecting

the number of transportation resource units that define the operational capabili-

ties of the service (i.e., how much quantity of critical supplies can be transported).

Each transportation resource unit provides a fixed amount of capacity, and it is

possible to assign multiple transportation resources to each selected service. How-

ever, it is assumed that there is a limit on the total number of resources available

for each service (i.e., the locally available transportation supply is not infinite).

Each service has a pair of hubs as origin and destination. Furthermore, perform-

ing a service entails loading the critical supplies at the origin hub, transporting

them to the destination hub, and then returning to the origin hub to be able to

repeat the process. Finally, we assign each beneficiary group to a single DC to

ensure that the beneficiaries are able to pick up their critical supplies and know

exactly where to do so. A DC should be within a predefined walking distance

from a beneficiary group to be considered as a possible assignment to it. It is thus

assumed that at least one DC is within walking distance from each beneficiary

group. While each beneficiary group must be assigned to a single DC, each DC

can provide the critical supplies for multiple beneficiary groups. We assume the

design of the HSCN remains unchanged throughout the planning horizon. We

next define the operational decisions made over the considered horizon.

To properly characterize the relief operations, we first define the concept of a

time period in the HSCN design problem. Specifically, a time period is defined
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as the time required to perform the following operations: 1) receive a shipment

of critical supplies into the port of entry hubs, 2) transport these critical supplies

through the network until they reach the DCs, and 3) transfer the critical supplies

to the beneficiary groups to satisfy demand. Therefore, a period is assumed to

be the required time (e.g. a full week) to distribute the received shipment from

the entry points of the HSCN to the final destinations, which are the beneficiary

groups. Using this definition, the time horizon is discretized to produce a set of

periods that span the planning context. Therefore, the operational decisions made

at each time period include selecting the quantity of critical supplies transferred

through the selected services, the desired inventory levels of the warehouses, and

the quantity of the critical supplies allocated to the beneficiary groups at the DCs.

The decision-making process requires access to the value of a series of parameters,

including the demands for the critical supplies, the locations of the beneficiary

groups, the available budget, the set of available hubs, available services, and their

resources. While some of these parameters are known in advance, such as the loca-

tions of the beneficiary groups, the available hubs, the available budget, and thus

are deterministic, the values of other parameters for instance the demands are

uncertain at the moment the HSCN is designed. Vitoriano et al. Vitoriano et al.

(2011) highlighted the importance of considering the damage to the infrastructure

after the main event caused by the secondary impacts (e.g. fires, landslides, and

aftershocks). The occurrence of secondary impacts increases the levels of uncer-

tainty on different aspects of the HSCN design problem. Specifically, the selected

warehouses and their storage capacities might not be fully available (i.e., due to

damages) in subsequent periods. A similar observation can be made regarding the

selected transportation services and their capacities. Therefore, in this problem,

we consider these three sets of parameters as uncertain (i.e., the demands, the

available inventory resource of warehouses, and the available transport resource
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of services). In this case, an efficient HSCN should ideally provide a higher level of

flexibility (i.e., scheduled or planned adaption of the distribution operation to pos-

sible external circumstances affecting the influential components of the problem)

in light of the secondary impacts that may occur in the affected region (Saheb-

jamnia et al., 2017). In addition to the decrease of available warehouse capacity

due to secondary impacts, the damaged resources may also lose critical supplies

stored in the damaged part of the warehouses. Naturally, at each period, the total

amount of critical supplies stored at a warehouse cannot be greater than the re-

maining capacity of that warehouse. This clearly motivates the need to explicitly

consider the usable inventories of critical supplies that are available, both at the

beginning and end of each period, over the considered horizon.

2.3.2 Budget

In this subsection, we first introduce the costs related to the decisions made in

both the design and the operations conducted through the HSCN. We then discuss

how the overall budget requirements are imposed in the present problem. In this

case, there are two general types of costs, the fixed-costs, and the flow-costs.

The fixed-costs include those associated with the selection decisions: a) of hubs

(e.g. accounting for staff salary and maintenance), b) inventory resources, such

as security guards and rent, and c) transportation resources, for example drivers,

staff for loading and unloading the vehicles and security guards. The fixed-costs

are assumed to be paid only once at the moment when the selection decisions

are made. Regarding the transportation services, some expenses occur every time

they are used and are proportional to the quantity of critical supplies that are

transported (e.g. fuel cost). These expenses are referred to as the flow-costs of

the services.
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As for the budget involved in the HSCN design problem, it is assumed to include

two general parts: a) the initial budget and b) donations. The initial budget

is the amount available at the beginning of the planning horizon. It is often

made up of the amount that was planned in the preparedness phase of the pre-

disaster planning performed by the humanitarian organization. As for donations,

they represent the financial support that is received over the subsequent time

periods considered on the horizon. These will vary according to different aspects

related to the specific disaster (i.e., how much journalistic coverage it receives,

the severity of the event, the fund-raising activities of the organization, etc.). The

amount of donations received following a given disaster could be considered an

uncertain parameter. However, we assume that humanitarian organizations are

realistically able to estimate this amount using historical data. In all cases, our

proposed optimization model easily enables scenario analyses to be performed on

the budget parameters (as illustrated in Subsection 2.5.2.4). To impose the budget

constraints, it should first be observed that the amount of available budget is

dependent on the specific time period considered. Thus, the budget requirements

and the limits that they impose should directly apply to the decisions made at

each time period. Following this principle, the incurred fixed-costs are limited

by the initial budget, while the incurred flow-costs in each period are limited by

the remaining budget from the previous period and the donations received at the

current period.

2.3.3 Demand

We now define how the level of demand is calculated over the considered horizon.

The demands of each beneficiary group for specific critical supplies are assessed

based on the population in the considered zone, which is oftentimes uncertain at

the time when the design decisions are made (Council, 2007). However, these
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numbers can be estimated based on various data sources, such as the number

of residences, the number of beneficiaries, the intensity of the natural disaster,

and the overall resistance of the urban or rural infrastructure (Council, 2007). A

distinctive feature of our proposed model, when compared to those developed in

the related scientific literature, is how the cumulative adverse effects of unmet

demand of beneficiary groups are evaluated. Specifically, while operating the

HSCN, we might not be able to fully satisfy the demand of the beneficiary groups

at each considered time period. In turn, this may negatively affect the population’s

health for the beneficiary groups involved. For example, mosquito nets are pivotal

items in controlling malaria epidemics. If the demand for mosquito nets is not fully

satisfied, the epidemic spreads, and in turn the subsequent demand for mosquito

nets is further increased. Additionally, one may observe an increase in the demand

for malaria tests and medication. Therefore, unmet demands for a given critical

supply will cumulate and possibly worsen overtime, but they are also likely to

affect the demand for other critical supplies (i.e., there are correlated adverse

effects).

To evaluate the adverse effects of unmet demands, we first assume that each unit of

unmet demand for a given critical supply carries over to the following time period

along with a negative penalty representing its negative effects. Furthermore, we

introduce a series of spread factor parameters to measure how one unit of unmet

demand for a specific critical supply negatively affects the demand for the other

items in the following period. Specifically, let sk′k represent the effect of one unit

of unmet demand of critical supply k′ on the demand for the critical supply k in

the subsequent time period. To formulate the effects of unmet demands on the

demand level at the beginning of period t, we define the total demand, represented

by d̂ktl , for the critical supply k and for the beneficiary group l, as the sum of the

base demand and the residual demand carried over from t− 1. The base demand,
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formulated as parameter d̃ktl , represents the demand for the critical supply k, at

period t, expressed by the beneficiary group l, and it is considered uncertain. As

for the residual demand, it captures the negative effects on the level of demand in

the current period that are directly linked to the unmet demands carried over from

the previous period. Therefore, to obtain the total demand value, the following

formula is applied in the case of the critical supply k, at period t and for the

beneficiary group l:

d̂ktl = d̃ktl +
∑
k′∈K

sk
′k(d̂k

′t−1
l −

∑
i∈VDC

āk
′t−1
il ). (2.1)

As defined in Equation (2.1), d̂k
′t−1
l represents the total demand of the beneficiary

group l at period t − 1 and āk
′t−1
il defines the decision prescribing the amount

of critical supply k′ that is delivered to the beneficiary group l from the DC i

at period t − 1. Therefore, the spread factor sk′k is proportionally applied to

the amount of unmet demand of critical supply k′ at period t − 1. Finally, the

overall objective pursued is to design an HSCN that minimizes the total expected

penalties of unmet demands over the defined planning horizon.

2.4 Optimization model

We begin this section by explaining our reasoning for choosing a two-stage model

to formulate the HSCN design problem. We then present the proposed mathe-

matical model. A stage refers to a specific moment within the time horizon at

which decisions are made while considering the informational context of that point

of time, i.e., the known parameters and the parameters that still remain uncer-

tain (stochastic). When formulating a tactical planning problem, it is common to

apply an approximation of the informational process by considering a two-stage

setting. The reasoning behind this choice being that one is primarily interested in
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determining what should be the tactical plan (i.e., the a priori or first-stage deci-

sions), while the operational decisions (i.e., the recourse or second-stage decisions)

are used to evaluate how the tactical plan can be implemented. The latter can

thus be defined as an approximation of the operators occurring in practice (i.e.,

decisions in the second stage being made under the assumption that all stochastic

parameters become known). Moreover, in humanitarian relief planning, one typi-

cally cannot assume that all information will be perfectly revealed at the end (i.e.,

the exact value of some parameters can remain unknown). This further justifies

the use of an approximation regarding how operations are conducted.

In the considered HSCN design problem, the value associated with the uncertain

parameters will be revealed as time elapses (e.g. demands become known as more

information arrives from the field). However, organizations cannot wait to obtain

all the contextual information before designing the HSCN, such as services may

not remain available if they are not booked in advance. Furthermore, the cost of

booking the hubs and the services may increase if their booking is delayed. On

the other hand, postponing the operational decision-making process will result

in better decisions being made considering that there will be less uncertainty

regarding the parameter values. Therefore, as advocated in the related literature

(Grass & Fischer, 2016b), we use a two-stage model where, in the first stage, the

design decisions of the model are made whereas, in the second stage, we include

the operational decisions for all periods.

We propose a model to design an HSCN that receives, stores and distributes

critical supplies, i.e., set K, among the beneficiary groups, i.e., set L, over a given

planning horizon, i.e., set T . We design the HSCN by selecting a set of hubs

that are represented by set V , and a set of services, represented by set A. The

designed HSCN is then used to transport the critical supplies from ports of entry

to DCs over a known number of periods (i.e., t ∈ T ). To model the uncertain
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parameters, we use a set, Ψ, of scenarios. Each scenario is a realization of random

events associated with uncertain parameters. Table 2.2 introduces the sets used

to define the model.

Set Definition

VI Set of ports of entry i ∈ VI .

VW Set of warehouses i ∈ VW .

VDC Set of DCs i ∈ VDC .

V Set of all hubs i ∈ V , where V = VI
⋃
VW

⋃
VDC .

A Set of all services (i, j) ∈ A.

L Set of beneficiary groups l ∈ L.

K Set of critical supplies k ∈ K.

Ψ Set of scenarios ψ ∈ Ψ.

T Set of periods t ∈ T .

Table 2.2: Sets used in the optimization model.

The input parameters of our model are presented in Table 2.3. The total demand

for supply k ∈ K for the beneficiary group l ∈ L in period t ∈ T in the scenario

ψ ∈ Ψ is given by parameter dktlψ. The total demand value, as defined by Equation

(2.1), consists of the sum of the uncertain base demand, d̃ktlψ, and the unmet

demand from the previous period. Parameter skk′ represents the spread factor,

indicating the impact of one unit of unmet demand of critical supply k on the

demand of critical supply k′ in the subsequent time period. We define a penalty

parameter bk that indicates the penalty for one unit of unmet demand of critical

supply k. For example, a penalty unit for commodity “water” may refer to health

related units, a penalty for the commodity of a certain “medication” the unit may

refer to a sickness related unit and for a commodity “mosquito nets” the unit

may be related to potential future infection risk. The values of the penalties for

the critical supply need to be adjusted with regard to the specific catastrophic

event that occurred, the geographical characteristics of the affected region, the

current weather, and other components affecting the demands. For instance, the
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penalty for food may be higher than for shelter in the dry season, but this relation

may change during the rain season as shelter becomes more valuable. The model

then minimizes the total expected penalty for all beneficiary groups over all time

periods, computed using the defined scenarios.

Deterministic Parameters

Parameter Definition

f̂ij Cost of selecting one unit of transportation resource of service (i, j) ∈ A.

f̂i Cost of selecting one unit of inventory resource for warehouse i ∈ V .

fi Cost of selecting a hub i ∈ V .

ckij
Cost of transporting one unit of critical supplies k ∈ K, by service (i, j) ∈

A.

uij Capacity of one unit of transportation resource of service (i, j) ∈ A.

ui Capacity of one unit of inventory resource of warehouse i ∈ VW .

mi Maximum number of inventory resources available for warehouse i ∈ VW .

mij
Maximum number of transportation resources available for service (i, j) ∈

A.

nkti
Maximum quantity of critical supplies k ∈ K that can be delivered to the

port of entry i ∈ VI at period t ∈ T .

bk The penalty for one unit of unmet demand of critical supply k ∈ K.

z0 The initial budget.

zt The received donation amount at the beginning of period t ∈ T .

skk
′ Spread factor of one unit of unmet demand of critical supply k ∈ K on

critical supply k′ ∈ K.

Parameters of the scenario-based stochastic model

Parameter Definition

pψ Probability of scenario ψ ∈ Ψ.

gtiψ
Percentage of available inventory resources of hub i ∈ V , at period t ∈ T ,

in scenario ψ ∈ Ψ.

gtijψ
Percentage of available transport resources of service (i, j) ∈ A, at period

t ∈ T , in scenario ψ ∈ Ψ.

dktlψ
The base demand of beneficiary group l ∈ L, for critical supplies k ∈ K,

at period t ∈ T , in scenario ψ ∈ Ψ.

d̂ktlψ
Total demand of beneficiary group l ∈ L, for critical supplies k ∈ K, at

period t ∈ T , in scenario ψ ∈ Ψ.

Table 2.3: Model input parameters.

As shown in Table 2.2 the set of all hubs V is divided into three subsets: the set
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of the ports of entry VI , the set of warehouses VW and the set of DCs VDC . There

is a fixed cost fi for selecting a hub. Furthermore, there is a fixed-cost f̂i to select

each unit of inventory capacity resources for each hub. The capacity of one unit of

inventory in the warehouse i ∈ VW is represented by ui. The effects associated with

the secondary impacts on the hubs are modelled as uncertain capacity parameters.

Specifically, the uncertain parameter g̃tiψ represents the percentage of the available

storage resources of the warehouse i ∈ VW , at period t ∈ T , in scenario ψ ∈ Ψ. At

the beginning of each time period, damaged inventory capacity is discarded, given

that it is not usable anymore. To consider this change in the inventory level, we

use two inventory variables: one at the beginning and the other at the end of each

time period. The inventory level of a warehouse at the beginning of period t is

denoted by variable r̂ktiψ and the inventory level of a warehouse at the end of the

period is given by variable rktiψ . We represent the import capacity of each port of

entry by the parameters nkti , ∀i ∈ VI , k ∈ K, t ∈ T , which limits the output flow

of each port of entry, for each critical supply at each time period. In addition,

the parameter zt denotes the financial donations received in period t ∈ T , with z0

representing the initial budget.

Parameter f̂ij is the fixed-cost for selecting one unit of transportation capacity

resource for service (i, j) ∈ A. Parameter uij indicates the capacity of one unit of

transportation resource for service (i, j) ∈ A. In addition, parameter ckij indicates

the flow-cost of the service (i, j) ∈ A for a unit of critical supply k.

The list of decision variables are presented in Table 2.4. In the first stage, we

model tactical decisions including the selection of hubs, represented by the bi-

nary decision variables yi, i ∈ V , and the selection of services, represented by

the binary decision variables xij, (i, j) ∈ A. We also select the capacity of ware-

houses and services, represented by the integer decision variables ŷi, i ∈ VW and

x̂ij, (i, j) ∈ A, respectively. Furthermore, the binary decision variable ail repre-
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sents the assignment of beneficiary group l ∈ L to DC i ∈ VDC . In the second

stage, three groups of continuous decision variables are used. The flow decision

variables, x̄ktijψ , (i, j) ∈ A,ψ ∈ Ψ indicate the quantity of critical supplies k ∈ K

transported through each service in each period t ∈ T , and the allocation decision

variables āktilψ , i ∈ VDC , l ∈ L, k ∈ K, t ∈ T, ψ ∈ Ψ determine the amount of each

critical supply that will be delivered to each beneficiary group. The continuous

decision variables r̂ktiψ and rktiψ indicate the inventory level of warehouse i ∈ VW for

critical supply k ∈ K in scenario ψ ∈ Ψ at the beginning and end of period t ∈ T ,

respectively.

First Stage

Variable Definition

xij ∈ {0, 1} 1 if service (i, j) ∈ A is selected to be part of the HSCN; 0 otherwise.

yi ∈ {0, 1} 1 if hub i ∈ V is selected to be part of the HSCN; 0 otherwise.

x̂ij ∈ N0 Number of units of transport resources selected for service (i, j) ∈ A.

ŷi ∈ N0 Number of units of inventory resources selected for hub i ∈ VW .

ail ∈ {0, 1} 1 if beneficiary group l ∈ L is assigned to DC i ∈ VDC ; 0 otherwise.

Second Stage

Variable Definition

x̄ktijψ
≥ 0

Quantity of critical supply k ∈ K transferred through service (i, j) ∈ A

at period t ∈ T in scenario ψ ∈ Ψ.

āktilψ
≥ 0

Quantity of critical supply k ∈ K at period t ∈ T allocated to beneficiary

group l ∈ L from DC i ∈ VDC in scenario ψ ∈ Ψ.

rktiψ ≥ 0
Inventory level (in number of units) of critical supply k ∈ K at warehouse

i ∈ VW at the end of period t ∈ T in scenario ψ ∈ Ψ.

r̂ktiψ ≥ 0
Inventory level (in number of units) of critical supply k ∈ K at warehouse

i ∈ VW at the beginning of period t ∈ T in scenario ψ ∈ Ψ.

Table 2.4: Decision variables of the two-stage stochastic model.

In the following, the first and second stage (i.e., recourse) models are introduced.

The first stage model seeks to design an HSCN minimizing the expected penalty

of the recourse function over the set of scenarios Ψ. The recourse function, rep-

resented by Qψ(x̂, ŷ, a), defines the second stage that selects the operational deci-
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sions for a specific scenario ψ ∈ Ψ to minimize the penalty of unmet demand over

the planning horizon.

min
∑
ψ∈Ψ

pψQψ(x̂, ŷ, a) (2.2)

s.t.

2xij ≤ yi + yj ∀(i, j) ∈ A, (2.3)

ŷi ≤ miyi ∀i ∈ VW , (2.4)

x̂ij ≤ mijxij ∀(i, j) ∈ A, (2.5)

∑
i∈V

fiyi +
∑
i∈W

f̂iŷi +
∑

(i,j)∈A

f̂ijx̂ij ≤ z0, (2.6)

∑
i∈VDC

ail = 1 ∀l ∈ L, (2.7)

ail ≤ yi ∀i ∈ VDC , ∀l ∈ L, (2.8)

x̂ij ∈ N0, ŷi ∈ N0, xij ∈ {0, 1}, yi ∈ {0, 1},

ail ∈ {0, 1}, ∀i ∈ V, ∀(i, j) ∈ A.
(2.9)

Where Qψ(x̂, ŷ, a) is defined as follows:

Qψ(x̂, ŷ, a) := min
∑
t∈T

∑
k∈K

bk
∑
l∈L

(d̂ktlψ −
∑
i∈VDC

āktilψ) (2.10)
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s.t.

∑
k∈K

x̄ktijψ ≤ uijg
t
ijψ
x̂ij, ∀(i, j) ∈ A, ∀t ∈ T, (2.11)

āktilψ ≤
∑

(j,i)∈A

ujig
t
jiψ
mjiail, ∀i ∈ VDC , ∀l ∈ L, ∀k ∈ K, ∀t ∈ T, (2.12)

āktilψ ≤ d̂ktlψ, ∀i ∈ VDC , ∀l ∈ L, ∀k ∈ K, ∀t ∈ T, (2.13)

∑
l∈L

āktilψ ≤
∑
j∈W

x̄ktjiψ , ∀i ∈ VDC , ∀k ∈ K, ∀t ∈ T, (2.14)

d̂ktlψ = dktlψ +
∑
k′∈K

sk
′k(d̂k

′t−1
lψ −

∑
i∈VDC

āk
′t−1
ilψ

), ∀l ∈ L, ∀k ∈ K, ∀t ∈ T, (2.15)

∑
i∈V

fiyi +
∑
i∈W

f̂iŷi +
∑

(i,j)∈A

f̂ijx̂ij +
t∑

t′=1

∑
(i,j)∈A

∑
k∈K

ckijx̄
kt′

ijψ
≤

z0 +
t∑

t′=1

zt
′
, ∀t ∈ T,

(2.16)

r̂ktjψ ≤ rkt−1
jψ

∀j ∈ VW , ∀k ∈ K, ∀t ∈ T, (2.17)

∑
k∈K

r̂ktjψ ≤ ujg
t
jψ
ŷj ∀j ∈ VW , ∀t ∈ T, (2.18)

∑
k∈K

rktjψ ≤ ujg
t
jψ
ŷj ∀j ∈ VW , ∀t ∈ T, (2.19)

rktjψ = r̂ktjψ +
∑

(i,j)∈A

x̄ktijψ −
∑

(j,i)∈A

x̄ktjiψ , ∀j ∈ VW , ∀k ∈ K, ∀t ∈ T, (2.20)

∑
(i,j)∈A

x̄ktijψ ≤ nkti ∀i ∈ VI , ∀k ∈ K, ∀t ∈ T, (2.21)
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x̄ktijψ ≥ 0, āktilψ ≥ 0, rktiψ ≥ 0, r̂ktiψ ≥ 0, ∀(i, j) ∈ A,

∀i ∈ V, ∀k ∈ K, ∀t ∈ T.
(2.22)

The Objective Function (2.2) minimizes the expected recourse value (i.e., the ex-

pected total penalty for unmet demands). Constraints (2.3) ensure that a service

can only be selected if its origin and destination hubs are part of the HSCN.

Constraints (2.4) indicate that inventory resources at a warehouse can only be

selected if that warehouse is also part of the HSCN. Similarly, Constraints (2.5)

indicate that the selection of transportation resources for a service is conditional

to it being included in the HSCN. The initial budget, which limits the total cost

incurred for the selected hubs and services and their resources in the first stage,

is imposed by Constraints (2.6). Constraints (2.7) indicate that each beneficiary

group should be assigned to a single DC, whereas Constraints (2.8) prohibit as-

signing beneficiary groups to DCs that are not part of the HSCN. Finally, the

necessary integrality requirements and bounds imposed on the first stage decision

variables are included by Constraints (2.9).

In the second stage, the operational decisions are made. The Objective Func-

tion (2.10) minimizes the total penalty associated with the unmet demands for

all beneficiary groups over the entire planning horizon. Constraints (2.11) are the

service capacity Constraints, ensuring that, at each period, the quantity of criti-

cal supplies transported by each service is limited to its assigned transportation

capacity. After transferring the critical supplies to the DCs, they are allocated to

the beneficiary groups. Constraints (2.12) impose the critical supply limits that

are available at each DC to serve the beneficiary groups that are assigned to it.

To impose the non-anticipativity requirements in each period, the allocated quan-

tity of critical supplies to each beneficiary group is limited by its demand at that

period which is enforced by Constraints (2.13). Constraints (2.14) ensure that in
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each DC, the total quantity of allocated critical supplies is limited by the quantity

that is available at that DC. Constraints (2.15) compute the total demand at each

period as the summation of the base demand and the residual demand multiplied

by the spread factor. Constraints (2.16) are the budget Constraints that limit the

cumulative expenses at a given time period to be less than equal to the sum of

the initial budget and the donations received up to that time period.

Constraints (2.17) indicate that the inventory level at the beginning of each period

is limited by the inventory level at the end of the previous time period. At each

period, the inventory level for a warehouse cannot exceed its inventory capacity.

These limits are imposed by Constraints (2.18) and (2.19). The inventory level

for a hub at the end of a period is computed based on its inventory level at the

beginning of the period plus the quantity of critical supply that is received at the

hub minus the quantity of critical supply that is delivered from it. Constraints

(2.20) calculate the inventory level for each warehouse at the end of each period.

The ports of entry do not have inventory capacity, therefore all received critical

supplies at a period must be sent to the warehouses. Since we have a limit on

the maximum level of critical supplies that can be received at each port of entry

from international humanitarian organizations and other donors, the output flow

of critical supplies at each port of entry must not exceed such level. Constraints

(2.21) ensure that these limits are imposed in all periods. Finally, Constraints

(2.22) define the bounds of the variables used in the second stage.

2.5 Experimental results

In this section, we design and apply a series of numerical experiments to study

the performance of the proposed model on a practical HSCN design problem

(derived using a particular case study). Subection 2.5.1 introduces the considered
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case study, obtained using real-world data from Indonesia’s 2018 earthquake. In

Subsection 2.5.2 we present the numerical experiments that are conducted and

the detailed results obtained on the case study. Subsection 2.5.2 reports lower

and upper bounds when the introduced optimization model is used to solve the

considered problem instances, as well as stability results related to the size of

the used scenario samples. This subsection also investigates the importance of

explicitly considering the uncertainty when solving the problems, as well as the

impact of the available budget and the spread-factor on the performance of the

designed HSCN over the planning horizon. Finally, Section 2.5.3 summarizes the

managerial insights obtained from the experiments conducted in Section 2.5.2.

2.5.1 Data generation for the case study

Our case study focuses on the 2018 earthquakes in Indonesia. On the 29th of

July 2018, a 6.4 magnitude earthquake occurred on the island of Lombok. This

earthquake had more than 1,500 aftershocks, three of which were particularly

strong: a 7.0 magnitude earthquake on the 5th of August 2018, a 5.9 magnitude

earthquake on the 9th of August 2018, and a 6.4 magnitude earthquake on the 26th

of August 2018. These earthquakes caused 564 deaths, 1,584 injured, and 445,343

people displaced into more than 2,700 camps (i.e., beneficiary groups) (IFRC,

2021a). Immediately after the earthquakes, Indonesia’s government announced a

state of emergency, which ended on the 26th of August 2018, by declaring the

transition to the long-term recovery phase. We here consider this period of 28

days as the short-term recovery phase of our planning problem. The planning

horizon is then divided into four periods, each period being one week-long. To

model the demands associated with the locations of the beneficiary groups, we

used a data set made available by the International Organization for Migration

(IOM) (IOM, 2019), which indicates the number of individuals and households
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associated with the beneficiary group locations. Our study focuses on a specific

part of the island of Lombok (Pringgabaja, Suela, and south of Aikmel), where

13,177 individuals were displaced into 71 beneficiary groups.

The International Federation of Red Cross and Red Crescent Societies (IFRC)

and its local partner Palang Merah Indonesia (PMI) are among the active hu-

manitarian organizations in the region. We analyzed the “Emergency Plan of Ac-

tion Operation" reports and “Operation Update" provided by the IFRC (IFRC,

2021a) to better understand the region’s state and the challenges it faced regard-

ing the humanitarian operations after the earthquake. Based on these reports,

we located the ports of entry and the warehouse locations that IFRC and PMI

used in their HSCN. Furthermore, we also learned that PMI signed agreements

with third-party logistics companies to use their fleets to transport critical sup-

plies over their HSCN (IFRC, 2021a). The airport on the island was damaged,

which allowed only small airplanes to land. Hence, the larger aircrafts transport-

ing supplies would land at the Surabaya airport, located on the Java island (IFRC,

2021a), and most of the critical supplies were then shipped to Lombok by boats.

The IFRC used four points of entry, including: Serang port, Gresik port, and

Juanda International Airport on Java island, and Lombok airport on the Lombok

island. It further had six warehouses on Lombok. According to the IFRC reports,

water was provided to beneficiaries via 21 water trucks operated from a single

location on the island. Considering that the water supply came from a different

relief network (which did not share resources with the rest), this study focuses

on the following types of critical supplies: shelter, food, and hygiene (e.g. soap,

toilet paper, and sanitary pads) (IFRC, 2021a). For these three critical supplies,

we consider unit penalty values of 5, 2 and 3, respectively. Each household has

a demand of 1 unit for shelter and hygiene items, while their demand for food

corresponds to a total of 28 units (which corresponds to 1 unit per day, given
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that the total planning horizon spans 28 days). As such, providing food has the

highest priority in the objective function.

In order to standardize and harmonize the critical supplies in emergency op-

erations, the International Federation and the International Committee of the

IFRC have published the standard products catalog (IFRC, 2021b). This catalog

presents the details regarding all critical supplies, including weight, volume, and

the number of beneficiaries each unit can support during a given time frame (if

applicable). Using this catalog, we were able to calculate the amount of critical

supplies required for each individual or household during each period.

Although we extracted the values of multiple parameters from the IFRC reports,

accurate values for some parameters were missing. Additional sources were thus

needed to complete our data set. To evaluate the service capacities and associated

costs, we consulted local vehicle rental websites. We first chose two types of trucks

(i.e., medium duty trucks for services between ports of entry and warehouses

and pick-up trucks for services between warehouses and DCs) from the available

trucks and calculated the fixed-cost and the flow-cost for renting the trucks using

the pricing information from the website. However, since the reported costs on

the website were priced for one delivery between each origin and destination,

we defined a service resource between an origin and destination pair to operate

only one delivery per period. Specifically, for the flow-cost, we multiplied the per

kilometer cost of transporting the critical supplies obtained from the local website

by the distance between the hubs. To calculate the distances between the different

locations, we used an online routing engine (Luxen & Vetter, 2011) that operates

on the OpenStreetMap data. We were thus able to evaluate both the walking and

the driving distances between the different geographical locations (i.e., the driving

distance between the ports of entry and warehouses, the driving distance between

warehouses and DCs, and the walking distance between the DCs and beneficiary
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groups).

Another set of parameters that were not mentioned in the IFRC reports are the

locations of the DCs. Hence, we generated a set of possible DC locations to com-

plete our data set as follows. It is first assumed that beneficiaries will, most likely,

have to walk to the DCs to acquire their critical supplies. Therefore, the best

candidate locations for the DCs are those that are close to the beneficiary groups.

Hakimi Hakimi (1964) showed that in a given graph if one is interested in finding

the specific location that minimizes the total distance between the selected loca-

tion and all nodes in the graph then the location will necessarily be one of the

nodes. When applying this result to the present case, the location that minimizes

the total distance from all beneficiary groups is necessarily among the beneficiary

group’s location. Therefore, all beneficiary group locations are potential candi-

dates for the DC locations. In order to reduce the number of candidate locations

for the DCs, we clustered the beneficiary groups using the DBSCAN algorithm

(Ester et al., 1996). DBSCAN is a density-based clustering algorithm that clus-

ters the beneficiary groups based on two parameters: a parameter indicating the

neighbourhood radius for the DCs to be included in the same cluster and a param-

eter specifying the minimum number of neighbours within each cluster, impacting

the cluster’s density. Different values for these two parameters result in different

clusters. As typical in clustering analysis, a domain expert then selects the clus-

ter most useful in practice (Mendes & Cardoso, 2006). Figure 2.2 presents the

locations of the beneficiary groups and the four candidate locations for the DCs

that were obtained following the cluster analysis that was performed using the

DBSCAN algorithm.
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Figure 2.2: Original beneficiary groups and their respective clusters presented on

the OpenStreetMap (OpenStreetMap contributors, 2022). The blue circles

represent the beneficiary groups and the red circles indicate the distribution

centers.

Scenario generation

In order to approximate the two-stage stochastic programming and, to study the

performance of the obtained solution, we require a set of scenarios that properly

captures the probable variations of the uncertain parameters’ values. Since each

natural disaster is a unique event that is often different from previous ones (Chen

et al., 2011), relying on experts’ opinions is a common approach to formulate

the uncertainty that humanitarian organizations face when planning operations

(Karimi & Hüllermeier, 2007). The experts’ opinions are obtained based on the

damage assessments conducted after a natural disaster occurs. Since the damage

assessments are time-consuming, the affected region is often divided into smaller

sub-regions where the assessments are conducted in a sample set of locations (Bal-

cik, 2017; Balcik & Yanıkoğlu, 2020). Considering that we do not have access to

specific assessments, we simulate the experts’ opinions to characterize the param-

eter uncertainties. Expert estimations for humanitarian operations are commonly

given by a triangular distribution for each uncertain parameter (Benini et al.,
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2017; Grass et al., 2023; Hakimifar et al., 2021), including an optimistic value,

a pessimistic value, and a most likely value. We therefore simulate the experts’

predictions for the values of the uncertain parameters using this three-point es-

timation technique. We consider a total of three experts, each of which provides

their assessments for each uncertain parameter (thus providing a specific triangu-

lar probability distribution for each stochastic parameter assessed by each expert).

The explicit values provided by each expert were randomly generated using the

available dataset. Specifically, we assume that the available dataset of the un-

certain parameters obtained from the humanitarian organizations’ websites is a

realization of the triangular distributions provided by the experts. Therefore,

while the characteristics of the triangular distributions are chosen randomly, the

minimum and maximum values of distributions embrace this realization. Finally,

we assume that the same confidence level was associated to each expert’s assess-

ments. We thus generated an equal number of scenarios from the expert-specific

distributions. Furthermore, the probability of occurrences of the scenarios is as-

sumed to be equal.

Ground Truth

A total of 1000 scenarios sampled from the triangular distributions provided by

the three experts (334 first expert, 333 second expert, 333 third expert) were

used to represent the ground truth (i.e., an accurate approximation of how the

stochastic parameters can randomly vary). However, given the complexity of the

proposed model, solving it using all the scenarios that define the ground truth is

not computationally tractable. Therefore, we use the Sample Average Approxima-

tion (SAA) (Kleywegt et al., 2002) method to generate more manageable scenario

sets which can be used to efficiently solve the two-stage stochastic model. Yet,

it is crucial to assess the effects of the sample size on the in-sample stability and
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out-of-sample stability of the solutions obtained (Kaut & Wallace, 2003). After

choosing an appropriate sample size (i.e., one that provides a satisfactory level of

stability), the problem can be solved by generating a scenario set with the pre-

scribed size and then evaluating the obtained solution using the ground truth to

assess its expected performance in practice.

2.5.2 Computational Results

In this subsection, we report the numerical results for the two-stage stochastic

model in the context of the considered case study. We start by studying the

effects of varying the number of scenarios on the solutions obtained by solving

the two-stage model by performing in-sample stability and out-of-sample stability

analyses (Kaut & Wallace, 2003) in Subsection 2.5.2.1. Then in Subsection 2.5.2.2,

we obtain lower and upper bounds for the planning solution over the considered

ground truth. Since that capacity and demand are the uncertain parameters, we

separately study the effects of each of these parameters on the obtained solution.

In Subsection 2.5.2.3, we compare the performance of the solution obtained from

our two-stage model with its counterpart models in which the uncertain parame-

ters are replaced with their deterministic counterparts. In our problem, we assume

that the available budget is known beforehand. In Subsection 2.5.2.4, we evaluate

the effects of the available budget. Finally, in Subsection 2.5.2.5, we study the ef-

fects of the spread factor and compare the different solutions induced by changing

the values of the spread factor. The implementations are done using the Pyomo

software package (Hart et al., 2011, 2017) on a machine with Intel e5-2630 v4 2.2

GHz CPU and 256 GB of memory.
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2.5.2.1 In- and Out-of-Sample Stability

In this subsection, we explore the impact of the number of scenarios used to solve

the HSCN problem on the obtained solution. When solving a two-stage model,

increasing the number of scenarios obtained using an appropriate sampling method

improves the approximation of the uncertain parameters. However, in practice,

the resulting optimization problem should remain solvable in a reasonable amount

of time. Solving an optimization problem with distinct sets of scenarios (even of

the same size) may lead to different solutions. We now consider both the in-

sample and out-of-sample stability to analyze the effect of sample size on the

final solution quality. An in-sample stability test evaluates the stability of the

obtained solutions over different scenario sizes in terms of their reported objective

function value. Likewise, an out-of-sample stability test evaluates the stability of

the expected objective function value of the obtained solutions over the ground

truth.

To evaluate the in-sample stability, we solve our two-stage model with a specific

number of scenarios with 15 different randomly generated scenario sets. Then,

we calculate the average and standard deviation of the objective function values.

By repeating this process for different scenario numbers, we study the effect of

the number of scenarios on the in-sample stability of the studied problem. Table

2.5 represents the results obtained, indicating that, as the number of scenarios

increases, the standard deviation significantly decreases, which translates as an

increase in the in-sample stability. As the number of scenarios increases from 10 to

50, the Coefficient of Variation (CV) (i.e., the ratio of the standard deviation to the

average) is reduced from 5.72% to 3.36%. Furthermore, as the number of scenarios

increases to 200, the CV decreases to 2.03%. Considering the computational

cost of using 200 scenarios compared to 50 and the slight reduction over the CV
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value, 50 is the best candidate for the following experiments. Since the average

objective function values in this table are calculated over small scenario sets (not

the ground truth), they are not indicative of the quality of the obtained solutions.

The abbreviation O.F. in the following tables stands for the objective function.

number of

scenarios

average of O.F. value
standard deviation of O.F.

value

10 7, 168.60 410.70

20 7, 210.70 439.40

30 7, 315.50 370.34

50 7, 138.60 240.25

100 7, 466.50 285.35

200 7, 258.90 147.73

Table 2.5: The in-sample stability analysis results.

In addition to the in-sample stability, we also study the out-of-sample stability of

the problem over different scenario sizes. In a similar process, we apply the first-

stage solutions obtained from the in-sample stability test on the entire ground

truth and calculate the average value and the standard deviation of the objective

function over all 15 solutions obtained for each scenario size. Table 2.6 presents

the results obtained by repeating this process for different scenarios sizes. Here the

objective function value refers to the entire ground truth and therefore indicates

the quality of the solutions. According to the presented data in Table 2.6, by

increasing the scenario size from 10 to 50, CV decreases from 2.34% to 0.03%.

However, by increasing the scenario size to 200, CV decreases to 0.00%, which

is negligible compared to the computational cost of using 200 scenarios. Based

on the results of these two tables, we select 50 as the number of scenarios for

our problem and use it in all following experiments, given its acceptable standard

deviation both in in-sample and out-of-sample stability tests.
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number of

scenarios

average of O.F. value
standard deviation of O.F.

value

10 7, 419.40 173.92

20 7, 303.57 7.55

30 7, 302.88 8.50

50 7, 299.70 2.33

100 7, 299.09 0.42

200 7, 298.76 0.19

Table 2.6: The out-of-sample stability analysis results.

2.5.2.2 Bounds and Value of Stochastic Information

We now compute both an upper and a lower bound for the HSCN problem. To

obtain a lower bound, the Wait-and-See (WS) variant of the problem is solved

(Madansky, 1960; Tintner, 1955). In the WS, the value of the uncertain parame-

ters is considered known (i.e., the implicit assumption being applied here is that

one can wait until all uncertain parameters become known before optimization is

applied). We therefore obtain the WS objective function value by solving each

scenario of the ground truth individually and then averaging over their optimal

solution values.

As an upper bound, we solve the deterministic version of the problem by replacing

the uncertain parameters with their expected values (Dantzig, 1955; Madansky,

1960). Then we apply the solution to the ground truth scenarios to calculate the

expected objective function value of the deterministic solution, represented by

EEV. Table 2.7 indicates the calculated upper and lower bounds over the ground

truth.
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Concept Value

EEV (upper bound) 7, 954.42

WS (lower bound) 7, 298.36

Table 2.7: Upper and lower bounds for our problem.

We now calculate the Expected Value of Perfect Information (EVPI) (Birge &

Louveaux, 2011), representing the possible improvement of the objective function

value if the exact realizations of the uncertain parameters were known. We use

the objective function value obtained in Subsection 2.5.2.1, on the ground truth

as follows:

EV PI = RP −WS = 7299.70− 7298.36 = 1.34.

Such a small value of EVPI indicates that the two-stage stochastic problem op-

timized on the 50 considered scenarios finds a solution that performs quite well

on average, and having access to perfect information only marginally reduces the

penalty in the objective function. Next, we investigate whether it is worth solv-

ing the stochastic problem instead of its deterministic counterpart. We therefore

calculate the Value of Stochastic Solution (VSS) (Birge & Louveaux, 2011), rep-

resenting the objective function gain by explicitly considering the uncertainty in

the model:

V SS = EEV −RP = 7954.42− 7299.70 = 654.72.

Such a high VSS value suggests that solving the stochastic variant may signifi-

cantly improve the solution quality and is certainly worthwhile, considering that

the objective function value is linked to population health.
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2.5.2.3 Importance of modeling uncertainty

To study the effects of the considered uncertain parameters on the solutions, we

now solve our two-stage model under three different settings. The first setting

replaces the uncertain capacity parameters with their expected values. There-

fore, the only remaining uncertain parameters in the model are the demands. In

the second setting, we replace the uncertain demand parameters with their ex-

pected values, but the capacity parameters remain uncertain. In the third setting,

both parameters are considered uncertain. Table 2.8 presents the average objec-

tive function values and their standard deviations over 15 runs for each setting.

Analyzing the objective function column, the best results are obtained on the

setting where both the capacity and demand parameters are uncertain. Particu-

larly, considering the capacities as uncertain parameters leads to a considerable

improvement in the average value of the objective function. Next, by compar-

ing the standard deviation of these three settings, we conclude that considering

the uncertainty of demand and capacity in the optimization model considerably

improves the out-of-sample stability of the solution.

Capacity Demand Average Value of O.F.
Standard Deviation of

O.F.

uncertain expected value 7, 319.49 29.21

expected value uncertain 7, 730.76 194.69

uncertain uncertain 7, 299.70 2.33

Table 2.8: Effect of modeling uncertainty on the optimal solution of the

stochastic model (using 50 scenarios over 15 runs).
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2.5.2.4 Impact of available budget

It is expected that the available budget plays a pivotal role in the quality of the

final solution obtained as it limits the design and operational costs that are paid

for each stage and time period. As we mentioned in the introduction, the final

amount of donations received is often less than the amount initially requested.

Therefore, we now analyze the impact of a possible budget shortage on the per-

formance of the designed HSCN. Such analysis helps decision-makers to evaluate

the robustness of the designed HSCN. To this end, we define two parameters for

the budget: the amount the decision-makers anticipate, which is denoted zexp (i.e.,

the expected budget), which we distinguished from the actual budget zact (i.e., the

amount actually received). The questions that we are investigating through this

experiment are: (1) How does a HSCN perform if we expect a budget of zexp, but

the actual budget turns out to be zact? (2) How would the HSCN perform if we

knew the actual budget value at the design time and the HSCN is thus designed

using zact?

To answer the first question, we investigate the case where we design the HSCN

using zexp, but the available budget in practice is zact. In this part of the experi-

ments, we first solve the two-stage model using the zexp as the budget. We then

update the budget to zact and apply the designed HSCN on the ground truth. Ta-

ble 2.9 summarizes the results obtained in this experiment. In order to be able to

track the expected penalty over the planning horizon, it is calculated separately

for each time period. In the first row of Table 2.9, the value of the expected

budget is equal to the actual budget (i.e., the expected budget at design time is

received during the operation). As represented in the per period penalty column,

unlike in other periods, the second period has a very low penalty, indicating that

almost all the demand in this period is satisfied. In the second row, the actual
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budget is set to 80 percent of the expected budget leading to an increase in the

expected penalty over all periods. The per-period penalty for this budget has a

similar pattern as in the first row. When comparing the total penalty of the first

two rows, one observes that: when the actual budget is reduced by 20 percent

the increase in the overall penalty is only marginal. This observation proves very

useful to decision-makers in the present setting. For example, in the context of

our specific case study, this amount (corresponding to 20 percent of the origi-

nal budget) may find a more effective use in other operations of the short-term

recovery phase not considered in this planning problem. In the third row, the

actual budget is reduced to 60 percent of the expected budget, resulting in a high

increase in the expected penalty of the HSCN. It is also observed that most of

this increase belongs to the first two periods. In order to reduce the impact of

the spread factor on subsequent periods, the planning solution prefers to satisfy

the demand in the early periods as much as possible, when the budget is limited.

Finally, in the last row, with an actual budget equal to 40 percent of the expected

budget, there is an even higher increase in the expected penalty on the HSCN

performance.

actual budget

zact

O.F. value zexp per period
total O.F. value zexp

First Period Second Period Third Period Fourth Period

zexp 2, 116.92 10.30 2, 850.16 2, 322.78 7, 300.16

0.8zexp 2, 147.75 10.57 2, 871.15 2, 333.28 7, 362.75

0.6zexp 13, 903.64 6, 042.45 2, 986.34 2, 608.43 25, 540.86

0.4zexp 134, 238.84 134, 843.53 3, 065.40 3, 330.40 275, 478.17

Table 2.9: Effect of budget on the optimum solution of the stochastic model

(average over 15 runs using 50 scenarios).

In the second part of the experiment, the value of the actual budget at the design

time is assumed known. Therefore, we solve the two-stage model using different

values of zact and apply the obtained HSCN to the ground truth. Figure 2.3
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compares the obtained results of the two parts of the experiment. The impact of

using zexp at design time on the objective function value is negligible compared

to the effect of the budget deficit indicating that a lack of budget cannot be

compensated by a more prudent planning.
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Figure 2.3: Penalty (objective function value) of the designed HSCN using zexp

as budget (blue) and using zact as budget (red) over the ground truth with

budget zact.

2.5.2.5 Impact of the spread factor

In this subsection, the effects of the spread factor value (representing, e.g. the

contagion level of diseases) on the performance of the obtained solution are stud-

ied.

We consider two different budget values, z and 2z. For each budget level we

evaluate three values for the spread factor: 0 (i.e., no spread), the identity matrix

(represented by I), and 2I. For the sake of the experiment, we assume that the

unmet demand of each critical supply only impacts itself (but not other supplies)
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in the subsequent time periods (as represented by the identity matrix).

Table 2.10 represents the results of this experiment. To better analyze the effect

of the spread factor on the HSCN’s performance, we present the expected penalty

separately per period and in total. An interesting pattern in the results is that, as

the spread factor increases, the expected penalty shifts from early time periods to

the end of the planning horizon. This is explained by the model’s effort to avoid

unmet demand early in order to avoid excessive spread over time. The results of

this experiment are also visualized in Figure 2.4. As the spread factor increases,

the impact of a higher budget on improving the objective function value decreases.

An important observation in this experiment is that considering a lower value for

the spread factor parameter can irreparably misguide the decision-makers on the

performance of the designed HSCN.

Objective Function Objective Function Value (per period)

Spread

Factor

Budget Value(Total) First Period Second Period Third Period Fourth Period

0 z 2, 093.54 2, 085.57 7.97 0.00 0.00

0 2z 0.90 0.90 0.00 0.00 0.00

I z 7, 300.16 2, 116.92 10.30 2, 850.16 2, 322.78

I 2z 3, 881.29 0.00 0.00 1, 989.06 1, 892.23

2I z 14, 858.83 7.32 0.00 5, 078.27 9, 773.23

2I 2z 13, 540.26 0.15 0.00 4, 516.25 9, 023.86

Table 2.10: Effect of spread factor on the performance of the HSCN performance

(average over 15 runs using 50 scenarios).
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Second Stage Expenses (per period)

Spread

Factor

Budget
First Stage

Expenses
First Period Second Period Third Period Fourth Period

0 z 60, 098.44 12, 682.30 10, 896.03 10, 913.85 10, 809.37

I z 58, 628.16 12, 428.91 11, 500.73 11, 417.99 11, 424.22

2I z 57, 794.27 12, 428.92 11, 521.51 11, 909.61 11, 745.70

Table 2.11: Effect of spread factor on the expenses of the optimized HSCN

(average over 15 runs using 50 scenarios).

Table 2.11 represents the expenses in each stage in this experiment. The first stage

expenses represent the HSCN design costs and the second stage expenses represent

the operational costs in each period. The results indicate the importance of the

spread factor as the first stage expenses of the designed HSCN with a spread

factor value of 0 are considerably higher than models with a non-zero spread

factor parameter. In other words, while the model can afford to spend more on

the HSCN design when the spread is low, it tends to spend more on controlling

disease (i.e., unmet demand) when the spread is high.
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Figure 2.4: Impact of spread factor and available budget on the performance of

the HSCN.

Given that the real spread-factor may not be known exactly to the planner, we

now investigate the potential impact of under- or overestimating the spread factor

on the performance of the designed network. To this end, we solved the problem

assuming three different spread factor levels (0, I, and 2I) and then evaluated

the planning solutions under the assumption that any of those spread factors

may occur in practice. Figure 2.5 visualizes the heatmaps and the total penalties

obtained from this experiment. One observes that underestimating the spread

factor can have a disastrous effect on the total penalty. In contrast, overestimating

the spread factor seems to hold little risk, since it only marginally increases the

penalty if, in reality, a smaller spread is present. This suggests that the planner

should rather assume a high spread factor in the planning model, which holds a

smaller down-side risk as doing the opposite (i.e., assuming a small spread factor).
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((a)) s′ = 0, s = 0, p = 2093 ((b)) s′ = 1, s = 0, p = 2105 ((c)) s′ = 2, s = 0, p = 2115

((d)) s′ = 0, s = 1, p = 8661 ((e)) s′ = 1, s = 1, p = 7300 ((f)) s′ = 2, s = 1, p = 7648

((g)) s′ = 0, s = 2, p = 20256 ((h)) s′ = 1, s = 2, p = 18718 ((i)) s′ = 2, s = 2, p = 14858

Figure 2.5: Heat-maps indicating the impact of overestimating or

underestimating the spread factor value on the performance of the designed

network. The spread factor value used to solve the model is represented by s′,

while the real spread factor used to evaluate the solution is s, resulting in

expected penalty p.

Finally, Table 2.12 characterize the best HSCNs obtained using different values

for the spread factors. As the spread factor increases, the number of selected

hubs and services reduces. The same holds true for the number of inventory

and transport resources as the spread factor increases. These results support the

previous conclusion obtained from Table 2.11, showing a decrease in the first stage
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expenses as the spread factor values increase. However, as represented in Figure

2.4, the changes in the obtained solution cannot fully compensate for the increase

in the expected penalty caused by the increase of the spread factor values.

spread factor point of entry warehouse
warehouse

resources
DC service

service

resources

0 3 3 17 4 15 116

I 2 3 14 4 12 106

2I 2 3 14 4 12 100

Table 2.12: Characteristics of the best HSCNs obtained by different spread

factor values.

2.5.3 Managerial Insights

Based on the proposed model and the experimental results, we can derive several

managerial insights for humanitarian organizations dealing with the here consid-

ered HSCN design problem:

1. As the HSCN design problem includes a high level of uncertainty, using

an appropriate number of scenarios to analyze in-sample and out-of-sample

stability is crucial to obtain a reliable and valid solution.

2. Although the stochastic model is more challenging to solve than its deter-

ministic counterpart and, ultimately, requires higher computational times

from the solver, the solution obtained using the stochastic model is more

flexible and thus adaptable to the random fluctuations that lead to the dif-

ferent realizations of the uncertain parameters.

3. An overestimation of the available budget may have dire effects on the total

penalty in the objective function (see Section 5.2.4., “Impact of available

budget”). For example, while a 20% decrease of the budget has almost no
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effect on the overall penalties within our case study, a 40% decrease more

than triples the expected penalty, and a 60% decrease results in a more

than 30-times higher penalty. This illustrates that the overall harm to the

affected population exponentially increases as the budget decreases.

4. Underestimating the spread factor for unmet demand may severely compro-

mise the health of the affected population (see Section 5.2.5., "Impact of the

spread factor"). In our case study, ignoring or underestimating the spread

factor results in unnecessary high penalties in certain regions. Specifically,

assuming no spread factor (i.e., S = 0) in the optimization model, while, in

fact, there is a high spread (i.e., S = 2I), results in a tenfold increase of the

total penalty (from 2093 to 20256). In contrast, overestimating the spread

factor seems to hold little risk. Assuming a high spread factor (i.e., S = 2I),

while, in fact, there is no spread (i.e., S = 0) results in a marginal penalty

increase (from 2093 to 2115).

2.6 Conclusion

A fast and effective humanitarian response post-disaster is essential to avoid last-

ing negative effects on the affected communities. Effective use of the available

response budget is therefore of the utmost importance. In this work, we have

proposed a two-stage stochastic model to solve the HSCN design problem after

a natural disaster to cover the aid provided over a given planning horizon. We

propose a new approach to model the demand in a multi-period HSCN design

problem setting that is more realistic. Our approach introduces a spread factor,

which addresses the effects of each critical supply’s unmet demand on all critical

supplies’ demand in the subsequent time periods.

The proposed two-stage stochastic optimization model was numerically evaluated
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in a case study based on the 2018 earthquake that occurred in Indonesia. The in-

stances used for this case study were derived using real-world data gathered from

the grey literature published by IFRC and PMI following this catastrophic event.

This data was further complemented by information collected via local commercial

websites to estimate the missing parts of the dataset. The stochastic optimiza-

tion model was then used to formulate the considered problem while explicitly

accounting for both demand and available capacity (both logistical infrastructure

and transportation services) uncertainty. In order to provide an accurate rep-

resentation of the uncertainty, we generated a ground truth consisting of 1000

scenarios sampled from the distributions of the uncertain parameters.

Multiple experiments were designed and conducted using the proposed model.

The results demonstrate the importance of considering uncertainty and the pro-

posed spread factor in the HSCN design problem. Compared to its deterministic

counterpart, the proposed stochastic model provided improved solution quality in

terms of the objective function value as evaluated on the ground truth and its

out-of-sample stability. The experiments also highlight the benefits of using the

spread factor to provide decision-makers with insights regarding the crisis’ depth

and potential development over time in the affected region.

Furthermore, we studied the effect of budget shortages on the expected perfor-

mance of the designed HSCN. In the investigated case study, the results suggest

that the designed HSCN may be able to resist a certain level of budget shortage.

However, as the shortage level increases the HSCN’s expected performance may

quickly decrease to an unacceptable level. Such experiments may help decision-

makers to identify a more appropriate amount for the budget. The additional bud-

get, which does not lead to a noticeable reduction in the unmet demand penalties

considered, may therefore be allocated to other operations for more efficient use.

The methodology introduced in this paper can thus assist the decision-makers
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by providing them with a better understanding of the crisis and how aid can be

efficiently distributed.

In future work, one may extend the proposed methodology by considering other

relevant aspects of the problem setting. Specifically, introducing concepts of fair-

ness and equity when formulating the objective function would appear as a par-

ticularly impactful and challenging avenue of research to pursue. Additionally,

investigating how ambiguity, which may affect the formulation of the uncertain

parameters, would also appear as a relevant path of investigation. Finally, one

may also consider uncertainty in some of the parameters currently considered

deterministic, for example, the total quantity of available critical supplies.



CHAPTER III

HANDLING AMBIGUITY IN STOCHASTIC HUMANITARIAN SUPPLY

CHAIN NETWORK DESIGN

Chapter Information

An article based on this chapter has been submitted to a scientific journal.

Abstract

The design and operation of Humanitarian Supply Chain Networks after a natural

disaster are among the most complex activities conducted by humanitarian orga-

nizations, involving different sources of uncertainty. Typically, the assessments

of damage and the resulting demand for resources in the affected region are esti-

mated using different data sources (e.g. surveys and satellite imagery). However,

inconsistent estimates of uncertain parameters obtained from the use of multiple

data sources may result in ambiguity, posing difficulties to define the planning

problem. We here aim to mitigate such ambiguity by developing four mathe-

matical models that deal with ambiguity with varying degrees of conservatism

regarding the obtained estimations of the uncertainty. The performance of each

proposed model is evaluated, considering two data sources across four ambiguity

patterns and 20 problem instances generated using real-world data from the 2018

Indonesia earthquake. The results highlight the benefits of the Minimization of
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Maximum Data-Source Penalty when the ambiguity pattern is unknown and the

decision-maker has equally high confidence in all data sources.

Keywords: Humanitarian Supply Chain; Humanitarian Relief Network; Stochastic

Programming; Ambiguity; post-disaster; Aid Planning

3.1 Introduction

In 2013, the total amount of funding requested by humanitarian organizations

worldwide was 12.8 billion US dollars (UNOCHA, 2021b). However, the total

amount of donations received by humanitarian organizations in the same year

was 8.3 billion US dollars (UNOCHA, 2021b), accounting for only 65% of the

requested funding. In all other years of the previous decade, the satisfaction rate

of requested annual funding requested by humanitarian organizations was even

lower. Since then, the total amount of funding requests of humanitarian organi-

zations has increased to 51.6 billion US dollars (UNOCHA, 2021b) in 2022, from

which only 29.7 billion US dollars was provided, covering 57.5% of the requested

amount. These numbers indicate severe budget shortages for humanitarian orga-

nizations. Three-quarters of the expenses of humanitarian organizations are re-

lated to the logistics of humanitarian relief operations (Besiou & Van Wassenhove,

2020; Van Wassenhove, 2006; Stegemann & Stumpf, 2018). An efficient manage-

ment of available resources for humanitarian relief operations is thus paramount

for efficiently providing relief to the affected population. This includes allocating

the available budget over time, the effective use of the available staff to perform

and support the humanitarian operations, and the planning of the transportation

operations to distribute critical supplies.

Effective distribution planning of critical supplies among vulnerable people after a

natural disaster is crucial, given its direct impact on the population’s health. The
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required planning is complex and mandates coordination among several stake-

holders, while a series of crucial decisions need to be made to ensure operational

success. A major complexity of the planning process stems from the high level

of uncertainty in the informational environment in which tactical decisions, such

as those related to infrastructure and logistics services, are made. Furthermore,

a considerable multitude of stakeholders, including the governments, military,

donors, and humanitarian organizations, require coordination at multiple levels.

For example, when a disaster happens, the affected region is oftentimes divided

into subregions where different humanitarian organizations will operate. This en-

ables a better coverage of the affected region. For security reasons, military per-

sonnel are often called upon to protect humanitarian organizations, their staff, and

volunteers when deployed in the field to distribute aid. Communication and co-

ordination between the military and humanitarian organizations is thus a pivotal

part of the distribution of critical supplies. Lastly, a coordinated effort between

humanitarian organizations and the media is also required to bring attention to

the crisis that occurred, which, in turn, helps to fundraise and collect the required

budget for the necessary operations.

In this paper, we are specifically interested in the design and operation of a Hu-

manitarian Supply Chain Network (HSCN) after the occurrence of a natural disas-

ter over a defined planning horizon. An HSCN is defined as a physical network of

hubs that are used to receive, store, and distribute critical supplies among the vul-

nerable population, where transportation services are planned to move the critical

supplies. The design of an HSCN requires a comprehensive understanding of vari-

ous parameters, including geographic and demographic data, financial constraints

(e.g. the budget), and the availability of essential resources. While the values of

some of these parameters are known at the design time, the values of others (e.g.,

demand, transportation, and storage capacities) are uncertain and estimated dur-
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ing the assessments of damages and needs. Such assessment of damages and needs

starts immediately after the disaster, evaluating the damaged infrastructures and

demand of affected populations (Balcik, 2017; Balcik & Yanıkoğlu, 2020). The

assessment process must operate quickly to provide the required information to

decision-makers. Given that on-site assessments of all impacted locations within

a constrained timeframe are not feasible, supplementary data sources are em-

ployed to expedite the procurement of essential information. A data source (e.g.

surveys, satellite imagery, governmental reports, and media) is a database from

which data is collected or retrieved to help define probabilistic models accounting

for uncertain components involved in the HSCN design problem. Hence, a finite

set of probabilistic models is available to estimate the uncertain parameters in

the HSCN design problem. Although a high level of confidence is observed for

such obtained probabilistic models, they may have discrepancies, directly causing

ambiguity in the informational context in which the planning process of humani-

tarian relief operations occurs. As such, ambiguity in the HSCN design problem

is a problem setting in which inconsistent probability distributions are associated

with the uncertain parameters (Langewisch & Choobineh, 1996). For instance,

Grass et al. (2023) discuss a real-world humanitarian relief problem from Syria

where two data sources provide estimations on the level of demand and in some

demand points, the estimations barely overlap.

As a result, we are here interested in solving an HSCN design problem with dis-

crepancies in the estimations of parameter uncertainty characterization obtained

from various data sources. Specifically, we here consider uncertainty for param-

eters concerning demand and in both transportation and storage capacity. We

propose four distinct optimization models with varying levels of conservatism,

incorporating the inherent ambiguity in the HSCN design problem. This contri-

bution advances the understanding and set of available tools for HSCN design by
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accounting for ambiguity in the studied problem. We are specifically interested in

identifying the circumstances in which the proposed models are a superior choice

to the commonly used two-stage stochastic model in the literature that does not

explicitly account for such ambiguity. To this end, we conduct a comprehen-

sive empirical evaluation, assessing the performance of the proposed optimization

models. These experiments are performed with two different data sources and

encompass four unique ambiguity patterns. Moreover, the utilized instances are

generated from a 2018 Indonesian earthquake dataset, ensuring that the findings

have practical relevance.

The remainder of the paper is structured as follows. Section 3.2 covers the lit-

erature on handling uncertainty in HSCN design problems and the modeling of

uncertainty and ambiguity in general. Section 3.3 is dedicated to the problem

definition. The proposed models are introduced in Section 3.4. The experiments

and results are discussed in Section 3.5. Finally, we conclude in Section 3.6.

3.2 Literature review

In this section, we position our study within the existing literature. We review the

literature on both the humanitarian relief problems under uncertainty and the op-

timization methods proposed to model and solve them. Subsection 3.2.1 presents

a literature review on uncertainty in humanitarian relief studies, discussing the

sources of uncertainty, the assessment process to obtain the required informa-

tion after a disaster, and the ambiguity in estimating the uncertain parameters

involved in humanitarian relief planning. Subsection 3.2.2 then reviews the rele-

vant Operations Research literature on different approaches to model uncertainty,

including Stochastic Programming and Robust Optimization.
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3.2.1 Uncertainty in humanitarian relief

The design of an HSCN necessitates access to geographical and demographical

data, as well as information regarding the availability of critical supplies and other

essential resources (e.g. budget) for humanitarian relief distribution operations.

While some information is known at the design phase (e.g. the available routes

connecting hubs), some crucial information (e.g. the capacity of each route for

transportation) becomes available over time. It is crucial to consider such uncer-

tainty in the design process, providing adaptability to the changing circumstances

(e.g. varying realizations of demand), allocating resources more effectively, and

enhancing disaster response, ultimately saving lives and reducing the impact of

the disaster on the affected populations.

Demand is the most common and often the most impactful uncertain compo-

nent in humanitarian relief studies (Balcik & Beamon, 2008; Dönmez et al., 2021;

Anaya-Arenas et al., 2014). Additional sources of uncertainty in humanitarian re-

lief problems include a lack of information on the affected population, the urban

or rural structure of the affected region, and the intensity of the natural disaster

and its secondary impacts (e.g. landslide or aftershock). Further uncertain com-

ponents in humanitarian relief studies are travel time, supply, network reliability,

shipping cost, and shipping capacity (Anaya-Arenas et al., 2014; Tofighi et al.,

2016; Daneshvar et al., 2023).

Damage and demand assessments are conducted after the natural disaster, provid-

ing probabilistic models that represent the uncertain components of the planning

problem. Considering the limited time and a lack of resources available for the

assessments, the affected region is divided into smaller subregions, and the as-

sessments are taken by sampling sites in each subregion (Balcik & Yanıkoğlu,

2020; Balcik, 2017). In addition to the data obtained from on-site visits, other
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data sources are also available for the assessments. Data sources in humanitarian

relief problems either need experts’ interpretation (e.g. satellite imagery, me-

dia) or belong to previous natural disasters in the region (e.g. historical data)

(Yáñez-Sandivari et al., 2021). Previous disasters’ data sources are mostly used

in pre-disaster studies (Balcik et al., 2019). However, since each natural disaster

has unique characteristics (Chen et al., 2011), post-disaster studies rely more on

the experts’ interpreted data sources from the current natural disaster.

Benini et al. (2017) explain different types of responses provided by experts in as-

sessments during humanitarian operations, including probability, continuous scale,

and scalar quantity estimations. Probability estimation is a single-value estima-

tion often used to estimate the likelihood of occurrences of an event. In continuous

scale estimation, the expert indicates a range or a single value over a defined scale,

estimating the uncertain components. Finally, scalar quantity is a three-point es-

timation method, including the minimum, maximum, and most probable values.

The obtained data points form a triangular distribution representing the uncertain

components (Hakimifar et al., 2021), providing higher accuracy than the former

estimations. In this paper, we use the triangular distribution estimation method.

A set of discrete scenarios is then generated from distributions estimating the

value of uncertain components (Grass & Fischer, 2016a; Gutjahr & Nolz, 2016;

Grass et al., 2023). Although the obtained estimations can be made with a high

level of confidence, they might have discrepancies, resulting in ambiguity within

the HSCN design problem. The common approach in the literature is to use

stochastic programming to model the uncertainties. However, such an approach

does not reflect the discrepancies between different data sources and could result

in a sub-optimal solution based on each individual data source (Grass et al., 2023;

Benini et al., 2017). To this end, Grass et al. (2023) propose a machine learning

approach that leverages graph clustering and stochastic optimization techniques
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to address the challenges faced by humanitarian decision-makers in a shelter loca-

tion problem with ambiguity affecting the demands. Specifically, their approach

replaced the expectation function in the stochastic model with an aggregation

function alongside scenario clustering, which enabled the ambiguity to be ana-

lyzed. However, the developed optimization method did not directly model the

informational ambiguity but rather addressed it indirectly through the clustering

analysis.

In contrast, our work is different at both the application and the methodological

level. First, we focus on a different planning problem, i.e., HSCN design, for

which we propose alternative optimization models that explicitly formulate and

directly account for the ambiguity that is present. Second, we do not limit our

models to stochastic programming, but rather require a combination along with

robust optimization, and goal programming techniques, offering varying levels

of ambiguity-averse perspectives to the decision-maker, depending on the chosen

optimization approach that is used.

3.2.2 Uncertainty and ambiguity in operations research

We first review stochastic programming and robust optimization, both approaches

are used to model and solve optimization problems with uncertainties. We then

discuss goal programming, a mathematical optimization technique that can be

used in optimization problems with multiple conflicting objectives.

Stochastic programming is the paradigm of choice for problems with uncertain

components that can be formulated, with a high level of confidence, by probabil-

ity distributions. In contrast, robust optimization is employed when the statistical

information regarding the uncertain components of the problem is limited (e.g.,

only the upper bound and lower bounds of the probability distribution are avail-
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able).

In stochastic programming problems (Birge & Louveaux, 2011), a set of scenar-

ios (i.e., random realizations) generated from the probability distributions of the

uncertain components represent the probabilistic outcomes of the uncertain pa-

rameters. However, probability distributions are not always available. Ben-Tal

& Nemirovski (1998) introduce the concept of robust optimization, considering

the possible realizations of uncertain parameters regardless of their probability

distribution. To control the level of conservatism of the obtained solutions, the

authors defined an uncertainty set (i.e., a predefined range of potential variations

of uncertain parameters) that prevents all uncertain components from taking their

worst-case values simultaneously, reducing the level of conservatism of the orig-

inal max-min model introduced by Wald (1945). Further uncertainty sets are

used in the literature, including polyhedral, norm-bounded, interval and chance-

constrained uncertainty sets (Pluymers et al., 2005; Ben-Tal & Nemirovski, 2002;

Abedor et al., 1995). The choice of uncertainty set depends on the nature of the

problem and the level of conservatism or robustness desired in the optimization

process. The polyhedral uncertainty set is defined by linear constraints, restrict-

ing the potential values of uncertain parameters (Pluymers et al., 2005). The

norm-bounded uncertainty set is used where the magnitude of deviation is known

but not the direction (Abedor et al., 1995). When only bounds on uncertain

parameter values are known, the interval uncertainty set is used (Ben-Tal & Ne-

mirovski, 2002). Using a chance-constrained probability set involves defining a

probability distribution for uncertain parameters and setting constraints limiting

the probability of violating the constraints below a specified threshold.

Finally, our work is also related to goal programming (Charnes & Cooper, 1957),

a technique used to balance multiple conflicting objectives. Variations of goal pro-

gramming have been used in the literature, including its combination with stochas-
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tic programming (Aouni et al., 2012) and robust goal programming (Ghahtarani

& Najafi, 2013). In this study, we consider an HSCN design problem with the

estimation of uncertain parameters obtained from multiple data sources, and op-

timizing the model based on each data source could be seen as a different goal.

Hence, we use goal programming to propose a model that explicitly accounts

for uncertainty and ambiguity in the HSCN design problem; see Minimization of

expected opportunity loss approach in Section 3.4.2.

3.3 Problem description

In this section, we present the here-considered HSCN design problem. Specifically,

this section introduces the general characteristics of the HSCN design problem un-

der uncertainty, including the network structure, both deterministic and uncertain

parameters, and the decisions involved.

An HSCN is a physical network of hubs connected by transportation services

(Daneshvar et al., 2023). The designed HSCN receives, stores, transports, and

distributes critical supplies to beneficiary groups over a defined planning horizon,

aiming to minimize the harm to people’s health caused by unmet demand. Here,

we introduce the terminology used in the rest of the paper. The target population,

called beneficiary groups, is the relocated people who live in temporary shelters

such as camps, schools, and sports centers. We divide the planning horizon into

operational time frames, referred to as time periods. A time period indicates

the required amount of time during which a shipment is received, stored, and

distributed in the affected region, plus the time that beneficiaries consume them.

Each beneficiary group needs a set of supplies that are called critical supplies.

Some critical supplies are provided only once during the first period (e.g. tent

and blanket), and others at every period (e.g. food). The beneficiary groups
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pick up the critical supplies from physical locations called Distribution Centers

(DC). Failure to satisfy the demand for each critical supply causes a penalty.

The required quantity of each critical supply for each individual or household is

known (IFRC, 2021b), but the number of individuals in each beneficiary group

is uncertain. The source of this uncertainty is due to both a lack of information

and the possibility of change in the number of individuals in each group over time

caused by secondary impacts (e.g. aftershocks following an earthquake, landslide

following a flood). Therefore, the exact level of demand may never be available

and is considered uncertain.

A high level of demand and limited resources typically prevent the HSCN from

fully satisfying the demand of the beneficiary groups. The portion of demand

that is not satisfied is denoted as unmet demand. Each unit of unmet demand

negatively affects the level of demand in the next period, the degree of which can

be accounted for by using the notion of a spread factor (Daneshvar et al., 2023).

For instance, in the natural disasters that happen during pandemics, lack of access

to face masks and alcohol-based disinfectants results in the spread of the epidemy

and increases the demand for test kits and related medication (Sakamoto et al.,

2020). The spread factor indicates the impact of one unit of unmet demand of a

critical supply on the demand level for critical supplies in the next period. The

demand in each period is therefore defined as the sum of a base demand calcu-

lated based on available estimations and a residual demand, which is the effect of

unmet demand in the previous period. Equation (3.1) computes the total demand

d̂ktl of beneficiary group l for critical supply k at period t. In this equation, d̃ktl
represents the base demand of beneficiary group l for critical supply k at period

t, sk′k represents the spread factor of critical supply k′ on supply k, and āk
′t−1
il

represents the allocated critical supply k′ to beneficiary group l from DC i at

period t− 1.



85

d̂ktl︸︷︷︸
total demand

= d̃ktl︸︷︷︸
base demand

+
∑
k′∈K

sk
′k(d̂k

′t−1
l −

∑
i∈VDC

āk
′t−1
il )︸ ︷︷ ︸

residual demand

(3.1)

Figure 3.1: An HSCN illustration. Top: all available hubs, services, and

assignments. Bottom: a designed HSCN, including the selected hubs, services,

and assignments in an example HSCN planning solutions.

We consider a three-layer structure HSCN, as exemplified in Figure 1. The first

layer of hubs consists of ports of entry that receive critical supplies from interna-
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tional humanitarian organizations. The second layer of hubs includes warehouses.

A warehouse is a hub that receives critical supplies from ports of entry, stores

them and sends them to the third layer of the HSCN, which consists of DCs.

There is a fixed cost to use each selected hub for the considered planning horizon.

In addition to the fixed cost of selecting a hub, there is an additional fixed cost

for reserving the inventory resources available at selected warehouses. Inventory

resources are only available at the warehouses, with the possibility to store critical

supplies over the considered planning period. A unit of inventory resources could

be a classroom in a school or a container located in a field used as a temporary

warehouse. The fixed cost associated with utilizing inventory resources within

warehouses is proportional to the requested capacity allocation at each respective

warehouse, subject to the maximum available storage capacity of the warehouse.

Each beneficiary group is assigned to a DC where it can pick up its allocated criti-

cal supplies at each time period. Transportation services move the critical supplies

between selected hubs. We assume that each transportation resource commutes

only between its origin and destination hubs, returning to its origin hub after de-

livering the critical supplies. The total transportation capacity between two hubs

is given by the sum of the transportation services between these hubs. A unit of

transportation resources could be a truck, a boat, a train wagon, or a helicopter.

There is a fixed cost (e.g. for drivers, staff, and security escorts) for selecting

each unit of transportation resources, as well as a variable flow cost (e.g. fuel)

proportional to the travel distance of the transportation resources. The total costs

incurred by the design decisions are limited by the initial budget available at the

time of the design. Over the subsequent periods, the humanitarian organization

receives donations for operational expenses (e.g. flow cost). Unused budget at

any time period is carried over to the next period.

In the aftermath of a natural disaster, the extent of the impact of the event on the
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affected population (e.g. demand) and state of the region (e.g. transportation and

inventory capacities) is uncertain. Over time, additional information may become

available, reducing the contextual uncertainty (e.g. conducting direct observa-

tions in the affected region might enable a more accurate quantification of the

needs of the affected population). However, humanitarian organizations cannot

afford to wait for such information to plan and deploy the aid. Rapid responses

are crucial to minimize harm in the affected region. Furthermore, the local re-

sources necessary for the HSCN design might be notably scarce, and delaying the

procurement of such resources could lead to an inflationary spiral (Holguín-Veras

et al., 2012). Therefore, critical decisions regarding the structure and capacities of

the HSCN need to be made amidst uncertainty, while other decisions concerning

the allocation of the available resources can be made once additional information

is obtained and uncertainty levels are diminished. We here consider a two-stage

setting where the first decision stage occurs at the beginning of the planning hori-

zon when the HSCN is designed under a rather high level of uncertainty. For

the second stage (when the operational decisions are made), we assume that all

stochastic parameters (e.g. demand and transportation capacity) become known.

The scenarios (i.e., realizations of the uncertain parameters) are generated us-

ing the probability distributions obtained from assessments conducted in the re-

gion. However, as multiple data sources (e.g. satellite imagery and governmental

reports) are involved in the assessments, the probability distributions obtained

might have inconsistencies, resulting in ambiguity. Specifically, when different

assessments are performed using different data sources to quantify the same de-

mands, they may yield different random distributions. Recalling that the same

level of confidence is assigned to all assessments, the ambiguity arises from the

uncertainty about which probabilities should be used during the planning pro-

cess. In the next section, we present optimization models that explicitly account
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for such sources of ambiguity when solving the here-considered problem.

3.4 Optimization model

In this section, we propose a variety of optimization models that explicitly deal

with the ambiguity that stems from inconsistent estimations of the uncertain

components obtained from various data sources. Subsection 3.4.1 recalls how the

HSCN problem is formulated as a two-stage stochastic optimization model under

the general assumption that a single data source is used to generate a single

scenario set Ψ. Then, in subsection 3.4.2, we introduce a series of optimization

models that explicitly consider the ambiguity faced in the HSCN design problem

under study.

3.4.1 HSCN design model

We model the HSCN design problem as a two-stage stochastic model, introduced

in Daneshvar et al. (2023). In this model, the hubs and transportation services are

selected from available hubs, represented by the set V , and services, represented

by the set A. The set of hubs contains three subsets, including the port of entry

hubs, VI , the warehouse hubs, VW , and the DC hubs, VDC . The selected hubs and

services will be part of the HSCN network over the entire planning horizon. The

planning horizon consists of a sequence of time periods represented by the set T .

The designed HSCN is used to distribute a set of critical supplies, represented by

the set K, among the beneficiary groups which are represented by the set L, over

the planning horizon. In order to model uncertain parameters, we use scenarios

generated from estimations provided by data sources. In the HSCN design model,

a set of scenarios are generated from a single data source, represented by Ψ.

There are some costs related to the design and some others for the operation of



89

the HSCN. The former includes the cost of selecting hubs, represented by the

parameter fi, i ∈ V , the selection cost of the inventory resources assigned to

warehouses, represented by the parameter f̂i, i ∈ VW , and the cost of selecting

transportation resources for services, represented by the parameter f̂ij, (i, j) ∈ A.

We model the operational cost by the parameter ckij, which represents the cost

of transporting one unit of critical supply k ∈ K by service (i, j) ∈ A. The

parameter uij illustrates the capacity of one unit of transportation resource of the

service (i, j) ∈ A, and the parameter ui, i ∈ VW expresses the capacity of one

unit of inventory resources. The parameter mij defines the maximum number of

transportation resources available for the service (i, j) ∈ A, and the maximum

number of inventory resources available for the warehouse i ∈ VW is indicated by

the parameter mi.

The parameter z0 represents the initial budget, and the parameters zt indicates

the received donations at each period t ∈ T . The parameter nkti demonstrates

the maximum quantity of each critical supply k ∈ K that can be made available

at a point of entry hub i ∈ VI at period t ∈ T . The parameter gtiψ represents

the percentage of available inventory resources of hub i ∈ VW at period t ∈ T ,

in scenario ψ ∈ Ψ. Furthermore, the parameter gtijψ indicates the percentage of

available transportation resources of service (i, j) ∈ A at period t ∈ T . The base

demand for critical supply k ∈ K of a beneficiary group l ∈ L at period t ∈ T in

scenario ψ ∈ Ψ is represented by the parameter dktlψ. The parameter bk specifies

the penalty of unmet demand for the critical supply k ∈ K. The parameter sk′k

represents the spread factor for one unit of the critical supply k′ ∈ K over the

critical supply k ∈ K. Finally, the parameter d̂ktlψ illustrates the total demand

of the beneficiary group l ∈ L for the critical supply k ∈ K at period t ∈ T in

scenario ψ ∈ Ψ.
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Table 3.1: Decision variables of the two-stage stochastic model.

First-stage

xij ∈ {0, 1} 1 if service (i, j) ∈ A, is selected to be part of the HSCN; 0 otherwise.

yi ∈ {0, 1} 1 if hub i ∈ V , is selected to be part of the HSCN; 0 otherwise.

x̂ij ∈ N0 Number of units of transport resources selected for service (i, j) ∈ A.

ŷi ∈ N0 Number of units of inventory resources selected for hub i ∈ VW .

ail ∈ {0, 1} 1 if beneficiary group l ∈ L, is assigned to DC i ∈ VDC ; 0 otherwise.

Second-stage

x̄ktijψ ≥ 0 Quantity of critical supply k ∈ K transferred through service (i, j) ∈ A

at period t ∈ T in scenario ψ ∈ Ψ.

āktilψ ≥ 0 Quantity of critical supply k ∈ K at period t ∈ T allocated to beneficiary

group l ∈ L from DC i ∈ VDC in scenario ψ ∈ Ψ.

rktiψ ≥ 0 Inventory level (in number of units) of critical supply k ∈ K at warehouse

i ∈ VW at the end of period t ∈ T in scenario ψ ∈ Ψ.

r̂ktiψ ≥ 0 Inventory level (in number of units) of critical supply k ∈ K at warehouse

i ∈ VW at the beginning of period t ∈ T in scenario ψ ∈ Ψ.

Table 3.1 defines the decision variables of our model. Starting from the decision

variables that are made in the first stage, the decision variable xij indicates if the

service (i, j) ∈ A is included in the HSCN, and the decision variable x̂ij denotes

the number of transport resources that are assigned to the service. Likewise,

the decision variable yi takes value 1 if the hub i ∈ V is part of the network,

and 0 otherwise. Decision variable ŷi indicates the number of inventory resources

assigned to the warehouse i ∈ VW . Finally, decision variable ail takes value 1 if

the beneficiary group l ∈ L is assigned to the DC i ∈ VDC , and 0 otherwise.

The following are the second-stage decision variables of the model. The decision

variable x̄ktijψ indicates the quantity of the critical supply k ∈ K transferred at
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period t ∈ T on service (i, j) ∈ A in scenario ψ ∈ Ψ. Furthermore, the decision

variable āktilψ indicates the quantity of critical supply k ∈ K allocated to beneficiary

group l ∈ L at period t ∈ T from DC i ∈ VDC in scenario ψ ∈ Ψ. r̂ktiψ represents the

level of inventory of warehouse i ∈ VW for critical supply k ∈ K at the beginning

of period t ∈ T in scenario ψ ∈ Ψ, and the decision variable rktiψ represents the

inventory level at the end of that time period.

min
∑
ψ∈Ψ

pψQψ(x̂, ŷ, a) (3.2)

s.t. 2xij ≤ yi + yj ∀(i, j) ∈ A, (3.3)

ŷi ≤ miyi ∀i ∈ VW , (3.4)

x̂ij ≤ mijxij ∀(i, j) ∈ A, (3.5)

∑
i∈V

fiyi +
∑
i∈W

f̂iŷi +
∑

(i,j)∈A

f̂ijx̂ij ≤ z0, (3.6)

∑
i∈VDC

ail = 1 ∀l ∈ L, (3.7)

ail ≤ yi ∀i ∈ VDC , ∀l ∈ L, (3.8)

x̂ij ∈ N0, ŷi ∈ N0, xij ∈ {0, 1}, yi ∈ {0, 1}, ail ∈ {0, 1}, ∀i ∈ V, ∀(i, j) ∈ A.(3.9)

Where Qψ(x̂, ŷ, a) calculates the minimum penalty over the defined periods for

the scenario ψ ∈ Ψ with first stage decision variables values being fixed to x̂, ŷ, a.

Qψ(x̂, ŷ, a) is defined as follows:

Qψ(x̂, ŷ, a) := min
∑
t∈T

∑
k∈K

bk
∑
l∈L

(d̂ktlψ −
∑
i∈VDC

āktilψ), (3.10)
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s.t.
∑
k∈K

x̄ktijψ ≤ uijg
t
ijψ
x̂ij ∀(i, j) ∈ A, ∀t ∈ T, (3.11)

āktilψ ≤
∑

(j,i)∈A

ujig
t
jiψ
mjiail, ∀i ∈ VDC , ∀l ∈ L, ∀k ∈ K, ∀t ∈ T, (3.12)

āktilψ ≤ d̂ktlψ, ∀i ∈ VDC , ∀l ∈ L, ∀k ∈ K, ∀t ∈ T, (3.13)

∑
l∈L

āktilψ =
∑
j∈W

x̄ktjiψ , ∀i ∈ VDC , ∀k ∈ K, ∀t ∈ T, (3.14)

d̂ktlψ = dktlψ+
∑
k′∈K

sk
′k(d̂k

′t−1
lψ −

∑
i∈VDC

āk
′t−1
ilψ

), ∀l ∈ L, ∀k ∈ K, ∀t ∈ T,(3.15)

∑
i∈V

fiyi+
∑
i∈W

f̂iŷi+
∑

(i,j)∈A

f̂ijx̂ij+
t∑

t′=1

∑
(i,j)∈A

∑
k∈K

ckijx̄
kt′

ijψ
≤ z0+

t∑
t′=1

zt
′
, ∀t ∈ T,(3.16)

r̂ktjψ ≤ rkt−1
jψ

∀j ∈ VW , ∀k ∈ K, ∀t ∈ T, (3.17)

∑
k∈K

r̂ktjψ ≤ ujg
t
jψ
ŷj ∀j ∈ VW , ∀t ∈ T, (3.18)

∑
k∈K

rktjψ ≤ ujg
t
jψ
ŷj ∀j ∈ VW , ∀t ∈ T, (3.19)

rktjψ = r̂ktjψ +
∑

(i,j)∈A

x̄ktijψ −
∑

(j,i)∈A

x̄ktjiψ , ∀j ∈ VW , ∀k ∈ K, ∀t ∈ T, (3.20)

∑
(i,j)∈A

x̄ktijψ ≤ nkti ∀i ∈ VI , ∀k ∈ K, ∀t ∈ T, (3.21)

x̄ktijψ ≥ 0, āktilψ ≥ 0, rktiψ ≥ 0, r̂ktiψ ≥ 0, ∀(i, j) ∈ A, ∀i ∈ V, ∀k ∈ K, ∀t ∈ T.(3.22)
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As a two-stage HSCN design model, the objective function (3.2) minimizes the

expected penalty of unmet demand over the set of scenarios Ψ. Constraints (3.3)

indicate that only services with selected hubs at their origin and destination are

permitted for selection. Constraints (3.4) limit the number of inventory resources

at each warehouse to the maximum available inventory resources at that ware-

house. Similarly, constraints (3.5) limit the number of transportation resources

for each transportation service to the maximum number of available transporta-

tion resources for that transportation service. Constraints (3.6) limit the total

cost of selecting hubs and assigning resources to warehouses and transportation

services to the initial budget. Constraints (3.7) ensure that each beneficiary group

is assigned to exactly one DC. Constraints (3.8) limit the assignment of benefi-

ciary groups to DCs that are selected to be part of the HSCN. Constraints (3.9)

indicate the bounds of the decision variables.

The objective function (3.10) minimizes the total penalty of unmet demand over

the planning horizon for a given scenario ψ. Constraints (3.11) limit the quantity

of transported critical supplies over services to the available capacity of services at

each time period. Constraints (3.12) ensure that the allocated amount of critical

supplies to each beneficiary group from each DC are limited by the maximum

amounts of the critical supplies received by the DC at each period. Constraints

(3.13) limit the allocated critical supplies to each beneficiary group to the total

demand of that beneficiary group at each period. Constraints (3.14) ensure that

the total quantity of critical supplies that are delivered to each DC is equal to the

total quantity of critical supplies allocated to beneficiary groups at each period.

Constraints (3.15) formulate the total demand of each beneficiary group for each

critical supply at each period as the summation of the base demand and the

residual demand of that critical supply. Constraints (3.16) ensure that the amount

for the overall costs of the first stage and first t periods that is paid, is limited by
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the summation of the initial budget and the received donation up to that period.

Constraints (3.17) restrict the inventory level of each critical supply at each ware-

house at each period by its level at the end of the last period. Constraints (3.18)

limit the inventory level of critical supplies at the beginning of each period to

the available inventory capacity of that warehouse in that period. Similarly, Con-

straints (3.19) limit the inventory level of critical supplies at the end of each period

to the available inventory capacity of that warehouse in that period. Constraints

(3.20) indicate the inventory level of critical supplies at the end of each period as

the sum of the inventory level at the beginning of that period and the received

quantity of critical supplies at that period minus the quantity of shipped critical

supplies to DCs at that period. Constraints (3.21) ensure that the quantity of

shipped critical supplies from each port of entry is limited by the capacity of each

port of entry at that period. Constraint (3.22) are the non-negativity requirements

imposed on the all the second-stage decision variables.

3.4.2 Proposed HSCN design models

The HSCN design model ignores the ambiguity in the obtained estimates from

multiple data sources. This subsection introduces the HSCN design models that

explicitly handle the discussed ambiguity in the problem and provide alternative

optimization methods for the HSCN design model.

Assume the decision-makers should make a series of decisions, represented here

by x ∈ X, X indicating the feasible set for the decisions while facing uncertainty

represented here by parameter vector ξ. We further assume F (x, ξ) represents the

function the decision makers seek to optimize and computes the penalty obtained

by using the decision vector x when the uncertain parameters get the value ξ. Let

there be e data sources with Ψ1,Ψ2, ...,Ψe being their corresponding scenario sets.



95

The set containing all scenario sets obtained from available data sources is called

the ambiguity set (Bayraksan & Love, 2015), represented by P := {Ψ1,Ψ2, ...,Ψe}.

We then define solution x∗
i , i ∈ {1, 2, ..., e} as the solution that obtains the mini-

mum expected value of function F (x, ξ) for all possible values of ξ ∈ Ψi:

x∗
i ∈ argmin

x∈X
Eξ∈Ψi [F (x, ξ)], ∀ i ∈ {1, 2, ..., e} (3.23)

Assuming e = 1, then (3.23) delivers a single solution x∗
1. However, we have e

data sources available, and we assume that:

x∗
i ̸= x∗

j ∀i ̸= j and i, j ∈ {1, 2, ..., e}.

We define the opportunity loss of i’th data source when using solution x, repre-

sented by ϵi(x), as the disparity between minimum expected value derived from

the optimal solution x∗
i and the attained value when using solution x, mathemat-

ically formulated as:

ϵi(x) := Eξ∈Ψi [F (x, ξ)]− Eξ∈Ψi [F (x∗
i , ξ)].

Then, we assume, employing the optimal solution x∗
j , derived from considering

scenario set Ψj, within the optimization function associated with the scenario set

Ψi, results in a significant opportunity loss:

ϵi(x
∗
j) >> ϵi(x

∗
i ) = 0 ∀i, j ∈ {1, 2, ..., e}.

One then seeks to find a single solution x∗ such that:

x∗ ∈ X and ϵi(x
∗) ≈ 0 ∀i ∈ {1, 2, ..., e}.

Minimization of expected opportunity loss

We first present a goal programming (Charnes & Cooper, 1957) approach where

minimizing data source-specific expected penalties are treated as distinct goals to
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reach. We refert this model to one of Minimization of expected opportunity loss

(MIN-OppLoss). Its objective (3.24) is defined as the total expected opportunity

loss by associating the same weight to the deviations from each data source-specific

target value.

min
x

e∑
i=1

Eξ∈Ψi [F (x, ξ)]− Eξ∈Ψi [F (x∗i , ξ)] (3.24)

The second part of the objective, Eξ∈Ψi [F (x∗i , ξ)], being a constant, can be removed

from the formulation, making objectives (3.24) and (3.25) equivalent.

min
x

e∑
i=1

Eξ∈Ψi [F (x, ξ)] (3.25)

This model is equivalent to the commonly used model in the literature (Daneshvar

et al., 2023) that does not specifically consider ambiguity in the HSCN design

problem. In other words, its considered distribution is defined as the union of the

individual distributions of the various data sources.

In order to define the MIN-OppLoss model, one can replace the objective function

(3.2) with the objective function (3.26). In an alternative view, Minimization of

expected opportunity loss approach could be interpreted as the equivalent of the

HSCN design model where Ψ is replaced by ΨTotal. In (3.26), pξ represents the

probability of scenario ξ if data source Ψ is providing the accurate estimation of

uncertain parameters.

min
e∑
i=1

[∑
ψ∈Ψi

pψQψ(x̂, ŷ, a)

]
(3.26)

subject to Constraints (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.9).
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Minimization of Maximum Scenario Penalty

Using the classical robust optimization approach (Soyster, 1973), minimizing the

worst-case scenario outcome using the scenario set Ψtotal :=
⋃e
i=1 Ψi. In other

words, it provides a robust solution against uncertainties by considering the most

adverse outcome while maintaining feasibility:

min
x

max
ξ∈Ψtotal

F (x, ξ). (3.27)

We refer to this model as the MIN-MaxScenPen model by scenario. The obtained

solution is expected to perform worse compared to other presented models on

most of the realization of uncertain parameters while resulting in less harm in

extreme scenarios.

Developing the Minimization of Maximum Scenario Penalty model is achieved by

introducing an auxiliary decision variable, Θ, in the objective function, replacing

the original objective function (3.2). Additionally, the constraint (3.29) is added

to the first stage of the model, limiting the objective function value based on the

penalties associated with each scenario in the scenario set ΨTotal. Furthermore,

constraint (3.30) indicates the bounds of the decision variable Θ.

min Θ (3.28)

subject to constraints (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.9), (3.29), and (3.30).

Θ ≥ Qψ(x̂, ŷ, a), ∀ψ ∈ Ψtotal (3.29)

Θ ≥ 0. (3.30)
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Minimization of Expected Data-Source Penalty

The MIN-MaxScenPen model focuses on extreme cases, leading to overly cau-

tious decisions and not capturing the full range of possible scenarios. To ex-

pand the number of scenarios involved in the solution using the concept of data

source, we propose a model Minimization of Expected Data-Source Penalty (MIN-

ExpDSPen), which is based on robust optimization and aims to minimize data

source level expected penalty. The MIN-ExpDSPen model defines an objective

that minimizes the maximum expected penalty of data source-specific scenarios

within the ambiguity set, as presented by objective (3.31):

min
x

max
Ψi∈P

Eξ∈Ψi [F (x, ξ)] (3.31)

The aim of this objective is to find a solution x that minimizes the highest level

of expected penalty among the scenario sets in P.

In this model, the objective function (3.32) replaces the objective function (3.2).

Furthermore, we add the constraint (3.30) to the first stage of the model. Con-

straints (3.33) ensure that the objective function value of the first stage is more

than the expected penalty of the designed HSCN over the scenario set generated

from estimations obtained from each data source.

min Θ (3.32)

subject to constraints (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.9), (3.30) and:

Θ ≥
∑
ψ∈Ψi

pψQψ(x̂, ŷ, a), ∀i = 1, 2, ... e. (3.33)
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Minimization of Maximum Data-Source Penalty

While MIN-OppLoss approach minimizes the expected penalty over scenarios from

all data sources, it does not consider the variance of the opportunity loss. In other

words, the obtained HSCN may perform inadequately over some data sources and

very well on others. In contrast, the here proposed model Minimization of Max-

imum Data-Source Penalty (MIN-MaxDSPen), grounded in robust optimization,

aims to address the variability in opportunity losses among scenario sets in P.

Consequently, this method minimizes the maximum opportunity loss within each

data source’s scenario set, as depicted in objective (3.34).

min
x

max
Ψi∈P

Eξ∈Ψi [F (x, ξ)]− Eξ∈Ψi [F (x∗
i , ξ)]. (3.34)

Objective (3.34) provides a solution x with the minimum opportunity loss among

all data sources.

To model this approach, the objective function (3.35) replaces the objective func-

tion (3.2). The range of the expected penalty in the HSCN design problem defines

the domain of Θ. Therefore, the domain of the decision variable Θ defined by con-

straint (3.30) is in the range of positive real numbers. Constraints (3.36) in the

first stage ensure that the value of auxiliary decision variable Θ is always more

than the gap between the expected penalty of designed HSCN in this model and

HSCNs designed by HSCN design model using Ψi, Where i could point to any

data source from 1 to e.

min Θ (3.35)
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subject to constraints (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.9) and:

Θ ≥
∑
ψ∈Ψi

pψ(Qψ(x̂, ŷ, a)−Qψ(x̂
∗
i , ŷ

∗
i , a

∗
i )), ∀i = 1, 2, ..., e. (3.36)

3.5 Experimental results

In this section, we design and apply a set of experiments to study the performance

of the proposed models for the HSCN design problem. Subsection 3.5.1 introduces

the data set, including the characteristics of the natural disaster, the affected

region, the sources used in the data preparation, and the scenario generation.

Subsection 3.5.2 presents the experimental results, including a Pareto frontier

analysis, a ranked-based analysis, and a comparative performance analysis over the

solutions obtained by executing the proposed models on the introduced instances.

Finally, managerial insights are presented.

3.5.1 Data set

We use a data set (Daneshvar et al., 2023) from the 2018 earthquake in Lombok

island at Indonesia. More than 1500 aftershocks have been recorded in the region

but most of them were weak shakes. The most important quakes in the region

are presented in Table 3.2. The earthquake forced 445,343 individuals to relocate

into 2,700 camps on Lombok and the neighboring islands. The Indonesian gov-

ernment announced a state of emergency from July 29th to August 26th, which

is here considered as the planning horizon. We divide the planning horizon into

4 time periods, each presenting a week during the state of emergency. The In-

ternational Organization for Migration (IOM) has published the list of all camps

including the location and number of individuals in each camp (IOM, 2019). In

this study, we consider 349 beneficiary groups on the island with a total popula-



101

tion of 52,128 individuals in 15,993 households. Considering that clean water was

distributed among beneficiary groups from local resources using 21 water trucks

(IFRC, 2021a), we only consider shelter, food, and hygiene packs as the critical

supplies that are brought in from outside the affected region and to be transported

and distributed using the designed HSCN. We use the standard required quan-

tity of each critical supply (IFRC, 2021b) per individual or per household that is

calculated and published by the International Federation of Red Cross and Red

Crescent Societies (IFRC).

Table 3.2: Most important earthquakes on Lombok island in 2018.

earthquake date strength

main earthquake 2018/07/29 6.4 Richter magnitude scale

first strong aftershock 2018/08/05 7.0 Richter magnitude scale

second strong aftershock 2018/08/09 5.9 Richter magnitude scale

third strong aftershock 2018/08/26 6.4 Richter magnitude scale

Palang Merah Indonesia (PMI) is the local branch of IFRC in Indonesia which was

responsible for the distribution of critical supplies in the affected region. We used

the published reports of IFRC and PMI to complete our data set (IFRC, 2021a).

According to these reports, PMI used four ports of entry and six warehouses in

their HSCN. Furthermore, PMI signed contracts with third-party companies to

transport critical supplies among the hubs. However, since the details of the

contracts are not included within the reports of the IFRC and PMI, we consulted

the local transportation companies’ websites for the cost and capacity of their

services.

Since the locations of the DCs are not provided in the IFRC reports, we use the

DBSCAN algorithm (Ester et al., 1996) to generate DCs using the beneficiary
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groups as the candidate locations. The DBSCAN algorithm uses two parameters:

the epsilon parameter that denotes the neighborhood radius of the DCs in the

same cluster, and the minimum number of neighbors to cluster the beneficiary

groups based on distance and density. The value of these parameters is set by

a domain expert, leading to the most appropriate cluster for the study problem

(Mendes & Cardoso, 2006).

The transportation costs are calculated based on the driving distance between

hubs. The walking distances between beneficiary groups for the DBSCAN algo-

rithm are obtained from an online routing engine (Luxen & Vetter, 2011), which

operates on the OpenStreetMap.

In addition to the data associated with the deterministic parameters, the demand

and damage assessments provide the necessary information to estimate the un-

certain parameters, including demand, transportation, and inventory capacities.

Since the assessments are time-consuming processes, the affected region is divided

into smaller sub-regions (e.g., 81 sub-regions in this case study) to speed up the

process, and the damage and demand assessments are performed on a set of lo-

cations sampled from each sub-region (Balcik & Yanıkoğlu, 2020; Balcik, 2017).

In the following experiments, we assume two data sources are available, providing

estimations on the value of uncertain parameters. The estimations derived from

these two data sources are inconsistent, with the first data source always yielding

more pessimistic estimates than the second data source.

3.5.1.1 Ambiguity Patterns

We here focus on four different ambiguity patterns, illustrated in Figure 3.2, which

characterize the different relationships that two different distributions can have

to each other. Ambiguity pattern (a) represents the estimations provided by two
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data sources, each with a high level of uncertainty and no overlap, causing a high

level of ambiguity. Ambiguity pattern (b) contains the same level of uncertainty

as ambiguity pattern (a), as they both have the same range of estimation for

uncertain parameters. However, as the estimations provided by the two data

sources overlap, the level of ambiguity in (b) is lower than (a). The mode of the

distributions in the ambiguity pattern (c) is the same as in the ambiguity pattern

(a). However, the range of the distributions in (c) is less than (a), reducing both

uncertainty and ambiguity levels. Finally, the probability distributions presented

in ambiguity pattern (d) have the same range as ambiguity pattern (c), but there

is no gap between the two distributions, reducing the ambiguity in (d) compared

to (c). We can consider each of these four distinct ambiguity patterns for each

problem instance.

(a) Ambiguity pattern (a), wide

uncertainty range without overlap

(b) Ambiguity pattern (b), wide

uncertainty range with overlap

(c) Ambiguity pattern (c), tight

uncertainty range with gap

(d) Ambiguity pattern (d), tight

uncertainty range without gap

Figure 3.2: The four considered ambiguity patterns for two data sources.
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3.5.1.2 Scenario Sampling

As we do not have access to the raw assessment data of the earthquake on Lom-

bok Island, we simulated triangular distributions (Hakimifar et al., 2021; Benini

et al., 2017). The minimum and maximum values of the triangular distributions

are set within the range of the data gathered from humanitarian organizations’

websites IFRC (2021a). To approximate the proposed models, as well as to eval-

uate the performance of the obtained solutions, a set of scenarios is required that

effectively captures the different variations of the uncertain parameters. Assum-

ing the same confidence level for all data sources used to obtain the probability

distributions, an equal number of scenarios are generated from each probability

distribution. Furthermore, we consider equal probability for all scenarios gener-

ated from each triangular distribution. A total of 3000 scenarios are generated

from each data source (6000 per problem instance), which we here assume to rep-

resent the ground truth (i.e., an accurate estimation of the possible realization

of the uncertain parameters). However, since solving such a problem would be

computationally intractable, using the Sample Average Approximation method

(Kleywegt et al., 2002), we generate smaller scenario sets (i.e., sample scenario

sets) with 300 scenarios per data source and solve the models for such smaller

scenario sets. Each instance is then composed of two ground truths (one per data

source) and two sample scenario sets.

3.5.1.3 Instance Generation

We generate multiple problem instances, each including one ground truth and

one sample scenario set. Each instance is generated using the data from the

2018 earthquake in Indonesia. First, a subset of the beneficiary groups containing

at least 80 percent of the 349 beneficiary groups is randomly selected for each
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instance to enhance the variability among instances. The DBSCAN algorithm

then generates the candidate DCs. Two or three candidate warehouses and points

of entry are selected at random, and a set of candidate services is added between

hubs in different layers. Finally, the available budget depends on a budget ratio

parameter relative to the population size. Equation (3.37) defines how the budget

ratio is formulated.

budget ratio =
z0 +

∑
t∈T z

t

population
. (3.37)

The first ten instances are generated with a budget ratio of 640, as used in

(Daneshvar et al., 2023). Ten additional instances are generated with a bud-

get ratio of 512, computed by considering only 80 percent of the former budget

ratio. This amounts to a total number of 20 instances.

3.5.2 Computational Results

This section presents the experimental results to determine the most suitable

model for decision-makers to adopt under each ambiguity pattern, and based on

their preference for either optimism or conservatism. To this end, we first analyze

the Pareto frontier to evaluate the dominance of the obtained solutions in Section

3.5.2.1. Then, a ranking analysis is carried out in Section 3.5.2.2 to identify the

best performing models under different ambiguity patterns. Finally, a comparative

performance analysis complements the previous studies in Section 3.5.2.3, iden-

tifying average performance of the models and their relative performance to the

competing models. Managerial insights are then summarized in Section 3.5.2.4.

The data for the above-mentioned analyses is prepared as follows. For each

instance-ambiguity pattern, the sample scenario sets are used to obtain two so-

lutions, each using one of the data sources. The solutions are then evaluated
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using the corresponding instance’s ground-truth scenario set. In some instances,

resources and budgets are sufficiently high, causing all models’ solutions to have

negligible differences in performance and to satisfy almost all the demand. In

the following experiments, we exclude instances with a percentage difference of

2% (i.e., the best and worst solution evaluation gap is less than two percent

of the best solution). The reason is that such a small percentage gap provides

limited insights into the relative efficacy of the alternative models. With equal

confidence levels attributed to both data sources in each instance, the following

analysis presents findings outlined according to the evaluation results of the stud-

ied instances. The implementation employs the Pyomo software package (Hart

et al., 2011, 2017), executed on the Calcul Québec servers with a computational

infrastructure featuring 6 CPU cores and 256 GB of memory.

3.5.2.1 Pareto Frontier Analysis

The Pareto frontier represents the set of optimal solutions where enhancing one

criterion comes at the expense of another, highlighting the inherent trade-offs in

multi-objective decision-making problems. In the here-studied problem, we have

two ground-truth scenario sets, with the expected penalty of each solution for

each ground-truth serving as one criterion. To better understand the models’

relative performance in different ambiguity patterns, we calculated the number of

instances each model locates on the Pareto frontier. The Pareto frontier consists

of all feasible solutions that are not dominated by any other feasible solution. A

solution is dominated if another solution is better for at least one objective and

no worse for the others. Figure 3.3 outlines the proportion of instances within

each model wherein a solution is attained on the Pareto frontier.
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Figure 3.3: The percentage of instances each model’s solution was on the Pareto

frontier.

None of the models consistently attains Pareto optimality. Considering the am-

biguity patterns (c) and (d), it is noteworthy that the MIN-OppLoss and MIN-

MaxDSPen models consistently reside on the Pareto frontier (i.e., the solution is

not dominated by any other solution for any criteria). However, for ambiguity

pattern (a), only the MIN-OppLoss model consistently lies on the Pareto fron-

tier, while MIN-MaxDSPen lies on the frontier most of the time. Meanwhile, for

ambiguity pattern (b), the MIN-MaxDSPen model consistently lies on the Pareto

frontier.

While no model obtains nondominated solutions for all ambiguity patterns, MIN-

OppLoss and MIN-MaxDSPen solutions are always nondominated when only con-

sidering ambiguity patterns (c) and (d). While such an attribute indicates the

value of MIN-OppLoss and MIN-MaxDSPen models, in many real-world HSCN

problems, indicating the ambiguity pattern is a complex task. We hence perform

additional experiments to gain more insights into the proposed models that are

valid for all ambiguity patterns.
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3.5.2.2 Ranking Analysis

Our interest lies in tracing the individual performance of models concerning each

data source. To this end, we now analyze the ranking of solutions obtained by the

models across various instances. This approach affords an understanding of how

effectively the models address each element of the multi-objective optimization

problem.

(a) ambiguity pattern (a) (b) ambiguity pattern (b)

(c) ambiguity pattern (c) (d) ambiguity pattern (d)

Figure 3.4: The ranking distribution of modes over the 20 instances on the first

data source.
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(a) ambiguity pattern (a) (b) ambiguity pattern (b)

(c) ambiguity pattern (c) (d) ambiguity pattern (d)

Figure 3.5: The ranking distribution of modes over the 20 instances on the

second data source.

We evaluate the proposed models’ solutions by ranking them according to their

performance on the GTs, and then computing the frequency with which each

model’s solution obtains each rank. This procedure is carried out independently

for each data source. Figure 3.4 and Figure 3.5 represent the ranking distributions

of models for the first and second data sources, respectively. According to Figure

3.4, considering the first data source, MIN-ExpDSPen has the highest probability

of providing the best-performing solution. Furthermore, Figure 3.5 indicates that

MIN-MaxDSPen has the highest probability of providing the best solution when
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considering the second data source. Therefore, in a problem setting where the

decision-makers are biased toward one of the data sources, regardless of the am-

biguity pattern, the best choise is MIN-ExpDSPen when biased towards the first

data source, and MIN-MaxDSPen when biased toward the second data source.

3.5.2.3 Comparative Performance Analysis

Within the context of the ranked-based analysis, it is noteworthy that none of the

models consistently attain the highest ranking. For instance, when considering the

first data source in the ranked-based analysis of ambiguity pattern (a), for 30%

of instances, the MIN-ExpDSPen model fails to secure the first rank. To provide

a clearer picture of which optimization models yield the most efficient results

overall, we conduct a series of comparative analyses that directly assess the results

obtained using each proposed model relative to the top-ranked model in each

case. The motivation for these analyses is to offer decision-makers insights into

the potential risks associated with selecting a particular optimization approach

based on the observed trends of the ranking results. Moreover, in instances with

equal confidence levels associated with the available data sources, the utility of

the ranking analysis diminishes. We, therefore, use the performance gap (p-gap)

and absolute performance gap (abs-p-gap) to evaluate the performance of the

introduced models in all instances and across the considered ambiguity patterns.

The evaluation of each solution represents the expected penalty of the solution

over the ground truth. Therefore, the evaluations are converted to the p-gap,

enabling comparisons to be conducted across the instances. For each instance, we

identify the Best Evaluation Value (BEV) as the lowest penalty evaluated on the

ground-truth among all four models. Then, equation (3.38) calculates the p-gap
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of each model.

p-gap = [(model′s evaluation− BEV)/BEV] ∗ 100 (3.38)

Furthermore, the absolute gap between solutions obtained from different models,

abs-p-gap is calculated as the gap between the model’s evaluation and BEV, see

equation (3.39).

abs-p-gap = [(model′s evaluation− BEV)] (3.39)

Table 3.3 presents the results of this experiment, including the average abs-p-gap

and penalty over considered instances. The table is structured to show results for

each data source separately, followed by the total mean across both data sources.

For each model and metric, results are presented separately for the first and second

data sources. Each row represents the average absolute performance gap (abs-p-

gap) and expected penalty for the specified model and ambiguity pattern. The

“mean" columns provide the average values obtained for all ambiguity patterns

for each data source.

The “Total mean" section shows the overall average values for both data sources

combined, providing a comprehensive view of the models’ performance across all

data sources.

To increase the readability of the table, the total penalty values in Table 3.3 have

been scaled down by a factor of one million.

When considering the first data source, the MIN-ExpDSPen model has the lowest

abs-p-gap mean values, outperforming other models when using the uncertainty

estimations provided by the first data source in the evaluation. MIN-ExpDSPen
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Table 3.3: The average abs-p-gap and expected penalty values (in millions) over

the studied problem instances

Model Metric pattern (a) pattern (b) pattern (c) pattern (d) mean

FIRST DATA SOURCE

MIN-OppLoss
abs-p-gap 5.38 44.4 0.01 47.9 24.42

penalty 248.38 158.40 301.47 136.80 211.26

MIN-MaxScenPen
abs-p-gap 9.29 52.6 0.00 29.1 22.74

penalty 257.84 174.22 306.48 141.22 219.94

MIN-ExpDSPen
abs-p-gap 8.54 10.20 1.50 36.7 14.23

penalty 247.18 156.64 300.22 134.74 209.69

MIN-MaxDSPen
abs-p-gap 4.67 26.7 0.00 46.5 19.46

penalty 257.06 166.76 318.20 146.44 222.11

SECOND DATA SOURCE

MIN-OppLoss
abs-p-gap 75.9 59.9 87.4 42.5 66.42

penalty 174.84 31.17 34.15 45.44 71.4

MIN-MaxScenPen
abs-p-gap 14.7 1.80 37.4 49.5 25.85

penalty 167.41 42.11 39.93 53.17 75.65

MIN-ExpDSPen
abs-p-gap 26.3 1.55 57.9 58.8 36.13

penalty 177.40 36.96 39.77 50.48 76.15

MIN-MaxDSPen
abs-p-gap 8.51 0.0 23.8 37.4 17.42

penalty 171.28 27.96 29.73 42.56 67.88

BOTH DATA SOURCES

MIN-OppLoss
abs-p-gap 40.64 52.15 43.71 45.2 45.42

penalty 211.61 94.78 167.81 91.12 141.33

MIN-MaxScenPen
abs-p-gap 11.99 27.2 18.70 39.3 24.29

penalty 212.63 108.17 173.21 97.20 147.79

MIN-ExpDSPen
abs-p-gap 17.42 5.88 29.7 47.75 25.18

penalty 212.29 96.8 170.00 92.61 142.92

MIN-MaxDSPen
abs-p-gap 6.59 13.35 11.90 41.95 18.44

penalty 214.17 97.36 173.97 94.5 144.99
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seeks to find a solution that minimizes the expected penalty of the data source

with the highest expected penalty, hence outperforming other models when eval-

uated on the first (pessimistic) data source. Similarly, considering the second

data source, the MIN-MaxDSPen outperforms other models. In particular, for

the second data source, the conservative models, including MIN-ExpDSPen and

MIN-MaxScenPen, have relatively high mean values. Furthermore, the MIN-

OppLoss model does not explicitly consider data-source ambiguity. Therefore,

MIN-MaxDSPen outperforms other models when the evaluation is performed on

the optimistic data source.

Finally, the “Total mean" section presents the overall mean across both data

sources. In other words, the values in the "Total mean" section indicate the

opportunity loss over the instances considered. MIN-MaxDSPen has the least

abs-p-gap value, making it an attractive option under data-source ambiguity.

Figure 3.6 presents the performance profile of the here studied models. The top

figures represent the performance profile over one data source, and the figure at

the bottom shows the performance profile when considering both data sources.

In these figures, the x-axis represents the threshold of the p-gap, and the y-axis

indicates the percentage of instances with a lower p-gap than the value indicated

on the x-axis. The performance profile of the first data source indicates that the

MIN-ExpDSPen model has the best p-gap for about 90 percent of the instances.

For the remaining instances, its p-gap becomes rather high when compared to

the other models. The second data source performance profile indicates that the

MIN-MaxDSPen model outperforms other models by a considerable margin for

almost 90% of the instances. Finally, the performance profile over both data

sources suggests that MIN-MaxDSPen is superior to all other models, followed

by MIN-OppLoss. Both the MIN-ExpDSPen and the MIN-MaxScenPen models

underperform the other models. Overall, MIN-MaxDSPen shows clear benefits
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under data source ambiguity, being the best performing model for most instances.

For problem instances where it is not the best-performing model, it underperforms

other models less than its competitors do.

(a) first data source (b) second data source

(c) both data sources

Figure 3.6: Performance profile of the studied models considering either one or

both data sources.

3.5.2.4 Managerial Insights

The following managerial insights can be summarized from the conducted exper-

iments, providing a valuable understanding of the presented models accounting
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for the here-studied ambiguity in the HSCN design problem.

1. Regardless of the level of risk aversion, under data source ambiguity, explic-

itly accounting for such ambiguity in the HSCN design problem has eco-

nomic advantages on average and mitigates risk, alleviating the worst-case

outcome (see, e.g., Table 3.3 and Figure 3.6).

2. In problem settings with a low level of uncertainty and ambiguity (i.e., am-

biguity patterns (c) and (d)), which translate into a planning context where

there is a higher level of confidence regarding the estimations obtained, MIN-

OppLoss (the most popular approach in the literature) and MIN-MaxDSPen

solutions are always on the Pareto frontier, representing the best trade-offs

between the estimations obtained from the data sources (see Figure 3.3).

3. The MIN-ExpDSPen model, regardless of the ambiguity pattern, has the

highest probability of obtaining the best solution when assessed based on

the information obtained from the pessimistic (first) data source (see Figure

3.4, Table 3.3 and Figure 3.6). As such, if a decision-maker is interested

in hedging the risk based on the most pessimistic assessments, this is the

approach of choice.

4. The MIN-MaxDSPen, regardless of the ambiguity pattern, has the highest

probability of obtaining the best solution when assessed based on the infor-

mation obtained from the optimistic (second) data source (see Figure 3.5,

Table 3.3 and Figure 3.6). This conclusion aligns with the fact that MIN-

OppLoss does not explicitly consider ambiguity, whereas MIN-ExpDSPen

and MIN-MaxScenPen are conservative models prioritizing the pessimistic

data source.

5. According to the data presented in Table 3.3 and Figure 3.6, in situations

where no bias towards a specific data source is evident and the ambiguity
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pattern remains indistinct, the MIN-MaxDSPen model emerges as the most

favourable choice.

3.6 Conclusion

In this paper, we have proposed four optimization methods, including Minimiza-

tion of expected opportunity loss (MIN-OppLoss), Minimization of Maximum

Data-Source Penalty (MIN-MaxDSPen), Minimization of Expected Data-Source

Penalty (MIN-ExpDSPen), and Minimization of Maximum Scenario Penalty, that

explicitly account for ambiguity caused by inconsistent estimates of uncertain pa-

rameters obtained from multiple data sources involved in the demand and damage

assessments in the context of solving the HSCN design problem. We then compare

the performance of the proposed models over four different ambiguity patterns

with two data sources on 20 instances extracted from a real-world data set on the

2018 Indonesia earthquake.

The results obtained and analysis performed led us to the following conclusion. In

an HSCN design problem with narrow uncertainty and ambiguity (e.g. ambiguity

patterns (c) and (d)), then MIN-MaxDSPen and MIN-OppLoss models could be

used as their solutions always fit on the Pareto frontier, indicating a solution

that is not dominated by solutions obtained from other models. Furthermore,

if the ambiguity pattern is unknown and the decision-makers are slightly biased

toward one of the two data sources, then the following applies: if they are biased

toward the pessimistic data source, they should use MIN-ExpDSPen, and if biased

toward the optimistic data source, they should use MIN-MaxDSPen. Finally, if no

information is available regarding the ambiguity pattern with the same confidence

level toward the data sources, then the decision-makers should use the MIN-

MaxDSPen model.
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This paper opens several research directions on the impact of ambiguity in HSCN

design problems. Of particular interest is the question of how to design and

adjust the HSCN in response to evolving patterns of ambiguity as new information

becomes available throughout the planning horizon. Another research line would

involve considering a varying level of confidence in the data sources while also

considering a higher number of data sources directly leading to higher levels of

complexity in the ambiguity patterns.



CHAPTER IV

THE BENEFITS OF CONSIDERING INFORMATION DYNAMIC AND

DEMAND SPREAD IN HUMANITARIAN SUPPLY CHAIN NETWORKS

Abstract

This study considers the Humanitarian Supply Chain Network (HSCN) planning

problem following natural disasters, focusing on the uncertainties in demand and

capacity. The goal is to study the value of increasing stages (i.e., decision-making

points over the time horizon) when modeling the post-disaster HSCN design prob-

lem. This study proposes a three-stage stochastic model that allows for dynamic

adjustments to transportation resources based on evolving information obtained

over time. The primary objective is to assess the value gain using a three-stage

model incorporating flexibility to adjust the designed HSCN during the relief op-

eration compared to its two-stage counterpart commonly applied in the literature.

Experiments conducted using real-world data from the 2018 Indonesia earthquake

demonstrate the advantages of our model over its two-stage counterpart. Specif-

ically, the evaluation results indicate the solution obtained from the proposed

three-stage model transfers resources only in 33% of the scenarios. In comparison,

the two-stage counterpart transfers resources in 79% of scenarios, a time-intensive

process requiring complicated management operations. The findings highlight

that incorporating an additional stage enables better resource utilization, reduces
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unmet demand, and enhances adaptability to uncertainty. Our model also consid-

ers the cumulative and spreading effects of unmet demand across time and critical

supplies, providing a more realistic representation of real-world settings. While

the three-stage model incurs higher computational costs, the resulting decision

quality and operational efficiency improvements justify its application in practice.

Keywords: Humanitarian Supply Chain, Stochastic Programming, Humanitarian

Relief Distribution, Post-disaster

4.1 Introduction

Relief distribution for vulnerable people after the onset of a natural disaster is a

pivotal operation conducted by humanitarian organizations. Its importance in-

creases with the frequency of natural disasters over the years, impacting more

people worldwide (Mani et al., 2003). Meanwhile, humanitarian organizations

encounter intensified budgetary restrictions due to a lack of proportional dona-

tion growth relative to their escalating financial needs (UNOCHA, 2021b). For

instance, the global appeals (i.e., the amount of budget humanitarian organiza-

tions require for one year) amounted to 37.6 billion US$ in 2021, whereas only

20.1 US$ was provided to humanitarian organizations, covering only 54% of the

annual appeal (UNOCHA, 2021b). More than 75 percent of humanitarian or-

ganizations’ budget is used to design and operate relief supply chains (Besiou

& Van Wassenhove, 2020; Van Wassenhove, 2006; Stegemann & Stumpf, 2018);

hence, a shortage of budget results in a lack of access to critical supplies by people

affected by natural disasters, negatively impacting their health. The insufficiency

of financial resources reduces humanitarian organizations’ ability to deliver critical

supplies (e.g. shelter, food, and hygiene), deepening the harm to people. There-

fore, optimizing the distribution of critical supplies using the available budget and



120

resources is crucial to limit such harm.

Humanitarian organizations design and operate Humanitarian Supply Chain Net-

works (HSCN) (Tavana et al., 2018; Hong & Jeong, 2019) to distribute critical

supplies among vulnerable populations affected by natural disasters. The design

and operation of an HSCN are particularly challenging and complex because of

the limited available resources and budget in the affected region, and the demand

being at its peak (i.e., many people need access to survival essentials) (Holguín-

Veras et al., 2013) and coordination with other humanitarian operations is required

to minimize the harm. In addition, the decision-making process is conducted in

a setting with a high level of uncertainty regarding the situation in the region.

Damage and demand assessments are therefore conducted in the affected region

to obtain information on the level of damage, available resources and the level

of demand (Balcik, 2017; Balcik & Yanıkoğlu, 2020). Various data sources (e.g.,

media, governmental documents, satellite imagery) are used in the assessments

to estimate the probability distribution of the problem’s uncertain components,

which decision-makers then use to design and operate the HSCN.

The complexity of coordinating humanitarian operations necessitates the imme-

diate establishment of the HSCN following a natural disaster. However, more

information about the region’s state becomes available later in time, and some

HSCN design characteristics (e.g., transportation resources) could be adjusted

over the planning horizon accordingly. On the other hand, the cost of purchasing

resources for the HSCN increases over time due to a significant demand for such re-

sources. This results in a trade-off between purchasing lower-priced transportation

resources and delaying decision-making for information with lower uncertainty.

In the literature, stochastic programming is the predominant approach for model-

ing and solving the HSCN design problem (Anaya-Arenas et al., 2014). Existing
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literature has modeled HSCN problems as two-stage stochastic planning frame-

works, which involve making facility location and capacity allocation decisions

in the first stage and operational decisions, such as transportation and distri-

bution, in the second stage. A stage denotes a distinct point within the time

horizon at which decisions are made, considering the informational context at

that moment. This includes both the known parameters and those that remain

uncertain, representing the stochastic elements of the decision-making process.

However, in real-world settings, uncertainty is often revealed incrementally over

time, making three-stage models or even more detailed multi-stage frameworks

more accurate in capturing the problem’s dynamics. Stochastic programming in

its two-stage form provides an approximation by using the second stage to adapt

decisions based on realized uncertainties, but it may fall short of fully addressing

the progressive nature of uncertainty revelation and decision-making in practice.

The proposed models typically involve making design decisions in the first stage,

followed by a set of scenarios in the second stage, representing possible realiza-

tions of uncertain parameters. These scenarios enable the model to account for

fluctuations in uncertain parameters when providing a solution. In this paper,

we propose a three-stage stochastic model to solve the HSCN design problem,

which incorporates an additional decision-making stage, allowing for updates to

the transportation resources as more information becomes available. This addi-

tional stage ensures that decisions evolve with the progression of the disaster,

thereby enhancing the operational efficiency of the HSCN. Moreover, our model

incorporates the spread factor, which accounts for how unmet demands for critical

supplies at one stage affect future demand at subsequent stages, providing a more

dynamic and flexible approach. While increasing the number of stages brings the

model closer to real-world decision-making processes, it also introduces greater

complexity, demanding more computational resources and time to solve. This

paper investigates the benefits of increasing the number of stages when modeling
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the HSCN design problems by proposing a three-stage model and comparing its

performance to its two-stage counterpart.

The rest of this paper is organized as follows. We present a survey of the related

literature in Section 4.2. We describe the problem setting in Section 4.3. The

three-stage post-disaster HSCN design model is introduced in Section 4.4. Section

4.5 presents the numerical experiments and analyses. Finally, the conclusion in

Section 4.6 completes the paper.

4.2 Literature Review

In this section, we review the literature on the HSCN design problem. Within

the broader domain of humanitarian logistics, the study of relief network design is

divided into pre-disaster and post-disaster phases, representing two critical phases

in humanitarian operations, each posing distinct challenges and requiring tailored

solutions. In the pre-disaster phase, emphasis is placed on preparedness and

proactive measures to enhance the efficiency of response efforts in the event of a

catastrophic event. Studies in this phase often focus on strategic decisions such

as warehouse location selection, stockpiling strategies, and resource allocation to

optimize readiness and response capabilities. Conversely, the post-disaster phase

is characterized by urgency, uncertainty, and resource constraints. Relief networks

must rapidly deploy aid to affected areas while navigating disrupted infrastructure

and elevated demand. Research in this phase typically addresses decisions such as

temporary facility location, transportation resources allocation, beneficiary groups

assignment, and supply chain management under uncertainty to expedite relief

distribution and alleviate human suffering effectively.

The design of humanitarian relief networks post-disaster poses significant chal-

lenges due to the urgent need to distribute aid efficiently amidst uncertainty and
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limited resources. The rest of this section explores the uncertain parameters,

objective functions, and solutions considered in addressing the post-disaster hu-

manitarian relief network design problem.

Designing an HSCN involves uncertain parameters estimated post-disaster through

assessments (Balcik, 2017; Balcik & Yanıkoğlu, 2020). Multiple data sources (e.g.,

surveys and satellite imagery) are used to obtain probabilistic models for the un-

certain parameters. However, discrepancies in estimations obtained from various

data sources can cause ambiguity (Langewisch & Choobineh, 1996). For instance,

Grass et al. (2023) noted demand estimates in Syria from different data sources

that barely overlap. Daneshvar et al. (2024) proposed four optimization models to

consider such ambiguity in the HSCN design problem. In this paper, the authors

consider the possibility of adapting the HSCN design to the evolving information

received over the planning horizon.

Various uncertain parameters impact the design of post-disaster humanitarian re-

lief networks, including the lack of information on affected populations, the urban

or rural structure of affected regions, and the intensity of the natural disaster and

its secondary impacts (Anaya-Arenas et al., 2014; Tofighi et al., 2016). Travel

time, supply availability, network reliability, shipping cost, and shipping capac-

ity also contribute to uncertainty in relief operations (Anaya-Arenas et al., 2014;

Tofighi et al., 2016; Daneshvar et al., 2023). However, the most common and

impactful uncertainty lies in demand estimation, where accurate predictions are

crucial for effective resource allocation (Balcik & Beamon, 2008; Dönmez et al.,

2021; Anaya-Arenas et al., 2014).

The effects of unmet demand for critical supplies on the demands in subsequent

periods have been modeled in various ways in the literature. Shokr et al. (2022)

modeled the unmet demand as a penalty in the objective function but did not
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transferred the unmet demand to the next period. However, (Silva et al., 2024)

considered both a penalty for unmet demand and the cumulative nature of un-

met demand by adding the unmet demand to the demand of the next period.

Daneshvar et al. (2023) not only considered the penalty of unmet demand but

also modeled the effect unmet demand for one critical supply has on the level of

demand for other critical supplies.

The literature reveals a diversity of objective functions aimed at improving the

performance of humanitarian relief networks. These objectives often differ from

those in commercial supply chains, emphasizing outcomes such as minimizing un-

met demand, optimizing distribution coverage, and enhancing budget utilization

(Diabat et al., 2019; Hasani & Mokhtari, 2019, 2018). Some studies integrate

multiple objectives, including cost minimization, travel time reduction, and satis-

faction maximization (Tzeng et al., 2007). Additionally, fairness and equity con-

siderations have gained attention, aiming to distribute critical supplies equitably

among vulnerable populations (Anaya-Arenas et al., 2018; Ismail, 2021).

Various optimization methods have been employed to address the complexities

of post-disaster humanitarian relief network design. These methods encompass

stochastic programming and robust optimization to account for uncertainty (Grass

et al., 2023; Benini et al., 2017). Studies have proposed multi-layer network struc-

tures, dynamic supply chain designs, and collaborative relief chain models to op-

timize resource allocation and distribution efficiency (Afshar & Haghani, 2012;

Dufour et al., 2018; Shokr et al., 2022).

The literature on post-disaster humanitarian relief network design reflects a con-

certed effort to address the unique challenges posed by uncertainty, limited re-

sources, and urgent time constraints. By considering uncertain parameters, di-

verse objective functions, and innovative solutions, researchers aim to enhance the
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effectiveness and efficiency of relief operations, ultimately mitigating the impact

of disasters on affected populations.

4.3 Problem Definition

We now formally define the here considered HSCN design problem. The key as-

pects of the problem, including the structure of the network, uncertain parameters

and decision variables, are introduced in Subsection 4.3.1. Then, Subsection 4.3.2

outlines the budgetary settings and the subsequent limitations on the HSCN de-

sign problem. Finally, the notion of demand and the correlated effect of unmet

demand on critical supplies are presented in Subsection 4.3.3.

4.3.1 HSCN Structure

We study a tactical multi-period HSCN design problem faced by humanitarian

organizations after a natural disaster. An HSCN is a physical network of hubs

that receive, store, and distribute critical supplies to beneficiary groups over a

defined planning horizon. The critical supplies required for the beneficiary groups

vary based on the type of natural disaster, the geographical characteristics of the

affected region, and the season. The International Federation of Red Cross and

Red Crescent Societies (IFRC) has published a catalog indicating the demand of

vulnerable people for each critical supply.

We adopt a three-layer structure for HSCN, representing a common configuration

in practice (Séguin, 2019). Figure 4.1 illustrates an example HSCN structure,

with the top diagram presenting all available hubs, services, and assignments,

while the bottom diagram shows the HSCN with the selected hubs, services, and

assignments. A layer is a set of hubs with specific characteristics designed to

carry out part of the relief distribution operation. The hubs in the first layer are
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ports of entry (e.g. airport, seaport, train station), where the critical supplies

are received and sent to the second layer of the HSCN. Each port of entry has a

capacity for receiving the critical supplies determined based on its infrastructure.

For instance, a small port has a lower capacity to receive critical supplies than

an international airport. The second layer of the HSCN consists of warehouses.

A warehouse receives the critical supplies from the ports of entry, stores them,

and sends them to the third layer. Each warehouse has inventory resources (e.g.,

classrooms, containers), and the quantity of these resources is decided upon at the

design time. Finally, Distribution Centers (DC) belong to the third layer of the

HSCN structure. Each DC can provide critical supplies for multiple beneficiary

groups, but each beneficiary group is assigned to one DC. The reason being the

complexity of the coordination required with other humanitarian operations (e.g.,

debris removal) and the lack of access to the beneficiary groups for communication

because of the infrastructural damages.
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Figure 4.1: Top: all available hubs, services, and assignments. bottom: selected

hubs, services, and assignments in an example HSCN

The complexity of the coordination among the humanitarian operations (e.g.,

debris removal), the urgency of the relief distribution, and the competition among

humanitarian organizations to acquire resources force some decisions to be made

right after the natural disaster occured. These decisions include selecting the

hubs, transportation services, number of transportation and inventory resources

and assigning the beneficiary groups to the DCs. A transportation resource is

a vehicle with a capacity used by a transportation service that moves critical

supplies from an origin into a destination hub and then returns to the origin hub

to repeat the process. The remaining decisions are primarily operational and

made over the planning horizon. These decisions include the quantity of critical
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supplies received at ports of entry, stored at warehouses, assigned to beneficiary

groups at DCs, and the quantity of critical supplies transferred by transportation

resources.

In this study, we consider the possibility of relocating the transportation resources

between services over periods in response to the new information available to im-

prove the performance of the HSCN. We also consider the possibility of adding

new transportation resources in response to the demand over the planning hori-

zon. Regardless, the cost of adding new transportation resources after the design

time will considerably increase. The reason being the lack of access to available

resources, as there is a high demand for such resources in the aftermath of a natu-

ral disaster. The transportation resources update decisions are made over the first

period, and the new structure will be in effect in the second period. The reason

for considering only one update to the network structure is that the majority of

the demand happens in the first few days after the natural disaster (e.g. shelter,

blanket), and hence, updating the network in the first period would have the most

effect on the performance of the HSCN designed. We also limit the updates to

the selected transportation services at the design time (i.e., no new transportation

service is added to the network).

The HSCN must be designed quickly after a natural disaster to start the relief

distribution operation, reducing the damage and harm to people’s health. How-

ever, multiple sources of uncertainty exist in the aftermath of a natural disaster,

including a lack of access to accurate information necessary for relief operations

(e.g., demographical distribution data), damaged infrastructure, and secondary

impacts (e.g., aftershocks, landslides), which causes uncertainty regarding the

value of some parameters involved in the HSCN design problem, including the de-

mand and the capacity of both storage and transportation resources. Over time,

more information is available regarding the region’s state, and the estimation of
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the uncertain parameters improves.

4.3.2 Budget

The design and operation of the HSCN incur some costs associated with the

decisions made, limited by the available financial resources referred to as budget.

Humanitarian organizations have some financial resources available to respond to

natural disasters, and they also receive financial aid, which will be available over

time. We refer to the budget available at the design time as the initial budget

and the financial resources that become available during the planning horizon as

donations.

Since in the here studied HSCN design problem, the structure of the HSCN can be

updated over time, the design expenses include the fixed cost of selecting hubs and

services at the design time, as well as the fixed cost of relocating the transportation

resources or adding extra transportation resources during the planning horizon.

The initial budget limits the costs related to design decisions at the design time.

The operating expenses are the flow cost and are proportional to each critical

supply for each service, calculated per unit of distance (e.g. km). The expenses

incurred by design decisions during the planning and the costs related to the

operational decisions are limited by the available budget (i.e., donations received

plus the remaining budget of previous periods) at each period.

4.3.3 Demand

In the HSCN design problem, demand is considered an uncertain parameter due

to the variability in the population sizes of each beneficiary group. This uncer-

tainty necessitates that demand be computed proportionately to the respective

group populations. Moreover, the demand is characterized by its cumulative and
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spreading nature. Specifically, any unmet demand for a critical supply not only

escalates the demand for the same supply in the subsequent time period but also

heightens the demand for other critical supplies. The spread factor (Daneshvar

et al., 2023), presented as sk′k, quantifies the degree to which unmet demand for

a specific critical supply k′ influences the demand for another critical supply k.

Using the spread factor provides the possibility to understand better how short-

ages in one period amplify challenges in the next. Equation (4.1) defines the total

demand d̂ktl of beneficiary group l for critical supply k in period t.

d̂ktl = d̃ktl +
∑
k′∈K

sk
′k(d̂k

′t−1
l −

∑
i∈VDC

āk
′t−1
il ) (4.1)

In this formulation, d̃ktl symbolizes the base demand of beneficiary group l for

critical supply k at period t, sk′k captures the spread factor reflecting the influence

of critical supply k′ on supply k, and āk
′t−1
il represents the allocation of critical

supply k′ from distribution center i to beneficiary group l during period t− 1. In

the next Section, we propose a mathematical model for the HSCN design problem.

4.4 Mathematical Model

In the HSCN design problem, the value of uncertain parameters is revealed over

time by the availability of more information from the field. However, humanitar-

ian organizations must make design decisions early after a natural disaster due

to the competition to acquire limited available resources in the field by differ-

ent organizations. Furthermore, the cost of booking resources increases as fewer

resources will be available over time. However, postponing the operational deci-

sions results in better decision-making as more information is available during the

decision-making process. In the here-studied HSCN design problem, it is possible

to adjust the design of the HSCN to leverage the information obtained over time.
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All in all, we propose a three-stage model where, in the first stage, the design

decisions are made. In the second stage, the decisions regarding updating the

HSCN design, as well as the operational decisions of the first period, are made,

and the third stage contains the operational decisions of the remaining periods. In

the following, we introduce the sets, presented in Table 4.1, parameters, presented

in Table 4.2, and decision variables, presented in Table 4.3, used in the proposed

optimization models.

Table 4.1 presents the sets involved in the mathematical model. In this table,

V presents the set of all candidate hubs, including the ports of entry,VI , the

warehouses, VW , and the DCs, VDC . Furthermore, A is the set of services, L is

the set of beneficiary groups, K is the set of critical supplies, Ψ is the set of all

scenarios, and T is the set of periods.

In this model, the decisions related to the structural design of the HSCN are made

in the first stage right after the occurrence of the natural disaster. Furthermore,

the second-stage decisions are made at the end of the first period, including the

structure update decisions and the operational decisions of the first period. The

reason for locating the second stage at the end of the first period is that the first

two periods contain the highest level of demand, and the structure update could

improve the efficiency of the relief operation of the remaining periods using the

available information at the end of the first period. Finally, the third stage con-

tains the operational decisions of the remaining periods which are made at the

end of the last period. In the first stage of the model, there is a high level of

uncertainty and only the value of deterministic parameters are available. How-

ever, in the second stage, the first period’s uncertain parameters are also known,

reducing the level of uncertainty. Finally, in the third stage, the values of all

parameters are known. In the following, we introduce the sets, presented in Table

4.1, parameters, presented in Table 4.2, and decision variables, presented in Table
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4.3, used in the proposed optimization model.

Set Definition

VI Set of ports of entry i ∈ VI .

VW Set of warehouses i ∈ VW .

VDC Set of DCs i ∈ VDC .

V Set of all hubs i ∈ V , where V = VI
⋃
VW

⋃
VDC .

A Set of all services (i, j) ∈ A.

L Set of beneficiary groups l ∈ L.

K Set of critical supplies k ∈ K.

Ψ Set of scenarios ψ ∈ Ψ.

Ψo
A subset of scenarios ψ ∈ Ψo that cross node o on the

second stage of scenario tree, where Ψ =
⋃e
o=1 Ψi.

T1 Set of periods in the first stage {0} ∈ T1.

T2
Set of periods in the second stage t ∈ T2, where T2 ⊆

T .

T3 Set of periods in the third stage t ∈ T3, where T3 ⊆ T .

T Set of periods t ∈ T , where T = T2
⋃
T3.

Table 4.1: Sets used in the optimization models.

Table 4.1 presents the sets involved in the mathematical model. In this table,

V presents the set of all candidate hubs, including the ports of entry,VI , the

warehouses, VW , and the DCs, VDC . Furthermore, A is the set of services, L is the

set of beneficiary groups, and K is the set of critical supplies. The set of scenarios

generated from the data sources is represented by Ψ. Furthermore, Ψo present the

set of scenarios that pass through node o ∈ {1, 2, ..., e} in the second stage of the

scenario tree. Finally, T is the set of time periods, involved in the second stage,

presented by T2, and periods in the third stage, presented by T3. T1 is a set define

to unify the formulation notaion and does not include any operational periods.
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Deterministic Parameters

Parameter Definition

f̂ tij
Cost of selecting one unit of transportation resource of service (i, j) ∈ A

at the design time, t ∈ T1.

f̂ tij
Cost of selecting one unit of transportation resource of service (i, j) ∈ A

at the first period, t ∈ T2.

f̂i Cost of selecting one unit of inventory resource for warehouse i ∈ VW .

fi Cost of selecting a hub i ∈ V .

ckij
Cost of transporting one unit of critical supply k ∈ K, by service (i, j) ∈

A.

uij Capacity of one unit of transportation resource of service (i, j) ∈ A.

ui Capacity of one unit of inventory resource of warehouse i ∈ VW .

mi Maximum number of inventory resources available for warehouse i ∈ VW .

mtij
Maximum number of transportation resources available at the design time

for service (i, j) ∈ A, t ∈ T1.

mtij
Maximum number of transportation resources available at the first period

for service (i, j) ∈ A, t ∈ T2.

nkti
Maximum quantity of critical supplies k ∈ K that can be delivered to the

port of entry i ∈ VI at period t ∈ T .

bk The penalty for one unit of unmet demand of critical supply k ∈ K.

z0 The initial budget.

zt The received donation amount at the beginning of period t ∈ T .

skk
′ Spread factor of one unit of unmet demand of critical supply k ∈ K on

critical supply k′ ∈ K.

e number of nodes in the second stage of the scenario tree.

Parameters of the scenario-based stochastic model

Parameter Definition

pψ Probability of scenario ψ ∈ Ψ.

gtiψ
Percentage of available inventory resources of hub i ∈ V , at period t ∈ T ,

in scenario ψ ∈ Ψ.

gtijψ
Percentage of available transport resources of service (i, j) ∈ A, at period

t ∈ T , in scenario ψ ∈ Ψ.

dktlψ
The base demand of beneficiary group l ∈ L, for critical supplies k ∈ K,

at period t ∈ T , in scenario ψ ∈ Ψ.

d̂ktlψ
Total demand of beneficiary group l ∈ L, for critical supplies k ∈ K, at

period t ∈ T , in scenario ψ ∈ Ψ.

Table 4.2: The parameters of the HSCN design problem.

The parameters of the models are introduced in Table 4.2. For each transportation
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resource (i, j) ∈ A, there are two selection costs, including the selection at the

design time, represented by f̂ 0
ij, and at the first period, represented by f̂ 1

ij. The

other fixed cost is associated with selecting one unit of inventory resource for

warehouse i ∈ VW , indicated by f̂i. The other fixed cost is the selection cost

of the hub i ∈ V indicated in the model by fi. The flow cost of transporting

one unit of critical supply k ∈ K, using the service (i, j) ∈ A is represented by

ckij. The capacity of one unit of transportation resource of service (i, j) ∈ A is

indicated by uij, and ui presents the capacity of one unit of inventory resource of

warehouse i ∈ VW . The maximum number of inventory resources of warehouse

i ∈ VW are presented by mi, and m0
ij and m1

ij show the maximum number of

transportation resources available for service (i, j) ∈ A at the design time and

first period respectively. The maximum quantity of critical supplies k ∈ K that

can be delivered to the port of entry i ∈ VI at period t ∈ T is indicated by nkti .

The penalty associated with one unit of critical supply k ∈ K is presented by bk.

The initial budget and the received donations at each period are presented by z0

and zt, respectively, where t ∈ T . The last deterministic parameter is presented

by skk
′ indicating the spread factor of one unit of unmet demand of the critical

supply k ∈ K on the critical supply k′ ∈ K.

In the following models, pψ indicates the probability of scenario ψ ∈ Ψ. The

available inventory resources of hub i ∈ V , at period t ∈ T , in scenario ψ ∈ Ψ is

presented in percentage by gtiψ. Furthermore, the percentage of available transport

resources of service (i, j) ∈ A, at period t ∈ T , in scenario ψ ∈ Ψ is shown by gtijψ.

Finally, dktlψ and d̂ktlψ present the base demand and the total demand of beneficiary

group l ∈ L, for critical supplies k ∈ K, at period t ∈ T , in scenario ψ ∈ Ψ

respectively.

In this study, a scenario tree is employed to represent the structure of the problem

under consideration. Figure 4.2 illustrates the scenario tree of a three-stage model
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with four time periods and six scenarios. This model’s first stage corresponds to

the t = 0, indicating that, at this point, the operational periods have not started

yet. The second stage encompasses the first time period, while the third stage

spans the remaining time periods, namely t=2, 3, and 4. In the scenario tree,

all scenarios converge at a single node in the first stage, indicating that decisions

made at this stage are uniform across all scenarios. In the second stage, the tree

branches such that scenarios 1, 2, and 3 share a common node, as do scenarios

4, 5, and 6, necessitating identical decision variables within each respective group

of scenarios. By contrast, in the third stage, the scenario tree fully branches out,

allowing each scenario to have independent decision variables.

Figure 4.2: A sample scenario three with three stages and four time periods.
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First Stage

Variable Definition

xtijψ ∈ {0, 1}
1 if service (i, j) ∈ A is selected to be part of the HSCN; 0 otherwise, where t ∈ T1,

in scenario ψ ∈ Ψ.

ytiψ ∈ {0, 1}
1 if hub i ∈ V is selected to be part of the HSCN; 0 otherwise, where t ∈ T1, in

scenario ψ ∈ Ψ.

x̂tijψ ∈ N0
Number of units of transport resources selected at the design time for service (i, j) ∈

A, where t ∈ T1, in scenario ψ ∈ Ψ.

ŷtiψ ∈ N0
Number of units of inventory resources selected for hub i ∈ VW , where t ∈ T1, in

scenario ψ ∈ Ψ.

atilψ ∈ {0, 1}
1 if beneficiary group l ∈ L is assigned to DC i ∈ VDC ; 0 otherwise, where t ∈ T1, in

scenario ψ ∈ Ψ.

Second Stage

Variable Definition

x̂tijψ ∈ N0
Number of units of transport resources added for service (i, j) ∈ A, where t ∈ T2, in

scenario ψ ∈ Ψ.

vt
i′j′ijψ ∈ N0

Number of units of transport resources transferred from service (i′, j′) ∈ A to service

(i, j) ∈ A, where t ∈ T2, in scenario ψ ∈ Ψ.

x̄ktijψ
≥ 0

Quantity of critical supply k ∈ K transferred through service (i, j) ∈ A at period

t ∈ T2, in scenario ψ ∈ Ψ.

āktilψ
≥ 0

Quantity of critical supply k ∈ K at period t ∈ T2 allocated to beneficiary group

l ∈ L from DC i ∈ VDC , in scenario ψ ∈ Ψ.

rktiψ ≥ 0
Inventory level (in number of units) of critical supply k ∈ K at warehouse i ∈ VW at

the end of period t ∈ T2, in scenario ψ ∈ Ψ.

r̂ktiψ ≥ 0
Inventory level (in number of units) of critical supply k ∈ K at warehouse i ∈ VW at

the beginning of period t ∈ T2, in scenario ψ ∈ Ψ.

Third Stage

Variable Definition

x̄ktijψ
≥ 0

Quantity of critical supply k ∈ K transferred through service (i, j) ∈ A at period

t ∈ T3, in scenario ψ ∈ Ψ.

āktilψ
≥ 0

Quantity of critical supply k ∈ K at period t ∈ T3 allocated to beneficiary group

l ∈ L from DC i ∈ VDC , in scenario ψ ∈ Ψ.

rktiψ ≥ 0
Inventory level (in number of units) of critical supply k ∈ K at warehouse i ∈ VW at

the end of period t ∈ T3, in scenario ψ ∈ Ψ.

r̂ktiψ ≥ 0
Inventory level (in number of units) of critical supply k ∈ K at warehouse i ∈ VW at

the beginning of period t ∈ T3, in scenario ψ ∈ Ψ.

Table 4.3: Decision variables of the proposed three-stage stochastic model.

Table 4.3 provides the list of decision variables of the HSCN design problem. This
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table includes three parts describing the decision variables in each stage of the

proposed three-stage model. In the proposed model, the operations decisions are

divided between the second and third stages. Hence, some decision variables are

repeated in both the second and third sections of the table.

min
∑
ψ∈Ψ

pψ
∑
t∈T

∑
k∈K

bk
∑
l∈L

(d̂ktlψ −
∑
i∈VDC

āktilψ) (4.2)

s.t.

2xtijψ ≤ ytiψ + ytjψ ∀(i, j) ∈ A, ∀t ∈ T1, ∀ψ ∈ Ψ, (4.3)

ŷtiψ ≤ miy
t
iψ ∀i ∈ VW , t ∈ T1, ∀ψ ∈ Ψ, (4.4)

x̂tijψ ≤ mt
ijx

t
ijψ ∀(i, j) ∈ A, ∀t ∈ T1, ∀ψ ∈ Ψ, (4.5)

∑
i∈V

fiy
t
iψ +

∑
i∈W

f̂iŷ
t
iψ +

∑
(i,j)∈A

f̂ tijx̂
t
ijψ ≤ z0 t ∈ T1, ∀ψ ∈ Ψ, (4.6)

∑
i∈VDC

atilψ = 1 ∀l ∈ L, t ∈ T1, ∀ψ ∈ Ψ, (4.7)

atilψ ≤ ytiψ ∀i ∈ VDC , ∀l ∈ L, t ∈ T1, ∀ψ ∈ Ψ, (4.8)

∑
k∈K

x̄ktijψ ≤ uijg
t
ijψ

(
∑

t′∈T1
⋃
T2

x̂t
′

ijψ +
∑

i′j′∈A
vt”i′j′ijψ − vt”iji′j′ψ),

∀(i, j) ∈ A, ∀t” ∈ T2, ∀t ∈ T, ∀ψ ∈ Ψ,

(4.9)

∑
t′∈T1

⋃
T2

x̂t
′

ijψ+
∑
i′j′∈A

vti′j′ijψ−vtiji′j′ψ ≥ 0, ∀(i, j) ∈ A, ∀t ∈ T2, ∀ψ ∈ Ψ,(4.10)

x̂tijψ ≤ mt
ijx

t
ijψ ∀(i, j) ∈ A, ∀t ∈ T2, ∀ψ ∈ Ψ, (4.11)
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āktilψ ≤
∑

(j,i)∈A

∑
t′∈T1

⋃
T2

mt′

jiujig
t
jiψ
at”ilψ, ∀i ∈ VDC , ∀l ∈ L,

∀k ∈ K, ∀t ∈ T, t” ∈ T1, ∀ψ ∈ Ψ,

(4.12)

āktilψ ≤ d̂ktlψ, ∀i ∈ VDC , ∀l ∈ L, ∀k ∈ K, ∀t ∈ T, ∀ψ ∈ Ψ, (4.13)

∑
l∈L

āktilψ ≤
∑
j∈W

x̄ktjiψ , ∀i ∈ VDC , ∀k ∈ K, ∀t ∈ T, ∀ψ ∈ Ψ, (4.14)

d̂ktlψ = dktlψ +
∑
k′∈K

sk
′k(d̂k

′t−1
lψ −

∑
i∈VDC

āk
′t−1
ilψ

), ∀l ∈ L, ∀k ∈ K,

∀t ∈ T, ∀ψ ∈ Ψ,

(4.15)

∑
i∈V

fiy
t”
iψ +

∑
i∈VW

f̂iŷ
t”
iψ +

∑
t′∈T1

⋃
T2

∑
(i,j)∈A

f̂ t
′

ij x̂
t′

ijψ +
t∑

t′=1

∑
(i,j)∈A

∑
k∈K

ckijx̄
kt′

ijψ
≤

z0 +
t∑

t′=1

zt
′
, ∀t ∈ T, t” ∈ T1, ∀ψ ∈ Ψ,

(4.16)

r̂ktjψ ≤ rkt−1
jψ

∀j ∈ VW , ∀k ∈ K, ∀t ∈ T, ∀ψ ∈ Ψ, (4.17)

∑
k∈K

r̂ktjψ ≤ ujg
t
jψ
ŷjψ ∀j ∈ VW , ∀t ∈ T, ∀ψ ∈ Ψ, (4.18)

∑
k∈K

rktjψ ≤ ujg
t
jψ
ŷjψ ∀j ∈ VW , ∀t ∈ T, ∀ψ ∈ Ψ, (4.19)

rktjψ = r̂ktjψ +
∑

(i,j)∈A

x̄ktijψ −
∑

(j,i)∈A

x̄ktjiψ ∀j ∈ VW , ∀k ∈ K,

∀t ∈ T, ∀ψ ∈ Ψ,

(4.20)

∑
(i,j)∈A

x̄ktijψ ≤ nkti ∀i ∈ VI , ∀k ∈ K, ∀t ∈ T, ∀ψ ∈ Ψ, (4.21)
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xtijψ = xtijχ ∀(i, j) ∈ A, t ∈ T1, ∀ψ, χ ∈ Ψ, (4.22)

ytiψ = ytiχ ∀i ∈ V, t ∈ T1, ∀ψ, χ ∈ Ψ, (4.23)

x̂tijψ = x̂tijχ ∀(i, j) ∈ A, t ∈ T1, ∀ψ, χ ∈ Ψ, (4.24)

ŷtiψ = ŷtiχ ∀i ∈ V, ∀ψ, χ ∈ Ψ, (4.25)

atilψ = atilχ ∀i ∈ V, ∀l ∈ L, t ∈ T1, ∀ψ, χ ∈ Ψ, (4.26)

x̂tijψ = x̂tijχ ∀ψ, χ ∈ Ψo, o ∈ {1, ..., e}, ∀(i, j) ∈ A, t ∈ T2 (4.27)

vi′j′ijψ = vi′j′ijχ ∀ψ, χ ∈ Ψo, o ∈ {1, ..., e}, ∀(i, j) ∈ A, ∀(i′, j′) ∈ A, (4.28)

x̄ktijψ = x̄ktijχ ∀ψ, χ ∈ Ψo, o ∈ {1, ..., e}, ∀(i, j) ∈ A, k ∈ K, t ∈ T2, (4.29)

āktilψ = āktilχ ∀ψ, χ ∈ Ψo, o ∈ {1, ..., e}, ∀i ∈ VDC , ∀l ∈ L, ∀k ∈ K, t ∈ T2,(4.30)

rktiψ = rktiχ ∀ψ, χ ∈ Ψo, o ∈ {1, ..., e}, ∀i ∈ VW , ∀k ∈ K, t ∈ T2, (4.31)

r̂ktiψ = r̂ktiχ ∀ψ, χ ∈ Ψo, o ∈ {1, ..., e}, ∀i ∈ VW , ∀k ∈ K, t ∈ T2, (4.32)

x̂t”ijψ ∈ N0, ŷt”iψ ∈ N0, xt”ijψ ∈ {0, 1}, yt”iψ ∈ {0, 1}, at”ilψ ∈ {0, 1},

x̂t
′

ijψ ∈ N0, vt
′

i′j′ijψ ∈ N0,

x̄ktijψ ≥ 0, āktilψ ≥ 0, rktiψ ≥ 0, r̂ktiψ ≥ 0, ∀(i, j) ∈ A,

∀(i′, j′) ∈ A, ∀i ∈ V, ∀k ∈ K, ∀t ∈ T, ∀t′ ∈ T2, ∀x” ∈ T1, ∀l ∈ L, ∀ψ ∈ Ψ.

(4.33)
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The objective function (4.2) minimizes the expected penalty over all scenarios

ψ ∈ Ψ. Constraints (4.3) make the selection of services conditional to selecting

both their origin and destination hubs. The limits on the number of inventory

resources at each warehouse are enforced by constraints (4.4). Furthermore, the

number of selected transportation resources at the first stage is limited by con-

straints (4.5). Constraint (4.6) assures the initial budget constraint is respected.

Constraints (4.7) guarantee each beneficiary group is assigned to one DC, and

constraints (4.8) guarantee such DC is part of the HSCN. Constraints (4.9) limit

the services transported critical supplies’ quantity to the capacity of the service

at each period. Constraints (4.10) limit the number of transportation resources

leaving a service by its available transportation resources. The number of added

transportation resources to each service at the second stage is limited by con-

straints (4.11). Constraints (4.12) limit allocating the critical supplies to bene-

ficiary groups at DCs. Constraints (4.13) ensure non-anticipativity, limiting the

allocated critical supplies to each beneficiary group up to their demand at each pe-

riod. The flow constraints (4.14) guarantee that the allocated critical supplies to

beneficiary groups at each DC are limited by the received critical supplies by the

DC. The level of demand for each period of T is calculated in constraints (4.15).

Constraints (4.16) limit the expenses to the available budget at each period. Con-

straints (4.17) limit the inventory level of the warehouses at the beginning of

each period by its inventory level at the end of the previous period. Constraints

(4.18) and (4.19) confine the inventory level of warehouses by their inventory ca-

pacity. The inventory level of warehouses at the end of each period is calculated

by constraints (4.20). Constraints (4.21) bound the received critical supply at

each port of entry by the maximum capacity of the port of entry. Constraints

(4.22)-(4.26) enforce the non-anticipativity constraint of first stage decision vari-

ables and constraints (4.27)-(4.32) enforce non-anticipativity constraint for second

stage decision variables, ensuring the value of decision variables in each node of
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the scenario tree are equal across scenarios. Finally, constraints (4.33) present the

bounds of the decision variables.

4.5 Experiments

In this section, we present the dataset and experiments designed and applied to

answer the research questions considered in this paper. Subsection 4.5.1 introduces

the dataset, including the characteristics of the natural disaster, sources used in

the dataset compilation, and generating scenarios. Furthermore, we present the

performed experiments in Subsection 4.5.2, evaluating the value of allowing update

decisions during the operational phases compared to making update decisions at

the design (first) stage. In this subsection, we also compare the solution obtained

from the proposed three-stage model with its two-stage counterpart, assessing

their performance based on the two defined metrics. Finally, Subsection 4.5.3

provides the managerial insights obtained from the experiments conducted in this

section.

4.5.1 Dataset

We generate a dataset using collected data from the earthquake that occurred in

Lombok Island, Indonesia, in 2018. The region experienced over 1500 aftershocks,

among which four were the most intense shocks, including the main earthquake

on July/29 with 6.4 ML (i.e., Richter magnitude scale), the first strong aftershock

with 7 ML on Aug/05, the second strong aftershock with 5.9 ML on Aug/09, and

the third strong aftershock with 6.4 ML on Aug/26. As a result of the earthquake,

445,343 individuals relocated to 2700 camps located on Lombok island and the

neighboring islands. Responding to the critical situation after the earthquake, the

Indonesian government declared a state of emergency from July 29th to August
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26th, which we define as the planning horizon. We set the length of each period

to one week resulting in four periods in the planning horizon. The International

Organization for Migration (IOM) has published a comprehensive list of all camps,

including their locations and the number of individuals in each camp (IOM, 2019).

For this study, we selected 96 beneficiary groups on the island. There were 20,950

households (74,246 individuals) residing in these beneficiary groups during the

planning horizon. The critical supplies involved in the dataset are shelter, food,

and hygiene packs. Since the clean water had a separate distribution network

(IFRC, 2021a), we exclude it from critical supplies considered within this dataset.

To calculate the base demand for the critical supplies, we use the standard required

quantity of each critical supply per individual or household, as determined and

published by the International Federation of Red Cross and Red Crescent Societies

(IFRC, 2021b).

We gathered the location of six warehouses and four points of entry from the

reports published by Palang Merah Indonesia (PMI), the local partner of the IFRC

in Indonesia, during their operation on Lombok Island (IFRC, 2021a). According

to the published reports, the PMI outsourced the transportation of critical supplies

to third-party companies. Thus, we consulted the local transportation companies’

sources to obtain the cost and capacity of the provided services.

To generate candidate locations for the DCs, we used the DBSCAN algorithm

(Ester et al., 1996) to cluster the beneficiary groups. The DBSCAN has two

parameters, the epsilon and the minimum number of neighbors. Variating the

parameters leads to various clustering solutions, so a domain expert would choose

the best clustering for the study problem (Mendes & Cardoso, 2006). The former

indicates the radius of the obtained clusters, and the latter denotes the clusters’

density. After indicating the location of the hubs and beneficiary groups, we
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calculate the driving distances between hubs and the walking distance between

the beneficiary groups (as input parameters of the DBSCAN algorithm). We

derived the necessary distances utilizing an online routing engine (Luxen & Vetter,

2011) that computes both walking and driving distances between points using

OpenStreetMap.

Generating scenarios using a scenario tree involves several steps to capture un-

certainties in decision-making. First, relevant data is collected, and probability

distributions for uncertain parameters are determined. These distributions gener-

ate multiple realizations of parameter values, each forming a node in the second

stage of the scenario tree. For each second-stage node, further realizations for the

third stage are generated using conditional probability distributions, expanding

the tree. This results in a comprehensive set of scenarios that capture a range of

possible outcomes and their associated probabilities.

4.5.2 Experimental Results

This section includes the experiments designed and conducted in the context of

the considered case study. First, Subsection 4.5.2.1 investigates the appropriate

number of scenarios for the following experiments using in-sample and out-of-

sample stability analysis. Then, Subsection 4.5.2.2 examines the benefit obtained

by adjusting the HSCN design over the planning horizon compared to the fixed-

design models in the literature (Daneshvar et al., 2023). Then, Subsection 4.5.2.3

evaluates the performance of the three-stage model and its two-stage counterpart

over various spread-factor values. Finally, Subsection 4.5.2.4 compares the cost-

benefit of the three-stage model proposed here and its two-stage counterpart.



144

4.5.2.1 Stability Analysis

This section includes the in-sample and out-of-sample stability analyses (Kaut

& Wallace, 2003) of the proposed model. Different solutions may result from

solving a problem with distinct scenario sets of equal size. Yet, increasing scenario

numbers via appropriate sampling reduces such differences (enhances uncertain

parameter approximation) and increases the generated instance’s computational

cost, including required hardware and time. Thus, we are interested in the number

of scenarios that balance estimation quality and computational cost. Assessing

both in-sample and out-of-sample stability examines sample size effects on final

solution quality. In-sample stability examines solution consistency across varied

scenario sizes based on reported objective function values, while out-of-sample

stability tests for consistency on the ground truth.

We first choose three different number of scenarios (125, 250, and 500) to perform

the in-sample stability test. In the scenario tree used to generate the scenarios,

every five scenarios share a node in the second stage. Then, for each number

of scenarios, we solve the proposed three-stage model 15 times, each time with

different randomly generated scenarios. The average and standard deviation of the

objective function value is reported in Table 4.4. To perform the out-of-sample

stability test, we calculate the expected penalty of using solutions obtained in

the in-sample stability test over the ground-truth scenarios. The ground truth

comprises 3,000 scenarios, with 600 nodes in the second stage of the scenario tree

and five nodes in the third stage for each node in the second stage. Similar to the

in-sample-stability test, we calculate the average and standard deviation of the

expected penalty of the solution, presented in Table 4.5.
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Number of scenarios mean std

125 62,828 5,452

250 65,662 4,221

500 64,128 2,962

Table 4.4: The results obtained from the in-sample stability test of the

three-stage model (over 15 runs).

Number of scenarios mean std

125 65,701 1,577

250 64,595 582

500 64,500 611

Table 4.5: The results obtained from the out-of-sample stability test of the

three-stage model (over 15 runs).

Contrary to the out-of-sample stability test, the objective function values in the

in-sample stability test are calculated on different scenario sets; therefore, we can-

not use the mean value as a comparison point between different scenario sizes.

However, the standard deviation could be used to compare the fluctuation in the

objective function value caused by the number of scenarios used when solving the

problem. The in-sample stability test results in Table 4.4 indicate that the stan-

dard deviation of objective function values reduces from 5,452 for 125 scenarios

to 2,962 for 500 scenarios. Furthermore, the average objective function value in

the out-of-sample stability test reduces from 65,701 for 125 scenarios to 64,500

for 500 scenarios, showing a 1.83% improvement in the objective function value

of the solutions obtained when tested on the ground truth scenario set. Also, the

standard deviation of the objective function values has reduced from 1,577 for

125 scenarios to 611 for 500 scenarios, indicating a 61.26% improvement. Based

on the observed results of this experiment, we use 500 scenarios to perform the

following experiments.
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4.5.2.2 Value of Adjusting Transportation Resources

The update decisions involve adjusting the design of the HSCN to accommodate

demand by adding new transportation resources and relocating existing ones.

Furthermore, over time, the availability of transportation resources declines while

their associated costs rise within the region. Consequently, update decisions are

considered only in the first period.

This experiment employs two two-stage models to explore the potential advantages

of postponing the update decisions from the design phase to the second stage. The

first model, referred to as SSUD (i.e., second-stage update decision), is a relaxed

version of the three-stage model introduced in Section 4.4, with constraints (4.27)

to (4.32) (the non-anticipativity constraints) relaxed. The second model, referred

to as FSUP (i.e., first-stage update decision), incorporates the update decisions in

the first stage by adding the following constraints to the original two-stage model,

enforcing the update decisions to be made in the first stage.

x̂1ijψ = x̂1ijχ ∀ψ, χ ∈ Ψ, ∀(i, j) ∈ A, (4.34)

vi′j′ijψ = vi′j′ijχ ∀ψ, χ ∈ Ψ, ∀(i, j) ∈ A, ∀(i′, j′) ∈ A, (4.35)

Five hundred scenarios are generated and used to solve all three models, obtain-

ing one solution per model to compare the SSUD, FSUD, and three-stage models.

The solutions are then applied to the ground-truth scenario set. To evaluate the

solutions, we use the three-stage model presented in Section 4.4 while fixing the

decision variables of the first stage using the solutions’ values. Table 4.6 presents

the expected penalty obtained by applying the solutions on the ground-truth

scenarios. The result indicates that the SSUD outperforms the FSUD model,

suggesting that humanitarian decision-makers could improve the performance of
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their HSCN with a slight increase in computational time when choosing SSUD

over the FSUD model. However, when comparing the SSUD and the three-stage

models, the latter demonstrates superior performance, with a 4.81% improvement

in the expected penalty. While this improvement comes at a computational cost

of 14.89%, it provides a more robust and detailed framework for decision-making

by incorporating additional flexibility in the timing of update decisions. This sug-

gests that adopting the three-stage model could significantly improve outcomes for

humanitarian decision-makers in terms of unmet demand and network resilience.

It would also make it a more effective approach in contexts where computational

resources are not a limiting factor and decision precision is paramount.

Model Solution Calculation Expected Penalty on

Time (sec) the Ground-Truth

FSUD 1,101 70,295

SSUD 1,867 67,504

Three-Stage 2,145 64,258

Table 4.6: The computation time to obtain a solution and the expected penalty

when the solution is applied on the ground truth for FSUD, SSUD, and

three-stage models.

In the following subsection, we study the possible advantages of using a three-stage

over the two-stage SSUD model.

4.5.2.3 The impact of the spread factor

The spread factor models the impact of each critical supply’s unmet demand

on all critical supplies’ demands in the next period (Daneshvar et al., 2023).
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This section evaluates the spread factor’s impact on the model’s computational

time. Following, we evaluate the impact of increasing spread factor value on the

performance gap between the SSUD and three-stage models. The performance

gap is the percentage increase in the expected penalty value when transitioning

from the three-stage to the SSUD model. This metric quantifies the relative

performance loss associated with simplifying from the three-stage to the SSUD

model, highlighting the benefits of additional stages in reducing the expected

penalty. Changes in the spread factor variations generate new instances, making

direct comparisons of expected penalties between instances unattainable. Using

the performance gap, we obtain a normalized measure to assess the significance

of additional stages across different spread factor values.

To conduct a structured analysis, we define two series of values for the spread

factor: one set of diagonal variations to capture the impact of unmet demand for

each critical supply on itself (cumulative effect) in the next period and another set

of non-diagonal variations to reflect the impact of unmet demand of each critical

supply on other critical supplies (spreading effect) in the next period.

We use the following formulation to generate variations of spread factor values.

spread factor = Π1I +Π2(J − I) (4.36)

In this context, I represents the identity matrix, with ones on the diagonal and

zeros elsewhere, and J is a matrix with all entries equal to one. Also, Π1 is the

parameter indicating the intensity of the cumulative effect, and Π2 represents the

spreading effect’s intensity. The spread factor I indicates that the unmet demand

of each critical supply transfers to the next period without increase. We define

the spread variation factor, where the cumulative variations are represented by

Π1 taking 1, 1.25, 1.5, 1.75, and 2 with Π2 equal to zero, resulting in spread
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factor values of I, 1.25I, 1.5I, 1.75I, and 2I, respectively. For the spreading

effect variations, we set Π1 equal to one with Π2 taking 0, 0.25, 0.5, 0.75 and 1,

resulting in spread factor values of I, I+0.25(J−I), I+0.5(J−I), I+0.75(J−I),

J , respectively. This structure enables us to systematically examine how unmet

demand impacts propagate both within and across critical supplies in subsequent

time periods.

Cumulative Effect Spreading Effect

Value of Π1 Value of Π2 Time (hours) Value of Π1 Value of Π2 Time (hours)

1.00 0.00 0.58 1.00 0.00 0.58

1.25 0.00 1.25 1.00 0.25 2.00

1.50 0.00 3.00 1.00 0.50 5.50

1.75 0.00 7.00 1.00 0.75 20.00

2.00 0.00 10.00 1.00 1.00 20.00

Table 4.7: Cumulative and Spreading Effects on Spread Factors and

Computational Time

Table 4.8 presents the performance improvement in the expected penalty over

the ground truth made when using the three-stage over the SSUD model. The

results are reported for variations of spread factor values considering the cumu-

lative and spreading effects separately. The results show that the percentage of

improvement decreases for higher values of the spread factor for both cumulative

and spreading effects variations. The results indicate that when demand increases

without corresponding adjustments in budget and resources, the performance of

the SSUD and three-stage models converges, underscoring the critical importance

for decision-makers to ensure the availability of adequate budget and resources to

maintain effective humanitarian relief operations.
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Cumulative Effect Spreading Effect

Value of Π1 Value of Π2 three-stage improvement Value of Π1 Value of Π2 three-stage improvement

(percent) (percent)

1.00 0.00 4.80 1.00 0.00 4.80

1.25 0.00 4.67 1.00 0.25 4.67

1.50 0.00 1.56 1.00 0.50 1.57

1.75 0.00 0.21 1.00 0.75 1.74

2.00 0.00 0.79 1.00 1.00 1.80

Table 4.8: Performance gap obtained on various variations of spread factor,

comparing the three-stage and SSUD models.

4.5.2.4 Solution analysis

This section evaluates the proposed models by examining the solutions obtained

on a problem instance with 500 scenarios. First, this analysis compares the dis-

tinct design decisions made in each solution, presenting the critical differences

between the two networks. Then, the solutions are evaluated based on the up-

dates required in each HSCN designed over the planning periods when assessed

against the ground-truth scenario set. By examining the number of scenarios in

ground truth that have updated the designed HSCN to align with the observed

demand, we better understand each solution’s robustness and flexibility.

Table (4.9) compares the number of transportation resources each model selects

in HSCN designed by the FSUD, SSUD, and three-stage models. When com-

paring the total transportation resources units selected in each designed HSCN,

all three networks are close to each other. However, the distribution of these re-

sources is different among HSCNs. Specifically, FSUD is overinvested compared

to SSUD and Three-Stage in Lombok Airport to Kayanagan transportation and

underinvested in ObelObel #2 to DC #104 and from Lombok Airport to ObelO-
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bel #2. Comparing SSUD and Three-Stage HSCNs, the HSCN designed by SSUD

has more transportation resources on the road from Lombok Airport to ObelO-

bel #1 and ObelObel #1 to DC #104, but the three-stage designed HSCN has

more transportation resources on the roads from Lombok Airport to ObelObel #2

and from ObelObel #2 to DC #104. The three-stage model demonstrates a more

efficient resource allocation than the other two models. It selects fewer transporta-

tion and inventory resources, resulting in a more optimized budget allocation and

greater flexibility in operational expenses. Notably, the three-stage model does

not allocate any inventory resources, emphasizing the influence of its structural

design. This approach reduces the expected penalty when evaluated against the

ground-truth scenarios, highlighting the model’s effectiveness in minimizing de-

sign costs while maintaining flexibility in resource deployment. An important

insight for decision-makers is that spending less on design while leveraging the

more complex three-stage structure to better estimate the real-world information

flow has enabled the three-stage model to achieve the best results.

In the previous section, we compared the solutions provided by the FSUD, SSUD,

and three-stage models, noting the distinct outcomes associated with each ap-

proach. In this section, we further evaluate the performance of the SSUD and

three-stage models by introducing two key performance indicators (KPIs), a quan-

titative basis for comparing their relative strengths and weaknesses. The first KPI

focuses on the number of ground truth scenarios in which new transportation re-

sources are added to the HSCN during the first period. Adding new resources

in the first period is more costly than the first stage, and there is an increased

risk of resource shortages. Consequently, a solution that minimizes the number of

scenarios requiring new resources in the first period is considered superior.

Figure 4.3 illustrates the distribution of scenarios in which new transportation

resources are added in the first period. The SSUD solution has 175 scenarios that
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Parameter From To FSUD SSUD Three-Stage

Transportation Resources

Kayangan DC #104 61 51 50

ObelObel #1 DC #104 68 62 51

ObelObel #2 DC #104 0 18 28

Mataram Port Kayangan 64 62 61

Mataram Port ObelObel #1 6 1 1

Mataram Port ObelObel #2 0 6 5

Lombok Airport Kayangan 21 8 7

Lombok Airport ObelObel #1 76 72 60

Lombok Airport ObelObel #2 0 15 28

Total Transportation Resources 296 295 291

Inventory Resources

Kayangan 2 0 0

ObelObel #1 0 0 0

ObelObel #2 0 1 0

Total Inventory Resources 2 1 0

Table 4.9: The transportation and inventory resources acquired by the studied

models.

add new transportation resources, whereas the three-stage solution has 130 sce-

narios with added transportation resources. Furthermore, the SSUD solution adds

more resources in scenarios with added resources than the third-stage solution.

Therefore, based on this KPI, the three-stage model exceeds the SSUD solution.
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(a) Evaluating SSUD solution on

the ground truth.

(b) Evaluating three-stage solution

on the ground truth.

Figure 4.3: Comparison of the distribution of scenarios across the number of

added transportation resources in the first period when evaluating the SSUD (a)

and three-stage solution (b) on the ground truth.

The second KPI discussed in this section is the number of scenarios in which

transportation resources are relocated between selected services in the designed

HSCN. While no direct cost is associated with relocating transportation resources,

this task requires complex logistical management. Given the limited telecommu-

nication access in the affected region, solutions involving fewer scenarios of such

relocation are preferred. Figure 4.4 illustrate the number of ground truth scenar-

ios where transportation resources are transferred in the first period for the SSUD

and three-stage solutions, respectively. When evaluating the SSUD solution, the

number of scenarios with transferred resources is 2.63 times greater than in the

three-stage solution (2345 and 890 scenarios for the SSUD and three-stage mod-

els, respectively). Furthermore, in scenarios where resource transfer occurs, the

number of relocated resources is significantly higher when evaluating the SSUD

solution compared to the three-stage solution. Overall, the solution obtained by

the three-stage model performs better in terms of both the expected penalty and

the defined KPIs.
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(a) Evaluating SSUD on the ground

truth.

(b) Evaluating three-stage solution

on the ground truth.

Figure 4.4: The distribution of scenarios across number of transferred

transportation resources between selected services in the first period when

evaluating the SSUD (a) and three-stage solution (b) on the ground truth.

4.5.3 Managerial Insights

The following insights highlight how humanitarian decision-makers can leverage

the proposed model in this paper to enhance planning and optimize relief opera-

tions in a region affected by a natural disaster.

Flexibility in Decision Timing During Crises

In fast-moving humanitarian emergencies, resource requirements can change rapidly.

The experiments show that deferring design update decisions until the operational

phase (i.e., the first period) can lead to better outcomes (see Table 4.6 in Sec-

tion 4.5.2.4). Specifically, both SSUD and three-stage solution evaluations show

that postponing decisions until the disaster’s early response phase allows for more

effective adaptation to evolving needs, reducing costs and improving response ef-

ficiency.

Enhanced Decision-Making with a Three-Stage Model
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Adaptive planning is a valuable approach for humanitarian logistics teams. Our re-

sults indicate that the three-stage model, though more computationally intensive,

provides a superior solution by adjusting the design based on updated informa-

tion over time (see Figure 4.3 and 4.4 in Section 4.5.2.4). This flexibility enables

decision-makers to better respond to unforeseen changes in the disaster’s pro-

gression and resource availability, ensuring that resources are allocated optimally

throughout the relief operation.

Considering Spread Factor in Post-Disaster Situations

The spread factor, reflecting the effects of unmet demand across different time

periods, directly impacts the complexity of logistics planning. In uncertain dis-

aster settings, where unmet needs could have both cumulative and spreading ef-

fects, the three-stage model performance provides an advantage over its two-stage

counterpart, the SSUD model (see Table 4.7 and 4.8 in Section 4.5.2.4). However,

humanitarian decision-makers should be mindful of the exponential increase in

computational time when considering higher spread factor values with spreading

effect, balancing the need for precision with practical time constraints.

Efficient Resource Allocation and Logistics in Crisis Zones

The three-stage model’s superior distribution of transportation resources demon-

strates its value for resource-limited disaster response efforts (see Figure 4.3 and

4.4 in Section 4.5.2.4). This can guide decision-makers to design more balanced,

effective HSCNs that reduce costs while ensuring that affected populations are

serviced promptly, a key factor in maintaining the flow of aid.

Minimizing Costs by Postponing Transportation Resource Additions

The three-stage model’s ability to reduce the number of new transportation re-

sources needed during the first period is particularly valuable (see Figure 4.3 in
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Section 4.5.2.4). In humanitarian logistics, where resources are often scarce and

costs are high, minimizing the need for additional transportation units can lead

to significant savings and more efficient resource use during the relief operations.

Reducing the Need for Transportation Resource Transfer

The proposed three-stage model also highlights the advantage of minimizing the

transferring the transportation resources during the relief operation (see Figure 4.4

in Section 4.5.2.4). Relocating resources can be time-consuming in regions with

limited infrastructure. The three-stage model’s ability to minimize this logistical

challenge provides an operational benefit, ensuring that resources remain in place

where they are most needed and streamlining the logistics effort.

In summary, the proposed three-stage model provides clear advantages in terms

of adaptability, resource optimization, and cost management for humanitarian

logistics decision-makers looking to improve the efficiency and effectiveness of

their operations. By using the proposed three-stage model, decision-makers can

better handle the uncertain nature of disaster response, ensuring that resources

are deployed where they are most needed and at the right time. The insights

from this study can directly support more informed, tactical decision-making in

real-world humanitarian operations.

4.6 Conclusion

In this paper, we proposed a three-stage model for designing an HSCN to man-

age the distribution of critical supplies after a natural disaster. The model is

built to accommodate the inherent uncertainty of post-disaster environments, en-

abling dynamic adjustments to transportation resources as more information be-

comes available. We compared the three-stage model with traditional two-stage

approaches and explored its effectiveness in improving HSCN design by reducing
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unmet demand and minimizing the associated expected penalty. Our results show

that the three-stage model significantly outperforms the two-stage counterparts,

particularly in managing demand and resource allocation uncertainties.

The experimental results highlighted the substantial benefits of making design

decisions dynamically during the operation phase. The three-stage model demon-

strated improved flexibility and decision-making by delaying update decisions un-

til more data became available during relief operations. This approach reduced

the need for unnecessary investment in transportation resources and minimized

logistical inefficiencies. Additionally, the model was able to better adapt to the

evolving situation, making the best use of available resources throughout the plan-

ning horizon. Specifically, when evaluating on the ground truth, the three-stage

model transferred the transportation resources on in 33% of scenarios whereas its

two-stage counterpart transferred transportation resources in 79%. Considering

the managerial complexity and time-intensive nature of transferring transporta-

tion resources during the relief operation, the three-stage model demonstrates a

clear advantage over its two-stage counterpart. This advantage is further evi-

dent in the expected penalty, which reflects the third-stage model’s more efficient

distribution of critical supplies.

For future research, exploring heuristic approaches, such as progressive hedging

(Rockafellar & Wets, 1991; Crainic et al., 2011; Sarayloo et al., 2023), would be

beneficial to make the three-stage model more computationally tractable for real-

world instances with larger datasets and more complex scenarios. Furthermore,

an extension of this model could include a multi-objective optimization framework

that balances cost reduction, resource allocation efficiency, and humanitarian fair-

ness in the distribution of critical supplies. Refining these aspects could improve

the model for practical use in disaster response planning and execution.



CHAPTER V

CONCLUSION

Section 5.1 summarizes the research conducted on the design and operation of

HSCNs in the context of post-disaster relief and consolidates the key findings and

contributions of the three studies presented throughout the thesis, highlighting

the importance of addressing uncertainty and ambiguity. Furthermore, Section 5.2

outlines several directions for future research, emphasizing the need for continued

advancements in modeling techniques, computational methods, and the practical

application of these models in real-world disaster response scenarios.

5.1 Summary

The design and operation of HSCNs following a sudden natural disaster is critical

to ensuring that essential critical supplies are delivered to vulnerable populations

in a timely manner. The consequences of delivery delays or insufficient access

to critical supplies can significantly impact the health and well-being of affected

individuals. However, designing an efficient HSCN is challenging due to the high

level of uncertainty inherent in both demand and available resources. These un-

certainties, compounded by the ambiguity stemming from assessments performed

using multiple data sources, necessitate advanced modeling approaches that can

accurately capture the complexities of post-disaster logistics.
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This thesis includes three studies aimed at improving the design and operation

of HSCNs in disaster response contexts. Each study addresses a different aspect

of HSCN design under uncertainty and ambiguity, providing a comprehensive

framework for optimizing humanitarian logistics in post-disaster settings.

The first study proposes a two-stage mathematical model for the HSCN design

problem, which captures both demand and resource uncertainties in a natural

disaster context. A novel formulation is introduced to model demand in a way

that accounts for the cumulative effect of unmet demand across multiple critical

supplies. This approach addresses the dynamic and interdependent nature of

demand during disaster relief operations, where shortages in one critical supply

can exacerbate demands for others. The study demonstrates the importance of

directly incorporating these effects into the optimization process to achieve more

accurate and responsive supply chain designs.

The second study expands on the first by exploring the role of ambiguity in hu-

manitarian supply chain models. The study develops models that account for

different ambiguity patterns in demand and capacity assessments. Through a

series of experiments, the study compares the performance of these models and

highlights the impact of different ambiguity patterns on the optimal design of the

HSCN. The findings underscore the need for robust optimization techniques that

can handle both uncertainty and ambiguity, ensuring that HSCNs are resilient

to fluctuations in resource availability and the accuracy of demand and resource

estimations.

The third study further advances the HSCN design problem by incorporating the

ability to update the HSCN’s structure over time. A three-stage model is proposed

that allows for the dynamic adjustment of transportation resources in response to

evolving conditions during the disaster response phase. This flexibility includes
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adding new transportation resources and reallocating existing ones to optimize

HSCN performance as new information becomes available. The study compares

the performance of this three-stage model with the traditional two-stage approach,

showing that allowing for updates to the HSCN structure significantly improves

the network’s responsiveness and overall effectiveness in meeting the fluctuating

demand and resources. Through extensive experimentation, the study demon-

strates that the three-stage model outperforms the two-stage model, especially in

contexts where timely adjustments to resource allocation are crucial.

Together, these three studies provide valuable insights into the design and op-

eration of HSCNs in post-disaster scenarios. By addressing the challenges of

uncertainty, ambiguity, and the dynamic nature of disaster response, the research

contributes to developing more effective and flexible humanitarian logistics mod-

els. The findings emphasize the importance of incorporating cumulative demand

effects, considering the role of ambiguity in data, and allowing for real-time up-

dates to the network structure to optimize relief operations.

In conclusion, the research presented in this thesis offers a comprehensive frame-

work for designing and managing HSCNs under complex and uncertain conditions.

The proposed models provide humanitarian organizations with the tools needed

to make informed decisions during disasters, ensuring that critical supplies are

delivered to those in need in the most efficient and effective manner possible.

5.2 Future Work

This thesis addressed the critical issue of optimizing HSCNs under parameter

uncertainty and distributional ambiguity, particularly in post-disaster relief op-

erations. The aim was to develop and evaluate mathematical models to assist

humanitarian organizations in designing efficient and adaptable HSCNs, reducing



161

harm to the affected populations using available budgets and resources. While sig-

nificant progress was made in developing two-stage and three-stage models, there

remains potential for further research and improvements in several areas, includ-

ing research on more realistic modeling of the planning problems, research on

efficient solution methods, and research on technology transfer into humanitarian

organizations.

More realistic planning models. From a modeling perspective, Section 3 pro-

posed four mathematical models to mitigate the ambiguity caused by inconsistent

estimates of uncertain parameters obtained from multiple data sources by devel-

oping four mathematical models with varying degrees of conservatism. One area

for future research considers a varying level of confidence in the data sources while

also considering a higher number of data sources. While this is easily incorporated

into stochastic programming models, integrating such varying confidence in the

data-sources is still rather unexplored in robust optimization.

While the models presented in this thesis incorporate uncertainty in post-disaster

humanitarian planning, they still do not fully integrate the dynamic and evolving

nature of information revelation in real-world use cases. Specifically, for the two-

stage models, the assumption that uncertain parameter values become available

in the second stage estimates the continuous progression of information revelation

over time. As humanitarian organizations refine their assessments, future research

could focus on developing adaptive frameworks that allow organizations to update

their HSCN designs in multiple stages as new information becomes available over

time. Future work could explore multi-stage models that better align with the

evolving data and incorporate adaptive mechanisms, reflecting the multi-stage

refinement of assessments as more information becomes available.

Finally, Section 2 experiments on the spread factor, which captures the cumulative
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effect of unmet demand on future critical supply needs, indicate the overestima-

tion of the spread factor is preferable over underestimating it. Future research

exploring whether this assumption holds in broader contexts or across different

types of natural disasters would be an important contribution to the literature.

Efficient solution methods. Another potential avenue is applying more ad-

vanced solution methodologies to handle more complex instances of the HSCN

design problem. As disaster scenarios scale up, both in terms of affected popula-

tions and demands, the computational complexity of solving multi-stage models

increases. Further, considering multi-stage variants of the here considered plan-

ning problems, going beyong three-stage models as proposed in Section 4, will

further degrade the tractability of the corresponding optimization models. Here,

general-purpose MIP solvers are unlikely to solve those models in reasonable com-

puting times, requiring the development of specialized solution methods. Explor-

ing heuristic or metaheuristic approaches are promising avenues. For example,

progressive hedging (Rockafellar & Wets, 1991; Crainic et al., 2011; Sarayloo et al.,

2023) and Benders decomposition (Harjunkoski & Grossmann, 2001; Rahmaniani

et al., 2017) have been shown to be appropriate for multi-stage mixed-integer

programming formulations even for large problem instances. Such methods could

equip humanitarian organizations with the tools to handle large-scale operations

where traditional exact methods struggle due to computational limitations.

Technology transfer into humanitarian organizations. This thesis has in-

troduced a series of models for HSCN design under uncertainty and ambiguity.

Integrating these models into humanitarian organizations’ planning and operat-

ing frameworks is an essential direction for future work. Moving from theoretical

models to practical applications requires robust mathematical formulations and a

deep understanding of the operational realities faced by organizations in the field.

While the models presented in this research provide valuable insights, translat-
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ing them into actionable strategies for humanitarian organizations will require

extensive testing, validation, and adaptation to real-world conditions. A crucial

next step will be to conduct assessments within actual humanitarian operations

to evaluate the applicability and effectiveness of these models in diverse disaster

scenarios. This involves working closely with field practitioners to ensure the mod-

els align with operational constraints, resource availability, and logistical realities.

Furthermore, integrating these models into humanitarian organizations’ decision-

making pipelines will be a significant challenge, as it often involves multiple stake-

holders and decision points across different operations levels. Understanding how

to inject these models into the pipeline, transforming them from conceptual tools

to operational assets, represents an important avenue for future research.
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