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RESUME

Ce mémoire porte sur la résolution d’un probléme de contréle stochastique a la (de Finetti, 1957) dans lequel
on cherche a maximiser les paiements de dividendes, de taux borné par une fonction linéaire, et déduits
du colt d’injections de capital obligatoires. Nous arrivons a la conclusion qu’une stratégie optimale est de
verser des dividendes au taux maximal lorsque le surplus de capital excéde un certain seuil, et de ne rien
verser sinon.

Ce probléme est un cas spécifique de celui résolu par (Renaud et al., 2023) en utilisant la théorie des solu-
tions de viscosité. Nous présentons une résolution plus directe et élémentaire qui a pour avantage d’appro-
fondir la compréhension des différents objets que nous manipulons. Nous obtenons une forme explicite
de la fonction de performance d’une stratégie linéaire pour un seuil quelconque, puis nous trouvons le
seuil dont la fonction de performance est optimale parmi toutes les stratégies admissibles. De plus, nous
vérifions numériquement que la fonction valeur de notre probléme est une meilleure approximation de la
fonction valeur de (Lgkka et Zervos, 2008) que celle du probléme de maximisation de dividendes dont le
taux est borné par une constante.

Mots clés : contréle stochastique; maximisation de dividendes; injections obligatoires; transformées de
Laplace; mouvement brownien.
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INTRODUCTION

Lorsqu’une firme posséde d’importants surplus de capital, elle est susceptible d’en verser une partie a ses
actionnaires; par exemple, sous forme de dividendes. A I'inverse, quand celle-ci frole la faillite, elle peut
obtenir du capital des actionnaires. Intuitivement, une firme devrait verser le plus de dividendes possible,
et injecter le moins de capital en vue de satisfaire ses actionnaires. Cependant, une grande quantité de
dividendes a pour effet de diminuer rapidement le surplus de capital, et d'accroitre le besoin d’injecter
du capital. Et inversement, s’il y a trop peu d’injections, le surplus de capital ne grimpe pas assez pour
permettre a la firme de verser convenablement des dividendes. Il y a ainsi un équilibre optimal a trouver

entre les versements et les injections.

Le surplus de capital évolue aléatoirement dans le temps, ce qui motive I'étude de ce type de probléme en
mathématiques actuarielles et financiéres. La littérature se base principalement sur la théorie du controle
stochastique pour répondre a ces problémes d’optimisation. Le surplus dit non contrélé y est modélisé par
un processus a temps continu X = (X;);>0, typiguement un mouvement brownien avec dérive 1 et volati-
lité 0. Les versements de dividendes et les injections de capital cumulatifs sont représentés respectivement
par les processus croissants L = (L;)¢>0 et G = (Gy)i>0- Le surplus contrélé s'écrit alors intuitivement

sous laforme X — L + G.

L'objectif du probléme est d’identifier une stratégie, c'est-a-dire les processus de contréle L et G, qui maxi-
mise une certaine fonction de performance mesurant la satisfaction des actionnaires. On cherche aussi une
expression de cette fonction maximisée, appelée fonction valeur. Il existe une grande variété de tels pro-
blémes, qui se distinguent essentiellement par le choix du modéle intrinséque (c’est-a-dire X et quelques
paramétres comme le taux d’actualisation, le colt des injections, des frais divers, etc.), et par la forme que

prennent les processus de contréle.

Bruno de Finetti fut le premier, dans (de Finetti, 1957), a proposer un probléme de ce genre, dans lequel
il utilise une marche aléatoire comme modéle intrinséque, et considére uniquement les versements de
dividendes. Les problémes de maximisation de dividendes sans injections, donc avec G = 0, ont été lar-
gement étudiés : voir notamment (Avanzi et al., 2011; Jeanblanc-Picqué et Shiryaev, 1995; Locas et Renaud,
2024; Rao, 2023) ainsi que (Albrecher et Thonhauser, 2009; Avanzi, 2009) pour une revue de la littérature a

ce sujet. L'absence d’injections nécessite toutefois d’introduire une notion de faillite qui arréte le processus



au moment de la ruine. Typiquement, la faillite survient a l'instant ou le surplus contrélé devient négatif.

Quant a laforme du contrdle (ou de la stratégie) L, on doit définir un ensemble de stratégies admissibles sur
lequel sera performé I'optimisation. De maniére générale, cet ensemble contient tout processus croissant
et cadlag (continu a droite avec limite a gauche) tel que la faillite ne peut étre causée par un versement
de dividendes. Une stratégie barriére est souvent optimale pour ce type de contréle : dés que le surplus
controlé excéde une barriére fixée b > 0, 'excédent est distribué instantanément sous forme de dividendes
(Avram et al., 2007; Gerber et Shiu, 2004; Jeanblanc-Picqué et Shiryaev, 1995). Le processus L optimal
comporte donc des sauts, et il est appelé contréle singulier du fait que dans ce cas, la mesure induite par L

est singuliére par rapport a la mesure de Lebesgue (voir (Karatzas, 1983)).

Il est parfois utile de restreindre I'ensemble des stratégies admissibles aux contréles dits absolument conti-
nus (Albrecher et Thonhauser, 2009), a savoir tels que leur mesure induite est absolument continue. Dans

ce cas, une stratégie L admissible admet un processus positif et borné ¢ = (¢;)>¢ tel que
t
Lt = / sts, t 2 0.
0

Le processus ¢ représente la densité ou le taux instantané de versement de dividendes. De cette facon,
L est continu. Une stratégie a seuil est souvent optimale : les dividendes sont versés a un taux constant
o > 0 seulement lorsque le surplus controlé excéde un seuil fixé b > 0 (Frostig, 2005; Gerber et Shiu,

2006; Jeanblanc-Picqué et Shiryaev, 1995).

Le lecteur aura peut-étre remarqué que pour une stratégie a seuil, le contréle L dépend du surplus contrélé,
qui dépend a son tour de L. L'équation X — L caractérisant le surplus contrélé devient alors une équation
différentielle stochastique (EDS), dont une condition supplémentaire d’'admissibilité est qu’elle admet une
solution. Il est coutume d’exprimer ¢ par une fonction positive u du surplus contrélé. On note dans ce cas

le surplus contrdlé par X* = (X}*):>0, et le processus de contréle L* est donné par

t
ng/ (X3 )ds.
0

En général, la fonction u est bornée supérieurement afin d'éviter toute singularité dans I'intégrale, et c'est
précisément le type de borne qui caractérise I'ensemble des stratégies admissibles. La borne est habituel-
lement une constante S > 0, donc u(xz) < S pour tout > 0. Ce probléme a été résolu dans (Jeanblanc-
Picqué et Shiryaev, 1995), ot il a été montré que le probléme de maximisation de dividendes singuliers est

un cas limite (S — o0) de ce probleme. Il'y a aussi la borne linéaire u(z) < Kz + S, = > 0avec K, S > 0,



dont le probléme a été résolu par (Rao, 2023), et qui est une généralisation a la fois de la borne constante
et de la borne u(z) < Kz, x > 0, dont le probléme fut résolu par (Renaud et Simard, 2021). Récem-
ment, (Locas et Renaud, 2024) ont proposé une borne encore plus générale, u(x) < F(z), = > 0,ou F
est une fonction croissante et concave. Ces quatre problémes tirent la conclusion que la stratégie optimale
de versement de dividendes est de type bang-bang, c’est-a-dire que, soit on verse des dividendes au taux
maximal, soit on n’en verse pas. Plus exactement, celle-ci prend la forme d’une stratégie a seuil qui verse
au taux maximal lorsque X excede le seuil fixé, taux qui est exactement la borne imposée sur u par le

probléme.

Revenons aux problemes avec injections de capital (tels que G # 0). Nous nous intéressons ici aux pro-
blémes avec injections obligatoires en zéro; c'est-a-dire qui surviennent « automatiquement » lorsque le
surplus contrélé atteint 0. De cette facon, le processus GG n'est pas un contréle, donc il n’y a que les paie-
ments de dividendes a optimiser. Ces problémes sont trés prisés (voir notamment (Avram et al., 2007; Lakka
et Zervos, 2008; Pérez et al., 2018; Renaud et al., 2023)), puisqu'ils constituent une étape intermédiaire aux

problémes généraux d'optimisation de (L, G).

De plus, le contrdle optimal pour L dans les problémes avec injections forcées est souvent du méme type
que pour le probléeme analogue sans injections. Par exemple, (Lakka et Zervos, 2008) résolvent le probléme
limite de (Jeanblanc-Picqué et Shiryaev, 1995) en ajoutant les injections obligatoires, et concluent qu’une
stratégie barriére est optimale pour les dividendes. Similairement, (Renaud et al., 2023) considérent des
dividendes absolument continus et bornés par une fonction F’ croissante et concave, comme dans l'article
de (Locas et Renaud, 2024), en y incorporant les injections forcées. lls trouvent eux aussi qu’une stratégie

bang-bang est optimale pour les paiements de dividendes.

Malgré les similitudes entre le probléme de (Lakka et Zervos, 2008) et de (Renaud et al., 2023), ces derniers
emploient des méthodes de résolution différentes, bien qu’elles tournent autour de I'équation d’Hamilton-
Jacobi-Bellman, ou équation HJB. Cette équation issue de la programmation dynamique a une forme par-
ticuliere a chaque probléeme, et il est attendu qu’une solution de cette équation soit la fonction valeur.
De plus, cette équation aide a I'identification du type de stratégie qui peut étre optimale. Il reste enfin a
confirmer que la fonction et la stratégie candidates sont bien optimales grace a un Théoréme de vérification

faisant intervenir I'équation HJB.



Pour trouver une expression d’une fonction candidate a la fonction valeur, (Lgkka et Zervos, 2008) utilisent
les propriétés analytiques de I’équation HJB. (Renaud et al., 2023), quant a eux, obtiennent d’abord une
forme explicite de la fonction de performance d’'une stratégie bang-bang quelconque, avant de trouver
celle qui est optimale dans ce sous-ensemble de stratégies, en faisant le lien avec la caractérisation de la

fonction valeur comme solution de viscosité de I'équation HJB.

Dans ce mémoire, nous appliquons cette méthode pour résoudre le probléeme de maximisation de divi-
dendes avec injections obligatoires, mais sans utiliser la théorie des solutions de viscosité. Nous considérons
des injections obligatoires en zéro, et des versements de dividendes absolument continus bornés par une
fonction linéaire, de la forme F'(x) = Kz + S, x > 0avec K, S > 0. Nous étudions des stratégies de type
bang-bang, que nous appellerons plutét des stratégies linéaires. Il s’agit donc d’un cas spécifique du sous-
probléme avec injections obligatoires de (Renaud et al., 2023). Cependant, la simplicité de la borne linéaire
nous donne l'avantage de proposer une approche plus directe et élémentaire offrant une compréhension

plus profonde et transparente des objets que nous manipulons.

Au Chapitre 1, nous présentons des transformées de Laplace de temps de premier passage qui sont centrales
au calcul de la fonction de performance d’une stratégie linéaire. Le calcul de I'une de ces transformées
nécessite une approximation d’un processus, dont nous présentons une preuve plus détaillée que dans

(Locas et Renaud, 2024; Renaud et al., 2023).

Au Chapitre 2, nous introduisons formellement le probléme central a ce mémoire, puis donnons une forme
explicite de la fonction de performance pour une stratégie linéaire quelconque. La valeur en zéro de cette
fonction demande de calculer une certaine espérance que nous obtenons par une approche nouvelle, au
mieux de nos connaissances, faisant intervenir une approximation similaire a celle du chapitre précédent.
Enfin, nous montrons qu'il existe une telle stratégie dont la fonction de performance satisfait certaines

conditions de régularité, et vérifions que cette derniére est optimale.

Au Chapitre 3, nous effectuons quelques analyses numériques qui nous aideront a bien saisir le comporte-

ment de la stratégie optimale et de la fonction valeur selon les paramétres du modéle.



CHAPITRE 1
TRANSFORMEES DE LAPLACE DE TEMPS DE PREMIER PASSAGE

Comme il a été mentionné en introduction de ce mémoire, le calcul de la fonction de performance d’'une
stratégie linéaire fera intervenir diverses transformées de Laplace de temps de premier passage. Ces quan-
tités sont au centre de la résolution du probléme; elles méritent donc d’étre diment présentées. Nous
commencons par introduire quelques transformées de Laplace « élémentaires » a la Section 1.1 avant de

passer au calcul d’'une transformée plus complexe a la Section 1.2.

Mais d’abord, nous nous intéressons a deux équations différentielles ordinaires, qui se trouvent en quelque

sorte au coeur de notre probleme. Soit i, o, ¢ > 0, la premiere équation différentielle est

0.2
7f”(:v) + uf'(z) — qf(x) =0, (1.1)

qui admet les solutions fondamentales

—pt+A —pu—A
f+(x):e Z2 937 f,(x):e iZ m?

avec A = /u? + 202q. Ces solutions sont, respectivement, strictement croissante et décroissante.

La seconde équation différentielle est

0_2

5 '@+ (n = (Kz +9)) f'(z) - af (x) = 0, (1.2)

qui admet les solutions fondamentales

Hy(2) = exp <2§2 <x— ”I_(S>2> Dy <_\/(2TK (x_ MI—(S)> ,
n=on (25 (- 155) ) 0. (2 (--152))

qui sont, respectivement, strictement croissante et décroissante (voir I'Annexe 2 de (Borodin et Salminen,

2002)). Pour A > 0, D_ est la fonction cylindre parabolique :

x

e 4 > Al —at—t
D—A(JU):F()\) ; t" e zdt, zeR.

On utilisera surtout H_, ce pourquoi on notera plutoét H (z) := H_(z) afin d’alléger I'écriture.



Remarque 1.1 (Chapitre 16 de (Breiman, 1968)) Les solutions des équations (1.1) et (1.2) sont :
— positives;
— continues;
— finies en tout point (sauf a t=oco selon la croissance) ;

— telles que toute autre solution continue est une combinaison linéaire de ces solutions.

11 Des transformées et leurs propriétés
Soit (2, F, (Ft)t>0, P) un espace de probabilité filtré et (B;);~0 un mouvement brownien standard. Nous
considérons le mouvement brownien arithmétique (MBA) X = (X¢):>0 :
dX; = pdt + od By,
ainsi que le processus Y = (Y});>( dont la dynamique est
dY; = (u— S — KY;)dt + odB;.

Ce processus est bien connu, puisqu’il s’agit d'un processus d’Ornstein-Uhlenbeck (O-U).

Définition 1.2 (Temps de premier passage) Pour un processus donné A = (Ay)¢=0, on définit le temps d’ar-
rét suivant,

it =inf{t >0| A =0b}, beR,

soit le premier instant ou A atteint b.

Notation 1.3 Nous userons amplement de la notation E,[-] pour signifier que le processus (par exemple
(Xt)i=0) dont nous prenons I'espérance est de valeur initiale x, c'est-a-dire Xy = x. Nous ferons la méme

chose avec P, pour signifier la loi du processus sachant sa valeur initiale.

Voici maintenant nos premiéres transformées de Laplace de temps de premier passage :

Définition 1.4 Pour b > 0, les fonctions vy, 1y, Uy : Ry — [0, 1] sont définies par

op(z) = E, |:efq7—bX]lTbX<T0X] , 0<z<h,
() = Ey [e—%" 17_5<<7_bx] . 0<z<b,
Uy(z) =E, [e_qﬂ}/]l,rg/<oo] , b< x.

6



Notation 1.5 Il convient de préciser que cette notation peut porter a confusion avec celle de (Renaud et al.,

2023). Il existe néanmoins une correspondance entre les deux notations, que nous dressons ci-dessous :

Y(z)
ng(ZL’) — w(b>’
Y ()
Vo) «— ¥(z) — V() o)’
p(x)
\Ilb(x) SO( )7

ou le cété gauche correspond a notre notation, et le cété droit a celle de (Renaud et al., 2023).

Il est connu (Borodin et Salminen, 2002; Breiman, 1968; Darling et Siegert, 1953) que ¢y, et 1, sont solutions

de I'équation différentielle (1.1) sur (0, b) avec conditions aux bords

ep(0) =0,  @p(b) =1,

Yo(0) =1, (b)) =0,
et que W est solution de I'équation différentielle (1.2) sur (b, co) avec conditions aux bords
Uy(b) =1,  ¥p(00) =0,
ou ¥y (00) est une maniére simplifiée d’écrire lim,_,~, ¥(x). On constate facilement a partir de leur défi-

nition que ces transformées satisfont bien les conditions aux bords.

Bien qu'’il s'agit d’'un résultat classique, nous en présentons ici une démonstration puisqu’elle a beaucoup
en commun avec la démonstration du Théoréme de vérification 2.20, ce dernier étant la pierre angulaire

de notre probléme.

Preuve. Tout d'abord, pour ¢y, et 1)y, soit ¢ une solution générale de 'EDO (1.1) sur (0,b). Appliquons la

Formule d'Ité au processus (t, X;) avec la fonction (t,x) — e~ ¢(z) € CL2(R4 x R). On trouve
1
d(e™"p(Xy)) = —ge™ T P(Xp)dt + e "¢ (X)dX; + ie_qtﬁbﬂ(Xt)d (X1,
1
= —qe "p(Xy)dt + e ¢ (Xy) (pdt + odBy) + 5e—qt<z>”(Xt) - o2dt

2
o (Jz¢”<xt> + ! (X0) qas(Xt)) dt -+ 7e™ ¢/ (X;)dB;.



Sous forme intégrale, et en particulier pour t = 7-({( A TbX , on obtient

T(‘)X/\TI;X 2
D (X ) =00+ [ e (G0 4 ()~ a0t )
0

TOX/\TbX
+ / Ue_qt¢,(Xt)dBt.
0

Soit z € (0,b), alors la premiére intégrale est nulle, car X; € (0,b) pour toutt < 75° A%, et ¢ est solution

de I'équation (1.1) sur (0, b) par hypothése. Prenons I'espérance avec X, = x de chaque coté :

TX/\TX
B, [ 0500 (X )| = Ealo(X) 40+ B | [ oo g/ (X,
0

L'intégrande du dernier terme est borné pour tout t < TGX A TI;X , donc cette intégrale stochastique est une
martingale. Comme le temps d’arrét 7-({( A TbX est fini presque stirement par les propriétés du mouvement

brownien, alors cette espérance est nulle par le Théoréme d'arrét de Doob. Par conséquent,
—a(+XArX
E, [0 )6 (X ) | = Ba [0(X0)] = 6(a).
Développons I'espérance pour faire apparaitre nos transformées de Laplace de temps de premier passage :
X X
6() = By [e77 6 (X, ) Do | + o [ 6777 6 (X ) 1|
= (), [T 1| + (DB, [ 1 x x|
= ¢(0)vhp(x) + ¢(b)gp ().

D’une part, si ¢ admet les conditions aux bords ¢(0) = 0 et ¢(b) = 1, alors on a ¢ = 3. D'autre part, si ses

conditions aux bords sont plutét ¢(0) = 1 et ¢(b) = 0, alors ¢ = ».

Par la suite, pour Uy, la démarche est essentiellement la méme. Soit 1), une solution générale de I'EDO (1.2)
sur (b, o). On applique la Formule d’Ité au processus (t,Y;) avec la fonction (t,y) — e %n(y), qui est

CL2(Ry xR):
1
d (e_qtn(Y})) = —qe" Uy(Yy)dt + e ' (Y;)dY; + §e_qtn”(Yt)d Y],
1
= —qe  n(Y,)dt +e "y (V;) (u — S — KY;) dt + odBy) + 5e*q"/n”(yt) -o?dt

_ 0'2 _
—e 4 <277H(Yt) + (=S - KY)n'(Yi) - qn(ﬁ)) dt + oe™ "y (Y;)dB:.

Sous forme intégrale et pour t = T,}/ , on trouve

2

eI (Kg) =1n(Yo) + /OTbY e et (02?7”(1@) + (=S —KY)1n' (V1) — qn(Yt)> dt

Y

Tp
+ / oe” ' (Y;)dB;.
0



Soit x € (0, b), nous prenons l'espérance avec Yy = x de chaque cété :

Ewﬁmﬁﬂﬁgﬂ=ﬁﬂmnn+&:Ag“€%ﬂEM& = n(a),

ou la derniere égalité s'obtient par les mémes arguments que plus haut. Enfin, on a

En spécifiant maintenant que n admet les conditions aux bords n(b) = 1 et n(cc) = 0, on trouve n = ¥,. [
Par le dernier point de la Remarque 1.1, il en découle que ¢y, et 1, sont chacune une combinaison linéaire

de f., f—, tandis que W, est une combinaison linéaire de H,, H_. Elles prennent plus exactement la forme

suivante :

Théoréme 1.6 Les transformées de Laplace introduites a la Définition 1.4 s'expriment sur leur domaine res-

pectif par

op(x) = [+(@)f-(0) = f+(0)f(3) _ s (p-c)sinh (L)
f4(0)f=(0) = f+(0)f-(b) sinh (%b) ’

Yy(x) = F+®)f-(x) = fr(2)f-(b) _ - sosinh (A0 —a))
F4(5) f-(0) = f+(0)f—(b) sinh (53b) (1.3)

2
G G R Gl )
b\ L) = = |

e (i (o)) 0o (4 ()

Preuve. Puisque y, et 1y, sont chacune une combinaison linéaire de f, f_, ona
ov(z) = Afi(z) + Bf-(2),

Yp(z) = Cfy(x) + Df-(x),
pour tout x € [0,b], et avec A, B,C, D € R, des coefficients a identifier. Pour cela, on utilise les conditions

aux bords pour obtenir

0= Af4(0) + Bf-(0),
1= Af.(b) + Bf(b),
1= Cf4(0) + Df-(0).
0=Cfi(b) + Df-(D)



Il suffit de résoudre ce systéme pour obtenir les expressions données par I'équation (1.3).

Et quant a Uy, il s'agit d’'une combinaison linéaire de H.., H_, donc
Uy(2) = all,(z) +vH_(z), @€ [b,o0),
ou a, v € R. Il ne reste qu’a trouver ces coefficients, encore une fois grace aux conditions aux bords :
1= aH,(b) + vH-(b),
0= axlingo H,(z)+ VZILH;O H_(z).

Par la croissance de H et par la Remarque 1.1, on a H, (x) —— oc. Il faut dans ce cas que o« = 0 pour
Tr—00

que la seconde équation égale bien O. Et en posant o = 0 dans la premiére équation, on trouve v = H}(b).

Par conséquent,

ou I'on rappelle que H :— H_. La forme explicite s'obtient ensuite par substitution de l'expression de H. [

En définissant la fonction W : R, — R par

on peut alors écrire
_ W(=)

Dans la littérature, la fonction W est connue comme étant, a un coefficient preés, la fonction d’échelle d'un

MBA (voir le Chapitre 8 de (Kyprianou, 2014)).

Nous nous intéressons maintenant a la dérivée premiére et seconde des transformées, qui sont évidemment
continues et bien définies sur leur domaine. Cependant, leurs dérivées ne sont pas clairement définies aux
extrémités de leur domaine. Afin d’alléger I'écriture, nous posons leurs dérivées aux extrémités comme
étant la limite a droite ou a gauche des dérivées. Par exemple

A0) = limpl(@),  U0) = lmvi@), W) = lim W)

Nous faisons la méme chose avec les dérivées secondes. Ceci s'appliquera également a toute fonction qui

sera introduite au cours de ce mémoire, et exprimée a partir des ces transformées.
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Proposition 1.7 Les dérivées premiéeres et secondes des transformées sont telles que
— ¢y (x) > 0 pour tout = € [0, b], et
— soit il existe un s € (0, b] tel que ¢} (s) = 0, avec gy (x) < 0 pour = € [0, s) et yy (x) > 0 pour
x € (s,b],
— soit ¢}/ (x) < 0 pour tout = € [0,b];
— Yy(x) < 0etepy(x) > 0 pourtout z € [0,b];

— Uy(z) < 0et ¥y (x) > 0 pour tout z € [b, c0).

Preuve. On sait par le Lemme 2.4 de (Ekstrém et Lindensjé, 2021) que les fonctions W et H sont telles que
— W'(x) > 0 pour tout x > 0, et il existe un point d’inflexion s > 0 tel que W"(s) = 0, avec
W"(x) < 0pourx < setW"(zx) > 0pourz > s;
— H'(z) < 0et H"(xz) > 0 pour tout x > 0.
W(x) H(z)

Il sensuit que () = W) et Uy(zr) = ) ont les mémes propriétés. Notons que pour ¢/, les deux cas

de figure dépendent de la valeur du point d’inflexion s; on sera dans le premier cas si s < b, ou dans le

second si s > b.

Et pour 1/, tout d'abord,
0L @) = @) ()
f(0)f=(0) — f4(0) f-(b)

pour tout x > 0 puisque le numérateur et le dénominateur sont, respectivement, négatif et positif par les

Uy (@) <0

propriétés de f. , f_. Ensuite, 1, est solution de I'équation différentielle (1.1), donc

Ui(e) = =5 (o) - () > 0

pour tout x > 0 étant donné que qi)y(x) > 0 et uapy(x) < 0.0

Voici enfin une derniére propriété des transformées ¢y, et 1.

oy, (z)

Lemme 1.8 Pour b > 0 fixé, la fonction x — w’,’(x)
b

est strictement décroissante pour tout x € [0, b].

vy, (x)
¥y (@)

Preuve. Nous montrons que la dérivée de x est négative en utilisant le fait que yy, 1y, sont positives

1)



et solutions de I'équation différentielle (1.1) :

d (w?,(w)) _ (@) () — g (@) ¢y (2)

dv \vh(e) W)
0.2
= G L(aale) — e ) i) = b avnte) - i)
02
= (iz(/x))Q [@b(l‘)w{,(x) — (pg(a;)wb(x)] <0

puisque P, < 0 < ;. 0

1.2 Une autre transformée

On s'intéresse maintenant a &, : Ry — [0, 1], une nouvelle transformée de Laplace de temps de premier
passage, définie ainsi :
_grY?
Oy(x) = E, [e 970 ]ng,b@O] , x>0, (1.4)
ot Y = (V)0 est de dynamique
avp = (u _(KY} + 5)]1Ytb>b) dt + odB;.
Du fait que la dérive de Y diminue abruptement lorsque Y excéde b, on dit que le processus est réfracté

au-dessus du seuil de réfraction b.

La Figure 1.1illustre cette réfraction, que I'on peut comparer a la réfraction d'un rayon lumineux en optique

physique. La premiére droite pointillée, de pente p, indique la dérive du processus avant la réfraction. La

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 1.1 - Exemple de Y avecb = 5 et z = 0

Le pas de la simulation est At ~ 0.0015. Paramétres: u =5, 62 =1, K = %, S =1
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seconde est de pente  — (Kb + S), et représente approximativement la dérive du processus pendant la

réfraction (elle surestime légérement la vraie dérive puisque Ytb > b).

Comme le comportement de Y® change autour du seuil b, I'expression de ®;, est différente entre = € [0,0)
etz € [b,00), tel que nous le verrons au Théoréme 1.12. Le calcul de ®;(x) pour x différent de b est assez
direct, alors que le calcul de ®;(b) est plus compliqué. C’est pourquoi il nous faut introduire une suite de
processus (Y™, cx qui approxime Y (voir (Rao, 2023)) dans le but de calculer ®;(b) comme une limite

d’une suite.

Le résultat présenté au Théoréme 1.12 a été prouvé avec peu de détails dans le Lemme 5 de (Renaud et al.,

2023). Nous fournissons, dans ce qui suit, une preuve compléte.

b,n)

Définition 1.9 Pourn € Nfixé etz > 0, on définit le processus Y = (Y;"")¢>0 de valeur initiale Yob’" =z

par la dynamique suivante :
b, 0, b 0,
Ay = (th “Noct<ny +dU; ﬂn?gtq?) Loca<t + (dUt x]10<t<>\’f> Lysp

SN anp—l Y
+ § dT; Dxpcnn, | + E dU, " " Lengiann,
i=1 =2

ou pour v,y = 0,

d1yY = pdt + odB;, T}V =y, t>v,

dUyY = (p— 8 — KUPY)dt + 0dBy, ULY =y, t>v,
et

KT =inf{t > 0| 2" > b},
1
)\y:inf{t>m?\Ytb’”<b—}, i=12,...,
n

KPP =inf{t > A, | Y2 > b)Y, i=2,3,...

Bien que la définition de Y*™ soit plutét velue, celle-ci s'interpréte de la maniére suivante :
— lorsque Y™ excéde b, donc pour t € [x7, \?[, sa dérive est u — S — KUtH?’b;

— lorsqu’il descend sous b — 1/n, donc pour t € [A}, 7', [, sa dérive devient /.
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Le processus Y™ alterne entre ces deux régimes. De plus, les processus Y et Y2 différent uniquement

par leur dérive; ils ont la méme volatilité stochastique o B.

L'inégalité présentée dans le lemme qui suit est centrale a la démonstration du Lemme 1.11. Nous proposons

ici une preuve de cette inégalité qui fut introduite par (Locas et Renaud, 2024).

Lemme 1.10 Pour Y? = b = Yob’", les processus Y et Y™ satisfont I'inégalité suivante pour tout n € N :

, t=0. (1.5)

Preuve. Pour démontrer I'inégalité (1.5), nous vérifions pour tout ¢ € N que I'inégalité est respectée, et ce
d'abord pour tout t € [k}, A\}[, puis pour tout t € [\}, k', ,[. Sans perte de généralité, fixons un i € N

quelconque.

Commencons par [}, \']. Dans cet intervalle, on a Ytb’” = Ut”?’b par définition de Y'®™. De plus, la dérive
de Y0 est pw—S— KU:M, tandis que Y alterne entre un O-U de dérive u—>5— KYP, et un MBA de dérive
w lorsqu’il franchit le seuil b. C’est pourquoi nous considérons séparément les intervalles ou Y se comporte
comme l'un ou l'autre de ces processus, et hous montrons que si I'inégalité est respectée au début d’un tel
intervalle, alors elle I'est sur tout I'intervalle.

— Soit s1,t1 € [k}, A\]'[ avec s1 < t; tels que pour tout t € [sq,t1], la dynamique de Yl — ybn est

(1) = (o 00 - o5

n
Kb

— K (Y- U7 a
- K (Y;b - Yf’”) dt.

Supposons que I'inégalité est respectée a I'instant initial s1. Ce processus s'exprime explicitement par

vp -y = (YS”1 — Ysbln) e~ K(t=s1) qui est bien borné par [0, 1/n] pour tout t € [s1,t1[ puisque

—K(t—s1)

e est positive est décroissante, et que 0 < Ysb1 — Ysbln < % par hypothese.

— Soit sp, b2 € [}, A\ avec sy < ty tels que pour tout t € [sg, ta], la dynamique de Y — Y™ est
a (ve =y = [ (n—s - v ar= (k07 4 5) at.

Supposons que I'inégalité est respectée a I'instant initial t = ss. La dynamique de Y? — Yo" est

positive, donc le processus est croissant. Avec I’hypothése initiale, il en découle que 0 < Y;b — Ytb’"
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pour tout t € [s9,t2|. Ensuite, notons que b — % < Ysbzn < Ysb2 < b, et que l'on quitte [s2, o]
soit lorsque Y® dépasse b pour se comporter comme un O-U, soit lorsque Y™ descend sous b — %
auquel cas on quitte [7, \?[. De ce fait,ona b — 1 < Ytb’" <Y < bpourtoutt € [so,ts], et par

conséquent, Y, — Ytb’n < L sur cet intervalle.

n

Terminons avec [\, k!" ;[ Dans cet intervalle, la dérive de Y "™ est u, tandis que Y'° alterne encore une fois

entre un processus O-U et un MBA, ce qui motive de séparer a nouveau les deux cas par intervalles comme

nous l'avons fait ci-haut.

O

— Soit 53,13 € [\, kI 1[ avec s3 < t3 tels que pour tout t € [s3,t3], le processus Y? — Y est de

dynamique

a (v =vPm) = lu—plde =o.

Supposons que I'inégalité est respectée a l'instant initial t = s3. Trivialement, elle est respectée

pour tout t € [ss,t3] puisque Yt — Vb7 est constant sur 'intervalle, et que par hypotheése, on a
b, 1

0< Y;Z - YSsn < n

Soit s4,t4 € [N}, K, 1| tel que pour tout t € [s4,t4], le processus Y? — Y% g comme dynamique
d (Yt” - Y;b’") - [(u —5- KY}?) - u] dt = — (KYtb + S) dt.

Supposons que I'inégalité est respectée a I'instant initial t = s4. La dynamique de Y® — Yo" est
négative, donc le processus est décroissant. Avec I’hypothese initiale, il s’ensuit que Ytb — Ytb’” < %
pour tout t € [sa, t4[. Ensuite, notons que b — % < YSZ" <b <K YSZ, et que I'on quitte [s4, t4] soit
lorsque Y descend sous b pour se comporter comme un MBA, soit lorsque Y™ atteint b, auquel
cas on quitte (A}, k7', ,[. De ce fait, on a Ytb’” < b < Y pour tout t € [sy,t4], et par conséquent,

0<Y? — Ytb’” sur cet intervalle.

La Figure 1.2 illustre les processus Y et Y™ ainsi que I'inégalité (1.5). En effet, le processus Y? — Yo,

représenté par la courbe rouge, est visiblement borné dans [0, 1/n]. De maniére équivalente, on voit que

Y®" reste confiné dans la zone mauve pale.

Rappelons que I'intérét de I'approximation Y*" est de définir une suite convergeant vers Dy (b).
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6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

2.5

20+ A-tHAPR- -k - - - -+ - - - - -§-1- ————7t--

1.5 et EE -H-- - - -——— -1 7- -k

1.0

0.5 frmmmm R o

0.0

Figure 1.2 - Simulation de Y et Y?" avec b, n = 2

Les deux graphes montrent la méme simulation, mais sur des intervalles différents. La région mauve pale sur le graphe du haut couvre

P - %, Y,?] en ordonnée. Le pas de la simulation est At 22 0.005. Paramétres: p =1, 02 =1, K =1, S = 2.
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Lemme 1.1 La suite réelle (®}'(b))nen donnée par

bn

v
n P —qT
(o) =By [Ny
converge vers @y (b).
e . b ) b, b . .
Preuve. De I'inégalité (1.5) évaluée ent = 7", on obtient ijf, < 0,donc 7y < 7. On voit aussi, avec
k)

y?b y?b

b,n . . b,n . y A s
t=10",que0 <Y, <1 Ainsi, (1]"")nen est une suite de temps d'arrét telle que )" —— 77
n—oo

ybn
70

par la continuité du MB. De cette facon, étant donné que x — e~ %1, est bornée dans [0, 1], alors par

le Théoréme de convergence dominée,

b,n

lim ®P(b) =y | im e 70 1 yon | = By(b).

n—00 n—00 T <

O

Rappelons que les processus de diffusion, tels que X, Y et Y?, satisfont la Propriété forte de Markov, que
nous utiliserons abondamment dans ce mémoire. Il convient en ce cas de la présenter : un processus en
temps continu (A;):>0 a d dimensions satisfait la Propriété forte de Markov si, pour un temps d’arrét 7 et

une fonctionnelle T : C(R;,R%) — R,
E, []lr<ooT((A‘r+t)t>0) | ]:T] = 1oy, [T((At)t>0)] » TE Rd’

ou C(Ry, ]Rd) est I'espace des fonctions continues de R vers RY (voir par exemple le Corollaire 7.6 de

(Le Gall, 2013)).

Nous avons enfin tout ce qu'il nous faut pour trouver une forme explicite de ®;, donnée par le Théoreme

1.12 ci-dessous. On peut la comparer au Lemme 5 de (Renaud et al., 2023).

Théoréme 1.12 La transformée ®,, définit par I'équation (1.4) s’écrit comme
(@) (b)
By (z) = Yp(z) EAOEAGO R <b,

B (@) (b)

FORHONEE S

Preuve. Nous montrons que ®; est donnée par

By(z) = Up(x) + Pp(b)pp(x), = < b, 1.6

Py () Wy (), x>0,
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Uy (b)
oy, (b) — W (b)
La preuve est séparée en deux parties : la premiére portant sur I'équation (1.6), et la seconde sur l'équation

(1.7).

ou (I)b(b) = — (1.7)

. . b b . o s
Premierement, pour x > b, on a clairement que Tl}/ < TOY par la continuité du processus Y, donc on peut

séparer l'exponentielle ainsi :

_yb (¥t __yb
CI)b($) =E,; |:e K 17-g/l7<oo.e q<T0 K >]17'8/b<oo:|

. - . , . e o .
puis utiliser la Loi des espérances itérées et la .FTyb -mesurabilité de e~ ]].Tyb o, bour obtenir
b

<
7’0 —Tb

>]178/b<00 ‘ .7:Tbyb]:| .
On applique la Propriété forte de Markov a la fonctionnelle F' : C(R,R) — R donnée par

F(y) - e_qinf{z>0‘y(2):0}]linf{z>0|y(z):0}<ooa

ouy = (y(z)).>0 est une fonction continue de R dans R. Ainsi,

0

*Q(Tybnyb) Yb

E 0 1 F =K —9 1

r |€ Tyb_Tg/b<oo‘ Tg/b Ybyb € vb s
T,

b

et comme Ybyb = b, on trouve enfin que
T,
b

Oy(x) = E,

b b
—qrY —qrY
€ ’ ﬂTgb<ooEYfg/b |:e 0 ]l’rg/b<oo:|]
b
=E, [eq‘rg/ ]]'Tg/b<00:| Ey [eiqn}/]lﬂ}/<oo}
= Oy (b) Wp(x),

puisque (Y,) <yt est de méme loi que (Y})KKT;/.

0<t

Pour x < b, la démarche est trés similaire, a la différence prés qu'on sépare le cas ou Y atteint 0 avant b
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et vice-versa :

b
Y
P = I | -1
b(x) Em € T(}/b<oo Tgfb<7'g/b

b

Y
E,|le %0 1 ., -1 e b
:|+ z 7'8/ <00 Tg/ <7'8/

b
y
—qr,
:Ex eqo ]lyb vb
To <Ty b 0 To

vb _ (Tyb__ryb>
—qTy AN b
} +E1’ [e ]].Tyb<7_yb (] ]l Yb<OO

r ¥ vb yb__yb
- — T '
_ qT; qTy ‘Z( 0 b )
=E, |e ]lTox<Tbx} + E, [e ]ng/b< vb Eg {e ]lTO,,b< | .FTb,,b

r X yb X
_ qT qT qrT,
=E, e 10 ]lTéX<TéXj| + Ky [e 0 ]17_3,b< ] E, [e b ]lTbX<TX]

= y(x) + Pp(b) (),

Y

puisque (Y,) (Xt)octar nrx SoNt de méme loi. De plus, on a utilisé {Tb "< T[}/b} € .FTg/b

0<t<7‘8/b/\7byb et

a la troisieme ligne.

Deuxiémement, pour calculer ®(b), nous passons par I'approximation introduite plus tét. Par le fait que
Y?" commence en b, et que sa dérive égale w— (K Ytb’” + S) jusqu'a ce que le processus descende sous
b — 1/n, le calcul de @} (b) est dans ce cas analogue au calcul de ®y(x) pour =z > b. On obtient

n — TY
(b)) =, 1 {e% nTyb,n@o} E, [e Mot ]lfby_1<oo] =ap(b—1/n)¥, 1 (b).  (18)

0

Le calcul de @} (b — 1/n) est quant a lui comme le calcul de ®(x) pour x < b, ce qui nous donne

b,n
(bzl(b — 1/n) = ]Eb,l |:6—ng/ 1 vb,n yb,n:|

T <7

ybn ybn
E e i 1 Ep e 90 1
+ b*% Tl}/b,n<7_8/b,n b Toyb,n<oo

=p(b—1/n) + @5 (b)ps(b — 1/n), (1.9)

car en partant de b— % les processus (Ytb") et (Y;b)KKTbyb sont de méme loi. Notons que le calcul

o<y b
des équations (1.8) et (1.9) fait intervenir la Propriété forte de Markov. Or, Y»™ n’est pas markovien, a priori,
puisque sa dynamique a un instant t varie pour t € [k}, \'{out € [A?, Ki' [. Toutefois, couplé avec le pro-
cessus Hf = Lieyyee foman| qui encode binairement I'information sur la forme de la dynamique de Y*"
a chaque instant, la paire (Ytb’”, Hf ™) =0 est quant a elle markovienne. Bref, en remplacant I'expression de

I'’équation (1.9) dans I'équation (1.8), puis en isolant le terme ®}'(b), ona

q)n(b) _ \Ilb_%(b)wb(b B l/n) o wb(b - 1/”’)
P = Wb —1/n)  HOL Gy 1)
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ou l'on rappelle que ¥, 1 (b) = % En utilisant @y(b) = 1 et ¢, (b) = 0, nous pouvons faire appa-
b Hb—1/n)

raitre des quotients différentiels de la manieére suivante :

Yp(b=1/n)—1bs(b)
b 1 (H(b—l/n)—H(b)) _ ep(b=1/m)—pp(®) n—oo H) (b)
H(b) 1/n 1/n H(b) b
Pour conclure, on remarque que
dv, d (H(zx) H'(b)
\I/, = — = — =
o) dr |, dx (H(b)> o= HO)’

donc on a bien démontré I'équation (1.7). O

Proposition 1.13 La fonction &, est strictement décroissante et strictement convexe sur R ..

Preuve. Rappelons pour commencer que par définition de ®;, on a ®,(x) > 0 pour tout = > 0, et en

particulier, ®;(b) > 0.

Pour z > b,ona ®y(x) = ®p(b)¥y(x), o Uy est telle que ¥y (x) < 0 et Uy (x) > 0 (par la Proposition 1.7).

Ainsi, @, satisfait aussi ces inégalités puisque ®,(b) > 0, ce qui conclut la preuve sur cet intervalle.

Pour 0 < = < b,ona ®y(x) = Yy(z) + Pp(b)pp(z), donc

) = ¥4(s) — S (o)
1

OB A0) (10 () 2y (b) — Py (b)spp () — oy () Wi (D))
- (@) (b)
S g (b) — Wy (b)

ou la derniére ligne est due a 1} (x) (D) — 1, ()¢} (x) < 0 (qui est une conséquence directe du Lemme

<0,

1.8) et a la croissance/décroissance des transformées. Enfin, sur cet intervalle, ®;, est une combinaison de
linéaire de 3, 1, qui sont solutions de I'équation différentielle (1.1), donc par la Remarque 1.1, ®,, satisfait

aussi cette EDO. Conséquemment,

P (a) = 5 (a®ul) — u@}(2) > 0.
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On remarquera que &, est continiment différentiable sur (0, 0o). En effet, elle I'est de toute évidence sur
(0,00)\{b} par la continuité des transformées. Pour ce qui est de x = b, il est clair que ®;,(b—) = D(b+),

et I'équation (1.7) fait en sorte que @ (b—) = @} (b+).
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CHAPITRE 2
PROBLEME DE MAXIMISATION DE DIVIDENDES

Dans ce chapitre, nous étudions en détail le probléme principal de ce mémoire, a savoir un probléme de
maximisation de dividendes au taux de versement borné par une fonction linéaire dans un modéle avec
injections obligatoires ou le surplus de capital intrinséque est un MBA. A la Section 2.1, nous présentons

formellement ce probléme avant d’entreprendre sa résolution par apreés.

2.1 Enoncé du probléme

Comme au Chapitre 1, on se place sur un espace de probabilité filtré (2, F, (F;)i>0,P), et on considére
encore le MBA X = (X;);>o tel que
dXt = /Ldt + O'dBt,

avec i, 0 > 0 qui sont donnés et fixés.

Soit 0 < K,S < oo fixés, 'ensemble des stratégies admissibles pour ce probléme est caractérisé par

I'ensemble de fonctions suivant :

Uk,s = {u: Ry — Rmesurable | 0 < u(z) < Kz + S pour tout z > 0}.

u(z)

Figure 2.1 - Région couverte par U g et exemples de stratégies admissibles
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Soit u € Uk, s, on veut définir un processus (X;");~o controlé par la fonction u et réfléchi vers les positifs
lorsque X;* = 0. On dénote la paire de processus (X;*, G')t>o comme étant solution du probléme de

Skorokhod suivant :
dX;' = (p— uw(X}"))dt + 0dBy + dG}, X§ =z, 6 =0,

ou
— X > Opourtoutt > 0;
— G" est croissant;

— fot 1 xus0dGY = 0 (ou de facon équivalente, G} = fg 1 xu—odG?) pour tout t > 0.

On se référera a (Pilipenko, 2014) et a la Section 3.6 de (Karatzas et Shreve, 1991) en ce qui concerne le

probléme de Skorokhod et les processus réfléchis.

Dans le contexte financier présenté en introduction de ce mémoire, le processus controlé X* représente le
surplus de capital d’'une entreprise qui verse des dividendes a un taux dicté par wu, et qui injecte du capital
automatiquement lorsque X' touche O de maniére a éviter la faillite. Le processus G* correspond dans ce

cas a 'accumulation de ces injections; il s’agit du processus qui réfléchit X* au niveau O.

Notation 2.1 Nous utiliserons a nouveau E, [-] pour signifier que le processus dont nous prenons l'espérance
est de valeur initiale x. Dans le cas ou le processus est un couple (par exemple (X}*, G}")1=0), nous écrirons

E; ¢[-]. Cependant, si g = 0, nous I'omettrons et noterons simplement E,|-].

Le probléme consiste alors a trouver une stratégie admissible u* qui optimise la mesure de performance

exprimée comme suit :

Définition 2.2 (Fonction de performance) Fixons g > O et 8 > 1. Pour u € Uk s, la fonction de perfor-

mance V,, : R, — R est donnée par

Vu(z) = E, [/0 e Ty (X)dt — 6/0 e_qthf] , x=0.

Intuitivement, la fonction de performance mesure l'efficacité d’une stratégie admissible « en récompensant
I'accumulation de dividendes et en pénalisant I'accumulation d’injections, le tout actualisé au taux d’intérét

continu gq. Il s'agit donc d’une fonction que I'on cherche a maximiser par rapport a u.
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Le paramétre 3 dénote le colt proportionnel d’injection de capital, et la condition 5 > 1 implique que
les injections soient plus colteuses que les dividendes, ce qui est nécessaire au vu du contexte. En effet,
si ce n'était pas le cas, on pourrait verser instantanément les injections sous forme de dividendes, ce qui

garantirait un gain infini.

Remarque 2.3 Il convient de noter que V,, peut trés bien étre négative en certains points, puisqu’elle est
définie par une différence de deux intégrales positives. Autrement dit, cela survient si le colit moyen des

injections surpasse celui des dividendes.

211 Objectif et stratégies linéaires

Tel que susmentionné, notre objectif est de maximiser la fonction V,,. On pourrait se contenter de chercher
un u, € Ug,s, pour z > 0 fixé, tel que V,,, () > Vi, (x) pour tout v € Uk . Mais ce que nous cherchons
ici, en réalité, est une stratégie admissible u* qui maximise V,, uniformément pour tout x > 0, a supposer

gu’une telle stratégie existe.

Autrement dit, nous cherchons u* € Uk g telle que pour tout z > 0 et pour tout u € Uk g, on ait
Vux(z) = Vi (z). De plus, nous souhaitons trouver une forme explicite de cette fonction optimale, dite
fonction valeur, que I'on note

V(z)= sup Vu(x), x=>=0.

u€Uk . s

Pour résumer, l'objectif du probléme est de trouver
— lafonction valeur V() = sup,eyy,, o Vu(®);

— un contréle optimal u* € U g tel que Vi« (z) = V(z) pour tout z > 0.

Comme nous l'avons dit dans I'introduction de ce mémoire, une approche courante pour la résolution de
problémes de ce genre est de considérer d’abord un sous-ensemble des stratégies admissibles. Cela est
justifié par I'équation d’Hamilton-Jacobi-Bellman, dont il est attendu qu’une solution de cette équation soit
précisément la fonction valeur V. Pour un probléme donné, la forme exacte de cette équation est détermi-
née généralement de facon heuristique, mais peut I'étre aussi formellement en utilisant la programmation

dynamique stochastique et la Propriété forte de Markov (voir (Touzi, 2013)). Pour ce probléme-ci, I'équation
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HJB est donnée par’

2
o, Ny . "y Ny
174 -V V — = > 0.
max{ 5 Vi () + pV'(z) — ¢ (x)—i—ogvrga); S{v (1 (x))}, () ﬂ} 0, z=20

On note V ici pour clarifier qu'’il s'agit bien d’une fonction candidate, et non pas de la fonction valeur V.
On voit que le membre de droite dans le max extérieur fait intervenir 3; cette partie de I'équation dicte en
qguelque sorte I'apport des injections obligatoires sur la fonction valeur, 1a ou le membre de gauche concerne
plutot les versements de dividendes. En effet, I'équation HJB du probléme analogue sans injections (voir

(Rao, 2023)) est

2
o’ ., ~F - y

— >
—2[/ (x) + pV (x)—qV(a:)—i—Onga); S[v(l V(x))]—O, x = 0.

Leterme V’(m) — By est effectivement absent. Dans I'objectif de déceler le type de stratégie potentiellement
optimal pour les dividendes, concentrons-nous sur cette équation. La variable v dans le max peut nous
informer sur le comportement d’une stratégie optimale. Pour chaque x > 0 fixé, sa valeur correspond au
taux optimal de versement de dividendes. Autrement dit, nous pouvons construire une stratégie candidate
i en posant @(x) = argmaxgc,<xz1s [v (1 - V’(:c))} pour chaque x > 0 fixé. On remarquera qu’en
fonction du signe de 1—V”(z:), la valeur de v qui maximise v(1—V’(z)) est soit 0 ou K z:4-S. Par conséquent,
on s’attend a ce qu’une stratégie optimale soit de type bang-bang donnée par

0, Vi(z) > 1,
. (x)

Kz+S, V'(z)<1.
Une stratégie possiblement optimale serait donc de ne pas verser du tout lorsque V’(m) > 1, et de verser
maximalement lorsque V’(x) < 1. Autrement dit, on ne verse pas quand un ajout au surplus initial aug-
mente la fonction valeur plus que I'ajout, et on verse au maximum quand ce n’est plus le cas (voir (Avanzi,

2009)).

La fonction valeur V dans ce genre de probléme est typiquement concave, puisqu’une fonction de perfor-
mance est en quelque sorte une fonction d’utilité. Il existe en économie le principe de l'utilité marginale
décroissante, qui dit que la satisfaction (ou I'utilité) gagnée a I'ajout d’'une unité d’'un bien s’amoindrit a

mesure que les biens s’accumulent. Par conséquent, si on s’attend a ce que V' soit concave, a savoir que V'

1. Voir (Pérez et al., 2018), dont la forme de I'équation HJB différe quelque peu de la nétre puisqu'ils modélisent le surplus de
capital par un processus de Lévy, dont le MBA est un cas particulier. De plus, ils considérent une borne constante pour le taux de

dividendes.
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soit décroissante, il en découle que la stratégie candidate 4 est de verser au taux maximal lorsque le surplus

initial = dépasse un certain seuil b > 0 donné par b = inf{c > 0 | V'(¢c) < 1} :

u(x) = (2.1)
Kx+S, z2>0.

Cette conclusion concorde également avec le contexte financier du modeéle : intuitivement, il est préférable
de verser des dividendes a un plus haut taux lorsque le surplus de capital est élevé. Autrement dit, on
souhaite que 1 soit croissante. Parmi les stratégies bang-bang déduites plus haut, seules celles données par
I’équation (2.1) sont telles que @ est monotone.

(x) V()
Kz+ S

S f-------- -

Figure 2.2 - Stratégie linéaire pour une fonction candidate continGment différentiable

Notons que si I'on suppose que V'’ est continue, alors le seuil b > 0 est tel que V’(b) =1, ce gqu'illustre la
Figure 2.2. Cette condition sur la fonction valeur est commune a beaucoup de problémes de maximisation de
dividendes (voir (Albrecher et Thonhauser, 2009; Avanzi, 2009)), dont le probléme de ce mémoire, comme

nous le verrons aux Sections 2.3 et 2.4.

On appelle les stratégies de la forme (2.1) des stratégies linéaires différées, ou plus simplement linéaires.

Nous nous concentrerons particulierement sur ces stratégies a partir d'ici.

Définition 2.4 (Stratégies linéaires) L'ensemble des stratégies linéaires est défini par

Us = {up(z) = (K + S)lyzp | b> 0} C Uk

De cette facon, chaque stratégie linéaire est caractérisée par un seuil b > 0. Afin d’alléger la notation, nous
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noterons (X%, G%) := (X%, G") et V; := V,,. On a donc, pour chaque b > 0, la paire (X°, G®) qui est

solution du probléme de Skorokhod suivant :
dxt = (u ~(KXP+ S)nxtb>b) dt +0dB, +dGY, Xt==z, GY=0, (2.2)

ou
— X} > Opourtoutt > 0;
— GP est croissant;
— fg 1 y5-0dG?% = 0 (ou de fagon équivalente, G} = fot 1 x3_odG?) pour tout t > 0;
dont il existe une solution forte (voir (Renaud et al., 2023)). On dit que X est réfracté au niveau b et réfléchi

en 0. La fonction de performance d’une stratégie linéaire de seuil b est alors

Vi(z) = E, { /0 o (KXY + )1 yppdt — 8 /0 eqtdag} , x>0

Comme on prévoit qu’une stratégie linéaire soit optimale grace a I'étude de I'équation HJB, 'objectif du
probléme revient dans ce cas a trouver un b* > 0 tel que la stratégie linéaire u;« soit optimale parmi toutes
les stratégies admissibles. Autrement dit, on veut montrer que Vi (x) > V,(x) pour tout > 0 et pour

tout u € Uk, s (ce qu'on aura ultimement au Théoréme 2.20).

La Figure 2.3 illustre une simulation de (X?);>0 pour t € [0,10] avecb = 2 etz = 1, en plus des di-
vers processus sous-jacents, comme les injections cumulatives G®, mais aussi le processus des dividendes

cumulatifs L® = (L?);~o donné par
t
L} :/ (KX 4 9)1 ybopds, L =0,
0 o
de telle sorte que I'équation (2.2) se simplifie ainsi :
dX? = pdt + 0dBy — ALY +dGY, X{ =z, Li=0, GY=o.

Cette forme de la dynamique de X a pour avantage de mettre en exergue les fluctuations du surplus de

capital causées par L? et GP.

Pour finir, le processus U = (Utb)t20 représente en quelque sorte X avant d’étre réfléchi en 0, et s’exprime
par

AU} = pdt + 0dB, —dL}, Uy =z, Li=0,
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t

Figure 2.3 - Simulation de X? avecb = 2etz =1

Le pas de la simulation est At ~ 0.005. Paramétres: u =1, 62 =1, K =1, S =2.
bien qu’il dépende de X°. En effet, en explicitant d L, on obtient
dub = (u C(KX? S)]lth}b) dt + odB,,
a ne pas confondre avec le processus Y? présenté au Chapitre 1, dont la dynamique est
dy}p = (u —(KY? + S)]lytbzb> dt + odB,.
De cette facon, par (Pilipenko, 2014), on a les expressions simplifiées qui suivent pour tout ¢ > 0:

XP=U}+GY, G = — min (Uf/\()).

0<s<t

Rappelons que les solutions du probléme de Skorokhod sont des processus de Markov.

Nous sommes fin préts a nous attaquer a la résolution du probléme, qui se fera essentiellement en trois

étapes :

1. Calculer explicitement la fonction de performance V, d’une stratégie de seuil quelconque b > 0

(Section 2.2);

2. Prouver I'existence d'un b* > 0 tel que Vj« satisfait des conditions de régularité qui sont nécessaires

a la vérification (Section 2.3);
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3. Vérifier que le candidat V;« est bien optimal parmi toutes les stratégies admissibles (Section 2.4).

Précisons que les conditions de régularité imposées a V- consistent en ce qu'elle soit CQ(R+), étant donné

que la vérification fait intervenir la Formule d’It6.

2.2 Calcul de la fonction de performance

Rappelons que les fonctions yy, 1y, ¥y, et @4 sont les transformées de Laplace de temps de premier passage

de divers processus telles que nous les avons présentées et étudiées au Chapitre 1.

Soit J, : Ry — Ry, la fonction de performance d’une stratégie linéaire de seuil b > 0, mais dans le
probléme de maximisation de dividendes sans injection, c’est-a-dire

vb

To
Jy(z) = E, / CHKY? + S)Lysnydt |, >0, (2.3)
0

Il a été montré par (Rao, 2023) qu'elle s’exprime explicitement de la maniére suivante :

Jp(b T <b,
o) = b(0)n (), < (2.4)

i (a4 8)+ [0 - 755 p+ 4+ £) | W), >,

e 1= (o+ 4+ £) v
oy, (b) — W (b)

ou Jy(b) = (2.5)
Par les propriétés des transformées, on constate que .J, est continiment différentiable sur R \ {b}. Comme
pour ®;, I’équation (2.5) fait en sorte que J;(b—) = J;(b+), donc que J; soit, en fait, continiment diffé-

rentiable sur tout R . Evidemment, .J, est positive vu que I'intégrande dans (2.3) est positif.

Lemme 2.5 Pour tout b > 0 fixé, la fonction x ?(( )) est décroissante pour tout x > 0.

Preuve. La dérivée de x — J; (( )) étant
d (Jé(x)> Sy (@)@ () — Jy(2) Py (2)
dz \ @y (z) (®y(2))? ’

il suffit de montrer que Jj(x)®} (z) > JJ/(x)®;(x) pour tout x > 0. Nous considérons séparément les

intervalles [0, b) et [b, co) dans le but d'utiliser les équations (1.6) et (2.4).
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Pour 0 < x < b, les fonctions Jy, et ®;, sont toutes deux une combinaison linéaire de y, 13, qui sont solutions
de I'équation différentielle (1.1). De cette facon, J, et @}, sont aussi solutions de cette EDO sur cet intervalle,

donc Jj(x)®} (x) > J} (x)®P)(x) si et seulement si
! 2 / 2 ! /
@) =5 (@) = w2} (@) > = (ah(2) = pi(a) @} (a).
Apres simplifications, on voit que cette inégalité est équivalente a
Jy(2)Pp(2) = Jp(2)Pp(),

cette derniére étant toujours vraie puisque J;(z)®y(x) > 0 > Jy(x)®y(x) par la croissance de J et la

décroissance de ®;, ainsi que la positivité de ces fonctions.

Et pour x > b, on a que Jy(z)®} (z) > J{ (x)®} (x) équivaut a

{ K +<Jb(b)_ﬁ<b+u+;)>mg<x>] D)W} (2)

g+ K q
K 2 S " /
> |pb)— —— b+ —+ = || ¥ - Py (bW (),
50 - e (v 2 )| W) 2w o)
qui se simplifie pour donner qJFLK > 0, ce qui est évidemment toujours vrai. []

On peut exprimer V;, en fonction de J, et de ®,.

Théoréme 2.6 La fonction de performance d’une stratégie linéaire de seuil b > 0 est donnée par

%(x) _ Vb(b)(:ob(x) + W)(O)wb(x)? T < b7 (26)

(e 54 8)+ [0~ e (o )] i, o3

Preuve. Nous allons plutét montrer que V}, s’écrit sous la forme compacte qui suit :

V() = Jp(z) + Vi (0)@p(2), x> 0. (2.7)

Pour = = 0, la relation est triviale puisque J,(0) = 0 et ®,(0) = 1. Pour = > 0, lorsque X} = =, iln’ya

aucune injection avant le temps d'arrét TOX b, c'est-a-dire que fo’ = 0 pour tout t € [0, TOX b). Il en découle
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b b a . . .
que (X7) Y, )0<t<73/b sont de méme loi. Ainsi,

o<t<rX” et (
xb

70
Vi(z) = E, /0 e (KX] + S)Lyvspdt

+E; |10, / ¢ ((KXf +8) 1 ypodt 5dG§)

xb
0

vb

To

xb
—qT —9qs b + — b
e 0 17§b< A € ((KXs—FTGXb S) ﬂxb b >bd8 BdGs—‘,—TO)(b)] 5

s+70

+E;

N §< . b . ’ .
ou 'on a procédé au changement de variable s = t — T(f( dans I'intégrale de la seconde espérance. Comme

dans la démonstration du Théoreme 1.12, on applique la Loi des espérances itérées a cette espérance, qui

> —qs b _ b
/0 € <<KX5+7—O)(Z) + S> ]le+75(b>bds BdGs+T())(b> | ‘F’Tova]] .

Etant donné que (X, G?) est un couple markovien (voir (Pilipenko, 2014)), on applique la Propriété forte de

devient donc

Ey

b
X
—q7
EZ‘ [e ]1T6Xb<00

Markov a la fonctionnelle F : C(R,R?) — R donnée par

Fly.g) = /0 e~0% (Ky(2) + ) Lyyspdz — B /0 e dg(2),

ou (y,9) = (y(2), g(2)).>0 est une fonction continue de R, dans R?, ce qui donne

e[ (KX o+ )1y ods—BdG” o | | F
0 s+7; xb s+7; 70

s+7’0

E,

—E [ / o4 ((KX;’ + )1 ynpds — ﬂdG’;)] .
=0 LJo -

Par conséquent, puisque X®_, = 0, nous avons
xb
70

vb

To
Vy(z) = Es / H(RYY + )Lyt
0

b

+E, [ / o4 ((KXS + )1 ypupds — 5dG2>] E, [eng 1 ]
0 sZ 75 <00
Yb
= Jy(x) + Vy(0)E, [e—% nTyb@O]

0

= Jp(x) + V5(0)®p ().
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Pour terminer, par substitution directe dans I'équation (2.7) de la forme explicite de .J, et ®, ainsi qu'avec
la relation V;,(b) = Jy(b) + V4 (0)®4(b), la fonction de performance s'écrit comme en (2.6). O
2.21 Fonction de performance en zéro

Il nous faut maintenant expliciter 13(0). Pour cela, on considére le premier moment ou X atteint b, soit le

A b . . . , b
temps d’arrét TbX . Si Xg = 0, alors aucun dividende n’est versé avant TbX . De cette facon, on a

xb
Ty
V,(0) =Eo | -8 / e "dGY | + Ry
0

1y, / e ((Kxf +S)1 oo dt — Bde)
Ty

b

Pour le second terme, on applique la méme démarche que dans la démonstration du Théoréeme 2.6, en

passant par la Loi des espérances itérées et la Propriété forte de Markov. On trouve
X’
Vy(0) =Eg | —p / e 1dG?
0

+ Eo

'L <
01T ]1TbXb<OOIExixb [/0 et ((KXf—i—S)]le;bdt—ﬁdG?)}

b

Ty <00

Tb)(b Xb
= —(Ey / e’qthi’ + %(b)EQ |:6qu 1 ] .
0

Soit le couple (Z;, G¢)¢>0 solution du probléme de Skorokhod suivant :
dZt = Mdt + O'dBt + th,

dont
— Zy > 0 pourtoutt > 0;
— @ est croissant;;
— fg 12.-0dGs = 0 (ou de fagon équivalente, G; = fot 17.-0dGs) pour tout ¢ > 0.

Comme il s'agit d’'une solution d’'un probleme de Skorokhod, alors pour tout ¢ > 0,

Gy = — min (X5 A0),

0<s<t

ou X est le MBA donné par
Xt :Zo+ﬂt+UBt, t} 0.
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De plus, du fait que Zy = 0, et donc Xy = 0, on a plus particulierement

Gy = — min Xj.

0<s<t

De facto, le processus Z est un MBA réfléchi en 0. On remarquera que, en dessous de b, le processus controlé

X" se comporte comme Z. Ainsi, (X7, G?), _,__x» est de méme loi que le couple (Z;, Gt)octar?-
X b =

Par conséquent, posons

Ay = Ey , Oy :=Eo e 7% 1 z } , (2.8)

+Z
b
/ e*qtht
0

Vy(0) = —BA, + Vi (b)Oy,. (2.9)

alors

Pour déterminer A, et ©,, nous procédons par approximation de maniére semblable a ce que nous avons

fait au Chapitre 1. Il s’agit, a notre connaissance, d’'une approche novatrice.

Soit n € N fixé, on considére le couple de processus (Z}*, G} )+>o tel que
1
dZ{" = pdt + odB: +dGY, Zy =0, Gy=—,
n

avec G" de telle sorte que Z;* saute instantanément a % dés qu'il touche en zéro. La dérive et la volatilité de
Z™ étant constantes, ce processus se comporte donc comme le MBA X entre chaque saut. Pour ¢ € N, le ¢
i

saut survient lorsque X; (on rappelle que Xy = 0) atteint —% pour la premiére fois, auquel cas G} = .

De cette facon, G™ s’écrit pour tout ¢t > 0 par

G?:1<1_ {n min XD _ G+ 1
n

0<s<t n
puisque —[x| = |—z] pour tout z € R, et G; = — ming<s<; Xs. Sous cette forme, on constate aisément
que dG} = 0 pour tout ¢ > 0 sauf lorsque nG; = —i, auquel cas dG} = % vu que |nGy | augmente d'un

entier. Et comme

{t>0\nGt:—i;z’eN}:{Tﬁ;z’eN},

n

alors

dGy = " (2.10)



On pourra se référer a la Figure 2.4 pour une illustration de ces processus.

0.50 1

0.25 1

0.00
—0.254 1
050 rrmi—m—— T W

—0.75 A1

-1.004 e

-1.25 T T T
0.0 0.2 0.4 0.6

Figure 2.4 - Simulation de Z et Z™ avecn = 2

Les deux graphes montrent la méme simulation, mais sur des intervalles différents. La région mauve pale couvre [Z]* —

pas de la simulation est At & 0.005. Paramétres : = 0.1, o2 =

34
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Lemme 2.7 Les expressions A, et ©, données par I'équation (2.8) satisfont

@"::El[—%n " }—>@
b 07E ;<o n— 00 B
-rbZn
Ay = Eq1 [/ e_qth? — Ay,
‘n 0 n—oo

ou K 1 estl'espérance avec Zj} = 0 et Gij = % (voir la Notation 2.1).

L”G+J+1, alors on obtient les

Preuve. Comme 0 < % —z < %pour toutz € Retn € N, et que G} =

deux relations suivantes, qui sont équivalentes pour tout t > 0 (puisque Z" = X + G") :

0<GY—Gr < 0<Z!—2; <

S\H
S\H

Pour t = Tb dans la seconde inégalité, on voit que Z” > b, donc Tb "< Tb Et avect = Tb " dans cette

méme inégalité, on trouve b — . < Z zn < b. Par la continuité du MB, il s'ensuit que 77" —— 7.
n—oo

En conséquence, comme x +— e~ %1, est bornée dans [0, 1], alors par le Théoréme de convergence

dominée, on a bien que ©) —— O,
n—oo

Et pour A', notons d’abord que

AL 4

Ty Ty
/ e G} —— e 1 dGy,
0 n—oo 0
puisque
Zn Z Z" zZ

b Ty
/ e 1dG} — / e G,
0 0

b Th
/ e (dGT — dGy) — / e 1dG,
0 T,

Z’VL
b
"
e -4 th

par I'inégalité du triangle et le fait que 0 < G} — Gy < % pour tout t > 0. Pour finir,on a A —— Ay, par
n—o0

1
=+
n

N

— 0,

n—o0

le Théoréme de convergence dominée, vu que

zn

T 1
/ e_qth? < GZZn <—+Gzn <1— min X;<1- min X,
0 b n

T n
b 0<$<7—bZ 0<s<o0

et que la variable aléatoire — minp<s<oo X est d'espérance finie (voir la démonstration du Lemme 2.18). [

Il ne reste maintenant qu’a trouver la forme explicite de A et de ©3', puis a calculer leur limite pour n — oo.
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Proposition 2.8 Pour tout b > 0, la fonction de performance V}, évaluée en x = 0 est

/)

Preuve. La preuve est divisée en trois parties : les deux premiéres servent a calculer respectivement

1 /
lim Ay = ———— lim Oy = 2(0)

que nous utiliserons pour calculer V4,(0) a la derniére partie.

Pour déterminer A} et ©}, nous séparons les espérances selon que Z™ atteigne O ou b en premier.

n n Zn . . .
Premierement, pour A7, si TbZ < TOZ , alors fOTb e*qth? = 0. Sinon, le processus G™ fait un premier de
saut de hauteur L lorsque t = 77" = Tfl/n, par I'équation (2.10). Ainsi,

zn

b
n __ —qt m
b = E07% []Lrozn<7_bzn /0 (S} th

n
1  _zn Tb _
By |1 e [T eragy
‘n 0 b n 72T

0

1 Z™
I —qT7)
= n]EO [e ]]_TOZTL<7_bzni|

. "
z
—qT; —qs n
+ EO,% e ]1T0Zn<7'bZnEO,% /D e dGs—&-TOZn ’ ]:TOZ” s

la seconde espérance étant obtenue par le changement de variable s = t — TOZ" dans l'intégrale, puis
par la Loi des espérances itérées et la fTOZn -mesurabilité de e=17¢ ]lTOZ" < En lui appliquant ensuite la

Propriété forte de Markov, on trouve

zn

1 AL .z Ty o
AZL = —Eg [e 70 1 _zn <7.Z":| + EO 1 |e" 970 ]szn <7.Z”EZ” " e qsdGasm
n 0 b 'n 0 b TOZ 0

zn

b
/ e
0

zn zZm
—qrT, —qT,
EO [e 70 HTOZn<TbZn:| +E0 [e 970 ILTozn<TbZn:| EO,%

n

1
n
1
n o

X X
E: [e 0]1T5(<TZ7X:|+E% [e o1 X<Tbx] b

car (Zn)0<t<r02" est de méme loi par rapport a Py que (Xt)ogtqox par rapport a IP’%. De cette fagon, en

isolant A7,
X
o1 B e ] 1/n
b — % = Pp(1/n) )
n 1-E; [e 75 1 _x Xi| 1 1/15(1/71)
- T <‘I'b



et en prenant la limite pour n — oo,

Up(1/n) — wbm)]‘l _ 1

lim A} = li 1 li
A Ap = lim y(1/n) - lim 70)

n—oo 1 —4hy(1/n)

puisque 1,(0) = 1.

Deuxiémement, pour O}, on procéde essentiellement comme avec ®y(z) pour z < b :

Zn
oy =E [e_qu 1 _zn__zn -e 17 7 ]1 " Z"]
b 0 T2 <78 <7{

=Eg [ ]l Z"<7_Z" + Eg [e q7g’ ]l "< Z”]EQ {e_q(Tb _7—0ZH)]l,rbzn<oO ’.FTOan

_|_

= pp(1/n) +p(1/n)0

On isole Oy dans cette équation :

o _ _ooll/n)
b —_— .
1-— wb(l/n)
On fait apparaitre des quotients différentiels en utilisant ¢, (0) = 0 et 1,(0) = 1 pour obtenir
ep(1/n)—¢p(0)
or — _ 1/n _ 302(0)
b a%@/@—wum n—oo’ 1t (0)

Finalement, par I'équation (2.9) et le calcul des limites ci-dessus, on trouve

B =V (b)g}(0)
-0 (2.12)

On remplace Vj,(b) = Jy(b) + V3,(0) P4 (b) (par I'équation (2.7)) dans cette équation, puis on isole V;,(0) d’un

V4(0)

c6té, ce qui nous donne
B — Jp(b 0
o(b)5(0) (2.13)

Up(0) + 5 (b) ¢y, (0)°
Enfin, on voit que J,(b); (0) = J;(0) et 1, (0) + ®4(b)p;, (0) = @} (0), ce qui conclut la démonstration. [J

Vi (0) =

Nous pouvons des lors obtenir une forme explicite pour V;(b). En combinant les équations (2.12) et (2.13),

on trouve
B—=Vo(b)pp(0) B — Jp(b)#y(0)
¥, (0) P(0) + Pp(b)},(0)
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Il suffit qu’a isoler Vj,(b) d’un cété, ce qui nous donne

_ Bu(b) + Jo(B)i4(0)
74(0) + 2 (6)2} (0)

Par conséquent, V;, admet la forme explicite suivante :

V(0)

Théoréme 2.9 La fonction de performance d’une stratégie linéaire de seuil b > 0 est donnée par

Appp(r) + Coihp(z), x < b,
V() =
CI%K(H%Jr%) + [Ab—ﬁLK(b-i-%-F%)} y(x), x>0,
.. BPy(D) + Jy(b)iy, (0) B — Ju(0)3,(0)
U= 0 T o 0)g0) T U0) + By (b)g(0)

Une question pertinente a se poser est celle de la continuité de V}, en z = 0, a savoir si V;(04) = V,(0).
Or, pour = € [0,b), grace a I'¢quation (2.6), V}, est donnée par V,(x) = Vi (b)pp(x) + V(0)1hs (). Ainsi,
on a bien la continuité en O de V}, étant donné que ¢;,(0+) = ¢,(0) = 0 et ¢(0+) = ¢(0) = 1. Par

conséquent, V}, € C(R).

En ce qui a trait a V}/(0) et V}’(0), rappelons qu’au Chapitre 1, nous avons défini les dérivées premiéres et
secondes des transformées de Laplace aux extrémités de leur domaine. De cette facon,

WO = tm V@), W)= lim V(@)

Proposition 2.10 Pour tout b > 0, la dérivée de V), est telle que pour tout x > 0,
Vy(x) 20, (2.14)

et en particulier,

Vi (0) = 8. (2.15)

Preuve. L'équation (2.15) se démontre facilement en dérivant la fonction V}, donnée par 'équation (2.7), ce

qui nous donne
B — J4(0)

V(0) = J0) + Va(0)%}(0) = J0) + =18

03(0) = 8.
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Une autre facon d’arriver au méme résultat est de dériver I'expression de V;, dans I'équation (2.6) pour trou-

ver V;/(0) = Vi ()}, (0) + V3(0)2, (0), et enfin utiliser I'équation (2.12).

Pour I'inégalité (2.14), on a par I'équation (2.7) et la Proposition 2.8, que

B — J;(0)

Vy(z) = Jy(z) + T&%(@
B | R@)B0) - F0)Bw)
=0 " 2}(0) |

On a I'inégalité Jj (x)®; (0) — J;(0)®}(x) < 0 pour tout > 0 comme conséquence du Lemme 2.5, et avec
P, < 0 par la Proposition 1.13, on trouve

Jp(2) 24 (0) = J5(0) Py ()
@;(0)

= 0.

@) (x
@, (0)

~

Et comme (3

> 0, alors V) (xz) > 0.0

Par définition de 1}, on peut décomposer l'espérance ainsi :

Vi(z) = E, { /0 (KX + S)]lxbbdt] — BE, { /0 eqthf] , x>0,

de maniére a distinguer I'effet marginal des versements de dividendes et des injections de capital sur la

fonction de performance. Nous définissons alors les fonctions Dy, Ry : R — R données par
o0
Dy(z) = E, [/ e (KX] + 5)ﬂxf>bdt] ;
0
o
Ry(x) :=E, [ / e—qtdcfz] ,
0

de telle sorte que Vj,(z) = Dy(x) — BRp(x). Par 'équation (2.7) et la Proposition 2.8, on trouve, pour tout

x>0,
Vife) = i) + o)
_ J3(0) Py (2)
- [ - gree)] -2 -5 )
et par conséquent,
Dy(z) = Jy(z) — iz((g))cpb(x), Ry(z) = —ZZ% . (2.16)

On peut trouver les mémes expressions par un calcul direct des espérances. Ces deux fonctions ont quelques

propriétés intéressantes, que nous présentons dés a présent.
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Proposition 2.11 Pour tout b > 0, les fonctions Dy, et Ry, sont positives. De plus, Dy, est croissante avec

D;(0) = 0, et Ry, est décroissante et convexe, avec R; (0) = —1.

Preuve. Tout d'abord, la positivité de Dy et Ry, est triviale, puisquelles sont définies comme I'espérance d’une

intégrale d’une fonction positive (et G" est croissante).

Ensuite, pour Dy, on trouve, pour tout x > 0, que

J(0)
;(0)

(I)g(x) _ Jé(x)q)g(oéz_(o‘)]é(o)q)é(x)

Dj(z) = Jj(z) — >0,

comme on I'a vu dans la démonstration de la Proposition 2.10. En particulier, un calcul direct nous donne

Dy (0) = 0.

Pour Ry, notons que Ry(x) = —@%m)@b(x). Vu que le coefficient _é’#(o) est positif, Ry, est décroissante et
b b
convexe pour tout x > 0 comme @y, (voir la Proposition 1.7). Enfin, R} (0) = —ii’gg; =-1.0
b

Cette décomposition nous aidera pour l'analyse de I'effet des paramétres sur les dividendes et les injections
séparément plutot que sur I'entiereté de la fonction de performance. On y reviendra au Chapitre 3.

2.3 Continuité de la dérivée seconde

Nous voulons montrer qu'il existe un b* > 0 tel que Vj« € CQ(R+) dans le but d’appliquer la Formule d’It6
dans le Théoréme de vérification 2.20.

2.31 Etude d’un point de continuité

Comme J,, et &, sont CI(RJr) pour tout b > 0, alors il en est de méme pour Vj,. De plus, il est clair que Vb”
est continue sur R\ {b}. Il suffit dans ce cas a trouver b* > 0 tel que V. (b*+) = V/.(b*—) pour avoir la

continuité de la dérivée seconde.

Théoréme 2.12 Soit b > 0, alors V}'(b+) = V}'(b—) si et seulement si V}/(b) = 1.
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Preuve. En dérivant I'équation (2.6), on trouve

Vi) = e+ [0 - e (04 24+ 2 ) i,

Vy(b=) = Vi (b)iy (b) + Vi (0) ().

On dérive a nouveau, puis on utilise le fait que W, est solution de I'équation (1.2) et que y, 1, sont solutions

de I’équation (1.1) pour obtenir

V' (b+) = [%(b) - fK <b+ ot ;)} v} (b)

= [Vb(b) - qu <b+Z+ ;)} %(cﬁ (Kb+ S — p) (b)),

Vi (6-) = Vi) ) + (0w )
= Vi) 5 (a0(8) — woh(8)) + Vo (0) 5 (v (8) — (1))
= 5[0 (@ - net®) - o),

puisque ,(b) = 1 et ¢y (b) = 0. En égalisant les deux expressions finales, I'équation V,' (b+) = V' (b—)

devient

i) - g (0 24 )] o v s - 0we) = o) - i) - hOwGO)

On reconnait les expressions de V; (b+) et V}/(b—), donc

K qK 1 S> ,

- b+ P 2 ) = o),
q+ K] g+ K < ¢ K Hy(6-)

(Kb+ S —p) {V}j’(b—k) -
et par la continuité de V;)’, il s’ensuit que

(Kb + S)Vy(b) =

K
(Kb+ 8 — p) + — <b+/;+5>.

+ K g+ K K

Quelques manipulations algébriques sur le cété droit de I'égalité nous font remarquer qu'il est égal a Kb+.S.

Par conséquent, on a bien I'’équivalence entre V} (b+) =V} (b—) et V}/(b) = 1. O
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Ce Théoréme est commun a beaucoup de problémes de maximisation de dividendes (voir (Albrecher et

Thonhauser, 2009; Avanzi, 2009)), et il nous aidera a trouver une relation équivalente de la forme g(b) = 0.

Isolons V,(b) dans V; (b+) = % + [Vb(b) - &% (b—i— B+ %)] LAGES

K w oS q 1
Vi (b) = b+ 2 2 )+ .
b(b) q+K< q K) g+ K U, (b)

Isolons maintenant V},(b) dans V;/ (b—) = V4,(b)¢y,(b) + V4(0)1;(b) =1
V00

V(b (2.17)
) wy(b)
Enfin, posons I'égalité entre ces deux expressions de V;(b), ce qui nous donne
K (0, S\, _a 1 _1-VOuj®)
b) := b+ —+—= ]+ — =0, 2.18
0= () R A (218)

ou g : Ry — R estcontinue sur (0, 00), puisqu’elle est composée de nos transformées de Laplace, qui sont

des combinaisons linéaires de solutions continues d’équations différentielles.

En conséquence, tout b > 0 solution de I'équation g(b) = 0 est tel que V;, € C?(R,). Il suffit donc de

montrer qu'il existe au moins une solution positive b* de cette équation.

2.3.2 Existence d’'une racine

Typiquement, dans les problémes de paiements de dividendes absolument continus, le seuil optimal est
inférieur a la barriére optimale du probléme avec dividendes singuliers (voir (Ekstréom et Lindensjo, 2021;
Renaud et Simard, 2021)), ce dernier étant un cas limite du probléme absolument continu lorsque la borne
sur le taux de versements de dividendes croit vers I'infini. Dans notre cas, le probleme limite s'obtient en
faisant tendre K ou S vers I'infini, et il s’agit du probléme avec injections obligatoires de (Lgkka et Zervos,
2008), dont la barriére optimale ¢* est I'unique solution positive de I'équation (2.19) ci-dessous.

Aty

(A — e o 4 (A + pe o2 = 28A, (2.19)

qui s'écrit aussi avec oy, et ¥, par

(2.20)

Conséquemment, nous conjecturons que b* < c¢*. Pour prouver l'existence de ce seuil optimal b*, nous

montrons, a la Proposition 2.14, que ¢g(0+) > 0 et g(c*) < 0. Il en découle, par la continuité de g et le
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Théoréme des valeurs intermédiaires, qu'il existe un b* € (0, c*) tel que g(b*) = 0. La Figure 2.5 illustre

cela en tracant un exemple de courbe de g. On voit bien qu’une racine de g existe entre O et c*.

i
l
1.5 :
I
I
l
1.0 :
s :
5 l
0.5 |
l
I

I c’
]
| | | :

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.5 - Exemple de ¢

Paramétres: p =1, 02 =1, K=1, S=2, ¢=0.4, 3=1.5.

Il est possible d’évaluer directement g(0+) = limyo g(b), ce que nous faisons au Lemme 2.13. Mais avant,
étant donné que le calcul de g(0+) fait intervenir la fonction .J, avec b = 0, rappelons que, par (Locas et

Renaud, 2024), Jy est bien définie, et qu’elle est donnée par

Jo(x):qu [H(;‘Jrf;) (1—\1/0(1«))}, x>0,

ou I'on définit ¥, par

o . H(z)  H(z)
Uo(x) := 15&)1\11 (x) = 1171%1 HO) ~ H(O) x>0
Ainsi,
Jh(0) = qu [1 - (’; + Ii) {)(0)] . (2.21)
Rappelons enfin que, pour = € [0, b],
() = %((9;))’ o (2) f+(b)f—($%/—(b§+(x)f—( )’

et que W (0) = 0.

Lemme 2.13 La fonction g donnée par I'équation (2.18) est telle que

B-1

0}
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Preuve. Pour commencer, on a

K (u S> q 1 i L= Ve(0)95(b)

g+ K q + K limy, o ¥ (b) b0 @y, (b)

q K

g(0+) =

La premieére limite est

. H'(b) H'(0)

lim ¥, (b) = = = U (0).
i () = ey = ) — o)

Quant a la seconde limite, puisque la croissance et décroissance strictes de f et f_, respectivement, im-

pliquent que f’ (0)f—(0) — f4+(0)f"(0) > 0, alors par ’équation (1.3),

Yy(0) _ f+(O)f2(0) = fL(0)F-(0) . f+(0)f(0) — 1 (0)f-(0)
wp(0) 1 (0)f-(0) = f+(0)FL(b) bio f1(0)f-(0) — f+(0)FL(0)

=1

De méme, on a

Par conséquent,

lim 1= Vo(O)¢®) _ m V3(0) - lim v(b) = lim V4(0),

= —li .
b0 @y, (D) bl0 @y(b)  blo bl0 @ (b)  blo

et donc

K w8 q 1 .
0+H)=—— (B4 2 )+ 2L~ _1imV4(0).
g(0+) q+K<q+K>+q+K%(O) i 5(0)

Montrons maintenant que

N I 1)
WO = "0

Par I'équation (2.11),

: B —J3(0)
1 =lim ——2>—~
im V(0) =0y

donc on doit vérifier les deux limites suivantes pour compléter :

lim J;(0) = J§(0 lim ®;(0) = ¥(0).
im J3(0) = Jy0),  lim ®}(0) = ¥)(0)

Pour la premiere limite, on a

o K B K M S ,
lim J,(0) = lz}fg{quK O - 0y TR )| BO)
K , K (u S ,
= 1 - ErZ ) o
T K [blﬁ)l‘]b(b) ¢+ K (q K)] 0(0);
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ou

®ry S
lgﬁ)l Jp(b) = lgﬁ)l { (pg((l;);__q\;,; 2()> }
_q—I—K[_(%—i_%) /00)}
N limy 0 @3, (b) — ¥ (0)
— 0,

étant donné que gpg(b) b¢—0> o0. Ainsi, on a bien, par I'équation (2.21), que

K w8
| 1— 54+ = |7 = J\(0).
i 40) = e [1- (24 %) wo)| = %0
Quant a la seconde limite, par le Théoreme 1.12,

b))
%%®—%ﬂw®—%@_@@)
o UHO)0) — HOTE) — v 0)e40)
bl0 @y, (b) — W (D)
g0
=T R ae - ne TR e -
/ / -1 / / Y
‘@“”Q%%%wﬁ@) 1 SO0 U0
o WO BT WO — U)o
‘%“<mwmm>iw%<> i b) — W), )
limg o W ()[1(0) 2} (b) — ¥4 (82} (0)]

= W4(0) (0 — (1)) +

limy, 0 W ()[40, (0) g (b
w(0) ’

= 5(0) +

ou l'on a pu inverser la limite a la quatrieme ligne, car #% > 0. Le terme de gauche a la ligne
b b

subséquente s'explique par 1), (0) b¢—0> oo et
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Enfin, puisque W' (0) > 0, il reste a montrer que limy, o W ()[4, (0) ¢} (b) — 15 (b)¢y,(0)] = 0

1

WO 0240 ~ VOG0 = 5

{[£+ 70 = FLOF- )] [£L)F-(0) = £:0)f ()]
— (£ 0) = £ B - O [F40)7-(0) - £ 0)(0)]}
= 7 (- OL DLO0)+ £ O £, 050 0
— [0 0) - 0)f(0) = FrO)F4 (1) f-B)1(0)}
= = (WO LL0)(0) - WO £L0) () }

= fL(b)f.(0) — £1(0)f-(b) —> 0.

bl0

Avec I’équation (2.11), on trouve

K’(u s>+ ¢ 1 B—J0)

04+) = — 2 -
g(0+) K

=+
g K q+ K VU((0) v (0)
K w oS 1 q , >
= e ——— —J5(0) | .
q+K<q K) wm»@ i+ 00
Par conséquent, en substituant J|(0) par le cété droit de I'équation (2.21), on trouve
K w S 1 q K K <,u 5’) , )
0+) = S+=) - - - - S+ =) w0
9(0+) q+K<q K) /(0 (5 ¢+K q+K q+K\q K 0(0)
_ K <M+S>_5—1_ K <M+S>
g+ K \q K Ui0) g+K\q K

_ -1

v(0)°

Proposition 2.14 La fonction g donnée par I'équation (2.18) est telle que
g(c*) <0< g(0+).

Donc, il existe un b* € (0, ¢*) par la continuité de g et le Théoréme des valeurs intermédiaires.

Preuve. Grace au Lemme 2.13, on voit aisément que

B-1
W5(0)

g(0+) = — >0,
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puisque (3 > 1, et que ¥(,(0) < 0 par la décroissance de V.

Quant a g(c*) < 0, il revient au méme de démontrer

V. (c)g(c*) >0

vu que V.. (¢*) < 0. On rappelle que c* satisfait Pex EZ; = —f par I'équation (2.20), donc

x , M S I % q
- —— Q*
<c—|—q+K> C(C)+q+K
\I//* * /* *
@c*(c) QOC*(C)
K . kS I K q
- - 1=+ =+ = | Ul(ch)| + +
q+K[ <C qg K (C)] g+ K q+ K
~W(er) Ve (0)
Pes () B

Le premier terme est exactement le numérateur de J.-(c*) (voir I'équation (2.5)), donc

. (cMg(c*) =
L) =

Ve (0)

C
Ul (c).

Wi ()g(e) = e () (e ) = W) + (1 2 ) - P e

< 5
_ 1 _ . C* / C* R\ C* _ Vc*(o) / C*
~ (e~ 9 (el — vt - e

Il est possible de factoriser le second terme en développant V,«(0). Par les équations (2.11) et (1.7),

Vo) = de () (0

( / * / *

(pc*(c ) - ‘;[lc* (C )
[0 (0) 2t () — Wi (%) 0 (0)] = 1 (0) W () ( )
_6 — Jer (") e (0) ( /
e (0) Wi (c¥)
ou la derniére inégalité est due a V.. (0)¢. (c¢*) — L. (c*)¢l. (0) < 0, qui découle du Lemme 1.8. De fait,

comme V. (c¢*) < 0,0na

>

Ve (O) / * B — Jex (C*)‘P/c* (0) / * / *
- B \ch* (C ) > 51%* (0) (('pc* (C ) - \ch* (C ))7
et donc
V. (c*)g(c*) > <80/1(C*) — Je () + p- JBCL(,C*()O(’()D;* (O)> (@2*(0*) -V, (c*))
_ 1 1 - *C* *C* _‘P,c*(o) / C* ! C*
(oo g €+ ) ) () — W)
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Encore une fois, par le Lemme 1.8, on a

donc

Conséquemment,

7 @) F) - )

et le membre de droite est un produit de deux termes strictement positifs. En effet, le second terme est positif

(o) >

du fait que ¥.. < 0 < ¢l., et le premier terme est positif si et seulement si ... (¢*) < —..(0). On sait par

I'’équation (2.20) que ifz Ezi = —f, donc

Pes (") = =B (c") < =1 (c") < =10 (0)

par la croissance de ... [

2.4 Vérification de I'optimalité

Comme nous savons qu'il existe un b* > 0 tel que g(b*) = 0, clest-a-dire tel que Vi» € C%(R.), nous
devons vérifier que la fonction candidate V}- est optimale. Autrement dit, nous confirmons que la stratégie

linéaire uy+, associée a la fonction de performance V;«, est optimale parmi toutes les stratégies admissibles.
_ K 7 S q 1 s VA i e s
Par Vi« (b*) = Py (b* + 7T ?> + TR ) et par le Théoréme 2.9, V+ s'écrit ainsi :

A*QO*(L’—FCM/J*CL’, x < b*,
Vie () = v () Core (1) (2.22)

a+K ($+%+ F) + qu\IJ;)b*(b*)’ x> b

2.41 Propriétés de la fonction candidate

Le Théoréme de vérification 2.20 nécessitera plusieurs résultats que nous introduisons dés maintenant.

Proposition 2.15 La fonction de performance Vj, est strictement concave, c'est-a-dire que V,. (z) < 0 pour

tout x > 0.
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Preuve. Commencons par démontrer la concavité de Vi« pour x > b*. En dérivant deux fois la seconde
branche de I'équation (2.22), on obtient, pour tout = > b*,

" . q ‘I’Z’*(Cﬂ)
Vi (z) = T KT (0 <0,

puisque V. > 0 et U}, < 0 par la Proposition 1.7.

Et pour 0 < x < b*, la démonstration repose avant tout sur le fait que sur cet intervalle, V- satisfait 'EDO
(1.1), a savoir

2
%v,;: (z) + pVi(z) — qVie(z) = 0, =z € [0,b%). (2.23)

En effet, par I'équation (2.22), V- est une combinaison linéaire de -« , 1y+. Vérifions d'abord que V;. (0) < 0.

La fonction V- étant C?, elle satisfait I'équation (2.23) également au point = = b*, donc

2 2
TVRO) + uVi(0) = qVir (0) = 0 = TV (") + Vi (6°) — qVie ().

En substituant V,. (0) = /3 et V}..(b*) = 1 puis en réarrangeant, on trouve

o2

T (VE07) = V(0)) = (B = 1)+ ¢ (Ve (5) = Vi (0)) > 0,

car 3 > 1 et Vi est croissante par la Proposition 2.10. Conséquemment, V. (b*) — V}/.(0) est strictement

positif, donc Vi (0) < VL (b*) < 0.

Et maintenant, de maniere similaire a la démonstration du Théoreme 3.4 de (Zhu, 2015), nous prouvons
par contradiction que V", (x) < 0 pour tout = € (0,b*). Supposons qu'il existe un =y € (0,b*) tel que

« (o) > 0. Par la continuité de V. et du fait qu'elle est négative aux extrémités de (0, b*), il existe z; e
Vb” 0. Par | tinuité de V' et du fait qu'ell t négati trémités de (0, b*), il exist t

xoavec ) < x1 < g < 29 < b* tels que

Vir(z1) = 0 = V)l(z2) et Vii(x) > 0 pour tout z € (x1,x2). (2.24)
De facto, V. est croissante sur (1, z2) et

Vi () > Vi (7). (2.25)
Posons x € (x1,x2) a partir d'ici. Léquation (2.24) implique que
2 2 2 2
g (o2 g g
T Vi@) > T Vi) > Ty
5 (z) 5 (71), 5 (x) 5 (w2),
et par I'équation (2.23), ces deux inégalités deviennent
@V () — pVye (2) > Vi (1) — uVie (1), qVir(2) — Vi (@) > qVipr (2) — Ve (22).

49



Nous divisons la premiére inégalité par x — x1 > 0 et la seconde par x — z5 < 0 dans le but de faire

apparaitre des quotients différentiels, puis nous réarrangeons les expressions pour obtenir

Vir (1) = Voe (1) V(@) = V(@)
! r—x a T — T

> 0,

Vi (@) = Vi (22) Vi (@) = Vi (@2)
4 Tr — I9 H r — X9

< 0.
En prenant la limite lorsque x | x1 et x ~ x5 respectivement, il s'ensuit que
qVy-(21) — pVyi (1) 2 0 = qVi (w2) — Vi (22).
On rappelle que V. (x1) = 0 = V}//(x2), donc
qVy-(21) = 0 > qVj. (22),
cela impliquant que V. (z1) > V. (z2), ce qui entre en contradiction avec I'inégalité (2.25). Par conséquent,

Vi (z) < 0 pour tout z € (0,b*).

Pour terminer, il reste a montrer que I'inégalité est stricte, a savoir que V,.(x) < 0 pour tout z € (0, b*).
Soit x € (0,b*), on sait que I'équation (2.23) est satisfaite en x et en b*, donc
o? I / o? e Ik *
Un simple réarrangement des termes nous donne
o2

5 (V@) = Vi (07) = p (Vi (%) = Vi (2)) + ¢ (Vi (2) = Vi (7)) < 0,

car V). est décroissante et Vi~ est croissante. En conséquence, V) (x) < Vi (b*) < 0, ce qui conclut la

preuve. (]

Le résultat qui suit est crucial a la vérification de I'optimalité de V}+«, et découle directement de V})’ ) =1

et de la concavité de Vj-.

Corollaire 2.16 La dérivée de V- satisfait

Vie(z) > 1, z <b,

Vi(z) <1, z>0b"
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A la Sous-section 2.1.1, nous avons mentionné I’équation HJB, couramment utilisée dans la résolution de
problémes de controle stochastique. Dans le Théoréme 2.17 ci-dessous, nous affirmons que V.« satisfait

I’équation HJB de ce probléme, ou plutét ici I'inégalité HIB.

Théoréme 2.17 (HJB) La fonction de performance Vy« satisfait aux équations suivantes pour tout x > 0 :

LV (z) + 0B o [v(l — Vi (x))} =0, Vie(x) — B <0, (2.26)

ou L est l'opérateur différentiel linéaire donné par

0.2
Lf= 3]”’ +pnf —qf.

Preuve. L’inégalité a droite de I'équation (2.26) découle directement de Vb’ (0) = B et de la décroissance de

/
V.

Quant a I'égalité a gauche, pour 0 < x < b*, on sait par le Corollaire 2.16 que 1 — Vb’ (z) < 0, donc

1=V (@) =o.
somax Jo(1=Vi(@)] =0

De plus, on a mentionné précédemment que V},’ est solution de I'EDO (1.1) sur cet intervalle, donc
LVy(z) =0, z€]0,b%),

ce qui nous permet de conclure.

Pour z > b*, on sait par le Corollaire 2.16 que 1 — V}.(x) > 0, donc

s [v(l — VL. (m))} = (Kz + 8)(1 — V. (x)).

Pour calculer LVy(x), on utilise la linéarité de L et le fait que W« est solution de I'équation (1.2), c'est-a-dire

Lf(x)=(Kz+S)f(x), z € [b*,00):

K S 1

g+ K K) g+ K0

K w S q Ui (x)
= — - K S

q+K[H q($+q+K>}+Q+K( o )‘I’Z*(b*)

__q . . q Vi.(z)
= q—l—K(K +8)+ (Kz + S) [HK\D}’*(b*)]

q . K
= —(K:U+S)q+K + (Kz+S) [V},(m) — (H‘K]

= (Kz + 8)(Vp:(z) — 1),
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soit l'opposé de maxo<y<rz+s {v(l - V. (:U))] = (Kz + S)(1 — Vj.(x)). Conséquemment, leur somme

est nulle.

On déduit du Théoréme 2.17 que V}+ satisfait

wax { £V )+ [o(1- V@) Vi) - 8} =0, w0,

soit précisément I'équation HJB telle qu'introduite a la Sous-section 2.1.1.

2.4.2 Vérification
Rappelons que le couple (Z;, G¢)i>0 est tel que Z est un MBA réfléchi en O, de dynamique
dZt = Mdt + O'dBt + th,

donc

Gy = — min (X;A0), Xe=Zy+ ut + oBy.

0<s<t
Les deux Lemmes suivants présentent des résultats que nous utiliserons pour conclure la démonstration du

Théoréme de vérification 2.20.

Lemme 2.18 Le couple (Z;, Gy)>0 est tel que pour toutt > O etz > 0,

2
Gy < —win (us+0B,),  E[Z] <o+ pt+

0<s<t 2u

Preuve. Pour la premiere inégalité, remarquons que

in (X.A0)= min X.. t> 1. 2.27
quin (X5 A0) = min X, ¢ > 7 (2.27)

Dans le cas ou Zy = 0, ona 13- = 0, donc

Gy =— min ((us+0Bs) AN0) = — min (us+o0Bs), t=0,

0<s<t 0<s<t

ce qui vérifie I'inégalité. De la méme facon, pour Zy > 0, étant donné que, pour tout t > 0,

min X; = Zp+ mi

0<s<t ogsgt (us + 0 Bs) > min (us + o Bs)

in
0<s<t
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alors I'inégalité est bien vérifiée pour t € [7-5(, o0) par I'équation (2.27). Enfin, pour t € [0, 7'5(), du fait que

X; > 0 sur cet intervalle, on a

—Gy = min (X;A0)=02> min (us + o Bs),

0<s<t 0<s<t

ce qui conclut la démonstration de cette premiere inégalité.

Et pour la seconde inégalité, étant donné que Z; = Zy + ut + o By + Gy, t > 0, alors
E.[Z:] = Ex[Zo] + pt + EL[Gy].
En utilisant la premiére inégalité et le fait que E,[Zy] = x, ona

E.[Z] <x+ut+E [— (,U,S+O'BS):| <z+ut+E [— min (us+ oBg)| .

min
0<s<t 0<s<o0

Par 'équation 1.2.4(1) de (Borodin et Salminen, 2002), on a — ming<s<co (at + B;) ~ Exp(2a) pour o > 0,

donc

— min (us+oBs)=o0- {— min (Mt—l—Bt)} ~ Exp(2u/c?).

0<s<o0 0<s<oo \ O
Par conséquent,

2
. o
E [— oin (s + UBS)] =

g

Rappelons que la paire (X?, G9);~0, c’est-a-dire une paire (X7, G?):=0 avec b = 0, est de dynamique
dXy = (p— S — KX})dt + odB; + dGY,

a savoir un processus d’Ornstein-Uhlenbeck refléchi en O.

Lemme 2.19 Nous avons les deux inégalités suivantes presque stirement pour toutt > 0 :
— Vi (0)] 7% < e V3 (X)) < €7 (Z4 + Vi (7)), (2.28)

t
/ e % (u(X})ds — BdGY)
0

Deplus, [ e % (KZ,+ S)dset [>° e 9dGY sont d’espérance finie.
0 0 s

o o0
< / e ¥ (KZs+ S)ds+ 3 / e 7°dGY. (2.29)
0 0
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Preuve. Pour I'inégalité (2.28), on remarquera, du fait que e 9" > 0 pour tout t > 0, qu'il suffit de montrer
'inégalité

— Ve (0)] < Vi (X)) < Zp + Vi (7).
La fonction V},« est croissante, donc Vi« (0) < Vi« () pour tout x > 0. Et comme V)« (0) peut étre positive
ou négative, nous écrivons —|V«(0)| < Vi« () afin d’éviter toute ambiguité sur le signe du c6té gauche
de I'inégalité. Pour le coté droit, on rappelle que Vj« est concave, donc elle est majorée par sa tangente en

x = b*, que I'on définit par Ty« : R, — R. Cette fonction est telle que, pour tout x > 0,
Ty (2) = Vi (b%) 4+ Vi (b%) (2 — b*) = Vi (b%) + 2 — b* < Vi (b") + ,

puisque V,.(b*) = 1 et b* > 0. Ainsi, Vp- (X}) < Vp=(b*) + X}*. Par (Piera et Mazumdar, 2008), nous
pouvons comparer des processus réfléchis en comparant leur dérive. Autrement dit, la dérive de Z étant
supérieure a la dérive de X" pour tout u € Uy 5, nous avons X' < Z; presque sirement pour tout t > 0.
Par conséquent,

Vi (X5) < Vi (b%) + X2 < Vi (0) + 20 pes.

Quant a I'inégalité (2.29), on a, par I'inégalité du triangle,

<

+ 8

t
| emacy
0

Les deux intégrales de droite sont positives, et u(z) < Kx + S pour tout x > 0, donc

t t
/ e ®(u(XY)ds — BdGY) / e Pu(X)ds
0 0

t t t
/ e " (u(X¢)ds — BdGY)| < / e ¥ (KXY + 8)ds +5/ e BdGY.
0 0 0

Comme il fut mentionné ci-haut, X}* < Z; presque stirement pour tout t > 0. De cette facon,
t t [ee)
/ e (KXY + S)ds < / e ¥ (KZs+ 5)ds < / e ¥ (KZs+ S)ds,
0 0 0

vu que 'intégrande est positif. De plus, la dérive de X étant inférieure a la dérive de X * pour tout u € U K,S»
nous avons par (Piera et Mazumdar, 2008) que G — G* < GY — GY presque sGrement pour toutt > s > 0.
Ainsi,

t t o]
/ e 1*dGY < / e *dGY < / e dGY p.s.
0 0 0

comme l'intégrande est positif, ce qui conclut la démonstration de I'inégalité (2.29).
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Pour terminer, nous montrons que les deux intégrales du cété droit de I'inégalité (2.29) sont d'espérance

finie. Pour la premiére intégrale,

E, [ /O Yo (KZ;+ S) dt] = /O et (KE.[Z;] + S)dt

[e%s) 0.2
</ e_qt(K<x+ut+>+S>dt
0 2
oo 0_2 (e%e]
- K,u/ te”1'dt + (Kx+K + S) / e dtdt
0 2p 0
Ky Kr+Kg +8

= < Q.
q? q

Et quant a la seconde intégrale, commencons par x = 0. Par définition de V}, avec b = 0,

VQ(O) =Eg |:/OOO e ¢ (KXtO + S) dt:| — BEg [/OOO eqth?] .

Cependant, Vy(0) et Eg [ [;° e~ (KX} + S) dt] sont finies, doncEy [ [, e~ 7dGY| I'est également. Enfin,

pour x > 0,

o
—qt 0
+ Em ]17'6)(0<OO /TXO e th
0

XO
o0 TO
E, [ / e—qfdGQ] =E, [ / e dGY
0 0

0 S
_ —qr¥ —qs 0
=0+E, [e 0 ]173(0< E, /0 e dGS-‘rT(‘)XO | ‘FTg(O”

XO o0
g —4q75 —gs 0
E, [e 1o Exo /0 e dGS]
T
0

S 0
—n[[Teract)e ot ] <o

Théoréme 2.20 (Vérification) Pour tout = > 0 et pour toute stratégie u € Uk s, on a Vi (x) > V,,(z).

Preuve. Soit u € U g, on applique la Formule d'Ité a (t, X}*) avec la fonction (t, x) — e~ %V, (z) qui est

Ch2(R%). On trouve
1
(7 Vin (X19) = =g~ Vi (X)t +e V. (XENXT + 2 MV (X)X,

Le processus G étant continu et croissant, on a d [G*], = 0, donc d [X“], = odt. En développant d X},
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on obtient

d (Vi (X})) = —ge™ Vi (X))t + ™"V (X) (1 — u(X)) dt + 0d By + dGY]
02
+ TV (Xt
— 0_2 u u u u u
et KQV':(Xt ) Vi (X0 — gV (X >) — (XX de
+e UV (X[)AGY + oe” "V (X[)dB,
= ™" [LVh (X)) — u(X{)Vpe (X[)] dE + eV (X)AGY + dM,

oul l'intégrale stochastique M; := f(f Je_qSVb’* (X¥)dBs est une martingale du fait que
t t )
/ E [le™ V. (X*)[*] ds < / (Be™9%)" ds < oo.
0 0
Sous forme intégrale, la derniere équation devient
t
e TV (X}) = Vi (X) +/ e (LVp (X)) — u(X) Ve (X)) ds
0
t
+/ e PV (XH)AGY + M.
0

Nous faisons apparaitre les intégrales fot e Pu(X¥)ds et —f fot e *dGY du coté droit de I'égalité pour

obtenir
t
e~V (X1) = Vi (XY) + / eas (EV;* (X5 + u(X5) (1 - Vi (X:)))ds + M,
0
t t
+ / e~ (VL (XY) — B)dG" — / e~ (u(X“)ds — BAGY).
0 0

Notons que les intégrandes des deux premieres intégrales correspondent a I'inégalité HIB. Donc, par le Théo-
reme 2.17,

LV (X8 +u(XE) (1= Vi (X)) <0, V(XH)-B<0,

pour tout s > 0, et il s’ensuit que les deux intégrales sont négatives (la deuxiéme en particulier en raison de

la croissance de G*). Ainsi, on a
t
eI (X1) < Vi (X2) — / o~ (u(X¥)ds — BAGY) + M.
0
En réarrangeant I'inégalité puis en prenant l'espérance E,. avec x > 0 des deux c6tés, on trouve

t
Ve (2) > Eg [~V (X1)] +Es [ / e~ (u(X")ds — BAGY)] .
0
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Nous prenons la limite pour t — oo de cette expression, ce qui donne

t
Vi (2) > lim B, [e7"Vie (X)] + lim B, [ /0 e % (u(X)ds — BdGY)| .

En appliquant E,, a I'inégalité (2.28) ainsi que la linéarité de |'espérance, on trouve
— Ve (0)| €7 < Ep [e” Vi (X71)] < e79(Ey [Z4] + Ve (b7)).

Rappelons que E, [Z;] < = + ut + % par le Lemme 2.18, et donc en prenant la limite pour t — oo de

chaque cété, I'inégalité devient

2
— |V (0)] tlim e < lim E, [e” "V (X{)] < lim e (:z: + pt + 7 4 W(b*)) .
— 00

t—00 t—o00 21

Ainsi, par le Théoreme des gendarmes,

lim E, [e”"Vp (X)] =0,

t—o00

et par conséquent,

Vi () > Jim B, [/Ot e % (u(XY)ds — 5dG§)] :

Maintenant, nous utilisons le Théoreme de convergence dominée pour entrer la limite dans I'espérance,

étant donné que par I'inégalité (2.29), on a

/t e”?(u(XY)ds — BdGY)
0

oo o
< / e ¥(KZs+S)ds+ B/ e °dGY,
0 0
et que les deux intégrales du cété droit sont toutes deux d’espérance finie par le Lemme 2.19. Par conséquent,

Vi (z) > E, [tliglo /Ot e” % (u(XY)ds — BdGZ)]

—E, [ | e s - 5dG?>]

= V().

Rappelons que la fonction valeur V' est donnée par

V(z) = sup Vu(z), z=>=0.

u€Uk, s
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Figure 2.6 - Exemple de fonction valeur et de fonctions de performance sous-optimales

Paramétres: p =1, 02 =1, K=1, S=2, ¢q=04, 8 =1.5.

Par le Théoreme 2.20, on en conclut que V- > V. En méme temps, la stratégie linéaire de seuil b* est
admissible, donc Vj+ < V. Par conséquent,

‘/b*:-‘/-

Maintenant que nous savons que Vj« est bien la fonction valeur, et donc que nous avons essentiellement
résolu le probléme, nous pouvons aisément montrer que b* est unique. Supposons qu'il existe un by # b*
telque Vy, € C*(Ry). Ainsi,ona Vy (bg) = 1, et par le Théoréme de vérification, Vi, () > Vi, (x) pour tout
x > 0 et pour toute stratégie u € Uk 5. Comme up, up, € U g,alors Vi () > Vi () et Vi () = Vi ()
pour tout = > 0. Par conséquent,

‘/;)0 == ‘/;)*
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Rappelons que Vj (bg) = 1 = V. (b*), ou de maniére équivalente, V'(by) = 1 = V’(b*). Toutefois, V est
strictement concave par la Proposition 2.15, donc V" est strictement décroissante. De fait, V' (by) # V' (b*),

et on arrive a une contradiction. Par conséquent, by = b*.

La Figure 2.6 illustre, dans le graphique du haut, un exemple de fonction valeur (en vert gras), et la compare
adesfonctions de performance d’autres stratégies linéaires qui sont quant a elles sous-optimales. Les points
et I'étoile indiquent le seuil pour chaque fonction. Dans le graphique du bas sont affichées la premiére et
seconde dérivée de la fonction valeur V' = V- (en bleu et en orange, respectivement). D’une part, nous
voyons bien que V'/(0) = 5 = 1.5 et V/(b*) = 1, comme il est attendu. D'autre part, la dérivée seconde

est bien continue, en particulier en x = b*.

2.4.3 Consolidation

Grace ala condition V;. (b*) = 1 satisfaite par la fonction valeur, nous pouvons I'utiliser de maniére a obtenir
une expression « simplifiée » de la fonction valeur. En fait, nous proposons deux formulations équivalentes
de V : I'une étant plus compacte car composée de J,- et @y« ; I'autre étant définie par parties et formée

uniquement de nos transformées élémentaires.

La premiére est déduite de I'équation (2.7), qu'on dérive et évalue en b* pour obtenir
1= Jye (b") + Ve (0) @5 (b7),
puis

1 (b

A

En remplacant dans I’équation (2.7), on trouve enfin

V(z) = Jp(z) + (1 — Jé*(b*))

Pour la seconde forme, nous partons de I'équation (2.22). La branche avec x > b* étant suffisamment
développée, il nous reste alors la branche avec 0 < = < b*. Il nous faut pour cela écrire explicitement
Vi (0) et V3« (b*). D'abord, en combinant les équations (2.9) et (2.17) (cette derniére étant satisfaite avec

b*), on trouve
8- 1=V (0)¢p4 (0%)
‘P;,* (%)

O =T
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On isole V4+(0), et on obtient

| ¢} (0)
)= %O (ﬁ s <b*>) By (0") — £} (0)

T 0 g (0)g) (b%) — v (07) 9} (0)°
1 %OZ*(’?*WZ*(O) b (0)gy (0%) b (0%) 0} (0)

Vi (0

Ensuite, vu que V}. (0) = S par I'équation (2.15), on a
B = Vi (b") 0+ (0) + Vi (0) 13 (0).

Enisolant Vj« (b*), puis en utilisant ce qu’on vient d’obtenir pour V3« (0) :

1 ( 5 By (b") — ¢4 (0)
¢+ (0) Ve (0) 3 (0%) — 1y (b%) 3, (0)
Par conséquent, pour 0 < = < b*, la fonction valeur s'écrit par

Viz) = £ (Y5 (0) — Bty (b)) + vhu(x) (Bph- (b°) — 3 (0))
U (0} (0%) — 1. (%)} (0) '

Py (0) — Bepy (07)

Vi (b%) = ~ Y (0)@. (b7) — . (%) (0)

4%-0)

Nous avons mentionné plus haut que les fonctions de performance de notre probléme peuvent étre néga-
tives si la pénalité due aux injections est significative. En pratique, il est d’intérét que la fonction valeur soit
positive. En raison de sa croissance, la fonction valeur est positive sur R si et seulement si Vj«(0) > 0, ce

qui est équivalent a

Beh ) =4 0
0 (00} (07) — 94 (00} (0)

On sait, par le Lemme 1.8, que

U (0)phe (07) — e (%) 4 (0) < 0.

Conséquemment, V est positive si et seulement si

@y (0)
IS gy

Pour finir, le Théoréme suivant réunit les deux formes de la fonction valeur que I'on vient d’obtenir, en plus

de consolider la solution de ce probléme.
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Théoréme 2.21 (Solution du probléme) Soit b* € (0, ¢*) solution de I'équation (2.18). La stratégie linéaire

up € Ug s telle que up+ () = (Kx + S)1,>p+ est optimale, et la fonction valeur V' est donnée par

Dy ()
o, (b7)’

V(z) = Jp(z) + (1 = Jp- (b)) x>0,

ou de maniere équivalente par

o3 (@) (V] (0) =B} (b)) +4u (@) (Birp (%)~} (0))
Vi) = B0 (0 )G (672} (0) )

K B S q_ Yy (2) *
i (et 5+ 2) + dr e, z 20
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CHAPITRE 3
ANALYSES NUMERIQUES

Dans ce dernier chapitre, nous effectuons quelques analyses numériques qui nous aideront a mieux saisir
les mécanismes du probléme. Nous voyons la maniére dont se comportent la solution optimale (Section 3.2)
et les différentes fonctions (Section 3.3) selon les paramétres du probléme tout en les comparant a celles du
probléme limite de (Lakka et Zervos, 2008). Nous voyons également I'impact de la moyenne asymptotique
du processus d’Ornstein-Uhlenbeck sur la fonction valeur. Mais avant, nous confirmons numériquement la

fonction valeur a la Section 3.1 a partir de simulations.

Rappelons que I'on peut séparer la fonction de performance d’une stratégie linéaire au niveau b en deux

fonctions Dy, Ry, définies ainsi pour tout z > 0 :

Dy(x) = E, [ / eqtde], Ry(z) = E, [ / eqthf],
0 0

ou
t
LY :/ (KX!+ S)lxiyds, L =0.
0 S
La fonction de performance s'écrit alors comme V;, = D, — SR, ce qui nous permet d’isoler I'effet des

dividendes et des injections dans V. De plus, on connait la forme explicite de ces fonctions, qui est donnée

par I'équation (2.16).

3.1 Confirmation des résultats par simulation

Il est possible d’estimer Dy«, Ry« et Vj+ ponctuellement grace a des simulations. Si I'on souhaite estimer
ces fonctions au point zg > 0 fixé, il suffit de simuler les processus sur un intervalle [0, 7] ou T" € (0, c0)

est fixé, et en démarrant la simulation de X" en xy.

Sans perte de généralité, prenons R« : cette démarche s'applique tout aussi bien a Dy« et Vj«. Pour une
simulation donnée, effectuée sur une partition {0 =ty < t; < --- < t,, = T'}, on calcule une somme de

Riemann-Stieltjes pour approximer
T n
/0 e taGy ~ Y et (G -Gl

=1
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ol G est la simulation de G®". Il ne reste gu’a produire un nombre N (élevé) de simulations, et par la
Méthode de Monte-Carlo, on a

N n

E [/T e~ 4G *:| ~ i Z Ze*qti—l (G«b*,k . Gb*,k)
0 0 ¢ - N 123 ti—1 )

k=1 1i=1

ol G¥"F est le processus G obtenu lors de la k® simulation. Cette espérance n’est pas tout a fait Ry« ()
puisque l'intégrale est sur [0, 7] et non pas sur R . Néanmoins, on peut décomposer Ry« (z() pour faire
apparaitre cette espérance, tel qu'on I'a fait a multiples reprises dans les chapitres précédents, c’est-a-dire

par un changement de variable et par la Propriété forte de Markov :

T 7 r roo
Ry () = Eqy / e MdGY | + Ky, / e—qtdaf*]
0 | T

T 7 00
= K, /0 e MdGY | + By, |e TR, [ /0 eQSdG’;;TyfT]]

T 7 00
= Eg, / e 1dGY | 4+ Ky, ¢ T E e [ / e—QSdG’;*”
0 0

. .
= B, /0 eTHAGY | + e By, Ry (XF)] -

2-0 i Db*
—8— Rp+
—0— Vpx«
1.5 A
2
& 1.0 1
o
0.5 A
0.0
P 4 6 8 10 12 14 16 18 20

Figure 3.1 - Estimation du reste de Dy, Ry«, Vi pour g = 1 en fonctionde T

N = 2000 simulations de pas At = 0.005 pour chaque T'. Paramétres: p =1, 02 =1, K =1, S =2, ¢ =04, = 1.5.
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De toute évidence, cette démarche nous donne aussi une expression semblable pour D+ et Vj«, soit

T
Dy (w0) = By [ / e atdL ] +e TR, [Db* (XY )] ,
0

Vi (20) = Eay [ /0 o (deg* - 5dG§*)} +e TR, [vb* (X%*)] :

ou le premier terme est celui qu’'on approxime par la méthode de Monte-Carlo, et le second représente en

quelque sorte un « reste », dont on s’attend qu'il soit faible lorsque T est grand (voir la Figure 3.1).

En fait, il est aisé de montrer que ce reste est o(1) pour les trois fonctions. Tout d’abord, pour Ry, on a

Ry (0) = —ﬁ < 00, et Ry« (x) < Ryp+(0) pour tout 2z > 0 par la Proposition 2.11. Ainsi, comme R« est
b*
positive, alors

0< e TE,, [Rb* (X%*)} < Ry (0)e™7

et par le Théoréme des gendarmes, on a

e TE,, [Rb* (X%*)] — 0.

T—o0

Ensuite, quant a Vj+, nous savons déja par la démonstration du Théoréme de vérification 2.20 que

e~ ITE,, [Vb* (X%*)] — 0.

T—o00

Pour finir, on a Dy« = Vi« + SRy, donc

e By | Dy (XF)] = ¢ By, [Vir (XF)] + B Es, | By (XF )] —= 0.

T—o00

De cette maniére, nous pouvons confirmer les résultats théoriques en prenant 1" suffisamment grand, ce
que nous montre la Figure 3.1. A partir de T' = 10, la différence entre nos fonctions évaluées en zg = 1
et les estimations par la Méthode de Monte-Carlo se stabilise autour de zéro pour devenir négligeable
(certaines valeurs pour Vj« sont négatives a cause de fluctuations aléatoires). C’est pourquoi nous simulons

nos processus jusqu’a T' = 10 pour produire la Figure 3.2 ci-dessous.

Dans cette Figure, les diagrammes en violon illustrent la distribution des estimations en chaque point ainsi
gue la moyenne des estimations. Cette moyenne est précisément notre approximation par la Méthode
de Monte-Carlo, que I'on compare a la fonction représentée par une courbe. Plusieurs caractéristiques se

dégagent de ces graphiques, que nous quantifions dans le Tableau 3.1 pour supporter nos observations. En
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T T T
AXV*QQ m m o o —
(x)*9y

(X) <97

= 2000 simulations

Figure 3.2 - Comparaison des fonctions Dp«, Ry, V@

Chagque simulation est de pas At = 0.005, et se termine en T' = 10. Paramétres: u =1, 02 =1, K =1, S =2, ¢=0.4, 8 = 1.5.
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Statistique Dy Ry~ Vi

Erreur absolue || 0.0998 | 0.0617 0.0214
Erreur relative || 0.0306 0.1141 0.0084

Ecart-type 0.8042 | 0.33406 | 1.1504

Asymétrie 0.2700 | 12490 | -0.2128

Tableau 3.1 - Statistiques des estimations de la Figure 3.2

chaque point x( est calculée une certaine statistique sur les N = 2000 estimations. Le Tableau 3.1 affiche

la moyenne de cette statistique sur les 9 points x( choisis.

On constate que l'erreur relative de Ry est bien plus élevée que celle de Dy~ : les erreurs absolues de Dy
et de Ry« sont similaires alors que les valeurs de Ry« sont plus faibles, ce qui peut expliquer cette différence.
Néanmoins, V;+ s'obtient en soustrayant R+ de Dy, ce qui a pour effet d’amoindrir I'erreur absolue de Vj-.
L'impact sur l'erreur relative de Vj« est toutefois moindre vu que Vp« < Dy+. On observe que I'écart-type de
Ry« est la plus faible étant donné que Ry« est proche de zéro et que toutes les estimations sont évidemment

positives.

On voit graphiquement que la densité des estimations de Ry« est trés asymétrique vers la droite, ce qui est
corroboré par un coefficient d’asymétrie’ élevé dans le Tableau 3.1. Cela a pour effet de tirer la moyenne
vers le bas, mais aussi d’accroitre légérement la variabilité de Vj- par rapport a Dy«. Mais surtout, cela
affecte I'asymétrie de Vj« : le coefficient est positif pour Dy«, mais devient négatif pour V;« en raison de la

forte asymétrie de Ryx.

3.2 Effet des paramétres sur le seuil optimal

Analysons maintenant |'impact qu’ont les divers paramétres du probleme sur le seuil optimal b*, comme
montré par la Figure 3.3. Tout d'abord, rappelons que le probléme avec injections obligatoires résolu par
(Lgkka et Zervos, 2008) est un cas limite de notre probléme lorsqu’on tend K ou .S vers l'infini. On sait

également par la Proposition 2.14 que b* < ¢*, ou ¢* est le seuil optimal de (Lakka et Zervos, 2008). Par

1. Rappelons que ce coefficient est positif lorsque la distribution est asymétrique vers la droite, c’est-a-dire quand sa queue est

plus longue a droite; et vice-versa. Et plus le coefficient est faible, plus la distribution est symétrique.
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Figure 3.3 - Valeur du seuil optimal * en fonction des parameétres

Valeur des paramétres fixés pour chaque graphe: p =1, 02 =1, K =1, S =2, ¢= 0.4, § = 1.5.
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conséquent, b* — ¢* lorsqu’on augmente K ou S. Le graphique du haut de la Figure 3.3 illustre cette
convergence. Le plan horizontal bleu est au niveau de ¢* sur I'axe vertical. On remarque que b* augmente

rapidement pour de petites valeurs de K, S, et que b* est déja trés prés de ¢* pour K, S = 25.

Ensuite, le graphique du centre suggére une relation presque linéaire entre i, o et b*. D'une part, le seuil
optimal est décroissant avec p, parce que pour p élevé, le processus du surplus a une forte tendance a la
hausse. Il y a dans ce cas peu de retours en zéro, et la réfraction au-dessus du seuil est moins prononcée,
ce qui étire la durée des versements. D'autre part, b* est croissant avec o, puisqu’une haute volatilité du
surplus le fait parcourir R, plus rapidement. Il n’est donc pas nécessaire que le seuil de versements de
dividendes soit faible pour que des versements surviennent régulierement, sans oublier qu’un seuil faible

cause le surplus a atteindre davantage la barriére en zéro.

Pour finir, le graphique du bas montre une méme relation de croissance/décroissance pour g, 5 sauf que la
tendance n’est clairement pas linéaire ici :

— b* est décroissant et convexe avec ¢, mais de maniére plus prononcée quand [ est élevé. Lorsque ¢
augmente, les flux de capitaux perdent en valeur plus rapidement, donc il est d’intérét de diminuer
le seuil pour verser des dividendes plus vite. La tendance est convexe, car l'actualisation est de la
forme e~ %, fonction convexe de ¢. La variation de b* est plus importante pour un grand 3 en raison
de la plus haute pénalité pour les injections : une petite variation de ¢ crée une différence notable
dans le colt des injections, le seuil optimal devant s’ajuster en conséquence;

— b* est croissant et concave avec 3, mais moindre lorsque ¢ est grand. Quand 3 augmente, les in-
jections sont plus colteuses, donc le seuil augmente pour éviter que la réfraction rameéne le surplus
trop souvent vers zéro. La concavité s'explique peut-étre par le principe de I'utilité marginale décrois-
sante, a savoir que l'effet d’une variation du co(t des injections est moins important quand les colits
sont déja élevés au départ. Enfin, la variation de b* en 3 est moindre pour g élevé puisque les flux

perdent vite en valeur, donc il n’est pas nécessaire d'ajuster grandement b* quand (3 varie.

3.3 Effet des paramétres sur la fonction valeur

Maintenant que nous avons étudié I'effet des paramétres sur le seuil optimal b*, il est d'intérét d’analyser
le comportement de la fonction valeur vis-a-vis des paramétres, et de la comparer a la fonction valeur du
probléme limite de (Lgkka et Zervos, 2008), donnée par V., mais que l'on note ici V7,7 pour éviter toute

confusion. Il est possible de lier notre ensemble de stratégies admissibles U s a I'ensemble des processus
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12

Figure 3.4 - Fonction valeur Vj« en fonction de K et S

La courbe tiretée est V7, 7. Valeur des paramétres fixés pour chaque graphe: p =1, 02 =1, K =1, S=2, ¢=0.4, = 1.5.

admissibles A.(x), = > 0 de (Lgkka et Zervos, 2008), dont V7,7 est la fonction valeur. Pour v € Uk g

donné, on définit le processus de dividendes accumulés L* = (L}");>o comme étant

t
g:/ W(XMds, t30.
0

Pour un z > 0 fixé, nous pouvons donc écrire I'ensemble de processus admissibles pour notre probleme
ainsi :

AK,S(m) = {(Lquu) | u € UK,S, Xg’ = Sl?} .

De cette facon, notre fonction valeur V' s'écrit également comme

V(z) = sup Vu(z), x>0,
(Lv,Gv)eAk s ()
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vu que Uk s et Ak s(x) sont isomorphes pour chaque = > 0 fixé, et que le méme u* € Uk g optimise V,
pour tout z > 0. Mais surtout, nous constatons que Ag s(z) C A.(z) pour tout > 0, ce qui implique
que

Vi (7) < Viz(w), x>0.

On s'attend aussi que V;« tende ponctuellement vers V7, lorsque K ou .S tend vers I'infini, tout comme avec
b* ala section précédente. Malgré que notre fonction valeur soit sous-optimale dans le cadre du probleme
de (Lokka et Zervos, 2008), il est préférable, en pratique, de verser des dividendes de facon réguliére et

continue plutét que de maniére ponctuelle et dispersée dans le temps (voir (Avanzi et Wong, 2012)).

La Figure 3.4 illustre la convergence de V vers V7, (représentée par la courbe rouge tiretée) en fonction de

K et S, qui se fait assez rapidement. Ce qu’on voit surtout, dans le graphique du haut, est I'écart flagrant

entre K = 0et K > 1. Lorsque K — 0, on se retrouve dans le probléme de maximisation de dividendes

bornés par la constante S, avec injections obligatoires. Autrement dit, si I'on note W := ng la fonction

valeur de ce probléme dont le seuil optimal est b, alors Vyx —— W, ot b* —— by Cette fonction
K—0 0 K—0

valeur a la particularité d'étre bornée par S/q :

Wi (2) < Eq [/ e_qt51x>b6dt:| <E, [/ Se‘qtdt] _ §’
0 0 q

la ou la fonction valeur de notre probléme est bornée par une fonction linéaire, tel que vu dans la démons-

tration du Lemme 2.19.

La fonction valeur de (Lakka et Zervos, 2008) est telle que VL’Z(x) = 1 pour x > ¢*, donc linéaire au-dessus
du seuil ¢*. Comparons sa croissance a celle de W et de V. Rappelons que pour z > b*,

K qg Y.(x) K
= +
¢+K g+ KUV, (b*) e=o ¢+ K’

V'(z)

donc en faisant tendre K vers O, on trouve, pour x > by,

0!,
_ b (z) 0.

W'(z) =

Ainsi, Wb(’? et V s’éloignent de V1,7 quand x augmente vu que leur croissance est inférieure a celle de V7 .
Cependant, ng devient asymptotiquement constante, et elle est bornée par S/q, ce qui I'éloigne de V7,

plus rapidement que V dont la croissance tend vers quLK ~ 1 pour K grand.

En conséquence, on voit la valeur ajoutée d'une borne linéaire sur les dividendes par rapport a une borne

constante. Bien que ce probléme soit plus simple a résoudre étant donné que le processus du surplus reste
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Figure 3.5 - Fonction valeur Vj« en fonction des paramétres du modéle

Les courbe tiretées sont V7, z, et les pleines sont V. Les points indiquent b*, et les diamants c¢*. Valeur des paramétres fixés pour chaque graphe :

pu=102=1 K=1,5=2,¢q=04, 8=1.5.
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un MBA au-dessus du seuil, notre probléme offre une meilleure approximation de la solution de (Lgkka et

Zervos, 2008), prisée dans la littérature.

Quant aux autres paramétres du probléme, la Figure 3.5 compare V' a V},; en fonction des paramétres.
Elle montre également les seuils optimaux b* (sous forme de points) et ¢* (sous forme de diamants) en
chaque courbe. Avant d’analyser I'effet de chaque paramétre, notons un phénomeéne intéressant : si I'on
fixe un z > 0, I'écart est plus important entre V' (z) et V1 z(x) lorsque les seuils optimaux sont faibles.
Effectivement, davantage de versements de dividendes surviennent dans ce cas, ce qui accentue |'effet

d’opter pour une stratégie linéaire, qui est sous-optimale dans le probléme limite.

Et pourtant, ce n'est pas tout a fait ce qu'on observe avec o. Lorsqu'il est élevé, I'’écart semble se répartir sur
le domaine, ce qui peut s'expliquer par la forte volatilité du surplus, « brouillant » I'avantage de la stratégie

L Z-optimale. De plus, I'écart entre b* et c* y est plus important, et la fonction valeur est plus basse.

La fonction valeur est croissante en u, parce que pour p élevé, le surplus a une tendance vers le haut favo-
risant les versements de dividendes. Quant a g, elle est décroissante en ¢ en raison de la forte actualisation
occasionnant une perte de valeur plus rapide. Enfin, la fonction valeur est décroissante en 3 en raison d’'un
plus haut colt des injections. La différence est marquée prés de zéro, justement car le surplus initial est

proche de zéro, et que davantage d’injections surviennent dés le départ.

3.4 Moyenne asymptotique

Rappelons qu’au-dessus du seuil optimal b*, le surplus contrélé X®* se comporte comme un processus

d'Ornstein-Uhlenbeck, plus précisément comme le processus Y de dynamique
dY; = (u— S — KY;) dt + odB;.
Cette EDS a comme solution explicite
p—>5S ¢
Y; = Yoe Kt + % (1—e ) + oeKt/ ef%dB,, t>0.
0

L'intégrande est déterministe, donc Y est un processus gaussien (voir le Théoréme 4.11 de (Klebaner, 2012))
d’espérance

E[Y;] = Yoe Kt + % (1—e ),

72



puisque l'intégrale stochastique est une martingale, et de covariance

SAL
Cov (Y5, V) = aQeKseKt/ e udy,
0
2
_ 2‘77KefK(s+t) (e2K(s/\t) _ 1)

_ 2012( (e—K|s—t| _ e—K(s+t)> _

En plus d’étre markovien, Y est asymptotiquement stationnaire, et sa distribution limite est une loi normale
d’espérance % et de variance 5’—; Ce processus est du type retour vers la moyenne, c'est-a-dire qu'au
cours du temps, Y tend a revenir vers sa moyenne asymptotique % En effet, quand Y; > % sa dérive
est négative, et il a une tendance a la baisse. Lorsque Y; < %, sa dérive est positive, le ramenant vers le

haut.

Dans notre probléme, le surplus contrélé X*" se comporte comme un O-U seulement lorsque X2 > b*, lors
de versements de dividendes. Intuitivement, il serait alors préférable, d'un point de vue de performance,
que le surplus reste le plus possible au-dessus du seuil b*. Si % > b*, alors le processus va « graviter »
autour de sa moyenne, qui est au-dessus du seuil. On s’attend donc a des paiements de dividendes plus «
stables » dans le temps (voir (Avanzi et Wong, 2012)), la ou si % < b*, le surplus a une dérive négative
au-dela du seuil. Il aura tendance a redescendre rapidement sous b*, donc a verser des dividendes sur de
plus courtes durées.

Si on augmente p ou modifie les autres parameétres de maniére a réduire b* pour que % > b*, celaa
bien pour effet d'accroitre la fonction valeur. Ce n'est toutefois pas toujours le cas. De ce qu'on peut voir a
la Figure 3.3, le seuil optimal b* est plutoét faible pour des valeurs raisonnables de nos paramétres. Ainsi, il

faudrait baisser significativement K et .S pour que % descende sous b*, ce qui a son tour diminuerait la

fonction valeur puisque ce faisant, les paiements de dividendes vaudraient beaucoup moins.

La Figure 3.6 illustre ce phénomeéne. Les diagrammes en violon du haut et du centre montrent la distribu-
tion de la proportion du temps passé, respectivement, a verser des dividendes et a injecter du capital. En
abscisse, on varie K de sorte que % — b} se promene des négatifs jusqu’aux positifs (nous écrivons b7,
pour souligner que b* dépend de K). Les points orange indiquent b* en ordonnée, et le graphique du bas
montre la valeur de V;-(x) correspondante. Tout d’abord, on constate effectivement que la durée totale
de versements est plus importante lorsque la moyenne asymptotique du processus O-U est au-dessus du

seuil optimal, quoique la variation y est moins significative. On constate aussi que les injections surviennent
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Figure 3.6 - Proportion du temps a verser/injecter en fonction de %9 — by pour zg = 1

Pour chaque K €

1010 .. 10
1027 > 10

,ilya N = 2000 simulations de pas At =~ 0.005 se terminant en 7" = 10. Paramétres :

w=2 02=1,8=1,¢=04, =15.
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moins souvent, ce qui va de soi. Cependant, tel que nous I'avons mentionné, bien que la durée de verse-

ments soit supérieure, ceux-ci ont moins de valeur, ce qui affecte négativement la fonction valeur.

Par conséquent, contrairement a l'intuition, il n’est pas assuré qu'une moyenne asymptotique supérieure
au seuil optimal soit avantageuse d’un point de vue performatif. Elle I'est si I'on ajuste les paramétres autres
que K et S en conséquence, mais ces parameétres sont intrinséques au modéle. lls sont probablement hors
du contrdle de la firme, 1a ou K et S définissent notre ensemble de stratégies admissibles et peuvent étre
choisis, a priori, par la firme. Il y a dans ce cas un compromis a faire entre la stabilité des versements de

dividendes a travers le temps et la performance de la stratégie optimale.
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CONCLUSION

Nous avons résolu un probléme de maximisation de paiements de dividendes avec injections de capital obli-
gatoires lorsque le surplus, modélisé par un mouvement brownien arithmétique, atteint zéro. Les processus
de dividendes admissibles étaient absolument continus, de taux de versement borné par une fonction li-
néaire du surplus. Nous cherchions une stratégie dont la fonction de performance est la plus grande parmi
toutes les stratégies admissibles, ainsi que I'expression de cette fonction. Pour la résolution, nous avons
utilisé une approche probabiliste semblable, quoique plus simple et élémentaire, a celle de (Renaud et al.,

2023).

Prévoyant qu’une stratégie linéaire serait optimale par une analyse heuristique de I'équation HJB de ce
probléme, nous avons obtenu une forme explicite de la fonction de performance d’une stratégie linéaire
qguelconque. Pour cela, nous avons utilisé plusieurs identités de temps de premier passage que nous avons
préalablement obtenues et étudiées. Puis, nous avons identifié une stratégie linéaire de seuil b* dont la
fonction de performance satisfait certaines conditions de régularité dans I'optique d’appliquer un Théoréme
de vérification. Ce Théoreme nous a permis de montrer que cette stratégie est bel et bien optimale, et que

sa fonction de performance majore toutes les autres.

Enfin, en plus de vérifier nos résultats par des simulations, nous avons mené quelques analyses numériques,
notamment sur I'effet des paramétres du modéle sur le seuil optimal b* et sur la fonction valeur. Nous avons
comparé la fonction valeur de notre probléme a celle du probléme limite de (Lakka et Zervos, 2008), ainsi
gu’a celle du probléme avec dividendes bornés par une constante. Notre fonction valeur a I'avantage de
mieux approcher celle de (Lgkka et Zervos, 2008), que nous savons la meilleure, par rapport a celle avec
borne constante, tout en conservant une certaine simplicité grace a la borne linéaire. Elle a aussi un intérét
conceptuel, puisque le taux optimal de paiements de dividendes est proportionnel au surplus : une firme

serait sans doute portée a verser davantage lorsque son surplus excéde grandement le seuil b*.

Néanmoins, il existe un défaut apparent a autoriser des injections obligatoires dans le but d’éviter la faillite :
selon les parameétres du modéle, la fonction valeur est potentiellement négative sur une partie de son do-
maine. Cela signifie que pour un surplus initial  suffisamment petit pour que V' (z) < 0, la firme deman-
derait, en valeur présente moyenne, plus d’injections qu'elle ne verserait de dividendes. Dans une telle

situation ou les paramétres du marché sont aussi défavorables a la pérennité de I'entreprise, il serait sans
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doute préférable de retirer les injections forcées et de permettre la faillite. En réalité, il s'agit précisément
de la solution optimale dans le cadre général ot I'on optimise simultanément L et G, comme I'ont montré
(Lokka et Zervos, 2008; Renaud et al., 2023). Si les paramétres du modéle sont de sorte que V3« (0) > 0,
alors la solution de notre probléme est optimale et V' = V. Sinon, la solution optimale est celle du pro-

bléme sans injections résolu par (Rao, 2023).

Contextuellement, une telle dichotomie pour la solution optimale peut paraitre extréme a mettre en pra-
tigue. En supposant qu’une firme estime ses parameétres par des données, doit-on s’attendre a ce que ses
décisions financieres a long terme dépendent si fortement de son estimation des paramétres? Un com-
promis intéressant serait de considérer des injections de capital absolument continues tout en permettant
la possibilité de faillite. Les injections pourraient étre de taux borné par une constante, ou bien par une
fonction décroissante du surplus; intuitivement, on voudrait injecter moins lorsque le surplus s’éloigne de

zéro.

Dans I'hypothése qu'une stratégie optimale pour les injections soit de type bang-bang, dans le probleme
général ou I'on optimise le couple (L, G), on pourrait d'abord considérer le probleme de maximisation
des dividendes avec injections obligatoires survenant au taux maximal lorsque le surplus descend sous un
seuil fixé. Ce type de probléme permettrait a une firme d’injecter du capital lorsque le surplus est faible de
maniére a retarder la faillite, tout en laissant la possibilité de faire faillite plus rapidement si les paramétres

du modéle sont désavantageux.
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ANNEXE A
CODE PYTHON DES SIMULATIONS

Nous fournissons ici du code en langage Python pour simuler les divers processus de ce mémoire, code que
nous avons utilisé pour produire les quelques Figures illustrant lesdites simulations. La méthode employée
pour simuler en temps discret des solutions d’EDS est celle d’Euler-Maruyama (voir le Chapitre 9 de (Kloeden

et Platen, 1999) pour plus de détails a ce sujet).

Voici les packages importés :

import numpy as np

import scipy.optimize as opt

Les Sous-sections suivantes affichent le code des simulations, qui nécessite plusieurs variables. Il y a les

parameétres du problémes choisis, par exemple,

1.0

0

[
2
o
1]

mais aussi le surplus initial x, ainsi que le seuil de réfraction b ou la variable n lorsqu’on simule un processus

d’approximation :

x=1.0
b=2.0
n=2
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Enfin, pour la simulation des trajectoires, nous devons spécifier le nombre de points de discrétisation et

I'instant ou la simulation s’arréte, par exemple :

points = 2000
t = 10.0
dt = t/(points-1)

t_axis = np.linspace(0, t, points)

Dans un objectif de reproductibilité, les simulations de chaque Figure ont été produites a partir d’'une graine

fixée, donnée par une commande du type rng = np.random.default_rng(...).

Al Simulation pour la Figure 1.1

rng = np.random.default_rng(15)
N = rng.normal(0, 1, points)

X = x*np.ones(points)

Yb = np.copy(X)

Lb = np.zeros(points)

for i in range(points - 1):
dXt = muxdt + sigma*np.sqrt(dt)*N[i+1]
uYbdt = (K¥Yb[i]+S)*(Yb[i] >= b)*dt
X[i+1] = X[i] + dXt
Lb[i+1]

Lb[i] + uYbdt

Yb[i+1] Yb[i] + dXt - uYbdt

A2 Simulation pour la Figure 1.2

rng = np.random.default_rng(40)

N = rng.normal(0, 1, points)
X = x*np.ones(points)
L = np.zeros(points)
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A3

Ln = np.zeros(points)

Y:

Yn

np. copy (X)
np.copy (X)

for i in range(points - 1):

rn
N

X

Lb
Ub
Xb
Gb

if Yn[i]l>=b: sur_b = True

if Yn[i]<=(b-1/n): sur_b = False

dXt = muxdt + sigma*np.sqrt(dt)*N[i+1]
u¥dt = (KxY[i]+S)*(Y[i] >= b)*dt

u¥Yndt = (KxYn[i]+S)*sur_bx*dt

X[i+1] = X[i] + dXt

L[i+1] = L[i] + uYdt
Ln[i+1] = Ln[i] + uYndt
Y[i+1] = Y[i] + dXt - u¥Ydt

Yn[i+1] = Yn[i] + dXt - uYndt

Simulation pour la Figure 2.3

g

= np.random.default_rng(2)
rng.normal(0, 1, points)

x*np.ones (points)

= np.zeros(points)
= np. copy (X)
= np.copy (X)

= np.zeros(points)

minUb = x

for i in range(points - 1):

dXt = muxdt + sigma*np.sqrt(dt)*N[i+1]
uXbdt = (K¥Xb[i]+S)*(Xb[i] >= b)*dt
X[i+1] = X[i] + dXt

Lb[i+1] = Lb[i] + uXbdt
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Ub[i+1] = Ub[i] + dXt - uXbdt
minUb = min(minUb, Ub[i+1])

Gb[i+1]

-min(minUb,0)
Xb[i+1]

Ub[i+1] + Gb[i+1]

A4 Simulation pour la Figure 2.4

rng = np.random.default_rng(215)
N = rng.normal(0, 1, points)

X

x*np.ones (points)

Z

np. copy (X)

Zn = np.copy(X)

G = np.zeros(points)

Gn = 1/n*np.zeros(points)

minX = x

for i in range(points - 1):
dXt = muxdt + sigma*np.sqrt(dt)*N[i+1]
X[i+1] = X[i] + dXt
minX = min(minX, X[i+1])
G[i+1] = -min(minX,0)
Gn[i+1] = (np.floor(n*G[i+1])+1)/n
Z[i+1] = X[i+1] + G[i+1]
Zn[i+1] = X[i+1] + Gn[i+1]

A.5 Simulations pour les Figures 3.2 et 3.6

rng = np.random.default_rng(42)
N = rng.normal(0, 1, (paths,points))
dLb = np.zeros((paths,points))

Ub = x*np.ones((paths,points))

Xb

np. copy (Ub)

Gb = np.copy(dLb)
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dGb = np.copy(dLb)

minUb = x*np.ones (paths)

for i in range(points - 1):
dXt = muxdt + sigma*np.sqrt(dt)*N[:, i+1]
dLb[:, i+1] = (K*Xb[:, i]1+S)*(Xb[:, i] >= b)*dt
Ub[:, i+1] = Ub[:, i] + dXt - dLb[:, i+1]
minUb = np.minimum(minUb, Ub[:, i+1])
Gb[:, i+1] = -np.minimum(minUb, np.zeros(paths))
dGb[:, i+1] = Gb[:, i+1] - Gb[:, il
Xb[:, i+1] = Ub[:, i+1] + Gb[:, i+1]
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