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RÉSUMÉ

Cemémoire porte sur la résolution d’un problèmede contrôle stochastique à la (de Finetti, 1957) dans lequel
on cherche à maximiser les paiements de dividendes, de taux borné par une fonction linéaire, et déduits
du coût d’injections de capital obligatoires. Nous arrivons à la conclusion qu’une stratégie optimale est de
verser des dividendes au taux maximal lorsque le surplus de capital excède un certain seuil, et de ne rien
verser sinon.

Ce problème est un cas spécifique de celui résolu par (Renaud et al., 2023) en utilisant la théorie des solu-
tions de viscosité. Nous présentons une résolution plus directe et élémentaire qui a pour avantage d’appro-
fondir la compréhension des différents objets que nous manipulons. Nous obtenons une forme explicite
de la fonction de performance d’une stratégie linéaire pour un seuil quelconque, puis nous trouvons le
seuil dont la fonction de performance est optimale parmi toutes les stratégies admissibles. De plus, nous
vérifions numériquement que la fonction valeur de notre problème est une meilleure approximation de la
fonction valeur de (Løkka et Zervos, 2008) que celle du problème de maximisation de dividendes dont le
taux est borné par une constante.

Mots clés : contrôle stochastique ; maximisation de dividendes ; injections obligatoires ; transformées de
Laplace ; mouvement brownien.
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INTRODUCTION

Lorsqu’une firme possède d’importants surplus de capital, elle est susceptible d’en verser une partie à ses

actionnaires ; par exemple, sous forme de dividendes. À l’inverse, quand celle-ci frôle la faillite, elle peut

obtenir du capital des actionnaires. Intuitivement, une firme devrait verser le plus de dividendes possible,

et injecter le moins de capital en vue de satisfaire ses actionnaires. Cependant, une grande quantité de

dividendes a pour effet de diminuer rapidement le surplus de capital, et d’accroître le besoin d’injecter

du capital. Et inversement, s’il y a trop peu d’injections, le surplus de capital ne grimpe pas assez pour

permettre à la firme de verser convenablement des dividendes. Il y a ainsi un équilibre optimal à trouver

entre les versements et les injections.

Le surplus de capital évolue aléatoirement dans le temps, ce qui motive l’étude de ce type de problème en

mathématiques actuarielles et financières. La littérature se base principalement sur la théorie du contrôle

stochastique pour répondre à ces problèmes d’optimisation. Le surplus dit non contrôlé y est modélisé par

un processus à temps continuX = (Xt)t⩾0, typiquement unmouvement brownien avec dérive µ et volati-

lité σ. Les versements de dividendes et les injections de capital cumulatifs sont représentés respectivement

par les processus croissants L = (Lt)t⩾0 et G = (Gt)t⩾0. Le surplus contrôlé s’écrit alors intuitivement

sous la formeX − L+G.

L’objectif du problème est d’identifier une stratégie, c’est-à-dire les processus de contrôle L etG, qui maxi-

mise une certaine fonction de performancemesurant la satisfaction des actionnaires. On cherche aussi une

expression de cette fonction maximisée, appelée fonction valeur. Il existe une grande variété de tels pro-

blèmes, qui se distinguent essentiellement par le choix du modèle intrinsèque (c’est-à-dire X et quelques

paramètres comme le taux d’actualisation, le coût des injections, des frais divers, etc.), et par la forme que

prennent les processus de contrôle.

Bruno de Finetti fut le premier, dans (de Finetti, 1957), à proposer un problème de ce genre, dans lequel

il utilise une marche aléatoire comme modèle intrinsèque, et considère uniquement les versements de

dividendes. Les problèmes de maximisation de dividendes sans injections, donc avec G ≡ 0, ont été lar-

gement étudiés : voir notamment (Avanzi et al., 2011; Jeanblanc-Picqué et Shiryaev, 1995; Locas et Renaud,

2024; Rao, 2023) ainsi que (Albrecher et Thonhauser, 2009; Avanzi, 2009) pour une revue de la littérature à

ce sujet. L’absence d’injections nécessite toutefois d’introduire une notion de faillite qui arrête le processus
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au moment de la ruine. Typiquement, la faillite survient à l’instant où le surplus contrôlé devient négatif.

Quant à la forme du contrôle (ou de la stratégie)L, on doit définir un ensemble de stratégies admissibles sur

lequel sera performé l’optimisation. De manière générale, cet ensemble contient tout processus croissant

et càdlàg (continu à droite avec limite à gauche) tel que la faillite ne peut être causée par un versement

de dividendes. Une stratégie barrière est souvent optimale pour ce type de contrôle : dès que le surplus

contrôlé excède une barrière fixée b ⩾ 0, l’excédent est distribué instantanément sous forme de dividendes

(Avram et al., 2007; Gerber et Shiu, 2004; Jeanblanc-Picqué et Shiryaev, 1995). Le processus L optimal

comporte donc des sauts, et il est appelé contrôle singulier du fait que dans ce cas, la mesure induite par L

est singulière par rapport à la mesure de Lebesgue (voir (Karatzas, 1983)).

Il est parfois utile de restreindre l’ensemble des stratégies admissibles aux contrôles dits absolument conti-

nus (Albrecher et Thonhauser, 2009), à savoir tels que leur mesure induite est absolument continue. Dans

ce cas, une stratégie L admissible admet un processus positif et borné ℓ = (ℓt)t⩾0 tel que

Lt =

∫︂ t

0
ℓsds, t ⩾ 0.

Le processus ℓ représente la densité ou le taux instantané de versement de dividendes. De cette façon,

L est continu. Une stratégie à seuil est souvent optimale : les dividendes sont versés à un taux constant

α > 0 seulement lorsque le surplus contrôlé excède un seuil fixé b ⩾ 0 (Frostig, 2005; Gerber et Shiu,

2006; Jeanblanc-Picqué et Shiryaev, 1995).

Le lecteur aura peut-être remarqué que pour une stratégie à seuil, le contrôleL dépend du surplus contrôlé,

qui dépend à son tour de L. L’équationX − L caractérisant le surplus contrôlé devient alors une équation

différentielle stochastique (EDS), dont une condition supplémentaire d’admissibilité est qu’elle admet une

solution. Il est coutume d’exprimer ℓ par une fonction positive u du surplus contrôlé. On note dans ce cas

le surplus contrôlé parXu = (Xu
t )t⩾0, et le processus de contrôle Lu est donné par

Lut =

∫︂ t

0
u(Xu

s )ds.

En général, la fonction u est bornée supérieurement afin d’éviter toute singularité dans l’intégrale, et c’est

précisément le type de borne qui caractérise l’ensemble des stratégies admissibles. La borne est habituel-

lement une constante S > 0, donc u(x) ⩽ S pour tout x ⩾ 0. Ce problème a été résolu dans (Jeanblanc-

Picqué et Shiryaev, 1995), où il a été montré que le problème de maximisation de dividendes singuliers est

un cas limite (S →∞) de ce problème. Il y a aussi la borne linéaire u(x) ⩽ Kx+S, x ⩾ 0 avecK,S > 0,
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dont le problème a été résolu par (Rao, 2023), et qui est une généralisation à la fois de la borne constante

et de la borne u(x) ⩽ Kx, x ⩾ 0, dont le problème fut résolu par (Renaud et Simard, 2021). Récem-

ment, (Locas et Renaud, 2024) ont proposé une borne encore plus générale, u(x) ⩽ F (x), x ⩾ 0, où F

est une fonction croissante et concave. Ces quatre problèmes tirent la conclusion que la stratégie optimale

de versement de dividendes est de type bang-bang, c’est-à-dire que, soit on verse des dividendes au taux

maximal, soit on n’en verse pas. Plus exactement, celle-ci prend la forme d’une stratégie à seuil qui verse

au taux maximal lorsque Xu
t excède le seuil fixé, taux qui est exactement la borne imposée sur u par le

problème.

Revenons aux problèmes avec injections de capital (tels que G ̸≡ 0). Nous nous intéressons ici aux pro-

blèmes avec injections obligatoires en zéro ; c’est-à-dire qui surviennent « automatiquement » lorsque le

surplus contrôlé atteint 0. De cette façon, le processus G n’est pas un contrôle, donc il n’y a que les paie-

ments de dividendes à optimiser. Ces problèmes sont très prisés (voir notamment (Avram et al., 2007; Løkka

et Zervos, 2008; Pérez et al., 2018; Renaud et al., 2023)), puisqu’ils constituent une étape intermédiaire aux

problèmes généraux d’optimisation de (L,G).

De plus, le contrôle optimal pour L dans les problèmes avec injections forcées est souvent du même type

que pour le problème analogue sans injections. Par exemple, (Løkka et Zervos, 2008) résolvent le problème

limite de (Jeanblanc-Picqué et Shiryaev, 1995) en ajoutant les injections obligatoires, et concluent qu’une

stratégie barrière est optimale pour les dividendes. Similairement, (Renaud et al., 2023) considèrent des

dividendes absolument continus et bornés par une fonction F croissante et concave, comme dans l’article

de (Locas et Renaud, 2024), en y incorporant les injections forcées. Ils trouvent eux aussi qu’une stratégie

bang-bang est optimale pour les paiements de dividendes.

Malgré les similitudes entre le problème de (Løkka et Zervos, 2008) et de (Renaud et al., 2023), ces derniers

emploient des méthodes de résolution différentes, bien qu’elles tournent autour de l’équation d’Hamilton-

Jacobi-Bellman, ou équation HJB. Cette équation issue de la programmation dynamique a une forme par-

ticulière à chaque problème, et il est attendu qu’une solution de cette équation soit la fonction valeur.

De plus, cette équation aide à l’identification du type de stratégie qui peut être optimale. Il reste enfin à

confirmer que la fonction et la stratégie candidates sont bien optimales grâce à un Théorème de vérification

faisant intervenir l’équation HJB.
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Pour trouver une expression d’une fonction candidate à la fonction valeur, (Løkka et Zervos, 2008) utilisent

les propriétés analytiques de l’équation HJB. (Renaud et al., 2023), quant à eux, obtiennent d’abord une

forme explicite de la fonction de performance d’une stratégie bang-bang quelconque, avant de trouver

celle qui est optimale dans ce sous-ensemble de stratégies, en faisant le lien avec la caractérisation de la

fonction valeur comme solution de viscosité de l’équation HJB.

Dans ce mémoire, nous appliquons cette méthode pour résoudre le problème de maximisation de divi-

dendes avec injections obligatoires,mais sans utiliser la théorie des solutions de viscosité. Nous considérons

des injections obligatoires en zéro, et des versements de dividendes absolument continus bornés par une

fonction linéaire, de la forme F (x) = Kx+S, x ⩾ 0 avecK,S > 0. Nous étudions des stratégies de type

bang-bang, que nous appellerons plutôt des stratégies linéaires. Il s’agit donc d’un cas spécifique du sous-

problème avec injections obligatoires de (Renaud et al., 2023). Cependant, la simplicité de la borne linéaire

nous donne l’avantage de proposer une approche plus directe et élémentaire offrant une compréhension

plus profonde et transparente des objets que nous manipulons.

Au Chapitre 1, nous présentons des transformées de Laplace de temps de premier passage qui sont centrales

au calcul de la fonction de performance d’une stratégie linéaire. Le calcul de l’une de ces transformées

nécessite une approximation d’un processus, dont nous présentons une preuve plus détaillée que dans

(Locas et Renaud, 2024; Renaud et al., 2023).

Au Chapitre 2, nous introduisons formellement le problème central à ce mémoire, puis donnons une forme

explicite de la fonction de performance pour une stratégie linéaire quelconque. La valeur en zéro de cette

fonction demande de calculer une certaine espérance que nous obtenons par une approche nouvelle, au

mieux de nos connaissances, faisant intervenir une approximation similaire à celle du chapitre précédent.

Enfin, nous montrons qu’il existe une telle stratégie dont la fonction de performance satisfait certaines

conditions de régularité, et vérifions que cette dernière est optimale.

Au Chapitre 3, nous effectuons quelques analyses numériques qui nous aideront à bien saisir le comporte-

ment de la stratégie optimale et de la fonction valeur selon les paramètres du modèle.
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CHAPITRE 1

TRANSFORMÉES DE LAPLACE DE TEMPS DE PREMIER PASSAGE

Comme il a été mentionné en introduction de ce mémoire, le calcul de la fonction de performance d’une

stratégie linéaire fera intervenir diverses transformées de Laplace de temps de premier passage. Ces quan-

tités sont au centre de la résolution du problème; elles méritent donc d’être dûment présentées. Nous

commençons par introduire quelques transformées de Laplace « élémentaires » à la Section 1.1 avant de

passer au calcul d’une transformée plus complexe à la Section 1.2.

Mais d’abord, nous nous intéressons à deux équations différentielles ordinaires, qui se trouvent en quelque

sorte au cœur de notre problème. Soit µ, σ, q > 0, la première équation différentielle est

σ2

2
f ′′(x) + µf ′(x)− qf(x) = 0, (1.1)

qui admet les solutions fondamentales

f+(x) = e
−µ+∆

σ2 x, f−(x) = e
−µ−∆

σ2 x,

avec∆ =
√︁
µ2 + 2σ2q. Ces solutions sont, respectivement, strictement croissante et décroissante.

La seconde équation différentielle est

σ2

2
f ′′(x) +

(︁
µ− (Kx+ S)

)︁
f ′(x)− qf(x) = 0, (1.2)

qui admet les solutions fondamentales

H+(x) = exp

(︄
K

2σ2

(︃
x− µ− S

K

)︃2
)︄
D− q

K

(︄
−
√
2K

σ

(︃
x− µ− S

K

)︃)︄
,

H−(x) = exp

(︄
K

2σ2

(︃
x− µ− S

K

)︃2
)︄
D− q

K

(︄√
2K

σ

(︃
x− µ− S

K

)︃)︄
,

qui sont, respectivement, strictement croissante et décroissante (voir l’Annexe 2 de (Borodin et Salminen,

2002)). Pour λ > 0,D−λ est la fonction cylindre parabolique :

D−λ(x) =
e−

x2

4

Γ(λ)

∫︂ ∞

0
tλ−1e−xt−

t2

2 dt, x ∈ R.

On utilisera surtoutH−, ce pourquoi on notera plutôtH(x) := H−(x) afin d’alléger l’écriture.
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Remarque 1.1 (Chapitre 16 de (Breiman, 1968)) Les solutions des équations (1.1) et (1.2) sont :

— positives ;

— continues ;

— finies en tout point (sauf à±∞ selon la croissance) ;

— telles que toute autre solution continue est une combinaison linéaire de ces solutions.

1.1 Des transformées et leurs propriétés

Soit (Ω,F , (Ft)t⩾0,P) un espace de probabilité filtré et (Bt)t⩾0 un mouvement brownien standard. Nous

considérons le mouvement brownien arithmétique (MBA)X = (Xt)t⩾0 :

dXt = µdt+ σdBt,

ainsi que le processus Y = (Yt)t⩾0 dont la dynamique est

dYt = (µ− S −KYt) dt+ σdBt.

Ce processus est bien connu, puisqu’il s’agit d’un processus d’Ornstein-Uhlenbeck (O-U).

Définition 1.2 (Temps de premier passage) Pour un processus donnéA = (At)t⩾0, on définit le temps d’ar-

rêt suivant,

τAb = inf{t ⩾ 0 | At = b}, b ∈ R,

soit le premier instant où A atteint b.

Notation 1.3 Nous userons amplement de la notation Ex[·] pour signifier que le processus (par exemple

(Xt)t⩾0) dont nous prenons l’espérance est de valeur initiale x, c’est-à-dire X0 = x. Nous ferons la même

chose avec Px pour signifier la loi du processus sachant sa valeur initiale.

Voici maintenant nos premières transformées de Laplace de temps de premier passage :

Définition 1.4 Pour b > 0, les fonctions φb, ψb,Ψb : R+ → [0, 1] sont définies par

φb(x) = Ex
[︂
e−qτ

X
b 1τXb <τX0

]︂
, 0 ⩽ x ⩽ b,

ψb(x) = Ex
[︂
e−qτ

X
0 1τX0 <τXb

]︂
, 0 ⩽ x ⩽ b,

Ψb(x) = Ex
[︂
e−qτ

Y
b 1τYb <∞

]︂
, b ⩽ x.
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Notation 1.5 Il convient de préciser que cette notation peut porter à confusion avec celle de (Renaud et al.,

2023). Il existe néanmoins une correspondance entre les deux notations, que nous dressons ci-dessous :

φb(x)←→
ψ(x)

ψ(b)
,

ψb(x)←→ Ψ(x)−Ψ(b)
ψ(x)

ψ(b)
,

Ψb(x)←→
φ(x)

φ(b)
,

où le côté gauche correspond à notre notation, et le côté droit à celle de (Renaud et al., 2023).

Il est connu (Borodin et Salminen, 2002; Breiman, 1968; Darling et Siegert, 1953) que φb etψb sont solutions

de l’équation différentielle (1.1) sur (0, b) avec conditions aux bords

φb(0) = 0, φb(b) = 1,

ψb(0) = 1, ψb(b) = 0,

et queΨb est solution de l’équation différentielle (1.2) sur (b,∞) avec conditions aux bords

Ψb(b) = 1, Ψb(∞) = 0,

oùΨb(∞) est une manière simplifiée d’écrire limx→∞Ψb(x). On constate facilement à partir de leur défi-

nition que ces transformées satisfont bien les conditions aux bords.

Bien qu’il s’agit d’un résultat classique, nous en présentons ici une démonstration puisqu’elle a beaucoup

en commun avec la démonstration du Théorème de vérification 2.20, ce dernier étant la pierre angulaire

de notre problème.

Preuve. Tout d’abord, pour φb et ψb, soit ϕ une solution générale de l’EDO (1.1) sur (0, b). Appliquons la

Formule d’Itô au processus (t,Xt) avec la fonction (t, x) ↦→ e−qtϕ(x) ∈ C1,2(R+ × R). On trouve

d
(︁
e−qtϕ(Xt)

)︁
= −qe−qtϕ(Xt)dt+ e−qtϕ′(Xt)dXt +

1

2
e−qtϕ′′(Xt)d [X]t

= −qe−qtϕ(Xt)dt+ e−qtϕ′(Xt) (µdt+ σdBt) +
1

2
e−qtϕ′′(Xt) · σ2dt

= e−qt
(︃
σ2

2
ϕ′′(Xt) + µϕ′(Xt)− qϕ(Xt)

)︃
dt+ σe−qtϕ′(Xt)dBt.
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Sous forme intégrale, et en particulier pour t = τX0 ∧ τXb , on obtient

e−q(τ
X
0 ∧τXb )ϕ

(︂
XτX0 ∧τXb

)︂
= ϕ(X0) +

∫︂ τX0 ∧τXb

0
e−qt

(︃
σ2

2
ϕ′′(Xt) + µϕ′(Xt)− qϕ(Xt)

)︃
dt

+

∫︂ τX0 ∧τXb

0
σe−qtϕ′(Xt)dBt.

Soit x ∈ (0, b), alors la première intégrale est nulle, carXt ∈ (0, b) pour tout t < τX0 ∧ τXb , et ϕ est solution

de l’équation (1.1) sur (0, b) par hypothèse. Prenons l’espérance avecX0 = x de chaque côté :

Ex
[︂
e−q(τ

X
0 ∧τXb )ϕ

(︂
XτX0 ∧τXb

)︂]︂
= Ex [ϕ(X0)] + 0 + Ex

[︄∫︂ τX0 ∧τXb

0
σe−qtϕ′(Xt)dBt

]︄
.

L’intégrande du dernier terme est borné pour tout t < τX0 ∧ τXb , donc cette intégrale stochastique est une

martingale. Comme le temps d’arrêt τX0 ∧ τXb est fini presque sûrement par les propriétés du mouvement

brownien, alors cette espérance est nulle par le Théorème d’arrêt de Doob. Par conséquent,

Ex
[︂
e−q(τ

X
0 ∧τXb )ϕ

(︂
XτX0 ∧τXb

)︂]︂
= Ex [ϕ(X0)] = ϕ(x).

Développons l’espérance pour faire apparaître nos transformées de Laplace de temps de premier passage :

ϕ(x) = Ex
[︂
e−qτ

X
0 ϕ
(︂
XτX0

)︂
1τX0 <τXb

]︂
+ Ex

[︂
e−qτ

X
b ϕ
(︂
XτXb

)︂
1τXb <τX0

]︂
= ϕ(0)Ex

[︂
e−qτ

X
0 1τX0 <τXb

]︂
+ ϕ(b)Ex

[︂
e−qτ

X
b 1τXb <τX0

]︂
= ϕ(0)ψb(x) + ϕ(b)φb(x).

D’une part, si ϕ admet les conditions aux bords ϕ(0) = 0 et ϕ(b) = 1, alors on a ϕ = φb. D’autre part, si ses

conditions aux bords sont plutôt ϕ(0) = 1 et ϕ(b) = 0, alors ϕ = ψb.

Par la suite, pourΨb, la démarche est essentiellement la même. Soit η, une solution générale de l’EDO (1.2)

sur (b,∞). On applique la Formule d’Itô au processus (t, Yt) avec la fonction (t, y) ↦→ e−qtη(y), qui est

C1,2(R+ × R) :

d
(︁
e−qtη(Yt)

)︁
= −qe−qtη(Yt)dt+ e−qtη′(Yt)dYt +

1

2
e−qtη′′(Yt)d [Y ]t

= −qe−qtη(Yt)dt+ e−qtη′(Yt) ((µ− S −KYt) dt+ σdBt) +
1

2
e−qtη′′(Yt) · σ2dt

= e−qt
(︃
σ2

2
η′′(Yt) + (µ− S −KYt) η′(Yt)− qη(Yt)

)︃
dt+ σe−qtη′(Yt)dBt.

Sous forme intégrale et pour t = τYb , on trouve

e−qτ
Y
b η
(︂
YτYb

)︂
= η(Y0) +

∫︂ τYb

0
e−qt

(︃
σ2

2
η′′(Yt) + (µ− S −KYt) η′(Yt)− qη(Yt)

)︃
dt

+

∫︂ τYb

0
σe−qtη′(Yt)dBt.
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Soit x ∈ (0, b), nous prenons l’espérance avec Y0 = x de chaque côté :

Ex
[︂
e−qτ

Y
b η
(︂
YτYb

)︂]︂
= Ex [η(Y0)] + Ex

[︄∫︂ τYb

0
σe−qtη′(Yt)dBt

]︄
= η(x),

où la dernière égalité s’obtient par les mêmes arguments que plus haut. Enfin, on a

η(x) = Ex
[︂
e−qτ

Y
b η
(︂
YτYb

)︂
1τYb <∞

]︂
= η(b)Ex

[︂
e−qτ

Y
b 1τYb <∞

]︂
= η(b)Ψb(x).

En spécifiant maintenant que η admet les conditions aux bords η(b) = 1 et η(∞) = 0, on trouve η = Ψb.□

Par le dernier point de la Remarque 1.1, il en découle que φb et ψb sont chacune une combinaison linéaire

de f+, f−, tandis queΨb est une combinaison linéaire deH+, H−. Elles prennent plus exactement la forme

suivante :

Théorème 1.6 Les transformées de Laplace introduites à la Définition 1.4 s’expriment sur leur domaine res-

pectif par

φb(x) =
f+(x)f−(0)− f+(0)f−(x)
f+(b)f−(0)− f+(0)f−(b)

= e
µ

σ2 (b−x) sinh
(︁
∆
σ2x
)︁

sinh
(︁
∆
σ2 b
)︁ ,

ψb(x) =
f+(b)f−(x)− f+(x)f−(b)
f+(b)f−(0)− f+(0)f−(b)

= e−
µ

σ2 x
sinh

(︁
∆
σ2 (b− x)

)︁
sinh

(︁
∆
σ2 b
)︁ ,

Ψb(x) =
H(x)

H(b)
=

exp

(︃
K
2σ2

(︂
x− µ−S

K

)︂2)︃
D− q

K

(︂√
2K
σ

(︂
x− µ−S

K

)︂)︂
exp

(︃
K
2σ2

(︂
b− µ−S

K

)︂2)︃
D− q

K

(︂√
2K
σ

(︂
b− µ−S

K

)︂)︂ .
(1.3)

Preuve. Puisque φb et ψb sont chacune une combinaison linéaire de f+, f−, on a⎧⎨⎩φb(x) = Af+(x) +Bf−(x),

ψb(x) = Cf+(x) +Df−(x),

pour tout x ∈ [0, b], et avec A,B,C,D ∈ R, des coefficients à identifier. Pour cela, on utilise les conditions

aux bords pour obtenir ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 = Af+(0) +Bf−(0),

1 = Af+(b) +Bf−(b),

1 = Cf+(0) +Df−(0),

0 = Cf+(b) +Df−(b).
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Il suffit de résoudre ce système pour obtenir les expressions données par l’équation (1.3).

Et quant àΨb, il s’agit d’une combinaison linéaire deH+, H−, donc

Ψb(x) = αH+(x) + γH−(x), x ∈ [b,∞),

où α, γ ∈ R. Il ne reste qu’à trouver ces coefficients, encore une fois grâce aux conditions aux bords :⎧⎪⎨⎪⎩
1 = αH+(b) + γH−(b),

0 = α lim
x→∞

H+(x) + γ lim
x→∞

H−(x).

Par la croissance deH+ et par la Remarque 1.1, on aH+(x) −−−→
x→∞

∞. Il faut dans ce cas que α = 0 pour

que la seconde équation égale bien 0. Et en posant α = 0 dans la première équation, on trouve γ = 1
H−(b) .

Par conséquent,

Ψb(x) =
H(x)

H(b)
,

où l’on rappelle queH := H−. La forme explicite s’obtient ensuite par substitution de l’expression deH .□

En définissant la fonctionW : R+ → R par

W (x) := f+(x)f−(0)− f+(0)f−(x) = e−
µ

σ2 x sinh

(︃
∆

σ2
x

)︃
,

on peut alors écrire

φb(x) =
W (x)

W (b)
.

Dans la littérature, la fonctionW est connue comme étant, à un coefficient près, la fonction d’échelle d’un

MBA (voir le Chapitre 8 de (Kyprianou, 2014)).

Nous nous intéressonsmaintenant à la dérivée première et secondedes transformées, qui sont évidemment

continues et bien définies sur leur domaine. Cependant, leurs dérivées ne sont pas clairement définies aux

extrémités de leur domaine. Afin d’alléger l’écriture, nous posons leurs dérivées aux extrémités comme

étant la limite à droite ou à gauche des dérivées. Par exemple

φ′
b(0) := lim

x↓0
φ′
b(x), ψ′

b(b) := lim
x↑b

ψ′
b(x), Ψ′

b(b) := lim
x↓b

Ψ′
b(x).

Nous faisons la même chose avec les dérivées secondes. Ceci s’appliquera également à toute fonction qui

sera introduite au cours de ce mémoire, et exprimée à partir des ces transformées.
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Proposition 1.7 Les dérivées premières et secondes des transformées sont telles que

— φ′
b(x) > 0 pour tout x ∈ [0, b], et

— soit il existe un s ∈ (0, b] tel que φ′′
b (s) = 0, avec φ′′

b (x) < 0 pour x ∈ [0, s) et φ′′
b (x) > 0 pour

x ∈ (s, b],

— soit φ′′
b (x) < 0 pour tout x ∈ [0, b] ;

— ψ′
b(x) < 0 et ψ′′

b (x) > 0 pour tout x ∈ [0, b] ;

— Ψb(x) < 0 etΨ′′
b (x) > 0 pour tout x ∈ [b,∞).

Preuve. On sait par le Lemme 2.4 de (Ekström et Lindensjö, 2021) que les fonctionsW etH sont telles que

— W ′(x) > 0 pour tout x ⩾ 0, et il existe un point d’inflexion s > 0 tel que W ′′(s) = 0, avec

W ′′(x) < 0 pour x < s etW ′′(x) > 0 pour x > s ;

— H ′(x) < 0 etH ′′(x) > 0 pour tout x ⩾ 0.

Il s’ensuit que φb(x) =
W (x)
W (b) et Ψb(x) =

H(x)
H(b) ont les mêmes propriétés. Notons que pour φ′′

b , les deux cas

de figure dépendent de la valeur du point d’inflexion s ; on sera dans le premier cas si s ⩽ b, ou dans le

second si s > b.

Et pour ψb, tout d’abord,

ψ′
b(x) =

f+(b)f
′
−(x)− f ′+(x)f−(b)

f+(b)f−(0)− f+(0)f−(b)
< 0

pour tout x ⩾ 0 puisque le numérateur et le dénominateur sont, respectivement, négatif et positif par les

propriétés de f+, f−. Ensuite, ψb est solution de l’équation différentielle (1.1), donc

ψ′′
b (x) =

2

σ2
(︁
qψb(x)− µψ′

b(x)
)︁
> 0

pour tout x ⩾ 0 étant donné que qψb(x) > 0 et µψ′
b(x) < 0.□

Voici enfin une dernière propriété des transformées φb et ψb.

Lemme 1.8 Pour b > 0 fixé, la fonction x ↦→ φ′
b(x)

ψ′
b(x)

est strictement décroissante pour tout x ∈ [0, b].

Preuve. Nous montrons que la dérivée de x ↦→ φ′
b(x)

ψ′
b(x)

est négative en utilisant le fait que φb, ψb sont positives
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et solutions de l’équation différentielle (1.1) :

d

dx

(︃
φ′
b(x)

ψ′
b(x)

)︃
=
φ′′
b (x)ψ

′
b(x)− φ′

b(x)ψ
′′
b (x)

(ψ′
b(x))

2

=
2/σ2

(ψ′
b(x))

2

[︂(︁
qφb(x)− µφ′

b(x)
)︁
ψ′
b(x)− φ′

b(x)
(︁
qψb(x)− µψ′

b(x)
)︁]︂

=
2q/σ2

(ψ′
b(x))

2

[︁
φb(x)ψ

′
b(x)− φ′

b(x)ψb(x)
]︁
< 0

puisque ψ′
b < 0 < φ′

b.□

1.2 Une autre transformée

On s’intéresse maintenant à Φb : R+ → [0, 1], une nouvelle transformée de Laplace de temps de premier

passage, définie ainsi :

Φb(x) = Ex
[︃
e−qτ

Y b

0 1
τY

b
0 <∞

]︃
, x ⩾ 0, (1.4)

où Y b = (Y b
t )t⩾0 est de dynamique

dY b
t =

(︂
µ− (KY b

t + S)1Y b
t ⩾b

)︂
dt+ σdBt.

Du fait que la dérive de Y b diminue abruptement lorsque Y b excède b, on dit que le processus est réfracté

au-dessus du seuil de réfraction b.

La Figure 1.1 illustre cette réfraction, que l’on peut comparer à la réfraction d’un rayon lumineux en optique

physique. La première droite pointillée, de pente µ, indique la dérive du processus avant la réfraction. La

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0

2

4

6

8

Yb t

b

Figure 1.1 – Exemple de Y b avec b = 5 et x = 0

Le pas de la simulation est∆t ≈ 0.0015. Paramètres : µ = 5, σ2 = 1, K = 1
2
, S = 1.

12



seconde est de pente µ − (Kb + S), et représente approximativement la dérive du processus pendant la

réfraction (elle surestime légèrement la vraie dérive puisque Y b
t ⩾ b).

Comme le comportement de Y b change autour du seuil b, l’expression de Φb est différente entre x ∈ [0, b)

et x ∈ [b,∞), tel que nous le verrons au Théorème 1.12. Le calcul de Φb(x) pour x différent de b est assez

direct, alors que le calcul de Φb(b) est plus compliqué. C’est pourquoi il nous faut introduire une suite de

processus (Y b,n)n∈N qui approxime Y b (voir (Rao, 2023)) dans le but de calculer Φb(b) comme une limite

d’une suite.

Le résultat présenté au Théorème 1.12 a été prouvé avec peu de détails dans le Lemme 5 de (Renaud et al.,

2023). Nous fournissons, dans ce qui suit, une preuve complète.

Définition 1.9 Pourn ∈ N fixé et x ⩾ 0, on définit le processus Y b,n = (Y b,n
t )t⩾0 de valeur initiale Y b,n

0 = x

par la dynamique suivante :

dY b,n
t =

(︂
dT 0,x

t 10⩽t<κn1 + dU
κn1 ,b
t 1κn1⩽t<λ

n
1

)︂
10⩽x<b +

(︂
dU0,x

t 10⩽t<λn1

)︂
1x⩾b

+

n∑︂
i=1

dT
λni ,b−

1
n

t 1λni ⩽t<κ
n
i+1

+

n∑︂
i=2

dU
κni ,b
t 1κni ⩽t<λ

n
i
,

où pour ν, y ⩾ 0,

dT ν,yt = µdt+ σdBt, T ν,yν = y, t ⩾ ν,

dUν,yt = (µ− S −KUν,yt ) dt+ σdBt, Uν,yν = y, t ⩾ ν,

et

κn1 = inf{t ⩾ 0 | Y b,n
t > b},

λni = inf

{︃
t > κni | Y

b,n
t < b− 1

n

}︃
, i = 1, 2, . . . ,

κni = inf{t > λni−1 | Y
b,n
t > b}, i = 2, 3, . . .

Bien que la définition de Y b,n soit plutôt velue, celle-ci s’interprète de la manière suivante :

— lorsque Y b,n excède b, donc pour t ∈ [κni , λ
n
i [, sa dérive est µ− S −KU

κni ,b
t ;

— lorsqu’il descend sous b− 1/n, donc pour t ∈ [λni , κ
n
i+1[, sa dérive devient µ.

13



Le processus Y b,n alterne entre ces deux régimes. De plus, les processus Y b et Y b,n diffèrent uniquement

par leur dérive ; ils ont la même volatilité stochastique σB.

L’inégalité présentée dans le lemme qui suit est centrale à la démonstration du Lemme 1.11. Nous proposons

ici une preuve de cette inégalité qui fut introduite par (Locas et Renaud, 2024).

Lemme 1.10 Pour Y b
0 = b = Y b,n

0 , les processus Y b et Y b,n satisfont l’inégalité suivante pour tout n ∈ N :

0 ⩽ Y b
t − Y

b,n
t ⩽

1

n
, t ⩾ 0. (1.5)

Preuve. Pour démontrer l’inégalité (1.5), nous vérifions pour tout i ∈ N que l’inégalité est respectée, et ce

d’abord pour tout t ∈ [κni , λ
n
i [, puis pour tout t ∈ [λni , κ

n
i+1[. Sans perte de généralité, fixons un i ∈ N

quelconque.

Commençons par [κni , λ
n
i [. Dans cet intervalle, on a Y

b,n
t = U

κni ,b
t par définition de Y b,n. De plus, la dérive

de Y b,n estµ−S−KUκ
n
i ,b

t , tandis que Y b alterne entre un O-U de dérive µ−S−KY b
t , et unMBA de dérive

µ lorsqu’il franchit le seuil b. C’est pourquoi nous considérons séparément les intervalles où Y b se comporte

comme l’un ou l’autre de ces processus, et nous montrons que si l’inégalité est respectée au début d’un tel

intervalle, alors elle l’est sur tout l’intervalle.

— Soit s1, t1 ∈ [κni , λ
n
i [ avec s1 < t1 tels que pour tout t ∈ [s1, t1[, la dynamique de Y b − Y b,n est

d
(︂
Y b
t − Y

b,n
t

)︂
=
[︂(︂
µ− S −KY b

t

)︂
−
(︂
µ− S −KUκ

n
i ,b

t

)︂]︂
dt

= −K
(︂
Y b
t − U

κni ,b
t

)︂
dt

= −K
(︂
Y b
t − Y

b,n
t

)︂
dt.

Supposons que l’inégalité est respectée à l’instant initial s1. Ce processus s’exprime explicitement par

Y b
t − Y

b,n
t =

(︂
Y b
s1 − Y

b,n
s1

)︂
e−K(t−s1), qui est bien borné par [0, 1/n] pour tout t ∈ [s1, t1[ puisque

e−K(t−s1) est positive est décroissante, et que 0 ⩽ Y b
s1 − Y

b,n
s1 ⩽ 1

n par hypothèse.

— Soit s2, t2 ∈ [κni , λ
n
i [ avec s2 < t2 tels que pour tout t ∈ [s2, t2[, la dynamique de Y b − Y b,n est

d
(︂
Y b
t − Y

b,n
t

)︂
=
[︂
µ−

(︂
µ− S −KUκ

n
i ,b

t

)︂]︂
dt =

(︂
KU

κni ,b
t + S

)︂
dt.

Supposons que l’inégalité est respectée à l’instant initial t = s2. La dynamique de Y b − Y b,n est

positive, donc le processus est croissant. Avec l’hypothèse initiale, il en découle que 0 ⩽ Y b
t − Y

b,n
t

14



pour tout t ∈ [s2, t2[. Ensuite, notons que b − 1
n ⩽ Y b,n

s2 ⩽ Y b
s2 < b, et que l’on quitte [s2, t2[

soit lorsque Y b dépasse b pour se comporter comme un O-U, soit lorsque Y b,n descend sous b − 1
n ,

auquel cas on quitte [κni , λ
n
i [. De ce fait, on a b − 1

n ⩽ Y b,n
t ⩽ Y b

t < b pour tout t ∈ [s2, t2[, et par

conséquent, Y b
t − Y

b,n
t ⩽ 1

n sur cet intervalle.

Terminons avec [λni , κ
n
i+1[. Dans cet intervalle, la dérive de Y

b,n est µ, tandis que Y b alterne encore une fois

entre un processus O-U et un MBA, ce qui motive de séparer à nouveau les deux cas par intervalles comme

nous l’avons fait ci-haut.

— Soit s3, t3 ∈ [λni , κ
n
i+1[ avec s3 < t3 tels que pour tout t ∈ [s3, t3[, le processus Y b − Y b,n est de

dynamique

d
(︂
Y b
t − Y

b,n
t

)︂
= [µ− µ] dt = 0.

Supposons que l’inégalité est respectée à l’instant initial t = s3. Trivialement, elle est respectée

pour tout t ∈ [s3, t3[ puisque Y b − Y b,n est constant sur l’intervalle, et que par hypothèse, on a

0 ⩽ Y b
s3 − Y

b,n
s3 ⩽ 1

n .

— Soit s4, t4 ∈ [λni , κ
n
i+1[ tel que pour tout t ∈ [s4, t4[, le processus Y b − Y b,n a comme dynamique

d
(︂
Y b
t − Y

b,n
t

)︂
=
[︂(︂
µ− S −KY b

t

)︂
− µ

]︂
dt = −

(︂
KY b

t + S
)︂
dt.

Supposons que l’inégalité est respectée à l’instant initial t = s4. La dynamique de Y b − Y b,n est

négative, donc le processus est décroissant. Avec l’hypothèse initiale, il s’ensuit que Y b
t − Y

b,n
t ⩽ 1

n

pour tout t ∈ [s4, t4[. Ensuite, notons que b − 1
n ⩽ Y b,n

s4 ⩽ b ⩽ Y b
s4 , et que l’on quitte [s4, t4[ soit

lorsque Y b descend sous b pour se comporter comme un MBA, soit lorsque Y b,n atteint b, auquel

cas on quitte [λni , κ
n
i+1[. De ce fait, on a Y b,n

t ⩽ b ⩽ Y b
t pour tout t ∈ [s4, t4[, et par conséquent,

0 ⩽ Y b
t − Y

b,n
t sur cet intervalle.

□

La Figure 1.2 illustre les processus Y b et Y b,n ainsi que l’inégalité (1.5). En effet, le processus Y b − Y b,n,

représenté par la courbe rouge, est visiblement borné dans [0, 1/n]. De manière équivalente, on voit que

Y b,n reste confiné dans la zone mauve pâle.

Rappelons que l’intérêt de l’approximation Y b,n est de définir une suite convergeant vers Φb(b).
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Figure 1.2 – Simulation de Y b et Y b,n avec b, n = 2

Les deux graphes montrent la même simulation, mais sur des intervalles différents. La région mauve pâle sur le graphe du haut couvre

[Y b
t − 1

n
, Y b

t ] en ordonnée. Le pas de la simulation est∆t ≈ 0.005. Paramètres : µ = 1, σ2 = 1, K = 1, S = 2.
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Lemme 1.11 La suite réelle (Φnb (b))n∈N donnée par

Φnb (b) := Eb
[︃
e−qτ

Y b,n

0 1
τY

b,n
0 <∞

]︃
converge vers Φb(b).

Preuve. De l’inégalité (1.5) évaluée en t = τY
b

0 , on obtient Y b,n

τY
b

0

⩽ 0, donc τY b,n

0 ⩽ τY
b

0 . On voit aussi, avec

t = τY
b,n

0 , que 0 ⩽ Y b

τY
b,n

0

⩽ 1
n . Ainsi, (τ

Y b,n

0 )n∈N est une suite de temps d’arrêt telle que τY b,n

0 −−−→
n→∞

τY
b

0

par la continuité du MB. De cette façon, étant donné que x ↦→ e−qx1x<∞ est bornée dans [0, 1], alors par

le Théorème de convergence dominée,

lim
n→∞

Φnb (b) = Eb
[︃
lim
n→∞

e−qτ
Y b,n

0 1
τY

b,n
0 <∞

]︃
= Φb(b).

□

Rappelons que les processus de diffusion, tels queX , Y et Y b, satisfont la Propriété forte de Markov, que

nous utiliserons abondamment dans ce mémoire. Il convient en ce cas de la présenter : un processus en

temps continu (At)t⩾0 à d dimensions satisfait la Propriété forte de Markov si, pour un temps d’arrêt τ et

une fonctionnelle Υ : C(R+,Rd)→ R,

Ex
[︁
1τ<∞Υ

(︁
(Aτ+t)t⩾0

)︁
| Fτ

]︁
= 1τ<∞EAτ

[︁
Υ
(︁
(At)t⩾0

)︁]︁
, x ∈ Rd,

où C(R+,Rd) est l’espace des fonctions continues de R+ vers Rd (voir par exemple le Corollaire 7.6 de

(Le Gall, 2013)).

Nous avons enfin tout ce qu’il nous faut pour trouver une forme explicite de Φb, donnée par le Théorème

1.12 ci-dessous. On peut la comparer au Lemme 5 de (Renaud et al., 2023).

Théorème 1.12 La transformée Φb définit par l’équation (1.4) s’écrit comme

Φb(x) =

⎧⎪⎨⎪⎩
ψb(x)−

φb(x)ψ
′
b(b)

φ′
b(b)−Ψ′

b(b)
, x < b,

− Ψb(x)ψ
′
b(b)

φ′
b(b)−Ψ′

b(b)
, x ⩾ b.

Preuve. Nous montrons que Φb est donnée par

Φb(x) =

⎧⎪⎨⎪⎩
ψb(x) + Φb(b)φb(x), x < b,

Φb(b)Ψb(x), x ⩾ b,

(1.6)
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où Φb(b) = −
ψ′
b(b)

φ′
b(b)−Ψ′

b(b)
. (1.7)

La preuve est séparée en deux parties : la première portant sur l’équation (1.6), et la seconde sur l’équation

(1.7).

Premièrement, pour x ⩾ b, on a clairement que τY b

b ⩽ τY
b

0 par la continuité du processus Y b, donc on peut

séparer l’exponentielle ainsi :

Φb(x) = Ex
[︃
e−qτ

Y b

b 1
τY

b
b <∞ · e

−q
(︂
τY

b

0 −τY b

b

)︂
1
τY

b
0 <∞

]︃

puis utiliser la Loi des espérances itérées et la F
τY

b
b

-mesurabilité de e−qτY
b

b 1
τY

b
b <∞ pour obtenir

Φb(x) = Ex
[︃
e−qτ

Y b

b 1
τY

b
b <∞Ex

[︃
e
−q

(︂
τY

b

0 −τY b

b

)︂
1
τY

b
0 <∞ | FτY b

b

]︃]︃
.

On applique la Propriété forte de Markov à la fonctionnelle F : C(R+,R)→ R donnée par

F (y) = e−q inf{z>0|y(z)=0}1inf{z>0|y(z)=0}<∞,

où y = (y(z))z⩾0 est une fonction continue de R+ dans R. Ainsi,

Ex
[︃
e
−q

(︂
τY

b

0 −τY b

b

)︂
1
τY

b
0 −τY b

b <∞ | FτY b
b

]︃
= EY b

τY
b

b

[︃
e−qτ

Y b

0 1
τY

b
0 <∞

]︃
,

et comme Y b

τY
b

b

= b, on trouve enfin que

Φb(x) = Ex

[︄
e−qτ

Y b

b 1
τY

b
b <∞EY b

τY
b

b

[︃
e−qτ

Y b

0 1
τY

b
0 <∞

]︃]︄

= Eb
[︃
e−qτ

Y b

0 1
τY

b
0 <∞

]︃
Ex
[︂
e−qτ

Y
b 1τYb <∞

]︂
= Φb(b)Ψb(x),

puisque (Y b
t )0⩽t<τY b

b

est de même loi que (Yt)0⩽t<τYb .

Pour x < b, la démarche est très similaire, à la différence près qu’on sépare le cas où Y b atteint 0 avant b
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et vice-versa :

Φb(x) = Ex
[︃
e−qτ

Y b

0 1
τY

b
0 <∞ · 1τY b

0 <τY
b

b

]︃
+ Ex

[︃
e−qτ

Y b

0 1
τY

b
0 <∞ · 1τY b

b <τY
b

0

]︃
= Ex

[︃
e−qτ

Y b

0 1
τY

b
0 <τY

b
b

]︃
+ Ex

[︃
e−qτ

Y b

b 1
τY

b
b <τY

b
0
· e−q

(︂
τY

b

0 −τY b

b

)︂
1
τY

b
0 <∞

]︃
= Ex

[︂
e−qτ

X
0 1τX0 <τXb

]︂
+ Ex

[︃
e−qτ

Y b

b 1
τY

b
b <τY

b
0

Ex
[︃
e
−q

(︂
τY

b

0 −τY b

b

)︂
1
τY

b
0 <∞ | FτY b

b

]︃]︃
= Ex

[︂
e−qτ

X
0 1τX0 <τXb

]︂
+ Eb

[︃
e−qτ

Y b

0 1
τY

b
0 <∞

]︃
Ex
[︂
e−qτ

X
b 1τXb <τX0

]︂
= ψb(x) + Φb(b)φb(x),

puisque (Y b
t )0⩽t<τY b

0 ∧τY b
b

et (Xt)0⩽t<τX0 ∧τXb
sont de même loi. De plus, on a utilisé

{︂
τY

b

b < τY
b

0

}︂
∈ F

τY
b

b

à la troisième ligne.

Deuxièmement, pour calculer Φb(b), nous passons par l’approximation introduite plus tôt. Par le fait que

Y b,n commence en b, et que sa dérive égale µ − (KY b,n
t + S) jusqu’à ce que le processus descende sous

b− 1/n, le calcul de Φnb (b) est dans ce cas analogue au calcul de Φb(x) pour x ⩾ b. On obtient

Φnb (b) = Eb− 1
n

[︃
e−qτ

Y b,n

0 1
τY

b,n
0 <∞

]︃
Eb
[︃
e
−qτY

b− 1
n 1τY

b− 1
n
<∞

]︃
= Φnb (b− 1/n)Ψb− 1

n
(b). (1.8)

Le calcul de Φnb (b− 1/n) est quant à lui comme le calcul de Φb(x) pour x < b, ce qui nous donne

Φnb (b− 1/n) = Eb− 1
n

[︃
e−qτ

Y b,n

0 1
τY

b,n
0 <τY

b,n
b

]︃
+ Eb− 1

n

[︃
e−qτ

Y b,n

b 1
τY

b,n
b <τY

b,n
0

]︃
Eb
[︃
e−qτ

Y b,n

0 1
τY

b,n
0 <∞

]︃
= ψb(b− 1/n) + Φnb (b)φb(b− 1/n), (1.9)

car en partant de b− 1
n , les processus (Y

b,n
t )

0⩽t<τY
b,n

b

et (Y b
t )0⩽t<τY b

b

sont demême loi. Notons que le calcul

des équations (1.8) et (1.9) fait intervenir la Propriété forte deMarkov. Or, Y b,n n’est pas markovien, a priori,

puisque sa dynamique à un instant t varie pour t ∈ [κni , λ
n
i [ ou t ∈ [λni , κ

n
i+1[. Toutefois, couplé avec le pro-

cessusHb,n
t := 1t∈

⋃︁∞
i=1[κ

n
i ,λ

n
i [
qui encode binairement l’information sur la forme de la dynamique de Y b,n

à chaque instant, la paire (Y b,n
t , Hb,n

t )t⩾0 est quant à elle markovienne. Bref, en remplaçant l’expression de

l’équation (1.9) dans l’équation (1.8), puis en isolant le terme Φnb (b), on a

Φnb (b) =
Ψb− 1

n
(b)ψb(b− 1/n)

1−Ψb− 1
n
(b)φb(b− 1/n)

=
ψb(b− 1/n)

H(b−1/n)
H(b) − φb(b− 1/n)

,
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où l’on rappelle que Ψb− 1
n
(b) = H(b)

H(b−1/n) . En utilisant φb(b) = 1 et ψb(b) = 0, nous pouvons faire appa-

raître des quotients différentiels de la manière suivante :

Φnb (b) =

ψb(b−1/n)−ψb(b)
1/n

1
H(b)

(︂
H(b−1/n)−H(b)

1/n

)︂
− φb(b−1/n)−φb(b)

1/n

−−−→
n→∞

ψ′
b(b)

H′(b)
H(b) − φ

′
b(b)

= Φb(b).

Pour conclure, on remarque que

Ψ′
b(b) =

dΨb

dx

⃓⃓⃓⃓
x=b

=
d

dx

(︃
H(x)

H(b)

)︃⃓⃓⃓⃓
x=b

=
H ′(b)

H(b)
,

donc on a bien démontré l’équation (1.7).□

Proposition 1.13 La fonction Φb est strictement décroissante et strictement convexe sur R+.

Preuve. Rappelons pour commencer que par définition de Φb, on a Φb(x) > 0 pour tout x ⩾ 0, et en

particulier, Φb(b) > 0.

Pour x ⩾ b, on aΦb(x) = Φb(b)Ψb(x), oùΨb est telle queΨ′
b(x) < 0 etΨ′′

b (x) > 0 (par la Proposition 1.7).

Ainsi, Φb satisfait aussi ces inégalités puisque Φb(b) > 0, ce qui conclut la preuve sur cet intervalle.

Pour 0 ⩽ x < b, on a Φb(x) = ψb(x) + Φb(b)φb(x), donc

Φ′
b(x) = ψ′

b(x)−
ψ′
b(b)

φ′
b(b)−Ψ′

b(b)
φ′
b(x)

=
1

φ′
b(b)−Ψ′

b(b)

(︁
ψ′
b(x)φ

′
b(b)− ψ′

b(b)φ
′
b(x)− ψ′

b(x)Ψ
′
b(b)
)︁

⩽ −
ψ′
b(x)Ψ

′
b(b)

φ′
b(b)−Ψ′

b(b)
< 0,

où la dernière ligne est due à ψ′
b(x)φ

′
b(b) − ψ′

b(b)φ
′
b(x) ⩽ 0 (qui est une conséquence directe du Lemme

1.8) et à la croissance/décroissance des transformées. Enfin, sur cet intervalle, Φb est une combinaison de

linéaire de φb, ψb, qui sont solutions de l’équation différentielle (1.1), donc par la Remarque 1.1, Φb satisfait

aussi cette EDO. Conséquemment,

Φ′′
b (x) =

2

σ2
(︁
qΦb(x)− µΦ′

b(x)
)︁
> 0.

□
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On remarquera que Φb est continûment différentiable sur (0,∞). En effet, elle l’est de toute évidence sur

(0,∞)\{b} par la continuité des transformées. Pour ce qui est de x = b, il est clair que Φb(b−) = Φb(b+),

et l’équation (1.7) fait en sorte que Φ′
b(b−) = Φ′

b(b+).
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CHAPITRE 2

PROBLÈME DE MAXIMISATION DE DIVIDENDES

Dans ce chapitre, nous étudions en détail le problème principal de ce mémoire, à savoir un problème de

maximisation de dividendes au taux de versement borné par une fonction linéaire dans un modèle avec

injections obligatoires où le surplus de capital intrinsèque est un MBA. À la Section 2.1, nous présentons

formellement ce problème avant d’entreprendre sa résolution par après.

2.1 Énoncé du problème

Comme au Chapitre 1, on se place sur un espace de probabilité filtré (Ω,F , (Ft)t⩾0,P), et on considère

encore le MBAX = (Xt)t⩾0 tel que

dXt = µdt+ σdBt,

avec µ, σ > 0 qui sont donnés et fixés.

Soit 0 < K,S < ∞ fixés, l’ensemble des stratégies admissibles pour ce problème est caractérisé par

l’ensemble de fonctions suivant :

UK,S =
{︁
u : R+ → Rmesurable | 0 ⩽ u(x) ⩽ Kx+ S pour tout x ⩾ 0

}︁
.

S

Kx+ S

x

u(x)

Figure 2.1 – Région couverte par UK,S et exemples de stratégies admissibles
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Soit u ∈ UK,S , on veut définir un processus (Xu
t )t⩾0 contrôlé par la fonction u et réfléchi vers les positifs

lorsque Xu
t = 0. On dénote la paire de processus (Xu

t , G
u
t )t⩾0 comme étant solution du problème de

Skorokhod suivant :

dXu
t =

(︁
µ− u(Xu

t )
)︁
dt+ σdBt + dGut , Xu

0 = x, Gu0 = 0,

où

— Xu
t ⩾ 0 pour tout t ⩾ 0 ;

— Gu est croissant ;

—
∫︁ t
0 1Xu

s >0dG
u
s = 0 (ou de façon équivalente,Gut =

∫︁ t
0 1Xu

s =0dG
u
s ) pour tout t ⩾ 0.

On se référera à (Pilipenko, 2014) et à la Section 3.6 de (Karatzas et Shreve, 1991) en ce qui concerne le

problème de Skorokhod et les processus réfléchis.

Dans le contexte financier présenté en introduction de ce mémoire, le processus contrôléXu représente le

surplus de capital d’une entreprise qui verse des dividendes à un taux dicté par u, et qui injecte du capital

automatiquement lorsqueXu
t touche 0 de manière à éviter la faillite. Le processusGu correspond dans ce

cas à l’accumulation de ces injections ; il s’agit du processus qui réfléchit Xu au niveau 0.

Notation 2.1 Nous utiliserons à nouveauEx[·] pour signifier que le processus dont nous prenons l’espérance

est de valeur initiale x. Dans le cas où le processus est un couple (par exemple (Xu
t , G

u
t )t⩾0), nous écrirons

Ex,g[·]. Cependant, si g = 0, nous l’omettrons et noterons simplement Ex[·].

Le problème consiste alors à trouver une stratégie admissible u∗ qui optimise la mesure de performance

exprimée comme suit :

Définition 2.2 (Fonction de performance) Fixons q > 0 et β > 1. Pour u ∈ UK,S , la fonction de perfor-

mance Vu : R+ → R est donnée par

Vu(x) = Ex
[︃∫︂ ∞

0
e−qtu(Xu

t )dt− β
∫︂ ∞

0
e−qtdGut

]︃
, x ⩾ 0.

Intuitivement, la fonction de performancemesure l’efficacité d’une stratégie admissible u en récompensant

l’accumulation de dividendes et en pénalisant l’accumulation d’injections, le tout actualisé au taux d’intérêt

continu q. Il s’agit donc d’une fonction que l’on cherche à maximiser par rapport à u.
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Le paramètre β dénote le coût proportionnel d’injection de capital, et la condition β > 1 implique que

les injections soient plus coûteuses que les dividendes, ce qui est nécessaire au vu du contexte. En effet,

si ce n’était pas le cas, on pourrait verser instantanément les injections sous forme de dividendes, ce qui

garantirait un gain infini.

Remarque 2.3 Il convient de noter que Vu peut très bien être négative en certains points, puisqu’elle est

définie par une différence de deux intégrales positives. Autrement dit, cela survient si le coût moyen des

injections surpasse celui des dividendes.

2.1.1 Objectif et stratégies linéaires

Tel que susmentionné, notre objectif est de maximiser la fonction Vu. On pourrait se contenter de chercher

un ux ∈ UK,S , pour x ⩾ 0 fixé, tel que Vux(x) ⩾ Vu(x) pour tout u ∈ UK,S . Mais ce que nous cherchons

ici, en réalité, est une stratégie admissible u∗ qui maximise Vu uniformément pour tout x ⩾ 0, à supposer

qu’une telle stratégie existe.

Autrement dit, nous cherchons u∗ ∈ UK,S telle que pour tout x ⩾ 0 et pour tout u ∈ UK,S , on ait

Vu∗(x) ⩾ Vu(x). De plus, nous souhaitons trouver une forme explicite de cette fonction optimale, dite

fonction valeur, que l’on note

V (x) = sup
u∈UK,S

Vu(x), x ⩾ 0.

Pour résumer, l’objectif du problème est de trouver

— la fonction valeur V (x) = supu∈UK,S
Vu(x) ;

— un contrôle optimal u∗ ∈ UK,S tel que Vu∗(x) = V (x) pour tout x ⩾ 0.

Comme nous l’avons dit dans l’introduction de ce mémoire, une approche courante pour la résolution de

problèmes de ce genre est de considérer d’abord un sous-ensemble des stratégies admissibles. Cela est

justifié par l’équation d’Hamilton-Jacobi-Bellman, dont il est attendu qu’une solution de cette équation soit

précisément la fonction valeur V . Pour un problème donné, la forme exacte de cette équation est détermi-

née généralement de façon heuristique, mais peut l’être aussi formellement en utilisant la programmation

dynamique stochastique et la Propriété forte deMarkov (voir (Touzi, 2013)). Pour ce problème-ci, l’équation
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HJB est donnée par 1

max

{︃
σ2

2
V̂ ′′(x) + µV̂ ′(x)− qV̂ (x) + max

0⩽v⩽Kx+S

[︂
v
(︂
1− V̂ ′(x)

)︂]︂
, V̂ ′(x)− β

}︃
= 0, x ⩾ 0.

On note V̂ ici pour clarifier qu’il s’agit bien d’une fonction candidate, et non pas de la fonction valeur V .

On voit que le membre de droite dans lemax extérieur fait intervenir β ; cette partie de l’équation dicte en

quelque sorte l’apport des injections obligatoires sur la fonction valeur, là où lemembre de gauche concerne

plutôt les versements de dividendes. En effet, l’équation HJB du problème analogue sans injections (voir

(Rao, 2023)) est

σ2

2
V̂ ′′(x) + µV̂ ′(x)− qV̂ (x) + max

0⩽v⩽Kx+S

[︂
v
(︂
1− V̂ ′(x)

)︂]︂
= 0, x ⩾ 0.

Le terme V̂ ′(x)−β y est effectivement absent. Dans l’objectif de déceler le type de stratégie potentiellement

optimal pour les dividendes, concentrons-nous sur cette équation. La variable v dans le max peut nous

informer sur le comportement d’une stratégie optimale. Pour chaque x ⩾ 0 fixé, sa valeur correspond au

taux optimal de versement de dividendes. Autrement dit, nous pouvons construire une stratégie candidate

û en posant û(x) = argmax0⩽v⩽Kx+S

[︂
v
(︂
1− V̂ ′(x)

)︂]︂
pour chaque x ⩾ 0 fixé. On remarquera qu’en

fonction du signe de 1−V̂ ′(x), la valeur de v quimaximise v(1−V̂ ′(x)) est soit 0ouKx+S. Par conséquent,

on s’attend à ce qu’une stratégie optimale soit de type bang-bang donnée par

û(x) =

⎧⎪⎨⎪⎩
0, V̂ ′(x) > 1,

Kx+ S, V̂ ′(x) ⩽ 1.

Une stratégie possiblement optimale serait donc de ne pas verser du tout lorsque V̂ ′(x) > 1, et de verser

maximalement lorsque V̂ ′(x) ⩽ 1. Autrement dit, on ne verse pas quand un ajout au surplus initial aug-

mente la fonction valeur plus que l’ajout, et on verse au maximum quand ce n’est plus le cas (voir (Avanzi,

2009)).

La fonction valeur V̂ dans ce genre de problème est typiquement concave, puisqu’une fonction de perfor-

mance est en quelque sorte une fonction d’utilité. Il existe en économie le principe de l’utilité marginale

décroissante, qui dit que la satisfaction (ou l’utilité) gagnée à l’ajout d’une unité d’un bien s’amoindrit à

mesure que les biens s’accumulent. Par conséquent, si on s’attend à ce que V̂ soit concave, à savoir que V̂ ′

1. Voir (Pérez et al., 2018), dont la forme de l’équation HJB diffère quelque peu de la nôtre puisqu’ils modélisent le surplus de

capital par un processus de Lévy, dont le MBA est un cas particulier. De plus, ils considèrent une borne constante pour le taux de

dividendes.
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soit décroissante, il en découle que la stratégie candidate û est de verser au tauxmaximal lorsque le surplus

initial x dépasse un certain seuil b > 0 donné par b = inf{c > 0 | V̂ ′(c) ⩽ 1} :

û(x) =

⎧⎪⎨⎪⎩
0, x < b,

Kx+ S, x ⩾ b.

(2.1)

Cette conclusion concorde également avec le contexte financier du modèle : intuitivement, il est préférable

de verser des dividendes à un plus haut taux lorsque le surplus de capital est élevé. Autrement dit, on

souhaite que û soit croissante. Parmi les stratégies bang-bang déduites plus haut, seules celles données par

l’équation (2.1) sont telles que û est monotone.

b

S

Kx+ S

x

û(x)

b

1

x

V̂ ′(x)

Figure 2.2 – Stratégie linéaire pour une fonction candidate continûment différentiable

Notons que si l’on suppose que V̂ ′ est continue, alors le seuil b > 0 est tel que V̂ ′(b) = 1, ce qu’illustre la

Figure 2.2. Cette condition sur la fonction valeur est communeàbeaucoupdeproblèmes demaximisation de

dividendes (voir (Albrecher et Thonhauser, 2009; Avanzi, 2009)), dont le problème de ce mémoire, comme

nous le verrons aux Sections 2.3 et 2.4.

On appelle les stratégies de la forme (2.1) des stratégies linéaires différées, ou plus simplement linéaires.

Nous nous concentrerons particulièrement sur ces stratégies à partir d’ici.

Définition 2.4 (Stratégies linéaires) L’ensemble des stratégies linéaires est défini par

U lin
K,S =

{︁
ub(x) = (Kx+ S)1x⩾b | b > 0

}︁
⊆ UK,S .

De cette façon, chaque stratégie linéaire est caractérisée par un seuil b > 0. Afin d’alléger la notation, nous
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noterons (Xb, Gb) := (Xub , Gub) et Vb := Vub . On a donc, pour chaque b > 0, la paire (Xb, Gb) qui est

solution du problème de Skorokhod suivant :

dXb
t =

(︂
µ− (KXb

t + S)1Xb
t⩾b

)︂
dt+ σdBt + dGbt , Xb

0 = x, Gb0 = 0, (2.2)

où

— Xb
t ⩾ 0 pour tout t ⩾ 0 ;

— Gb est croissant ;

—
∫︁ t
0 1Xb

s>0dG
b
s = 0 (ou de façon équivalente,Gbt =

∫︁ t
0 1Xb

s=0dG
b
s) pour tout t ⩾ 0 ;

dont il existe une solution forte (voir (Renaud et al., 2023)). On dit queXb est réfracté au niveau b et réfléchi

en 0. La fonction de performance d’une stratégie linéaire de seuil b est alors

Vb(x) = Ex
[︃∫︂ ∞

0
e−qt(KXb

t + S)1Xb
t⩾b

dt− β
∫︂ ∞

0
e−qtdGbt

]︃
, x ⩾ 0.

Comme on prévoit qu’une stratégie linéaire soit optimale grâce à l’étude de l’équation HJB, l’objectif du

problème revient dans ce cas à trouver un b∗ > 0 tel que la stratégie linéaire ub∗ soit optimale parmi toutes

les stratégies admissibles. Autrement dit, on veut montrer que Vb∗(x) ⩾ Vu(x) pour tout x ⩾ 0 et pour

tout u ∈ UK,S (ce qu’on aura ultimement au Théorème 2.20).

La Figure 2.3 illustre une simulation de (Xb
t )t⩾0 pour t ∈ [0, 10] avec b = 2 et x = 1, en plus des di-

vers processus sous-jacents, comme les injections cumulatives Gb, mais aussi le processus des dividendes

cumulatifs Lb = (Lbt)t⩾0 donné par

Lbt =

∫︂ t

0
(KXb

s + S)1Xb
s⩾b

ds, Lb0 = 0,

de telle sorte que l’équation (2.2) se simplifie ainsi :

dXb
t = µdt+ σdBt − dLbt + dGbt , Xb

0 = x, Lb0 = 0, Gb0 = 0.

Cette forme de la dynamique de Xb a pour avantage de mettre en exergue les fluctuations du surplus de

capital causées par Lb etGb.

Pour finir, le processusU b = (U bt )t⩾0 représente en quelque sorteXb avant d’être réfléchi en 0, et s’exprime

par

dU bt = µdt+ σdBt − dLbt , U b0 = x, Lb0 = 0,
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t
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0.0
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1.5
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2.5

b

Ubt Xbt Lbt Gbt

Figure 2.3 – Simulation deXb avec b = 2 et x = 1

Le pas de la simulation est∆t ≈ 0.005. Paramètres : µ = 1, σ2 = 1, K = 1, S = 2.

bien qu’il dépende deXb. En effet, en explicitant dLbt , on obtient

dU bt =
(︂
µ− (KXb

t + S)1Xb
t⩾b

)︂
dt+ σdBt,

à ne pas confondre avec le processus Y b présenté au Chapitre 1, dont la dynamique est

dY b
t =

(︂
µ− (KY b

t + S)1Y b
t ⩾b

)︂
dt+ σdBt.

De cette façon, par (Pilipenko, 2014), on a les expressions simplifiées qui suivent pour tout t ⩾ 0 :

Xb
t = U bt +Gbt , Gbt = − min

0⩽s⩽t

(︂
U bs ∧ 0

)︂
.

Rappelons que les solutions du problème de Skorokhod sont des processus de Markov.

Nous sommes fin prêts à nous attaquer à la résolution du problème, qui se fera essentiellement en trois

étapes :

1. Calculer explicitement la fonction de performance Vb d’une stratégie de seuil quelconque b > 0

(Section 2.2) ;

2. Prouver l’existence d’un b∗ ⩾ 0 tel que Vb∗ satisfait des conditions de régularité qui sont nécessaires

à la vérification (Section 2.3) ;
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3. Vérifier que le candidat Vb∗ est bien optimal parmi toutes les stratégies admissibles (Section 2.4).

Précisons que les conditions de régularité imposées à Vb∗ consistent en ce qu’elle soit C2(R+), étant donné

que la vérification fait intervenir la Formule d’Itô.

2.2 Calcul de la fonction de performance

Rappelons que les fonctionsφb, ψb,Ψb etΦb sont les transformées de Laplace de temps de premier passage

de divers processus telles que nous les avons présentées et étudiées au Chapitre 1.

Soit Jb : R+ → R+, la fonction de performance d’une stratégie linéaire de seuil b ⩾ 0, mais dans le

problème de maximisation de dividendes sans injection, c’est-à-dire

Jb(x) = Ex

⎡⎣∫︂ τY
b

0

0
e−qt(KY b

t + S)1Y b
t ⩾b

dt

⎤⎦ , x ⩾ 0. (2.3)

Il a été montré par (Rao, 2023) qu’elle s’exprime explicitement de la manière suivante :

Jb(x) =

⎧⎪⎨⎪⎩
Jb(b)φb(x), x < b,

K
q+K

(︂
x+ µ

q + S
K

)︂
+
[︂
Jb(b)− K

q+K

(︂
b+ µ

q + S
K

)︂]︂
Ψb(x), x ⩾ b,

(2.4)

où Jb(b) =

K
q+K

[︂
1−

(︂
b+ µ

q + S
K

)︂
Ψ′
b(b)
]︂

φ′
b(b)−Ψ′

b(b)
. (2.5)

Par les propriétés des transformées, on constate que Jb est continûment différentiable surR+\{b}. Comme

pour Φb, l’équation (2.5) fait en sorte que J ′
b(b−) = J ′

b(b+), donc que Jb soit, en fait, continûment diffé-

rentiable sur tout R+. Évidemment, Jb est positive vu que l’intégrande dans (2.3) est positif.

Lemme 2.5 Pour tout b > 0 fixé, la fonction x ↦→ J ′
b(x)

Φ′
b(x)

est décroissante pour tout x ⩾ 0.

Preuve. La dérivée de x ↦→ J ′
b(x)

Φ′
b(x)

étant

d

dx

(︃
J ′
b(x)

Φ′
b(x)

)︃
=
J ′′
b (x)Φ

′
b(x)− J ′

b(x)Φ
′′
b (x)

(Φ′
b(x))

2
,

il suffit de montrer que J ′
b(x)Φ

′′
b (x) ⩾ J ′′

b (x)Φ
′
b(x) pour tout x ⩾ 0. Nous considérons séparément les

intervalles [0, b) et [b,∞) dans le but d’utiliser les équations (1.6) et (2.4).
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Pour 0 ⩽ x < b, les fonctionsJb etΦb sont toutes deux une combinaison linéaire deφb, ψb, qui sont solutions

de l’équation différentielle (1.1). De cette façon, Jb et Φb sont aussi solutions de cette EDO sur cet intervalle,

donc J ′
b(x)Φ

′′
b (x) ⩾ J ′′

b (x)Φ
′
b(x) si et seulement si

J ′
b(x) ·

2

σ2
(︁
qΦb(x)− µΦ′

b(x)
)︁
⩾

2

σ2
(︁
qJb(x)− µJ ′

b(x)
)︁
Φ′
b(x).

Après simplifications, on voit que cette inégalité est équivalente à

J ′
b(x)Φb(x) ⩾ Jb(x)Φ

′
b(x),

cette dernière étant toujours vraie puisque J ′
b(x)Φb(x) ⩾ 0 ⩾ Jb(x)Φ

′
b(x) par la croissance de Jb et la

décroissance de Φb ainsi que la positivité de ces fonctions.

Et pour x ⩾ b, on a que J ′
b(x)Φ

′′
b (x) ⩾ J ′′

b (x)Φ
′
b(x) équivaut à[︃

K

q +K
+

(︃
Jb(b)−

K

q +K

(︃
b+

µ

q
+
S

K

)︃)︃
Ψ′
b(x)

]︃
Φb(b)Ψ

′′
b (x)

⩾

[︃
Jb(b)−

K

q +K

(︃
b+

µ

q
+
S

K

)︃]︃
Ψ′′
b (x) · Φb(b)Ψ′

b(x),

qui se simplifie pour donner K
q+K ⩾ 0, ce qui est évidemment toujours vrai. □

On peut exprimer Vb en fonction de Jb et de Φb.

Théorème 2.6 La fonction de performance d’une stratégie linéaire de seuil b > 0 est donnée par

Vb(x) =

⎧⎪⎨⎪⎩
Vb(b)φb(x) + Vb(0)ψb(x), x < b,

K
q+K

(︂
x+ µ

q + S
K

)︂
+
[︂
Vb(b)− K

q+K

(︂
b+ µ

q + S
K

)︂]︂
Ψb(x), x ⩾ b.

(2.6)

Preuve. Nous allons plutôt montrer que Vb s’écrit sous la forme compacte qui suit :

Vb(x) = Jb(x) + Vb(0)Φb(x), x ⩾ 0. (2.7)

Pour x = 0, la relation est triviale puisque Jb(0) = 0 et Φb(0) = 1. Pour x > 0, lorsque Xb
0 = x, il n’y a

aucune injection avant le temps d’arrêt τXb

0 , c’est-à-dire que Gbt = 0 pour tout t ∈ [0, τX
b

0 ). Il en découle
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que (Xb
t )0⩽t<τXb

b

et (Y b
t )0⩽t<τY b

0
sont de même loi. Ainsi,

Vb(x) = Ex

⎡⎣∫︂ τX
b

0

0
e−qt(KXb

t + S)1Xb
t⩾b

dt

⎤⎦
+ Ex

[︄
1
τX

b
0 <∞

∫︂ ∞

τX
b

0

e−qt
(︂
(KXb

t + S)1Xb
t⩾b

dt− βdGbt
)︂]︄

= Ex

⎡⎣∫︂ τY
b

0

0
e−qt(KY b

t + S)1Y b
t ⩾b

dt

⎤⎦
+ Ex

[︄
e−qτ

Xb

0 1
τX

b
0 <∞

∫︂ ∞

0
e−qs

(︄(︃
KXb

s+τX
b

0

+ S

)︃
1Xb

s+τX
b

0

⩾bds− βdG
b

s+τX
b

0

)︄]︄
,

où l’on a procédé au changement de variable s = t− τXb

0 dans l’intégrale de la seconde espérance. Comme

dans la démonstration du Théorème 1.12, on applique la Loi des espérances itérées à cette espérance, qui

devient donc

Ex

[︄
e−qτ

Xb

0 1
τX

b
0 <∞Ex

[︄∫︂ ∞

0
e−qs

(︄(︃
KXb

s+τX
b

0

+ S

)︃
1Xb

s+τX
b

0

⩾bds− βdG
b

s+τX
b

0

)︄
| F

τX
b

0

]︄]︄
.

Étant donné que (Xb, Gb) est un couple markovien (voir (Pilipenko, 2014)), on applique la Propriété forte de

Markov à la fonctionnelle F : C(R+,R2)→ R donnée par

F (y, g) =

∫︂ ∞

0
e−qz (Ky(z) + S)1y(z)⩾bdz − β

∫︂ ∞

0
e−qzdg(z),

où (y, g) = (y(z), g(z))z⩾0 est une fonction continue de R+ dans R2, ce qui donne

Ex

[︄∫︂ ∞

0
e−qs

(︄(︃
KXb

s+τX
b

0

+ S

)︃
1Xb

s+τX
b

0

⩾bds− βdG
b

s+τX
b

0

)︄
| F

τX
b

0

]︄

= EXb

τX
b

0

[︃∫︂ ∞

0
e−qs

(︂
(KXb

s + S)1Xb
s⩾b

ds− βdGbs
)︂]︃
.

Par conséquent, puisqueXb

τX
b

0

= 0, nous avons

Vb(x) = Ex

⎡⎣∫︂ τY
b

0

0
e−qt(KY b

t + S)1Y b
t ⩾b

dt

⎤⎦
+ E0

[︃∫︂ ∞

0
e−qs

(︂
(KXb

s + S)1Xb
s⩾b

ds− βdGbs
)︂]︃

Ex
[︃
e−qτ

Xb

0 1
τX

b
0 <∞

]︃
= Jb(x) + Vb(0)Ex

[︃
e−qτ

Y b

0 1
τY

b
0 <∞

]︃
= Jb(x) + Vb(0)Φb(x).
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Pour terminer, par substitution directe dans l’équation (2.7) de la forme explicite de Jb et Φb, ainsi qu’avec

la relation Vb(b) = Jb(b) + Vb(0)Φb(b), la fonction de performance s’écrit comme en (2.6).□

2.2.1 Fonction de performance en zéro

Il nous faut maintenant expliciter Vb(0). Pour cela, on considère le premier moment oùXb atteint b, soit le

temps d’arrêt τXb

b . SiXb
0 = 0, alors aucun dividende n’est versé avant τXb

b . De cette façon, on a

Vb(0) = E0

⎡⎣−β ∫︂ τX
b

b

0
e−qtdGbt

⎤⎦+ E0

[︄
1
τX

b
b <∞

∫︂ ∞

τX
b

b

e−qt
(︂
(KXb

t + S)1Xb
t⩾b

dt− βdGbt
)︂]︄

.

Pour le second terme, on applique la même démarche que dans la démonstration du Théorème 2.6, en

passant par la Loi des espérances itérées et la Propriété forte de Markov. On trouve

Vb(0) = E0

⎡⎣−β ∫︂ τX
b

b

0
e−qtdGbt

⎤⎦
+ E0

[︄
e−qτ

Xb

b 1
τX

b
b <∞EXb

τX
b

b

[︃∫︂ ∞

0
e−qt

(︂
(KXb

t + S)1Xb
t⩾b

dt− βdGbt
)︂]︃]︄

= −βE0

⎡⎣∫︂ τX
b

b

0
e−qtdGbt

⎤⎦+ Vb(b)E0

[︃
e−qτ

Xb

b 1
τX

b
b <∞

]︃
.

Soit le couple (Zt, Gt)t⩾0 solution du problème de Skorokhod suivant :

dZt = µdt+ σdBt + dGt,

dont

— Zt ⩾ 0 pour tout t ⩾ 0 ;

— G est croissant ;

—
∫︁ t
0 1Zs>0dGs = 0 (ou de façon équivalente,Gt =

∫︁ t
0 1Zs=0dGs) pour tout t ⩾ 0.

Comme il s’agit d’une solution d’un problème de Skorokhod, alors pour tout t ⩾ 0,

Gt = − min
0⩽s⩽t

(Xs ∧ 0) ,

oùX est le MBA donné par

Xt = Z0 + µt+ σBt, t ⩾ 0.
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De plus, du fait que Z0 = 0, et doncX0 = 0, on a plus particulièrement

Gt = − min
0⩽s⩽t

Xs.

De facto, le processusZ est unMBA réfléchi en0.On remarquera que, en dessous de b, le processus contrôlé

Xb se comporte comme Z. Ainsi, (Xb
t , G

b
t)0⩽t<τXb

b

est de même loi que le couple (Zt, Gt)0⩽t<τZb .

Par conséquent, posons

Λb := E0

[︄∫︂ τZb

0
e−qtdGt

]︄
, Θb := E0

[︂
e−qτ

Z
b 1τZb <∞

]︂
, (2.8)

alors

Vb(0) = −βΛb + Vb(b)Θb. (2.9)

Pour déterminer Λb et Θb, nous procédons par approximation de manière semblable à ce que nous avons

fait au Chapitre 1. Il s’agit, à notre connaissance, d’une approche novatrice.

Soit n ∈ N fixé, on considère le couple de processus (Znt , Gnt )t⩾0 tel que

dZnt = µdt+ σdBt + dGnt , Zn0 = 0, Gn0 =
1

n
,

avecGn de telle sorte queZnt saute instantanément à 1
n dès qu’il touche en zéro. La dérive et la volatilité de

Zn étant constantes, ce processus se comporte donc comme leMBAX entre chaque saut. Pour i ∈ N, le ie

saut survient lorsqueXt (on rappelle queX0 = 0) atteint− i−1
n pour la première fois, auquel casGnt = i

n .

De cette façon,Gn s’écrit pour tout t ⩾ 0 par

Gnt =
1

n

(︃
1−

⌈︃
n min

0⩽s⩽t
Xs

⌉︃)︃
=
⌊nGt⌋+ 1

n
,

puisque −⌈x⌉ = ⌊−x⌋ pour tout x ∈ R, etGt = −min0⩽s⩽tXs. Sous cette forme, on constate aisément

que dGnt = 0 pour tout t > 0 sauf lorsque nGt = −i, auquel cas dGnt = 1
n vu que ⌊nGt⌋ augmente d’un

entier. Et comme

{t > 0 | nGt = −i; i ∈ N} =
{︂
τX− i

n

; i ∈ N
}︂
,

alors

dGnt =

⎧⎪⎨⎪⎩
1
n , t = τX− i

n

, i ∈ N,

0, sinon.
(2.10)
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On pourra se référer à la Figure 2.4 pour une illustration de ces processus.
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Figure 2.4 – Simulation de Z et Zn avec n = 2

Les deux graphes montrent la même simulation, mais sur des intervalles différents. La région mauve pâle couvre [Zn
t − 1

n
, Zn

t ] en ordonnée. Le

pas de la simulation est∆t ≈ 0.005. Paramètres : µ = 0.1, σ2 = 1.
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Lemme 2.7 Les expressions Λb etΘb données par l’équation (2.8) satisfont

Θn
b := E0, 1

n

[︂
e−qτ

Zn

b 1τZn
b <∞

]︂
−−−→
n→∞

Θb,

Λnb := E0, 1
n

[︄∫︂ τZ
n

b

0
e−qtdGnt

]︄
−−−→
n→∞

Λb,

où E0, 1
n
est l’espérance avec Zn0 = 0 etGn0 = 1

n (voir la Notation 2.1).

Preuve. Comme 0 < ⌊nx⌋+1
n − x ⩽ 1

n pour tout x ∈ R et n ∈ N, et queGnt = ⌊nGt⌋+1
n , alors on obtient les

deux relations suivantes, qui sont équivalentes pour tout t ⩾ 0 (puisque Zn = X +Gn) :

0 < Gnt −Gt ⩽
1

n
, 0 < Znt − Zt ⩽

1

n
.

Pour t = τZb dans la seconde inégalité, on voit que Zn
τZb

> b, donc τZn

b ⩽ τZb . Et avec t = τZ
n

b dans cette

même inégalité, on trouve b − 1
n < ZτZn

b
⩽ b. Par la continuité du MB, il s’ensuit que τZn

b −−−→
n→∞

τZb .

En conséquence, comme x ↦→ e−qx1x<∞ est bornée dans [0, 1], alors par le Théorème de convergence

dominée, on a bien queΘn
b −−−→n→∞

Θb.

Et pour Λnb , notons d’abord que ∫︂ τZ
n

b

0
e−qtdGnt −−−→n→∞

∫︂ τZb

0
e−qtdGt,

puisque ⃓⃓⃓⃓
⃓
∫︂ τZ

n

b

0
e−qtdGnt −

∫︂ τZb

0
e−qtdGt

⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓
∫︂ τZ

n

b

0
e−qt(dGnt − dGt)−

∫︂ τZb

τZ
n

b

e−qtdGt

⃓⃓⃓⃓
⃓

⩽
1

n
+

⃓⃓⃓⃓
⃓
∫︂ τZb

τZ
n

b

e−qtdGt

⃓⃓⃓⃓
⃓ −−−→n→∞

0,

par l’inégalité du triangle et le fait que 0 < Gnt −Gt ⩽ 1
n pour tout t ⩾ 0. Pour finir, on a Λnb −−−→n→∞

Λb par

le Théorème de convergence dominée, vu que∫︂ τZ
n

b

0
e−qtdGnt ⩽ Gn

τZ
n

b
⩽

1

n
+GτZn

b
⩽ 1− min

0⩽s⩽τZ
n

b

Xs ⩽ 1− min
0⩽s<∞

Xs,

et que la variable aléatoire−min0⩽s<∞Xs est d’espérance finie (voir la démonstration du Lemme 2.18).□

Il ne restemaintenant qu’à trouver la forme explicite deΛnb et deΘ
n
b , puis à calculer leur limite pourn→∞.
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Proposition 2.8 Pour tout b > 0, la fonction de performance Vb évaluée en x = 0 est

Vb(0) =
β − J ′

b(0)

Φ′
b(0)

. (2.11)

Preuve. La preuve est divisée en trois parties : les deux premières servent à calculer respectivement

lim
n→∞

Λnb = − 1

ψ′
b(0)

, lim
n→∞

Θn
b = −

φ′
b(0)

ψ′
b(0)

,

que nous utiliserons pour calculer Vb(0) à la dernière partie.

Pour déterminer Λnb etΘ
n
b , nous séparons les espérances selon que Z

n atteigne 0 ou b en premier.

Premièrement, pour Λnb , si τ
Zn

b < τZ
n

0 , alors
∫︁ τZn

b
0 e−qtdGnt = 0. Sinon, le processusGn fait un premier de

saut de hauteur 1
n lorsque t = τZ

n

0 = τX−1/n, par l’équation (2.10). Ainsi,

Λnb = E0, 1
n

[︄
1τZn

0 <τZ
n

b

∫︂ τZ
n

b

0
e−qtdGnt

]︄

= E0, 1
n

[︄
1τZn

0 <τZ
n

b

(︄
1

n
e−qτ

Zn

0 +

∫︂ τZ
n

b

τZ
n

0

e−qtdGnt

)︄]︄
=

1

n
E0

[︂
e−qτ

Zn

0 1τZn
0 <τZ

n
b

]︂
+ E0, 1

n

[︄
e−qτ

Zn

0 1τZn
0 <τZ

n
b

E0, 1
n

[︄∫︂ τZ
n

b −τZn

0

0
e−qsdGn

s+τZ
n

0
| FτZn

0

]︄]︄
,

la seconde espérance étant obtenue par le changement de variable s = t − τZ
n

0 dans l’intégrale, puis

par la Loi des espérances itérées et la FτZn
0

-mesurabilité de e−qτZ
n

0 1τZn
0 <τZ

n
b

. En lui appliquant ensuite la

Propriété forte de Markov, on trouve

Λnb =
1

n
E0

[︂
e−qτ

Zn

0 1τZn
0 <τZ

n
b

]︂
+ E0, 1

n

[︄
e−qτ

Zn

0 1τZn
0 <τZ

n
b

EZn

τZ
n

0

[︄∫︂ τZ
n

b

0
e−qsdGns

]︄]︄

=
1

n
E0

[︂
e−qτ

Zn

0 1τZn
0 <τZ

n
b

]︂
+ E0

[︂
e−qτ

Zn

0 1τZn
0 <τZ

n
b

]︂
E0, 1

n

[︄∫︂ τZ
n

b

0
e−qsdGns

]︄
=

1

n
E 1

n

[︂
e−qτ

X
0 1τX0 <τXb

]︂
+ E 1

n

[︂
e−qτ

X
0 1τX0 <τXb

]︂
Λnb ,

car (Zn)0⩽t<τZn
0

est de même loi par rapport à P0 que (Xt)0⩽t<τX0
par rapport à P 1

n
. De cette façon, en

isolant Λnb ,

Λnb =
1

n
·

E 1
n

[︂
e−qτ

X
0 1τX0 <τXb

]︂
1− E 1

n

[︂
e−qτ

X
0 1τX0 <τXb

]︂ = ψb(1/n)
1/n

1− ψb(1/n)
,
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et en prenant la limite pour n→∞,

lim
n→∞

Λnb = lim
n→∞

ψb(1/n) · lim
n→∞

1/n

1− ψb(1/n)
= ψb(0)

[︃
− lim
n→∞

ψb(1/n)− ψb(0)
1/n

]︃−1

= − 1

ψ′
b(0)

,

puisque ψb(0) = 1.

Deuxièmement, pourΘn
b , on procède essentiellement comme avec Φb(x) pour x < b :

Θn
b = E0

[︂
e−qτ

Zn

b 1τZn
b <τZ

n
0

]︂
+ E0

[︂
1τZn

b <τZ
n

0
· e−qτZ

n

b 1τZn
0 <τZ

n
b

]︂
= E0

[︂
e−qτ

Zn

b 1τZn
b <τZ

n
0

]︂
+ E0

[︂
e−qτ

Zn

0 1τZn
0 <τZ

n
b

E0

[︂
e−q(τ

Zn

b −τZn

0 )1τZn
b <∞ | FτZn

0

]︂]︂
= E0

[︂
e−qτ

Zn

b 1τZn
b <τZ

n
0

]︂
+ E0

[︂
e−qτ

Zn

0 1τZn
0 <τZ

n
b

]︂
EZn

τZ
n

0

[︂
e−qτ

Zn

b 1τZn
b <∞

]︂
= E 1

n

[︂
e−qτ

X
b 1τXb <τX0

]︂
+ E 1

n

[︂
e−qτ

X
0 1τX0 <τXb

]︂
E0

[︂
e−qτ

Zn

b 1τZn
b <∞

]︂
= φb(1/n) + ψb(1/n)Θ

n
b .

On isoleΘn
b dans cette équation :

Θn
b =

φb(1/n)

1− ψb(1/n)
.

On fait apparaître des quotients différentiels en utilisant φb(0) = 0 et ψb(0) = 1 pour obtenir

Θn
b = −

φb(1/n)−φb(0)
1/n

ψb(1/n)−ψb(0)
1/n

−−−→
n→∞

−
φ′
b(0)

ψ′
b(0)

.

Finalement, par l’équation (2.9) et le calcul des limites ci-dessus, on trouve

Vb(0) =
β − Vb(b)φ′

b(0)

ψ′
b(0)

. (2.12)

On remplace Vb(b) = Jb(b)+Vb(0)Φb(b) (par l’équation (2.7)) dans cette équation, puis on isole Vb(0) d’un

côté, ce qui nous donne

Vb(0) =
β − Jb(b)φ′

b(0)

ψ′
b(0) + Φb(b)φ

′
b(0)

. (2.13)

Enfin, on voit que Jb(b)φ′
b(0) = J ′

b(0) et ψ
′
b(0) + Φb(b)φ

′
b(0) = Φ′

b(0), ce qui conclut la démonstration. □

Nous pouvons dès lors obtenir une forme explicite pour Vb(b). En combinant les équations (2.12) et (2.13),

on trouve
β − Vb(b)φ′

b(0)

ψ′
b(0)

=
β − Jb(b)φ′

b(0)

ψ′
b(0) + Φb(b)φ

′
b(0)

.
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Il suffit qu’à isoler Vb(b) d’un côté, ce qui nous donne

Vb(b) =
βΦb(b) + Jb(b)ψ

′
b(0)

ψ′
b(0) + Φb(b)φ

′
b(0)

.

Par conséquent, Vb admet la forme explicite suivante :

Théorème 2.9 La fonction de performance d’une stratégie linéaire de seuil b > 0 est donnée par

Vb(x) =

⎧⎪⎨⎪⎩
Abφb(x) + Cbψb(x), x < b,

K
q+K

(︂
x+ µ

q + S
K

)︂
+
[︂
Ab − K

q+K

(︂
b+ µ

q + S
K

)︂]︂
Ψb(x), x ⩾ b,

où Ab =
βΦb(b) + Jb(b)ψ

′
b(0)

ψ′
b(0) + Φb(b)φ

′
b(0)

et Cb =
β − Jb(b)φ′

b(0)

ψ′
b(0) + Φb(b)φ

′
b(0)

.

Une question pertinente à se poser est celle de la continuité de Vb en x = 0, à savoir si Vb(0+) = Vb(0).

Or, pour x ∈ [0, b), grâce à l’équation (2.6), Vb est donnée par Vb(x) = Vb(b)φb(x) + Vb(0)ψb(x). Ainsi,

on a bien la continuité en 0 de Vb étant donné que φb(0+) = φb(0) = 0 et ψb(0+) = ψb(0) = 1. Par

conséquent, Vb ∈ C(R+).

En ce qui a trait à V ′
b (0) et V

′′
b (0), rappelons qu’au Chapitre 1, nous avons défini les dérivées premières et

secondes des transformées de Laplace aux extrémités de leur domaine. De cette façon,

V ′
b (0) := lim

x↓0
V ′
b (x), V ′′

b (0) := lim
x↓0

V ′′
b (x).

Proposition 2.10 Pour tout b > 0, la dérivée de Vb est telle que pour tout x ⩾ 0,

V ′
b (x) ⩾ 0, (2.14)

et en particulier,

V ′
b (0) = β. (2.15)

Preuve. L’équation (2.15) se démontre facilement en dérivant la fonction Vb donnée par l’équation (2.7), ce

qui nous donne

V ′
b (0) = J ′

b(0) + Vb(0)Φ
′
b(0) = J ′

b(0) +
β − J ′

b(0)

Φ′
b(0)

Φ′
b(0) = β.
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Une autre façon d’arriver au même résultat est de dériver l’expression de Vb dans l’équation (2.6) pour trou-

ver V ′
b (0) = Vb(b)φ

′
b(0) + Vb(0)ψ

′
b(0), et enfin utiliser l’équation (2.12).

Pour l’inégalité (2.14), on a par l’équation (2.7) et la Proposition 2.8, que

V ′
b (x) = J ′

b(x) +
β − J ′

b(0)

Φ′
b(0)

Φ′
b(x)

= β
Φ′
b(x)

Φ′
b(0)

+
J ′
b(x)Φ

′
b(0)− J ′

b(0)Φ
′
b(x)

Φ′
b(0)

.

On a l’inégalité J ′
b(x)Φ

′
b(0)− J ′

b(0)Φ
′
b(x) ⩽ 0 pour tout x ⩾ 0 comme conséquence du Lemme 2.5, et avec

Φ′
b < 0 par la Proposition 1.13, on trouve

J ′
b(x)Φ

′
b(0)− J ′

b(0)Φ
′
b(x)

Φ′
b(0)

⩾ 0.

Et comme βΦ′
b(x)

Φ′
b(0)

⩾ 0, alors V ′
b (x) ⩾ 0.□

Par définition de Vb, on peut décomposer l’espérance ainsi :

Vb(x) = Ex
[︃∫︂ ∞

0
e−qt(KXb

t + S)1Xb
t⩾b

dt

]︃
− βEx

[︃∫︂ ∞

0
e−qtdGbt

]︃
, x ⩾ 0,

de manière à distinguer l’effet marginal des versements de dividendes et des injections de capital sur la

fonction de performance. Nous définissons alors les fonctionsDb, Rb : R+ → R+ données par

Db(x) := Ex
[︃∫︂ ∞

0
e−qt(KXb

t + S)1Xb
t⩾b

dt

]︃
,

Rb(x) := Ex
[︃∫︂ ∞

0
e−qtdGbt

]︃
,

de telle sorte que Vb(x) = Db(x)− βRb(x). Par l’équation (2.7) et la Proposition 2.8, on trouve, pour tout

x ⩾ 0,

Vb(x) = Jb(x) +
β − J ′

b(0)

Φ′
b(0)

Φb(x)

=

[︃
Jb(x)−

J ′
b(0)

Φ′
b(0)

Φb(x)

]︃
− β

[︃
−Φb(x)

Φ′
b(0)

]︃
,

et par conséquent,

Db(x) = Jb(x)−
J ′
b(0)

Φ′
b(0)

Φb(x), Rb(x) = −
Φb(x)

Φ′
b(0)

. (2.16)

Onpeut trouver lesmêmes expressions par un calcul direct des espérances. Ces deux fonctions ont quelques

propriétés intéressantes, que nous présentons dès à présent.
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Proposition 2.11 Pour tout b > 0, les fonctions Db et Rb sont positives. De plus, Db est croissante avec

D′
b(0) = 0, etRb est décroissante et convexe, avec R′

b(0) = −1.

Preuve. Tout d’abord, la positivité deDb etRb est triviale, puisqu’elles sont définies comme l’espérance d’une

intégrale d’une fonction positive (etGb est croissante).

Ensuite, pourDb, on trouve, pour tout x ⩾ 0, que

D′
b(x) = J ′

b(x)−
J ′
b(0)

Φ′
b(0)

Φ′
b(x) =

J ′
b(x)Φ

′
b(0)− J ′

b(0)Φ
′
b(x)

Φ′
b(0)

⩾ 0,

comme on l’a vu dans la démonstration de la Proposition 2.10. En particulier, un calcul direct nous donne

D′
b(0) = 0.

Pour Rb, notons que Rb(x) = − 1
Φ′

b(0)
Φb(x). Vu que le coefficient − 1

Φ′
b(0)

est positif, Rb est décroissante et

convexe pour tout x ⩾ 0 comme Φb (voir la Proposition 1.7). Enfin, R′
b(0) = −

Φ′
b(0)

Φ′
b(0)

= −1.□

Cette décomposition nous aidera pour l’analyse de l’effet des paramètres sur les dividendes et les injections

séparément plutôt que sur l’entièreté de la fonction de performance. On y reviendra au Chapitre 3.

2.3 Continuité de la dérivée seconde

Nous voulons montrer qu’il existe un b∗ > 0 tel que Vb∗ ∈ C2(R+) dans le but d’appliquer la Formule d’Itô

dans le Théorème de vérification 2.20.

2.3.1 Étude d’un point de continuité

Comme Jb et Φb sont C1(R+) pour tout b > 0, alors il en est de même pour Vb. De plus, il est clair que V ′′
b

est continue sur R+\{b}. Il suffit dans ce cas à trouver b∗ > 0 tel que V ′′
b∗(b

∗+) = V ′′
b∗(b

∗−) pour avoir la

continuité de la dérivée seconde.

Théorème 2.12 Soit b > 0, alors V ′′
b (b+) = V ′′

b (b−) si et seulement si V ′
b (b) = 1.
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Preuve. En dérivant l’équation (2.6), on trouve

V ′
b (b+) =

K

q +K
+

[︃
Vb(b)−

K

q +K

(︃
b+

µ

q
+
S

K

)︃]︃
Ψ′
b(b),

V ′
b (b−) = Vb(b)φ

′
b(b) + Vb(0)ψ

′
b(b).

On dérive à nouveau, puis on utilise le fait queΨb est solution de l’équation (1.2) et que φb, ψb sont solutions

de l’équation (1.1) pour obtenir

V ′′
b (b+) =

[︃
Vb(b)−

K

q +K

(︃
b+

µ

q
+
S

K

)︃]︃
Ψ′′
b (b)

=

[︃
Vb(b)−

K

q +K

(︃
b+

µ

q
+
S

K

)︃]︃
2

σ2
(︁
q + (Kb+ S − µ)Ψ′

b(b)
)︁
,

V ′′
b (b−) = Vb(b)φ

′′
b (b) + Vb(0)ψ

′′
b (b)

= Vb(b)
2

σ2
(︁
qφb(b)− µφ′

b(b)
)︁
+ Vb(0)

2

σ2
(︁
qψb(b)− µψ′

b(b)
)︁

=
2

σ2

[︂
Vb(b)

(︁
q − µφ′

b(b)
)︁
− Vb(0)µψ′

b(b)
]︂
,

puisque φb(b) = 1 et ψb(b) = 0. En égalisant les deux expressions finales, l’équation V ′′
b (b+) = V ′′

b (b−)

devient[︃
Vb(b)−

K

q +K

(︃
b+

µ

q
+
S

K

)︃]︃ (︁
q + (Kb + S − µ)Ψ′

b(b)
)︁
= Vb(b)

(︁
q − µφ′

b(b)
)︁
− Vb(0)µψ′

b(b),

puis

(Kb+ S − µ)
[︃
Vb(b)−

K

q +K

(︃
b+

µ

q
+
S

K

)︃]︃
Ψ′
b(b)−

qK

q +K

(︃
b+

µ

q
+
S

K

)︃
= −µ

(︁
Vb(b)φ

′
b(b) + Vb(0)ψ

′
b(b)
)︁
.

On reconnaît les expressions de V ′
b (b+) et V ′

b (b−), donc

(Kb+ S − µ)
[︃
V ′
b (b+)− K

q +K

]︃
− qK

q +K

(︃
b+

µ

q
+
S

K

)︃
= −µV ′

b (b−),

et par la continuité de V ′
b , il s’ensuit que

(Kb+ S)V ′
b (b) =

K

q +K
(Kb+ S − µ) + qK

q +K

(︃
b+

µ

q
+
S

K

)︃
.

Quelquesmanipulations algébriques sur le côté droit de l’égalité nous font remarquer qu’il est égal àKb+S.

Par conséquent, on a bien l’équivalence entre V ′′
b (b+) = V ′′

b (b−) et V ′
b (b) = 1.□
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Ce Théorème est commun à beaucoup de problèmes de maximisation de dividendes (voir (Albrecher et

Thonhauser, 2009; Avanzi, 2009)), et il nous aidera à trouver une relation équivalente de la forme g(b) = 0.

Isolons Vb(b) dans V ′
b (b+) = K

q+K +
[︂
Vb(b)− K

q+K

(︂
b+ µ

q + S
K

)︂]︂
Ψ′
b(b) = 1 :

Vb(b) =
K

q +K

(︃
b+

µ

q
+
S

K

)︃
+

q

q +K

1

Ψ′
b(b)

.

Isolons maintenant Vb(b) dans V ′
b (b−) = Vb(b)φ

′
b(b) + Vb(0)ψ

′
b(b) = 1 :

Vb(b) =
1− Vb(0)ψ′

b(b)

φ′
b(b)

. (2.17)

Enfin, posons l’égalité entre ces deux expressions de Vb(b), ce qui nous donne

g(b) :=
K

q +K

(︃
b+

µ

q
+
S

K

)︃
+

q

q +K

1

Ψ′
b(b)
−

1− Vb(0)ψ′
b(b)

φ′
b(b)

= 0, (2.18)

où g : R+ → R est continue sur (0,∞), puisqu’elle est composée de nos transformées de Laplace, qui sont

des combinaisons linéaires de solutions continues d’équations différentielles.

En conséquence, tout b > 0 solution de l’équation g(b) = 0 est tel que Vb ∈ C2(R+). Il suffit donc de

montrer qu’il existe au moins une solution positive b∗ de cette équation.

2.3.2 Existence d’une racine

Typiquement, dans les problèmes de paiements de dividendes absolument continus, le seuil optimal est

inférieur à la barrière optimale du problème avec dividendes singuliers (voir (Ekström et Lindensjö, 2021;

Renaud et Simard, 2021)), ce dernier étant un cas limite du problème absolument continu lorsque la borne

sur le taux de versements de dividendes croît vers l’infini. Dans notre cas, le problème limite s’obtient en

faisant tendreK ou S vers l’infini, et il s’agit du problème avec injections obligatoires de (Løkka et Zervos,

2008), dont la barrière optimale c∗ est l’unique solution positive de l’équation (2.19) ci-dessous.

(∆− µ)e
∆+µ

σ2 c∗ + (∆ + µ)e
∆−µ

σ2 c∗ = 2β∆, (2.19)

qui s’écrit aussi avec φb et ψb par

−φ
′
c∗(c

∗)

ψ′
c∗(c

∗)
= β. (2.20)

Conséquemment, nous conjecturons que b∗ < c∗. Pour prouver l’existence de ce seuil optimal b∗, nous

montrons, à la Proposition 2.14, que g(0+) > 0 et g(c∗) < 0. Il en découle, par la continuité de g et le
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Théorème des valeurs intermédiaires, qu’il existe un b∗ ∈ (0, c∗) tel que g(b∗) = 0. La Figure 2.5 illustre

cela en traçant un exemple de courbe de g. On voit bien qu’une racine de g existe entre 0 et c∗.

0.0 0.2 0.4 0.6 0.8 1.0
b

0.0

0.5

1.0

1.5

g(
b)

c *

Figure 2.5 – Exemple de g

Paramètres : µ = 1, σ2 = 1, K = 1, S = 2, q = 0.4, β = 1.5.

Il est possible d’évaluer directement g(0+) = limb↓0 g(b), ce que nous faisons au Lemme 2.13. Mais avant,

étant donné que le calcul de g(0+) fait intervenir la fonction Jb avec b = 0, rappelons que, par (Locas et

Renaud, 2024), J0 est bien définie, et qu’elle est donnée par

J0(x) =
K

q +K

[︃
x+

(︃
µ

q
+
S

K

)︃(︁
1−Ψ0(x)

)︁]︃
, x ⩾ 0,

où l’on définitΨ0 par

Ψ0(x) := lim
b↓0

Ψb(x) = lim
b↓0

H(x)

H(b)
=
H(x)

H(0)
, x ⩾ 0.

Ainsi,

J ′
0(0) =

K

q +K

[︃
1−

(︃
µ

q
+
S

K

)︃
Ψ′

0(0)

]︃
. (2.21)

Rappelons enfin que, pour x ∈ [0, b],

φb(x) =
W (x)

W (b)
, ψb(x) =

f+(b)f−(x)− f+(x)f−(b)
W (b)

,

et queW (0) = 0.

Lemme 2.13 La fonction g donnée par l’équation (2.18) est telle que

g(0+) = − β − 1

Ψ′
0(0)

.
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Preuve. Pour commencer, on a

g(0+) =
K

q +K

(︃
µ

q
+
S

K

)︃
+

q

q +K

1

limb↓0Ψ
′
b(b)
− lim

b↓0

1− Vb(0)ψ′
b(b)

φ′
b(b)

.

La première limite est

lim
b↓0

Ψ′
b(b) = lim

b↓0

H ′(b)

H(b)
=
H ′(0)

H(0)
= Ψ′

0(0).

Quant à la seconde limite, puisque la croissance et décroissance strictes de f+ et f−, respectivement, im-

pliquent que f ′+(0)f−(0)− f+(0)f ′−(0) > 0, alors par l’équation (1.3),

ψ′
b(b)

φ′
b(b)

=
f+(b)f

′
−(b)− f ′+(b)f−(b)

f ′+(b)f−(0)− f+(0)f ′−(b)
−−→
b↓0

f+(0)f
′
−(0)− f ′+(0)f−(0)

f ′+(0)f−(0)− f+(0)f ′−(0)
= −1.

De même, on a

1

φ′
b(b)

=
f+(b)f−(0)− f+(0)f−(b)
f ′+(b)f−(0)− f+(0)f ′−(b)

−−→
b↓0

f+(0)f−(0)− f+(0)f−(0)
f ′+(0)f−(0)− f+(0)f ′−(0)

= 0.

Par conséquent,

lim
b↓0

1− Vb(0)ψ′
b(b)

φ′
b(b)

= lim
b↓0

1

φ′
b(b)
− lim

b↓0
Vb(0) · lim

b↓0

ψ′
b(b)

φ′
b(b)

= lim
b↓0

Vb(0),

et donc

g(0+) =
K

q +K

(︃
µ

q
+
S

K

)︃
+

q

q +K

1

Ψ′
0(0)

− lim
b↓0

Vb(0).

Montrons maintenant que

lim
b↓0

Vb(0) =
β − J ′

0(0)

Ψ′
0(0)

.

Par l’équation (2.11),

lim
b↓0

Vb(0) = lim
b↓0

β − J ′
b(0)

Φ′
b(0)

,

donc on doit vérifier les deux limites suivantes pour compléter :

lim
b↓0

J ′
b(0) = J ′

0(0), lim
b↓0

Φ′
b(0) = Ψ′

0(0).

Pour la première limite, on a

lim
b↓0

J ′
b(0) = lim

b↓0

{︃
K

q +K
+

[︃
Jb(b)−

K

q +K

(︃
b+

µ

q
+
S

K

)︃]︃
Ψ′
b(0)

}︃
=

K

q +K
+

[︃
lim
b↓0

Jb(b)−
K

q +K

(︃
µ

q
+
S

K

)︃]︃
Ψ′

0(0),
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où

lim
b↓0

Jb(b) = lim
b↓0

K
q+K

[︂
1−

(︂
b+ µ

q + S
K

)︂
Ψ′
b(b)
]︂

φ′
b(b)−Ψ′

b(b)

=

K
q+K

[︂
1−

(︂
µ
q + S

K

)︂
Ψ′

0(0)
]︂

limb↓0 φ
′
b(b)−Ψ′

0(0)

= 0,

étant donné que φ′
b(b) −−→

b↓0
∞. Ainsi, on a bien, par l’équation (2.21), que

lim
b↓0

J ′
b(0) =

K

q +K

[︃
1−

(︃
µ

q
+
S

K

)︃
Ψ′

0(0)

]︃
= J ′

0(0).

Quant à la seconde limite, par le Théorème 1.12,

lim
b↓0

Φ′
b(0) = lim

b↓0

(︃
ψ′
b(0)−

ψ′
b(b)φ

′
b(0)

φ′
b(b)−Ψ′

b(b)

)︃
= lim

b↓0

ψ′
b(0)φ

′
b(b)− ψ′

b(0)Ψ
′
b(b)− ψ′

b(b)φ
′
b(0)

φ′
b(b)−Ψ′

b(b)

= lim
b↓0

Ψ′
b(b) · lim

b↓0

−ψ′
b(0)

φ′
b(b)−Ψ′

b(b)
+ lim

b↓0

ψ′
b(0)φ

′
b(b)− ψ′

b(b)φ
′
b(0)

φ′
b(b)−Ψ′

b(b)

= Ψ′
0(0)

(︃
lim
b↓0

Ψ′
b(b)− φ′

b(b)

ψ′
b(0)

)︃−1

+ lim
b↓0

ψ′
b(0)φ

′
b(b)− ψ′

b(b)φ
′
b(0)

W ′(b)
W (b) −Ψ′

b(b)

= Ψ′
0(0)

(︃
Ψ′

0(0)

limb↓0 ψ
′
b(0)
− lim

b↓0

φ′
b(b)

ψ′
b(0)

)︃−1

+ lim
b↓0

W (b)[ψ′
b(0)φ

′
b(b)− ψ′

b(b)φ
′
b(0)]

W ′(b)−W (b)Ψ′
b(b)

= Ψ′
0(0) (0− (−1))−1 +

limb↓0W (b)[ψ′
b(0)φ

′
b(b)− ψ′

b(b)φ
′
b(0)]

W ′(0)−W (0)Ψ′
0(0)

= Ψ′
0(0) +

limb↓0W (b)[ψ′
b(0)φ

′
b(b)− ψ′

b(b)φ
′
b(0)]

W ′(0)
,

où l’on a pu inverser la limite à la quatrième ligne, car −ψ′
b(0)

φ′
b(b)−Ψ′

b(b)
> 0. Le terme de gauche à la ligne

subséquente s’explique par ψ′
b(0) −−→

b↓0
∞ et

φ′
b(b)

ψ′
b(0)

=
f ′+(b)f−(0)− f+(0)f ′−(b)
f+(b)f ′−(0)− f ′+(0)f−(b)

−−→
b↓0
−1.
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Enfin, puisqueW ′(0) > 0, il reste à montrer que limb↓0W (b)[ψ′
b(0)φ

′
b(b)− ψ′

b(b)φ
′
b(0)] = 0 :

W (b)[ψ′
b(0)φ

′
b(b)− ψ′

b(b)φ
′
b(0)] =

1

W (b)

{︂[︁
f+(b)f

′
−(0)− f ′+(0)f−(b)

]︁[︁
f ′+(b)f−(0)− f+(0)f ′−(b)

]︁
−
[︁
f+(b)f

′
−(b)− f ′+(b)f−(b)

]︁[︁
f ′+(0)f−(0)− f+(0)f ′−(0)

]︁}︂
=

1

W (b)

{︂
f+(b)f

′
+(b)f−(0)f

′
−(0) + f+(0)f

′
+(0)f−(b)f

′
−(b)

− f+(b)f ′+(0)f−(0)f ′−(b)− f+(0)f ′+(b)f−(b)f ′−(0)
}︂

=
1

W (b)

{︂
W (b)f ′+(b)f

′
−(0)−W (b)f ′+(0)f

′
−(b)

}︂
= f ′+(b)f

′
−(0)− f ′+(0)f ′−(b) −−→

b↓0
0.

Avec l’équation (2.11), on trouve

g(0+) =
K

q +K

(︃
µ

q
+
S

K

)︃
+

q

q +K

1

Ψ′
0(0)

− β − J ′
0(0)

Ψ′
0(0)

=
K

q +K

(︃
µ

q
+
S

K

)︃
− 1

Ψ′
0(0)

(︃
β − q

q +K
− J ′

0(0)

)︃
.

Par conséquent, en substituant J ′
0(0) par le côté droit de l’équation (2.21), on trouve

g(0+) =
K

q +K

(︃
µ

q
+
S

K

)︃
− 1

Ψ′
0(0)

(︃
β − q

q +K
− K

q +K
+

K

q +K

(︃
µ

q
+
S

K

)︃
Ψ′

0(0)

)︃
=

K

q +K

(︃
µ

q
+
S

K

)︃
− β − 1

Ψ′
0(0)

− K

q +K

(︃
µ

q
+
S

K

)︃
= − β − 1

Ψ′
0(0)

.

□

Proposition 2.14 La fonction g donnée par l’équation (2.18) est telle que

g(c∗) < 0 < g(0+).

Donc, il existe un b∗ ∈ (0, c∗) par la continuité de g et le Théorème des valeurs intermédiaires.

Preuve. Grâce au Lemme 2.13, on voit aisément que

g(0+) = − β − 1

Ψ′
0(0)

> 0,
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puisque β > 1, et queΨ′
0(0) < 0 par la décroissance deΨ0.

Quant à g(c∗) < 0, il revient au même de démontrer

Ψ′
c∗(c

∗)g(c∗) > 0

vu queΨ′
c∗(c

∗) < 0. On rappelle que c∗ satisfait φ
′
c∗ (c

∗)

ψ′
c∗ (c

∗) = −β par l’équation (2.20), donc

Ψ′
c∗(c

∗)g(c∗) =
K

q +K

(︃
c∗ +

µ

q
+
S

K

)︃
Ψ′
c∗(c

∗) +
q

q +K

− Ψ′
c∗(c

∗)

φ′
c∗(c

∗)
+ Vc∗(0)

ψ′
c∗(c

∗)

φ′
c∗(c

∗)
Ψ′
c∗(c

∗)

= − K

q +K

[︃
1−

(︃
c∗ +

µ

q
+
S

K

)︃
Ψ′
c∗(c

∗)

]︃
+

K

q +K
+

q

q +K

− Ψ′
c∗(c

∗)

φ′
c∗(c

∗)
− Vc∗(0)

β
Ψ′
c∗(c

∗).

Le premier terme est exactement le numérateur de Jc∗(c∗) (voir l’équation (2.5)), donc

Ψ′
c∗(c

∗)g(c∗) = −Jc∗(c∗)
(︁
φ′
c∗(c

∗)−Ψ′
c∗(c

∗)
)︁
+

(︃
1− Ψ′

c∗(c
∗)

φ′
c∗(c

∗)

)︃
− Vc∗(0)

β
Ψ′
c∗(c

∗)

=

(︃
1

φ′
c∗(c

∗)
− Jc∗(c∗)

)︃(︁
φ′
c∗(c

∗)−Ψ′
c∗(c

∗)
)︁
− Vc∗(0)

β
Ψ′
c∗(c

∗).

Il est possible de factoriser le second terme en développant Vc∗(0). Par les équations (2.11) et (1.7),

Vc∗(0) =
β − Jc∗(c∗)φ′

c∗(0)

ψ′
c∗(0)−

ψ′
c∗ (c

∗)

φ′
c∗ (c

∗)−Ψ′
c∗ (c

∗)φ
′
c∗(0)

=
β − Jc∗(c∗)φ′

c∗(0)

ψ′
c∗(0)

(︁
φ′
c∗(c

∗)−Ψ′
c∗(c

∗)
)︁
− ψ′

c∗(c
∗)φ′

c∗(0)

(︁
φ′
c∗(c

∗)−Ψ′
c∗(c

∗)
)︁

=
β − Jc∗(c∗)φ′

c∗(0)[︁
ψ′
c∗(0)φ

′
c∗(c

∗)− ψ′
c∗(c

∗)φ′
c∗(0)

]︁
− ψ′

c∗(0)Ψ
′
c∗(c

∗)

(︁
φ′
c∗(c

∗)−Ψ′
c∗(c

∗)
)︁

> −β − Jc
∗(c∗)φ′

c∗(0)

ψ′
c∗(0)Ψ

′
c∗(c

∗)

(︁
φ′
c∗(c

∗)−Ψ′
c∗(c

∗)
)︁
,

où la dernière inégalité est due à ψ′
c∗(0)φ

′
c∗(c

∗) − ψ′
c∗(c

∗)φ′
c∗(0) < 0, qui découle du Lemme 1.8. De fait,

commeΨ′
c∗(c

∗) < 0, on a

−Vc
∗(0)

β
Ψ′
c∗(c

∗) >
β − Jc∗(c∗)φ′

c∗(0)

βψ′
c∗(0)

(︁
φ′
c∗(c

∗)−Ψ′
c∗(c

∗)
)︁
,

et donc

Ψ′
c∗(c

∗)g(c∗) >

(︃
1

φ′
c∗(c

∗)
− Jc∗(c∗) +

β − Jc∗(c∗)φ′
c∗(0)

βψ′
c∗(0)

)︃(︁
φ′
c∗(c

∗)−Ψ′
c∗(c

∗)
)︁

=

(︃
1

φ′
c∗(c

∗)
+

1

ψ′
c∗(0)

− Jc∗(c∗) + Jc∗(c
∗) · − φ′

c∗(0)

βψ′
c∗(0)

)︃(︁
φ′
c∗(c

∗)−Ψ′
c∗(c

∗)
)︁
.
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Encore une fois, par le Lemme 1.8, on a

−β =
φ′
c∗(c

∗)

ψ′
c∗(c

∗)
<
φ′
c∗(0)

ψ′
c∗(0)

,

donc

Jc∗(c
∗) ·
(︃
− φ′

c∗(0)

βψ′
c∗(0)

)︃
> Jc∗(c

∗).

Conséquemment,

Ψ′
c∗(c

∗)g(c∗) >

(︃
1

φ′
c∗(c

∗)
+

1

ψ′
c∗(0)

)︃(︁
φ′
c∗(c

∗)−Ψ′
c∗(c

∗)
)︁
,

et lemembre de droite est un produit de deux termes strictement positifs. En effet, le second terme est positif

du fait queΨ′
c∗ < 0 < φ′

c∗ , et le premier terme est positif si et seulement si φ′
c∗(c

∗) < −ψ′
c∗(0). On sait par

l’équation (2.20) que φ′
c∗ (c

∗)

ψ′
c∗ (c

∗) = −β, donc

φ′
c∗(c

∗) = −βψ′
c∗(c

∗) < −ψ′
c∗(c

∗) < −ψ′
c∗(0)

par la croissance de ψ′
c∗ .□

2.4 Vérification de l’optimalité

Comme nous savons qu’il existe un b∗ > 0 tel que g(b∗) = 0, c’est-à-dire tel que Vb∗ ∈ C2(R+), nous

devons vérifier que la fonction candidate Vb∗ est optimale. Autrement dit, nous confirmons que la stratégie

linéaire ub∗ , associée à la fonction de performance Vb∗ , est optimale parmi toutes les stratégies admissibles.

Par Vb∗(b∗) = K
q+K

(︂
b∗ + µ

q + S
K

)︂
+ q

q+K
1

Ψ′
b∗ (b

∗) et par le Théorème 2.9, Vb∗ s’écrit ainsi :

Vb∗(x) =

⎧⎪⎨⎪⎩
Ab∗φb∗(x) + Cb∗ψb∗(x), x < b∗,

K
q+K

(︂
x+ µ

q + S
K

)︂
+ q

q+K
Ψb∗ (x)
Ψ′

b∗ (b
∗) , x ⩾ b∗.

(2.22)

2.4.1 Propriétés de la fonction candidate

Le Théorème de vérification 2.20 nécessitera plusieurs résultats que nous introduisons dès maintenant.

Proposition 2.15 La fonction de performance Vb∗ est strictement concave, c’est-à-dire que V ′′
b∗(x) < 0 pour

tout x ⩾ 0.
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Preuve. Commençons par démontrer la concavité de Vb∗ pour x ⩾ b∗. En dérivant deux fois la seconde

branche de l’équation (2.22), on obtient, pour tout x ⩾ b∗,

V ′′
b∗(x) =

q

q +K

Ψ′′
b∗(x)

Ψ′
b∗(b

∗)
< 0,

puisqueΨ′′
b∗ > 0 etΨ′

b∗ < 0 par la Proposition 1.7.

Et pour 0 ⩽ x < b∗, la démonstration repose avant tout sur le fait que sur cet intervalle, Vb∗ satisfait l’EDO

(1.1), à savoir
σ2

2
V ′′
b∗(x) + µV ′

b∗(x)− qVb∗(x) = 0, x ∈ [0, b∗). (2.23)

En effet, par l’équation (2.22),Vb∗ est une combinaison linéaire deφb∗ , ψb∗ . Vérifions d’abord queV ′′
b∗(0) < 0.

La fonction Vb∗ étant C2, elle satisfait l’équation (2.23) également au point x = b∗, donc

σ2

2
V ′′
b∗(0) + µV ′

b∗(0)− qVb∗(0) = 0 =
σ2

2
V ′′
b∗(b

∗) + µV ′
b∗(b

∗)− qVb∗(b∗).

En substituant V ′
b∗(0) = β et V ′

b∗(b
∗) = 1 puis en réarrangeant, on trouve

σ2

2

(︁
V ′′
b∗(b

∗)− V ′′
b∗(0)

)︁
= µ(β − 1) + q (Vb∗(b

∗)− Vb∗(0)) > 0,

car β > 1 et Vb∗ est croissante par la Proposition 2.10. Conséquemment, V ′′
b∗(b

∗) − V ′′
b∗(0) est strictement

positif, donc V ′′
b∗(0) < V ′′

b∗(b
∗) < 0.

Et maintenant, de manière similaire à la démonstration du Théorème 3.4 de (Zhu, 2015), nous prouvons

par contradiction que V ′′
b∗(x) ⩽ 0 pour tout x ∈ (0, b∗). Supposons qu’il existe un x0 ∈ (0, b∗) tel que

V ′′
b∗(x0) > 0. Par la continuité de V ′′

b∗ et du fait qu’elle est négative aux extrémités de (0, b∗), il existe x1 et

x2 avec 0 < x1 < x0 < x2 < b∗ tels que

V ′′
b∗(x1) = 0 = V ′′

b∗(x2) et V ′′
b∗(x) > 0 pour tout x ∈ (x1, x2). (2.24)

De facto, V ′
b∗ est croissante sur (x1, x2) et

V ′
b∗(x2) > V ′

b∗(x1). (2.25)

Posons x ∈ (x1, x2) à partir d’ici. L’équation (2.24) implique que

σ2

2
V ′′
b∗(x) >

σ2

2
V ′′
b∗(x1),

σ2

2
V ′′
b∗(x) >

σ2

2
V ′′
b∗(x2),

et par l’équation (2.23), ces deux inégalités deviennent

qVb∗(x)− µV ′
b∗(x) > qVb∗(x1)− µV ′

b∗(x1), qVb∗(x)− µV ′
b∗(x) > qVb∗(x2)− µV ′

b∗(x2).
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Nous divisons la première inégalité par x − x1 > 0 et la seconde par x − x2 < 0 dans le but de faire

apparaître des quotients différentiels, puis nous réarrangeons les expressions pour obtenir

q
Vb∗(x)− Vb∗(x1)

x− x1
− µ

V ′
b∗(x)− V ′

b∗(x1)

x− x1
> 0,

q
Vb∗(x)− Vb∗(x2)

x− x2
− µ

V ′
b∗(x)− V ′

b∗(x2)

x− x2
< 0.

En prenant la limite lorsque x ↓ x1 et x↗ x2 respectivement, il s’ensuit que

qV ′
b∗(x1)− µV ′′

b∗(x1) ⩾ 0 ⩾ qV ′
b∗(x2)− µV ′′

b∗(x2).

On rappelle que V ′′
b∗(x1) = 0 = V ′′

b∗(x2), donc

qV ′
b∗(x1) ⩾ 0 ⩾ qV ′

b∗(x2),

cela impliquant que V ′
b∗(x1) ⩾ V ′

b∗(x2), ce qui entre en contradiction avec l’inégalité (2.25). Par conséquent,

V ′′
b∗(x) ⩽ 0 pour tout x ∈ (0, b∗).

Pour terminer, il reste à montrer que l’inégalité est stricte, à savoir que V ′′
b∗(x) < 0 pour tout x ∈ (0, b∗).

Soit x ∈ (0, b∗), on sait que l’équation (2.23) est satisfaite en x et en b∗, donc

σ2

2
V ′′
b∗(x) + µV ′

b∗(x)− qVb∗(x) = 0 =
σ2

2
V ′′
b∗(b

∗) + µV ′
b∗(b

∗)− qVb∗(b∗).

Un simple réarrangement des termes nous donne

σ2

2

(︁
V ′′
b∗(x)− V ′′

b∗(b
∗)
)︁
= µ

(︁
V ′
b∗(b

∗)− V ′
b∗(x)

)︁
+ q (Vb∗(x)− Vb∗(b∗)) ⩽ 0,

car V ′
b∗ est décroissante et Vb∗ est croissante. En conséquence, V ′′

b∗(x) ⩽ V ′′
b∗(b

∗) < 0, ce qui conclut la

preuve.□

Le résultat qui suit est crucial à la vérification de l’optimalité de Vb∗ , et découle directement de V ′
b∗(b

∗) = 1

et de la concavité de Vb∗ .

Corollaire 2.16 La dérivée de Vb∗ satisfait⎧⎪⎨⎪⎩
V ′
b∗(x) > 1, x < b∗,

V ′
b∗(x) ⩽ 1, x ⩾ b∗.

50



À la Sous-section 2.1.1, nous avons mentionné l’équation HJB, couramment utilisée dans la résolution de

problèmes de contrôle stochastique. Dans le Théorème 2.17 ci-dessous, nous affirmons que Vb∗ satisfait

l’équation HJB de ce problème, ou plutôt ici l’inégalité HJB.

Théorème 2.17 (HJB) La fonction de performance Vb∗ satisfait aux équations suivantes pour tout x ⩾ 0 :

LVb∗(x) + max
0⩽v⩽Kx+S

[︂
v
(︁
1− V ′

b∗(x)
)︁]︂

= 0, V ′
b∗(x)− β ⩽ 0, (2.26)

où L est l’opérateur différentiel linéaire donné par

Lf =
σ2

2
f ′′ + µf ′ − qf.

Preuve. L’inégalité à droite de l’équation (2.26) découle directement de V ′
b∗(0) = β et de la décroissance de

V ′
b∗ .

Quant à l’égalité à gauche, pour 0 ⩽ x < b∗, on sait par le Corollaire 2.16 que 1− V ′
b∗(x) < 0, donc

max
0⩽v⩽Kx+S

[︂
v
(︁
1− V ′

b∗(x)
)︁]︂

= 0.

De plus, on a mentionné précédemment que V ′
b∗ est solution de l’EDO (1.1) sur cet intervalle, donc

LVb∗(x) = 0, x ∈ [0, b∗),

ce qui nous permet de conclure.

Pour x ⩾ b∗, on sait par le Corollaire 2.16 que 1− V ′
b∗(x) ⩾ 0, donc

max
0⩽v⩽Kx+S

[︂
v
(︁
1− V ′

b∗(x)
)︁]︂

= (Kx+ S)(1− V ′
b∗(x)).

Pour calculerLVb∗(x), on utilise la linéarité deL et le fait queΨb∗ est solution de l’équation (1.2), c’est-à-dire

Lf(x) = (Kx+ S)f ′(x), x ∈ [b∗,∞) :

LVb∗(x) =
K

q +K
L
(︃
x+

µ

q
+
S

K

)︃
+

q

q +K

1

Ψ′
b∗(b

∗)
LΨb∗(x)

=
K

q +K

[︃
µ− q

(︃
x+

µ

q
+
S

K

)︃]︃
+

q

q +K
(Kx+ S)

Ψ′
b∗(x)

Ψ′
b∗(b

∗)

= − q

q +K
(Kx+ S) + (Kx+ S)

[︃
q

q +K

Ψ′
b∗(x)

Ψ′
b∗(b

∗)

]︃
= −(Kx+ S)

q

q +K
+ (Kx+ S)

[︃
V ′
b∗(x)−

K

q +K

]︃
= (Kx+ S)(V ′

b∗(x)− 1),
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soit l’opposé demax0⩽v⩽Kx+S

[︂
v
(︁
1 − V ′

b∗(x)
)︁]︂

= (Kx + S)(1 − V ′
b∗(x)). Conséquemment, leur somme

est nulle.□

On déduit du Théorème 2.17 que Vb∗ satisfait

max

{︃
LVb∗(x) + max

0⩽v⩽Kx+S

[︂
v
(︁
1− V ′

b∗(x)
)︁]︂
, V ′

b∗(x)− β
}︃

= 0, x ⩾ 0,

soit précisément l’équation HJB telle qu’introduite à la Sous-section 2.1.1.

2.4.2 Vérification

Rappelons que le couple (Zt, Gt)t⩾0 est tel que Z est un MBA réfléchi en 0, de dynamique

dZt = µdt+ σdBt + dGt,

donc

Gt = − min
0⩽s⩽t

(Xs ∧ 0) , Xt = Z0 + µt+ σBt.

Les deux Lemmes suivants présentent des résultats que nous utiliserons pour conclure la démonstration du

Théorème de vérification 2.20.

Lemme 2.18 Le couple (Zt, Gt)t⩾0 est tel que pour tout t ⩾ 0 et x ⩾ 0,

Gt ⩽ − min
0⩽s⩽t

(µs+ σBs) , Ex[Zt] ⩽ x+ µt+
σ2

2µ
.

Preuve. Pour la première inégalité, remarquons que

min
0⩽s⩽t

(Xs ∧ 0) = min
0⩽s⩽t

Xs, t ⩾ τX0 . (2.27)

Dans le cas où Z0 = 0, on a τX0 = 0, donc

Gt = − min
0⩽s⩽t

((µs+ σBs) ∧ 0) = − min
0⩽s⩽t

(µs+ σBs) , t ⩾ 0,

ce qui vérifie l’inégalité. De la même façon, pour Z0 > 0, étant donné que, pour tout t ⩾ 0,

min
0⩽s⩽t

Xs = Z0 + min
0⩽s⩽t

(µs+ σBs) > min
0⩽s⩽t

(µs+ σBs)
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alors l’inégalité est bien vérifiée pour t ∈ [τX0 ,∞) par l’équation (2.27). Enfin, pour t ∈ [0, τX0 ), du fait que

Xt > 0 sur cet intervalle, on a

−Gt = min
0⩽s⩽t

(Xs ∧ 0) = 0 ⩾ min
0⩽s⩽t

(µs+ σBs) ,

ce qui conclut la démonstration de cette première inégalité.

Et pour la seconde inégalité, étant donné que Zt = Z0 + µt+ σBt +Gt, t ⩾ 0, alors

Ex[Zt] = Ex[Z0] + µt+ Ex[Gt].

En utilisant la première inégalité et le fait que Ex[Z0] = x, on a

Ex[Zt] ⩽ x+ µt+ E
[︃
− min

0⩽s⩽t
(µs+ σBs)

]︃
⩽ x+ µt+ E

[︃
− min

0⩽s<∞
(µs+ σBs)

]︃
.

Par l’équation 1.2.4(1) de (Borodin et Salminen, 2002), on a−min0⩽s<∞ (αt+Bt) ∼ Exp(2α) pourα > 0,

donc

− min
0⩽s<∞

(µs+ σBs) = σ ·
[︃
− min

0⩽s<∞

(︂µ
σ
t+Bt

)︂]︃
∼ Exp(2µ/σ2).

Par conséquent,

E
[︃
− min

0⩽s<∞
(µs+ σBs)

]︃
=
σ2

2µ
.

□

Rappelons que la paire (X0
t , G

0
t )t⩾0, c’est-à-dire une paire (Xb

t , G
b
t)t⩾0 avec b = 0, est de dynamique

dX0
t =

(︁
µ− S −KX0

t

)︁
dt+ σdBt + dG0

t ,

à savoir un processus d’Ornstein-Uhlenbeck refléchi en 0.

Lemme 2.19 Nous avons les deux inégalités suivantes presque sûrement pour tout t ⩾ 0 :

− |Vb∗(0)| e−qt ⩽ e−qtVb∗(X
u
t ) < e−qt

(︁
Zt + Vb∗(b

∗)
)︁
, (2.28)⃓⃓⃓⃓∫︂ t

0
e−qs

(︁
u(Xu

s )ds− βdGus
)︁⃓⃓⃓⃓

⩽
∫︂ ∞

0
e−qs (KZs + S) ds+ β

∫︂ ∞

0
e−qsdG0

s. (2.29)

De plus,
∫︁∞
0 e−qs (KZs + S) ds et

∫︁∞
0 e−qsdG0

s sont d’espérance finie.
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Preuve. Pour l’inégalité (2.28), on remarquera, du fait que e−qt > 0 pour tout t ⩾ 0, qu’il suffit de montrer

l’inégalité

− |Vb∗(0)| ⩽ Vb∗(X
u
t ) < Zt + Vb∗(b

∗).

La fonction Vb∗ est croissante, donc Vb∗(0) ⩽ Vb∗(x) pour tout x ⩾ 0. Et comme Vb∗(0) peut être positive

ou négative, nous écrivons −|Vb∗(0)| ⩽ Vb∗(x) afin d’éviter toute ambiguïté sur le signe du côté gauche

de l’inégalité. Pour le côté droit, on rappelle que Vb∗ est concave, donc elle est majorée par sa tangente en

x = b∗, que l’on définit par Tb∗ : R+ → R. Cette fonction est telle que, pour tout x ⩾ 0,

Tb∗(x) = Vb∗(b
∗) + V ′

b∗(b
∗)(x− b∗) = Vb∗(b

∗) + x− b∗ < Vb∗(b
∗) + x,

puisque V ′
b∗(b

∗) = 1 et b∗ > 0. Ainsi, Vb∗(Xu
t ) < Vb∗(b

∗) + Xu
t . Par (Piera et Mazumdar, 2008), nous

pouvons comparer des processus réfléchis en comparant leur dérive. Autrement dit, la dérive de Z étant

supérieure à la dérive deXu pour tout u ∈ UK,S , nous avonsXu
t ⩽ Zt presque sûrement pour tout t ⩾ 0.

Par conséquent,

Vb∗(X
u
t ) < Vb∗(b

∗) +Xu
t ⩽ Vb∗(b

∗) + Zt p.s.

Quant à l’inégalité (2.29), on a, par l’inégalité du triangle,⃓⃓⃓⃓∫︂ t

0
e−qs

(︁
u(Xu

s )ds− βdGus
)︁⃓⃓⃓⃓

⩽

⃓⃓⃓⃓∫︂ t

0
e−qsu(Xu

s )ds

⃓⃓⃓⃓
+ β

⃓⃓⃓⃓∫︂ t

0
e−qsdGus

⃓⃓⃓⃓
.

Les deux intégrales de droite sont positives, et u(x) ⩽ Kx+ S pour tout x ⩾ 0, donc⃓⃓⃓⃓∫︂ t

0
e−qs

(︁
u(Xu

s )ds− βdGus
)︁⃓⃓⃓⃓

⩽
∫︂ t

0
e−qs (KXu

s + S) ds+ β

∫︂ t

0
e−qsdGus .

Comme il fut mentionné ci-haut,Xu
t ⩽ Zt presque sûrement pour tout t ⩾ 0. De cette façon,∫︂ t

0
e−qs (KXu

s + S) ds ⩽
∫︂ t

0
e−qs (KZs + S) ds ⩽

∫︂ ∞

0
e−qs (KZs + S) ds,

vu que l’intégrande est positif. De plus, la dérive deX0 étant inférieure à la dérive deXu pour toutu ∈ UK,S ,

nous avons par (Piera etMazumdar, 2008) queGut −Gus ⩽ G0
t −G0

s presque sûrement pour tout t ⩾ s ⩾ 0.

Ainsi, ∫︂ t

0
e−qsdGus ⩽

∫︂ t

0
e−qsdG0

s ⩽
∫︂ ∞

0
e−qsdG0

s p.s.

comme l’intégrande est positif, ce qui conclut la démonstration de l’inégalité (2.29).
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Pour terminer, nous montrons que les deux intégrales du côté droit de l’inégalité (2.29) sont d’espérance

finie. Pour la première intégrale,

Ex
[︃∫︂ ∞

0
e−qt (KZt + S) dt

]︃
=

∫︂ ∞

0
e−qt (KEx[Zt] + S) dt

⩽
∫︂ ∞

0
e−qt

(︃
K

(︃
x+ µt+

σ2

2µ

)︃
+ S

)︃
dt

= Kµ

∫︂ ∞

0
te−qtdt+

(︃
Kx+K

σ2

2µ
+ S

)︃∫︂ ∞

0
e−qtdt

=
Kµ

q2
+
Kx+K σ2

2µ + S

q
<∞.

Et quant à la seconde intégrale, commençons par x = 0. Par définition de Vb avec b = 0,

V0(0) = E0

[︃∫︂ ∞

0
e−qt

(︁
KX0

t + S
)︁
dt

]︃
− βE0

[︃∫︂ ∞

0
e−qtdG0

t

]︃
.

Cependant,V0(0) etE0

[︁∫︁∞
0 e−qt

(︁
KX0

t + S
)︁
dt
]︁
sont finies, doncE0

[︁∫︁∞
0 e−qtdG0

t

]︁
l’est également. Enfin,

pour x > 0,

Ex
[︃∫︂ ∞

0
e−qtdG0

t

]︃
= Ex

[︄∫︂ τX
0

0

0
e−qtdG0

t

]︄
+ Ex

[︄
1
τX

0
0 <∞

∫︂ ∞

τX
0

0

e−qtdG0
t

]︄

= 0 + Ex
[︃
e−qτ

X0

0 1
τX

0
0 <∞Ex

[︃∫︂ ∞

0
e−qsdG0

s+τX
0

0

| F
τX

0
0

]︃]︃
= Ex

[︄
e−qτ

X0

0 1
τX

0
0 <∞EX0

τX
0

0

[︃∫︂ ∞

0
e−qsdG0

s

]︃]︄

= E0

[︃∫︂ ∞

0
e−qsdG0

s

]︃
Ex
[︃
e−qτ

X0

0 1
τX

0
0 <∞

]︃
<∞.

□

Théorème 2.20 (Vérification) Pour tout x ⩾ 0 et pour toute stratégie u ∈ UK,S , on a Vb∗(x) ⩾ Vu(x).

Preuve. Soit u ∈ UK,S , on applique la Formule d’Itô à (t,Xu
t ) avec la fonction (t, x) ↦→ e−qtVb∗(x) qui est

C1,2(R2
+). On trouve

d
(︁
e−qtVb∗(X

u
t )
)︁
= −qe−qtVb∗(Xu

t )dt+ e−qtV ′
b∗(X

u
t )dX

u
t +

1

2
e−qtV ′′

b∗(X
u
t )d [X

u]t .

Le processus Gu étant continu et croissant, on a d [Gu]t = 0, donc d [Xu]t = σ2dt. En développant dXu
t ,
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on obtient

d
(︁
e−qtVb∗(X

u
t )
)︁
= −qe−qtVb∗(Xu

t )dt+ e−qtV ′
b∗(X

u
t )
[︁(︁
µ− u(Xu

t )
)︁
dt+ σdBt + dGut

]︁
+
σ2

2
e−qtV ′′

b∗(X
u
t )dt

= e−qt
[︃(︃

σ2

2
V ′′
b∗(X

u
t ) + µV ′

b∗(X
u
t )− qVb∗(Xu

t )

)︃
− u(Xu

t )V
′
b∗(X

u
t )

]︃
dt

+ e−qtV ′
b∗(X

u
t )dG

u
t + σe−qtV ′

b∗(X
u
t )dBt

= e−qt
[︁
LVb∗(Xu

t )− u(Xu
t )V

′
b∗(X

u
t )
]︁
dt+ e−qtV ′

b∗(X
u
t )dG

u
t + dMt,

où l’intégrale stochastiqueMt :=
∫︁ t
0 σe

−qsV ′
b∗(X

u
s )dBs est une martingale du fait que∫︂ t

0
E
[︁
|e−qsV ′

b∗(X
u
s )|2

]︁
ds ⩽

∫︂ t

0

(︁
βe−qs

)︁2
ds <∞.

Sous forme intégrale, la dernière équation devient

e−qtVb∗(X
u
t ) = Vb∗(X

u
0 ) +

∫︂ t

0
e−qs

(︁
LVb∗(Xu

s )− u(Xu
s )V

′
b∗(X

u
s )
)︁
ds

+

∫︂ t

0
e−qsV ′

b∗(X
u
s )dG

u
s +Mt.

Nous faisons apparaître les intégrales
∫︁ t
0 e

−qsu(Xu
s )ds et −β

∫︁ t
0 e

−qsdGus du côté droit de l’égalité pour

obtenir

e−qtVb∗(X
u
t ) = Vb∗(X

u
0 ) +

∫︂ t

0
e−qs

(︂
LVb∗(Xu

s ) + u(Xu
s )
(︁
1− V ′

b∗(X
u
s )
)︁)︂

ds+Mt

+

∫︂ t

0
e−qs

(︁
V ′
b∗(X

u
s )− β

)︁
dGus −

∫︂ t

0
e−qs

(︁
u(Xu

s )ds− βdGus
)︁
.

Notons que les intégrandes des deux premières intégrales correspondent à l’inégalité HJB. Donc, par le Théo-

rème 2.17,

LVb∗(Xu
s ) + u(Xu

s )
(︁
1− V ′

b∗(X
u
s )
)︁
⩽ 0, V ′

b∗(X
u
s )− β ⩽ 0,

pour tout s ⩾ 0, et il s’ensuit que les deux intégrales sont négatives (la deuxième en particulier en raison de

la croissance deGu). Ainsi, on a

e−qtVb∗(X
u
t ) ⩽ Vb∗(X

u
0 )−

∫︂ t

0
e−qs

(︁
u(Xu

s )ds− βdGus
)︁
+Mt.

En réarrangeant l’inégalité puis en prenant l’espérance Ex avec x ⩾ 0 des deux côtés, on trouve

Vb∗(x) ⩾ Ex
[︁
e−qtVb∗(X

u
t )
]︁
+ Ex

[︃∫︂ t

0
e−qs

(︁
u(Xu

s )ds− βdGus
)︁]︃
.
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Nous prenons la limite pour t→∞ de cette expression, ce qui donne

Vb∗(x) ⩾ lim
t→∞

Ex
[︁
e−qtVb∗(X

u
t )
]︁
+ lim
t→∞

Ex
[︃∫︂ t

0
e−qs

(︁
u(Xu

s )ds− βdGus
)︁]︃
.

En appliquant Ex à l’inégalité (2.28) ainsi que la linéarité de l’espérance, on trouve

− |Vb∗(0)| e−qt ⩽ Ex
[︁
e−qtVb∗(X

u
t )
]︁
⩽ e−qt

(︁
Ex [Zt] + Vb∗(b

∗)
)︁
.

Rappelons que Ex [Zt] ⩽ x + µt + σ2

2µ par le Lemme 2.18, et donc en prenant la limite pour t → ∞ de

chaque côté, l’inégalité devient

− |Vb∗(0)| lim
t→∞

e−qt ⩽ lim
t→∞

Ex
[︁
e−qtVb∗(X

u
t )
]︁
⩽ lim

t→∞
e−qt

(︃
x+ µt+

σ2

2µ
+ Vb∗(b

∗)

)︃
.

Ainsi, par le Théorème des gendarmes,

lim
t→∞

Ex
[︁
e−qtVb∗(X

u
t )
]︁
= 0,

et par conséquent,

Vb∗(x) ⩾ lim
t→∞

Ex
[︃∫︂ t

0
e−qs

(︁
u(Xu

s )ds− βdGus
)︁]︃
.

Maintenant, nous utilisons le Théorème de convergence dominée pour entrer la limite dans l’espérance,

étant donné que par l’inégalité (2.29), on a⃓⃓⃓⃓∫︂ t

0
e−qs

(︁
u(Xu

s )ds− βdGus
)︁⃓⃓⃓⃓

⩽
∫︂ ∞

0
e−qs (KZs + S) ds+ β

∫︂ ∞

0
e−qsdG0

s,

et que les deux intégrales du côté droit sont toutes deux d’espérance finie par le Lemme 2.19. Par conséquent,

Vb∗(x) ⩾ Ex
[︃
lim
t→∞

∫︂ t

0
e−qs

(︁
u(Xu

s )ds− βdGus
)︁]︃

= Ex
[︃∫︂ ∞

0
e−qs

(︁
u(Xu

s )ds− βdGus
)︁]︃

= Vu(x).

□

Rappelons que la fonction valeur V est donnée par

V (x) = sup
u∈UK,S

Vu(x), x ⩾ 0.
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Figure 2.6 – Exemple de fonction valeur et de fonctions de performance sous-optimales

Paramètres : µ = 1, σ2 = 1, K = 1, S = 2, q = 0.4, β = 1.5.

Par le Théorème 2.20, on en conclut que Vb∗ ⩾ V . En même temps, la stratégie linéaire de seuil b∗ est

admissible, donc Vb∗ ⩽ V . Par conséquent,

Vb∗ = V.

Maintenant que nous savons que Vb∗ est bien la fonction valeur, et donc que nous avons essentiellement

résolu le problème, nous pouvons aisément montrer que b∗ est unique. Supposons qu’il existe un b0 ̸= b∗

tel que Vb0 ∈ C2(R+). Ainsi, on a V ′
b0
(b0) = 1, et par le Théorème de vérification, Vb0(x) ⩾ Vu(x) pour tout

x ⩾ 0 et pour toute stratégie u ∈ UK,S . Comme ub∗ , ub0 ∈ UK,S , alors Vb0(x) ⩾ Vb∗(x) etVb∗(x) ⩾ Vb0(x)

pour tout x ⩾ 0. Par conséquent,

Vb0 = Vb∗ .
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Rappelons que V ′
b0
(b0) = 1 = V ′

b∗(b
∗), ou de manière équivalente, V ′(b0) = 1 = V ′(b∗). Toutefois, V est

strictement concave par la Proposition 2.15, donc V ′ est strictement décroissante. De fait, V ′(b0) ̸= V ′(b∗),

et on arrive à une contradiction. Par conséquent, b0 = b∗.

La Figure 2.6 illustre, dans le graphique du haut, un exemple de fonction valeur (en vert gras), et la compare

à des fonctions de performance d’autres stratégies linéaires qui sont quant à elles sous-optimales. Les points

et l’étoile indiquent le seuil pour chaque fonction. Dans le graphique du bas sont affichées la première et

seconde dérivée de la fonction valeur V = Vb∗ (en bleu et en orange, respectivement). D’une part, nous

voyons bien que V ′(0) = β = 1.5 et V ′(b∗) = 1, comme il est attendu. D’autre part, la dérivée seconde

est bien continue, en particulier en x = b∗.

2.4.3 Consolidation

Grâce à la conditionV ′
b∗(b

∗) = 1 satisfaite par la fonction valeur, nous pouvons l’utiliser demanière à obtenir

une expression « simplifiée » de la fonction valeur. En fait, nous proposons deux formulations équivalentes

de V : l’une étant plus compacte car composée de Jb∗ et Φb∗ ; l’autre étant définie par parties et formée

uniquement de nos transformées élémentaires.

La première est déduite de l’équation (2.7), qu’on dérive et évalue en b∗ pour obtenir

1 = J ′
b∗(b

∗) + Vb∗(0)Φ
′
b∗(b

∗),

puis

Vb∗(0) =
1− J ′

b∗(b
∗)

Φ′
b∗(b

∗)
.

En remplaçant dans l’équation (2.7), on trouve enfin

V (x) = Jb∗(x) +
(︁
1− J ′

b∗(b
∗)
)︁ Φb∗(x)

Φ′
b∗(b

∗)
, x ⩾ 0.

Pour la seconde forme, nous partons de l’équation (2.22). La branche avec x ⩾ b∗ étant suffisamment

développée, il nous reste alors la branche avec 0 ⩽ x < b∗. Il nous faut pour cela écrire explicitement

Vb∗(0) et Vb∗(b∗). D’abord, en combinant les équations (2.9) et (2.17) (cette dernière étant satisfaite avec

b∗), on trouve

Vb∗(0) =
β − 1−Vb∗ (0)ψ′

b∗ (b
∗)

φ′
b∗ (b

∗)

ψ′
b∗(0)

.
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On isole Vb∗(0), et on obtient

Vb∗(0) =

1
ψ′
b∗ (0)

(︂
β − φ′

b∗ (0)

φ′
b∗ (b

∗)

)︂
1− ψ′

b∗ (b
∗)

φ′
b∗ (b

∗)

φ′
b∗ (0)

ψ′
b∗ (0)

=
βφ′

b∗(b
∗)− φ′

b∗(0)

ψ′
b∗(0)φ

′
b∗(b

∗)− ψ′
b∗(b

∗)φ′
b∗(0)

.

Ensuite, vu que V ′
b∗(0) = β par l’équation (2.15), on a

β = Vb∗(b
∗)φ′

b∗(0) + Vb∗(0)ψ
′
b∗(0).

En isolant Vb∗(b∗), puis en utilisant ce qu’on vient d’obtenir pour Vb∗(0) :

Vb∗(b
∗) =

1

φ′
b∗(0)

(︃
β −

βφ′
b∗(b

∗)− φ′
b∗(0)

ψ′
b∗(0)φ

′
b∗(b

∗)− ψ′
b∗(b

∗)φ′
b∗(0)

ψ′
b∗(0)

)︃
=

ψ′
b∗(0)− βψ′

b∗(b
∗)

ψ′
b∗(0)φ

′
b∗(b

∗)− ψ′
b∗(b

∗)φ′
b∗(0)

.

Par conséquent, pour 0 ⩽ x < b∗, la fonction valeur s’écrit par

V (x) =
φb(x)

(︁
ψ′
b∗(0)− βψ′

b∗(b
∗)
)︁
+ ψb(x)

(︁
βφ′

b∗(b
∗)− φ′

b∗(0)
)︁

ψ′
b∗(0)φ

′
b∗(b

∗)− ψ′
b∗(b

∗)φ′
b∗(0)

.

Nous avons mentionné plus haut que les fonctions de performance de notre problème peuvent être néga-

tives si la pénalité due aux injections est significative. En pratique, il est d’intérêt que la fonction valeur soit

positive. En raison de sa croissance, la fonction valeur est positive sur R+ si et seulement si Vb∗(0) ⩾ 0, ce

qui est équivalent à
βφ′

b∗(b
∗)− φ′

b∗(0)

ψ′
b∗(0)φ

′
b∗(b

∗)− ψ′
b∗(b

∗)φ′
b∗(0)

⩾ 0.

On sait, par le Lemme 1.8, que

ψ′
b∗(0)φ

′
b∗(b

∗)− ψ′
b∗(b

∗)φ′
b∗(0) < 0.

Conséquemment, V est positive si et seulement si

β ⩽
φ′
b∗(0)

φ′
b∗(b

∗)
.

Pour finir, le Théorème suivant réunit les deux formes de la fonction valeur que l’on vient d’obtenir, en plus

de consolider la solution de ce problème.
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Théorème 2.21 (Solution du problème) Soit b∗ ∈ (0, c∗) solution de l’équation (2.18). La stratégie linéaire

ub∗ ∈ UK,S telle que ub∗(x) = (Kx+ S)1x⩾b∗ est optimale, et la fonction valeur V est donnée par

V (x) = Jb∗(x) +
(︁
1− J ′

b∗(b
∗)
)︁ Φb∗(x)

Φ′
b∗(b

∗)
, x ⩾ 0,

ou de manière équivalente par

V (x) =

⎧⎪⎨⎪⎩
φb(x)

(︁
ψ′
b∗ (0)−βψ

′
b∗ (b

∗)
)︁
+ψb(x)

(︁
βφ′

b∗ (b
∗)−φ′

b∗ (0)
)︁

ψ′
b∗ (0)φ

′
b∗ (b

∗)−ψ′
b∗ (b

∗)φ′
b∗ (0)

, 0 ⩽ x < b∗,

K
q+K

(︂
x+ µ

q + S
K

)︂
+ q

q+K
Ψb∗ (x)
Ψ′

b∗ (b
∗) , x ⩾ b∗.
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CHAPITRE 3

ANALYSES NUMÉRIQUES

Dans ce dernier chapitre, nous effectuons quelques analyses numériques qui nous aideront à mieux saisir

lesmécanismes du problème. Nous voyons lamanière dont se comportent la solution optimale (Section 3.2)

et les différentes fonctions (Section 3.3) selon les paramètres du problème tout en les comparant à celles du

problème limite de (Løkka et Zervos, 2008). Nous voyons également l’impact de la moyenne asymptotique

du processus d’Ornstein-Uhlenbeck sur la fonction valeur. Mais avant, nous confirmons numériquement la

fonction valeur à la Section 3.1 à partir de simulations.

Rappelons que l’on peut séparer la fonction de performance d’une stratégie linéaire au niveau b en deux

fonctionsDb, Rb définies ainsi pour tout x ⩾ 0 :

Db(x) = Ex
[︃∫︂ ∞

0
e−qtdLbt

]︃
, Rb(x) = Ex

[︃∫︂ ∞

0
e−qtdGbt

]︃
,

où

Lbt =

∫︂ t

0
(KXb

s + S)1Xb
s⩾b

ds, Lb0 = 0.

La fonction de performance s’écrit alors comme Vb = Db − βRb, ce qui nous permet d’isoler l’effet des

dividendes et des injections dans Vb. De plus, on connaît la forme explicite de ces fonctions, qui est donnée

par l’équation (2.16).

3.1 Confirmation des résultats par simulation

Il est possible d’estimer Db∗ , Rb∗ et Vb∗ ponctuellement grâce à des simulations. Si l’on souhaite estimer

ces fonctions au point x0 ⩾ 0 fixé, il suffit de simuler les processus sur un intervalle [0, T ] où T ∈ (0,∞)

est fixé, et en démarrant la simulation deXb∗ en x0.

Sans perte de généralité, prenons Rb∗ : cette démarche s’applique tout aussi bien à Db∗ et Vb∗ . Pour une

simulation donnée, effectuée sur une partition {0 = t0 < t1 < · · · < tn = T}, on calcule une somme de

Riemann-Stieltjes pour approximer∫︂ T

0
e−qtdGb

∗
t ≈

n∑︂
i=1

e−qti−1

(︂
Ĝb

∗
ti − Ĝ

b∗
ti−1

)︂
,
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où Ĝb∗ est la simulation de Gb∗ . Il ne reste qu’à produire un nombre N (élevé) de simulations, et par la

Méthode de Monte-Carlo, on a

Ex0
[︃∫︂ T

0
e−qtdGb

∗
t

]︃
≈ 1

N

N∑︂
k=1

n∑︂
i=1

e−qti−1

(︂
Ĝb

∗,k
ti
− Ĝb

∗,k
ti−1

)︂
,

où Ĝb∗,k est le processusGb∗ obtenu lors de la ke simulation. Cette espérance n’est pas tout à fait Rb∗(x0)

puisque l’intégrale est sur [0, T ] et non pas sur R+. Néanmoins, on peut décomposer Rb∗(x0) pour faire

apparaître cette espérance, tel qu’on l’a fait à multiples reprises dans les chapitres précédents, c’est-à-dire

par un changement de variable et par la Propriété forte de Markov :

Rb∗(x0) = Ex0
[︃∫︂ T

0
e−qtdGb

∗
t

]︃
+ Ex0

[︃∫︂ ∞

T
e−qtdGb

∗
t

]︃
= Ex0

[︃∫︂ T

0
e−qtdGb

∗
t

]︃
+ Ex0

[︃
e−qTEx0

[︃∫︂ ∞

0
e−qsdGb

∗
s+T | FT

]︃]︃
= Ex0

[︃∫︂ T

0
e−qtdGb

∗
t

]︃
+ Ex0

[︃
e−qTEXb∗

T

[︃∫︂ ∞

0
e−qsdGb

∗
s

]︃]︃
= Ex0

[︃∫︂ T

0
e−qtdGb

∗
t

]︃
+ e−qTEx0

[︂
Rb∗(X

b∗
T )
]︂
.
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Figure 3.1 – Estimation du reste deDb∗ , Rb∗ , Vb∗ pour x0 = 1 en fonction de T

N = 2000 simulations de pas∆t ≈ 0.005 pour chaque T . Paramètres : µ = 1, σ2 = 1, K = 1, S = 2, q = 0.4, β = 1.5.
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De toute évidence, cette démarche nous donne aussi une expression semblable pour D∗ et Vb∗ , soit

Db∗(x0) = Ex0
[︃∫︂ T

0
e−qtdLb

∗
t

]︃
+ e−qTEx0

[︂
Db∗(X

b∗
T )
]︂
,

Vb∗(x0) = Ex0
[︃∫︂ T

0
e−qt

(︂
dLb

∗
t − βdGb

∗
t

)︂]︃
+ e−qTEx0

[︂
Vb∗(X

b∗
T )
]︂
,

où le premier terme est celui qu’on approxime par la méthode de Monte-Carlo, et le second représente en

quelque sorte un « reste », dont on s’attend qu’il soit faible lorsque T est grand (voir la Figure 3.1).

En fait, il est aisé de montrer que ce reste est o(1) pour les trois fonctions. Tout d’abord, pour Rb∗ , on a

Rb∗(0) = − 1
Φ′

b∗ (0)
<∞, etRb∗(x) ⩽ Rb∗(0) pour tout x ⩾ 0 par la Proposition 2.11. Ainsi, commeRb∗ est

positive, alors

0 ⩽ e−qTEx0
[︂
Rb∗(X

b∗
T )
]︂
⩽ Rb∗(0)e

−qT ,

et par le Théorème des gendarmes, on a

e−qTEx0
[︂
Rb∗(X

b∗
T )
]︂
−−−−→
T→∞

0.

Ensuite, quant à Vb∗ , nous savons déjà par la démonstration du Théorème de vérification 2.20 que

e−qTEx0
[︂
Vb∗(X

b∗
T )
]︂
−−−−→
T→∞

0.

Pour finir, on aDb∗ = Vb∗ + βRb∗ , donc

e−qTEx0
[︂
Db∗(X

b∗
T )
]︂
= e−qTEx0

[︂
Vb∗(X

b∗
T )
]︂
+ βe−qTEx0

[︂
Rb∗(X

b∗
T )
]︂
−−−−→
T→∞

0.

De cette manière, nous pouvons confirmer les résultats théoriques en prenant T suffisamment grand, ce

que nous montre la Figure 3.1. À partir de T = 10, la différence entre nos fonctions évaluées en x0 = 1

et les estimations par la Méthode de Monte-Carlo se stabilise autour de zéro pour devenir négligeable

(certaines valeurs pour Vb∗ sont négatives à cause de fluctuations aléatoires). C’est pourquoi nous simulons

nos processus jusqu’à T = 10 pour produire la Figure 3.2 ci-dessous.

Dans cette Figure, les diagrammes en violon illustrent la distribution des estimations en chaque point ainsi

que la moyenne des estimations. Cette moyenne est précisément notre approximation par la Méthode

de Monte-Carlo, que l’on compare à la fonction représentée par une courbe. Plusieurs caractéristiques se

dégagent de ces graphiques, que nous quantifions dans le Tableau 3.1 pour supporter nos observations. En
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Figure 3.2 – Comparaison des fonctionsDb∗ , Rb∗ , Vb∗ àN = 2000 simulations

Chaque simulation est de pas∆t ≈ 0.005, et se termine en T = 10. Paramètres : µ = 1, σ2 = 1, K = 1, S = 2, q = 0.4, β = 1.5.
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Statistique Db∗ Rb∗ Vb∗

Erreur absolue 0.0998 0.0617 0.0214

Erreur relative 0.0306 0.1141 0.0084

Écart-type 0.8042 0.33406 1.1504

Asymétrie 0.2700 1.2490 -0.2128

Tableau 3.1 – Statistiques des estimations de la Figure 3.2

chaque point x0 est calculée une certaine statistique sur les N = 2000 estimations. Le Tableau 3.1 affiche

la moyenne de cette statistique sur les 9 points x0 choisis.

On constate que l’erreur relative de Rb∗ est bien plus élevée que celle deDb∗ : les erreurs absolues deDb∗

et deRb∗ sont similaires alors que les valeurs deRb∗ sont plus faibles, ce qui peut expliquer cette différence.

Néanmoins, Vb∗ s’obtient en soustrayantRb∗ deDb∗ , ce qui a pour effet d’amoindrir l’erreur absolue de Vb∗ .

L’impact sur l’erreur relative de Vb∗ est toutefois moindre vu que Vb∗ < Db∗ . On observe que l’écart-type de

Rb∗ est la plus faible étant donné queRb∗ est proche de zéro et que toutes les estimations sont évidemment

positives.

On voit graphiquement que la densité des estimations deRb∗ est très asymétrique vers la droite, ce qui est

corroboré par un coefficient d’asymétrie 1 élevé dans le Tableau 3.1. Cela a pour effet de tirer la moyenne

vers le bas, mais aussi d’accroître légèrement la variabilité de Vb∗ par rapport à Db∗ . Mais surtout, cela

affecte l’asymétrie de Vb∗ : le coefficient est positif pourDb∗ , mais devient négatif pour Vb∗ en raison de la

forte asymétrie de Rb∗ .

3.2 Effet des paramètres sur le seuil optimal

Analysons maintenant l’impact qu’ont les divers paramètres du problème sur le seuil optimal b∗, comme

montré par la Figure 3.3. Tout d’abord, rappelons que le problème avec injections obligatoires résolu par

(Løkka et Zervos, 2008) est un cas limite de notre problème lorsqu’on tend K ou S vers l’infini. On sait

également par la Proposition 2.14 que b∗ < c∗, où c∗ est le seuil optimal de (Løkka et Zervos, 2008). Par

1. Rappelons que ce coefficient est positif lorsque la distribution est asymétrique vers la droite, c’est-à-dire quand sa queue est

plus longue à droite ; et vice-versa. Et plus le coefficient est faible, plus la distribution est symétrique.
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Figure 3.3 – Valeur du seuil optimal b∗ en fonction des paramètres

Valeur des paramètres fixés pour chaque graphe : µ = 1, σ2 = 1, K = 1, S = 2, q = 0.4, β = 1.5.
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conséquent, b∗ → c∗ lorsqu’on augmente K ou S. Le graphique du haut de la Figure 3.3 illustre cette

convergence. Le plan horizontal bleu est au niveau de c∗ sur l’axe vertical. On remarque que b∗ augmente

rapidement pour de petites valeurs deK,S, et que b∗ est déjà très près de c∗ pourK,S ≈ 25.

Ensuite, le graphique du centre suggère une relation presque linéaire entre µ, σ et b∗. D’une part, le seuil

optimal est décroissant avec µ, parce que pour µ élevé, le processus du surplus a une forte tendance à la

hausse. Il y a dans ce cas peu de retours en zéro, et la réfraction au-dessus du seuil est moins prononcée,

ce qui étire la durée des versements. D’autre part, b∗ est croissant avec σ, puisqu’une haute volatilité du

surplus le fait parcourir R+ plus rapidement. Il n’est donc pas nécessaire que le seuil de versements de

dividendes soit faible pour que des versements surviennent régulièrement, sans oublier qu’un seuil faible

cause le surplus à atteindre davantage la barrière en zéro.

Pour finir, le graphique du bas montre une même relation de croissance/décroissance pour q, β sauf que la

tendance n’est clairement pas linéaire ici :

— b∗ est décroissant et convexe avec q, mais de manière plus prononcée quand β est élevé. Lorsque q

augmente, les flux de capitaux perdent en valeur plus rapidement, donc il est d’intérêt de diminuer

le seuil pour verser des dividendes plus vite. La tendance est convexe, car l’actualisation est de la

forme e−qt, fonction convexe de q. La variation de b∗ est plus importante pour un grand β en raison

de la plus haute pénalité pour les injections : une petite variation de q crée une différence notable

dans le coût des injections, le seuil optimal devant s’ajuster en conséquence ;

— b∗ est croissant et concave avec β, mais moindre lorsque q est grand. Quand β augmente, les in-

jections sont plus coûteuses, donc le seuil augmente pour éviter que la réfraction ramène le surplus

trop souvent vers zéro. La concavité s’explique peut-être par le principe de l’utilitémarginale décrois-

sante, à savoir que l’effet d’une variation du coût des injections est moins important quand les coûts

sont déjà élevés au départ. Enfin, la variation de b∗ en β est moindre pour q élevé puisque les flux

perdent vite en valeur, donc il n’est pas nécessaire d’ajuster grandement b∗ quand β varie.

3.3 Effet des paramètres sur la fonction valeur

Maintenant que nous avons étudié l’effet des paramètres sur le seuil optimal b∗, il est d’intérêt d’analyser

le comportement de la fonction valeur vis-à-vis des paramètres, et de la comparer à la fonction valeur du

problème limite de (Løkka et Zervos, 2008), donnée par Vc, mais que l’on note ici VLZ pour éviter toute

confusion. Il est possible de lier notre ensemble de stratégies admissibles UK,S à l’ensemble des processus
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Figure 3.4 – Fonction valeur Vb∗ en fonction deK et S

La courbe tiretée est VLZ . Valeur des paramètres fixés pour chaque graphe : µ = 1, σ2 = 1, K = 1, S = 2, q = 0.4, β = 1.5.

admissibles Ac(x), x ⩾ 0 de (Løkka et Zervos, 2008), dont VLZ est la fonction valeur. Pour u ∈ UK,S
donné, on définit le processus de dividendes accumulés Lu = (Lut )t⩾0 comme étant

Lut =

∫︂ t

0
u(Xu

s )ds, t ⩾ 0.

Pour un x ⩾ 0 fixé, nous pouvons donc écrire l’ensemble de processus admissibles pour notre problème

ainsi :

AK,S(x) := {(Lu, Gu) | u ∈ UK,S , Xu
0 = x} .

De cette façon, notre fonction valeur V s’écrit également comme

V (x) = sup
(Lu,Gu)∈AK,S(x)

Vu(x), x ⩾ 0,

69



vu que UK,S etAK,S(x) sont isomorphes pour chaque x ⩾ 0 fixé, et que le même u∗ ∈ UK,S optimise Vu

pour tout x ⩾ 0. Mais surtout, nous constatons que AK,S(x) ⊆ Ac(x) pour tout x ⩾ 0, ce qui implique

que

Vb∗(x) ⩽ VLZ(x), x ⩾ 0.

On s’attend aussi queVb∗ tende ponctuellement versVLZ lorsqueK ouS tend vers l’infini, tout commeavec

b∗ à la section précédente. Malgré que notre fonction valeur soit sous-optimale dans le cadre du problème

de (Løkka et Zervos, 2008), il est préférable, en pratique, de verser des dividendes de façon régulière et

continue plutôt que de manière ponctuelle et dispersée dans le temps (voir (Avanzi et Wong, 2012)).

La Figure 3.4 illustre la convergence de V vers VLZ (représentée par la courbe rouge tiretée) en fonction de

K et S, qui se fait assez rapidement. Ce qu’on voit surtout, dans le graphique du haut, est l’écart flagrant

entreK = 0 etK ⩾ 1. LorsqueK → 0, on se retrouve dans le problème de maximisation de dividendes

bornés par la constante S, avec injections obligatoires. Autrement dit, si l’on note W := Wb∗0
la fonction

valeur de ce problème dont le seuil optimal est b∗0, alors Vb∗ −−−→
K→0

Wb∗0
, où b∗ −−−→

K→0
b∗0. Cette fonction

valeur a la particularité d’être bornée par S/q :

Wb∗0
(x) ⩽ Ex

[︃∫︂ ∞

0
e−qtS1x⩾b∗0dt

]︃
⩽ Ex

[︃∫︂ ∞

0
Se−qtdt

]︃
=
S

q
,

là où la fonction valeur de notre problème est bornée par une fonction linéaire, tel que vu dans la démons-

tration du Lemme 2.19.

La fonction valeur de (Løkka et Zervos, 2008) est telle que V ′
LZ(x) = 1 pour x > c∗, donc linéaire au-dessus

du seuil c∗. Comparons sa croissance à celle deW et de V . Rappelons que pour x > b∗,

V ′(x) =
K

q +K
+

q

q +K

Ψ′
b∗(x)

Ψ′
b∗(b

∗)
−−−→
x→∞

K

q +K
,

donc en faisant tendreK vers 0, on trouve, pour x > b∗0,

W ′(x) =
Ψ′
b∗(x)

Ψ′
b∗(b

∗)
−−−→
x→∞

0.

Ainsi,Wb∗0
et V s’éloignent de VLZ quand x augmente vu que leur croissance est inférieure à celle de VLZ .

Cependant,Wb∗0
devient asymptotiquement constante, et elle est bornée par S/q, ce qui l’éloigne de VLZ

plus rapidement que V dont la croissance tend vers K
q+K ≈ 1 pourK grand.

En conséquence, on voit la valeur ajoutée d’une borne linéaire sur les dividendes par rapport à une borne

constante. Bien que ce problème soit plus simple à résoudre étant donné que le processus du surplus reste
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un MBA au-dessus du seuil, notre problème offre une meilleure approximation de la solution de (Løkka et

Zervos, 2008), prisée dans la littérature.

Quant aux autres paramètres du problème, la Figure 3.5 compare V à VLZ en fonction des paramètres.

Elle montre également les seuils optimaux b∗ (sous forme de points) et c∗ (sous forme de diamants) en

chaque courbe. Avant d’analyser l’effet de chaque paramètre, notons un phénomène intéressant : si l’on

fixe un x ⩾ 0, l’écart est plus important entre V (x) et VLZ(x) lorsque les seuils optimaux sont faibles.

Effectivement, davantage de versements de dividendes surviennent dans ce cas, ce qui accentue l’effet

d’opter pour une stratégie linéaire, qui est sous-optimale dans le problème limite.

Et pourtant, ce n’est pas tout à fait ce qu’on observe avec σ. Lorsqu’il est élevé, l’écart semble se répartir sur

le domaine, ce qui peut s’expliquer par la forte volatilité du surplus, « brouillant » l’avantage de la stratégie

LZ-optimale. De plus, l’écart entre b∗ et c∗ y est plus important, et la fonction valeur est plus basse.

La fonction valeur est croissante en µ, parce que pour µ élevé, le surplus a une tendance vers le haut favo-

risant les versements de dividendes. Quant à q, elle est décroissante en q en raison de la forte actualisation

occasionnant une perte de valeur plus rapide. Enfin, la fonction valeur est décroissante en β en raison d’un

plus haut coût des injections. La différence est marquée près de zéro, justement car le surplus initial est

proche de zéro, et que davantage d’injections surviennent dès le départ.

3.4 Moyenne asymptotique

Rappelons qu’au-dessus du seuil optimal b∗, le surplus contrôlé Xb∗ se comporte comme un processus

d’Ornstein-Uhlenbeck, plus précisément comme le processus Y de dynamique

dYt = (µ− S −KYt) dt+ σdBt.

Cette EDS a comme solution explicite

Yt = Y0e
−Kt +

µ− S
K

(︁
1− e−Kt

)︁
+ σe−Kt

∫︂ t

0
eKsdBs, t ⩾ 0.

L’intégrande est déterministe, donc Y est un processus gaussien (voir le Théorème 4.11 de (Klebaner, 2012))

d’espérance

E [Yt] = Y0e
−Kt +

µ− S
K

(︁
1− e−Kt

)︁
,

72



puisque l’intégrale stochastique est une martingale, et de covariance

Cov (Ys, Yt) = σ2e−Kse−Kt
∫︂ s∧t

0
e2Kudu

=
σ2

2K
e−K(s+t)

(︂
e2K(s∧t) − 1

)︂
=

σ2

2K

(︂
e−K|s−t| − e−K(s+t)

)︂
.

En plus d’êtremarkovien, Y est asymptotiquement stationnaire, et sa distribution limite est une loi normale

d’espérance µ−S
K et de variance σ2

2K . Ce processus est du type retour vers la moyenne, c’est-à-dire qu’au

cours du temps, Y tend à revenir vers samoyenne asymptotique µ−S
K . En effet, quand Yt > µ−S

K , sa dérive

est négative, et il a une tendance à la baisse. Lorsque Yt < µ−S
K , sa dérive est positive, le ramenant vers le

haut.

Dans notre problème, le surplus contrôléXb∗ se comporte commeunO-U seulement lorsqueXb∗
t ⩾ b∗, lors

de versements de dividendes. Intuitivement, il serait alors préférable, d’un point de vue de performance,

que le surplus reste le plus possible au-dessus du seuil b∗. Si µ−SK > b∗, alors le processus va « graviter »

autour de sa moyenne, qui est au-dessus du seuil. On s’attend donc à des paiements de dividendes plus «

stables » dans le temps (voir (Avanzi et Wong, 2012)), là où si µ−SK < b∗, le surplus a une dérive négative

au-delà du seuil. Il aura tendance à redescendre rapidement sous b∗, donc à verser des dividendes sur de

plus courtes durées.

Si on augmente µ ou modifie les autres paramètres de manière à réduire b∗ pour que µ−S
K > b∗, cela a

bien pour effet d’accroître la fonction valeur. Ce n’est toutefois pas toujours le cas. De ce qu’on peut voir à

la Figure 3.3, le seuil optimal b∗ est plutôt faible pour des valeurs raisonnables de nos paramètres. Ainsi, il

faudrait baisser significativementK et S pour que µ−S
K descende sous b∗, ce qui à son tour diminuerait la

fonction valeur puisque ce faisant, les paiements de dividendes vaudraient beaucoup moins.

La Figure 3.6 illustre ce phénomène. Les diagrammes en violon du haut et du centre montrent la distribu-

tion de la proportion du temps passé, respectivement, à verser des dividendes et à injecter du capital. En

abscisse, on varieK de sorte que µ−S
K − b∗K se promène des négatifs jusqu’aux positifs (nous écrivons b∗K

pour souligner que b∗ dépend deK). Les points orange indiquent b∗ en ordonnée, et le graphique du bas

montre la valeur de Vb∗(x0) correspondante. Tout d’abord, on constate effectivement que la durée totale

de versements est plus importante lorsque la moyenne asymptotique du processus O-U est au-dessus du

seuil optimal, quoique la variation y est moins significative. On constate aussi que les injections surviennent
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Pour chaqueK ∈
{︁

10
1
, 10

2
, · · · , 10

10

}︁
, il y aN = 2000 simulations de pas∆t ≈ 0.005 se terminant en T = 10. Paramètres :

µ = 2, σ2 = 1, S = 1, q = 0.4, β = 1.5.
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moins souvent, ce qui va de soi. Cependant, tel que nous l’avons mentionné, bien que la durée de verse-

ments soit supérieure, ceux-ci ont moins de valeur, ce qui affecte négativement la fonction valeur.

Par conséquent, contrairement à l’intuition, il n’est pas assuré qu’une moyenne asymptotique supérieure

au seuil optimal soit avantageuse d’un point de vue performatif. Elle l’est si l’on ajuste les paramètres autres

queK et S en conséquence, mais ces paramètres sont intrinsèques au modèle. Ils sont probablement hors

du contrôle de la firme, là oùK et S définissent notre ensemble de stratégies admissibles et peuvent être

choisis, a priori, par la firme. Il y a dans ce cas un compromis à faire entre la stabilité des versements de

dividendes à travers le temps et la performance de la stratégie optimale.
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CONCLUSION

Nous avons résolu un problème demaximisation de paiements de dividendes avec injections de capital obli-

gatoires lorsque le surplus, modélisé par unmouvement brownien arithmétique, atteint zéro. Les processus

de dividendes admissibles étaient absolument continus, de taux de versement borné par une fonction li-

néaire du surplus. Nous cherchions une stratégie dont la fonction de performance est la plus grande parmi

toutes les stratégies admissibles, ainsi que l’expression de cette fonction. Pour la résolution, nous avons

utilisé une approche probabiliste semblable, quoique plus simple et élémentaire, à celle de (Renaud et al.,

2023).

Prévoyant qu’une stratégie linéaire serait optimale par une analyse heuristique de l’équation HJB de ce

problème, nous avons obtenu une forme explicite de la fonction de performance d’une stratégie linéaire

quelconque. Pour cela, nous avons utilisé plusieurs identités de temps de premier passage que nous avons

préalablement obtenues et étudiées. Puis, nous avons identifié une stratégie linéaire de seuil b∗ dont la

fonction de performance satisfait certaines conditions de régularité dans l’optique d’appliquer un Théorème

de vérification. Ce Théorème nous a permis de montrer que cette stratégie est bel et bien optimale, et que

sa fonction de performance majore toutes les autres.

Enfin, en plus de vérifier nos résultats par des simulations, nous avonsmené quelques analyses numériques,

notamment sur l’effet des paramètres dumodèle sur le seuil optimal b∗ et sur la fonction valeur. Nous avons

comparé la fonction valeur de notre problème à celle du problème limite de (Løkka et Zervos, 2008), ainsi

qu’à celle du problème avec dividendes bornés par une constante. Notre fonction valeur a l’avantage de

mieux approcher celle de (Løkka et Zervos, 2008), que nous savons la meilleure, par rapport à celle avec

borne constante, tout en conservant une certaine simplicité grâce à la borne linéaire. Elle a aussi un intérêt

conceptuel, puisque le taux optimal de paiements de dividendes est proportionnel au surplus : une firme

serait sans doute portée à verser davantage lorsque son surplus excède grandement le seuil b∗.

Néanmoins, il existe un défaut apparent à autoriser des injections obligatoires dans le but d’éviter la faillite :

selon les paramètres du modèle, la fonction valeur est potentiellement négative sur une partie de son do-

maine. Cela signifie que pour un surplus initial x suffisamment petit pour que V (x) < 0, la firme deman-

derait, en valeur présente moyenne, plus d’injections qu’elle ne verserait de dividendes. Dans une telle

situation où les paramètres du marché sont aussi défavorables à la pérennité de l’entreprise, il serait sans
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doute préférable de retirer les injections forcées et de permettre la faillite. En réalité, il s’agit précisément

de la solution optimale dans le cadre général où l’on optimise simultanément L etG, comme l’ont montré

(Løkka et Zervos, 2008; Renaud et al., 2023). Si les paramètres du modèle sont de sorte que Vb∗(0) > 0,

alors la solution de notre problème est optimale et V = Vb∗ . Sinon, la solution optimale est celle du pro-

blème sans injections résolu par (Rao, 2023).

Contextuellement, une telle dichotomie pour la solution optimale peut paraître extrême à mettre en pra-

tique. En supposant qu’une firme estime ses paramètres par des données, doit-on s’attendre à ce que ses

décisions financières à long terme dépendent si fortement de son estimation des paramètres? Un com-

promis intéressant serait de considérer des injections de capital absolument continues tout en permettant

la possibilité de faillite. Les injections pourraient être de taux borné par une constante, ou bien par une

fonction décroissante du surplus ; intuitivement, on voudrait injecter moins lorsque le surplus s’éloigne de

zéro.

Dans l’hypothèse qu’une stratégie optimale pour les injections soit de type bang-bang, dans le problème

général où l’on optimise le couple (L,G), on pourrait d’abord considérer le problème de maximisation

des dividendes avec injections obligatoires survenant au taux maximal lorsque le surplus descend sous un

seuil fixé. Ce type de problème permettrait à une firme d’injecter du capital lorsque le surplus est faible de

manière à retarder la faillite, tout en laissant la possibilité de faire faillite plus rapidement si les paramètres

du modèle sont désavantageux.
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ANNEXE A

CODE PYTHON DES SIMULATIONS

Nous fournissons ici du code en langage Python pour simuler les divers processus de ce mémoire, code que

nous avons utilisé pour produire les quelques Figures illustrant lesdites simulations. La méthode employée

pour simuler en temps discret des solutions d’EDS est celle d’Euler-Maruyama (voir le Chapitre 9 de (Kloeden

et Platen, 1999) pour plus de détails à ce sujet).

Voici les packages importés :

import numpy as np

import scipy.optimize as opt

Les Sous-sections suivantes affichent le code des simulations, qui nécessite plusieurs variables. Il y a les

paramètres du problèmes choisis, par exemple,

mu = 1.0

sigma = 1.0

K = 1.0

S = 2.0

q = 0.4

beta = 1.5

mais aussi le surplus initial x, ainsi que le seuil de réfraction b ou la variable n lorsqu’on simule un processus

d’approximation :

x = 1.0

b = 2.0

n = 2
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Enfin, pour la simulation des trajectoires, nous devons spécifier le nombre de points de discrétisation et

l’instant où la simulation s’arrête, par exemple :

points = 2000

t = 10.0

dt = t/(points-1)

t_axis = np.linspace(0, t, points)

Dans un objectif de reproductibilité, les simulations de chaque Figure ont été produites à partir d’une graine

fixée, donnée par une commande du type rng = np.random.default_rng(...).

A.1 Simulation pour la Figure 1.1

rng = np.random.default_rng(15)

N = rng.normal(0, 1, points)

X = x*np.ones(points)

Yb = np.copy(X)

Lb = np.zeros(points)

for i in range(points - 1):

dXt = mu*dt + sigma*np.sqrt(dt)*N[i+1]

uYbdt = (K*Yb[i]+S)*(Yb[i] >= b)*dt

X[i+1] = X[i] + dXt

Lb[i+1] = Lb[i] + uYbdt

Yb[i+1] = Yb[i] + dXt - uYbdt

A.2 Simulation pour la Figure 1.2

rng = np.random.default_rng(40)

N = rng.normal(0, 1, points)

X = x*np.ones(points)

L = np.zeros(points)
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Ln = np.zeros(points)

Y = np.copy(X)

Yn = np.copy(X)

for i in range(points - 1):

if Yn[i]>=b: sur_b = True

if Yn[i]<=(b-1/n): sur_b = False

dXt = mu*dt + sigma*np.sqrt(dt)*N[i+1]

uYdt = (K*Y[i]+S)*(Y[i] >= b)*dt

uYndt = (K*Yn[i]+S)*sur_b*dt

X[i+1] = X[i] + dXt

L[i+1] = L[i] + uYdt

Ln[i+1] = Ln[i] + uYndt

Y[i+1] = Y[i] + dXt - uYdt

Yn[i+1] = Yn[i] + dXt - uYndt

A.3 Simulation pour la Figure 2.3

rng = np.random.default_rng(2)

N = rng.normal(0, 1, points)

X = x*np.ones(points)

Lb = np.zeros(points)

Ub = np.copy(X)

Xb = np.copy(X)

Gb = np.zeros(points)

minUb = x

for i in range(points - 1):

dXt = mu*dt + sigma*np.sqrt(dt)*N[i+1]

uXbdt = (K*Xb[i]+S)*(Xb[i] >= b)*dt

X[i+1] = X[i] + dXt

Lb[i+1] = Lb[i] + uXbdt
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Ub[i+1] = Ub[i] + dXt - uXbdt

minUb = min(minUb, Ub[i+1])

Gb[i+1] = -min(minUb,0)

Xb[i+1] = Ub[i+1] + Gb[i+1]

A.4 Simulation pour la Figure 2.4

rng = np.random.default_rng(215)

N = rng.normal(0, 1, points)

X = x*np.ones(points)

Z = np.copy(X)

Zn = np.copy(X)

G = np.zeros(points)

Gn = 1/n*np.zeros(points)

minX = x

for i in range(points - 1):

dXt = mu*dt + sigma*np.sqrt(dt)*N[i+1]

X[i+1] = X[i] + dXt

minX = min(minX, X[i+1])

G[i+1] = -min(minX,0)

Gn[i+1] = (np.floor(n*G[i+1])+1)/n

Z[i+1] = X[i+1] + G[i+1]

Zn[i+1] = X[i+1] + Gn[i+1]

A.5 Simulations pour les Figures 3.2 et 3.6

rng = np.random.default_rng(42)

N = rng.normal(0, 1, (paths,points))

dLb = np.zeros((paths,points))

Ub = x*np.ones((paths,points))

Xb = np.copy(Ub)

Gb = np.copy(dLb)
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dGb = np.copy(dLb)

minUb = x*np.ones(paths)

for i in range(points - 1):

dXt = mu*dt + sigma*np.sqrt(dt)*N[:, i+1]

dLb[:, i+1] = (K*Xb[:, i]+S)*(Xb[:, i] >= b)*dt

Ub[:, i+1] = Ub[:, i] + dXt - dLb[:, i+1]

minUb = np.minimum(minUb, Ub[:, i+1])

Gb[:, i+1] = -np.minimum(minUb, np.zeros(paths))

dGb[:, i+1] = Gb[:, i+1] - Gb[:, i]

Xb[:, i+1] = Ub[:, i+1] + Gb[:, i+1]
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