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RESUME

Cette theése explore I'injection de connaissances linguistiques et visuelles dans les mécanismes d’attention,
en particulier le modéle BERT «Bidirectional Encoder Representations from Transformers». Les travaux de
recherche menés dans ce cadre visent a intégrer les connaissances linguistiques et visuelles afin d'amé-
liorer 'encodage du sens des mots. Quatre articles principaux sont présentés. Le premier article propose
un renforcement du mécanisme d’attention basé sur le produit scalaire utilisé par BERT, en y intégrant un
masque de dépendance syntaxique. Cette approche permet de capturer les relations structurelles entre les
mots, améliorant ainsi la représentation contextuelle. Le deuxiéme article introduit le modéle lingBERT, qui
intégre des connaissances linguistiques dans I'attention via une stratégie hybride de masquage. Cette mé-
thode combine la technique classique de masquage avec celle masquant les mots ayant des dépendances
linguistiques, puis les prédit par la suite, afin d’améliorer la compréhension linguistique du modéle. Le troi-
sieme article explore I'utilisation des multiplicateurs de Lagrange dans les mécanismes d’attention, afin
d’intégrer des dépendances syntaxiques via une optimisation basée sur des contraintes. L'article présente
le modeéle SCABERT «Syntaxe-Constraint-Aware Bidirectional Encoder Representations from Transformers».
Celui-ci, oriente le processus d’apprentissage et permet une meilleure compréhension des relations linguis-
tiques. Enfin, le quatrieme article propose VLG-BERT « Visual and Linguistic Bidirectional Encoder Represen-
tations from Transformers » un modéle intégrant des représentations visuelles latentes multimodales dans
les «xembeddings de mots». L'approche permet d’initialiser les vecteurs de mots par leurs représentations
visuelles latentes. Ce cadre vise a capturer des significations profondes en combinant des informations de
différentes modalités, ce qui permet d’enrichir les représentations sémantiques et d’'améliorer les perfor-
mances sur des taches variées. Dans I'ensemble, cette thése met en évidence I'importance de I'intégration
des connaissances linguistiques et visuelles pour optimiser les mécanismes d’attention, ouvrant ainsi la
voie a de nouvelles perspectives en termes d’interprétabilité et d’explicabilité pour les grands modéles de
langue. Bien que le titre de cette thése évoque une orientation vers I'interprétabilité des grands modéles
de langue, il est important de préciser que cette recherche ne traite pas directement les problématiques
d’interprétabilité et d’explicabilité en tant que telles. L'objectif principal est de proposer un encodage plus
profond du sens des mots par l'injection de connaissances linguistiques et visuelles dans les mécanismes
d’attention. Néanmoins, cette approche ouvre des perspectives intéressantes pour des travaux futurs en
interprétabilité, en rendant les processus d’attention potentiellement plus compréhensibles et plus alignés
avec des connaissances structurées.

Remarque : Ceci est une remarque importante.

Cette these par articles s'inscrit dans une approche interdisciplinaire propre a lI'informatique cognitive. Elle
s'adresse donc a un lectorat familier a la fois avec les concepts fondamentaux de I'apprentissage automa-
tique et du traitement automatique du langage naturel, en particulier les grands modéles de langue et les
concepts cognitifs sous-jacents. Certains termes techniques largement utilisés dans la littérature sont ainsi
mentionnés sans développement didactique approfondi.

Xiv



CHAPITRE 1
INTRODUCTION GENERALE

11 Le contexte : le sens des mots en sciences cognitives et en informatique

Le sens constitue I'une des problématiques les plus complexes et les plus controversées en intelligence arti-
ficielle Rich et Knight (2009). En effet, I'étude du sens requiert une prudence particuliére, car ce dernier fait
I'objet d'études dans de multiples disciplines, telles que la logique, la linguistique, la sémiotique, la philo-
sophie, etc. Chacune de ces disciplines a en effet ses propres définitions et arguments Thérien (1989). Bien
qu'’il existe un alignement sémantique entre ces disciplines, celui-ci se présente souvent dans un vocabu-
laire propre a chacune d’entre elles Rastier (1996). La question du «sens du sens» est une problématique
de longue date qui demeure d’actualité en sciences cognitives Pylyshyn (1984); Jordan et al. (2021). L'ana-
lyse du sens, dans la langue en particulier, est a I'origine de nombreuses approches théoriques. Celles-ci
peuvent étre catégorisées en fonction de la maniére dont elles percoivent le sens Aitchison (1987). D’'un
coOté, la premiere catégorie s'intéresse au décodage individuel du sens. Elle fait référence a I'idée que le
sens des mots, des phrases ou des expressions est principalement le produit de la cognition individuelle.
Elle repose sur I’hypothése que chaque individu attribue un sens a I'aide de ses mécanismes cognitifs et
de ses représentations mentales. Dans cette perspective, le sens est souvent percu comme objectif et in-
dépendant des interactions sociales. De l'autre c6té, la deuxiéme catégorie étudie I'attribution sociale du
sens. Elle se concentre davantage sur la langue comme un phénoméne social, et postule que le sens des
symboles émerge a travers des interactions sociales et des conventions collectives Saussure (1916); Barthes
(1972). En d’autres termes, le sens ne se limite pas a un décodage individuel : il émerge également des pra-
tiques socioculturelles partagées. Cette double nature du sens cognitive et socioculturelle a initialement
été explorée dans le champ des sciences cognitives, mais elle a aussi profondément influencé le domaine
de l'informatique, notamment dans le développement de modéles visant a représenter le sens des mots
et des énoncés. Ces modeéles illustrent comment des systémes artificiels peuvent encoder le sens dans des

contextes particuliers.

Dans cette introduction, nous explorons les principales théories du sens issues des sciences cognitives, ainsi
que les approches informatiques qui ont tenté de formaliser et de modéliser I'encodage de la langue. Trois
grandes catégories d’approches sont distinguées : les approches symboliques classiques, les approches sta-

tistiques, et les approches connexionnistes. Les approches symboliques classiques reposent sur I'idée que



la connaissance, y compris le sens des mots, peut étre représentée a l'aide de structures symboliques ex-
plicites et manipulables par des régles logiques. Comme I’expliquent Newell et Simon (1976), la cognition
humaine elle-méme peut étre vue comme une forme de manipulation symbolique. Des formalismes tels
que les réseaux sémantiques Quillian (1968), les frames Minsky (1974), ont grandement influencé les débuts
de 'intelligence artificielle Russell et Norvig (2010), présentent des limites notables, notamment leur inca-
pacité a gérer la variabilité linguistique et contextuelle sans intervention humaine explicite. Face aux limites
des approches symboliques, les approches statistiques ont émergé avec I'accroissement des données tex-
tuelles numériques et des capacités de calcul. Ces méthodes s’inscrivent dans le courant distributionnaliste,
inspiré des travaux de Harris (1954); Firth (1957), selon lesquels «You shall know a word by the company it
keeps». Les premiers modéles de type «n-grammes» Shannon (1948), les matrices de co-occurrence Lan-
dauer et Dumais (1997), ou GloVe Pennington et al. (2014), traduisent cette approche. Elles permettent de
détecter des similarités sémantiques latentes en se basant sur des modéles d'utilisation, sans modélisa-
tion explicite du sens. Enfin, les approches connexionnistes, principalement incarnées par les réseaux de
neurones artificiels, encodent le sens des mots a travers des architectures neuronales Mikolov et al. (2013).
Aujourd’hui, I'essor des réseaux profonds, notamment des transformeurs Vaswani et al. (2017), a permis une
contextualisation dynamique du sens dans des modéles comme BERT Devlin et al. (2019) ou GPT Brown
et al. (2020a). Ces modéles apprennent des représentations hautement performantes pour une variété de
taches linguistiques, mais soulévent aussi des enjeux critiques liés a l'opacité, a la généralisation, et a la

compréhension réelle du langage Bender et Koller (2020).

Dans les sections suivantes, nous discuterons plus en détail de ces trois familles de modeles, en présentant
leurs fondements théoriques, leurs mécanismes d'apprentissage, leurs points forts et leurs limites pour

saisir la richesse et la complexité du sens humain.

1.11 En sciences cognitives

Les sciences cognitives ont étudié en profondeur le sens des mots, leur représentation et leur traitement
par les étres humains. Ces avancées sont le fruit des progrés technologiques et des découvertes en neuros-
ciences. Ces théories ont évolué, passant de «modeéles symboliques classiques» rigides a des approches plus
dynamiques, distribuées et nuancées. Cette transition refléte I'évolution historique des théories du sens,
en fonction des contextes philosophiques, linguistiques, cognitifs et sociétaux. Fodor (1975); Harnad (1990);

Barsalou (1999); Chomsky (2000); Pulvermdiller (2013). Dans le cadre de cette thése, qui vise a approfon-



dir I'encodage du sens par I'injection conjointe de connaissances linguistiques et visuelles, il est nécessaire
d’exposer brievement les grands courants qui ont marqué la réflexion sur le sens. La notion de sens a en
effet fait I'objet de nombreuses interprétations dans I'histoire de la pensée, en philosophie, en linguistique,
en sémiotique et en sciences cognitives. Chaque courant a proposé une maniére particuliére de concevoir
ce que signifie «avoir du sens», en fonction de ses présupposés épistémologiques, de ses outils conceptuels
et de ses objectifs théoriques. Ainsi, sans nous inscrire pleinement dans chacun de ces cadres, nous propo-
sons un survol de quelques grandes théories du nominalisme et du réalisme médiévaux, au structuralisme,
en passant par le pragmatisme, la sémantique formelle, la sémantique distributionnelle et le cognitivisme.
Ce parcours a pour objectif de montrer la diversité des conceptions du sens, leur évolution dans le temps et
leur influence notre compréhension actuelle du langage. C'est dans ce contexte que s’inscrit la perspective
adoptée dans cette thése qui s'appuie plus spécifiquement sur le modéle sémiotique de «Charles Sanders
Peirce», appartenant au courant pragmatiste. Ce modéle, fondé sur la triade «signe, objet, interprétant»,
offre un cadre théorique particulierement fécond pour penser l'articulation entre représentations symbo-

ligues, perceptives et conceptuelles.

1.1.1.1 Le nominalisme et le réalisme

La question du sens des mots tire son origine de «la philosophie médiévale du Moyen Age» Marenbon
(2007). Des penseurs réalistes comme «Platon» et «Aristote» soutiennent que le sens n'est pas seulement
une construction linguistique ou une convention humaine, mais qu'’il s'incarne réellement et objectivement
dans le monde Mohr (1981); Sokolowski (1964). Les adhérents de ce courant, appelé «réalisme», admettent
gue les mots que nous utilisons pour communiquer, interagir et décrire le monde ont des entités indépen-
dantes de notre perception et des concepts généraux dits «universaux» Armstrong (1989). Le «réalisme»
part du postulat que le monde est fondamentalement différent de nos représentations de celui-ci. De plus,
le «réalisme» considére que I'existence du monde précede I'’émergence de nos représentations Panaccio
(2004). En réalisme, les mots sont considérés comme des ponts reliant I'esprit humain a des vérités exis-
tantes dans le monde. Par exemple : «Je vois bien I'arbre, mais je ne vois pas l'arbrité» Mohr (1981). Les
«réalistes» soutiennent que le mot «arbre» ne dénote pas seulement un ensemble de plantes que nous ap-
pelons arbres, il fait plutét référence a une réalité universelle qui est «l'arbrité», comme étant une essence
véridique partagée par tous les arbres Cross (2005). Cette conception réaliste du langage naturel considére
celui-ci comme étant une «fonctionnalité ontologique» qui véhicule et révéle des vérités intrinséques du

monde Sokolowski (1964). Contrairement au réalisme, le nominalisme trouve que les concepts généraux,



ou «universaux», que nous décrivons a 'aide de mots, ne sont que des termes, des étiquettes ou encore
des noms que nous donnons a des catégories d’entités similaires Marenbon (2007). Les nominalistes, a
I'image de «Guillaume D’'Ockham», estiment que les mots et les concepts généraux ne peuvent étre que
des outils permettant de décrire et d'organiser le monde. lls affirment que les «universaux» n'ont pas de
référent dans le monde Panaccio (2004). Le débat mené par ces deux courants vise a clarifier la relation
entre les concepts linguistiques et la réalité du monde Armstrong (1989). Les répercussions de ce débat sur
I'intelligence artificielle, se manifestent dans l'interrogation portant sur les catégories sémantiques, afin de
savoir si celles-ci ont une existence réelle dans le monde ou s'il s'agit de conventions humaines van Inwa-
gen (2004). Dans le domaine du «traitement automatique du langage naturel TALN», le nominalisme peut
se manifester dans des modéles contextualisés comme «BERT» et «GPT» Devlin et al. (2019); Brown et al.
(2020a). Ces modeéles n’encodent le sens d’'un mot que dans un contexte spécifique, excluant ainsi I'idée
d’un sens universel. Toutefois, il existe des modeéles d’apprentissage qui marient la langue a la vision, rappro-
chant ainsi I'encodage du sens des mots a une perspective réaliste qui vise a apprendre des représentations

latentes correspondant a des «universaux» Rahman et al. (2020); Ramesh et al. (2022).

11.1.2 Le structuralisme

Le «structuralisme» est apparu entre les XIX® et XX€ siécles. Il a été initié par le linguiste «Ferdinand de Saus-
sure». Ce dernier met I'accent non seulement sur les éléments linguistiques pris individuellement, mais aussi
sur les relations entre ces éléments. Il a notamment introduit les termes clés du structuralisme, comme le
«signifiant» pour désigner la forme matérielle dénotant le mot « arbre». Ce dernier peut étre le son ou
encore la chaine de lettres qui le forme. Le «signifié» désigne quant a lui la représentation que I'on obtient
du mot «arbre». Selon le structuralisme, la relation entre ces deux notions n’est qu’une convention sociale.
Cette derniére ne repose sur aucune logique régissant I'association d’une idée particuliere, qu'il s'agisse
d’une forme sonore ou graphique. Exemple : il n'y a aucune raison intrinséque pour que I'idée d'un arbre
soit exprimée par le mot «arbre». «Saussure» percoit la langue comme un systéme de signes linguistiques.
Selon lui, I'analyse de la langue repose sur deux types de relations au sein de ce systéme. Les relations
«syntagmatiques», qui sont des combinaisons d’unités, et les relations«paradigmatiques», qui sont des
combinaisons verticales d’unités. Le premier type porte sur I'ordre de mots dans une séquence, tandis que
le deuxieme étudie les substitutions «paradigmatiques» possibles entre des unités linguistiques occupant
une position similaire dans une phrase. Les modéles modernes de traitement de la langue reposent sur

les représentations vectorielles de mots appelées «embeddings». lls associent une séquence de caractéres



le «signifiant» a une représentation numérique permettant ainsi I'encodage du sens des mots dans un es-
pace vectoriel qui pourrait étre percu comme étant le «signifié» d’un point de vue structuraliste. En outre,
les mécanismes d’attention permettent un apprentissage dynamique du sens d’un mot en fonction de son
contexte linguistique. Cette capacité flexible est nuancée a encoder le sens d'un mot renforce I'idée «saus-
surienne» que le sens est relationnel et dépendant des autres termes du systéme linguistique Saussure

(1916).

1.1.1.3 Le pragmatisme

A Pinstar des théories précédentes, le pragmatisme a ses propres définitions et ses particularités qui ex-
pliquent I'origine du sens des mots. Selon ce courant de pensée, le sens des mots est le produit d’une expé-
rience ayant des répercussions issues de leur pratique. Cette expérience, qui est indispensable, constitue un
aspect trés important du pragmatisme, car elle contribue a la construction du contexte Peirce (1878); Dewey
(1938). «Charles Sandres Peirce» est I'un des fondateurs de ce courant a la fin du XIXe siécle. Pour lui, les
mots sont des éléments et des outils indispensables pour agir, résoudre un probléme ou atteindre un objec-
tif Peirce (1958). Les mots servent de guide pour appréhender le monde et mener a bien une action ou vivre
une expérience. Le pragmatisme met en évidence la dynamique du sens. Autrement dit, le sens est en évo-
lution constante avec le contexte Peirce (1878); Dewey (1938). A titre d’exemple, le mot «cheval» a toujours
désigné un animal de compagnie. Cependant, avec I'évolution de I'informatique, ce terme peut désormais
faire référence a un programme malveillant s'il est associé a la ville de «Troie». «Peirce» concoit sa triade
sémiotique a I'aide du «représentamen», de I’ «objet» et de | cinterprétant». A la différence du «signifiant»
dans I'unité duale linguistique chez «Saussure», «Peirce» recense trois types de «représentamen». Le pre-
mier est appelé «indice», celui-ci est souvent lié a une relation causale par exemple, le sang résultant d'une
blessure. Le deuxiéme est appelé «icone». Il se caractérise par sa ressemblance avec |'«objet» auquel il se
rapporte. Le troisieme le «<symbole» exprime une convention partagée entre des individus, comme le code
de la route Peirce (1878); Dewey (1938); Ogden et Richards (1923). En sémiotique, la «triade» de «Peirce»
est considéré comme un moyen d'accéder au sens Ogden et Richards (1923). Les modéles multimodaux
modernes du traitement automatique du langage naturel s'alignent relativement avec cette «triade». Des
modeéles récents comme «CLIP et DALL-E» intégrent des données textuelles et visuelles en méme temps
afin d’apprendre a encoder le de mots. Ceci renforce les idées «peirciennes» en reliant la langue a des ex-
périences du monde réel. De son coté, «John Dewey» met en avant le lien entre langue, pensée et action

dans des contextes sociaux et éducatifs. Selon lui, la langue sert principalement a résoudre des problémes



pratiques et a organiser I'activité humaine Dewey (1916). Cette perspective permet d’explorer I'encodage du
sens des mots dénotant des actions et permet de tester ces modéles non seulement sur leurs capacités a
prédire ou a générer du texte, mais aussi sur leur aptitude a guider et a mener a bien des actions pratiques,

comme dans le domaine de la « robotique».

1.11.4 La sémantique formelle (philosophie analytique, empirisme logique)

Contrairement aux courants précédents, la «sémantique formelle» aborde le sens des mots sous différents
angles, en s'appuyant sur la logique et sur des théories relevant de la «philosophie analytique». «Gottlob
Frege», philosophe, mathématicien et surtout logicien distingue dans sa «théorie du sens et de la réfeé-
rence», le référent d’'un mot et son sens Frege (1892). Selon cette théorie, dire que « Donald Trump» est
I'un des ex-présidents des «Etats-Unis» revient a dire que «Donald Trump» est un homme d’affaires. Pour
«Frege», il est important de distinguer le sens d’'un mot de la représentation mentale qu'il peut évoquer.
Selon lui, le sens est une entité objective et commune a tous et qui détermine la référence du mot dans le
monde. En revanche, la représentation mentale est une image subjective, propre a chaque individu et sus-
ceptible de varier d’'une personne a l'autre. Le sens ne correspond donc pas a la maniére dont une personne
imagine un concept, mais a un mode de présentation stable et partagé par les locuteurs, qui permet la com-
munication et la compréhension mutuelle. «Rudolf Carnap» introduit ensuite les notions d’«extension» et
d’«intension» Carnap (1947). Il définit I'extension comme I'ensemble de toutes les entités dont le mot fait
référence dans le monde. Exemple : le mot «plante» désigne toutes les plantes sur terre. En revanche, I'in-
tension désigne I'ensemble des propriétés d’'une entité faisant partie de I'extension. Ces mots décrivent des
propriétés structurelles ou fonctionnelles permettant d’identifier un objet ou une entité appartenant a cette
catégorie. Par exemple, I'intension du mot «plante», est un organisme vivant qui effectue la photosynthése,
posséde des racines, une tige et des feuilles, et appartient au régne végétal. La théorie de «Carnap» peut,
dans un certains cas, étre transposée aux modeéles du traitement automatique du langage naturel. L'ex-
tension se manifeste notamment dans le processus d’apprentissage des «entités renommeées». Les phrases
utilisées pour I'entrainement contiennent des mots décrivant les propriétés d’un objet, d’'une entité ou d’'un
concept. Ces phrases pourraient constituer une intension, dont le but est d’apprendre une représentation
vectorielle qui correspond a une extension spécifique dite «entités renommées». De la méme maniére, I'in-
tension apparait dans la prédiction du mot suivant, comme c’est le cas avec «GPT» Brown et al. (2020a).
Apres le mot «cheval», «GPT» prédit le mot court, qui est une propriété du cheval. Par ailleurs, au début

du XIXe siécle, les logiciens ont considéré la logique formelle comme un outil rigoureux permettant aux



sciences empiriques de développer des connaissances Russell et Whitehead (1913). Grace aux travaux de
«Frege et Russell», repris ensuite par le «Cercle de Vienne» Carnap et al. (1929), la logique est devenue
un moyen de découverte scientifique. Elle a également été utilisée comme moyen de modélisation de la
langue Goodman (1954). Les empiristes logiques ont utilisé des systémes logiques formels capables de re-
présenter des propositions et des énoncés a l'aide de symboles mathématiques et de régles syntaxiques
précises, afin de modéliser certains aspects de la langue. Cette modélisation logique visait a désambiguiser
la langue a I'aide de formulations rigoureuses et exactes, c’est-a-dire a formaliser la signification des mots
et des phrases a l'aide de la logique symbolique. Dans un premier temps, les logiciens ont utilisé la logique
des propositions pour modéliser la langue. Cette derniére repose sur des propositions interconnectées par
un ensemble de connecteurs logiques qui définissent son systéme formel et ses régles d’inférence.

Par exemple, considérons I'énoncé : «ll fait soleil et il fait froid.»

On peut le décomposer en deux propositions atomiques P : «ll fait soleil.» et Q) : «ll fait froid.»

La formulation logique correspondante en logique propositionnelle est : P A (Q «La logique proposition-
nelle» a ensuite été enrichie pour donner naissance a «la logique des prédicats» qui permet d'exprimer
des relations entre objets du monde. Contrairement a « La logique propositionnelle » , elle introduit des
«prédicats», des «variables» et des «quantificateurs» pour modéliser des énoncés plus complexes Hintikka

(1962); Prior (1957).

Par exemple, I'énoncé : «Tous les corbeaux sont noirs» peut étre formalisé ainsi :
H(x) : « x est un corbeau »
M (z) : « x est noir »

Formulation : Vz (H (z) — M(z)).

11.1.5 La sémantique distributionnelle (le distributionalisme)

Le « distributionnalisme » est un courant de pensée apparu aux «Etats-Unis». Il se caractérise par une ac-
centuation du contexte grammatical et syntaxique de la langue, sans se préoccuper du sens intrinséque des
mots. Il se concentre sur I'étude de I'ordre des mots et des régles qui régissent une langue, sans s’intéresser
a la dimension sémantique profonde. Le distributionnalisme est une approche empirique, car il repose sur
I'observation directe d’'unités linguistiques mesurables, telles que les mots, les phonémes et les phrases.

Il rejette donc les notions de sens et de concept, qu'il juge trop abstraites. L'analyse distributionnelle em-



pirique est donc une «analyse inductive», car elle consiste a faire des observations permettant d'induire
des régles décrivant le comportement syntaxique de la langue. Plusieurs ouvrages mentionnent que le pro-
bléme du contexte renvoie a I’hypothése distributionnelle de «Zellig Harris (1954)». Cette derniére postule
gue les mots qui apparaissent dans des contextes similaires ont des propriétés linguistiques similaires. Harris
(1954). Elle a ensuite été généralisée par «John Rupert Firth» en 1957. Ce dernier considére que le sens d'un
mot est déterminé par son contexte lexical. Firth (1957). Bien que la sémantique distributionnelle trouve
son origine dans les travaux de «Harris et Firth», ce terme n’a été adopté qu’a partir des années 1980 et
1990. Ce terme a donné lieu a des approches linguistiques et computationnelles qui utilisent des modéles
vectoriels pour représenter le sens des mots. On la retrouve dans des modéles purement statistiques qui
calculent les co-occurrences entre les mots et leurs contextes a I'aide de matrices représentant les relations
distributionnelles. Turney et Pantel (2010). On la retrouve également dans d’autres modéles neuronaux
fondés sur I'apprentissage automatique. La sémantique distributionnelle fournit une base théorique et pra-
tique pour représenter le sens des mots en fonction de leur contexte. Elle constitue le fondement théorique
de plusieurs modeles de plongement lexical, tels que «Word2Vec, GloVe et FastText» Mikolov et al. (2013);

Pennington et al. (2014); Bojanowski et al. (2017).

1.1.1.6 La sémantique cognitive (le cognitivisme)

Le «courant cognitiviste» propose, quant a lui, une vision complétement différente de celle de la «séman-
tique distributionnaliste». Le «Cognitivisme» s’intéresse en effet a la pensée humaine et aux processus cog-
nitifs, qu’il considére comme un paradigme fondamental pour la compréhension et la production de la
langue Newell et Simon (1972). L'une des distinctions du cognitivisme est que le sens d’'un mot dépend
non seulement du contexte, mais aussi des connaissances, des expériences et des représentations que les
individus lui attribuent. Les travaux «d’Allen Newell et Herbert Simon» ont marqué les origines du cogni-
tivisme symbolique. A ses débuts, le cognitivisme avait un caractére symbolique et comparait I'esprit a
un ordinateur. Il postule que la pensée humaine n'est qu’un traitement d’informations symboliques, sem-
blables a celles traitées par un programme informatique. «Jerry Fodor», I'un des piliers de la théorie de la
«modularité de I'esprit», considére la cognition comme étant une représentation symbolique permettant
le traitement des concepts abstraits. Dans son ouvrage intitulé «The Language of Thought», il introduit un
langage symbolique mental structuré, qu'il appelle «Mentalese» et qu'’il considére comme la forme de la
pensée humaine Fodor (1975). «Roger Schank», un autre pilier du modéle cognitif symbolique appliqué a

la compréhension de la langue, soutient quant a lui que la compréhension humaine repose sur la manipu-



lation de structures symboliques représentant le savoir et I'expérience humaine. Ses travaux portent sur la
maniére dont les étres humains interprétent le monde a l'aide de symboles. Cette conception symbolique
de la pensée humaine a toutefois été critiquée par plusieurs cogniticiens, notamment «Marvin Minsky», qui
souligne que l'on parle d’une intelligence artificielle, néanmoins incapable d'apprentissage perceptif, d'or-
ganisation de la mémoire ou encore de raisonnement critique humain Schank et Abelson (1977); Minsky

(1986).

De son c6té, «John Searle», philosophe du langage et de I'esprit, argumente, a partir de son expérience
de la «Chambre chinoise», que l'intelligence artificielle ne peut qu’étre qu’'une intelligence faible Searle
(1980). Il justifie cette position en affirmant que la simplie manipulation de symboles par une machine
ne suffit pas a créer une véritable compréhension ou une véritable conscience. Il préconise d'associer la
cognition symbolique a une dimension plus profonde que la simple manipulation de symboles. Ces critiques
ont motivé I'introduction du terme «concept». Il est en effet presque impossible d'aborder le sens des mots
sans évoquer les concepts. Ces derniers sont considérés comme les briques de base de la construction
du sens Lakoff (1987); Fodor (1998); Evans et Frankish (2009). Toutefois, la définition d’un concept varie
d’une communauté a une autre. Dans la sémantique formelle, par exemple, le terme «concept» désigne
une dénotation symbolique de la pensée. En logique des propositions et des prédicats, par exemple, il est
indispensable de représenter les concepts qu'ils soient du monde réel ou abstraits a I'aide d'un modéle
sémantique formel pour pouvoir les manipuler. De méme, les ontologies nécessitent la représentation des
concepts a l'aide de symboles. D'autre part, dans la sémantique cognitive, le terme «concept» fait I'objet
d’un dialogue interdisciplinaire en sciences cognitives abordant des notions telles que la conceptualisation
et la catégorisation. «Ray Jackendoff» estime que demander ce qu'est un «concept» a un psychologue, un
philosophe ou un linguiste revient a interroger un physicien sur ce qu’est la masse : une réponse isolée ne

peut étre fournie Jackendoff (1983).

Pour sa part, «Jess Prinz», pense que sans les concepts, les pensées ne peuvent pas exister, et que par
conséquent, la langue n’a rien a exprimer Prinz (2002). L'anthropologue «Benjamin Lee Whorf » et son éléve
«Edward Sapir» limitent la pensée et la connaissance du monde a la maitrise de la langue. Selon eux, la
langue est la clé de voUte de I'interprétation et de la représentation mentale du monde Whorf (1940); Sa-
pir (1985). Cette hypothése a toutefois été confrontée au probléme de la variation des représentations et
des catégorisations du monde selon les langues, probléme introduit en linguistique par « Wilhelm von Hum-

boldt» Whorf (1940); Sapir (1985). De son c6té, «Searle» écrit que les concepts, au sens philosophique sont



exprimables par la langue. Néanmoins, ils ne se limitent pas aux lexemes Searle (2006). «Stevan Harnad»
propose |I'«ancrage symbolique» comme approche pour attribuer un sens aux mots. Il conditionne I'acquisi-
tion du sens a la capacité d'attribuer des référents aux mots, ainsi qu’a la nécessité de la conscience Harnad
(1990). En psychologie, on distingue souvent les concepts concrets et abstraits. Un concept concret posséde
des référents perceptibles, comme les fleurs, les arbres ou les chats. Un concept abstrait, en revanche, ne sa-
tisfait pas cette définition. En sciences cognitives, il y a deux courants principaux concernant les concepts. Le
premier courant «Fodor, Jackendoff, Pinker, Pylyshyn» considére les concepts comme des entités abstraites
et complétement séparées du systéme sensorimoteur. Il s’agit d’une vision amodale de la cognition Barsa-
lou et al. (2008). Le second courant ancre les concepts dans les états cérébraux perceptifs et intéroceptifs.
Il assume une continuité entre le systéeme sensorimoteur et les concepts. Les principaux représentants de
ce courant sont «Barsalou, Lackoff, Damasio et Evans» Barsalou et al. (2008); Petito et al. (2000); Dama-
sio et Damasio (1994); Lakoff (1987). Le cogniticien «Peter Gdrdenfors» avance que nos mots expriment nos
concepts Gardenfors (2019), tandis que «Paul Chilton» explore I'aspect spatio-temporel du sens linguistique,
en proposant une vision conceptuelle et géométrique du sens Chilton (2013). Certains chercheurs, notam-
ment en psychologie cognitive, privilégient I'usage du terme «catégorie». «Ludwig Wittgenstein» considére
la catégorisation comme un acte d’interprétation : reconnaitre un objet X revient a l'identifier par son ap-
partenance a une catégorie Y plutot que par ses seules propriétés intrinséques Wittgenstein (2001). En 1973,
«Eleanor Rosch» propose la théorie des prototypes. Elle avance que certains membres d'une catégorie sont
plus centraux que d’autres. Cette théorie s'oppose a «la conception aristotélicienne classique» qui définit
une catégorie par des conditions nécessaires et suffisantes. Elle définit la catégorie comme un ensemble
de cas typiques «prototypes» et leurs variantes. Cette théorie a toutefois été remise en question par I'ana-
lyse des catégories lexicales, qui remet en cause la centralité de certains concepts. Par exemple, le verbe
penser ne peut étre considéré comme plus ou moins central. La notion de prototype est associée a « Witt-
genstein», qui, avec sa théorie de la ressemblance familiale, montre que les gens regroupent les concepts
selon plusieurs caractéristiques partagées, plutot qu’une seule Wittgenstein (2001). «Gdrdenfors», avec sa
théorie des espaces conceptuels multidimensionnels, il tente d’expliquer les prototypes par la convexité
de ses espaces. Il définit une catégorie selon une distance conceptuelle : si A et B appartiennent a une
catégorie, et que C se situe a une distance intermédiaire entre les deux, alors C appartient aussi a cette

catégorie Gardenfors (2000).
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11.2 En informatique

En «traitement automatique du langage naturel TALN», on distingue trois approches permettant de traiter
le sens des mots et d’automatiser la langue a I'aide d’'une machine. La premiére catégorie est celle des «ap-
proches symboliques», qui nécessitent la maitrise d'un savoir-faire exprimé a priori sous forme de régles ou
de formalismes. Ces approches sont généralement rigides, colteuses et subjectives. La deuxieme catégorie
est celle des «approches statistiques» basées sur des modéles statistiques non supervisés. Elles utilisent la
co-occurrence comme principale métrique d’observation et d'analyse. Ces techniques permettent d'extraire
des informations et de construire des représentations des textes sans avoir besoin de regles explicites. La
troisiéme catégorie est celle des «approches connexionnistes ou neuronales». Ces derniéres interagissent
directement avec les données. Elles sont orientées données et ne nécessitent pas de savoir-faire exprimé a

priori.

1.1.21 Approches symboliques en traitement automatique du langage naturel

Le symbolisme est considéré comme I'une des formes de l'intelligence artificielle classique. La commu-
nauté scientifique utilise également I'expression «approches orientées régles» ou «rules-based» en anglais.
Le symbolisme vise a encoder les concepts et les événements appartenant a notre environnement a l'aide
de symboles. L'objectif de cet encodage est de pouvoir représenter et raisonner sur ces derniers a l'aide de
modéles logiques. A I'instar de toute autre discipline de P'intelligence artificielle, le traitement automatique
du langage naturel est également influencé par le symbolisme classique. La logique formelle est a la base
de tous les modeles computationnels qui 'adoptent comme fondement. Elle est utilisée dans différentes
taches de traitement automatique du langage naturel, comme I'analyse sémantique permettant de déter-
miner le sens des phrases et les relations entre leurs mots, ou encore le raisonnement automatique sur des
textes, la traduction automatique et les tiches conversationnelles pour répondre a des questions en langue
naturelle. Russell et Norvig (2010). En 1956, «Richard H. Richens», de I'université de Cambridge, utilisait le
calcul logique propositionnel pour traduire des textes en langue naturelle. Il a proposé une méthode fon-
dée sur le calcul logique pour analyser et traduire les structures linguistiques. Selon «Richens», la logique
propositionnelle pouvait étre utilisée pour représenter les relations entre les mots et les concepts dans
une phrase, permettant ainsi une traduction plus rigoureuse et systématique entre les langues. Richens
(1956). en 1960, «Victor H. Yngve» proposait pour sa part son premier modeéle de génération automatique
de phrases bien structurées, s'inspirant de la «grammaire générative de Noam Chomsky ». Ce modéle repose

sur une formalisation grammaticale des langues naturelles, s’appuyant sur des concepts de «grammaires

1)



génératives» pour produire des structures syntaxiques correctes. Le travail de «Yngve inspira Robert F. Sim-
mons et Sheldon Klein» qui appliqua la logique des prédicats aux réseaux sémantiques en 1963. «Simmons
et Klein» avaient pour objectif la représentation formelle des relations sémantiques entre concepts. lls uti-
lisaient la logique des prédicats pour structurer I'information dans des réseaux sémantiques. Ces réseaux
consistaient en des graphes ou les noeuds représentaient des concepts ou des entités de la langue Sim-
mons (1963). En plus des travaux précédents, ceux de «Yehoshua Bar-Hillel» ont eu un impact significatif
sur le développement de la «linguistique computationnelle». Il a été I'un des premiers a explorer les liens
entre la «logique modale» et la linguistique. Ses recherches visaient a formaliser des concepts linguistiques
complexes a I'aide d'outils logiques ouvrant ainsi la voie a des analyses plus rigoureuses de la langue. Il fut
également I'un des premiers a tenter de concevoir des systémes capables de traduire automatiquement
d’une langue a une autre Bar-Hillel (1964). En 1966, «ELIZA» a été développé par «Joseph Weizenbaum»
dans le but de simuler une conversation a I'aide de techniques rudimentaires de traitement du langage na-
turel permettant de reformuler les phrases en posant des questions Weizenbaum (1966). «Cordell Green»,
une figure marquante de l'informatique est particulierement connue pour ses travaux sur |'utilisation de la
logique des prédicats pour la langue. Il fut I'un des premiers chercheurs a utiliser cette logique pour formali-
ser la langue a des fins de traduction automatique. Il a explicité la représentation des relations sémantiques
entre les mots et les phrases a l'aide de la logique des prédicats. Il a également développé des systémes ca-
pables d’interpréter des commandes en langue naturelle grace a un raisonnement logique Green (1969).
C'est en 1969 que la théorie de la dépendance conceptuelle a vu le jour, grace aux travaux du psychologue
et cogniticien «Schank». Inspirée par les travaux du linguiste américain «Sydney Lamb», cette théorie a été
I'un des premiers modeéles de compréhension de la langue. L'objectif de cette théorie était de séparer les
mots d’'une phrase de son sens. En d'autres termes, la théorie stipule que deux phrases sémantiquement
équivalentes doivent avoir la méme représentation du sens Lamb (1966); Schank (1969). Les chercheurs
logico-symbolistes ne se sont toutefois pas arrétés a la théorie de la dépendance conceptuelle. D'autres
modeéles orientés, cadre et graphe ont été proposés. Parmi ceux-ci, les modéles de cadres «frames» ont
été introduits par «Marvin Minsky» dans sa communication «A framework for representing knowledge »
de 1974. Ces modeles furent parmi les premieres tentatives de formalisation de la description du savoir
dans des dispositifs intelligents. Un cadre est une structure de données utilisée pour représenter des condi-
tions ou des scénes dans un processus d’'information. C'est aussi une organisation hiérarchique décrivant un
concept ou un événement grace a des attributs. Ces éléments, appelés, «slots», peuvent contenir une va-
leur, un code ou des liaisons vers d’autres cadres, exprimant ainsi le temps, le lieu, les participants, les objets

impliqués, voire les actions elles-mémes. Dans le traitement automatique du langage naturel, la connais-
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sance de l'environnement d’un mot ou d’une expression est essentielle pour comprendre toute sa signi-
fication Minsky (1974). En 1976, les «graphes conceptuels» ont été proposés par «John Sowa». lls'agissait
de I'un des premiers formalismes de représentation de la connaissance. Initialement fondés sur la logique
du premier ordre, ces graphes utilisaient une forme diagrammatique comme formalisme de représenta-
tion. Ce modéle se distingue des approches strictement syntaxiques et logiques par un cadre plus intuitif et
flexible. Les travaux de «John Sowa» ont influencé de nombreux domaines, notamment linguistique com-
putationnelle, I'intelligence artificielle, la représentation des connaissances et la modélisation des réseaux
sémantiques Sowa (1976). Quatre ans plus tard, une extension des réseaux sémantiques a été initiée par
deux universités néerlandaises «Groningen et Twente» qui ont été baptisée «graphes de connaissances».
Ceux-ci se distinguent des réseaux sémantiques par la restriction des types de relations possibles entre les
nceuds. L'objectif était de permettre des opérations algébriques sur les graphes James (1992). Lavénement
du «Web sémantique» a influencé le domaine du «TALN» en introduisant un nouveau formalisme de re-
présentation des données linguistiques. Le Web sémantique est apparu sur la scéne grace aux recherches
menées par «Tim Berners-Lee» Berners-Lee et al. (2001). Il s’agit d’une description formelle des concepts et
des relations. A I'aide de standards tels que «RDF, RDFS et OWL », le Web sémantique modélise des connais-
sances et établit des relations explicites entre concepts, enrichissant ainsi les ressources utilisées dans le
«TALN», telles que les «ontologies» lexicales et les bases de données sémantiques. Le standard «Resource
Description Framework RDF» est un modéle conceptuel de données basé sur des triplets, destiné a dé-
crire les ressources Web et leurs métadonnées Klyne et Carroll (2004). Le standard «Resource Description
Framework Schema RDFS» est une extension du «RDF» introduisant la notion de classe et de hiérarchie
entre les classes Tous et al. (2011). «Ontology Web Language OWL» incarne un paradigme révolutionnaire
dans l'ingénierie des connaissances qui est les «ontologies» Gruber (2009). Différentes définitions ont été
proposées pour les ontologies. «Robert Neches» et ses collégues estiment qu'une ontologie est une défi-
nition des termes et des relations de base constituant le vocabulaire d'un domaine, ainsi que des régles
permettant d’étendre ce vocabulaire Neches et al. (1991). «Tom Gruber», quant a lui, définit une ontologie
comme une description explicite de concepts et de relations, destinée a un agent ou a une communauté
d’agents Gruber (1993). Pour «Sowa», I'intérét des ontologies réside dans I'étude des catégories d'objets qui
existent ou peuvent exister dans un certain domaine Sowa (1995). Le Web sémantique a ouvert la porte a
une contextualisation riche et a une interopérabilité fluide avec des données issues de plusieurs domaines.
Plusieurs outils de traitement automatique du langage naturel ont émergé grace au Web sémantique, no-
tamment «WordNet», une ontologie lexicale contenant une base structurée de synonymes, d’antonymes,

d’hyponymes et de relations sémantiques. Elle est utilisée dans des taches telles que la désambiguisation
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lexicale et I'extraction d’informations Miller (1995). «OntoNotes», une ontologie combinant les annotations
sémantiques, syntaxiques et discursives. Elle est utilisée pour le marquage sémantique et I'amélioration des
systémes TALN multilingues Hovy et al. (2006). «<FrameNet», une ontologie basée sur des cadres séman-
tiques, utile pour I'encodage du sens des phrases Fillmore et al. (2006). «DBpedia», une ontologie multi-
lingue pour 'extraction et la structuration des connaissances a partir de «Wikipédia» Auer et al. (2007). En
outre, l'interopérabilité des ressources sémantiques améliore les performances des systémes multilingues
et rend possible le développement d’agents conversationnels plus intelligents et contextuellement perti-

nents, révolutionnant ainsi I'application du TALN dans de nombreux secteurs.

11.2.2 Approches statistiques en traitement automatique du langage naturel

Les approches statistiques en traitement automatique du langage naturel ont évolué avec le temps, inté-
grant des modéles probabilistes, des méthodes de réduction de la dimensionnalité, ainsi que des techniques
d’'apprentissage non supervisé afin de mieux comprendre les relations entre les mots et les documents. Dans

cette section, nous allons explorer quelques modéles statistiques qui ont influencé I'état de I'art.

1. Modéles vectoriels catégoriques : les premiers modéles de représentation des mots étaient des modéles
vectoriels catégoriques. Le «one-hot encoding» fut I'une des premiéres représentations catégoriques de
mots. Il repose sur une représentation vectorielle binaire dans laquelle I'indice correspondant au mot,
prend la valeur 1, tandis que toutes les autres cases contiennent des zéros. Le one-hot encoding a ensuite
été étendu a une représentation fondée sur les sacs de mots «bag-of-words». Cette méthode consiste a
représenter un document ou une phrase par une matrice indiquant le nombre d’occurrences de chaque
mot Harris (1954); Salton (1971). Les modéles de représentation catégorique ont ensuite évolué pour don-

ner naissance aux modeéles a base de pondérations.

2. Term Frequency-Inverse Document Frequency : Contrairement aux modéles basés sur le poids, ils ne se
limitent pas au nombre d’occurrences d'un terme. Ils prennent en compte la fréquence d’apparition d’'un
mot par rapport a la taille du document, a I'image des modéles «Term Frequency TF» et «Term Frequency-
Inverse Document Frequency (TF-IDF)». Le TF-IDF a été introduit en 1970 comme une amélioration de la
représentation des textes de la méthode «bag-of-words BoW». Il permet de pondérer I'importance des
mots dans un document en tenant compte de leur fréquence et de leur rareté dans le corpus, ce qui améliore
la précision dans des tiches comme la recherche d’information Jones (1972). La fréquence du terme (TF)

mesure la fréquence d’apparition d’'un mot dans un document donné. C’est un indicateur de I'importance
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d’un mot dans un document spécifique. L'inverse de la fréquence du document (IDF) est une mesure qui
réduit I'importance des mots fréquents dans tout le corpus, car ils sont généralement peu informatifs. L'idée
est qu’'un mot courant dans tous les documents n'apporte pas d’'information. spécifique Jones (1972). Le

score TF-IDF pour un mot dans un document est le produit de TF et d’IDF :
TF-IDF(t, d) = TF(t,d) x IDF(t) (1.1)

Ou : TF (Term Frequency) :
— TF(t, d) représente la fréquence d’apparition du terme ¢ dans le document d.

Nombre de fois que le terme t apparait dans le document d

TF(t,d) =
(t,d) Nombre total de termes dans le document d

IDF (Inverse Document Frequency) :

— IDF(t) mesure I'importance du terme ¢ dans I'ensemble du corpus.

IDF(¢) = log (

Nombre total de documents dans le corpus
Nombre de documents contenant le terme ¢

TF-IDF :
— TF-IDF(t, d) combine les deux mesures pour donner une mesure de I'importance du terme ¢ dans le
document d.
Bien entendu, les modéles a base de pondérations sont construits sur le modéle des sacs de mots « bag-
of-words ». Par conséquent, ils partagent la méme limitation : I'incapacité a capturer l'ordre des mots dans

un document. Néanmoins, ils offrent de bonnes performances au niveau lexical Salton et al. (1975).

3. Lanalyse sémantique latente : « La sémantique latente » est une autre forme de modéle vectoriel per-
mettant d’interpréter les relations entre un terme et un document dans «un espace conceptuel latent».
Elle s'appuie sur la décomposition en valeurs singuliéres «(Singular Value Decomposition, SVD)» pour fac-
toriser la matrice de co-occurrence. L'analyse sémantique latente «Latent Semantic Analysis LSA» est une
technique de réduction de dimensionnalité utilisée pour extraire des relations sémantiques entre les mots
et les documents. Cette approche a été introduite en 1990 pour pallier les limitations du modéle «BoW» et
du modéle «TF-IDF», car elle permet de réduire la dimensionnalité a 'aide de la décomposition SVD. Théo-
riguement, elle repose sur I’'hypothése distributionnelle, selon laquelle les termes apparaissant dans des
contextes similaires ont des significations similaires. LAnalyse sémantique latente consiste a décomposer
la matrice terme-document, notée A, en trois matrices a l'aide de la décomposition en valeurs singuliéres.
Cette factorisation permet de révéler des relations latentes entre les termes et les documents, réduisant

ainsi la dimensionnalité de I'espace vectoriel tout en préservant la structure sémantique sous-jacente.
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Le modéle LSA peut étre formulé comme suit :
A~USVT (1.2)

Ou:
— A est la matrice terme-document de taille m x n, avec m étant le nombre de termes et n le nombre
de documents.
— U est une matrice de taille m x k qui représente les relations entre les termes et les dimensions
latentes, ou k est le nombre de dimensions latentes choisies.
— S estune matrice diagonale de taille k x k qui contient les valeurs singuliéres indiquant I'importance
de chaque dimension latente.
— VT est la matrice transposée de V, de taille & x n, représentant les relations entre les documents
et les dimensions latentes.
Cette décomposition permet de « réduire la dimensionnalité » tout en capturant les structures sémantiques

cachées dans les données textuelles.

4. Latent Dirichlet Allocation : «Latent Dirichlet Allocation LDA» est un autre modéle appartenant a la caté-
gorie des approches statistiques. Il a été proposé en 2003 par « Blei, Ng et Jordan ». |l s'agit d'un modéle
génératif de texte fondé sur des distributions de probabilité. «LDA» est utilisé pour modéliser des sujets
dans un corpus de textes. Cette approche probabiliste permet d’identifier des thémes latents au sein d’un
corpus, en supposant que chaque document est une combinaison de plusieurs sujets, et que chaque sujet

est caractérisé par une distribution de probabilité sur les mots. Blei et al. (2003).

Notations LDA :
— M : Nombre total de documents.
— Ny : Nombre de mots dans le document d.
— K : Nombre de sujets (topics).
— [ : Distribution des mots pour le sujet %, un vecteur de taille V' (vocabulaire).
— 6,4 : Distribution des sujets pour le document d, un vecteur de taille K.
— Zz4, : Sujet assigné au n-iéme mot dans le document d.
— wWq,p : n-iéme mot dans le document d.
— «: Paramétre hyperparametre de la distribution de Dirichlet sur 6.
— 1 : Paramétre hyperparamétre de la distribution de Dirichlet sur 5.

Le processus génératif de LDA peut étre formalisé comme suit :
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1. Pour chaque sujet k, tirer une distribution des mots :
By, ~ Dirichlet(n)

2. Pour chaque document d :
— Tirer une distribution des sujets :
64 ~ Dirichlet(c)
— Pour chaque mot wy ,, dans le document d :
(a) Tirer un sujet :
Z4.n ~ Categorical(fq)
(b) Tirer un mot:
Wq p ~ Categorical(ﬂzd,n)

Probabilité jointe compléte :

K M Ngq
P(w,2,0,8 [ a,n) = [[ PGB | ) [ POala) [] P(zan | 6a)Pwan | Bzy,.) (1.3)
k=1 d=1 n=1

L'algorithme fonctionne par «inférence bayésienne», en affectant les mots dans les documents a des sujets
de maniére itérative jusqu’a ce que le modéle converge. Chaque mot dans un document est affecté a un
sujet latent selon une probabilité conditionnelle. Le modéle apprend ensuite les distributions de sujets et

de mots a partir des données textuelles Blei et al. (2003).

5. Vecteurs Globaux pour la Représentation des Mots : «GloVe» est une technique statistique inspirée du
modeéle de I'analyse sémantique latente. L'auteur de GloVe critique le contexte local de « Word2Vec» et pro-
pose un contexte global considérant le mot par rapport au reste du document. Le processus d’apprentissage
du modele GloVe est basé sur I'hypothése que le logarithme de la probabilité de co-occurrence d’'un mot
dans la matrice de co-occurrence est égal au produit scalaire de la ligne et de la colonne qui lui corres-
pondent. log(X;;) = w; - ¢; + b; + b; ot X;; est la fréquence de co-occurrence, w; et ¢; sont les vecteurs
des mots centraux et contextuels, et b;, b; sont des biais scalaires. «La factorisation de matrice» utilisée
par GloVe consiste en plusieurs itérations ayant pour objectif la décomposition en valeurs singuliéres la
matrice de co-occurrence afin d’émerger les deux matrices correspondant aux mots centraux et ceux du
contexte Pennington et al. (2014). Contrairement a une décomposition classique en valeurs singuliéres ,
GloVe utilise un modeéle d'apprentissage supervisé ou une fonction de co(t spécifique est minimisée :

J = f(Xij) (log(Xi;) — w; - ¢j — b; — bj)? (1.4)

i,J
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La fonction f(Xij) pése les erreurs en fonction de la fréquence de co-occurrence, favorisant un ajustement

précis pour les paires fréquentes tout en limitant I'impact des valeurs rares.

— Xj; : Fréquence de co-occurrence entre les mots i et j.
— log(Xj;,) : Transformation logarithmique de la fréquence pour éviter des variations extrémes.
glAij
— w; - ¢; : Produit scalaire entre le vecteur de mot w; et le vecteur de contexte c;, qui représente la
similarité sémantique entre les deux mots.
— b;, b; : Biais associés aux mots et aux contextes pour stabiliser I'apprentissage.
— f(Xi;) : Fonction d’'importance qui pondere les paires en fonction de leur fréquence pour éviter

que des paires trop rares ou trop fréquentes dominent l'optimisation.

Les approches statistiques exploitent les propriétés quantitatives du texte pour représenter les mots et les
documents. La méthode TF-IDF pondére les mots en fonction de leur fréquence et de leur rareté dans un
corpus, mais ne permet pas de prendre en compte la sémantique. La méthode LDA modélise les documents
comme des distributions de sujets et permet d'extraire des thématiques sous-jacentes grace a une approche
probabiliste. Le LSA, basé sur la décomposition en valeurs singuliéres, réduit la dimensionnalité des repré-
sentations textuelles et révele des relations latentes entre les mots, mais avec une perte d’interprétabilité.
Enfin, GloVe utilise les cooccurrences globales des mots pour générer des vecteurs qui capturent les rela-
tions sémantiques et analogiques, offrant ainsi une représentation plus riche de la langue. Bien que ces
méthodes aient marqué une avancée significative, elles restent limitées par rapport aux modeéles neuro-
naux modernes, qui utilisent des architectures plus complexes pour mieux modéliser le sens et le contexte

de la langue.

1.1.2.3 Approches neuronales en traitement du langage naturel

L'intelligence artificielle et ses sous-disciplines connaissent un engouement croissant, notamment depuis
les résultats impressionnants obtenus par les réseaux de neurones profonds. Le traitement automatique du
langage naturel, qui est une sous-discipline de I'intelligence artificielle, a ainsi franchi une étape importante
grace a ces modeéles. L'intérét croissant pour le traitement automatique du langage naturel s'explique par
le large éventail d’applications dans I'industrie, notamment dans les domaines de la traduction automa-
tique, de la classification de textes, du résumé automatique, de la reconnaissance des entités nommées, de
I'analyse des sentiments et des agents conversationnels. Dans cette section, nous allons explorer quelques

modeéles neuronaux qui ont influencé I'état de I'art dans ce domaine.
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1. Word2Vec : La premiére catégorie utilise principalement des réseaux de neurones. Elle a été étudiée entre
2001 et 2003 par Sun (2000). Cependant, les résultats obtenus n’étaient pas aussi prometteurs que ceux des
autres techniques de modélisation de la langue Bengio et al. (2003). Des années plus tard, 'auteur de Miko-
lov et al. (2010) explora I'application des «réseaux neuronaux récurrents RNR» a la modélisation du langage.
Il finit par proposer la fameuse technique «Word2Vec» avec ses deux modéles «CBoW» et «SkipGram» Mi-
kolov et al. (2013). Word2Vec utilise une technique de fenétrage local pour déterminer le mot central et
les mots voisins qui représentent le contexte de ce mot. Il utilise un simple perceptron pour apprendre a
représenter les mots dans deux matrices formées a partir des poids du perceptron. La premiére contient
les mots centraux et la deuxiéme, les mots du contexte. Le modéle SkipGram prédit les mots du contexte
a partir du mot central, tandis que CBoW prédit le mot central a partir des mots du contexte. En revanche,
la deuxieme catégorie repose sur des techniques statistiques pour I'apprentissage de la représentation des

mots. Mikolov et al. (2013).

Modéle Skip-gram Le modéle Skip-gram maximise la probabilité de prédire le contexte C' autour d’'un mot

cible w;. La fonction objective est donnée par :

T
maxH H P(wc|wy) (1.5)

t=1ceC}

ou la probabilité conditionnelle est définie comme :

exp(vy,. - Vuy,)

P =
(wc|wt) Zwev exp(vgu . th)

(1.6)

ou : - vy, est le vecteur d’entrée du mot cible wy, - vguc est le vecteur de sortie du mot de contexte w,., - V

est le vocabulaire.
Modeéle CBOW (Continuous Bag of Words)

Le modeéle CBOW prédit un mot cible w; a partir des mots de contexte C' environnants. La fonction objective

est:
T

max H P(w:|Cy) (1.7)

t=1
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ou la probabilité conditionnelle est donnée par :

exp(vy, - ﬁ ZCECt U, )

P(wt|Ct) =
Zwe\/ exp(vl’u ' ﬁ Zcect U’wc)

ou : - vy, sont les vecteurs d’entrée des mots de contexte, - v/, est le vecteur de sortie du mot cible.

2. Doc2Vec : «Doc2Vec» est une extension de Word2Vec. |l s’agit d’'un modéle qui permet de représenter les
documents sous forme de vecteurs. Alors que Word2Vec est utilisé pour encoder le sens des mots, Doc2Vec
permet d’encoder I'ensemble d’un document. Il génére un vecteur unique pour chaque document, entrainé
parallélement aux vecteurs des mots. Ce vecteur capture les informations contextuelles qui permettent de
distinguer ce document des autres. Doc2Vec fonctionne sur deux architectures principales. La premiére est
appelée « mémoire distribuée ». Cette architecture est similaire 3 Word2Vec, mais elle ajoute un vecteur
d’identification du document qui permet de prédire les mots en fonction du contexte. La deuxiéme archi-
tecture, dite «sac de mots distribué», est toutefois plus proche du modéle «Skip-Gram» de «Word2Vec».
Dans cette architecture, le modéle apprend a prédire les mots a partir du vecteur du document, sans tenir
compte de l'ordre des mots. Le et Mikolov (2014). Le modéle de la mémaoire distribuée prédit chague mot

w; en fonction des mots précédents et du vecteur de document d; :

exp(Vy, ()21 Vu, + di))

P(wg|wg—1,wp—2,...,wy1,d;) =
(et s, ) = V() vy + 1)

ou:
— vy, est le vecteur de représentation du mot w.
— d; est le vecteur de représentation du document d;.
— V est le vocabulaire total.
Le modele de sac de mots distribué prédit chaque mot indépendamment de son ordre a partir du vecteur

de document d; :

exp(v,, d;)
P(w,|d;) = ‘ 110
(i) = S~ exp(vidy) (110

ou:

— vy, est le vecteur de représentation du mot wy.
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— d; est le vecteur de représentation du document d;.

— V est le vocabulaire total.
3. Context2Vec : Melamud et al. (2016) propose «Context2Vec», un autre modéle neuronal, fondé sur une
critiqgue du contexte local proposé par Word2Vec. Contrairement au modéle Word2Vec, qui génére une
seule représentation fixe pour chaque mot, Context2Vec génére une représentation différente pour chaque
occurrence d’un mot, selon le contexte. L'auteur utilise les «Long Short-Term Memory LSTM» comme moyen
de mieux capter le contexte d’'un mot. Context2Vec a pour objectif le plongement des mots cibles ainsi que
de leur contexte situé dans la phrase dans le méme espace réduit, afin d’expliciter les dépendances entre les
mots cibles et le contexte. Il utilise un encodage bidirectionnel du contexte grace aux LSTM. Il vise a obtenir
une représentation contextuelle de chaque mot, basée sur sa proximité avec d’autres mots dans une fenétre
contextuelle Melamud et al. (2016). Soit w; le mot cible et w1, wea, . . ., we, les mots contextuels dans la
fenétre de taille n. La représentation d'un mot dans le contexte est donnée par e; = Embeddings(w;) et
e. = Embeddings(w,1, wc2, - - . , Wy ). L'encodeur est un réseau récurrent RN N qui prend la séquence de
mots contextuels et génere une représentation du mot cible w; : h, = RN N (e.). Apres avoir obtenu la
représentation hy, la probabilité du mot cible est prédite a I'aide d’'une couche fully connected suivie d’'une

fonction softmax : y; = Softmax(Wh; + b)

La fonction de perte est ensuite calculée en utilisant I'entropie croisée entre la prédiction y; et le mot réel

We -«

14
L==> yilillog(y,i]) (1.1)
=1

4.ELMo : En 2018, le modéle «ELMo» est apparu a la suite des travaux de Peters et al. (2018). Les auteurs es-
sayaient, a travers ELMo, de prendre en compte l'aspect syntaxique et sémantique du mot dans I'encodage
contextuel. ELMo se compose de deux couches neuronales constituées de plusieurs unités LSTM. Les unités
LSTM sont interconnectées dans les deux sens, permettant ainsi un encodage bidirectionnel du contexte.
Chaque couche neuronale génére ce qu’'on appelle des vecteurs intermédiaires, qui seront ajoutés aux vec-
teurs originaux des mots pour donner la représentation finale. ELMo a permis de franchir un pas important
en matiére de représentation contextuelle des mots en utilisant des «LSTM bidirectionnels», mais il a été ra-
pidement éclipsé par des modeéles basés sur le transformeur, comme «BERT », qui offrent des performances
bien supérieures grace a leur capacité a gérer des dépendances longues et a leur parallélisation plus effi-
cace. L'architecture d’ELMo repose sur un modéle de langue bidirectionnel avec une architecture de réseau

neuronal récurrent. Soit wy, wo, . . ., wr la séquence de mots d’entrée de longueur T', ol chaque w; repré-
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sente un mot dans le vocabulaire. L'idée principale d’ELMo est de produire une représentation contextuelle
de chaque mot en fonction de ses voisins dans la phrase. Cette représentation est obtenue par I'utilisa-
tion de deux modéles de langue : un modéle de langue direct, de gauche a droite, et un modéle de langue

inverse, de droite a gauche Peters et al. (2018).

. pfw | obw . . s . . .
Soit h, eth, lessorties des couches cachées du modeéle de langue direct et inverse respectivement pour

le mot wy.

a) Modéle de langue direct :

—f
B, = RNNgy(w1, wo, . .., w;) (112)
b) Modéle de langue inverse :
—bw
h’t = RNNbW<wT, WT—14--- ,wt+1) (1.13)

Les sorties des deux RNNs sont combinées pour donner une représentation contextuelle bidirectionnelle

= —fw —bw. | , , .
du mot wy : hy = [h, ;h, |ou [;] représente la concaténation des vecteurs.

c) Représentation finale de chaque mot : La représentation contextuelle d’ELMo pour un mot donné est
une combinaison linéaire des représentations a différentes couches du réseau RNN. Soit Hi la sortie de la
{-éme couche de I'RNN, la représentation finale du mot w; dans ELMo est donnée par E; = Zlel v ﬁi
ou L est le nombre total de couches dans le réseau, et +; est un poids apprenant associé a la [-eme couche,

qui est optimisé lors de I'entrainement.

4. BERT : La publication d’ELMo a coincidé avec l'arrivée d'un autre modéle, «BERT», qui ne se contente
pas d’assurer I'encodage bidirectionnel, mais aussi I'encodage positionnel des mots. BERT est concu sur
la base des transformeurs. Il repose sur un modéle fondé sur des mécanismes d’attention permettant de
traiter efficacement les dépendances a longue portée dans un texte. Par rapport aux modeles antérieurs
tels que Word2Vec ou GloVe, le principal apport de BERT réside dans sa capacité a générer des représen-
tations contextuelles riches. Il est disponible en deux versions. La version de base contient 12 encodeurs
ayant chacun 12 tétes d’attention . La deuxiéme version, dite large, contient 24 encodeurs ayant chacun 16
tétes d’attention. BERT s'appuie sur deux stratégies d’apprentissage principales : la premiére consiste en la
modélisation masquée du langage, évoquant la prédiction d’'un mot au sein d’'une phrase, et la deuxiéme
est la prédiction de la phrase suivante. Plusieurs autres modeéles ont émergé a la suite de BERT, notam-

ment SciBERT Beltagy et Cohn (2020), BioELECTRA pour la normalisation conceptuelle médicale Kanaka-
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rajan et al. (2021), ainsi que «BNE» et «BioSyn» pour I'encodage nominatif biomédical Sung et al. (2020).
L'application de BERT a d’autres langues a donné naissance a «AraBERT » pour I'arabe Antoun et al. (2020),
«CamemBERT» pour le francais Martin et al. (2019). BERT a connu des améliorations avec «RoBERTa» Liu
etal. (2019), concu selon la stratégie de masquage, avec un apprentissage basé sur des «mini-batches» et un
taux d’'apprentissage plus élevé. «DistilBERT » introduit la technique de distillation, et «XLNet» la prédiction
aléatoire avec la technique de permutation, permettant un meilleur encodage bidirectionnel Devlin et al.
(2019); Sanh et al. (2019); Yang et al. (2019). L'architecture de BERT repose sur les transformeurs, qui sont

composés de couches d’attention et de réseaux «feedforward». L'attention est calculée comme suit. :

Attention(Q, K, V') = softmax <QKT) Vv (1.14)
T Vi '

ou:
— @Q € R"*% est la matrice des requétes ,
— K € R™ 9% est la matrice des clés,
— V € R"%% est |a matrice des valeurs,
— dj, est la dimension des clés.
Les matrices @), K, et V sont obtenues a partir de I'entrée E par multiplication avec des matrices de poids

apprises. Dans BERT, l'attention est effectuée sur plusieurs tétes, chacune ayant ses propres matrices de

poids. L'attention multi-téte est calculée comme suit :

MultiHead(Q, K, V') = Concat (heady, ..., head;) W©° (1.15)

ou chaque téte head; est calculée comme :

head; = Attention(QW<, KW, Vv (1.16)

et WO est une matrice de poids de sortie.

L'encodeur BERT ajoute également des informations de position dans I'entrée en utilisant des encodages
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positionnels, car l'architecture transformeur n’a pas de structure séquentielle implicite. «L'encodage posi-
tionnel» P € R"*¢ est ajouté a I'entrée E : Egna = E + P. Lobjectif de BERT est de prédire les mots
masqués a partir des représentations contextuelles apprises. Le modéle est entrainé avec une fonction de

perte de type entropie croisée :

L=— Z log P (2| Zmasked) (1.17)
iEM

ou M est I'ensemble des positions des mots masqués, et P(z;|Tmasked) €St la probabilité prédite du mot

x; a la position ¢, donnée par le modéle.

5. GPT : «Generative Pre-trained transformer» est un modéle de langue «auto-régressif» basé sur I'archi-
tecture transformeur. Contrairement a BERT, qui est bidirectionnel, GPT génére des séquences de mots en
se basant uniquement sur les tokens précédents, en prédisant le mot suivant dans la séquence. L'entrée de
«GPT» est une séquence de tokens, ol chaque token est transformé en un vecteur d’embedding. Pour une
séquence de tokens 1, zo, ..., x,, 'entrée du modéle devient une matrice d'embeddings £ € R"*4 oy
d est la dimension de I'embedding et n est la longueur de la séquence. L'entrée est également complétée
par des encodages positionnels pour introduire I'ordre des tokens dans la séquence. Ces encodages posi-
tionnels sont ajoutés a la matrice d’'embedding : Exnal = E + P, ol P € R™*? représente les encodages
positionnels, et Efna est la matrice d’entrée enrichie par les informations de position. L'architecture de GPT
repose sur les transformeurs. Contrairement a BERT, GPT utilise uniquement des couches d’auto-attention
causales auto-régressives Radford et al. (2018, 2019); Brown et al. (2020b). La principale différence réside
dans la maniére dont I'attention est calculée, en utilisant uniquement les tokens précédents pour prédire

le token suivant. Le mécanisme d’attention causale dans GPT est donné par :

Attention(Q, K, V') = softmax <QKT) Vv (1.18)
T Vi '

Cependant, pour garantir que l'attention soit causale (autrement dit, qu’un token ne puisse pas "voir" les
tokens futurs), on applique un masquage sur les positions futures dans la matrice des scores d’attention.
Cela se fait en remplacant les valeurs au-dessus de la diagonale de la matrice QK7 par —oo (ou un trés

grand nombre négatif) afin d’empécher l'attention vers les tokens futurs :
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KT
Masked_Attention(Q, K, V') = softmax (Q + M) Vv (1.19)
Vg

ou M est une matrice de masquage telle que M;; = —oo si j > 1, et M;; = 0 sinon.

Comme dans BERT, GPT utilise I'attention multi-téte pour permettre au modeéle de se concentrer sur diffé-

rentes parties de la séquence d’entrée. L'attention multi-téte est calculée comme suit :

MultiHead(Q, K, V') = Concat (head, . .., head;) W° (1.20)

ou chaque téte head; est calculée comme :

head; = Masked_Attention(QW<, KW/, v (1.21)

et WO est une matrice de poids de sortie. Aprés I'attention, la sortie passe par un réseau feedforward a
deux couches. Le réseau feedforward est défini comme suit : F'F'N (z) = max(0,2W; + b;)Wy + be. ou
W, € R4 et Wy € R¥* <4 sont des matrices de poids, et by et by sont des biais. L'objectif de GPT est
de prédire les tokens suivants dans une séquence donnée, ce qui en fait un modeéle auto-régressif. Pour
une séquence d’entrée de n tokens, le modeéle prédit le token suivant x; 1 a partir des i tokens précédents

Llyew-y Lo

La fonction de perte de GPT est la log-vraisemblance négative des tokens prédits :

n—1
L=— Z log P(zit1]x1, ..., x;) (1.22)
i=1
ou P(xit1|z1,...,x;) est la probabilité prédite du token suivant z; 1, conditionnée sur les tokens précé-

dents.
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11.3 La triade peircienne comme grille de lecture des modéles proposés

Les modéles proposés dans les chapitres 3 et 5 peuvent étre considérés comme une machine de «sémio-
sis» au sens de «Charles Sanders Peirce». La structure syntaxique, représentée par la matrice d’adjacence
des dépendances syntaxique, joue le role de «représentamen». Cette structure agit comme un signe por-
teur de signification, dont I'«objet» est la relation «sémantico-syntaxique» réelle entre les mots. Le méca-
nisme d’attention permettant d’introduire la matrice d’adjacence sous la forme d’ «attention mask» comme
c’est le cas dans le chapitre 3 ou encore le mécanisme d'attention contraint par des «multiplicateurs de La-
grange» dans les chapitres 5 et 6, produit I'interprétant. Ce dernier se présente dans les représentations
vectorielles des mots qui intégrent et respectent cette structure syntaxique. Ainsi, «<SCABERT», mentionné
dans le chapitre 5, incarne un processus de sémiosis computationnelle, ou la signification linguistique n'est
pas simplement extraite passivement, mais activement construite et validée par un dialogue dynamique
entre la forme syntaxique et le sens représenté sous forme vectorielle. Ce rapprochement entre une ar-
chitecture profonde de réseaux de neurones et la théorie peircienne du signe montre comment la «lin-
guistique computationnelle» peut dépasser la simple corrélation statistique pour intégrer une dimension
structurante et interprétative fondamentale de la signification. Dans lingBERT présenté dans le chapitre 4,
le représentamen émerge a travers des phrases dans lesquelles les mots masqués sont sélectionnés selon
leurs relations syntaxiques, contrairement au masquage aléatoire utilisé dans «BERT». Ces phrases mas-
quées, structurées autour de dépendances syntaxiques qui constituent des unités signifiantes dont I'objet
est la relation sémantico-syntaxique réelle entre les mots. Le processus de prédiction des mots masqués,
en tenant compte de ces dépendances, oriente I'apprentissage du modéle vers une compréhension plus
structurée et motivée du langage. Ainsi, I'«interprétant» prend la forme de vecteurs contextualisés, qui en-
codent non seulement le sens lexical des mots, mais aussi leur réle syntaxique et leur contribution au sens
global de la phrase. Ce mécanisme d'attention syntaxiquement guidée favorise une sémiosis plus fine, ali-
gnée avec la structure profonde de la langue . Dans le chapitre 6 qui aborde le modéle VLG-BERT, dans ce
dernier, le représentamen peut étre vu comme la forme complexe et multimodale des représentations in-
ternes du modéle. On y trouve notamment, La matrice d'adjacence syntaxique qui encode les dépendances
entre mots, qui structure explicitement la forme linguistique, ainsi que les vecteurs d’embedding initiali-
sés a partir des représentations latentes visuelles extraites du modéle «Vision Transformer ViT». Ce dernier
donne une dimension perceptuelle a la forme linguistique. Ce représentamen est donc une fusion entre une
forme linguistique syntaxique et une forme perceptuelle, visuelle, incarnant la forme du signe qui sera in-

terprétée. Dans «VLG-BERT» l'objet est double et multimodal. D’'une part, il s’agit des relations syntaxiques
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réelles entre les mots dans la phrase; ces relations sont codifiées dans la matrice d’adjacence syntaxique
qui sert de vérité terrain. D'autre part, il s'agit des entités et concepts réels auxquels les mots concrets ren-
voient dans le monde. Ils capturés par les représentations visuelles latentes préapprises sur «ImageNet».
Ainsi, I'objet n’est pas seulement un concept abstrait ou un mot isolé, mais une relation linguistique située
dans un contexte perceptif réel, riche et hiérarchisé grace a « WordNet». Linterprétant dans VLG-BERT cor-
respond quant a lui a la représentation contextuelle et sémantique intégrée que le modéle construit et
affine a travers son mécanisme d’attention. L'optimisation via les multiplicateurs de Lagrange garantit que
les représentations produites respectent la structure syntaxique, et donc que l'interprétation respecte la
forme linguistique. L'intégration des embeddings «embeddings» permet une interprétation ancrée dans le
sens réel des mots, favorisant ainsi une compréhension multimodale plus riche. Linterprétant est ainsi la
compréhension «incarnée» que le modéle construit une interprétation dynamique et contextuelle du signe

qui intégre a la fois la structure linguistique et la signification perceptive.

1.2 Opacité des grands modéle de langue

Avec l'essor des modeéles de type «boite noire» comme les réseaux de neurones profonds, la question de
leur interprétabilité «comprendre leur fonctionnement» et de leur explicabilité «obtenir des justifications
claires de leurs décisions» est devenue centrale dans les domaines du traitement du langage naturel et de
la vision par ordinateur. Cette tendance est motivée par la nécessité croissante de mettre en place des sys-
temes d’intelligence artificielle transparents et fiables en particulier dans les contextes sensibles tels que
«santé, justice, finance» Lipton (2017). Pour gagner la confiance des utilisateurs de ces secteurs sensibles,
ces derniers doivent comprendre les décisions prises par ces modeles. En cas d’erreur, comment la détecter
et la corriger si le modéle est opaque ? En outre, les modéles profonds peuvent amplifier les biais «racistes,
sexistes, etc.», ce qui rend une auditabilité nécessaire. Dans le contexte des grands modéles de langue, les
représentations vectorielles de la langue sont difficiles a interpréter humainement. Les mécanismes d’at-
tention indiquent ce que le modéle regarde, mais pas toujours le «pourquoi Arrieta et al. (2019); Rudin et al.
(2021). Les grands modéles génératifs inventent des réponses qui paraissent plausibles mais qui sont en réa-
lité fausses, et ce sans justification interne. Ce phénomeéne est appelé «hallucination» Ji et al. (2023); Rudin
etal. (2021). «Gradient-weighted Class Activation Mapping Grad-CAM» est un outil qui utilise une technique
d’explicabilité des modéles d’apprentissage profond, notamment pour les réseaux de neurones convolutifs
(CNN) Selvaraju et al. (2019). Il met en évidence les zones d’'une image influencant la décision, mais sans

logique sémantique claire! Un changement infime, appelé «adversarial attack» peut tromper le modéle et
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révéler sa fragilité interprétative Chakraborty et al. (2018). Il existe un paradoxe remarquable entre la per-
formance et l'interprétabilité. Par exemple, les modéles les plus performants comme les «transformeurs»
sont souvent les moins interprétables. Dans ce qui suit, nous allons expliciter les notions d’interprétabilité

et d'explicabilité.

1.2.1 L'interprétabilité

L'«interprétabilité» consiste en I'habilité a appréhender le fonctionnement d’'un modéle neuronal profond.
L'interprétabilité est une problématique qui s'adresse a la communauté scientifique de ce domaine. Elle
est une condition nécessaire, mais non suffisante pour I'explicabilité. Un modéle interprétable n’est pas
nécessairement explicable pour un non-expert Doshi-Velez et Kim (2017); Gilpin et al. (2019); Arrieta et al.
(2019). L'interprétabilité passe généralement par la simplification de ses composants ou en les reliant a des
structures connues telles que les «arbres de décision, regles». L'interprétabilité s’attaque a plusieurs pro-
blémes, notamment la complexité architecturale «attention multi-tétes, milliards de parametres», l'opacité
des représentations internes «embeddings, mécanismes d’attention», les biais et la robustesse «impact des
données d’'entrainement» Lipton (2017); Rudin et al. (2021). Plusieurs courants influents dans le domaine
de l'interprétabilité sont a noter. Le premier soutient la méthode «post-hoc» qui consiste en une analyse
a posteriori permettant la visualisation des attentions, I'analyse de neurones et I'utilisation de classifica-
teurs de sondage «probing classifiers», etc Jain et Wallace (2019); Dalvi et al. (2018); Tenney et al. (2019a).
Un deuxiéme courant repose sur |'identification des sous-réseaux responsables de comportements, ce que
I'on appelle I'approche par intervention. Cette technique consiste a supprimer des composants, tels que les
«tétes d’'attention, couches» pour mesurer leur impact comme dans les «ablation studies» ou bien a modi-
fier les entrées pour observer les changements de sortie, a la maniere des «contrefactuels» Kovaleva et al.
(2019); Wexler et al. (2019). Une autre communauté s’attaque a l'interprétabilité via des méthodes symbo-
ligues et formelles, qui consistent a approximer le modéle par des régles logiques comme la «distillation en
arbres de décision», ou a identifier des sous-réseaux responsables de comportements Hinton et al. (2015);

Olah et al. (2020).

1.2.2 L'explicabilité

L'«explicabilité» vise a exposer les raisons d'une décision. Elle s’adresse aux utilisateurs et consommateurs
finaux. L'explicabilité produit des justifications pour les décisions précises. Il s'agit donc d'une ingénierie

des explications. Un modeéle explicable peut utiliser des approximations sans qu’il soit nécessaire d’en com-
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prendre le fonctionnement en profondeur Doshi-Velez et Kim (2017); Guidotti et al. (2018). Afin d’améliorer
I'explicabilité, les chercheurs déploient des techniques d’explication a posteriori qui se basent sur la visua-
lisation. Le modeéle «Local interpretable model-agnostic explanations LIME» est un modéle de visualisation
qui approxime localement un modele complexe par un modéle simple, dont le but est de générer une ex-
plication simple et rapide d’'une prédiction individuelle Ribeiro et al. (2016a). L'explication se fait avec un
affichage des caractéristiques «features» les plus influentes pour une prédiction donnée. SHAP est un autre
modéle de visualisation, basé sur la théorie des jeux «valeur de Shapley». SHAP attribue la contribution
de chaque caractéristique a la prédiction. Il permet ainsi une analyse rigoureuse des contributions des ca-
ractéristiques Lundberg et Lee (2017). L'explicabilité peut toutefois se faire par le biais d’une analyse des
caractéristiques pour déterminer I'importance des mots ou de segments dans un texte par exemple. Dans
certains contextes, I'explicabilité doit prendre la forme d’'un modeéle génératif de texte pour expliquer ses
sorties. Par exemple, je classe ce courriel comme indésirable, car il contient les mots «offre exclusive» et «ur-
gence» Arras et al. (2017); Hendricks et al. (2016). L'explication permet de résoudre des problémes comme
I’hallucination pour les grands modéles de langue, qui représente I'un des principaux défis de I'explicabi-
lité pour ce type de modéle. Elle peut se manifester lorsque I'explication d’un faux énoncé générée par un
grand modéle de langue Mehrabi et al. (2022); Hao et al. (2025). L'autre défi, tout aussi ardu, est celui des
biais dont souffrent les modéles neuronaux profonds. Afin de mettre en pratique I'importance de ce genre
de probléme, nous prenons a titre d’exemple un modéle de recrutement. Ce dernier peut désavantager un

groupe sans aucune raison claire, ce qui est trés problématique Raghavan et al. (2020).

1.2.3 Positionnement des travaux

Cette section vise a positionner les travaux de recherche de la présente thése au regard des notions d'inter-
prétabilité et d'explicabilité, deux concepts clés dans I'évaluation et la confiance envers les modéles d’ap-
prentissage profond. Elle tente de répondre a la question suivante : «En quoi les modéles lingBERT, SCA-
BERT et VLG-BERT ouvrent-ils de nouvelles perspectives en matiere d’interprétabilité et d’explicabilité pour

les chercheurs spécialisés dans ces domaines ?».

Le «masquage aléatoire» des mots utilisé dans «BERT », ainsi que l'initialisation aléatoire des embeddings
en début d’'entrainement, augmentent l'opacité des grands modéles de langue, en particulier BERT. Les
trois variantes proposées dans le cadre de cette these, «lingBERT, SCABERT et VLG-BERT», contribuent a

la réduction de cette opacité en s'attaquant spécifiquement a la stratégie de masquage aléatoire de BERT.
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Dans un premier temps, LingBERT prépare le corpus d’entrainement en introduisant un masquage hybride
combinant une sélection aléatoire et une sélection basée sur les dépendances linguistiques entre les mots.
SCABERT, quant a lui, supervise I'entrainement de BERT en intégrant une matrice de dépendances linguis-
tiques au niveau de la couche de prédiction. Cette matrice agit comme une étant une vérité de terrain
«ground truth». Elle guide le modéle vers une meilleure prise en compte de la structure syntaxique. Ainsi
SCABERT fournit une interprétation directe du comportement du modeéle, quels mots influencent lesquels
et selon quelle relation syntaxique. En plus, le recours a une formulation par multiplicateurs de Lagrange,
SCABERT offre une lecture mathématique précise des contraintes, ce qui augmente la tracabilité du proces-
sus d’apprentissage. Avec SCABERT, I'explication d’une prédiction peut désormais s’appuyer sur la structure
syntaxique reconstruite par le modéle, pour dire que ce mot a influencé cette décision, car il est relié syntaxi-
guement au mot prédictif. Cela facilite la génération d’explications formelles ou méme verbales, pour dire
que cette phrase est classée ainsi, car le sujet est modifié par un adjectif négatif fort. Enfin, VLG-BERT, une
extension de SCABERT, va encore plus loin en s'attaquant non seulement au masquage aléatoire, mais aussi
al'initialisation aléatoire des «embeddings», une pratique courante dans la plupart des grands modeéles ac-
tuels. VLG-BERT propose une initialisation sémantiquement fondée. Elle est basée sur des représentations
latentes de mots concrets. Ces représentations sont dérivées de modéles neuronaux de vision et agissent
comme des «labels» conceptuels associés aux mots, apportant ainsi une dimension sémantique plus an-
crée dans la réalité perceptive. Dans VLG-BERT, les représentations sémantiques des mots sont désormais
ancrées dans des concepts visuels partagés avec les étres humains, ce qui permettrait d’interpréter une
activation neuronale comme étant liée a un concept visuel concret. Cette méthode offre une tracabilité
sémantique latente interprétable, rendant les représentations internes plus humaines et plus auditables.
L'ancrage visuel permet également d’identifier des corrélations perceptives aux activations du modeéle, ce
qui facilite la compréhension par des non-experts. VLG-BERT ouvre donc la voie a une interprétabilité cog-
nitive et multimodale. En introduisant des concepts visuels dans le processus d'apprentissage, VLG-BERT
permet d’analyser visuellement une image pour déterminer si un mot est associé a ce type d’image, ce qui
explique pourquoi il a été interprété ainsi. Cela permet de créer une base pour des explications génératives

multimodales, dans lesquelles une décision textuelle peut étre reliée a un univers sensoriel.
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1.3 Problématiques

1.3.1 Volet cognitif

Malgré les résultats impressionnants des grands modéles de langue, ceux-ci restent trés opaques du point
de vue des sciences cognitives. Contrairement a un étre humain qui construit du sens en ancrant la langue
dans son expérience du monde. Ces modéles fonctionnent sans perception, sans interaction physique et
sans véritable intentionnalité. lls ne possédent pas la capacité de compréhension du monde proprement
dite. Ils manipulent des corrélations symboliques et statistiques sur des milliards de mots a I'aide de mo-
deéles neuronaux, sans avoir un réel accés au sens des mots. En ce sens, la théorie de Peirce justifie le recours
a des approches syntaxiques et multimodales pour rapprocher les modéles du fonctionnement sémiosique
humain, et ainsi améliorer I'encodage du sens, I'explicabilité et la cohérence sémantique des «LLMs». Dans
cette optique, il devient pertinent de revenir aux fondements de la sémiotique, en particulier a la théorie
du signe développée par «Charles Sanders Peirce». Pour «Peirce», la signification n'est pas une relation fi-
gée, mais un processus dynamique et évolutif dans lequel chaque signe appelle une interprétation. Cette
derniére a son tour, devient un signe pour un nouvel interprétant, dans une chaine potentiellement infinie
d’interprétations. Cette conception est particulierement féconde pour repenser les limites des LLMs. En
effet, intégrer 'approche «percienne» a la modélisation du langage implique de reconnaitre que le sens ne
peut étre réduit a un simple encodage symbolique ou vectoriel. Il s’agit plutét d'un processus interprétatif,
médié par des structures perceptuelles et contextuelles. Cela ouvre la voie a une modélisation plus riche
du langage naturel, dans laquelle le role de I'interprétant peut étre opérationnalisé par des mécanismes
attentionnels guidés, des modules de traitement multimodal, ou encore des structures hiérarchiques inter-
prétatives qui imitent la dynamique du sens. Ce cadre théorique permet ainsi de jeter les bases d’un pont
rigoureux entre la cognition et I'architecture neuronale profonde. Les modéles proposés visent a simuler un
processus interprétatif. «La question principale est donc la suivante : comment intégrer des connaissances
linguistiques, telles que la syntaxe, ainsi que des connaissances du monde physique, dans les grands modeles
de langue afin de les rapprocher du modele humain ?» «Comment peut-on ouvrir une voie sur l'interpréta-
bilité des grands modeéles de langue ?» «En quoi les modeles proposés, inspirés de la triade sémiotique de

«Peirce», permettent-ils une modélisation plus fidele du sens ?»
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1.3.2 Volet informatique

Les grands modéles de langue ont démontré d'excellentes performances dans plusieurs taches de traite-
ment automatique du langage naturel. Cependant, ces modéles, qui reposent principalement sur I'attention
et les «kembeddings» de mots, restent limités par leur dépendance exclusive au texte, sans prise en compte
des connaissances linguistiques et visuelles. Le «masquage aléatoire» des mots utilisés dans «BERT », ainsi
que l'initialisation aléatoire des «embeddings» en début d’entrainement, ne permettent pas une meilleure
intelligibilité de BERT. L'une des principales difficultés réside dans le manque d’explicabilité et d'interprétabi-
lité des mécanismes d’attention, souvent considérés comme des boites noires. «Comment injecter efficace-
ment des connaissances linguistiques et visuelles dans ces modeles afin d’'améliorer leurs performances sur
les différentes taches de traitement automatique du langage naturel ?» De plus, «comment concevoir des
stratégies d’injection de connaissances permettant non seulement d’améliorer les performances du modele,

mais aussi de le rendre explicable et interprétable ?»

1.4 Hypotheéses

1.4.1 Volet cognitif

— Hypothese 1: L'injection de connaissances linguistiques et visuelles dans les grands modéles de
langue permet de mieux structurer le représentamen. Cette structuration rapproche les modéles
des mécanismes de signification chez I'étre humain, conformément a la théorie sémiotique de Peirce
et aux théories cognitives qui soulignent I'importance de la multimodalité dans la constitution du
sens.

— Hypothése 2 : Adopter une perspective peircéenne permet de formaliser I'interaction entre lalangue,
la perception et la cognition en tant que processus de sémiose. Cette approche offre un cadre théo-
rique solide pour justifier I'intégration des connaissances linguistiques et visuelles dans les grands
modéles de langage, en mettant en avant la nature triadique du sens. Elle oriente ainsi le dévelop-

pement des modeles vers une intelligence artificielle plus sémiotique et plus cognitive.

1.4.2 Volet informatique

— Hypothése 1: L'injection de connaissances syntaxiques sous forme de dépendances linguistiques
dans les mécanismes d’attention des modéles de langage améliore le processus d’encodage du sens

des mots, ce qui se traduit par de meilleures performances dans les tiches de traitement automa-
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tique du langage naturel.

— Hypothese 2 : L'intégration de représentations visuelles latentes dans I'apprentissage des représen-
tations numériques des mots permet d’améliorer le processus d’encodage du sens. Cette approche
permet d'ancrer la sémantique physique du monde dans la langue, ce qui renforce la robustesse et

la capacité de généralisation des modéles de langue.

1.5 Plan de la thése

Cette these est structurée en six chapitres. Le premier chapitre introduit la question du sens en général, et
plus particulierement celle du sens des mots, sous I'angle des sciences cognitives et de I'informatique. La
présente thése s’inscrit dans le cadre d’'un doctorat en informatique cognitive, ce qui rend nécessaire une
présentation des différentes théories abordant la notion de sens, avant d’aborder les principales approches

de son encodage en informatique.

Dans ce méme chapitre, nous proposons une premiére lecture selon une perspective peircienne, qui consti-
tue le cadre théorique et cognitif de la contribution informatique. Cette approche permet également d’abor-
der les notions d’interprétabilité et d'explicabilité, et de situer les travaux de recherche menés dans cette
thése. Le chapitre se conclut par la formulation des problématiques et des hypothéses qui guideront les

deux volets de la recherche, a savoir le volet informatique et le volet cognitif.

Le deuxieme chapitre présente I'état de I'art des mécanismes d'attention appliqués au traitement du texte
et de I'image. Il s’intéresse aux modéles visant a associer des connaissances linguistiques et visuelles aux
mécanismes d’attention, en soulignant I'absence quasi systématique de liens explicites avec la sémiotique,

ces approches (sémiotiques) restant rares dans la littérature.

Les quatre chapitres suivants détaillent les contributions et les approches proposées pour répondre aux
problématiques soulevées. Enfin, la thése se termine par une conclusion générale qui synthétise les contri-

butions apportées et ouvre des perspectives pour de futurs travaux.
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CHAPITRE 2
L’ETAT DE LART
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2.1 Les mécanismes d’attention en langage naturel

Les mécanismes d’attention constituent une avancée déterminante dans le domaine de I'apprentissage pro-
fond, particuliéerement dans la modélisation des dépendances contextuelles au sein de séquences com-
plexes. Introduit initialement par Bahdanau et al. (2016) pour le traitement du langage naturel dans la tra-
duction automatique, le mécanisme d’attention permet aux modéles d’accorder un poids différencié aux
différentes parties de I'entrée, en fonction de leur pertinence contextuelle. Cette capacité a transformé
I'architecture des modéles séquentiels, permettant une gestion fine de I'information sans dépendre exclu-
sivement de la position ou de 'ordre dans la séquence. Avec I'introduction du transformeur Vaswani et al.
(2017), I'attention a pris un réle central dans le traitement des séquences, en permettant un acces paralléle a
toutes les positions d’entrée, ce qui a considérablement amélioré I'efficacité et la performance des modéles.
Rapidement, le mécanisme a été adapté a d’autres modalités comme la vision Dosovitskiy et al. (2021a) ou
I'audio, et généralisé au traitement multimodal Rahman et al. (2020), rendant possible I'injection croisée
de connaissances linguistiques et visuelles au sein d’'un espace de représentation partagé Rahman et al.
(2020); Dai et al. (2023); Ramesh et al. (2022). Plusieurs variantes de l'attention ont ainsi émergé. L'atten-
tion globale prend en compte les relations entre tous les éléments d’'une séquence, tandis que I'attention
locale restreint le calcul 3 une fenétre contextuelle, comme dans Luong (2015). L'attention causal est utilisée
notamment dans les modéles de génération pour empécher I'accés a des tokens futurs Brown et al. (2020a).
L'attention auto-régressive, quant a elle, permet une prédiction séquentielle ordonnée Katharopoulos et al.
(2020). L'attention hiérarchique, introduite par Yang et al. (2016a), structure I'information a différents ni-
veaux mots, phrases et documents, capturant ainsi des dépendances a long terme. Enfin, I'attention croisée,
largement utilisée dans les modéles multimodaux comme ViLBERT Lu et al. (2019) ou UNITER Chen et al.
(2020), permet d’aligner et de fusionner efficacement des représentations issues de différentes modalités.
Dans ce qui suit, nous présentons les différents types de mécanismes d’attention employés dans I'état de
I'art, en mettant en lumiére leur réle dans I'intégration et I'encodage profond du sens a partir de données

linguistiques, visuelles, ou hybrides.

2.2 L'attention locale

L'attention locale consiste en la restriction de la fenétre d’attention de chagque mot a un nombre limité de
mots voisins au lieu d’analyser toute la séquence. Cela signifie que chaque mot ne peut préter attention
gu’a un sous-ensemble de mots dans son voisinage. Chaque mot ne regarde que les mots dans une fenétre

définie autour de lui. Les poids d’attention sont calculés uniquement pour ce sous-ensemble de mots. Cela
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réduit le colt de calcul et de mémoire tout en maintenant un contexte pertinent. L'attention est calculée
sur une fenétre restreinte, réduisant ainsi la complexité a O(n x k), ou k représente la taille de la fenétre.
Toutefois, si la fenétre est trop petite, les mots éloignés ne peuvent pas interagir entre eux. Par conséquent,
le choix de la fenétre peut limiter la compréhension du modéle. Longformer est un modéle transformeur qui
utilise une attention locale pour traiter de longues séquences de texte, permettant de réduire la complexité
de l'attention a O(n x k), ou k est la taille de la fenétre locale Sheynin et al. (2021). Longformer applique une
attention locale glissante a chaque token, et pour certains tokens, il applique aussi une attention globale
pour capturer les relations a longue portée. Dans Longformer chaque token n’interagit qu’avec ses voisins
dans une fenétre glissante. Un nombre restreint de tokens, tels que [C'LS] ou [SE P],bénéficie d’'une at-
tention globale. Longformer est concu pour le traitement de documents trés longs, comme des articles
scientifiques ou des livres. Le résumé de texte et les questions-réponses sur des documents longs Beltagy
et al. (2020). Linformer est un autre modéle qui réduit la complexité de I'attention dans les transformateurs
en utilisant une attention locale linéaire, ce qui permet de traiter efficacement des séquences longues sans
faire exploser le cot de calcul. Ce modéle repose sur I'idée que I'attention dans les transformeurs peut étre
bien approximée par une attention low-rank (faible rang), permettant de remplacer la matrice d’attention
dense par une approximation. Ce modele applique une réduction de rang linéaire pour 'attention, ce qui ré-
duit la mémoire et les calculs. L'attention est locale et approximative, mais suffisamment précise pour traiter
de longues séquences Wang et al. (2020). Performer est un autre modéle de transformateur qui utilise un
mécanisme d’attention approximative pour rendre I'attention plus rapide et moins gourmande en mémoire.
L'idée principale est de reformuler I'attention classique en une version qui utilise des techniques de kernels
pour approximer les produits scalaires, ce qui permet de traiter de longues séquences avec moins de res-
sources. Il utilise une approximation des noyaux pour calculer I'attention. Performer réduit la complexité de
I'attention a O(nlogn), ce qui est beaucoup plus efficace pour les longues séquences Choromanski et al.
(2020). Le Sparse transformeur est une autre variante du transformeur standard qui applique une atten-
tion locale en réduisant le nombre de calculs d’attention. Ce modéle permet de travailler sur de longues
séquences tout en utilisant une attention éparse, ou seuls certains tokens interagissent. Dans ce modéle
I'attention est éparse et localisée a des fenétres fixes et les calculs sont donc beaucoup plus rapides et moins
gourmands en mémoire que ceux de I'attention dense classique Child et al. (2019). Les modéles qui utilisent
I'attention locale sont particuliéerement adaptés pour traiter des séquences longues, ou l'attention globale
traditionnelle serait trop coliteuse en termes de calcul et de mémoire. Ces modéles permettent d'optimiser
I'efficacité tout en maintenant de bonnes performances sur des taches de traitement de texte, en particulier

lorsque les séquences sont longues ou quand les ressources de calcul sont limitées.
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2.3 L'attention globale

L'attention globale est un mécanisme ou chaque token (mot) dans une séquence peut préter attention a
tous les autres tokens de la séquence. Cela signifie que chaque mot peut établir une relation avec tous les
autres mots, peu importe leur position. L'attention global-local dans le cadre de I'architecture ETC « Exten-
ded transformeur Construction » est un mécanisme concu pour traiter efficacement les longues séquences
en divisant l'attention en parties restreintes et non restreintes. ETC utilise deux types d’entrées distincts.
La premiere est I'entrée globale, un petit ensemble de tokens auxiliaires, qui ont une attention illimitée et
servent de passerelle d'information. Le deuxiéme type est I'entrée longue qui contient la séquence princi-
pale des tokens, a l'instar d’'un Transformeur classique, mais avec une attention restreinte. Ce mécanisme
est particuliéerement utile pour le traitement de documents longs, car il permet de gérer des séquences de
grande taille sans exploser la mémoire et le temps de calcul. Il est utilisé pour réduire la complexité en limi-
tant l'attention long-to-long, ETC diminue la complexité quadratique (’)(NQ) d’un Transformeur classique.
Les tokens globaux, qui ont une attention illimitée, permettent aux tokens longs de communiquer indirec-
tement entre eux. Les tokens globaux agissent comme des résumés contextuels, améliorant le traitement

de textes longs Vaswani et al. (2017); Ainslie et al. (2020).

— Global-to-Global : Les tokens globaux peuvent s’attendre entre eux sans restriction.
— Global-to-Long : Les tokens globaux peuvent voir tous les tokens de la séquence longue.
— Long-to-Global : Les tokens de la séquence longue peuvent voir tous les tokens globaux.

— Long-to-Long : Les tokens de la séquence longue n'ont qu’une attention restreinte a un rayon fixe.

Le mécanisme standard de I'attention globale est défini par les étapes suivantes :

a) Calcul des scores d’attention : pour chaque mot dans la séquence de sortie, on calcule un score d’atten-
tion qui évalue I'importance des mots dans la séquence d’entrée. Ce score est généralement calculé comme
le produit scalaire entre un vecteur de requéte ((Q) associé a I'élément de sortie et un vecteur de clé (K)

associé 3 I'élément d’entrée.

KT

Vi

score =

ou () est le vecteur de requéte, K est le vecteur de clé et d;, est la dimension des vecteurs.
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b) Application d’'une fonction de pondération : Les scores obtenus sont ensuite passés par une fonction de
softmax pour les transformeurs en probabilités. Ces probabilités servent a pondérer les valeurs (V') asso-
ciées aux mots de l'entrée.

attention weights = softmax(score) (2.2)

b) Calcul de la sortie : les valeurs pondérées (V') sont ensuite agrégées pour produire la sortie de I'attention
pour un mot donné. Cela permet a chaque élément de sortie de “voir” toute la séquence d’entrée, en se

concentrant sur les mots jugés les plus pertinents.

output = Z(attention weights) x V (2.3)

Il existe plusieurs modéles s’appuyant sur I'attention globale, qui permettent de capturer les dépendances
a long terme dans le texte. RoBERTa, par exemple, utilise la méme architecture de modeéle que BERT. Ce-
pendant, il bénéficie d’'un volume de données d'entrainement plus important et d'un temps d’entrainement
plus long, ce qui lui permet d’améliorer ses performances. L'une des innovations majeures de RoBERTa est
I'utilisation du masquage dynamique. Ce modéle est souvent qualifié¢ de modéle a attention globale en
raison de l'utilisation de I'attention multi-téte dans l'architecture des transformeurs, permettant a chaque
mot de la séquence d’accorder une importance a tous les autres, quelle que soit leur position Liu et al.
(2019). D’autre part, ALBERT introduit plusieurs améliorations en matiére d’efficacité par rapport a BERT, en
se concentrant sur la réduction de la taille du modéle tout en maintenant des performances comparables.
Comme RoBERTa, ALBERT utilise le masquage dynamique, dans lequel les jetons a masquer sont sélection-
nés aléatoirement et peuvent varier a chaque epoch. ALBERT est également un modéle a attention globale
pour les mémes raisons que RoBERTa. Bien qu'il partage I'architecture de base de BERT, certains ajuste-
ments le rendent plus léger, tout en conservant la capacité d’attention globale Lan et al. (2020). De méme,
DeBERTa adopte des stratégies de masquage dynamique similaires a celles de RoBERTa, ou le schéma de
masquage change au cours de I'entrainement. Cela permet d’éviter une sur-adaptation a des positions mas-
quées spécifiques. Comme BERT, RoBERTa et ALBERT, DeBERTa repose sur une architecture de type transfor-
meur avec un mécanisme d’auto-attention. Chaque mot peut ainsi préter attention a tous les autres mots
de la séquence, indépendamment de leur position relative. L'attention est donc dite globale, car elle ne se
limite pas a une fenétre locale autour de chaque mot, mais considére toute la séquence He et al. (2021).
En contraste, SpanBERT applique un masquage basé sur les spans (plages contigués de tokens). Au lieu de
masquer des jetons individuellement, SpanBERT masque des séquences voisines de jetons. Autrement dit,

il sélectionne des plages entiéres de texte a masquer plutot que des jetons aléatoires. SpanBERT maintient
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un mécanisme d’attention globale, mais propose une approche différente de masquage, centrée sur des
groupes de mots. Cela permet de mieux capturer les relations sémantiques entre spans, tout en exploitant
I'attention globale. TinyBERT est une version allégée de BERT, obtenue par distillation des connaissances. I|
est concu pour réduire la taille et le coGt computationnel du modéle, tout en conservant des performances
acceptables par rapport a BERT-base ou BERT-large. Il conserve le mécanisme d’attention globale, mais avec
un nombre réduit de couches et de parameétres, ce qui le rend plus rapide et plus léger Jiao et al. (2020).
Sur le méme principe, DistilBERT est une version simplifiée de BERT, entrainée par distillation des connais-
sances, avec 50% de paramétres en moins et une vitesse d’exécution accrue de 60%. DistilBERT apprend
a partir des sorties d’'un modéle plus grand (le professeur), ce qui permet a ce modéle plus petit (I’éleve)
de conserver des performances proches tout en étant plus efficace. Il conserve lui aussi le mécanisme d’at-
tention globale, bien qu’avec une architecture plus compacte. L'attention globale constitue un mécanisme
fondamental qui permet aux modéles de type transformeur de pondérer et d’intégrer de maniére flexible
les informations provenant de différentes parties d'une séquence. Toutefois, les défis liés a sa complexité
computationnelle ont motivé des recherches visant a rendre ce mécanisme plus efficace pour le traitement
de séquences longues. Par exemple, dans BERT, la modélisation du langage masqué repose sur un mas-
quage statique appliqué durant le pré-entrainement. En revanche, RoBERTa applique un nouveau masque
a chaque epoch, ce qui signifie que les jetons a masquer sont choisis differemment a chaque passage d’un

exemple d’apprentissage Vaswani et al. (2017); Ainslie et al. (2020).

2.4 L'attention auto-régressive

L'attention auto-régressive est un mécanisme trés puissant. Il opte pour la causalité dans son paradigme de
génération de mots. Les mots générés dépendent des mots déja générés, formant ainsi une chaine causale.
L'attention auto-régressive est fondée sur I'idée principale des transformateurs proposée par Vaswani et al.
L'un des modéles les plus performants est celui introduit par OpenAi appelé GPT. Le modéle mathématique
de 'attention auto-régressive dans GPT repose sur le mécanisme de I'attention a partir de vecteurs de re-
quétes, de clés et de valeurs, avec un masquage pour préserver la causalité. Pour chaque position ¢ dans la
séquence, nous calculons les scores d'attention en utilisant les produits scalaires entre la requéte @, et les

clés K ;. Ces scores sont ensuite normalisés par la racine de la dimension des clés dj.

Qi K;

2.4
Var (24

score(t,j) =
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Cependant, pour garantir la causalité, un masque de causalité est appliqué sur les scores d'attention afin
de faire en sorte que la position ¢ ne puisse pas regarder les positions futures j > t. Ainsi, les scores pour

J > t sont modifiés de la maniére suivante :

QuK; . .
si 7<t
score(t,j) = Vi (2.5)

—o00 si g>t

Le masque causal empéche chaque position ¢ de regarder les positions futures. Ainsi, lorsque la fonction
softmax est appliquée pour normaliser les scores d’attention. Les termes pour j > t deviennent nuls, c'est-

a-dire que les poids associés a ces éléments sont égaux a zéro.

La normalisation des scores par la fonction softmax donne les poids d’attention ay ;

exp(score(t, j))
Qtj = =i
> r—1 €xp(score(t, k))

pour j<t (2.6)

etpourj >t, oz 5 = 0.

Une fois les poids d’attention o ; calculés, la sortie y; a chaque position ¢ est une somme pondérée des

valeurs V; :

t
ye=Y_ o;V; (2.7)
j=1

Ce mécanisme d'attention causale permet a chaque élément de la séquence de générer une sortie qui dé-
pend uniquement des éléments précédents, excluant toute information future. Ainsi, le modéle respecte
strictement l'ordre temporel de la génération, condition nécessaire pour des taiches comme la modélisation
de langue ou la génération de texte. Le modéle GPT est constitué de plusieurs couches empilées de trans-
formeurs auto-régressifs. A chaque couche, I'attention est recalculée a partir des représentations générées
par la couche précédente, en maintenant le masquage causal. Cette architecture en profondeur permet au
modeéle de capturer des relations complexes entre tokens, méme a longue distance dans la séquence, en

combinant progressivement des informations contextuelles plus riches a chaque niveau.
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Qi - K;

score(t,j) = pour j<t (2.8)
Vg,
et
score(t,j) = —oco pour j >t (2.9)

Le masque causal garantit que les éléments futurs ne sont pas accessibles a la position actuelle.

Application de softmax :
exp(score(t, j))

o i = pour <t (2.10)
b 22:1 exp(score(t, k)) J
Le Calcul de la sortie : .
ye=>_ ar;Vj (2.11)
j=1

Parmi les modéles fondés sur I'attention auto-régressive, CTRL a Conditional Transformer Language Model
for Controllable Generation. Il se distingue par sa capacité a générer du texte de maniére contrélée. En plus
du texte d’entrée appelé prompt ce modéle prend également en compte un ou plusieurs codes de contréle,
qui orientent le style, le registre ou le domaine du contenu généré. Ces codes sont des tokens spéciaux
insérés au début du prompt, permettant de conditionner la génération en fonction d’'un ensemble prédé-
fini de catégories stylistiques ou thématiques. Le modéle adapte ainsi sa production tout en maintenant la
cohérence avec les contraintes imposées par ces codes de contréle Keskar et al. (2019). Un autre modéle
important est Transformer-XL, qui s’inscrit dans la lignée des modéles GPT, mais introduit un mécanisme
de mémoire récurrente pour améliorer la modélisation des dépendances a long terme. Le texte est divisé
en segments successifs de tokens, chacun pouvant couvrir plusieurs phrases ou documents. Contrairement
aux modeles standards qui traitent chaque segment indépendamment, Transformer-XL concaténe les états
cachés du segment précédent a ceux du segment courant afin de calculer les scores d’attention. Ce mé-
canisme permet au modéle de capturer une continuité contextuelle entre les segments, prolongeant ainsi

efficacement la fenétre d’attention au-dela de la longueur fixe des séquences Dai et al. (2019).

2.5 L'attention hiérarchique

L'attention hiérarchique est un concept qui compléte I'attention globale en traitant les relations au sein de

niveaux d’abstraction hiérarchiques. Elle est particulierement utile pour les taches ou les données ont une
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structure imbriquée, comme les textes longs ou les images. Dans le texte, I'attention peut étre appliquée
d’abord aux mots, puis aux phrases, enfin aux paragraphes. Chaque niveau d’attention peut capter des re-
lations plus larges entre les éléments a un niveau supérieur, tout en se concentrant sur des détails a des
niveaux inférieurs. Tandis que I'attention globale permet de capturer des relations exhaustives en prenant
en compte tous les éléments de la séquence, ce qui peut étre colteux en termes de ressources compu-
tationnelles pour de grandes séquences l'attention hiérarchique introduit une maniére plus structurée et
computationnelle efficace de traiter ces relations. L'attention hiérarchique, en revanche, permet une ges-
tion plus structurée des relations en divisant la séquence en plusieurs niveaux. L'attention globale a une
complexité O(nQ), alors que l'attention hiérarchique peut diviser cette complexité en fonction du niveau,

réduisant ainsi la charge computationnelle tout en préservant une modélisation des relations a long terme.
Le modele mathématique général peut étre formulé comme suit :

a) Représentation des éléments : soit D = {x1,z2,...,2x} un document ou une séquence, ou z; est la
représentation vectorielle de I'élément 7 (qui peut étre un mot, une phrase ou un paragraphe), et N est
le nombre total d’éléments dans la séquence. L'attention locale modélise les relations entre des éléments
proches (par exemple, entre mots au sein d’'une méme phrase). Cette relation locale est modélisée via une
fonction d'attention qui agrége les informations des éléments voisins dans un voisinage local A; autour de

x;. L'attention locale pour chaque élément x; peut étre définie comme suit :

) = Attentioniecal(zi, {7} jen,) (212)

ou N; représente I'ensemble des voisins de x; dans un graphe local, souvent construit selon des relations

de proximité ou de similarité. Cette étape capture les interactions locales entre les éléments.

b) Attentions globales : I'attention globale permet de capturer les relations entre des éléments distants dans
le document, par exemple entre des phrases ou des paragraphes. Cette attention est calculée sur les re-
présentations locales {hl@} obtenues dans I'étape précédente, afin de pondérer I'importance relative de

chaque élément dans le document. L'attention globale est définie comme suit :
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h{?) = Attentiongipa (h\, {h{"}jen) (2.13)

ou N; représente cette fois les voisins au niveau global (par exemple, les autres phrases ou paragraphes).

Cette attention permet de capturer les relations a plus grande échelle entre les éléments dans le document.

c) Fusion des représentations locales et globales : les représentations locales et globales sont combinées
pour former une représentation agrégée du document. Cette fusion est essentielle pour capturer la struc-
ture hiérarchique des relations. La fusion des attentions locales et globales pour chaque élément x; peut

étre réalisée par une combinaison pondérée des deux types d’attention :
hi = A b 4 Anl) (2.14)

ou A et s sont des poids appris qui déterminent I'importance relative des attentions locales et globales.

d) Décodage : la représentation agrégée h; de chaque élément z; peut étre utilisée pour des tiches de
traitement ultérieures, telles que la classification, la synthése de texte, ou la génération de séquences. Un
décodeur, typiquement un réseau de neurones feed-forward, peut étre utilisé pour obtenir les résultats

souhaités. Pour une tache de classification ou de sélection, on peut calculer un score pour chaque élément :

y; = Decoder (h;) (2.15)

Le modéle d’attention hiérarchique offre une méthode puissante pour traiter des documents ou des sé-
quences complexes en capturant des relations a plusieurs niveaux. En combinant des attentions locales et
globales, ce modéle permet de mieux comprendre les dépendances dans des textes longs, tout en pré-
servant I'efficacité computationnelle. L'introduction de plusieurs niveaux d’attention permet de gérer des
interactions a différentes échelles, rendant ce modeéle adapté a une large gamme de taches en traitement
de texte. Le modéle HAN (Hierarchical Attention Networks) applique une attention au niveau des mots dans
une phrase, puis au niveau des phrases dans un document. L'objectif est de capter I'importance relative des
mots et des phrases pour la tache de classification ou d’analyse Yang et al. (2016b). Un autre modéle possé-
dant un mécanisme d’attention hiérarchique est DocNADE (Document Neural Autoregressive Distribution
Estimator). Il utilise une attention hiérarchique pour modéliser les relations entre les mots et les documents,
permettant de capturer des structures complexes et de générer des représentations de documents plus ef-

ficaces Lauly et al. (2016). Zhao et al. (2018) propose HSA-RNN v (Hierarchical Structure-Adaptive RNN for
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Video Summarization), une nouvelle approche adaptative au résumé vidéo intégrant la segmentation des
plans et la synthése vidéo dans un RNN hiérarchique adaptatif a la structure. Zhao et al. (2024) introduit
HAND (Hierarchical Attention Network for Multi-Scale Document), une nouvelle architecture de bout en
bout et sans segmentation pour la reconnaissance de texte et I'analyse de mise en page simultanée. Les
principaux composants du modéle incluent un encodeur convolutionnel avancé intégrant des convolutions
séparables en profondeur et des convolutions octavées pour une extraction robuste des caractéristiques,
un cadre de traitement adaptatif multi-échelle qui s'ajuste dynamiquement a la complexité du document,
ainsi qu’un décodeur d’attention hiérarchique avec des mécanismes d’attention sparse et augmentée par
mémoire. Ces composants permettent au modéle de s’adapter efficacement aux pages allant d’une seule
ligne a des pages a trois colonnes tout en maintenant une efficacité computationnelle Hamdan et al. (2024).
Le 3-LHTN ( Three-level Hierarchical Transformer Network) est une approche innovante pour modéliser les
dépendances a long terme dans les notes cliniques, dans le but de prédire des informations au niveau du
patient. Il utilise une structure hiérarchique pour apprendre de maniére progressive a différentes échelles.
Le premier niveau utilise un modele BERT pré-entrainé pour encoder les mots en phrases, avec la possibi-
lité de le fine-tuner pour des taches spécifiques. Les deuxiéme et troisieme niveaux sont constitués de piles
d’encodeurs basés sur des transformeurs, permettant d’agréger progressivement |'information du niveau
de la phrase au niveau de la note, puis de la note au niveau du patient. Une des principales améliorations
de ce modéle est la capacité a traiter des séquences beaucoup plus longues que les modéles BERT tradi-
tionnels, limités a 512 tokens. Ce modéle offre une solution robuste et évolutive pour prédire les résultats
des patients a partir d'un grand nombre de notes cliniques, en exploitant la puissance des transformeurs

dans une configuration hiérarchique Si et Roberts (2021).

2.6 L'attention croisée

L'attention croisée est un autre type de mécanisme d'attention utilisé dans les architectures de réseaux
neuronaux profonds. Elle est notamment utilisée dans les modéles transformateurs multimodaux. Elle est
appropriée pour les taches nécessitant une interaction entre deux séquences distinctes. L'attention croisée
permet de concentrer I'attention sur des données hétérogenes tout en les intégrant pour produire une ré-
ponse cohérente. Cette notion est particulierement pertinente dans le contexte des modéles qui doivent
souvent traiter des données multimodales. L'attention croisée suit le méme principe que l'attention clas-
sique introduite par Luong (2015) dans les modéles séquence-a-séquence, puis généralisée dans le trans-

formeur de Vaswani et al. (2017). Elle repose sur le calcul des scores d’attention entre les représentations
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des deux séquences. l'attention croisée est utilisée pour intégrer les informations de I'’encodeur dans les
représentations du décodeur. Chaque élément du décodeur sélectionne dynamiquement les informations
les plus pertinentes dans I'encodeur en utilisant les poids d’attention Gheini et al. (2021); Chen et al. (2021).
Lattention croisée est définie entre une séquence source X € R"*? et une séquence cible Y € R™*4 oun
et m sont respectivement le nombre de tokens dans chaque séquence, et d est la dimension d'embedding.

Les matrices de projection des requétes, clés et valeurs sont définies comme :

Q=YW,, K=XWg, V=XWy, (2.16)

ou Wy, Wk, Wy € R%%dk sont les matrices de projection. Le score d’attention est calculé par :

.
A = softmax (?/IC% ) (2.17)

ol A € R™*™ est la matrice des poids d’attention. La sortie de I'attention croisée est obtenue en appliquant

A auxvaleurs :

7 — AV (2.18)

ol Z € R™* 4 représente les représentations contextuelles de la séquence cible. Pour le mécanisme multi-

téte, chaque téte effectue une attention croisée indépendante avec une dimension réduite d;, = % :
Z; = Attention(YWg,, XWg,, XWy,) (2.19)

ot W, W, Wy, € RIxdn,

Les sorties des h tétes sont concaténées et projetées dans I'espace original :
Z = Concat(Zy,...,Z,)Wo (2.20)

ol Wo € R%*? est la matrice de projection finale.

L'attention croisée est un mécanisme puissant qui permet aux modeéles d'apprendre des représentations
complexes. Elle est utilisée dans plusieurs domaines tels que la traduction automatique, vision & langue
et les systémes de dialogue. DALL-E, «Deep autoregressive language and latent embeddings » développé
par OpenAl, utilise I'attention croisée pour générer des images a partir de descriptions textuelles. Google
propose T5, « Text to Text Transfer Transformeur ». Celui-ci traite toutes les taches de traitement de la

langue sous forme de texte a texte. T5 utilise I'attention croisée pour convertir des séquences d’entrée en
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séquences de sortie correspondantes Raffel et al. (2023). CLIP, « Contrastive Language-lmage Pretraining
» par OpenAl, utilise I'attention croisée pour associer des descriptions textuelles a des images correspon-

dantes, permettant un encodage multimodal efficace Radford et al. (2021).

2.7 Grands modéles de langue orientés syntaxe et vision

Dans ce contexte d’injection de connaissances linguistiques et visuelles, il convient de souligner que la pré-
sente thése s'inscrit dans une contribution en informatique cognitive résolument cadrée, visant a modéli-
ser le processus épistémologique décrit par Peirce a travers sa triade sémiotique. A notre connaissance, il
n'existe pas de travaux proposant une formalisation informatique explicite et opérationnelle de ce proces-
sus dans les systémes computationnels contemporains, en particulier dans le cadre des modéles d’appren-
tissage profond. Cette absence de contributions directement fondées sur la sémiotique peircienne pour
structurer les mécanismes cognitifs du traitement de I'information justifie le positionnement adopté dans
cet état de I'art. Ainsi, nous analysons principalement les modéles intégrant des connaissances linguistiques
et visuelles au sein des grands modéles de langue et des architectures multimodales, non pas comme des
équivalents théoriques de la triade peircienne, mais comme des approches voisines permettant d’identi-
fier les points de convergence, les limites conceptuelles et les lacunes que notre travail vise précisément a

combler.

Les modeles de transformateurs, comme le BERT et ses variantes, ont permis d’enregistrer de grandes avan-
cées dans le domaine du NLP. Ces modéles sont principalement axés sur la modélisation de la sémantique
de la langue. lls ont permis d’obtenir d’excellentes performances dans de nombreux domaines Devlin et al.
(2019); Liu et al. (2019); Lan et al. (2020); Sanh et al. (2020); He et al. (2021). La communauté scientifique
a développé de nouvelles versions de BERT en raison des inexactitudes observées dans certains résultats
obtenus pour certaines taches en aval et en raison de I’évaluation des propriétés linguistiques de la langue
naturelle Htut et al. (2019); Wiegreffe et Pinter (2019); Clark et al. (2019). Certains des modéles proposés
visent 3 injecter des connaissances linguistiques dans les modéles de transformation, tandis que d’autres
tentent d’ancrer la langue par le biais de données visuelles. Les liens syntaxiques entre les mots ne sont pas
seulement ce qui confére a la langue sa richesse, mais aussi ce qui donne du sens au-dela des simples cor-
rélations entre les mots Bai et al. (2021). Syntax-BERT est un modéle qui permet I'ajout des connaissances
syntaxiques aux modeéles de transformateurs. Il s’agit d’'une extension de BERT. Il introduit des informa-

tions syntaxiques explicites par le biais d’arbres syntaxiques et donne des instructions au systeme d’auto-
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attention concernant les dépendances linguistiques telles que le parent, I'enfant ou le frére et la sceur. Cette
stratégie conserve I'expertise préentrainée de BERT tout en I'associant a la structure et a I'efficacité. Cette
technique permet d’améliorer ses performances dans les scénarios d’analyse de langue naturel ot la clarté
syntaxique est requise. Syntax-BERT est un modéle qui permet d’intégrer des arbres syntaxiques lors de la
mise au point sans qu'il soit nécessaire d'effectuer un apprentissage a partir de zéro Bai et al. (2021); Sunda-
raraman et al. (2019). Le modéle syntaxique SGB « Syntactic Knowledge via Graph Attention with BERT » est
un autre modeéle proposé qui adopte I'injection de connaissances syntaxiques dans les modéles de transfor-
mateurs. SGB est un modéle dédié a la traduction automatique. Il utilise explicitement la connaissance des
dépendances syntaxiques via les réseaux d’attention graphique, GAT « Graph Attention Networks» et les
encodeurs basés sur BERT. Le GAT traite les structures syntaxiques comme des graphes, en améliorant les
représentations des jetons grace a des relations de dépendance. Il les combine également avec les résultats
des BERT par le biais de deux méthodes. La premiére, appelée SGBC « Syntax-Guided BERT with Concatena-
tion », concaténe les sorties du BERT et du GAT pour attirer I'attention du codeur-décodeur. La seconde est
le SGBD « Syntactic Graph-BERT Decoder-Guided Syntax ». Cette approche permet d’améliorer la fluidité
de la traduction Dai et al. (2023). Outre le modéle syntaxique des modéles de transformation, des modéles
orientés vers la vision ont vu le jour. L'un de ces modéles a été développé dans le but d’ancrer la langue
naturelle dans les données visuelles : VisualBERT. Il est basé sur l'architecture de BERT. VisualBERT utilise
I'alignement image-texte pour ancrer la langue dans des contextes visuels. Il utilise des couches d’attention
croisée pour établir une connexion entre les modalités visuelles et textuelles. Les informations visuelles
sont transmises par un réseau neuronal convolutionnel afin d’extraire des enchassements visuels, qui sont
ensuite intégrés aux enchassements textuels. Les couches d'attention multimodale assurent une influence
bidirectionnelle entre les représentations du texte et de I'image au cours du processus d’encodage. Visual-
BERT utilise une stratégie de fusion qui réunit les jetons textuels et les caractéristiques visuelles au sein d’'un
transformateur unifié Li et al. (2019). LXMERT, qui signifie « Learning Cross-Modality Encoder Representa-
tions from transformeurs » , est un modéle multimodal. Il traite les données visuelles et textuelles. Il utilise
un mécanisme d'attention croisée pour fusionner les caractéristiques de I'image et du texte. L'architecture
de LXMERT est basée sur un transformateur a deux flux. Le premier flux traite les caractéristiques visuelles. ||
s'agit de régions d’images telles que des objets et des parties d’objets codées par un modéle R-CNN plus ra-
pide préalablement entrainé. Les caractéristiques visuelles encodées sont ensuite introduites dans LXMERT
pour apprendre les relations contextuelles entre les régions de I'image. Le deuxieéme flux traite les caracté-
ristiques textuelles. Il comprend les enchassements de mots de BERT. Les deux flux interagissent par I'inter-

médiaire de I'encodeur d’attention croisée. Cette interaction permet au modéle d’apprendre les relations
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entre I'image et sa description textuelle correspondante Li et al. (2019). La liste des modéles multimodaux
est suffisamment longue pour dépasser le nombre limité de pages du présent document. Sans disséquer
les détails techniques, nous mentionnons entre autres UNITER, ImageBERT, et Multimodal-BERT, qui sont
des modéles basés sur des transformateurs. lls sont concus pour relier les données visuelles et textuelles
afin d’améliorer les performances dans les tiches multimodales (Rahman et al., 2020; Chen et al., 2020;
Qi et al., 2020). UNITER « UNiversal Image-Text Representation » apprend les encastrements conjoints par
préapprentissage sur divers ensembles de données image-texte, ce qui permet de réaliser des taches telles
que larecherche d’images-texte et la réponse a des questions visuelles Chen et al. (2020). De méme, Image-
BERT dépend d'un espace d’intégration partagé et d’'une interaction multimodale pour aligner le texte et les
images Qi et al. (2020). De son c6té, Multimodal-BERT personnalise I'architecture de BERT pour traiter les
entrées multimodales. Il est particulierement dédié a des applications telles que la classification d'images
médicales et de textes Rahman et al. (2020). La communauté des chercheurs s’oriente vers |'intégration de
données visuelles et textuelles pour coder le sens de la langue. Ces modéles offrent un excellent moyen
d’ancrer la langue en alignant les informations visuelles, telles que les images, sur le contexte textuel. Dans
les sections suivantes, nous présentons VLG-BERT, un modéle multimodal qui combine la connaissance syn-

taxique et I'ancrage visuel pour améliorer I'apprentissage de la représentation des mots.

2.8 Conclusion

Les modéles de langue d’aujourd’hui ne se limitent pas au traitement purement symbolique des textes. Ils
prennent désormais en compte les structures syntaxiques, mais aussi visuelles, afin de mieux encoder le
sens des mots. L'intégration explicite de la syntaxe permet de mieux comprendre comment les modéles
de langue générent des représentations numériques des mots. Les modéles multimodaux, qui combinent
texte et image, apportent une nouvelle dimension a I'’encodage du sens des mots. L'arrimage d'images et de
mots permet a ces modeéles de dépasser la simple représentation textuelle et d'ancrer le monde réel dans
la langue. Cela permet d’offrir davantage d’explicabilité et une vision plus compléte de la maniére dont les

grands modéles de langue encodent le sens des mots.
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CHAPITRE 3
RENFORCEMENT DE BERT AVEC UN MASQUE D’ATTENTION BASE SUR LE PARSEUR DE DEPENDANCES
SYNTAXIQUES
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3.1 Détails de l'article
REINFORCEMENT OF BERT WITH DEPENDENCY-PARSING BASED ATTENTION MASK

Toufik Mechouma, Ismail Biskri and Jean-Guy Meunier
14th International Conference, ICCCI 2022, Proceedings. Communications in Computer and Information

Science 1653, Springer 2022, ISBN 978-3-031-16209-1

3.2 Résumé

Cet article présente un nouveau masque d’attention basé sur I'analyse des dépendances syntaxiques DPM,
afin de renforcer la fonction attentionnelle du modéle BERT. Ce masque ne remplace pas le masque de
remplissage traditionnel, il a pour seul réle d’inhiber I'attention portée aux tokens de remplissage. Paralle-
lement, le masque DPM utilise les graphes de dépendances syntaxiques pour générer une matrice d’adja-
cence qui encode les relations grammaticales entre les mots d’une phrase. A la différence du masque de
remplissage, le DPM n’élimine pas des positions, mais agit comme un filtre structurel modulant I'attention.
Il permet ainsi d’aiguiser I'attention sur des paires de mots syntaxiquement pertinentes. L'association de ces
deux masques au mécanisme de self-attention permet d'injecter plus finement les relations linguistiques
sans modifier la logique d'entrainement du modéle. Seuls les tokens réellement masqués pour la tache
MLM sont prédits. Les positions de padding ou celles filtrées par le DPM ne sont pas concernées par la pré-
diction. En intégrant cette connaissance syntaxique dans le mécanisme d’attention, le modéle acquiert des
représentations plus structurées et plus riches sur le plan sémantique, ce qui améliore ses performances. Ce
travail marque ainsi une premiére étape vers une meilleure synergie entre la structure linguistique explicite

et les capacités d’apprentissage profond des grands modeéles de langage, comme BERT.

3.3 Abstract

This paper introduces a novel attention mask based on syntactic dependency analysis, called the Dependency-
based Attention Mask DPM, designed to enhance BERT’s attention mechanism. This mask does not replace
the traditional padding mask, which solely serves to inhibit attention toward padding tokens. In parallel,
the DPM leverages syntactic dependency graphs to generate an adjacency matrix that encodes grammati-
cal relations between words in a sentence. Unlike the padding mask, the DPM does not eliminate positions

but acts as a structural filter that modulates attention. It injects syntactic knowledge with the attention me-
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chanism. This sharpens the focus of attention on syntactically relevant word pairs. Combining both masks
in the self-attention mechanism enables finer injection of syntactic knowledge without altering the mo-
del’s training logic. Only the tokens actually masked for the MLM task are predicted. Padding positions or
those filtered by the DPM are not involved in prediction. By integrating syntactic knowledge into the atten-
tion mechanism, the model acquires more structured and semantically enriched representations, leading
to improved performance. This work thus represents a first step toward a better synergy between explicit

linguistic structure and the deep learning capabilities of large language models like BERT.

3.4 Introduction

Long short term memory network, was a staple in deep learning Graves (2012). Although its impressive re-
sults, it has its downsides Sak et al. (2014). LSTM suffers from sequential processing, and poor information
preservation Sak et al. (2014); H et S (1997). Transformers try to remedy to the previous LSTM inconve-
niences. They accomplish a bidirectional attention learning based on an all-to-all comparison. Transformers
use a Dot-Product attention mechanism Vaswani et al. (2017). They are also used in the Bidirectional Enco-
der Representations from Transformers BERT architecture Luong (2015); Devlin et al. (2019). They use two
learning strategies to teach BERT to represent words. Clark et al. (2019); Peters et al. (2018). In MLM, 15% of
the tokens in the training dataset are masked. These masked tokens are then predicted by BERT. The second
strategy is called Next Sentence Prediction (NSP). Unlike the first strategy, it learns the sentence representa-
tion. It predicts whether sentence B follows sentence A. Thus, token embeddings are learned throughout the
MLM and NSP learning processes. BERT is built on a set of encoders. Each encoder is equipped with a multi-
head attention mechanism MHAM. The MHAM performs parallel computing of the dot-product attention
mechanism to learn the relationships between words. MHAM’s output then goes through a feed-forward
neural network (FFNN). The FFNN provides the learned contextualised representation. Residual connec-
tions are designed at the MHAM and FFNN outputs to add previous input data to the outputs, preserving
information and avoiding signal vanishing. Furthermore, normalisation is performed at both levels Sak et al.
(2014). The encoder stack achieves feature extraction. These features can then be used to fine-tune BERT

for downstream tasks such as text classification, summarisation and translation.

3.5 Transformers

Transformers are considered to be an alternative solution to LSTMs Clark et al. (2019). They essentially

comprise two main components. The first component is known as the 'encoder’. Each encoder has two

51



main units : a self-attention mechanism and a feed-forward neural network. The self-attention mechanism
receives input encodings from the previous encoder and produces its own encodings. The feed-forward
neural network computes the encodings from the self-attention mechanism and forwards them to the next
encoder and to the second component of the transformers, the decoder Vaswani et al. (2017)Peters et al.
(2018). Each decoder has three components : a self-attention mechanism; an attention mechanism that
processes encodings; and a feed-forward neural network. The decoder’s task is similar to the encoder’s, but
it has an additional attention mechanism that deals with the encoder’s outputs. Unlike LSTMs, Transformers
use parallel computation and word position encoding due to their multi-head attention blocks and position

encoding algorithm, respectively.
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Figure 3.1 - Transformer (encoder-decoder)

3.5.1 Scaled Dot-Product Attention Mechanism

Authors in Vaswani et al. (2017)Luong (2015) use a dot-product attention mechanism, to learn an all-to-
all attention between words, by projecting the vocabulary matrix X (embedding dimension, max sentence

length) into a lower dimension Q, K and V matrices.
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0.63 1.25 5.24 2.69
3.65 3.74 1.25
X=1 .11 . [
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Figure 3.2 - Vocabulary matrix

Q=X W, (3.1)

Where W, is a randomly initialized weight matrix, and Q is the projected query matrix

K=X Wy (3.2)

Where W, is a randomly initialized weight matrix, and K is the projected key matrix

V=X-W, (3.3)

Where W, is a randomly initialized weight matrix, and v is the projected value matrix

Q- K”
Vi

Where KT is the transposed key matrix, and dj, is the embedding dimension. Q - K" is divided by 1/d}, and

Attention(Q, K, V) = Softmax( ).V (3.4)

followed by softmax for normalisation purpose.

QKT
vy,
to compute the Attention(Q, K, V). The Attention(Q, K, V) is also called Scaled Dot-Product Attention.

For a better understanding, Softmax(

) can be considered like a filter to be applied on V/, in order

Multi-Heads attention are just a replication of h Dot-Product Attention units. Where h is a hyper-parameter

that represents the number of heads per encoder, and W,, W}, W, are of dimension (dg . v,dq kv /h)
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Figure 3.3 - (left) Scaled Dot-Product Attention. (right) Multi-Head attention

Note that Mask is optional as defined by the authors in Devlin et al. (2019).

3.5.2 Padding Mask

Since the neural network needs to have inputs that should be in similar shape and size, padding is the

operation that fulfill such a requirement.

max sentence length

BERT | IS AN AMAZING TOOL

LOVE | ARTIFICIAL | INTELLIGENCE | PAD

ME TOO PAD PAD PAD

Figure 3.4 - Padding illustration.

Padding causes problems when scaled dot-product computing is performed. The projected 0, K and V
matrices contain PADs. These are considered to be like noise and need to be removed to avoid misleading

results during attention computing.
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me to PAD | PAD | PAD me to PAD PAD | PAD
0,25 | 2,73 | -1e9 | -1e9 | -1e9 0,05 (068 |0 0 0
SoftMax . . -1e9 | -1e9 | -1e9 = 0 0 0
-1e9 | -1e9 | -1e9 0 0 0
1,74 | 1,46 | -1e9 | -1e9 | -1e9 0,25 (017 | 0 0 0

Figure 3.5 - Padding Mask with SoftMax

Authors in Vaswani et al. (2017) add an important negative value to the corresponding PADs positions in

Q - KT, after that, they apply a Softmam(Q\'/%T) to turn the negative values into zeros. The idea behind

this, is to maximize the attention filter efficiency.

3.6 Proposed Mask

Q\'/Idi: shape is (max sentence length, max sentence length) Dev-

During BERT’s implementation, we noticed that
linetal. (2019). Thus, we wondered whether, it would be possible to add another mask, to the padding mask
to improve the Scaled Dot-Product unit, and consequently, we improve the multi-head attention blocks wi-
thin encoders. The proposed mask, aims to increase the quality of features extraction, by introducing a

SpaCy Dependency Parsing Mask (SDPM) Honnibal et Montani (2017).

nsubj

aux dobj

Gus is learning piano

Figure 3.6 - SpaCy dependency parsing.

We first, build an adjacency matrix from the generated dependency graph. The adjacency matrix’s shape

is : (Max sentence length, Max sentence length).
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Gus is | learning | piano
Gus 0 0 1 0
is 0 0 (1 0
learning | O 0|0 1
Piano 0 0 0 0

Figure 3.7 - Adjacency matrix of the dependency graph.

While one value means there are direct dependencies between words, a zero value means there are no
dependencies. Note that we have eliminated cases where words depend on themselves. Similarly to the
padding mask, we add an important negative value to positions corresponding to zeros. Therefore, we retain

the one values and add them to the attention filter.

Gus is learning | piano
Gus -1e9 | -1e9 1 -1e9
is -1e9 | -1e9 1 -1e9
learning | -1e9 | -1e9 | -1e9 1
Piano -1e9 | -1e9 | -1e9 -1e9

Figure 3.8 - Adjacency matrix after addition of an important negative value.

The adjacency matrix quantifies the semantic and syntactic relationships between words. We propose using

this adjacency matrix as a second mask alongside the padding mask, as shown in equation 5.

Q- KT) + Padding + DepParsingmask) (3.5)
\/@ mask mask .

Softmaz((
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Gus is learning piano | PAD | PAD
Gus -1e9 -1e9 1 -1e9 -1e9 | -1e9
is -1e9 -1e9 1 -1e9 -1e5 | -1e89
learning | -1e9 -1e9 -1e9 1 -1e9 | -1e9
Piano -129 -1e9 -1e9 -1e9 -1e9 | -1e9
PAD -129 -1e9 -1e9 -1e9 -1e9 | -1e9
PAD -129 -1e9 -1e9 -1e9 -1e9 | -1e9

Figure 3.9 - Padding and Dependencies masks addition.

After adding both masks, we apply a softmax function to convert the negative values to zero and obtain a

probability distribution. We then compute the attention as follows : : Attention(Q, K, V)= Softmaz(

V.

QKT

Vi,

The proposed mask is integrated in all BERT’s encoders as mentioned in the Fig.10. It takes tokens embedding

vectors in input W1, Wa, W3, ..., W, and provide contextualized vectors W1y, Wiy, Wi, ..., W;
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3.7 Experimentations

To test our model, we first implemented BERT from scratch using pytorch. We used English OpenSubititles
dataset. The dataset is available on OpenSubtitles-v2016. We performed tests on three datasets containing
100,000, 500,000 and one million sentences. To evaluate the results, we used training loss and time, with
F1 scores as performance indicators. Due to hardware limitations, we performed an embedding of 50 di-
mensions, with a maximum sentence size of 85, rather than 768 and 512 respectively, as in BERT-base. The
tests were performed on a virtual machine with an Intel(R) Xeon(R) 2.30 GHz CPU, a 46,080 KB cache size,
two CPU cores and 12 GB of RAM with a CUDA GPU. The hyper-parameter values were chosen based on
the hardware features and many observations. The same hyper-parameters were used for both models to
enable comparison between them. The maximum sentence length is the maximum size that a sentence can
be, and the batch size is used for training performance purposes. The number of segments is the number
of sentences per input. The embedding dimension is the size of the vocabulary vectors. The number of
encoders is the number of encoders used in the architecture of both models. The number of heads is the
number of multi-head attention units per encoder in each model. The dimension of the projection matrices
is represented by dim(W,, Wy, W,). The FENN dimension is the dimension of the feed-forward neural net-
work linear layer. The learning rate is used to adjust the gradient during training. Max Pred is the maximum
number of tokens to be masked and predicted. Please note that, following the classical BERT strategy, only
a subset of the actual content tokens are selected for prediction during MLM. Only a subset of the actual
content tokens are selected for prediction during MLM, in line with the classical BERT strategy. The DPM
and padding masks only affect the attention mechanism; they do not influence which tokens are masked
or predicted. In particular, PAD tokens or those filtered by the DPM are never selected for prediction. This
ensures that the prediction task remains focused on meaningful linguistic content. The DPM and padding
masks only affect the attention mechanism ; they do not influence which tokens are masked or predicted. In
particular, PAD tokens or those filtered by DPM are never selected for prediction. This ensures that the pre-
diction task remains focused on meaningful linguistic content. 'Nbr epochs’ refers to the number of epochs

required to train the models.
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Table 3.1 - Dataset 1

BERT BERT (DP Mask)
Nbr of sentences 100000 | 100000
Hyper parameters BERT BERT (DP Mask)
Max sent length 85 85
batch size 10 10
nbr segments 2 2
Embedding dimension | 50 50
nbr encoders 6 6
nbr heads 12 12
dim (W, Wy, W5,) 32 32
FFNN dim (17/,) 200 200
Learning rate 0.001 0.001
max pred 3 3
Nbr epochs 500 500
Min Loss 0.8434 0.65
Training time (sec) 179.179 | 185.991
F1-Score-mim 0.5 1
F1-Score-nsp 0.5 0.76

The first test on dataset 1shows that the performance of BERT-DPM overcomes that of BERT. We also noticed
that the training time for BERT is shorter than for BERT-DPM. This is a logical result because BERT-DPM

involves more computing steps than BERT.
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Figure 3.11 - Dataset 1.
Table 3.2 - Dataset 2
BERT BERT (DP Mask)
Nbr of sentences 500000 | 500000
Hyper parameters BERT BERT (DP Mask)
Max sent length 85 85
batch size 10 10
nbr segments 2 2
Embedding dimension | 50 50
nbr encoders 6 6
nbr heads 12 12
dim (W, Wy, W,,) 32 32
FFNN dim (17/,) 200 200
Learning rate 0.001 0.001
max pred 3 3
Nbr epochs 500 500
Min Loss 0.892 0.428
Training time (sec) 202.286 | 207.325
F1-Score-mim 0.32 1
F1-Score-nsp 0.60 0.80
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The second test on dataset 2 shows that the performance of BERT-DPM overcomes that of BERT. We also
noticed that the training time for BERT is shorter than for BERT-DPM. This is a logical result because BERT-

DPM involves more computing steps than BERT.
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Figure 3.12 - Dataset 2.
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Table 3.3 - Dataset 3

BERT BERT (DP Mask)
Nbr of sentences ™ ™
Hyper parameters BERT BERT (DP Mask)
Max sent length 85 85
batch size 10 10
nbr segments 2 2
Embedding dimension | 50 50
nbr encoders 6 6
nbr heads 12 12
dim (W,, Wy, W,,) 32 32
FFNN dim (1//,) 200 200
Learning rate 0.001 0.001
max pred 3 3
Nbr epochs 500 500
Min Loss 0.8404 | 0.509
Training time (sec) 208.71 | 218.521
F1-Score-mim 0.43 1
F1-Score-nsp 0.615 0.749

The third test on dataset 3 shows that the performance of BERT-DPM overcomes that of BERT. We also
noticed that the training time for BERT is shorter than for BERT-DPM. This is a logical result because BERT-

DPM involves more computing steps than BERT.
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Figure 3.13 - Dataset 3.

3.8 Conclusion

The experimental results show that adding syntactic structure to BERT’s attention mechanism using a de-
pendency parsing mask (DPM) greatly improves the model’s performance. This improvement is consistent
across datasets of different sizes. The DPM works alongside the traditional padding mask. While the pad-
ding mask eliminates the influence of non-informative PAD tokens by setting their attention weights to zero,
the DPM introduces a structural prior over the sentence by directing attention towards pairs of tokens that
share direct syntactic dependencies. It is important to note that this mask does not aim to eliminate tokens,
but rather to refine the attention distribution and improve the quality of the learned contextual represen-
tations. Furthermore, the DPM is only applied within the attention computation and does not influence the
selection of tokens for prediction in the MLM task. Only content tokens (not PAD or syntactically filtered
tokens) are masked for prediction, which is consistent with standard BERT training. These findings support
the idea that incorporating linguistic knowledge into Transformer attention mechanisms can improve mo-
del interpretability and performance, particularly in contexts where resources are limited or the syntax is

complex.

3.9 Perspective

The experiments presented in this work demonstrate the effectiveness of the proposed dependency-based
masking mechanism in improving Scaled Dot-Product Attention within the BERT architecture. This is achie-
ved by integrating syntactic information into the attention mechanisms. Beyond its empirical contributions,

this research provided an opportunity to rebuild the BERT architecture from scratch, offering a deeper un-
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derstanding of its internal mechanisms and providing a solid foundation for future architectural innovations.
A critical insight gained through this implementation is that BERT’s original random masking strategy over-
looks the linguistic structure inherent in natural language. The next logical step is to develop a hybrid mas-
king strategy that combines traditional random token masking with syntax-aware dependency masking. This
combined approach is expected to preserve the benefits of randomness in terms of generalisation while also
incorporating linguistic priors that can enhance contextual learning. This approach aims to refine pretrai-
ning objectives and contribute to a broader research agenda. The deeper syntactic theory is integrated into
neural models, the more interpretable, robust and semantically grounded NLP systems become, bringing

us closer to linguistically informed language understanding.
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CHAPITRE 4
LINGBERT, VERS L'INJECTION DE LA CONNAISSANCE LINGUISTIQUE DANS UN MECANISME D’ATTENTION
BASE SUR UNE STRATEGIE DE MASQUAGE HYBRIDE
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4.1 Détails de I'article

LingBERT, Linguistic Knowledge Injection into Attention Mechanism based on a Hybrid Masking Strategy

Toufik Mechouma, Ismail Biskri and Serge Robert
23rd International Conference on machine learning and applications, ICMLA 2024,Miami, Florida, USA.

1946-0759/24/©2024 IEEE DOI 10.1109/ICMLA61862.2024.00253

4.2 Résumé

Dans cet article, nous présentons LingBERT, un modéle de langage basé sur les transformers. Nous pré-
sentons deux architectures de LingBERT basées sur une stratégie de masquage hybride. Ces deux modeles
s’inspirent de BERT Base. Notre modeéle introduit I'injection de connaissances linguistiques (dépendances
syntaxiques) dans les mécanismes d’attention. Cependant, BERT et certaines de ses variantes utilisent un
masquage aléatoire des tokens pendant I'entrainement, ce qui peut entrainer une capture inefficace des
dépendances syntaxiques et sémantiques. Pour remédier a ce probléme, notre méthode combine un mas-
quage aléatoire et un masquage sélectif. Elle consiste 3 masquer les mots ayant des dépendances syn-
taxiques, tout en masquant un faible pourcentage de mots de maniére aléatoire. Les tokens résultant de
cette stratégie sont ensuite transmis a deux versions de lingBERT. Cette stratégie de masquage garantit que
les relations linguistiques sont préservées et apprises de maniére plus efficace. De plus, nous maintenons
un faible taux de masquage aléatoire afin d’éviter le surapprentissage. Grace a des expérimentations et des
évaluations, notre approche permet d’améliorer significativement la capture du contexte et d'optimiser les
performances dans diverses taches de traitement du langage naturel. Elle permet également de réduire la
complexité du modéle BERT. Notre approche offre également une interprétation du fonctionnement interne
du modele a chaque étape de I'apprentissage. Notre travail propose une nouvelle approche qui consiste a
injecter des connaissances dans les modéles de langage basés sur les mécanismes d’attention, afin d'amé-

liorer leurs capacités d'encodage du sens tout en les optimisant.

4.3 Abstract

In this paper, we present lingBERT, a transformer-based language model. We present two lingBERT archi-
tectures based on a hybrid masking strategy. Both models are inspired by the BERT base model. Our mo-

del incorporates linguistic knowledge (syntactic dependencies) into attention mechanisms. Models such
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as BERT employ random masking of tokens during training, which can result in an inefficient capture of
syntactic and semantic dependencies. To address this issue, our method employs two masking strategies.
The first masks words with syntactic dependencies. The second uses a low percentage of randomly masked
words. Tokens resulting from both strategies are then processed. over to the two proposed lingBERT archi-
tectures. This strategy ensures that linguistic relationships are preserved and learnt more effectively. More
effectively. Additionally, we maintain a low level of randomness ratio of masked tokens to prevent overfit-
ting and improve model generalisation model’s ability to generalise. Through comprehensive experiments
and our approach has been shown through extensive experimentation and evaluation to significantly im-
prove context capture, leading to better performance across various NLP tasks. Furthermore, our approach
provides insight into the inner workings of our model throughout the learning process. This work opens
up a new avenue for knowledge injection into attention-mechanism-based models, thereby advancing the

capabilities of language understanding systems.

4.4 Introduction

Transformer models, particularly BERT and its derivatives, have transformed natural language processing
(NLP) by delivering state-of-the-art results in various tasks. These models rely on attention mechanisms,
which allow them to identify long-range dependencies within text. The majority of these models use a to-
ken masking strategy. On the one hand, RoBERTa uses the same model architecture as BERT. However, its
improved performance is due to its larger training data and extended training time. One of RoBERTa’s ma-
jor innovations is its use of dynamic masking. In BERT, masked language modelling (MLM) involves applying
a static mask once during pre-training. In contrast, RoBERTa applies a new mask at every epoch, meaning
the tokens to be masked are chosen differently each time a training example is encountered. Liu et al.
(2019). Conversely, ALBERT (A Lite BERT) introduces several efficiency improvements over BERT by focu-
sing on reducing model size while maintaining performance. Like RoBERTa, ALBERT uses dynamic masking,
whereby the tokens to be masked are randomly selected and may vary during each training epoch. Lan
et al. (2020). Similarly, DeBERTa uses dynamic masking strategies, like those in RoBERTa, where the mas-
king pattern changes during training. This helps to prevent the model from becoming over-reliant on specific
masked positions. He et al. (2021). By contrast, SpanBERT uses span-based masking. Rather than masking
individual tokens, it masks neighbouring spans of tokens. In other words, rather than randomly selecting
individual tokens to mask, it selects entire spans of text Joshi et al. (2020). Although, TinyBERT, DistilBERT
and SciBERT retain the same static masking strategy used in BERT Sanh et al. (2019) Jiao et al. (2020) Beltagy
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et Cohn (2020). Masking involves obscuring tokens in a sequence, regardless of the text’s linguistic struc-
ture. Although this method is effective in generalising across a wide range of contexts, it can inadvertently
reduce the model’s ability to capture intricate syntactic and semantic relationships between words. This
can result in an inability to grasp the deeper contextual meaning of phrases, particularly in more complex
linguistic constructions. Clark et al. (2019) Tenney et al. (2019b) Alex et al. (2019). Some models, unlike BERT,
do not use the masking strategy. For example, XLNet uses a permutation language modelling objective. This
means that it considers all possible permutations of the input sequence and predicts the tokens within
these orders. Yang et al. (2019). Another model, called ELECTRA, uses a replaced token detection approach.
In this model, the generator network replaces some of the tokens with incorrect words, and the model is
then trained to distinguish between the real tokens and the replaced ones Clark et al. (2020). Generative
models similar to GPT also use a generative pre-training approach based on a transformer decoder archi-
tecture. These models are trained to predict the next token in a sequence. Brown et al. (2020c). Despite
their success, these models have inherent limitations in how they handle syntactic and semantic depen-
dencies during training. Mask-based models, for example, suffer from limitations in interpretability. These
models mask parts of the input text in order to predict missing tokens. Conversely, unmasking-based mo-
dels, such as those involving auto-regressive generation, are difficult to understand. How does any single
word influence the prediction? How can we interpret and explain the cumulative context of all preceding
words ? Regardless of their success, these models might require further enhancement to handle long-term
dependencies properly and avoid issues such as maintaining coherent and accurate text, since early mis-
takes can affect the rest of the output Clark et al. (2019) Tenney et al. (2019b) Alex et al. (2019) Jain et Wal-
lace (2019). The complexity of the interactions between the tokens, coupled with the probabilistic nature
of these masking- and unmasking-based models, obscures the reasoning behind their outputs and com-
plicates efforts to interpret and explain the models’ behaviour. These limitations emphasise the trade-offs
between different modelling strategies and their effect on the interpretability of language models Holtz-
man et al. (2020) Tan et al. (2020) Ribeiro et al. (2016b). To address these shortcomings, we present two
versions of LingBERT. Both versions use a hybrid masking strategy to inject linguistic knowledge into our
models. The hybrid masking strategy has already been mentioned Zhang et al. (2021). Authors explore hy-
brid masking strategies and their impact on text classification tasks, reinforcing the benefits of combining
different masking approaches Zhang et al. (2021). The hybrid masking strategy combines the advantages of
structured and random masking. Specifically, our model prioritises masking words with syntactic dependen-
cies to ensure these linguistically linked tokens are processed together within a particular head’s attention.

Additionally, incorporating a small proportion of randomly masked tokens mitigates the risk of overfitting,
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thereby enhancing the model’s generalisation capabilities. This approach enables the model to learn and
preserve critical linguistic relationships more effectively. The hybrid nature of our masking strategy improves
the model’s contextual understanding and increases the interpretability of the learning process, providing
clearer insights into how linguistic knowledge is represented and utilised within the model. The proposed
approach is inspired by Mechouma et al. (2022a). The authors propose improving BERT’s performance by
introducing a dependency parsing mask to the multi-head attention mechanism. This mask complements
the existing padding mask, which is used to filter padding positions. Experiments have demonstrated that
incorporating the dependency-parsing mask improves BERT's attention filtering Mechouma et al. (2022a).
In this paper, we first present the theoretical details of the masking strategies. We then discuss some spe-
cifics about the training dataset. We also analyse the architectures of both lingBERT versions. Finally, we

conclude with an experimental evaluation of our models.

4.5 Theoretical Background

451 Hybrid Masking Strategy of Tokens

To improve the performance of natural language transformer-based models, we present a new attention
mechanism that uses a hybrid masking strategy. This approach is designed to capture syntactic relationships
while maintaining model robustness through controlled randomness. The hyperparameters in our model,
such as the masking percentage for syntactic and random tokens, were carefully selected through a series

of experiments to optimise the model’s performance.

4.5.11 Syntactic Dependency-Based Masking

We use spaCy tool due to its post-tagging and parsing high accuracy, 95.1%, 97% respectively. The accuracy
report is available on the official website. During the training process, we first perform syntactic parsing on
each sentence or segment. This identifies tokens with specific syntactic dependencies without considering
dependency types. These dependencies are crucial for capturing the syntactic and semantic essence of the
sentence effectively. Distinctly to BERT's masking strategy, we mask 20% of syntactic-depended tokens. The
masking percentage is a tunable hyper-parameter. Experiments revealed and justified the choice of 20%

due to the outstanding results.
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4.51.2 Random Masking

In the random masking strategy, 10% of tokens without syntactic dependencies are masked at random.
This masking serves as our metric to avoid overfitting that may result from masking based on syntactic
dependencies. The masking percentage is a separate, tunable hyperparameter that differs from that used
in the first strategy. Experiments revealed that the choices of 10% for the lingBERT.v1 and 15% for lingBERT.v2

grant an outstanding performance.

451.3 Training Dataset Formatting

Both strategies required the training dataset to be pre-processed prior to the training phase. This dataset
was meticulously pre-processed and formatted before being introduced to the model during runtime. Based
on dependency parsing, pairs of tokens are grouped according to their syntactic relationships. Focusing on
preserving these relationships, BERT employs a strategy of syntactic masking in conjunction with randomly
selecting tokens from each sentence, ensuring these tokens do not overlap with those selected for masking.
These tokens are replaced in the same way as the Masked Language Modeling (MLM), with a special [MASK]

token in the sentence.

105 randomly masked 20 % syntactically masked

T1 T2 Tn-2 Tn-1 Tn
Sentence 1
Sentence 2

T1 T2 Tn-2 Tn-1 Tn

v

T1 T2 Tn-2 Tn-1 Tn

Sentence n

Figure 4.1 - TRAINING DATASET FORMAT FOR lingBERT V1.
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Figure 4.2 - TRAINING DATASET FORMAT FOR lingBERT v2.

4.5.2 Theoretical Foundation of The architecture

The proposed masking strategies raise a critical question about the architecture. They ask whether it is
possible to integrate both types of tokens, which come from syntactic and random masking, within Heads-
Attention along the encoders stack. Alternatively, separate stacks of encoders could be created, with each
stack fully dedicated to learning the specific patterns and relationships of its masking strategy. Both archi-
tectures have been implemented and tested. Architectural schemas are analysed in the next section. The

attention mechanism used is the same as the one proposed in Vaswani et al. (2017).

. QK"
Attention(Q, K, V') = softmax Vv
Vi,

Where :
— First point @ is the matrix of queries.
— K is the matrix of keys.
— V is the matrix of values.

— dy, is the dimensionality of the keys (or queries).

4.5.2.1 lingBERT v1

The first architecture is almost identical to the BERT Base architecture. The only difference is that the num-
ber of encoders is 7, rather than 12, and each encoder has 7 Attention-Heads rather than 12. The number

of encoders was reduced in each experiment without compromising performance. The optimal hyperpa-
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rameters were determined through a series of experimental trials. Another key difference is the format
of the training dataset : lingBERT v1 processes sentences containing random and syntactic masked tokens

simultaneously.

4.5.2.2 lingBERT v2

The second architecture consists of two stacked encoders. The first is specialised in learning representations
based on random masking. It has 12 encoders, each with seven Attention-Heads. The latter learns represen-
tations using a syntactic-based masking strategy. It has 12 encoders with three Attention-Heads each. The
number of encoders is reduced based on performance. There is a shared embedding matrix that is randomly
initialised. This matrix is used to generate the initial embeddings for the input tokens. These embeddings are
then processed in parallel through two stacks to produce two different outputs. During training, both stacks
independently update their internal parameters based on their respective inputs. After passing through
the stacks, the outputs are averaged to produce a combined output. This averaged output is then fed into
the final layer to predict the masked tokens. The error (or loss) is calculated by comparing the predicted
and actual tokens. Both stacks receive the same error signal because the final prediction is based on their
combined output. As the two stacks are fed embeddings derived from the same initial embedding matrix,
the gradients from the back-propagation process are used to update this shared matrix. This means that
the gradients from the syntactic and random masking stacks influence how the embeddings are adjusted
during training. LingBERT v2 processes pairs of sentences, each with a different selection of tokens. These
are the randomly selected tokens and the syntactically based masked tokens. Similarly, in each architecture,
feed-forward neural networks have a hidden size of 768. Also, residual information is added and normalised
throughout each encoder. This helps preserve information and prevent gradient vanishing or exploding. The
final output vectors from the two architectures are averaged and sent through a prediction layer comprising
30,000 elements. At the end of the word representation learning process, the corresponding embedding
vectors are extracted from the final encoder output. These vectors are then used for testing purposes in

downstream tasks.

4.6 Architectures

In the following, we describe the architecture of each model.

72



10% randomly masked
20 % syntacticaly masked

=T

v

Size = 30k

- 2
Prediction layer H
H

P
encoder

— encoder

encoder ‘I.

- B T .
1
3
8
B
i}

Figure 4.3 - lingBERT V1.

73

The lingBERT V1 architecture contains 7 encoders with 7 Attention-Heads per encoder.
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The Figure 4.5 represents the architecture of lingBERT v2 with 20% of syntactically masked tokens for the

first encoders-stack.
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Figure 4.6 - RANDOMLY-MASKING FOR lingBERT v2.

The Figure 4.6 represents the architecture of lingBERT v2 with 15% of randomly masked tokens for the

second encoders-stack.

4.7 Experiments

For evaluation and testing purposes, we used the same training dataset as BERT : the English Wikipedia
dump and the Bookscorpus, which is a 16 GB Wikipedia dump of text after processing and cleaning. This re-
presents plain text extracted from Wikipedia articles, excluding lists, tables and other non-textual content.
The BookCorpus dataset is a large-scale text corpus containing over 11,000 free, unpublished books avai-
lable online. To enable comparison with BERT and its derived models, we opted for a high-performance
hardware configuration. Training was performed on a commercial cloud with eight NVIDIA Tesla K8BO GPUs.
The training dataset was formatted in almost 17 hours in accordance with the above models’ requirements.

To evaluate our two models, we used text classification as a downstream task for both GLUE and AG News
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to evaluate the generated embeddings by lingBERT.

4.8 Findings

The bellow benchamrking tables show the performance of our two models.

Model Training Time | Dataset Glue Accur
lingBERT.v1 | 8 days 16 GB Wiki+BookCor 0.937
lingBERT.v2 | 11days 16 GB Wiki+BookCor 0.944
BERT 4 days 16 GB Wiki + BookCor | 0.858
RoBERTa 1-2 weeks 160 GB of text data 0.945
DistilBERT | Few days 16 GB Wiki+BookCor 0.908
ALBERT Several days 16 GB Wiki+BookCor 0.911

0.941

o
o
[V ]

GLUE Accuracy
(=]
[¥e]
(=]

0.861

Table 4.1 - Comparison of various NLP models

GLUE Accuracy of Various NLP Models

lingBERT.VI

ingBERT.v2 BERT RoBERTa DistiBERT ALBERT

Madels

Figure 4.7 - GLUE SCORES OF THE NLP MODELS

The statistics compare NLP models, focusing on training time, dataset size, and GLUE scores. BERT, as a
baseline, scores 0.858 while lingBERT versions, with longer training on the same dataset, perform better (
0.937 and 0.944). RoBERTa, trained on a much larger dataset, achieves a highest score of 0.945, showingthe
advantages of more data. DistilBERT, designed for efficiency, scores 0.908, balancing speed and accuracy.

ALBERT, reaches the score of 0.911. LingBERT v1 & v2 outperform BERT, DistilBERT and ALBERT showing the
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efficiency of the proposed architectures and masking strategy.

100

Score (%)

52

Overall, RoBERTa and lingBERT.v2 are the models that perform best on the AG News dataset, offering the
highest accuracy and F1 scores. ALBERT also performs well, making it particularly appealing for applications
where model size and efficiency are important. BERT and lingBERT.v1 provide solid baseline results, though
they are outperformed by their newer counterparts. Although DistilBERT trails behind in terms of accuracy

and F1score, it offers a valuable alternative for scenarios where computational efficiency is more important

Model Dataset | Accuracy | F1Score

lingBERT.v1 | AG News | 93.7% 92.3%

lingBERT.v2 | AG News | 94.4% 93.5%

BERT AG News | 93.3% 92.1%

RoBERTa AG News | 94.5% 93.5%

DistilBERT | AG News | 90.08% | 90.2%

ALBERT AG News | 94.2% 93.1%

Table 4.2 - Benchmarking Text Classification Accuracy and F1 Score

Text Classification Performance Comparison
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than achieving the highest possible classification performance.

4.9 Conclusion

In conclusion, the lingBERT models, both v1 and v2, offer significant advancements in NLP performance
through their innovative hybrid masking strategy. LingBERT.v1 demonstrates strong performance on the AG
News dataset, achieving 93.7% accuracy and a 92.3% F1score, effectively balancing accuracy with contextual
understanding. LingBERT.v2 builds upon this foundation with further enhancements, resulting in even hi-
gher accuracy (94.4%) and F1score (93.5 %), showcasing notable improvements in capturing and leveraging
syntactic dependencies. By integrating syntactic knowledge into the attention mechanisms and employing
a refined masking approach, lingBERT models enhance both the interpretability and effectiveness of text
classification tasks. These improvements highlight the models’ ability to preserve critical linguistic relation-
ships and outperform existing benchmarks, representing a significant step forward in the development of
systems that understand language. Also, both versions of LingBERT significantly simplify the architecture
compared to the BERT Base model. Another added value is the formatted training dataset, which reduces
the computing complexity that would otherwise occur during training. Our results demonstrate that the
proposed approach significantly improves performance on various NLP tasks, offering a promising new way
to integrate linguistic knowledge into transformer models. By advancing the capabilities of attention-based
systems, our work contributes to the ongoing evolution of natural language understanding technologies.

Further research is needed to explore ways of injecting linguistic knowledge into large language models.

410 Perspective

Encouraged by the results of lingBERT, our next line of inquiry will focus on integrating linguistic know-
ledge more deeply into the training objectives of large language models. Although lingBERT introduced
syntactic information via a hybrid masking strategy, demonstrating its ability to enhance interpretability
and task performance, it still operates primarily within a statistical paradigm, whereby language structure
emerges implicitly from data-driven learning. Our next work aims to move beyond this by explicitly su-
pervising the learning process using syntactic trees as the ground truth. Specifically, we propose encoding
syntactic structures as binary adjacency matrices that represent dependency relationships between words.
These matrices will serve as supervisory targets for the model, enabling it to learn from both masked to-
ken prediction and structured linguistic constraints. This approach is implemented in our proposed SCA-

BERT (Syntax-Constraint-Aware BERT) model, in which the model’s attention mechanism directly encodes
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and predicts syntactic dependencies. Syntactic constraints are enforced during training using augmented
Lagrangian optimization, guiding the model to align its internal representations with known syntactic struc-
tures. This represents a shift from treating syntactic features as auxiliary inputs to making them central

supervisory signals in model learning.
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CHAPITRE 5
SCABERT : LA CONNAISSANCE SYNTAXIQUE COMME UNE VERITE DE TERRAIN POUR LA SUPERVISION
D’UN MECANISME D’ATTENTION GUIDE PAR CONTRAINTE VIA LAGRANGE AUGMENTE
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5.1 Détails de l'article

Syntax-Constraint-Aware SCABERT : Syntactic Knowledge as a Ground Truth Supervisor of Attention

Mechanism via Augmented Lagrange Multipliers

Toufik Mechouma, Ismail Biskri and Serge Robert
Proceedings of Tenth International Congress on Information and Communication Technology - ICICT Feb

2025, London, UK. (accepted not yet published)

5.2 Résumé

Cet article présente une variante de BERT qui utilise une technique permettant d’injecter des connaissances
linguistiques sous forme de contrainte. Il s'agit d’'un nouveau modéle qui tire parti de la technique d’optimi-
sation basée sur les multiplicateurs de Lagrange augmentés. Le modéle utilise les dépendances syntaxiques
encodées dans une matrice d'adjacence correspondant a I'arbre syntaxique afin de superviser le proces-
sus d'apprentissage de la représentation des mots. Cette méthode garantit que la structure syntaxique in-
fluence les représentations des mots du modele. L'application de I'optimisation lagrangienne augmentée
permet d’imposer des contraintes au mécanisme d’attention, facilitant ainsi I'apprentissage des relations
syntaxiques. Cette approche consiste a modifier I'architecture standard du BERT, notamment la couche de
prédiction. L'objectif est de prédire une matrice d’adjacence qui encode les relations syntaxiques entre les
mots, plutot que d'utiliser des jetons masqués. Les résultats de nos expériences montrent que I'injection
de connaissances syntaxiques permet d’améliorer les performances par rapport au BERT, notamment en ce
qui concerne le temps d’'apprentissage et la classification des textes d’/AG News en tant que tiche en aval. En
combinant la flexibilité de I'apprentissage profond avec des connaissances linguistiques structurées, nous
fusionnons les approches ascendantes et descendantes. Notre modéle permet également d'améliorer I'in-

terprétabilité et les performances des modéles de langage.

5.3 Abstract

This paper introduces Syntax-Constraint-Aware BERT (SCA-BERT), a novel variant of BERT that uses augmen-
ted Lagrange multipliers to inject syntactic knowledge into the attention mechanism. The model uses syn-
tactic dependencies as a form of ground truth to supervise the learning of word representations, ensuring

that syntactic structure influences the model’s representations of words. Applying augmented Lagrangian
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optimization imposes constraints on the attention mechanism, facilitating the learning of syntactic rela-
tionships. This approach augments the standard BERT architecture by modifying the prediction layer. The
aim is to predict an adjacency matrix encoding words’ syntactic relationships instead of masked tokens.
Our experiments demonstrate that injecting syntactic knowledge improves performance in terms of trai-
ning time compared to BERT, and also on AG News text classification as a downstream task. By combining
the flexibility of deep learning with structured linguistic knowledge, we merge bottom-up and top-down
approaches. Furthermore, Syntax-Constraint-Aware BERT improves the interpretability and performance of

Transformer-based models.

5.4 Introduction

Natural Language Processing NLP has witnessed transformative advancements in recent years, primarily
driven by the advent of transformer architectures such as BERT Devlin et al. (2019). These models leverage
self-attention mechanisms to capture complex relationships between words, enabling a deeper unders-
tanding of contextual information. Despite their impressive performance across various tasks, many trans-
former models often lack explicit incorporation of linguistic structures, such as syntactic dependencies,
which are critical for nuanced language comprehension Htut et al. (2019) Mechouma et al. (2024). Also
interpretability remains a challenge for transformer models Jain et Wallace (2019). By representing these
relationships as graphs, researchers have demonstrated the effectiveness of syntactic structures in impro-
ving NLP tasks such as machine translation, information extraction, and sentiment analysis Marcheggiani
et Titov (2017) Li et al. (2023). For instance, authors in Wu et al. (2018) employed dependency parsing in
their neural machine translation framework, highlighting that syntactic structures can significantly enhance
translation quality by preserving grammatical relations across languages. Furthermore, recent studies have
aimed to integrate syntactic information more deeply into transformer models. Syntax-aware Transformers,
such as StructBERT Peng et al. (2019), have shown that incorporating syntactic trees into the attention me-
chanisms improves performance on downstream tasks like semantic role labeling and question answering.
Similarly, authors in Bai et al. (2021) proposed a method to integrate syntactic knowledge by augmenting
BERT with a syntactic dependency tree, leading to improved accuracy in various NLP benchmarks. Despite
these advancements, most existing approaches treat syntactic information as auxiliary or secondary to the
primary learning objective. They often use syntactic features as inputs rather than establishing them as di-
rect targets for model learning. This gap presents an opportunity to explore the potential of using syntactic

structures, such as the adjacency matrix of dependency graphs, as primary targets in training deep learning
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models Mechouma et al. (2022b).

In optimization field, Augmented Lagrange Multipliers serve to incorporate constraints into objective func-
tions, facilitating solutions to constrained problems. Augmented Lagrangian methods enhance this approach
by adding penalty terms that enforce constraints more effectively during the optimization process. These
methods have been employed in machine learning, where they have shown success in tasks requiring the
satisfaction of multiple constraints Narasimhan et al. (2020). The application of Augmented Lagrangian
techniques in the context of NLP remains relatively unexplored. However,learning with constraints in struc-
tured prediction tasks, suggest that these methods could be beneficial in integrating syntactic constraints

into model learning Pan et al. (2020).

This paper presents a new architecture for replacing masked tokens in BERT with a binary adjacency matrix
that represents syntactic dependencies. Treating this matrix as the target for model predictions enables the
model to learn word representations that closely adhere to syntactic structures. Additionally, Augmented
Lagrange multipliers are employed to introduce dynamic penalties for constraint violations during training,
thereby promoting a more structured and linguistically informed learning process. By aligning the learning
of word representations with syntactic dependencies, our approach seeks to enhance both the performance
and interpretability of models on various NLP tasks. Our work bridges the gap between deep learning me-
thodologies and linguistic theory by providing insights into how structured knowledge can be integrated

into modern NLP systems.

5.5 Conceptual Model

The model is based on the fundamental tenets of transformer architectures and incorporates syntactic de-
pendencies through the use of an adjacency matrix, M. This serves to encode the syntactic dependencies.
During the training phase, it is employed as the target ground truth to facilitate convergence towards it.
The positional encoding is kept as in BERT base, while the next sentence prediction is not integrated. This

section will delineate the various layers and components that comprise the model.

5.5.1 Input Layer

The input comprises word embeddings, represented as a matrix £ € R™*? where n is the number of words

in a sentence and d is the embedding dimension. The model takes both tokens and position embeddings as
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input to the Transformer layers.

€11 €12 -+ €14

€21 €22 - €29
FE =

€nl €n2 €nd

Figure 5.1 - Word embedding matrix E € R™*?, where n is the number of words in the sentence and d is

the embedding dimension.

5.5.2 Syntactic Dependencies Encoding

A binary adjacency matrix, M € R™*" is incorporated into the model, to encode syntactic dependencies,
where n is the number of words in a sentence. If word ¢ has a direct dependency on word j, the correspon-
ding entry in the matrix M is set to 1, indicating a dependency. Otherwise, the entry is set to 0. This matrix

serves as a ground truth and a target for the model to learn during training.

My Mg -+ My,

Moy May --- Moy,
M =

Mnl Mn2 e Mnn

Figure 5.2 - Matrix M representing syntactic dependencies between words.

5.5.3 Encoders Stack

Subsequently, we present the encoder stack, which is structured in accordance with the architectural prin-
ciples of BERT Base. The encoder stack comprises a series of 12 Transformer layers, 12 attention heads, 768
hidden size, 512 maximum sentence length which perform attention-based learning over the input embed-

dings.
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5.5.4 Prediction Layer

The input to the prediction layer is the output from the last encoder layer, denoted as matrix H € R"*¢,
where n is the number of words in a sentence and d is the embedding dimension. To generate the syntactic
dependency matrix A of shape n x n, where n is the number of words in the input sentence. The model
uses a fully connected (dense) layer that takes the encoded word representations H and maps them to an

adjacency matrix representing the syntactic dependencies as follows.

A = softmax(H - W) (5.1)

Where : H € R™*4 is the output of the encoder stack.

W € R is a learnable weight matrix of the prediction layer.

A € R™" "™ is the predicted syntactic adjacency matrix, representing the dependencies between the tokens
in the input sequence. The output values A;; € [0, 1] represent the strength of the syntactic dependency
between the words ¢ and j. A value close to 1 indicates a strong dependency, while a value close to O

indicates weak or no dependency.

hit hia -+ hig w1l W12 o Wim a1 a2 - Qi
hat  haa -+ hog w2l W2 - W az1 a2 -+ G,

. = softmax =A
hnl hn2 T hnd Wq1r Wq2 -+ Wdm anl Aap2 - Qpm

Figure 5.3 - Matrix A representing predicted attention weights.

5.5.4.1 Softmax or Sigmoid ?

in our context the question ties directly into the concepts of dependent and independent variables in the
field of probability. From linguistic perspective, words are connected by syntactic dependencies, and these
dependencies usually carry semantic meaning. By applying softmax, we introduce a distributional hypothe-
sis where words with strong syntactic relationships have higher probabilities compared to unrelated words,

which is closer to how humans understand the language words. In the case of sigmoid activation, we treat
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the syntactic relationships between words as independent events. In other words word-pairs are proces-
sed in isolation. From computational perspective, by introducing probability distribution, softmax squashes
negative values towards zero and brings probabilities to one for relevant relationships, which is beneficial
when used with the Lagrangian multiplier to converge quickly to a binary adjacency matrix. One potential
downside of softmax is enforcing mutual exclusivity in its outputs, which could be problematic because
a word can have multiple syntactic relationships simultaneously. In our case, softmax makes more sense
than sigmoid, especially when the goal is to inject syntactic knowledge in a more controlled manner by

encouraging a probability distribution over syntactic dependencies.

5.6 Augmented Lagrangian Formulation

The Augmented Lagrangian method represents an extension of the classical Lagrangian approach to optimi-
sation, particularly suited for handling constraints in problems where traditional Lagrangian multipliers may
be insufficient. In the present context, the Augmented Lagrangian framework is applied to enforce syntactic
dependencies during the learning of word representations in a Transformer-based model. The mathema-
tical foundation involves modifying the objective function by incorporating a penalty term to enforce the

constraint.

The choice of the Augmented Lagrangian method is driven by the non-convex nature of the underlying opti-
misation problem, particularly in the context of training deep learning models such as Transformers. While
traditional gradient descent methods are effective for unconstrained optimisation, they often encounter

difficulties in satisfying hard constraints, particularly in complex, non-convex landscapes.

where :

A is the predicted adjacency matrix n x n and

M is the target syntactic matrix n x n.

n is the sentence tokens number.
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The objective function is defined as Lisk(A, M) = %||A — M||%. This represents the squared Frobenius
norm, which quantifies the discrepancy between the predicted and actual syntactic matrices. The Augmen-
ted Lagrangian introduces Lagrange multipliers A and a penalty parameter p to modify this loss function,

yielding :

La(A A 1) = Luas(A, M) + AT (vee(A4) = vee(M)) + & [vec(4) —veeM)||7:  (53)

Where :
Liask (A, M) is the previous defined objective function.

operatornamevec() denotes the matrix vectorization obtained by stacking its columns into a single column

vector ( flattened vecto )

A, obtained by stacking its columns into a single column vector. ) are the Lagrange multipliers vector n? x 1

that adjust dynamically to enforce the constraint.

(4 is a positive scalar controlling the strength of the penalty term. It can be viewed as a form of regularization.

5.6.1 Loss Function

The prediction layer’s output A is compared with the true adjacency matrix A which contains the actual

syntactic dependencies using a task-specific loss function. The loss can be formulated as :

1
Liask(A, M) = 5”14 - MH% (5.4)

Where : || - ||% is the Frobenius norm, which measures the difference between the predicted and true

syntactic adjacency matrices.
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5.6.2 Lagrange Multipliers

The term /\T(A — M) plays crucial role in the enforcement of constraints during the optimisation process.
In this context, the vector A\ represents the Lagrange multipliers associated with the constraints defined in
the optimisation problem. The constraints are that the learned matrix A should closely approximate the
target adjacency matrix M, which encodes the syntactic dependencies between words. The denotation
AT (A — M) represents the dot product between the vector A and the matrix A — M. The X vector is of
length n dimension. Each entry of A\ corresponds to a specific word in the sentence. This allows for individual
weighting of the constraint violations associated with each word’s syntactic dependencies. This configura-
tion allows the model to ascertain the extent to which each word’s representation should be modified in
accordance with its relationship to other words within the sentence, thereby reflecting its significance wi-

thin the context of the syntactic structure.

When ) is treated as importance weights of words, the model emphasizes the syntactic influence of each
word on the overall structure. This aligns well with the goal of capturing linguistic dependencies, as the
adjustments made by X can reflect the importance of each word in maintaining syntactic relationships. The
gradient updates influenced by )\ can help shape the learning process, as the model adjusts the embeddings
based on the weighted contributions of each word. This can lead to more effective embeddings that respect

syntactic constraints more closely.

5.6.3 Constrained Learning with Penalization

The term g |A— M||?p serves as a penalty that increases in severity when the predicted adjacency matrix A
diverges from the target adjacency matrix M. This penalty discourages the model from making predictions
that contravene the syntactic constraints, in a manner analogous to how regularisation techniques prevent
overfitting by penalising complex models. The value of ;4 directly influences how strongly the constraints
are enforced during training. The value of u exerts a direct influence on the degree to which constraints
are enforced during the training process. A larger 1 places greater emphasis on satisfying the constraints,
effectively guiding the optimisation process towards solutions that adhere closely to the required syntactic
structure. This is analogous to a regularisation parameter in traditional regularisation methods such as L2

regularisation, where a larger value results in more stringent constraints on the model parameters.
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5.6.4

Balancing Objective Function and Constraint Satisfaction

By adjusting u, you can find a balance between minimizing the objective function Li,s (A, M) and ensuring

that the predicted matrix A aligns with the constraints defined by M. In this way, i serves a dual purpose :

enhancing model performance on the primary task while also ensuring that the learned representations

are constrained by the linguistic structure, similar to how regularization techniques aim to improve genera-

lization.

5.6.5

Optimization

Loss Computing : at the start of each training iteration, compute the task loss

1
jM—AN% (5.5)

. Constraint Violation Computing : determine the constraint violations function as

g(A)=A-M (5.6)

Lagrange Multipliers Update : the Lagrange multipliers A are updated to measure the current constraint

violations

AkHD) — \R) 4y, (vec (A(k)) - VGC(M)) (5.7)

By applying the softmax function to the sum of the constraint violations, it effectively normalizes

these constraint violations across the word embedding space.

Total Loss Computing : the total loss function is then expressed as
LA(AN ) = Lias( A, M) 4 AT (vec(4) = vee(M)) + & |[vee(4) = vee(M)[[}:  (5.8)

Total Gradient Computing : compute the gradient of the total loss with respect to A

VALA(A N, 1) = V ALtk (A, M) + V 4(A" (vec(A) — vec(M))) + V4 (ul|A— M) (5.9)

. Gradient Descent Optimization : update A using the computed gradients

A+ A—nVaL(A X\ ) (5.10)
where 7 is the learning rate, controlling how much A is updated in each iteration.
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7. Backpropagation Computing : the gradients V 4L 4(A, A, 1) are computed based on the loss with
respect to the output A. These gradients will indicate how changes in A affect the overall loss, pro-
viding information about how to adjust the weights in all encoder layers. Using the chain rule, the
gradients of the loss with respect to the encoder weights can be calculated by tracing back through

the layers of the model.
VIA=VaALx+VyLa-WT 4 Vw,La+Vw,La+ Vw,La (5.11)

Where : V 4 L 4 the gradient of the loss function with respect to the output matrix A.

VL 4 is the gradient of the loss function with respect to the hidden states H.

WT is the transposed weight matrix connecting H to the output matrix A.

VW, is the gradient of the loss L 4 with respect to the weights W, of the query projection in the
self attention mechanism of the encoder.

VW, is the gradient of the loss L 4 with respect to the weights W, of the key projection in the self
attention mechanism of the encoder.

VW, is the gradient of the loss L 4 with respect to the weights W, of the values projection in the

self attention mechanism of the encoder.

5.7 Architecture

The proposed architecture consists of two interconnected components : the BERT Base and a Prediction
Layer. The former is BERT Base follows the standard Transformer architecture, which operates without any
constraints and leverages gradient descent optimization and the latter is the modified prediction layer that

introduces a novel constraint-based optimization mechanism using Augmented Lagrangian Optimization.

5.8 Experiments

In order to evaluate and test the model, the same datasets that were used for BERT were employed : the
English Wikipedia dump and BookCorpus. Following processing and cleaning, the Wikipedia dump yielded
16 GB of plain text, excluding non-textual elements such as tables and lists. In contrast, BookCorpus provides
access to a substantial corpus of over 11,000 free, unpublished books sourced from the internet. To ensure
a meaningful comparison with BERT and its derived models, we selected a robust hardware configuration.

The training was conducted on a commercial cloud platform utilising 8 NVIDIA Tesla K80 GPUs. Preparing
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the training data required approximately 17 hours, in line with the specifications of these models. For model
evaluation, we concentrated on text classification task. The AG News is used to focus on categorizing news

articles into predefined categories to assess the performance and embeddings produced by our model.

Model Training Time | Dataset
SCABERT | 6 days 16 GB Wiki+BookCor
BERT 4 days 16 GB Wiki + BookCor

Table 5.1 - Comparison of various NLP models

Given that BERT was trained in approximately 4 days using 16 TPUs, while SCABERT took 6 days using only 8
GPUs, the longer training time for SCABERT is expected. This reflects the effeciency of the constraint based

optimization with augmented lagrangian.

Metric BERT Base | SCABERT
Precision (Class O) | 0.9539 -0.9728
Recall (Class O) 0.9584 -0.9722
F1-Score (Class 0) | 0.9562 -0.9741
Precision (Class 1) | 0.9884 - 0.9891
Recall (Class 1) 0.9879 -0.9883
F1-Score (Class 1) | 0.9882 -0.9895
Precision (Class 2) | 0.9251 - 0.9476
Recall (Class 2) 0.9095 -0.9298
F1-Score (Class 2) | 0.9172 -0.9322
Precision (Class 3) | 0.9127 -0.9348
Recall (Class 3) 0.9242 -0.9442
F1-Score (Class 3) | 0.9184 -0.9305
Accuracy 0.9450 -0.9632

Table 5.2 - Comparison of SCABERT and BERT Base performance on AG News

The table presents a comparative analysis of performance metrics between SCABERT and BERT Base on the
AG News dataset. The metrics evaluated include Precision, Recall, F1-Score, and Accuracy for four distinct

classes. Overall, the results indicate that while BERT base performs admirably in certain metrics, especially
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for Class 1, SCABERT generally outperforms it across all metrics and classes in this dataset.

5.9 Conclusion

In summary, SCABERT’s key advantages over BERT stem from its innovative integration of syntactic depen-
dencies as ground truth via adjacency matrices, which supervise the attention mechanism directly. This
syntactically informed approach enhances contextual understanding and leads to faster convergence and
improved training efficiency thanks to the combination of gradient descent and augmented Lagrange mul-
tipliers for constraint-based optimisation. By aligning word representations with syntactic structures, SCA-
BERT achieves superior performance in NLP classification tasks, offering deeper linguistic insight and greater

interpretability than traditional BERT models.

5.10 Perspective

While SCABERT is a significant milestone in leveraging syntactic structures as ground truth to supervise at-
tention mechanisms, it remains rooted in the symbolic-linguistic domain. The innovation of SCABERT lies
in its ability to align internal representations with syntactic dependencies, thereby improving the interpre-
tability and efficiency of language understanding. However, meaning in human language extends beyond
syntax. It is also rooted in perception, experience and multimodal grounding. To further push the boun-
daries of semantic representation, our proposed next model, VLG-BERT (Visually and Linguistically Groun-
ded BERT), integrates syntactic and perceptual knowledge to enhance language modelling. Like SCABERT,
VLG-BERT uses syntactic supervision, but it also incorporates visual latent representations obtained from
pre-trained vision models. It achieves this by grounding a curated vocabulary of around 10,000 concrete
tokens drawn from ImageNet labels and expanded through WordNet semantic relations. VLG-BERT intro-
duces a lookup-based initialisation of embeddings informed by real-world perception rather than relying
on random initialisation. This multimodal fusion provides a stronger foundation for meaning encoding and
aims to make large language models more cognitively plausible. Not only does VLG-BERT capture linguistic
structure, it also aligns its representations with how humans understand language in relation to the world
they perceive. Its architecture reflects interdisciplinary insights from cognitive science, in which meaning is

considered a construct shaped by language and sensory experience.
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CHAPITRE 6
ANCRAGE DU LANGAGE ET DE LA VISION : LES VECTEURS VISUELS LATENTS COMME REPRESENTATION
CONCEPTUELLE POUR UN ENCODAGE BIMODAL DU SENS DES MOTS
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6.1 Détails de l'article

VLG-BERT : Towards Better Interpretability in LLMs through Visual and Linguistic Grounding

Toufik Mechouma, Ismail Biskri and Serge Robert
The 5th International Conference on Natural Language Processing for Digital Humanities-NLP4DH,ACL

anthology,Albuquerque,USA,Mai,2025. (published)

6.2 Résumé

Nous présentons VLG-BERT, un nouveau modéle LLM concu pour améliorer I'encodage du sens du langage.
VLG-BERT fournit des informations plus approfondies sur I'encodage du sens dans les grands modéles de
langage (LLM) en se concentrant sur la sémantique linguistique et la sémantique du monde réel. Il utilise
les dépendances syntaxiques comme une forme de vérité de terrain pour superviser l'apprentissage de la
représentation des mots. VLG-BERT intégre des représentations visuelles latentes a partir de modeéles de
vision pré-entrainés et de leurs étiquettes correspondantes. Un vocabulaire de 10 000 tokens correspon-
dant a ce que I'on appelle des mots concrets est construit en étendant I'ensemble des étiquettes ImageNet.
Cette extension est basée sur les synonymes, les hyponymes et les hypernymes de WordNet. Une table de
recherche pour ce vocabulaire est donc utilisée pour initialiser la matrice d'intégration pendant I'apprentis-
sage, plutot qu’une initialisation aléatoire. Cette base multimodale permet d’établir une base sémantique
plus solide pour I'encodage du sens des mots. Son architecture s’aligne parfaitement sur les théories fon-
damentales des sciences cognitives. L'intégration des bases visuelles et linguistiques rend VLG-BERT com-
patible avec de nombreuses théories cognitives. Notre approche participe a I'effort continu de création de
modeéles qui comblent I’écart entre le langage et la vision, et qui les rapprochent de la facon dont les étres
humains comprennent et interprétent le monde. Des expériences de classification de textes ont montré des

résultats excellents par rapport a la base BERT.

6.3 Abstract

We present VLG-BERT, a novel LLM model conceived to improve the language meaning encoding. VLG-
BERT provides a deeper insights about meaning encoding in Large Language Models (LLMs) by focusing on
linguistic and real-world semantics. It uses syntactic dependencies as a form of a ground truth to supervise

the learning process of the words representation. VLG-BERT incorporates visual latent representations from
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pre-trained vision models and their corresponding labels. A vocabulary of 10k tokens corresponding to so-
called concrete words is built by extending the set of ImageNet labels. The extension is based on synonyms,
hyponyms and hypernyms from WordNet. Thus, a lookup table for this vocabulary is used to initialize the
embedding matrix during training, rather than random initialization. This multimodal grounding provides
a stronger semantic foundation for encoding the meaning of words. Its architecture aligns seamlessly with
foundational theories from across the cognitive sciences. The integration of visual and linguistic grounding
makes VLG-BERT consistent with many cognitive theories. Our approach contributes to the ongoing effort
to create models that bridge the gap between language and vision, making them more aligned with how
humans understand and interpret the world. Experiments on text classification have shown an excellent

results compared to BERT Base.

6.4 Introduction

The growing need for interpretability and grounding in Large Language Models (LLMs) is driven by their in-
creasing use in critical and diverse applications, as well as ethical, practical, and technical challenges. LLMs
assist in diagnosing diseases and generating treatment plans. They are also used for contract analysis and
legal reasoning. They personalize the learning experience for students. Despite their outstanding perfor-
mance in many downstream tasks, LLMs often produce plausible but factually incorrect outputs, referred
to as hallucination. This behavior results from their reliance on patterns in training data rather than true
semantic understanding. LLMs must provide an explainable insights about their black-boxes. Their decisions
must meet legal and ethical standards. Therefore, interpretability allows users to trace the reasoning or data
sources behind a model’s outputs, providing accountability. The integration of visual real-world data and do-
main knowledge into LLMs, could be good lead to anchor their responses to verifiable facts. The Text-based
LLMs have made significant advancements in natural language processing. LLMs two fundamental learning
policies are next-word generation and bidirectional representation. The first approach is used for text gene-
ration, by predicting the next word based on prior context. The second approach focuses on understanding
text by predicting masked words using both left and right context. However, these models have notable limi-
tations when it comes to representing meaning, particularly in relation to real-world semantics. While LLMs
excel at capturing contextual relationships between words, they do not inherently ground meaning in the
real world, unlike humans who learn language through sensory and perceptual experiences. In this paper,
we introduce VLG-BERT, a multimodal model which combines syntactic knowledge and visual grounding to

improve word representation learning. It extends our recent modal capabilities to incorporate real-world
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semantics. Unlike traditional models that learn embeddings solely from textual space, VLG-BERT uses latent
representations of real-world concepts to learn embeddings. Latent representations are extracted from the
Vision Transformer (ViT) trained on the ImageNet dataset. VLG-BERT aims to go beyond the purely textual
space as the only source of words representation learning, by involving the real-word semantics in the lear-
ning process. This grounding bridges the gap between vision and language, allowing the model to process
and encode richer semantic information. It is also particularly useful for multimodal downstream tasks.
VLG-BERT is also designed to inject syntactic knowledge into the attention mechanism using augmented La-
grange multipliers. The model employs syntactic dependencies as a form of ground truth to supervise the
learning process of word representation, thereby ensuring that syntactic structure exerts an influence on the
model’s word representations. The application of augmented Lagrangian optimization impose constraints
on the attention mechanism. It makes the learning of syntactic relationships easier. This approach involves
the customization of prediction layer of the standard BERT architecture. The objective is to predict an adja-
cency matrix that encodes words’ syntactic relationships rather than masked tokens. VLG-BERT introduces a
merge between bottom-up or data driven approach and rules driven or a top-down approach. Furthermore,

VLG-BERT brings clear insights about the interpretability of transformer-based models.

6.5 Related work

Transformer models like BERT and its variants have paved the way for great advancements in NLP. These
models are primarily geared towards modeling the semantics of language. They've resulted in tremendous
performance in many different fields Devlin et al. (2019); Liu et al. (2019); Lan et al. (2020); Sanh et al.
(2020); He et al. (2021). The scientific community developed new versions of BERT as a consequence of
the inaccurate results in some downstream tasks and appraisal of the linguistic properties of the natural
language Htut et al. (2019); Wiegreffe et Pinter (2019); Clark et al. (2020). Some of the proposed models
aim to inject linguistic knowledge into transformer models while others try to ground the language via vi-
sual data. Syntactic connections between words are not just what lends language its richness, but are also
what make meaning beyond mere word correlations Mechouma et al. (2022b); Bai et al. (2021). One way
of adding syntactic knowledge to transformer models is Syntax-BERT. It is an extension of the original BERT
that introduces explicit syntactic information through syntax trees and instructs the self-attentional sys-
tem in relation to linguistic dependencies such as parent, child, and sibling. This strategy preserves BERT’s
pre-trained expertise and combines it with structure and efficiency to help it better excel in NLP scenarios

when syntactic clarity is required or data is finite. Syntax-BERT is a system that allows syntax trees to be
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included during fine-tuning without the need to train from scratch Bai et al. (2021); Sundararaman et al.
(2019). The Syntactic Knowledge via Graph Attention with BERT is another proposed model which adopts
syntactic knowledge injection into transformer models. SGB is a machine translation dedicated model. It
explicitly uses the syntactic dependency knowledge via Graph Attention Networks (GAT) and BERT-based
encoders. The GAT treats syntactic structures as graphs, enhancing token representations with dependency
relations. It also combines them with BERT outputs through two methods. The first one is called SGBC.
it concatenates BERT and GAT outputs for encoder-decoder attention. The second one is SGBD (decoder-
guided syntax). This approach leaverage a translation fluency Dai et al. (2023). In addition to the syntax-
aware model in transformer models, a vision-oriented models have emerged. One of these models has
been developed with the objective of grounding natural language in visual data is VisualBERT. It is based
on the architecture of BERT. VisualBERT uses image-text alignment to ground language in visual contexts.
It employs cross-attention layers to establish a connection between the visual and textual modalities. Vi-
sual information is conveyed through a convolutional neural network (CNN) to extract visual embeddings,
which are subsequently integrated with the textual embeddings. The cross-modal attention layers grant
bidirectional influence between text and image representations during the encoding process. VisualBERT
employs a fusion strategy that unites textual tokens and visual features within a unified transformer Li et al.
(2019). LXMERT, which stands for Learning Cross-Modality Encoder Representations from Transformers is a
multimodal model. It processes both visual and textual data. It uses a cross-attention mechanism to merge
the image and text features. LXMERT architecture is based on two-stream transformer. The first stream
processes the visual features. It consists of image regions such as objects and objects parts encoded by a
pretrained Faster R-CNN model. The encoded visual features are then fed into LXMERT to learn contextual
relationships between image regions. The second stream processes textual features. It comprises BERT's
word embeddings. Both streams interact with each other through Cross-Attention Encoder. This interaction
enables the model to learn relationships between the image and its corresponding textual description Li
et al. (2019). The list of multimodal models is longer enough to overpass the limited pages number of the
present paper. Without dissecting technical details, we mention among others, UNITER, ImageBERT, and
Multimodal-BERT, which are Transformer-based models. They are conceived to connect visual and textual
data in order to improve the performance in multimodal tasks Rahman et al. (2020) Chen et al. (2020) Qi
et al. (2020). UNITER, UNiversal Image-Text Representation learns joint embeddings by pre-training on di-
verse image-text datasets, enabling tasks like image-text retrieval and visual question answering Chen et al.
(2020). Similarly, ImageBERT depends on a shared embedding space and cross-modal interaction to align

text and images Qi et al. (2020). In turn, Multimodal-BERT customize BERT’s architecture to handle multi-
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modal inputs. It is particularly dedicated to applications like medical image and text classification Rahman
et al. (2020). The research community is moving toward the integration of visual and textual data to encode
the meaning of language. These models offer an excellent way of grounding the language by aligning visual
information, such as images, with textual context. In the next sections, we present VLG-BERT, a multimodal

model which combines syntactic knowledge and visual grounding to improve word representation learning.

6.6 Two Categories of Words

The present work assume two categories of words. The first is called concrete words, while the second
is called abstract words. The former refers to all the words that they generally denote classes of entities
perceived by the senses. The ladder refers to all words that do not have a physical referent in the real
world. From cognitive sciences point of view, the term real world here, differs from Lackoff’s definition Lakoff

(1987). It is more in line with the definitions of Materialism and Empirical Realism.

6.7 Visual Grounding

Most LLMs use a random initialization to learn word embeddings. We propose a human-like model by initia-
lizing the embeddings matrix of words with their corresponding latent representation from the real-world.
In other words, the visual grounding in VLG-BERT consists of using the latent representations extracted from
the Vision Transformer ViT. The latent representations are learned by ViT based on the ImageNet dataset,
which contains 1000 labels or classes corresponding to real objects Dosovitskiy et al. (2021b); Deng et al.
(2009). We extend the vocabulary by building a lookup table that corresponds to our embeddings matrix,
using wordnet. The vocabulary extension uses Synonymy, Hyponymy and Hypernymy relations Miller (1995).
Semantically similar words are extended using WordNet semantic relations. Hyponyms are more specific
terms, while Hypernyms are general terms or categories. The semantic similarity of hyponyms should be
more similar to each other than to their hypernyms. This can be done by incorporating hierarchical Word-
Net semantic relations. In other words, several path-based similarity measures can be used to compute the
shortest path between two words in the hypernym-hyponym tree. The shorter the path between the two
words, the more semantically related they are. Finally the lookup table is implemented using JSON, where
keys are the tokens IDs and values are the latent representations before and after regularization. The se-
cond category of words which have no referent in the real world, are randomly initialized as in traditional

LLMs.
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The metric that measures the relationship between a word w and its hyponym whypo, and its hypernym

Whyper 1S given by :

R(w, Whyp, Whyper) = A - max (0, PathDist(w, whyper)—

PathDist (w, whypo) + 5) . (6.1)

where :

— \is the regularization strength parameter, it controls the influence of the term.

— o is a small margin to avoid zero and trivial solutions.

The intuition behind this regularization is to penalize the model when the path distance between a word w
and its hypernym whpyper is smaller than the path distance between the word and its hyponym wpypo. Using
the above metric, we compute hyponyms and hypernyms latent representations. Thus, we built a vocabu-
lary of 10 000 concrete words. It take the form of a lookup table. It is used to initialize the embeddings, if

the word is concrete and does not exist in the lookup table, we initialize it randomly.

6.8 Linguistic Grounding

VLG-BERT is a syntax-Aware model. It is designed to inject syntactic knowledge into the attention mecha-
nism. It uses augmented Lagrange multipliers as a constraint based as convex optimization method. VLG-
BERT deploys syntactic dependencies as a ground truth to supervise the learning process. The syntactic
relations between the sentence words are encoded in an adjacency matrix. VLG-BERT is forced to predict
a a matrix that approximate the adjacency matrix that encode the syntactic relations between words. The
use of the augmented Lagrangian optimization method is an innovative way of integrating constraints in
attention mechanisms. The prediction layer of the standard BERT architecture is customized to predict the

syntactic matrix.
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6.9 Conceptual Model

The model is based on transformer architectures and incorporates syntactic dependencies through the use
of an adjacency matrix, M. M is used to encode the syntactic dependencies. During the training phase, it
is employed as the ground truth to converge to. The positional encoding is kept as in BERT base, while the

next sentence prediction is not integrated.

6.9.1 Input Layer

The input comprises word embeddings, represented as a matrix £ € R™*? where n is the number of words
in a sentence and d is the embedding dimension. The model takes both tokens and position embeddings as

input to the Transformer layers.

6.9.2 Syntactic Dependencies Encoding

A binary adjacency matrix, M € R"*" is incorporated into the model, to encode syntactic dependencies,
where n is the number of words in a sentence. If word i has a direct dependency on word j, the correspon-
ding entry in the matrix M is set to 1, indicating a dependency. Otherwise, the entry is set to 0. This matrix

serves as a ground truth and a target for the model to learn during training.

6.9.3 Encoders Stack

The encoder stack is structured in accordance with the architectural principles of BERT Base. The enco-
der stack comprises a series of 12 Transformer layers, 12 attention heads, 768 hidden size, 512 maximum

sentence length which perform attention-based learning over the input embeddings.

6.9.4 Prediction Layer

The input to the prediction layer is the output from the last encoder layer, denoted as matrix H € R"*¢,
where n is the number of words in a sentence and d is the embedding dimension. To generate the syntactic
dependency matrix A of shape n x n, where n is the number of words in the input sentence. The model
uses a fully connected (dense) layer that takes the encoded word representations H and maps them to an

adjacency matrix representing the syntactic dependencies as follows.
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A = softmax(H - W) (6.2)

Where : H € R"*? js the output of the encoder stack.

W € R¥" is a learnable weight matrix of the prediction layer.

A € R™™" is the predicted syntactic adjacency matrix, representing the dependencies between the tokens
in the input sequence. The output values A;; € [0, 1] represent the strength of the syntactic dependency
between the words 7 and j. A value close to 1 indicates a strong dependency, while a value close to O

indicates weak or no dependency.

6.9.5 Why a Softmax and not a Sigmoid ?

In our context the question ties directly into the concepts of dependent and independent variables in the
field of probability. From linguistic perspective, words are connected by syntactic dependencies, and these
dependencies usually carry semantic meaning. By applying softmax, we introduce a distributional hypothe-
sis where words with strong syntactic relationships have higher probabilities compared to unrelated words.
In the case of sigmoid activation, we treat the syntactic relationships between words as independent events.
In other words word-pairs are processed in isolation. From computational perspective, by introducing pro-
bability distribution, softmax squashes negative values towards zero and brings probabilities to one for
relevant relationships, which is beneficial when used with the Lagrangian multiplier to converge quickly to
a binary adjacency matrix. One potential downside of softmax is enforcing mutual exclusivity in its outputs,
which could be problematic because a word can have multiple syntactic relationships simultaneously. In our

case, softmax makes more sense than sigmoid.

6.9.6 Augmented Lagrangian Formulation

The Augmented Lagrangian method represents an extension of the classical Lagrangian approach to optimi-
zation, particularly suited for handling constraints in problems where traditional Lagrangian multipliers may
be insufficient. In the present context, the Augmented Lagrangian framework is applied to enforce syntactic
dependencies during the learning of word representations in a Transformer-based model. The mathema-
tical foundation involves modifying the objective function by incorporating a penalty term to enforce the

constraint.
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The choice of the Augmented Lagrangian method is driven by the non-convex nature of the underlying opti-
mization problem, particularly in the context of training deep learning models such as Transformers. While
traditional gradient descent methods are effective for unconstrained optimization, they often encounter dif-
ficulties in satisfying hard constraints, particularly in complex, non-convex landscapes Fioretto et al. (2020);

Basir et Senocak (2023); Wu et al. (2024).

A-M=0 (6.3)

where :
A is the predicted adjacency matrix and
M is the target syntactic matrix.

The objective function is defined as Lisk(A, M) = %||A — M||%. This represents the squared Frobenius
norm, which quantifies the discrepancy between the predicted and actual syntactic matrices. The Augmen-
ted Lagrangian introduces Lagrange multipliers A and a penalty parameter i to modify this loss function,

yielding :

La(A\ 1) = Lask(A, M) + AT (vec(A) — vee(M)) + g [vec(A) — vec(M)]||% (6.4)

Where :
Liask (A, M) is the previous defined objective function.
)\ are the Lagrange multipliers vector n? x 1 that adjust dynamically to enforce the constraint.

operatornamevec() denotes the matrix vectorization obtained by stacking its columns into a single column

vector ( flattened vecto )
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1 is a positive scalar controlling the strength of the penalty term. It can be viewed as a form of regularization.

6.9.7 Loss Function

The prediction layer’s output A is compared with the true adjacency matrix M which contains the actual

syntactic dependencies using a task-specific loss function. The loss can be formulated as :

1
Luss(A, M) = 5| A = M} (6.5

Where : || - ||% is the Frobenius norm, which measures the difference between the predicted and true

syntactic adjacency matrices.

6.9.8 Lagrange Multipliers

The term )\T(A — M) plays crucial role in the enforcement of constraints during the optimization process.
In this context, the vector X\ represents the Lagrange multipliers associated with the constraints defined in
the optimization problem. The constraints are that the learned matrix A should closely approximate the
target adjacency matrix M, which encodes the syntactic dependencies between words. The denotation
AT(A — M) represents the dot product between the vector A and the matrix A — M. The ) vector is of
length n dimension. Each entry of A corresponds to a specific word in the sentence. This allows for individual
weighting of the constraint violations associated with each word’s syntactic dependencies. This configura-
tion allows the model to ascertain the extent to which each word’s representation should be modified in
accordance with its relationship to other words within the sentence, thereby reflecting its significance wi-

thin the context of the syntactic structure.

When )\ is treated as importance weights of words, the model emphasizes the syntactic influence of each
word on the overall structure. This aligns well with the goal of capturing linguistic dependencies, as the
adjustments made by X can reflect the importance of each word in maintaining syntactic relationships. The
gradient updates influenced by A can help shape the learning process, as the model adjusts the embeddings
based on the weighted contributions of each word. This can lead to more effective embeddings that respect

syntactic constraints more closely.
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6.9.9 Constrained Learning with Penalization

The term % |A— MH%7 serves as a penalty that increases in severity when the predicted adjacency matrix A
diverges from the target adjacency matrix M. This penalty discourages the model from making predictions
that contravene the syntactic constraints, in a manner analogous to how regularisation techniques prevent
overfitting by penalising complex models. The value of u directly influences how strongly the constraints
are enforced during training. The value of i exerts a direct influence on the degree to which constraints
are enforced during the training process. A larger . places greater emphasis on satisfying the constraints,
effectively guiding the optimisation process towards solutions that adhere closely to the required syntactic
structure. This is analogous to a regularisation parameter in traditional regularisation methods such as L2

regularisation, where a larger value results in more stringent constraints on the model parameters.

6.9.10 Balancing Objective Function and Constraint Satisfaction

By adjusting u, you can find a balance between minimizing the objective function L, (A, M) and ensuring
that the predicted matrix A aligns with the constraints defined by M. In this way, ;. serves a dual purpose :
enhancing model performance on the primary task while also ensuring that the learned representations
are constrained by the linguistic structure, similar to how regularization techniques aim to improve genera-
lization.

6.9.11 Optimization

1. Loss Computing : at the start of each training iteration, compute the task loss

1
Sll4 = MIIE (6.6)
2. Constraint Violation Computing : determine the constraint violations function as
g(A)=A-M (6.7)

3. Lagrange Multipliers Update : the Lagrange multipliers \ are updated to measure the current constraint

violations
A+ Z\B) 4 (Vec (A(k)) _ VeC(M)> (6.8)
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By applying the softmax function to the sum of the constraint violations, it effectively normalizes

these constraint violations across the word embedding space.

. Total Loss Computing : the total loss function is then expressed as
LA(A, N 1) = Lk (A, M) + AT (vec(A) — vec(M)) + g [vec(A) — vec(M)|% (6.9)

. Total Gradient Computing : compute the gradient of the total loss with respect to A

VALA(A N 1) = VaLtask (A, M) + VA(A" (vec(A) — vec(M))) + Va (u]| A — M||3) (6.10)
. Gradient Descent Optimization : update A using the computed gradients
A+ A—nVaL(A )\ p) (6.11)

where 7 is the learning rate, controlling how much A is updated in each iteration.

. Backpropagation Computing : the gradients V 4L 4(A, A\, 1) are computed based on the loss with
respect to the output A. These gradients will indicate how changes in A affect the overall loss, pro-
viding information about how to adjust the weights in all encoder layers. Using the chain rule, the
gradients of the loss with respect to the encoder weights can be calculated by tracing back through

the layers of the model.

VLA:VALA+VHLA-WT-i-VWqLA-i-VWkLA-i-VWvLA (6.12)

Where : V 4 L 4 the gradient of the loss function with respect to the output matrix A.
VL 4 is the gradient of the loss function with respect to the hidden states H.
WT is the transposed weight matrix connecting H to the output matrix A.

VW, is the gradient of the loss L 4 with respect to the weights W, of the query projection in the

self attention mechanism of the encoder.

VW, is the gradient of the loss L 4 with respect to the weights 1¥}. of the key projection in the self

attention mechanism of the encoder.

VW, is the gradient of the loss L 4 with respect to the weights W,, of the values projection in the

self attention mechanism of the encoder.
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6.10 VLG-BERT under the Spotlight of Cognitive Sciences

LLMs learn the probability distribution of sequences of words in natural language. They are designed ba-
sed on the idea of maximizing the probability of certain words under certain conditions. This can be the
next word in a sequence, or a masked word. In an auto-regressive model, given a sequence of words
wi, wa, ..., Wn_1, the model learns to predict the probability distribution for the next word w,,. Unlike the
auto-regressive model, bidirectional models learn to predict a word by conditioning on both the preceding
and succeeding words in the sequence. Given a sequence of words w1y, wo, ..., w,, the model predicts
a representation for each word by conditioning on both the left and right context. The LLMs community
considers next word prediction models to be text generation models, while they consider bidirectional en-
coding models to be text understanding models. The integration of different sensory modalities is necessar
to humans to perceive and understand the world. The architecture of VLG-BERT can be seen as a compu-
tational model that mimics humans by combining textual and visual data for a better and deeper encoding
of the language meaning. VLG-BERT aligns with many theories like Symbol Grounding. Symbol Grounding
refers to the association of the abstract symbols like words with real-world objects Harnad (1990). In cog-
nitive science, grounding is fundamental to how humans link linguistic symbols to sensory experiences like
seeing an apple. In Embodied Cognition theory, the mind is considered to be rooted in the body'’s interac-
tions with the world. This implies that understanding comes from both perceiving and acting in the world.
VLG-BERT aligns with the idea of Embodied Cognition by grounding language in visual data Barsalou (1999).
The representations in VLG-BERT approximate Rosch Prototypes theory by clustering features from both la-
tent visual features and linguistic domains, improving generalization for concept categories Rosch et Heider
(1973). VLG-BERT aligns with Dual Coding theory that combines verbal and imaginal codes that reinforce the
comprehension and the retrieval of concrete concepts Evans et Frankish (2009). By combining visual signs
and linguistic signs, VLG-BERT aligns with Peirce’s triadic model of signification, offering a robust semiotic
framework for word meaning Peirce (1878, 1958). The visual and linguistic signs can be considered as iconic

and symbolic representamens while the learned embeddings of words like Interpretants.

6.1 Architecture

The proposed architecture consists of two interconnected components : The BERT Base and a customized
prediction Layer. The former is BERT Base follows the standard Transformer architecture, which operates
without any constraints and leverages gradient descent optimization and the latter is the modified predic-

tion layer that introduces a novel constraint-based optimization mechanism using Augmented Lagrangian
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Optimization. At the input layer, lookup table is used to map visual latent representation to corresponding
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Figure 6.1 - Proposed Architecture

6.12 Experiments

In order to evaluate and test VLG-BERT, the same datasets already used by BERT were employed : the English
Wikipedia dump and BookCorpus. The Wikipedia dump yielded 16 GB of plain text. In turn, BookCorpus
provides access to a substantial corpus of over 11,000 free, unpublished books sourced from the internet. To
ensure a meaningful comparison with BERT and its derived models, we used a high performance hardware
configuration. The training was conducted on a commercial cloud platform utilizing 8 GPUs, 128 Gig of RAM
and 32 of vCPUs Cores. For model evaluation, we concentrated on text classification task. To evaluate the
generated embedding from VLG-BERT, the AG News dataset is used to focus on categorizing news articles
into predefined categories. Hyper-parameters are defined as following A for equation 1is 0.01,; for equation
4 is 0.001, Learning Rate : 2 x 10~?, Train Batch Size : 16, Evaluation Batch Size : 8, Seed : 42, Optimizer :
Adam with 8; = 0.9, B2 = 0.999, and € = 1 x 108, Number of Epochs : 30. While BERT-base took around
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96 hours to train on 16 TPUs, we notice that VLG-BERT, on the other hand, took a longer training time of
122 hours. This is expected because the hardware configuration in that case was less powerful than that
of BERT-base. That would reflect the efficiency of the learned embeddings with VLG-BERT. This confirms
that the model converged quickly. This proves the efficiency of the visual grounding and also the use of

constraint-based optimization with an augmented Lagrangian to reduce the training time.

Metric BERT Base VLG-BERT

Precision (Class 0) 0.9539 0.9815
Recall (Class 0) 0.9584 0.9833
F1-Score (Class 0)  0.9562 0.9784
Precision (Class1) 0.9884 0.9903

Recall (Class 1) 0.9879 0.9901
F1-Score (Class 1) 0.9882 0.9912
Precision (Class 2) 0.9251 0.9602

Recall (Class 2) 0.9095 0.9513
F1-Score (Class 2)  0.9172 0.9526
Precision (Class 3) 0.9127 0.9482
Recall (Class 3) 0.9242 0.9458
F1-Score (Class 3)  0.9184 0.9437
Accuracy 0.9450 0.9756

Table 6.1 - Performance of the three model on AGNews Dataset

The comparison of the two models on the AGNews dataset shows that VLG-BERT outperforms BERT Base
in all metrics. VLG-BERT scored the highest accuracy (97.56%) and F1-Scores for all classes. It demonstrates
notable improvements in precision, recall, and F1-Scores. Compared to SCABERT, which benefits from only

syntactic grounding.

6.13 Conclusion

VLG-BERT has valuable contributions from both computer science and cognitive science standpoints. Com-

puter science, with regard to the advance of multimodal learning, it efficiently combines visual and linguistic
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data that could lead to richer, more robust representations of words. The integration of visual grounding
with textual information enables this model to handle complex, real-world tasks more efficiently. Such a
setup from a cognitive science viewpoint is in consonance with VLG-BERT, as it grounds the words in the
physical world, incorporating syntactic structures to mirror computationally human-like understanding of
concepts. The model supports the perceptual gap between language and vision, representing and leve-
raging visual and linguistic inputs cohesively to interpret the world, much like humans. This will be further
demonstrated by future comparisons with models like VisualBERT, LXMERT, and CLIP, especially on multimo-
dal tasks such as image captioning and visual question answering. These will serve to underline its ability
to integrate visual, syntactic, and semantic knowledge to provide a deeper understanding of multimodal

interactions.
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CONCLUSION

Dans cette thése, nous avons exploré de nouvelles approches pour intégrer des connaissances linguistiques
et visuelles aux mécanismes d'attention, afin d’améliorer I'encodage du sens des mots et de rendre les
grands modéles de langage plus lisibles. Nos travaux visent a dépasser les limites des modéles existants en
intégrant des structures syntaxiques et des représentations visuelles latentes, afin d’aligner I'apprentissage
automatique sur les principes fondamentaux des sciences cognitives. Nous nous sommes notamment ap-
puyés sur la théorie sémiotique de Charles Sanders Peirce, qui fournit un cadre solide pour appréhender le
sens a travers les symboles, les indices et les icones, applicables aussi bien au langage qu’a la perception

visuelle.

Nous avons tout d’abord introduit un masque d’analyse des dépendances (DPM) qui améliore le mécanisme
d’attention de BERT en exploitant les relations syntaxiques entre les mots. Cette approche s'appuie sur la
catégorie du symbole chez Peirce : le sens nait ici de conventions grammaticales formelles, dans lesquelles

la signification d’'un mot dépend de sa position et de sa relation aux autres dans la structure syntaxique.

Dans un second temps, nous avons concu lingBERT, une variante de BERT qui intégre une stratégie de mas-
quage hybride combinant aléatoirement des tokens avec des mots ayant des relations syntaxiques. Cette
approche permet d’améliorer la capture du contexte tout en réduisant la complexité computationnelle. En
s'appuyant sur les arbres syntaxiques comme vérité de terrain, lingBERT inscrit son encodage sémantique
dans un cadre symbolique tout en amorcant une ouverture vers une supervision plus formelle du sens, en

traitant les structures syntaxiques comme des objets de connaissance a injecter dans le modeéle.

Pour poursuivre cette exploration, nous avons développé SCABERT, une méthode d’optimisation par mul-
tiplicateurs de Lagrange augmentés qui contraint I'apprentissage des représentations lexicales en fonction
des dépendances syntaxiques. Ici, la structure syntaxique devient une vérité de supervision. Cette approche
renforce la catégorie du symbole dans le modéle et commence également a refléter une forme d'indice :
les dépendances syntaxiques ne sont plus seulement des conventions, mais deviennent des contraintes

indiquant la maniére dont les mots interagissent dans la dynamique de la phrase.

Enfin, nous avons proposé VLG-BERT, un modéle multimodal combinant des connaissances linguistiques et

visuelles afin d’enrichir la sémantique des représentations lexicales. Il s'agit de I'évolution directe de SCA-

M



BERT. En s’appuyant sur un vocabulaire structuré a partir des étiquettes ImageNet et des relations lexicales
de WordNet, VLG-BERT introduit une base iconique dans I'encodage du sens. A travers les représentations
visuelles latentes, le modéle exploite la ressemblance entre les objets percus et leur signifiant, conformé-
ment a la notion d’icone chez Peirce. De plus, le lien entre les mots et leurs représentations visuelles établit
une relation de contiguité perceptive, propre a la notion d’indice. VLG-BERT est ainsi le premier modéle de

notre lignée a incarner pleinement la triade sémiotique peircéenne. :

— les symboles, avec la structure linguistique et syntaxique;
— les indices, via les associations perceptives et catégorielles;

— les icones, a travers la ressemblance visuelle.

Les résultats obtenus grace a ces différentes contributions confirment que l'intégration de connaissances
linguistiques et visuelles dans les mécanismes d'attention constitue une avancée significative pour I'enco-
dage du sens des mots. Nos approches ont non seulement permis d’améliorer les performances des mo-
déles sur des taches en aval, mais aussi de renforcer leur explicabilité et leur alignement avec les structures

linguistiques et cognitives sous-jacentes.

Dans la continuité de ces travaux, plusieurs perspectives peuvent étre envisagées. D'une part, I'extension de
ces approches a des modéles plus larges et plus complexes permettrait d'explorer les limites de I'injection
de connaissances structurées a grande échelle. D'autre part, une validation approfondie sur des taches
multimodales, telles que la génération d’images a partir de descriptions textuelles ou la compréhension de
dialogues visuels, permettrait d'évaluer plus précisément I'apport des représentations intégrant la syntaxe
et lavision. Enfin, il serait intéressant de combiner ces approches a des méthodes d’apprentissage contrastif
afin de renforcer la cohérence entre les différentes modalités et d'affiner I'encodage du sens des mots dans

les LLM.

Cette thése ouvre ainsi de nouvelles perspectives pour I'amélioration des modeéles de langage, en s’ap-
puyant sur une fusion plus riche entre les connaissances symboliques, les représentations visuelles et les
mécanismes d’attention. En nous appuyant sur la sémiotique de Peirce, nous avons montré qu'il est possible
de construire des modéles plus interprétables, plus efficaces et plus proches du fonctionnement cognitif hu-
main en reliant le langage non seulement a sa forme grammaticale, mais aussi a son ancrage perceptif et

conceptuel dans le monde.
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