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A modèle d’attaque entraîné à distinguer les membres et non-membres.

Dtrain sous-ensemble d’entraînement du modèle cible (membres).

Dtest sous-ensemble de test du modèle cible (non-membres).

Dshadow données utilisées pour entraîner les modèles d’ombre (autres phénotypes ou jeux externes).

D′
k ke jeu d’entraînement d’un modèle d’ombre fk

s .

T ′
k jeu de test associé à D′

k, pour générer des prédictions non-membres.

Pm
k ensemble de prédictions de fk

s sur D′
k (membres).

Pn
k ensemble de prédictions de fk

s sur T ′
k (non-membres).

Dattaque exemples membres/non-membres utilisés pour entraîner A.

[p1, ..., pn] vecteur de probabilités en sortie du modèle (logits normalisés).

Top-k les k plus grandes valeurs dans le vecteur [p1, ..., pn].



RÉSUMÉ

Avec l’apparition du séquençage à haut débit et l’intégration de l’intelligence artificielle, de nouvelles
préoccupations liées à la vie privée ont émergé. Les données génétiques humaines, en particulier,
révèlent des prédispositions aux maladies et des éléments héréditaires familiaux. Contrairement aux
données classiques, les données génomiques sont uniques, immuables et personnelles. Cette spéci-
ficité les rend particulièrement vulnérables aux abus en cas de fuite ou de mauvaise gestion. Dans
ce contexte, les attaques par inférence d’appartenance (membership inference attacks – MIA) re-
présentent une menace croissante : elles permettent à un adversaire de déterminer si un échantillon
spécifique a été utilisé pour entraîner un modèle d’apprentissage automatique, compromettant ainsi la
confidentialité des données biomédicales.

Ce mémoire s’inscrit dans une démarche de sensibilisation aux risques liés à la vie privée dans les
applications d’apprentissage automatique sur des données génomiques. Il vise à évaluer la robustesse
des modèles prédictifs lorsqu’ils sont exposés à des attaques d’inférence d’appartenance, en consi-
dérant deux méthodologies réalistes. La première repose sur la création de modèles d’ombre dans
un espace de distribution similaire à celui du modèle cible, mais en s’appuyant sur des phénotypes
biologiquement corrélés. Cette stratégie exploite la proximité fonctionnelle entre certains traits me-
surés pour améliorer l’efficacité de l’attaque, tout en supposant un accès partiel à des données de
même nature. La seconde méthodologie adopte une approche plus générique, fondée sur la généra-
lisation des connaissances : des modèles d’ombre sont formés sur des jeux de données hétérogènes,
sans similarité directe avec le modèle cible, ce qui reflète un scénario plus réaliste et contraint. La
contribution principale de ce mémoire est la mise en œuvre et l’évaluation de ces deux méthodologies
d’attaque MIA appliquées aux données génétiques. Afin d’évaluer la pertinence et l’efficacité de ces
approches, nous avons recours à un jeu de données génomiques de levure, en raison de sa disponi-
bilité publique et de son usage en recherche génomique. Ce jeu de données permet de simuler des
expériences reproductibles et représentatives tout en contrôlant les variables biologiques pertinentes.

Les résultats expérimentaux obtenus mettent en évidence la faisabilité d’attaques par inférence d’ap-
partenance même en l’absence totale d’informations sur les données d’entraînement du modèle cible.
Les deux méthodologies proposées montrent des performances élevées, en particulier dans la détec-
tion des échantillons membres. Ces constats soulignent l’importance de développer des mécanismes
de défense plus robustes et adaptés aux spécificités des données génomiques. Ils révèlent également
que la sécurité des modèles d’apprentissage automatique dans le domaine biomédical ne peut être as-
surée uniquement par la limitation de l’accès aux données, mais qu’elle nécessite aussi des garanties
algorithmiques.



INTRODUCTION

Ces dernières années, l’intersection entre l’apprentissage automatique (AA) et la génomique a pro-

fondément transformé la recherche biomédicale et la médecine personnalisée. Les technologies de

séquençage à haut débit ont permis d’explorer en profondeur les relations complexes entre le gé-

notype — c’est-à-dire la composition génétique d’un individu — et le phénotype, c’est-à-dire les

caractéristiques observables telles que la taille, la susceptibilité à une maladie ou la réponse à un

traitement.

Parmi les méthodes d’analyse les plus répandues dans ce domaine, les études d’association pangé-

nomique, Genome-wide association studies (GWAS) 1, occupent une place centrale. Cette méthode

statistique permet d’identifier les loci génétiques associés à une caractéristique donnée, en analysant

la fréquence de certains polymorphismes nucléotidiques simples (Single-nucleotide polymorphisms

(SNPs)), c’est-à-dire des variations portant sur un seul nucléotide à une position précise du génome,

dans de larges cohortes d’individus (Wright et Fessele, 2017). Les résultats des GWAS servent de

point de départ pour la sélection de caractéristiques et facilitent l’élaboration de modèles plus simples.

En réduisant la dimensionnalité, ils améliorent à la fois l’efficacité informatique et la valeur biologique

des prédictions. Cependant, la diffusion publique des résultats de ces études peut également entraîner

des risques accrus pour la vie privée, en exposant indirectement des informations personnelles sur les

participants.

À titre d’exemple, l’étude pionnière de Homer et al. (2008) a montré qu’il était possible d’identifier

la présence d’une personne dans une base de données GWAS agrégée en comparant ses données gé-

nétiques aux fréquences alléliques publiées, où un allèle désigne l’une des versions d’une séquence

d’ADN à un locus donné, généralement hérité de chaque parent. Cette capacité à détecter la pré-

sence d’un individu, même à partir de données statistiques globales, a soulevé des inquiétudes ma-

jeures concernant la confidentialité. Après cette révélation, les National Institutes of Health (NIH)

— l’agence fédérale américaine de recherche biomédicale — ont restreint l’accès public à certaines

1. Les GWAS sont des études visant à identifier des associations statistiques entre des variations génétiques (comme

les SNPs) et des traits phénotypiques ou des maladies, en analysant l’ensemble du génome d’un grand nombre d’individus

(Visscher et al., 2017)
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bases de données génomiques et transféré des statistiques agrégées de GWAS sous un régime d’accès

contrôlé, afin de limiter les risques de ré-identification (Zerhouni et Nabel, 2008).

La capacité des modèles à prédire des informations sensibles soulève des enjeux majeurs pour la

protection des données personnelles. Les données génomiques sont irrévocables, propres à chaque

individu et renferment des informations héréditaires. L’utilisation de ces données pour former des

modèles d’apprentissage automatique peut entraîner des fuites d’informations, surtout si les modèles

sont mis en œuvre dans des environnements accessibles au public ou aux chercheurs.

Parmi les menaces identifiées, les attaques par inférence d’appartenance (Membership inference attack

(MIA)) ont suscité une attention croissante. Dans ce type d’attaque, l’adversaire cherche à déterminer

si un échantillon a servi à l’entraînement d’un modèle. Elle exploite les variations de comportement

du modèle entre les exemples vus (membres) et ceux non vus (non-membres), surtout en cas de

surapprentissage. Le surapprentissage désigne la situation où un modèle apprend trop fidèlement les

particularités (et le bruit) des données d’entraînement, au détriment de sa capacité de généralisation.

Il se manifeste par un écart notable entre les performances d’entraînement et de test, ainsi que par

des réponses surconfiantes sur les exemples vus, ce qui accroît la séparabilité membre/non-membre

exploitée par les MIAs. En ce qui concerne les données génomiques, cette fonctionnalité pourrait

révéler la participation d’une personne à une étude médicale ou son lien avec une information sensible,

ce qui pose un risque majeur pour la confidentialité.

Dans des domaines tels que la vision par ordinateur et le traitement du langage naturel, les attaques

MIA ont montré que les modèles peuvent mémoriser des données sensibles, même involontairement.

Shokri et al. (2017) ont montré que des modèles surappris permettent d’inférer l’appartenance d’un

échantillon avec une précision élevée. Les modèles de plongement, qui transforment des entités dis-

crètes (mots, k-mers ou catégories) en un espace vectoriel dense où la proximité reflète des régularités

statistiques, sont utiles mais peuvent, comme l’ont montré Song et Raghunathan (2020), mémoriser et

restituer des paires mot-contexte sensibles vues à l’entraînement. Enfin, Carlini et al. (2021) ont mon-

tré que des modèles de langage peuvent régénérer mot pour mot des séquences confidentielles vues

à l’entraînement. Ces résultats soulignent l’ampleur du risque et la nécessité d’étudier ces attaques

en génomique. Si ces attaques sont bien documentées dans d’autres domaines, leur transposition à
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la génomique reste marginale. Les recherches sur les MIA appliquées à la génomique sont limitées

en raison du manque de données publiques combinant génotypes de qualité et phénotypes fiables,

notamment du fait de contraintes éthiques, juridiques et de confidentialité (Gymrek et al., 2013; Er-

lich et Narayanan, 2014). En particulier, des lois comme le HIPAA ( Health Insurance Portability

and Accountability Act) aux États-Unis ou le RGPD (Règlement général sur la protection des don-

nées) en Europe imposent des restrictions strictes sur l’accès aux données génétiques, car elles sont

permanentes, difficilement anonymisables et potentiellement identifiables. Enfin, la forte dimension-

nalité des données génomiques — où le nombre de SNPs dépasse largement celui des échantillons —

accentue le risque de surapprentissage.

Pour contourner ces limitations, tout en conservant un cadre expérimental réaliste, nous avons choisi

d’utiliser des données génomiques issues de Saccharomyces cerevisiae (la levure). Les données de

levure ont été choisies pour ce projet en raison de leur diversité génétique suffisante, de leur acces-

sibilité libre ainsi que de leur annotation précise. Ces caractéristiques en font un cadre expérimental

idéal pour évaluer les attaques par inférence d’appartenance sur des données génomiques réelles, tout

en évitant les contraintes éthiques et juridiques liées aux données humaines (Skelly et al., 2013).

La plupart des recherches actuelles partent du principe qu’un adversaire connaît la structure interne du

modèle ciblé, ce qui correspond à un scénario en boîte blanche. Dans la réalité, les adversaires n’ont

souvent accès qu’aux sorties du modèle, comme dans les services d’apprentissage automatique en tant

que service (Machine learning as a service (MLAAS)), ce qui correspond à un cadre en boîte noire.

Dans ce contexte, concevoir une attaque efficace est nettement plus difficile (Truex et al., 2019).

Ce mémoire explore la possibilité d’une attaque par inférence d’appartenance sur des données géno-

miques dans un contexte réaliste. L’objectif principal est de démontrer qu’un adversaire peut détermi-

ner si un échantillon a été utilisé pour l’entraînement d’un modèle cible, sans connaître sa structure

ni accéder à ses paramètres internes. Pour ce faire, l’étude se concentre sur la création d’un modèle

d’ombre généralisable, formé sur un ensemble de données distinct, mais capable d’imiter efficacement

le comportement du modèle cible. Un modèle d’ombre est un classifieur entraîné par l’adversaire pour

reproduire le comportement du modèle cible. En générant, via ces modèles, un jeu de sorties anno-

tées membre/non-membre, l’adversaire entraîne ensuite un modèle d’attaque binaire capable d’inférer
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l’appartenance à partir des seules sorties du modèle cible en boîte noire (ou de ses états internes en

boîte blanche). Pour évaluer la performance des attaques, plusieurs méthodologies seront testées et

comparées, en mettant l’accent sur leur capacité à détecter précisément les membres (vrais positifs)

sans augmenter le nombre de faux positifs. Cette analyse compare différentes architectures de mo-

dèles d’ombre pour déterminer les plus efficaces et les plus applicables. Opérationnellement, nous

construisons un jeu d’évaluation contrôlé membres/non-membres et reportons des métriques standard

(AUC, précision, TPR@FPR) avec intervalles de confiance sur plusieurs répétitions.

Contrairement à l’étude de Chen et al. (2020), qui applique des attaques MIA dans un cadre en boîte

blanche à l’aide de données génomiques de levure, notre approche explore une situation plus réaliste

en boîte noire, dans laquelle l’attaquant n’a accès qu’aux sorties du modèle cible. Nous proposons

également une stratégie de généralisation fondée sur des modèles d’ombre entraînés à partir de phé-

notypes biologiquement liés ou de jeux de données hétérogènes. Même si le cadre est plus contrai-

gnant, nos résultats sont meilleurs que ceux de l’étude de Chen et al. (2020). Cela prouve l’efficacité

et la robustesse de notre approche. La nouveauté de ce travail réside dans l’évaluation d’attaques

MIA en boîte noire appliquées aux données génomiques, avec deux méthodologies complémentaires

(corrélation biologique et transfert généralisé), ce qui n’a pas encore été étudié dans ce contexte.

Ce projet vise à démontrer qu’il est possible, même dans un cadre en boîte noire, d’extraire des infor-

mations sensibles sur la participation d’un individu à une étude génomique, uniquement à partir des

sorties d’un modèle d’apprentissage automatique. En révélant la vulnérabilité de modèles déployés

dans des contextes réalistes, ce travail souligne l’urgence de repenser les pratiques de publication,

de partage et de protection des données génétiques. Ces résultats ont des implications majeures, tant

pour le développement de modèles robustes et responsables que pour la confiance du public dans la

recherche biomédicale et la gouvernance éthique des données. Comme l’ont montré McGuire et al.

(2008), le séquençage du génome entier pose des défis spécifiques en matière de confidentialité, car il

peut révéler des informations personnelles difficilement anonymisables.

Ce mémoire est structuré comme suit :
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— Chapitre 1 – Notions préliminaires en génomique et apprentissage automatique : ce chapitre

introduit le contexte général de l’étude, les enjeux liés à la confidentialité des données géno-

miques, les motivations scientifiques et éthiques du projet, ainsi que la problématique princi-

pale centrée sur les attaques par inférence d’appartenance dans un cadre réaliste.

— Chapitre 2 – État de l’art : il présente une revue des travaux existants sur les MIAs, les méthodes

d’apprentissage automatique appliquées à la génomique, les approches de protection de la vie

privée, ainsi que les défis spécifiques liés à la dimensionnalité élevée et au manque de jeux de

données publics dans ce domaine.

— Chapitre 3 – Méthodologie : ce chapitre présente en détail les deux approches méthodolo-

giques développées dans le cadre de ce projet. La première, appelée attaque par modèles

d’ombre corrélés, repose sur l’entraînement de modèles d’ombre à partir de phénotypes auxi-

liaires biologiquement corrélés au phénotype cible. Cette méthode suppose que l’adversaire a

accès à un sous-ensemble de données appartenant au même espace de distribution que celles

du modèle cible, bien que les étiquettes soient différentes. La seconde approche, dite attaque

par transfert généralisé, s’inspire des travaux de Salem et collaborateurs et consiste à former

des modèles d’ombre sur des jeux de données totalement hétérogènes, sans lien direct avec

le domaine génomique cible. Dans ce cas, les vecteurs de sortie des modèles d’ombre sont

transformés en caractéristiques statistiques, telles que les valeurs top-k, afin d’alimenter un

modèle d’attaque entraîné indépendamment.

— Chapitre 4 – Résultats et analyse : ce chapitre expose les résultats expérimentaux obtenus

pour chaque méthodologie d’attaque testée, en comparant les performances des modèles selon

différents critères (précision, AUC (Area under the curve (AUC)), taux de vrai positif, taux

de faux positif). Il propose une analyse critique des résultats, identifie les limites du cadre

expérimental et discute de l’impact potentiel des conclusions sur la sécurité des modèles d’ap-

prentissage dans le domaine génomique.

— Chapitre 5 – Conclusion : ce dernier chapitre récapitule les contributions principales du travail,

met en lumière les implications de ces résultats sur la confidentialité des données génomiques

et propose des pistes pour des recherches futures, notamment l’adaptation de l’approche à

d’autres types de données biologiques, l’extension à des ensembles de données plus volumi-

neux ainsi que l’exploration de nouvelles architectures de modèles d’attaque ou de générali-

sation.



CHAPITRE 1

NOTIONS PRÉLIMINAIRES EN GÉNOMIQUE ET APPRENTISSAGE AUTOMATIQUE

La révolution génomique, combinée à l’accès croissant aux données génétiques, a permis aux modèles

d’apprentissage automatique de transformer profondément le domaine de la génomique. Ces avancées

ont transformé des domaines clés tels que la médecine personnalisée, la recherche pharmaceutique

et l’épidémiologie. Toutefois, la sensibilité et la durabilité des données génétiques posent des défis

majeurs en matière de protection de la vie privée et de sécurité. De plus, les modèles d’apprentissage

automatique peuvent mémoriser certaines données d’entraînement, ce qui peut être exploité par des

adversaires pour révéler des informations sensibles. Dans ce chapitre, nous présentons les concepts

fondamentaux liés aux données génomiques, leur importance et les défis associés à leur protection.

Nous examinons également l’utilisation de l’apprentissage automatique dans ce domaine ainsi que les

menaces à la confidentialité, en particulier l’attaque par inférence d’appartenance.

Exemple récent : fuite de données chez 23andMe. Un exemple récent illustrant le rôle crucial

du niveau de connaissance de l’adversaire est la fuite de données survenue chez 23andMe en 2023.

Même si cette attaque ne correspondait pas à une attaque d’inférence d’appartenance, elle démontre

clairement comment des informations variées peuvent servir à un attaquant pour compromettre la

confidentialité de données sensibles, comme celles contenues dans le génome.

Dans ce cas, l’attaquant a lancé une attaque par bourrage d’identifiants (credential stuffing), en pro-

fitant du fait que de nombreux utilisateurs réutilisent les mêmes mots de passe sur plusieurs plate-

formes. Cette stratégie repose sur une compréhension préalable du comportement des utilisateurs.

De plus, l’attaquant a utilisé des informations d’identification obtenues lors de violations de données

précédentes, ce qui lui a permis de les tester massivement sur 23andMe, exploitant ainsi l’absence de

contrôle de limitation de tentatives dans l’API de connexion du site. Après avoir compromis quelques

comptes, l’attaquant a pu profiter des fonctionnalités sociales de la plateforme, telles que la recherche

de correspondances ADN et les arbres généalogiques 1 partagés, pour accéder aux données intercon-

1. Un arbre généalogique est une représentation schématique des liens de parenté entre individus, permettant de retracer

les relations familiales sur plusieurs générations.



7

nectées de plusieurs milliers d’autres utilisateurs. Cette attaque démontre une compréhension structu-

relle de la plateforme ciblée et une connaissance de la valeur des données. Par exemple, en ciblant des

utilisateurs d’ascendance ashkénaze juive ou chinoise, ou ceux associés à des personnes fortunées.

Ce scénario met en évidence le fait qu’un adversaire bien informé peut exploiter des failles de sé-

curité, des comportements humains et des logiques de systèmes pour mener une attaque à grande

échelle, même avec un accès limité. Cela renforce l’idée que, dans un cadre d’inférence d’apparte-

nance, le niveau de connaissance de l’adversaire est un facteur critique pour la réussite de l’attaque,

qu’il s’agisse de connaître la distribution des données, les sorties du modèle ou la structure du système

(Holthouse et al., 2025). Ces exemples motivent l’étude, dans les chapitres suivants, des attaques plus

subtiles qui exploitent les modèles d’apprentissage automatique eux-mêmes, comme les attaques par

inférence d’appartenance.

1.1 Notions préliminaires en génomique

Avec l’évolution des technologies de séquençage, les données génomiques sont devenues une res-

source essentielle dans les domaines médicaux, notamment pour la médecine de précision, la re-

cherche génétique et la modélisation prédictive. Le séquençage de l’Acide désoxyribonucléique (ADN)

est un processus de laboratoire qui permet de cartographier la séquence complète du génome d’un

individu. Ce procédé a été initié en 1990 par le National institutes of health (NIH), et le premier sé-

quençage a été obtenu après treize années en dépensant trois milliards de dollars. Cependant, au fil

du temps, les coûts et les délais ont fortement diminué : aujourd’hui, des protocoles de séquençage

du génome entier rapides ou ultra-rapides permettent un retour de résultats en quelques jours (mé-

diane ∼2,3 jours pour l’ultra-rapide) (Kansal, 2025), tandis que le coût par génome a chuté de façon

marquée au cours de la dernière décennie, selon les séries du National Human Genome Research Ins-

titute (NHGRI) (Wetterstrand, 2023). Dans ce qui suit, nous rappelons brièvement la structure et la

réplication de l’ADN afin de situer la nature des données produites par ces technologies.

Sur le plan moléculaire, la compréhension de la double hélice éclaire la manière dont l’information

génétique est lue et copiée. L’ADN est une molécule formée de deux brins complémentaires en double

hélice, dont la séquence de quatre bases nucléotidiques – l’adénine (A), la thymine (T), la cytosine
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(C) et la guanine (G) – porte l’information génétique. Ces bases nucléotidiques s’associent spécifique-

ment (A – T et C – G), fournissant un gabarit complémentaire pour la réplication. Toutefois, la haute

fidélité ne provient pas du seul appariement : elle résulte également de la sélectivité des ADN polymé-

rases, de l’activité d’exonucléase 3’→5’ (proofreading) – y compris des mécanismes de proofreading

extrinsèque(extrinsic proofreading) – et de la réparation des mésappariements (MMR) agissant au ni-

veau de la fourche de réplication (Zhou et Kunkel, 2022). Ces mécanismes de fidélité conditionnent

directement la qualité des lectures et l’interprétabilité des jeux de données issus du séquençage. Enfin,

l’ordre et la composition des nucléotides (p. ex. le contenu GC) influencent l’expression, la régulation

et la fonction ; leurs effets ne se limitent pas aux protéines, mais concernent aussi les ARN non codants

et les éléments régulateurs (Grome et Isaacs, 2021). Le séquençage de l’ADN consiste à déterminer

l’ordre exact de ces nucléotides. Depuis la découverte de la structure de l’ADN, diverses technologies

de séquençage ont été développées pour décoder efficacement les informations génétiques et, aussi,

les technologies récentes ont permis la génération massive de données de séquençage pour différentes

espèces (Wong et al., 2019).

FIGURE 1.1 – Illustration schématique de la séquence d’ADN composée de quatre bases (A, T, C,

G). Oestreich et al. (2021).

Sur cette base moléculaire, nous passons aux unités fonctionnelles et aux niveaux de variation per-

tinents pour l’analyse génomique. Un gène est une unité fonctionnelle de l’ADN dont les produits

peuvent être une protéine ou un ARN fonctionnel (p. ex. ARNt, ARNr, microARN, ARN long non

codant), et dont les régions régulatrices contrôlent où et quand ces produits sont exprimés. Bien que

de nombreux gènes soient communs chez l’humain, des variations existent sous forme d’allèles, hé-

rités de chaque parent. Ces différences entre individus sont appelées polymorphismes génétiques. Le

type le plus fréquent est le SNP, qui implique une différence dans un seul nucléotide à une position

spécifique du génome. Les SNPs peuvent influencer l’expression des gènes et le fonctionnement des

protéines, affectant ainsi les phénotypes, c’est-à-dire les caractéristiques observables. Établir la rela-

tion entre les SNPs et les phénotypes est essentiel pour identifier les facteurs génétiques associés aux
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maladies (Botta et al., 2014; Wright et Fessele, 2017). Les Figures 1.2 et 1.3 illustrent respectivement

ces notions de locus/allèle/génotype et le lien génotype–phénotype.

FIGURE 1.2 – Exemple de locus, d’allèle

et de génotype. Un locus est une position

spécifique sur un chromosome où différentes

versions d’un gène, appelées allèles, peuvent

exister.

(Wright et Fessele, 2017)

FIGURE 1.3 – Exemple de relation entre gé-

notype et phénotype. Les variations géné-

tiques, telles que les SNPs, peuvent influencer

l’expression des gènes et conduire à des dif-

férences phénotypiques.

(Orgogozo et al., 2015)

1.2 Données génomiques et vie privée

Le génome humain contient plus de trois milliards de paires de bases réparties sur vingt-trois chromo-

somes. L’ADN de deux individus diffère en moyenne d’environ 0,5 %, mais cette faible variation peut

suffire à révéler des informations sur la santé ou les risques de maladies (Ayday et Humbert, 2017).

Les données génomiques peuvent ainsi permettre le diagnostic précoce, les interventions ciblées et

révéler des informations sur les membres d’une même famille. Les données génétiques sont à la fois

uniques à chaque individu, partagées avec les membres de la famille et inchangées au cours de la

vie, ce qui en fait une catégorie particulièrement irrévocable et à forte valeur informative d’un point

de vue éthique et en matière de confidentialité. Par exemple, la présence de certaines variantes du

gène codant pour l’apolipoprotéine E (ApoE), combinée à des antécédents familiaux, peut augmen-

ter considérablement le risque de développer la maladie d’Alzheimer (Ayday, 2016; Bonomi et al.,
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2020).

Un autre exemple emblématique est celui du génome d’Henrietta Lacks, une femme décédée en 1951

d’un cancer. Ses cellules, connues sous le nom de cellules HeLa, ont été utilisées à des fins de re-

cherche sans son consentement. Plusieurs années plus tard, les scientifiques ont séquencé l’ADN de

ces cellules et ont publié les données sur un site Web public (SNPedia). Cette divulgation a entraîné la

fuite d’informations confidentielles sur elle et sa famille, compromettant durablement leur vie privée

(Ayday, 2016).

Bien que des efforts d’anonymisation soient généralement appliqués avant le partage des données

génomiques, plusieurs études ont démontré qu’ils ne suffisent pas à garantir l’anonymat (Oestreich

et al., 2021). En effet, la réidentification d’individus à partir de bases de données ouvertes est ren-

due possible par le croisement de sources d’informations externes, même sans données personnelles

explicites (Gymrek et al., 2013). Plusieurs travaux — notamment Wang et al. (2009) (apprentissage

d’informations privées à partir de statistiques agrégées) et Wang et al. (2017) (exploitation des corré-

lations entre SNPs pour la reconstruction à grande échelle) — montrent que des statistiques agrégées

de GWAS peuvent à la fois révéler l’appartenance d’un individu à une cohorte et, en s’appuyant sur

la structure de liaison, reconstruire une part substantielle de profils génétiques à partir de jeux statis-

tiques de taille modeste.

C’est pourquoi plusieurs cadres réglementaires, comme le Règlement Général sur la Protection des

Données (RGPD) en Europe et la loi Health Insurance Portability and Accountability Act (HIPAA)

aux États-Unis, s’efforcent de restreindre l’accès à l’utilisation des données génétiques. Cependant,

en raison de ces mesures légales, la diffusion de ces informations reste un sujet compliqué et repré-

sente un enjeu crucial pour la sécurité (Bonomi et al., 2020; Oestreich et al., 2021). Ces inquiétudes

mettent en évidence l’importance d’élaborer des stratégies solides pour assurer la protection des don-

nées génomiques. Pour réduire les risques d’exposition, des méthodes comme la protection de la

confidentialité différentielle, le chiffrement homomorphe et l’apprentissage fédéré ont été suggérées.

Néanmoins, ces solutions présentent encore des limites. En pratique, les mécanismes de défense (ré-

gularisation, Differentially-private stochastic gradient descent (DP-SGD), masquage de confiance,

distillation, apprentissage fédéré chiffré) visent à réduire le signal d’appartenance au prix d’un com-
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promis utilité–confidentialité et, souvent, d’un surcoût computationnel ; une discussion plus étendue

est présentée au Chapitre 2 (Oestreich et al., 2021).

1.3 Préliminaires sur l’apprentissage automatique

L’apprentissage automatique a pris une importance croissante en génomique, notamment en raison

du volume considérable de données générées par les technologies de séquençage à haut débit. Il

est aujourd’hui largement utilisé pour des applications telles que la découverte de médicaments, la

prédiction clinique, la médecine personnalisée ou encore l’analyse de l’expression génique, grâce à sa

capacité à extraire des modèles à partir de grands ensembles de données complexes et non structurées.

Cependant, le partage de données et de modèles pose des défis en matière de confidentialité. Non

seulement la diffusion des données brutes ou statistiques peut porter atteinte à la vie privée, mais le

partage des modèles d’apprentissage peut également compromettre la confidentialité des individus

inclus dans les ensembles d’entraînement (Shokri et al., 2017; Yeom et al., 2018).

En effet, les modèles d’apprentissage automatique sont susceptibles de mémoriser certaines données

spécifiques utilisées lors de l’entraînement, au lieu de se limiter à une généralisation. De plus, ils

présentent souvent un comportement différent lorsqu’ils sont exposés à des données vues pendant

l’entraînement (membres) par rapport à des données nouvelles (non-membres) (Yeom et al., 2018;

Carlini et al., 2021). Ce décalage comportemental fonde les attaques par inférence d’appartenance

(MIA), présentées dans le chapitre suivant.

Surapprentissage. On parle de surapprentissage lorsque le modèle apprend trop fidèlement les par-

ticularités (et le bruit) de Dtrain, au détriment de la généralisation. Il se manifeste par un écart mar-

qué entre les performances d’entraînement et de test ainsi que par des sorties très confiantes sur les

exemples vus, ce qui accroît la séparabilité membre/non-membre exploitée par les MIA.

Points de données et ensemble de données (contexte génomique).

Dans notre jeu de données de levure, un point de données correspond à une souche i identifiée par un
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identifiant (par exemple 01_01, 01_02, etc.). Cette souche est décrite par un vecteur de génotypes

xi = (gi1, . . . , gip) ∈ {−1, 1}p,

où chaque composante gij représente le génotype de la souche i au SNP j. Concrètement, les colonnes

du fichier de génotypes portent des identifiants tels que 33070 _chrI _33070 _A_T, etc., et la

valeur gij ∈ {−1, 1} correspond à un codage binaire symétrique de l’allèle observé pour ce SNP chez

la souche i (par exemple −1 pour l’allèle de référence et 1 pour l’allèle minoritaire).

Concrètement, les colonnes du fichier de génotypes portent des identifiants tels que 33070_chrI_

33070_A_T, où chaque étiquette encode : (i) la position du SNP sur le chromosome (33070),

(ii) le chromosome concerné (chrI), (iii) la position répétée pour compatibilité avec certains outils

génomiques, et (iv) les allèles de référence et alternatif (A et T). La valeur gij ∈ {−1, 1} correspond

ensuite à un codage binaire symétrique de l’allèle observé chez la souche i pour ce SNP (par exemple

−1 pour l’allèle de référence et 1 pour l’allèle alternatif).

La cible yi est un phénotype mesuré pour cette même souche. Dans notre cas, les phénotypes sont

des valeurs quantitatives de croissance sous différentes conditions environnementales, organisées en

colonnes portant des noms comme 1_CobaltCl, 1_Xylose_1, 1_YPD_1, etc. Pour une tâche

de prédiction donnée, on choisit une colonne phénotypique cible (par exemple la croissance sous

1_Xylose_1) et on note yi la valeur correspondante pour la souche i.

Un ensemble de données supervisé s’écrit alors

D = {(xi, yi)}ni=1,

où n est le nombre de souches et p le nombre de SNPs (colonnes génotypes). Ce cadre est typiquement

en grande dimension (p ≫ n), avec des corrélations de liaison (LD) entre SNPs.

— Entraînement (Dtrain) : on considère hθ(x), un algorithme d’apprentissage qui prend x en

entrée (vecteur de caractéristiques) et θ comme vecteur de paramètres. L’ensemble des fonc-

tions possibles {∀θ, x ↦→ hθ(x)} constitue l’espace des hypothèses. L’objectif est d’ajuster

θ en minimisant une fonction de perte empirique L(θ;Dtrain) afin d’obtenir de bonnes perfor-
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mances de généralisation. En pratique, le modèle apprend les régularités pertinentes pour la

tâche visée (De Cristofaro, 2020).

— Validation (Dval) : après l’entraînement, on évalue le modèle sur un ensemble de validation

distinct pour sélectionner les hyperparamètres (p. ex. régularisation, profondeur) et régler des

mécanismes comme l’early stopping, sans toucher à Dtest (De Cristofaro, 2020).

— Évaluation (Dtest) : une fois l’architecture et les hyperparamètres figés, on mesure la perfor-

mance finale sur un ensemble de test jamais utilisé aux étapes précédentes, ce qui reflète le

comportement attendu en déploiement (prédictions sur des données non vues) (De Cristofaro,

2020).

1.4 Types d’apprentissage automatique

En règle générale, les algorithmes d’apprentissage automatique sont divisés en trois catégories : l’ap-

prentissage supervisé, l’apprentissage non supervisé et l’apprentissage par renforcement, qui sont

déterminés en fonction du type d’information fournie par les données d’entraînement et de diverses

tâches d’apprentissage. Au fil des années, de nouvelles catégories, telles que l’apprentissage semi-

supervisé, l’apprentissage autosupervisé et l’apprentissage génératif et discriminatif, ont été ajoutées

(Rigaki et Garcia, 2023).

1.4.1 L’apprentissage supervisé

Dans l’apprentissage supervisé, les données d’entraînement sont composées d’exemples étiquetés,

c’est-à-dire que chaque entrée est associée à une sortie connue. Le modèle apprend à établir une

relation entre les entrées et les sorties, ce qui lui permet de prédire correctement l’étiquette d’une

nouvelle donnée inconnue. La tâche est appelée classification, si le domaine de sortie est catégoriel.

S’il est cardinal, la tâche est régression. Par exemple, le filtrage du pourriel parmi les courriels est

une tâche de classification et la prédiction de l’âge est une tâche de régression (Papernot et al., 2018a;

De Cristofaro, 2020; Alnuaimi et Albaldawi, 2024; Rigaki et Garcia, 2023). Dans ce mémoire, nous

nous intéressons principalement à des tâches de classification supervisée, pour lesquelles plusieurs

familles de modèles sont couramment utilisées :
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— Modèles linéaires (par exemple, régression logistique, Support Vector Machine (SVM) li-

néaire) : ils apprennent une frontière de décision linéaire dans l’espace des caractéristiques

et servent souvent de modèles de référence pour évaluer les performances sur des données

génomiques (Katsara et al., 2021; Lourenço et al., 2024).

— Modèles à base d’arbres de décision (arbres, forêts aléatoires, méthodes d’amplification de

gradient comme eXtreme Gradient Boosting (XGBOOST)) : ils capturent des relations non

linéaires et des interactions entre variables, et sont largement utilisés en pratique pour des

tâches de classification tabulaire (Lourenço et al., 2024; Chen et Ishwaran, 2012).

— Réseaux de neurones profonds : en particulier les réseaux entièrement connectés et les ré-

seaux convolutifs unidimensionnels, capables de modéliser des relations complexes dans des

espaces de grande dimension. Dans ce travail, un réseau convolutionnel 1D est utilisé comme

modèle cible pour la prédiction de phénotypes à partir de génotypes (Abdollahi-Arpanahi

et al., 2020).

Ces familles de modèles seront réutilisées et discutées dans les chapitres suivants, notamment lors de

la présentation des attaques par inférence d’appartenance et de l’état de l’art correspondant.

1.4.2 L’apprentissage non supervisé

Lorsque les entrées ne sont pas étiquetées, on parle d’apprentissage non supervisé. L’objectif est

d’identifier des structures sous-jacentes dans les données, en regroupant les observations pour consti-

tuer des amas (clusters). Cet apprentissage s’appuie sur des techniques statistiques visant à découvrir

des structures latentes ou des régularités cachées au sein de données non étiquetées. On distingue clas-

siquement deux grandes familles : le regroupement (clustering) et l’extraction de règles d’association

(Alnuaimi et Albaldawi, 2024; Alzubi et al., 2018).

1.4.3 L’apprentissage semi-supervisé

L’apprentissage semi-supervisé est un mélange de l’apprentissage supervisé et non supervisé. Quand

les données étiquetées sont moins nombreuses que celles qui ne le sont pas, cet algorithme est uti-

lisé. D’abord, les données non étiquetées sont utilisées dans l’apprentissage non supervisé afin de les
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regrouper. Par la suite, les données étiquetées sont utilisées pour classer les données d’entraînement

représentatives de chaque cluster. Cette approche permet d’attribuer automatiquement et à faible coût

des étiquettes aux données non étiquetées (Rigaki et Garcia, 2023; Fergus et Chalmers, 2022).

1.4.4 L’apprentissage par renforcement

L’apprentissage par renforcement est une branche particulière de l’apprentissage automatique où un

agent apprend à prendre des décisions optimales par essais-erreurs dans un environnement dyna-

mique. Cette méthode ne dépend pas des étiquettes clairement définies par un éducateur, mais d’un

mécanisme de récompense. Dans le but de maximiser le cumul des récompenses au fil du temps en

développant une stratégie efficace, l’agent reçoit un retour positif lorsqu’il adopte un comportement

favorable, sinon un retour négatif (punition). L’apprentissage se fait donc sans connaissance préalable

et l’agent commence par des essais aléatoires, puis affine sa stratégie à mesure qu’il accumule de

l’expérience. Cette approche est appliquée dans les domaines suivants : la robotique, les jeux vidéo,

la conduite autonome (Fergus et Chalmers, 2022; Rigaki et Garcia, 2023; Alnuaimi et Albaldawi,

2024). Ces catégories s’implantent au sein d’architectures de déploiement variées qui conditionnent

directement les risques de confidentialité, comme rappelé ci-après.

1.5 Architectures d’apprentissage

1.5.1 Apprentissage centralisé

Les méthodes d’apprentissage centralisé ont tendance à collecter et à stocker les données brutes distri-

buées générées par divers appareils ou organisations sur un serveur unique ou une grappe de serveurs

avec stockage partagé. Dans ce cadre, les données et le modèle sont colocalisés : toutes les données,

qu’elles proviennent d’une ou de plusieurs sources, sont regroupées au même endroit pour entraîner

un seul modèle. Ce lieu peut être constitué d’une ou de plusieurs machines dans un même centre

de données. Cette architecture inclut MLAAS, où le propriétaire des données les téléverse sur une

plateforme cloud spécialisée (Rigaki et Garcia, 2023). Cette dernière s’occupe ensuite de concevoir

et d’optimiser un modèle en fonction des objectifs prédéfinis. Bien que cette solution soit souvent

pratique et performante, elle soulève des préoccupations importantes en matière de sécurité et de

confidentialité, en particulier dans les contextes sensibles. La transmission sans restriction de données
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brutes vers des serveurs tiers et la centralisation dans une région géographique ou une entité unique

entraînent une augmentation des risques de violation de la vie privée et de fuites d’informations. De

plus, cette approche est confrontée à plusieurs limitations pratiques, telles que la dépendance à la

capacité de calcul centralisée, un temps d’apprentissage élevé et l’impossibilité d’accéder à des don-

nées distribuées géographiquement sans compromettre leur intégrité ou leur confidentialité (Liu et al.,

2019).

1.5.2 Apprentissage fédéré

L’apprentissage fédéré est une approche efficace qui permet d’utiliser des ressources distribuées afin

d’entraîner de manière collaborative un modèle d’apprentissage automatique, tout en gardant les don-

nées sur chaque appareil ou site. Contrairement aux méthodes centralisées, il ne nécessite pas le

transfert des données brutes vers un serveur centralisé. Au lieu de cela, le modèle est entraîné loca-

lement sur chaque nœud (appareil ou organisation). Seules les mises à jour du modèle (par exemple,

les gradients ou les poids) sont ensuite partagées et agrégées pour former un modèle global. Comme

le soulignent McMahan et al. (2017) dans leur article fondateur sur l’apprentissage fédéré, cette mé-

thode repose sur le principe fondamental selon lequel il est préférable d’« amener le code vers les

données plutôt que d’amener les données vers le code ». Cela répond à des problématiques cruciales

concernant la confidentialité, la propriété des données et leur emplacement. L’apprentissage fédéré

exploite les ressources de calcul locales réparties dans différentes régions ou institutions. Il s’appuie

généralement sur des techniques de protection, telles que le chiffrement ou d’autres mécanismes de

défense, pour garantir la sécurité et la confidentialité des données. Cette méthode permet de se confor-

mer aux exigences réglementaires en matière de protection des données tout en exploitant la richesse

et la diversité des données distribuées pour construire des modèles plus robustes et généralisables (Liu

et al., 2022).

1.6 L’attaque par l’inférence d’appartenance

Puisque les ensembles de données génomiques peuvent contenir des informations sensibles sur les

individus, il est essentiel que les modèles d’apprentissage automatique ne révèlent pas, même indi-

rectement, la présence ou l’absence d’un individu dans les données d’entraînement.
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L’attaque par inférence d’appartenance est une attaque permettant de prédire si une donnée spécifique

est membre ou non d’un ensemble d’entraînement d’un modèle cible (Shokri et al., 2017; Hu et al.,

2022). Cette attaque repose sur le fait que les modèles se comportent souvent différemment lorsqu’ils

traitent des données vues pendant l’entraînement (membres) comparées à des données inconnues

(non-membres).

L’attaquant peut avoir deux niveaux de connaissance : si l’attaquant possède toutes les informations

sur le modèle cible, y compris sa distribution de données d’entraînement, son architecture et ses

paramètres, l’attaque est qualifiée de « boîte blanche ». Dans le cas d’une attaque en boîte blanche,

l’adversaire a accès aux gradients et aux poids internes du modèle, ce qui lui permet de reconstruire

des informations précises sur les échantillons d’entraînement. Ces attaques sont donc plus efficaces et

exigent des mesures de défense plus solides.

En revanche, si l’attaquant ne dispose que d’informations limitées sur la distribution des données

d’entraînement et effectue des requêtes sur le modèle cible sans avoir accès à ses paramètres internes,

l’attaque est qualifiée de « boîte noire ». Dans les MIAs basées sur un classificateur binaire, le mo-

dèle d’attaque est un classificateur binaire qui déduit les membres et les non-membres de l’ensemble

des données d’entraînement du modèle cible. Pour ce faire, l’approche du modèle d’ombre, présentée

par Shokri et al. (2017), est largement utilisée. Dans cette technique, l’attaquant crée un ou plusieurs

modèles semblables au modèle cible, entraînés sur des jeux de données artificiels reproduisant sa dis-

tribution, afin de simuler son comportement. En comparant les réponses obtenues, il est alors possible

de distinguer les membres des non-membres de l’ensemble d’entraînement. En boîte blanche, le mo-

dèle d’ombre est construit avec la même structure et le même algorithme d’apprentissage que ceux du

modèle cible. En boîte noire, l’attaquant obtient le vecteur de prédiction d’un enregistrement d’entrée

uniquement lorsqu’il interroge le modèle cible.

En ce qui concerne les modèles d’ombre, l’attaquant a accès à la fois aux données d’entraînement et

aux données de test. Cela lui permet de créer un ensemble de données qui contient les caractéristiques

et la vérité de terrain de l’appartenance des enregistrements de données d’entraînement et de test. En

utilisant cette base de données, l’attaquant peut entraîner un modèle d’attaque fondé sur un algorithme

de classification binaire.
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Variantes d’attaque. Au-delà des modèles d’ombre, les MIA se déclinent en approches (i) fondées

sur le score de confiance (vecteur de probabilités, top-k, entropie), (ii) fondées sur la perte (seuil sur

ℓ(x, y) ou rapport de vraisemblance calibré, p. ex. LiRA), (iii) label-only (sans accès aux probabilités,

via agrégation d’augmentations et marge de décision), et (iv) white-box (gradients/poids). Ces familles

diffèrent par les hypothèses d’accès et le signal exploité, mais partagent le même objectif : discriminer

membres et non-membres.

FIGURE 1.4 – Dans ce scénario, l’adversaire bé-

néficie d’un accès complet à l’architecture, aux

poids et aux gradients du modèle cible, ce qui

facilite la mise en œuvre d’attaques très précises.

Cependant, ce type d’attaque repose sur une hy-

pothèse souvent irréaliste dans les applications

réelles (Hu et al., 2022).

FIGURE 1.5 – Dans ce cas, l’adversaire n’a ac-

cès qu’aux sorties du modèle cible (par exemple,

les scores de prédiction), sans aucune informa-

tion sur sa structure interne. Cela rend l’attaque

plus difficile à concevoir, mais aussi plus géné-

rique et réaliste, notamment dans les contextes

de MLAAS. C’est ce défi que ce mémoire cherche

à relever (Hu et al., 2022).

Note (notation commune aux Figures 1.4–1.5). x : entrée ; h(ℓ) : activation de la couche ℓ ; f(x; θ) : modèle paramétré

par θ ; θ∗ : paramètres appris ; p(y | x) : distribution des probabilités ; ŷ : prédiction ; attacker : adversaire.

Protocole d’évaluation. Pour évaluer l’efficacité d’une attaque par inférence d’appartenance, il est

nécessaire de constituer un ensemble de données d’évaluation dont le statut d’appartenance est connu

de manière contrôlée. Dans notre protocole, un échantillon est considéré comme membre s’il provient

du jeu d’entraînement du modèle cible, et comme non-membre s’il appartient à un sous-ensemble dé-

dié de données jamais utilisées pendant l’entraînement (jeu unseen). Ces deux groupes sont construits

de manière équilibrée afin d’éviter un biais lié aux proportions de classes. Pour chaque échantillon,

nous collectons uniquement la sortie du modèle cible (probabilité prédite), sans accès à sa structure in-

terne, conformément au cadre en boîte noire. Les paires (score, étiquette) ainsi obtenues constituent le

jeu d’évaluation de l’attaque, sur lequel nous mesurons les métriques classiques des MIA : exactitude,

précision, rappel, F1-score, ainsi que le couple TPR/FPR et la courbe ROC. Ce protocole, appliqué
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de manière identique aux deux méthodologies proposées, garantit une comparaison cohérente et une

évaluation contrôlée de la capacité du modèle d’attaque à distinguer membres et non-membres. Les

détails complets sont fournis au Chapitre 2.

1.7 Objectif et contributions du projet

L’objectif de cette étude est d’analyser et d’évaluer la vulnérabilité des modèles d’apprentissage auto-

matique face aux attaques qui révèlent la confidentialité des données, comme l’attaque par inférence

d’appartenance. Une étude antérieure menée par Chen et al. (2020) a exploré la MIA en boîte blanche

sur des données génomiques. Les auteurs ont démontré que, même dans ce contexte, des techniques

de protection comme la confidentialité différentielle peuvent atténuer le risque de réidentification. Ce-

pendant, le scénario boîte blanche suppose un accès total au modèle, ce qui est rarement le cas dans

les environnements réels.

Contrairement à cette approche, notre travail se concentre sur un scénario en boîte noire, plus repré-

sentatif des usages réels (par exemple dans les services MLAAS), où l’adversaire ne dispose que des

sorties du modèle cible. Plus précisément, nous cherchons à implémenter une attaque par inférence

d’appartenance contre un modèle prédictif inférant un phénotype à partir de données génomiques.

Notre objectif est de développer un modèle d’attaque généralisable, capable de s’adapter à différentes

configurations sans nécessiter une connaissance fine du modèle attaqué.

Enfin, nous visons à évaluer, dans un cadre réaliste de boîte noire, la capacité d’un adversaire à inférer

l’appartenance d’échantillons à un modèle génomique prédictif et à concevoir un modèle d’attaque

généralisable limitant les faux positifs. Pour ce faire, nous passons en revue les attaques contre les

modèles d’apprentissage automatique avec un focus sur les MIA, synthétisons les approches récentes

et leurs métriques d’évaluation, concevons et mettons en œuvre une MIA en boîte noire sur données

génomiques, puis menons une analyse expérimentale démontrant la capacité du modèle à distinguer

de façon fiable membres et non-membres tout en maîtrisant les biais.



20

1.8 Conclusion

L’exploitation des données génomiques par l’apprentissage automatique ouvre des perspectives pro-

metteuses en biologie et en médecine. Cependant, elle s’accompagne de risques importants en matière

de confidentialité, notamment liés à la possibilité d’identifier des individus ou d’inférer des informa-

tions sensibles à partir de leurs données.

En effet, toute fuite d’information génomique peut avoir des conséquences durables non seulement

pour l’individu concerné, mais aussi pour sa famille. Ce chapitre a mis en lumière l’importance des

données génomiques, les risques liés à leur exposition, ainsi que les vulnérabilités spécifiques des mo-

dèles d’apprentissage automatique face aux attaques visant à révéler des informations confidentielles.

Parmi ces menaces, l’attaque par inférence d’appartenance (MIA) constitue un risque particulièrement

préoccupant, car elle permet à un adversaire de déterminer si un échantillon a été utilisé pour entraî-

ner un modèle donné. Ce type d’attaque est d’autant plus redoutable qu’il peut s’appliquer dans des

scénarios réalistes de boîte noire, où l’adversaire ne connaît ni les données ni la structure du modèle.

Dans ce mémoire, nous proposons une attaque MIA en boîte noire appliquée à un modèle prédictif

entraîné sur des données génomiques de levure. Notre objectif est d’évaluer la faisabilité et la généra-

lisation de ce type d’attaque, en mettant l’accent sur la robustesse et la précision du modèle d’attaque.

Le chapitre suivant présente l’état de l’art en matière de protection de la vie privée en apprentis-

sage automatique, en détaillant les différentes formes d’attaques existantes ainsi que les stratégies de

défense actuellement proposées.



CHAPITRE 2

PRÉSENTATION DE L’ÉTAT DE L’ART DE L’ATTAQUE D’INFÉRENCE

D’APPARTENANCE

Après avoir terminé le projet du génome humain (Human genome project (HGP)), le perfectionnement

des techniques de séquençage ainsi que l’essor des domaines de l’informatique et des télécommuni-

cations ont permis d’accumuler, de classer, d’analyser et de diffuser une immense quantité de données

génétiques. L’accessibilité croissante des données génomiques et leur nature sensible ont suscité d’im-

portantes préoccupations en matière de confidentialité. Étant donné que les modèles d’apprentissage

automatique (ML) peuvent fonctionner efficacement avec de vastes ensembles de données et four-

nir des prédictions précises, leur utilisation en biologie, et plus particulièrement dans l’analyse des

données génomiques, est devenue de plus en plus populaire. L’intégration des modèles d’apprentis-

sage automatique dans l’analyse des données génomiques a apporté des avancées considérables. Elle

a notamment permis des progrès en médecine personnalisée, en détection précoce des maladies et

en recherche biologique. Cependant, entraîner les modèles d’apprentissage automatique sur des en-

sembles de données sensibles pose des risques significatifs de fuite d’informations, car ces modèles

peuvent mémoriser et exposer certaines caractéristiques des données d’entraînement. Ces vulnérabili-

tés permettent d’attaquer les modèles d’apprentissage automatique afin de divulguer des informations

sensibles sur la confidentialité des données d’entraînement de l’apprentissage automatique (Hu et al.,

2022).

Dans la suite de ce chapitre, nous (i) organisons un panorama des principales attaques contre les mo-

dèles d’apprentissage automatique, en distinguant celles qui visent la sécurité du modèle de celles qui

ciblent la vie privée des données, (ii) formalisons les attaques par inférence d’appartenance ainsi que

les modèles d’adversaire et les niveaux de sortie considérés, (iii) présentons et comparons les princi-

pales approches d’attaque (modèles d’ombre, heuristiques sur les scores, comparaison différentielle),

(iv) passons en revue l’état de l’art des MIA sur données génomiques et biomédicales, et (v) synthé-

tisons les stratégies de défense existantes (masquage de la confiance, régularisation, confidentialité

différentielle, distillation des connaissances) en les replaçant dans le contexte de ce mémoire.



22

2.1 Rappels sur l’apprentissage automatique

L’apprentissage automatique est une branche de l’intelligence artificielle qui permet à un système

informatique d’apprendre à partir de données et d’améliorer ses performances sans être explicitement

programmé pour chaque tâche. Il repose sur des algorithmes capables de détecter des motifs, de faire

des prédictions et de prendre des décisions dans des domaines variés tels que la santé, la finance, la

sécurité, la reconnaissance d’image ou encore la biologie computationnelle (Alnuaimi et Albaldawi,

2024; Muhamedyev, 2015). Nous renvoyons le lecteur au chapitre 1 pour une introduction générale

plus détaillée à l’apprentissage automatique.

2.2 Attaques sur les modèles d’apprentissage automatique

En raison du développement de l’intelligence artificielle et de l’intégration croissante des modèles

d’apprentissage automatique dans divers domaines, comme la santé, la finance ou la sécurité et la jus-

tice, la sécurité des modèles d’apprentissage automatique et la protection des données sensibles sont

devenues un sujet crucial. Des recherches récentes ont révélé que les modèles d’apprentissage auto-

matique sont exposés à diverses attaques. Ces attaques peuvent avoir comme objectif de manipuler

le comportement du modèle, d’en extraire des informations sensibles, ou encore de compromettre la

confidentialité des données d’entraînement. Les systèmes d’apprentissage automatique sont confron-

tés à une variété de menaces, qui peuvent survenir à différentes étapes de leur cycle de vie, soit au

moment de l’entraînement, soit durant la phase d’inférence. Ces menaces exploitent les vulnérabilités

des modèles, des données ou des interfaces d’accès (Xue et al., 2020).

Comme illustré à la figure 2.1, un attaquant peut intervenir :

— Phase d’entraînement :

— Empoisonnement des données : manipulation des exemples/étiquettes pour biaiser l’ap-

prentissage.

— Insertion d’échantillons malveillants : ajout de points conçus pour dégrader le modèle.

— Phase d’inférence :

— Attaques adversariales : envoi d’entrées soigneusement construites pour provoquer des

erreurs.
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FIGURE 2.1 – Les surfaces d’attaque dans un pipeline d’apprentissage automatique. Les attaquants

peuvent agir pendant l’entraînement (empoisonnement de données) ou pendant l’inférence (attaques

adversariales, inférence d’appartenance, etc.).

— Inférence d’appartenance (MIA) : déduire si un exemple a servi à l’entraînement.

— Extraction de modèle : répliquer le comportement (ou l’interface de programmation appli-

cative, (Application programming interface (API))) du modèle cible.

2.2.1 Attaques visant la sécurité du modèle

2.2.1.1 L’attaque adversariale

Les attaques adversariales sont les attaques les plus courantes dans le domaine de l’apprentissage au-

tomatique. Dans ce genre d’attaque, en ajoutant une petite perturbation aux données, le modèle de

classification se trompe. L’attaque adversariale peut être soit ciblée, soit non ciblée. Dans l’attaque

adversariale ciblée, les données sont changées pour obliger le modèle à prédire un résultat particulier.

En revanche, l’attaque adversariale non ciblée ne cherche pas à obliger le modèle à une sortie particu-

lière, mais cherche simplement à entraîner une quelconque mauvaise prédiction du modèle (Rahman

et al., 2023). Ce type d’attaque est réalisé pendant la phase d’inférence, une fois le modèle entraîné,

afin de manipuler ses prédictions sans en modifier les paramètres internes.
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2.2.1.2 L’attaque par empoisonnement

L’empoisonnement de données est une méthode d’attaque visant la phase d’entraînement d’un modèle

d’apprentissage automatique. L’adversaire introduit dans l’ensemble d’entraînement des données ma-

licieusement conçues, qu’on appelle des échantillons empoisonnés. Ces données semblent normales

à première vue, mais elles ont été soigneusement manipulées pour influencer négativement l’appren-

tissage du modèle. Le but peut être de faire échouer totalement l’entraînement, de réduire les perfor-

mances globales du modèle, ou encore de créer des comportements erronés ciblés sur certains types

d’entrées. Ce type d’attaque est particulièrement insidieux, car l’attaquant ne modifie pas directement

le fonctionnement du modèle ; il respecte les étapes classiques du processus d’apprentissage, mais agit

uniquement sur les données fournies. En s’appuyant sur la confiance accordée aux données d’entrée,

l’adversaire peut corrompre subtilement le modèle, parfois sans laisser de trace visible (Tian et al.,

2022).

2.2.2 Attaques visant la vie privée des données

2.2.2.1 L’attaque par inversion de modèle

Dans cette attaque, l’adversaire essaie d’extraire des informations des données d’entraînement du

modèle. L’adversaire peut utiliser la sortie du modèle afin de reconstruire les données d’entrée pour

induire en erreur le modèle cible. Fredrikson et al. (2015) ont été les premiers à proposer une méthode

pour reconstituer les caractéristiques personnelles d’un individu, telles que son apparence faciale ou

son profil génétique, à partir des scores de confiance fournis par un algorithme d’apprentissage auto-

matique. Leur étude a montré qu’un attaquant peut exploiter les prédictions du modèle pour inverser

son comportement et générer une estimation plausible de l’entrée d’origine, même dans une situation

de boîte noire. Par exemple, dans le cas d’un système de reconnaissance faciale, l’attaque permettrait

de reconstruire l’image d’un visage à partir de simples sorties de probabilité du modèle. Cette attaque

met en évidence une fuite potentielle d’informations, même lorsque les données brutes ne sont pas

directement divulguées. Elle s’effectue généralement pendant la phase d’inférence, lorsque le modèle

est déjà entraîné et accessible (Fredrikson et al., 2015; Rahman et al., 2023).
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2.2.2.2 L’attaque par extraction du modèle

Dans l’attaque par extraction de modèles, l’adversaire interroge le modèle cible en passant par une

interface de prédiction (comme une API) afin de reconstruire un modèle équivalent. Bien qu’il ne

possède aucune connaissance préalable sur l’architecture ou les paramètres internes du modèle cible,

il peut choisir des entrées et observer les sorties correspondantes. À partir de ces paires entrée-sortie,

l’attaquant entraîne un modèle substitut qui imite le comportement du modèle original (Zhang et al.,

2021). Cette attaque se déroule typiquement pendant la phase d’inférence, une fois le modèle entraîné

et exposé au travers d’une interface de requête, comme c’est souvent le cas dans les services MLAAS.

Ce procédé ne sert pas seulement à reproduire les performances du modèle cible ; il permet aussi

d’effectuer d’autres attaques, telles que des attaques adversariales ou des attaques d’inférence, tout

en présentant un risque élevé de vol de propriété intellectuelle. Ce type d’attaque a été démontré de

manière concrète par Tramèr et al. (2016) dans leur étude sur les modèles accessibles à travers des

API dans les services MLAAS, illustrant ainsi la facilité avec laquelle un adversaire peut extraire un

modèle complexe en boîte noire (Tramèr et al., 2016).

2.2.2.3 L’attaque par l’inférence d’appartenance

L’attaque par inférence d’appartenance est une menace sérieuse pour la confidentialité des données,

en particulier dans les domaines sensibles, comme la santé ou la génomique. Un adversaire tente de

déterminer si un échantillon de données a été utilisé lors de l’entraînement d’un modèle d’appren-

tissage automatique. Cette capacité à inférer l’appartenance peut entraîner la divulgation de données

personnelles sensibles. Cette attaque se déroule typiquement pendant la phase d’inférence, une fois le

modèle entraîné et accessible, et elle peut être mise en œuvre même avec un accès limité à l’informa-

tion sur le modèle cible (Shokri et al., 2017).

2.2.3 Détails sur les attaques par inférence d’appartenance

L’attaque par inférence d’appartenance détermine si un individu est dans l’ensemble d’entraînement

d’un modèle ciblé ou non. Cette attaque montre une menace majeure pour la confidentialité des don-

nées, surtout dans les domaines sensibles comme la santé et la génomique.
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Imaginez un hôpital qui utilise un modèle d’apprentissage automatique sur le service infonuagique

afin de diagnostiquer une maladie à partir des données génomiques. Ce modèle a déjà été entraîné

avec les données des patients ayant fourni leurs données génomiques. Un adversaire peut interroger

ce modèle pour identifier si le génome d’une personne a servi à entraîner le modèle ou non, ce qui

pourrait révéler des informations sensibles sur son état de santé.

2.2.4 Pourquoi l’attaque par l’inférence d’appartenance fonctionne-t-elle ?

Quand les modèles d’apprentissage automatique sont parfaitement ajustés sur les données d’entraîne-

ment, mais qu’ils généralisent mal aux données de test, on parle de surapprentissage. La relation entre

le surapprentissage de modèle et la force de l’attaque par inférence d’appartenance en boîte noire est

montrée par Shokri et al. (2017). Ensuite, Yeom et al. (2018) a confirmé cet effet de surapprentis-

sage. L’adversaire utilise ce comportement du modèle afin de déterminer si un enregistrement a servi

à entraîner le modèle ou non. Le surapprentissage est causé par la complexité du modèle et la taille

limitée de l’ensemble de données d’entraînement (Hu et al., 2022). Les modèles complexes, tels que

les réseaux de neurones profonds (Deep neural network (DNN)), qui comportent un grand nombre

d’hyperparamètres, peuvent mémoriser en détail les données d’entraînement, surtout lorsqu’ils sont

entraînés pendant plusieurs époques. Par ailleurs, lorsqu’on dispose d’un ensemble de données d’en-

traînement de taille limitée, le modèle a plus de difficulté à refléter correctement la diversité réelle des

données. Cela réduit sa capacité à bien s’adapter à de nouvelles situations. De plus, le type de modèle

cible joue un rôle important dans la réussite d’une attaque par inférence d’appartenance. Lorsque la

limite de décision du modèle n’est pas facilement influencée par les données spécifiques, le modèle est

généralement plus résistant à cette forme d’attaque. Hu et al. (2022) ont montré que certains modèles,

tels que le classifieur bayésien naïf, sont moins vulnérables aux attaques par inférence d’appartenance

à cause de leur fonctionnement probabiliste et de leur tendance limitée à mémoriser les données d’en-

traînement. Par contre, les arbres de décision ou les réseaux de neurones, qui sont des modèles plus

complexes, ont tendance à apprendre des schémas spécifiques à partir des exemples vus pendant l’en-

traînement. Cela peut entraîner des fuites d’informations. Les auteurs soulignent également que le

nombre de classes dans un jeu de données a un impact non négligeable sur l’efficacité de l’attaque :

plus ce nombre est élevé, plus le modèle risque d’avoir un comportement différencié selon les entrées,

ce qui facilite la détection des données ayant servi à l’apprentissage (Truex et al., 2019).
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2.2.5 Niveau de connaissance de l’adversaire

L’efficacité d’une attaque par inférence d’appartenance dépend des informations dont dispose l’ad-

versaire sur (i) le modèle cible et (ii) les données d’entraînement (Hu et al., 2022).

La connaissance du modèle cible correspond au niveau d’accès de l’adversaire à l’architecture, à l’al-

gorithme d’apprentissage et, dans certains cas, aux paramètres internes du modèle. Cette connaissance

donne lieu à deux cadres, soit l’attaque en boîte blanche et l’attaque en boîte noire. Dans un cadre de

boîte blanche, l’adversaire a un accès complet à ces informations, ce qui permet de concevoir des

attaques très précises. En revanche, dans un cadre de boîte noire, l’adversaire n’a accès qu’aux pré-

dictions du modèle (scores de confiance, classes ou logits) sans connaissance de son fonctionnement

interne.

En parallèle, l’adversaire peut également avoir une connaissance partielle ou complète de la distri-

bution des données d’entraînement. Il est souvent supposé que l’adversaire peut obtenir un jeu de

données d’ombre provenant de la même distribution que les données d’entraînement.

Il est crucial de noter que, dans les attaques en boîte noire, le degré de connaissance peut varier selon

les informations fournies par le vecteur de prédiction. En effet, les attaques d’inférence d’apparte-

nance en boîte noire dépendent du niveau de sortie du modèle cible. Il existe trois catégories selon le

niveau d’information renvoyé par le modèle :

— Vecteur complet de probabilités : l’adversaire infère l’étiquette et peut calculer des mesures

comme la perte (p. ex., entropie croisée). C’est le cas le plus riche en information et, en

général, le plus favorable aux attaques.

— Top-k probabilités : l’information est réduite, mais l’adversaire peut encore construire un mo-

dèle d’attaque en exploitant des motifs partiels (rang, écarts entre scores, etc.), avec des per-

formances typiquement inférieures au cas précédent.

— L’étiquette seule (Label-only) : même lorsque seule l’étiquette prédite est fournie, des attaques

restent possibles (p. ex., via des signaux de décision). Ce n’est pas le scénario le plus perfor-

mant, mais il demeure préoccupant car il montre que masquer les scores ne suffit pas.
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2.2.6 Niveau d’approche de l’attaque d’inférence d’appartenance

Selon la stratégie de l’attaquant et des ressources disponibles, différentes approches ont été dévelop-

pées pour mener des attaques par inférence d’appartenance. Ces approches se distinguent principa-

lement par la manière dont elles exploitent le modèle cible, la quantité de connaissances nécessaires

ainsi que les outils employés pour estimer la probabilité d’appartenance d’une donnée à l’ensemble

d’entraînement. Voici un aperçu des trois principales familles d’approches :

— Approche par classificateur (modèle d’attaque supervisé) : cette technique s’appuie sur la for-

mation d’un modèle d’attaque, généralement un classificateur binaire, qui prédit si une donnée

a été vue ou non par le modèle cible. Pour ce faire, l’attaquant crée un ou plusieurs modèles

d’ombre, chacun entraîné sur un ensemble de données simulant la distribution du modèle

cible. Le modèle d’attaque est ensuite entraîné à partir des réponses du modèle d’ombre sur

des exemples connus comme étant membres (ensemble d’entraînement) ou non (ensemble de

tests). Il apprend ainsi à détecter des différences de comportement du modèle sur ces deux

types d’exemples. Cette méthode demande un minimum de connaissance du domaine ou de

la distribution des données d’entraînement, mais elle fonctionne bien, même dans un cadre

en boîte noire. Cette approche est illustrée notamment par l’attaque pionnière de Shokri et al.

(2017).

— Approche basée sur des métriques heuristiques : dans cette famille d’attaques, l’adversaire ne

construit pas explicitement de modèle d’attaque. Il exploite directement des mesures simples

dérivées des sorties du modèle cible pour estimer la probabilité d’appartenance d’un échan-

tillon. Les métriques couramment utilisées sont les suivantes :

— La perte (loss) : on suppose que les membres de l’ensemble d’entraînement ont tendance

à générer une perte plus faible.

— La confiance maximale : la plus haute probabilité attribuée à une classe.

— L’entropie de la prédiction : mesure l’incertitude du modèle.

— Approche par comparaison différentielle (analyse statistique) : ici, l’attaquant utilise des mé-

thodes statistiques pour comparer le comportement du modèle sur une donnée cible avec ce-

lui observé sur un ensemble de données considérées comme non-membres. L’objectif est de

formuler l’appartenance comme une hypothèse statistique à tester. Cette méthode est particu-

lièrement utile pour classer les enregistrements les plus vulnérables à l’inférence. L’attaque
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pragmatique de (Long et al., 2020) illustre cette méthode avec l’utilisation de tests d’hypo-

thèses et de valeurs-p (p-values) pour détecter les enregistrements les plus vulnérables.

Plus concrètement, supposons que l’attaquant dispose d’un ensemble de référence de m =

1000 individus dont il sait qu’ils ne font pas partie de l’ensemble d’entraînement (non-membres).

Il interroge le modèle sur ces 1000 non-membres et obtient une distribution de pertes {ℓ(xj , yj)}mj=1,

typiquement comprises entre, par exemple, 0,5 et 0,8. Pour une donnée cible (x⋆, y⋆), il cal-

cule la perte ℓ(x⋆, y⋆) et obtient une valeur très faible, par exemple 0,05. En comptant combien

de non-membres ont une perte inférieure ou égale à cette valeur, il obtient, disons, 5 individus,

soit une proportion

p =
5

1000
= 0,005.

Cette valeur-p empirique est très faible sous l’hypothèse « non-membre » (par exemple p <

0,01) ; l’attaquant en déduit alors que le comportement du modèle sur (x⋆, y⋆) ressemble beau-

coup plus à celui observé sur des exemples d’entraînement, et conclut que cet enregistrement

est probablement un membre de l’ensemble d’entraînement.
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TABLE 2.1 – Comparaison des approches d’attaque par inférence d’appartenance

Approche Principe Exemple Avantages / Limites

Par classificateur Entraîner un mo-

dèle d’attaque (ex.

binaire) basé sur les

sorties de modèles

d’ombre simulant le

modèle cible

Shokri et al. (2017) Haute précision, né-

cessite beaucoup de

données similaires

au modèle cible.

Basée sur des métriques Utilise des scores

comme la perte, la

confiance, l’entro-

pie pour détecter

l’appartenance sans

apprentissage expli-

cite

Salem et al. (2019);

Yeom et al. (2018)

Facile à implémen-

ter, mais souvent

moins performant.

Comparaison différentielle Applique des tests

statistiques pour

détecter des écarts

de comportement

entre membres et

non-membres

Long et al. (2020) Ne nécessite pas de

données d’entraîne-

ment, mais est sen-

sible aux variations

naturelles.

2.3 État de l’art sur les attaques par inférence d’appartenance

Tout d’abord, Homer et collaborateurs ont prouvé qu’un attaquant peut exploiter les statistiques pu-

bliées sur un jeu de données génomiques pour inférer la présence d’un individu donné. Leur étude met

en évidence qu’il est possible de déduire la participation d’une personne (ou d’un proche) à une étude,

même lorsque les données génétiques individuelles ne sont pas directement divulguées, mais unique-

ment des résumés statistiques, tels que les fréquences alléliques ou les distributions de génotypes. En

s’appuyant sur une approche basée sur des microréseaux d’ADN à haute densité pour le génotypage
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des SNP, ils ont proposé un cadre théorique pour comparer les fréquences alléliques d’un mélange

d’ADN avec celles d’une population de référence et d’un individu spécifique. Grâce à une mesure de

distance spécifique et à un test statistique, leur méthode permet de détecter la présence d’un individu

dans un mélange complexe d’ADN, même lorsqu’il ne contribue qu’à une infime proportion (moins

de 0,1%) (Homer et al., 2008; Hu et al., 2022).

Les attaques par inférence d’appartenance ont été introduites de manière marquante par Shokri et al.

(2017). Ils ont démontré qu’il est possible pour un attaquant de divulguer les données d’entraînement

du modèle d’apprentissage automatique, même dans le cadre d’une boîte noire. Pour atteindre cet

objectif, ils mettent en œuvre une méthode du modèle d’ombre. Le but du modèle d’ombre est de

trouver les liens entre les données et les étiquettes lorsque l’attaquant obtient les sorties du modèle

cible en lui fournissant les entrées. Pour mettre en œuvre cette méthode, l’attaquant crée n modèles

d’ombre. Chaque modèle d’ombre est entraîné sur un ensemble de données distinct de celui utilisé

pour le modèle cible, mais issu de la même distribution que l’ensemble de données d’entraînement.

Le modèle d’ombre doit se former de la même façon que le modèle cible, mais dans le cadre de boîte

noire, l’attaquant n’a aucune connaissance à propos de la structure du modèle et des paramètres. Une

fois les modèles d’ombre entraînés, l’attaquant les interroge à l’aide d’exemples connus (membres)

et inconnus (non-membres) pour obtenir les sorties correspondantes. Ces données servent alors à

entraîner un modèle d’attaque capable de prédire, pour une nouvelle entrée, si celle-ci a été utilisée

ou non dans l’entraînement du modèle cible. Plus le nombre de modèles d’ombre est élevé, plus le

modèle d’attaque sera précis, car il aura été exposé à une plus grande diversité de comportements

issus de modèles similaires au modèle cible.

Enfin, toutes les sorties sont utilisées afin d’entraîner un modèle classificateur, appelé modèle d’at-

taque, qui apprend à distinguer si une donnée a été vue (membre) ou non vue (non-membre) par le

modèle cible, en se basant uniquement sur les réponses fournies par celui-ci. Ce modèle peut ensuite

servir à faire des prédictions d’appartenance sur de nouvelles données. Il révèle ainsi des informations

sensibles sur l’ensemble d’entraînement du modèle cible (Shokri et al., 2017).

Backes et collaborateurs ont exploré une nouvelle dimension de la confidentialité des données biomé-



32

dicales en analysant les attaques par inférence d’appartenance dans le contexte des études basées sur

les expressions de microARN (miARN), de petites molécules d’ARN non codantes qui régulent l’ex-

pression des gènes en modulant la traduction ou la dégradation des ARN messagers. Contrairement

aux données génétiques statiques, comme le génome, les expressions de miARN sont influencées de

manière dynamique par l’état de santé d’un individu, ce qui en fait des biomarqueurs puissants, mais

sensibles.

Selon les chercheurs, il est possible pour un adversaire d’estimer avec une grande précision la partici-

pation d’une personne spécifique à une étude, même si seules des données statistiques globales, telles

que la moyenne d’expression, sont divulguées. En utilisant des données publiques sur les miRNA, ils

montrent que, dans les jeux de données associés à des maladies, les attaques peuvent atteindre un taux

de vrais positifs de 77%, avec moins de 1% de faux négatifs.

Pour cela, deux approches d’attaque ont été proposées. La première consiste à calculer la distance L1,

une mesure mathématique qui calcule la somme des différences absolues entre les niveaux d’expres-

sion du miARN d’un individu cible et les moyennes issues des données de l’étude. Plus cette distance

est faible, plus cela suggère que le profil de l’individu est compatible avec celui des participants. La

seconde méthode repose sur un test du rapport de vraisemblance (likelihood ratio test), une technique

statistique qui compare la probabilité qu’un individu appartienne au groupe étudié et celle qu’il en soit

exclu. Ce test évalue la compatibilité d’un profil à deux suppositions : la première est que la personne

étudiée est présente (hypothèse alternative) ; la seconde, qu’elle n’est pas là (hypothèse nulle). Parmi

les deux méthodes, la seconde s’est révélée la plus efficace.

Devant ces inquiétantes observations, les auteurs ont proposé des mesures pratiques pour renforcer la

sécurité des participants. Ils ont conseillé de ne pas publier de statistiques agrégées si le jeu de données

contient moins de quelques centaines d’individus, ce qui complique l’identification d’une personne

en particulier. Pour les ensembles de données de plus petite taille, ils ont suggéré d’ajouter une part

d’aléa aux résultats publiés grâce à un procédé statistique qui introduit une incertitude maîtrisée. Cette

méthode permet de brouiller suffisamment les informations, tout en conservant une utilité minimale

pour l’analyse scientifique. Une autre méthode recommandée consiste à réduire significativement le

nombre de statistiques divulguées, ce qui permet de limiter les risques de réidentification (Backes
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et al., 2016).

Ensuite, Liu et collaborateurs ont proposé une nouvelle approche, "SocInf", une attaque d’inférence

d’appartenance en boîte noire, sans connaître l’architecture du modèle cible ni les données d’entraî-

nement. Cette méthode a été évaluée à partir de données de santé provenant de réseaux sociaux. Son

principe de base consiste à développer un modèle de mimétisme qui imite le comportement du mo-

dèle cible. Pour ce faire, l’attaquant crée des données synthétiques similaires en format aux données

d’origine. Il les regroupe ensuite en fonction des prédictions obtenues. Un processus d’apprentissage

est ensuite mis en œuvre pour entraîner le modèle de mimétisme jusqu’à ce que ses sorties deviennent

difficiles à distinguer de celles du modèle cible. Sur cette base, un modèle d’attaque est ensuite appris

pour estimer si une donnée particulière a été utilisée lors de l’entraînement initial.

Cette approche est particulièrement utile dans ce domaine, car elle démontre qu’un attaquant peut at-

teindre une haute précision d’inférence sans avoir besoin de détails sur le modèle cible, contrairement

à des méthodes plus traditionnelles, comme l’entraînement de modèles d’ombre. Selon SocInf, il suf-

fit de pouvoir consulter les prédictions du modèle pour mettre en évidence des faiblesses importantes,

surtout si le modèle montre un surapprentissage par rapport à ses données d’entraînement. Même dans

des situations réelles et limitées, comme les services d’intelligence artificielle disponibles en ligne,

un adversaire peut détecter si une personne fait partie de l’ensemble de données d’entraînement, ce

qui représente une grave menace pour la confidentialité, en particulier dans les domaines sensibles

tels que les données médicales ou génétiques (Liu et al., 2019). En outre, Salem et collaborateurs ont

démontré qu’un attaquant peut identifier si un point de données particulier a été utilisé pour entraîner

le modèle cible, même s’il utilise un jeu de données distinct. Ils ont proposé une technique appelée «

attaque par transfert de données », qui assouplit les hypothèses traditionnelles des attaques par infé-

rence d’appartenance. Contrairement à l’attaque de Shokri et al. (2017), qui supposait la disponibilité

de plusieurs modèles d’ombre et d’un jeu de données issu de la même distribution que celui du modèle

cible, Salem et collaborateurs ont montré qu’il est possible de mener une attaque réussie avec un seul

modèle d’ombre, voire avec une architecture différente de celle du modèle cible.

En effet, le modèle d’attaque parvient à repérer des différences générales dans la manière dont le

modèle cible réagit aux données d’entraînement (membres) et à celles qu’il n’a jamais vues (non-
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membres), même si les jeux de données ne sont pas exactement les mêmes. Il est à noter que les

algorithmes d’apprentissage automatique ont généralement une tendance à se comporter différem-

ment en fonction de leur exposition antérieure à une donnée. Cette distinction, quoique délicate, peut

être exploitée par un attaquant, même lorsqu’il dispose de peu d’informations ou travaille dans un

environnement contraignant.

L’étude suggère aussi diverses sorties possibles du modèle cible pouvant servir à l’attaque : les seuls

résultats prédits, les probabilités associées, ou encore les logits. Les auteurs ont évalué leur méthode

sur une variété de jeux de données et de modèles (tels que les réseaux de neurones, les arbres de

décision ou les SVM) et ont démontré que, même avec peu de données et des hypothèses limitées,

l’attaque reste efficace. Cela souligne la vulnérabilité intrinsèque des modèles aux fuites d’informa-

tion, même dans des cadres réalistes et contraints, comme le nuage ou les services MLAAS (Salem

et al., 2019).

Bu et collaborateurs ont proposé une nouvelle méthode d’attaque d’inférence d’appartenance qui ne

nécessite pas de disposer de l’ensemble des informations génétiques d’un individu (Bu et al., 2021).

Grâce à cette méthode, l’adversaire peut s’appuyer sur des statistiques telles que les fréquences allé-

liques, c’est-à-dire la proportion d’un allèle donné dans une population, ou sur les réponses binaires

de services Beacon, des interfaces publiques qui répondent par « oui » ou « non » à la question « Un

allèle existe-t-il à une position spécifique dans une base de données génomique? », afin de déterminer

la présence d’un individu dans une base de données. Pour cela, ils exploitent les haplotypes, c’est-à-

dire des combinaisons spécifiques d’allèles (variants génétiques) souvent transmises ensemble le long

d’un même chromosome, ce qui offre plus de puissance statistique que l’analyse de variants pris iso-

lément. Même si l’haplotype d’une personne n’est pas connu à l’avance, les auteurs montrent qu’il est

possible de le reconstruire à partir de ces données résumées. Cette méthode soulève des inquiétudes

majeures en matière de confidentialité, car elle montre que des informations sensibles peuvent être

déduites même sans accès direct au génome complet.

Long et collaborateurs ont proposé une nouvelle perspective sur l’attaque d’inférence d’appartenance

en se concentrant sur l’adversaire pragmatique qui cherche à maximiser l’utilité de l’attaque plu-

tôt qu’à obtenir une couverture complète. Ils ont noté que, pour des modèles bien généralisés, les
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membres et les non-membres d’un jeu de données sont souvent traités de manière similaire par le

modèle, rendant les attaques classiques moins efficaces. Cependant, ils ont montré que l’adversaire

pouvait cibler les données les plus sensibles, c’est-à-dire celles qui sont détectées plus facilement, afin

de diminuer le nombre de non-membres prédits comme membres (faux positifs).

Pour identifier les enregistrements les plus vulnérables, ils ont recours à une méthode statistique fon-

dée sur la valeur p, c’est-à-dire la probabilité d’observer un comportement au moins aussi extrême

que celui mesuré sous l’hypothèse nulle (non-appartenance). Concrètement, il s’agit d’évaluer, pour

une donnée cible, dans quelle mesure la réponse du modèle est compatible avec les comportements

observés typiquement chez les membres ou chez les non-membres de l’ensemble d’entraînement. Une

valeur p faible indique que la réaction du modèle à cette donnée ressemble beaucoup plus à celle qu’il

aurait pour un exemple d’entraînement (membre) que pour une donnée inconnue (non-membre), ce

qui laisse supposer que cette donnée a très probablement été utilisée lors de l’apprentissage du modèle.

Long et collaborateurs ont également montré qu’il est possible d’atteindre une précision supérieure

à 95 % dans certains sous-ensembles de données, même lorsque la précision globale d’une attaque

semble faible (par exemple, autour de 50 %) (Long et al., 2020).

Dans l’étude Membership Inference Against DNA Methylation Database, Hagestedt et collaborateurs

examinent spécifiquement les attaques par inférence d’appartenance visant des bases de données de

méthylation de l’ADN, un mécanisme épigénétique qui ajoute un groupe méthyle sur l’ADN afin de

moduler l’activité des gènes sans en changer la séquence ; la méthylation joue ainsi un rôle impor-

tant dans le développement, la régulation de l’expression génique et diverses pathologies (Schübeler,

2015). Les auteurs s’appuient largement sur les travaux existants concernant les attaques contre les

données génomiques. Leurs résultats démontrent que ces attaques sont également efficaces contre les

données de méthylation, en exploitant les statistiques résumées publiées. De plus, ils montrent que,

même sans accès direct au profil de méthylation d’un individu, un attaquant disposant uniquement de

ses variations génomiques peut inférer son appartenance à une base de données de méthylation. Cela

est rendu possible grâce à la corrélation existante entre certains génotypes et les niveaux de méthyla-

tion observés à des positions spécifiques du génome. Cette approche met en lumière l’interconnexion

croissante des risques pour la vie privée entre les données génomiques et épigénomiques (Hagestedt

et al., 2020).
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Dans l’article Differential Privacy Protection Against Membership Inference Attack on Machine Lear-

ning for Genomic Data, les auteurs analysent le principal risque en matière de confidentialité posé par

le partage de modèles formés à partir de données génomiques afin de prévoir un phénotype. Ils dé-

montrent que les modèles d’apprentissage automatique sont vulnérables aux attaques par inférence

d’appartenance, même lorsque seules les prédictions finales du modèle sont accessibles (cadre en

boîte noire). Leur étude met en évidence que les adversaires peuvent exploiter les différences subtiles

de comportement entre les membres et les non-membres de l’ensemble d’entraînement pour deviner

si une donnée particulière a été utilisée pendant l’apprentissage. Ils ont aussi observé que certains

facteurs, comme le surapprentissage du modèle et sa complexité, peuvent exacerber ces fuites d’in-

formation, ce qui augmente la probabilité de réussite de l’attaque (Chen et al., 2020).

Comparativement, Shokri et collaborateurs ont proposé une méthode d’attaque plus efficace, mais

également plus exigeante en termes d’information disponible pour l’adversaire. Leur approche repose

sur la construction de plusieurs modèles d’ombre mimant la structure du modèle cible et entraînés sur

des données issues de la même distribution. Ils ont ainsi démontré une efficacité remarquable, mais

au prix d’hypothèses fortes sur la connaissance du modèle et des données (Shokri et al., 2017).

Yeom et collaborateurs ont proposé une méthode très simple, peu coûteuse computationnellement,

mais sensible à la régularisation et à la capacité du modèle à généraliser. Sa méthode est basée uni-

quement sur la perte, ce qui la rend très accessible, mais aussi très dépendante du degré de surap-

prentissage (Yeom et al., 2018). L’approche de Salem et collaborateurs se situe entre les deux : elle

relâche les hypothèses sur la distribution des données et la structure du modèle cible tout en conser-

vant une performance comparable à celle de Shokri, avec une baisse de précision de quelques points

de pourcentage. Elle met en évidence les risques réels pesant sur la vie privée et souligne le besoin de

développer des modèles d’attaque plus robustes et adaptatifs. Elle montre surtout que même avec un

seul modèle d’ombre et des données différentes, il est possible d’atteindre une performance proche,

ce qui rend leur scénario plus réaliste pour des applications concrètes Salem et al. (2019).
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2.4 Méthodes de défense contre les attaques MIA

En raison de l’augmentation du nombre d’attaques MIA, plusieurs stratégies de défense ont été propo-

sées afin de limiter les fuites d’informations provenant des algorithmes d’apprentissage automatique.

Ces méthodes diffèrent en termes de complexité, de niveau de confidentialité et d’impact sur les

performances. Dans cette section, nous faisons un résumé des principales approches, en mettant en

évidence leurs points forts et leurs limites. Nous précisons également pour quels scénarios d’attaque

chaque méthode est la plus adaptée.

Plusieurs stratégies ont été proposées pour atténuer les attaques MIA. On peut les classer dans l’une

ou l’autre des quatre grandes catégories suivantes : le masquage de la confiance, la régularisation, la

confidentialité différentielle et la distillation des connaissances (Hu et al., 2022).

2.4.1 Masquage de la confiance (Confidence masking)

Limiter ou altérer les informations divulguées par le modèle — par exemple en ne renvoyant que

l’étiquette prédite, les k meilleures probabilités, ou en injectant du bruit dans le vecteur de sortie —

réduit la surface informationnelle exploitable par un adversaire. Cette approche est particulièrement

pertinente en boîte noire, notamment dans les services MLAAS où les attaquants exploitent les scores

de confiance et les classements top-k. Elle se distingue par une mise en œuvre simple et un coût

réduit ; de plus, la calibration des probabilités et le label smoothing atténuent la surconfiance, souvent

ciblée par les attaques MIA. En revanche, son efficacité est moindre face aux attaques label-only et

aux adversaires adaptatifs entraînés sur des sorties tronquées ou bruitées, et elle peut dégrader l’utilité

des scores pour le seuillage, la supervision opérationnelle et l’explicabilité (Shokri et al., 2017; Jia

et al., 2019; Li et al., 2021; Choquette-Choo et al., 2021). Deux notions sont particulièrement utiles

dans ce contexte. La calibration des probabilités vise à ajuster les scores de sortie de manière à ce

que, par exemple, une prédiction avec une confiance de 80 % soit correcte environ 8 fois sur 10

en pratique ; un modèle bien calibré est moins sujet à des surconfiances extrêmes sur les exemples

d’entraînement. Le label smoothing consiste à remplacer les étiquettes one-hot (1, 0, . . . , 0) par des

distributions légèrement adoucies (par exemple (0,9, 0,1/(K − 1), . . . )), ce qui empêche le modèle

d’apprendre des frontières trop rigides et réduit l’écart de confiance entre membres et non-membres.
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2.4.2 Régularisation

En réduisant la propension du modèle à mémoriser — par des pénalités L1/L2, du dropout, de l’aug-

mentation de données ou de la régularisation adversariale explicitement ciblée sur l’appartenance —

on réduit la différence de comportement entre les exemples connus (membres) et inconnus ; cette

approche est généralement considérée comme la stratégie standard, y compris en label-only. Elle a

l’avantage d’améliorer la généralisation sans changer l’API du modèle et avec une charge d’ingénierie

raisonnable ; les versions adversariales peuvent encore diminuer la fuite d’information. Cependant, ses

limites résident dans les régimes à haute dimension et faible effectif, où l’effet peut rester insuffisant ;

par ailleurs, le réglage des hyperparamètres est complexe et des pénalisations/dropout trop intenses

nuisent à la précision (Nasr et al., 2018; Chang et al., 2019; Salem et al., 2019; Leino et Fredrikson,

2020).

2.4.3 Confidentialité différentielle

La confidentialité différentielle fournit un cadre formel pour garantir qu’un individu donné a un impact

limité et contrôlé sur la sortie globale de l’algorithme. Plus précisément, un algorithme est (ϵ, δ)-

différentiellement privé si, pour deux bases de données ne différant que par un individu, la distribution

de ses sorties ne change que d’un facteur borné par ϵ (et δ) (Abadi et al., 2016b). Ce paradigme

est particulièrement indiqué lorsque le modèle est diffusé ou partagé, ou lorsqu’il est soumis à des

contraintes réglementaires : il s’agit de la seule famille de défenses offrant des garanties formelles,

avec un budget de confidentialité traçable.

Dans DP-SGD, on borne d’abord la norme des gradients individuels (clipping), puis on ajoute un bruit

gaussien calibré avant l’agrégation, ce qui permet de suivre un budget de confidentialité (ϵ, δ) au cours

de l’entraînement (Abadi et al., 2016b). Dans PATE (Private Aggregation of Teacher Ensembles),

plusieurs modèles enseignants sont entraînés sur des partitions disjointes des données ; leurs votes sur

des exemples non étiquetés sont agrégés de manière bruitée pour entraîner un modèle élève, de sorte

que l’influence de chaque individu reste limitée (Papernot et al., 2018b).

En contrepartie, le compromis utilité–confidentialité est notable (des valeurs de ϵ faibles dégradent

la performance), le réglage des hyperparamètres est complexe (clipping, échelle du bruit, taille de
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lot, nombre d’itérations) et, en haute dimension, le niveau de bruit requis peut devenir important

(Jayaraman et Evans, 2019; Shejwalkar et Houmansadr, 2021).

TABLE 2.2 – Comparaison des stratégies de défense contre les attaques MIA

Méthode Principe Avantages Limitations / Réfé-

rences

Masquage de la

confiance

Limitation des sorties

(label seul, top-k,

bruit sur les probabili-

tés)

Facile à implémenter,

efficace contre les at-

taques simples

Peut dégrader l’utili-

sabilité (Shokri et al.,

2017; Jia et al., 2019)

Régularisation Réduction du surap-

prentissage (L1/L2,

dropout, data aug-

mentation)

Renforce la générali-

sation, peu coûteux

Moins efficace en

haute dimension

(Nasr et al., 2018;

Chang et al., 2019)

Confidentialité diffé-

rentielle

Ajout de bruit pendant

l’apprentissage (DP-

SGD, PATE)

Garanties formelles de

confidentialité

Perte de précision si-

gnificative, tuning dif-

ficile (Abadi et al.,

2016b; Papernot et al.,

2018b)

Distillation Transfert via un mo-

dèle enseignant

Réduction de la fuite

sans bruit explicite

Complexité accrue,

résultats variables

(Shejwalkar et Hou-

mansadr, 2021;

Bernau et al., 2021)

2.4.4 Distillation des connaissances

La distillation des connaissances consiste à entraîner un modèle élève sur les sorties de l’enseignant

afin de lisser les signaux idiosyncratiques corrélés aux exemples d’entraînement et, ce faisant, de ré-

duire l’écart de comportement entre membres et non-membres. Cette stratégie est pertinente lorsque la
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restitution de probabilités de sortie est requise (contraintes produit/MLAAS) tout en évitant l’injection

de bruit explicite. Sur le plan empirique, elle atténue la surconfiance et peut mieux préserver l’exacti-

tude qu’une configuration DP stricte à ϵ faible, pour un niveau de résistance comparable. Ses limites

tiennent à l’absence de garanties formelles, à une dépendance marquée au couple enseignant–élève,

au schéma d’adoucissement des sorties et à la tâche, ainsi qu’à la possibilité pour un adversaire adap-

tatif de s’aligner si la géométrie des logits est insuffisamment modifiée (Shejwalkar et Houmansadr,

2021; Bernau et al., 2021).

2.5 Conclusion

À travers ce chapitre, nous avons exploré les recherches existantes sur les attaques par inférence d’ap-

partenance dans différents domaines de l’apprentissage automatique. Si ces attaques ont été largement

étudiées dans des contextes comme la vision par ordinateur ou le traitement du langage, leur appli-

cation aux données génomiques demeure encore marginale. Cette lacune ne reflète pas un manque

d’intérêt, mais plutôt les défis spécifiques que posent les données génétiques : sensibles, complexes,

difficilement partageables, riches en variables mais pauvres en échantillons. Par ailleurs, une majorité

des travaux supposent un accès aux paramètres internes du modèle, ce qui est rarement réaliste dans

des contextes biomédicaux. Ce constat met en lumière un espace encore peu exploré mais crucial : ce-

lui d’évaluer la vulnérabilité des modèles génomiques dans un cadre boîte noire, où seules les sorties

du modèle sont accessibles à l’adversaire. Notre projet s’inscrit précisément dans cette perspective,

en proposant une approche généralisable, reposant à la fois sur des modèles d’ombre entraînés à partir

de phénotypes biologiquement corrélés au phénotype cible, et sur des modèles d’ombre construits à

partir de jeux de données totalement indépendants selon une méthodologie de transfert de connais-

sances. Cette diversité dans la construction des modèles d’ombre permet d’anticiper les risques de

divulgation, même dans des situations de contrôle d’accès restreint où l’attaquant ne possède que des

données limitées sur le modèle cible. Ainsi, ce chapitre fournit le cadre conceptuel et l’état de l’art

nécessaires pour analyser la vulnérabilité des modèles génomiques face aux attaques par inférence

d’appartenance.



CHAPITRE 3

MÉTHODOLOGIE

Dans ce chapitre, la méthode utilisée pour mener une attaque par inférence d’appartenance en boîte

noire sur des données génomiques sera décrite en détail. L’objectif principal est d’évaluer la vul-

nérabilité des modèles d’apprentissage automatique aux attaques de confidentialité en prédisant si un

échantillon génomique donné faisait partie de l’ensemble de données d’entraînement du modèle. Pour

y parvenir, la méthodologie est structurée en plusieurs étapes interconnectées.

Premièrement, on présente en détail l’ensemble de données utilisé, en explicitant les critères de sélec-

tion et de préparation adoptés. Nous détaillons ensuite le processus d’entraînement du modèle qui est

la cible de l’attaque par inférence. De plus, nous expliquons comment créer et entraîner des modèles

d’ombre, conçus pour imiter le comportement du modèle cible, ce qui est crucial pour générer des

scénarios d’attaque réalistes. Par la suite, nous présentons et mettons en œuvre un modèle d’attaque

par inférence d’appartenance robuste qui utilise les schémas détectés dans les résultats des modèles

d’ombre pour déterminer l’état d’appartenance.

En outre, nous examinons minutieusement l’efficacité de l’attaque, en employant des critères bien

définis pour mesurer sa précision et sa fiabilité. Dans tout ce chapitre, nous décrivons en détail l’en-

vironnement informatique et les outils spécifiques utilisés, ce qui facilitera la reproduction. Nous

examinons également les considérations éthiques liées à la nature sensible des données génomiques,

ainsi que les limites méthodologiques inhérentes à l’approche.

En définitive, le cadre méthodologique proposé fournit une approche structurée et rigoureuse pour

analyser les menaces à la confidentialité posées par l’apprentissage automatique en génomique. Il

permet d’éclairer les pratiques de protection des données et de préservation de la vie privée dans ce

domaine.
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3.1 Objectif de l’expérimentation

L’objectif principal de cette expérience est d’évaluer la faisabilité et la performance d’une attaque par

inférence d’appartenance sur des données génomiques en boîte noire, en utilisant un modèle d’attaque

généralisable. Afin d’assurer cette généralisabilité, l’attaque proposée est conçue pour être indépen-

dante des individus cibles. Le modèle d’attaque ne repose donc pas sur la connaissance préalable

des personnes potentiellement visées, mais apprend des schémas généraux issus de modèles d’ombre

pour inférer l’appartenance. Dans le cadre de cette étude, la généralisabilité correspond à la capacité

du modèle d’attaque à fonctionner de manière optimale sur les sorties d’un modèle cible inconnu,

même si ce modèle a été entraîné sur un ensemble de données distinct ou qu’il utilise une architecture

différente de celles utilisées lors de l’entraînement du modèle d’attaque. Elle mesure la résistance

de l’attaque face à des modifications dans la nature des données, la structure du modèle ou la dis-

tribution des résultats. L’objectif est ainsi de pouvoir cibler n’importe quelle personne présentée au

modèle cible, même si elle n’a jamais été vue auparavant, ni dans les données auxiliaires, ni lors de

l’entraînement du modèle d’attaque. Il s’agit de prouver que, même en cas de ressources limitées

et de restrictions concernant l’accès aux informations intermédiaires, il est possible de menacer la

confidentialité des sujets représentés dans les échantillons d’apprentissage.

En ce qui concerne cette étude, plusieurs limites ont été rencontrées :

— la rareté des jeux de données génomiques publiques comportant un nombre d’échantillons

suffisant ainsi que des annotations phénotypiques complètes.

— la nécessité d’un ensemble de données permettant de développer à la fois un modèle cible, un

modèle d’ombre et un jeu d’attaque séparé.

— la grande quantité de caractéristiques, beaucoup plus élevée que le nombre d’échantillons,

rend les modèles sensibles au surapprentissage.

Dans cette expérience, nous avons choisi de nous appuyer sur l’ensemble de données utilisé dans

l’article de référence "Differential Privacy Protection Against Membership Inference Attack on Ma-

chine Learning for Genomic Data"(Chen et al., 2020). Cet article constitue la base méthodologique

principale de notre travail.
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3.2 Présentation du jeu de données

Le jeu de données sélectionné est un ensemble de données de levures provenant de l’étude "Genetic

interactions contribute less than additive effects to quantitative trait variation in yeast" (Bloom et al.,

2015). La levure (Saccharomyces cerevisiae) est un organisme modèle idéal pour ce type d’expéri-

mentation. Elle possède un génome bien contrôlé, une faible complexité génétique et des phénotypes

faciles à mesurer dans des conditions reproductibles. Elle est largement utilisée comme système mo-

dèle dans l’étude des mécanismes fondamentaux du vivant et des maladies humaines, grâce à la si-

militude qu’elle entretient avec les eucaryotes supérieurs et à sa maniabilité génétique (Dabas et al.,

2017; Poswal et Saini, 2017).

Le jeu de données contient des informations génétiques sur 4 390 individus issus d’un croisement

entre deux souches de levure : une souche de laboratoire et une souche naturelle. Chaque individu a

été génotypé sur plus de 28 820 marqueurs SNP et phénotypé pour une vingtaine de traits quantitatifs,

majoritairement liés à la croissance cellulaire dans divers milieux.

Pour les besoins de notre expérimentation, nous nous sommes alignés sur le protocole de Chen et al.

(2020) en choisissant comme phénotype cible le trait de croissance en présence de sulfate de cuivre.

Parmi la vingtaine de traits quantitatifs disponibles, ce phénotype présente un bon compromis entre

variabilité phénotypique et signal génétique, ce qui en fait un candidat adapté pour l’étude des attaques

d’inférence d’appartenance. De plus, son utilisation nous permet de comparer plus directement nos

résultats à ceux rapportés dans l’étude de référence de Chen et al. (2020).

Le phénotype, initialement mesuré comme une valeur quantitative de croissance, a été transformé en

variable binaire en appliquant un seuil à la valeur de croissance. Ce seuil a été choisi de manière

à obtenir deux classes de taille comparable (croissance « faible » vs « élevée »), de façon à limiter

les déséquilibres de classes et à formuler la tâche comme un problème de classification supervisée

binaire.

Sur les 4 390 individus initialement génotypés, nous avons d’abord exclu ceux ne disposant pas d’une

mesure phénotypique valide pour le trait sulfate de cuivre. Ensuite, après application du seuillage et
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sous-échantillonnage de la classe majoritaire pour équilibrer les étiquettes, le jeu de données final

utilisé pour l’entraînement et l’évaluation du modèle cible contient 3 404 individus, dont 1 702 dans

la classe positive (résistants au sulfate de cuivre) et 1 702 dans la classe négative (sensible).

3.2.1 Prétraitement des données

Les données de base se composent d’une matrice d’individus et de génotypes (utilisés comme carac-

téristiques), ainsi que d’un vecteur de phénotypes associés. La matrice de génotypes provient d’un

fichier tabulaire, où chaque ligne correspond à un individu du panel de levure et chaque colonne

représente un locus SNP. Les génotypes sont codés de manière binaire avec les entiers 1 et -1, corres-

pondant respectivement aux allèles hérités des deux souches parentales utilisées dans le croisement

expérimental. Ce mode de codage est souvent utilisé en analyse génétique, car il permet de représen-

ter efficacement les effets cumulatifs. Dans un premier temps, les individus pour lesquels la valeur du

phénotype est manquante sont retirés du jeu de données. Cette étape de filtrage permet de garantir que

les matrices de génotypes et de phénotypes ont des dimensions compatibles et que chaque échantillon

utilisé possède une annotation valide. Les phénotypes associés à ce jeu de données correspondent à

la capacité de croissance des souches de levures dans divers milieux contenant des agents chimiques

ou des sources de carbone spécifiques. Par exemple, on y trouve la réponse cellulaire en présence

de sels métalliques (comme le chlorure de cobalt, le sulfate de cuivre ou le chlorure de magnésium),

d’agents oxydants (comme le diamide), d’antibiotiques (comme la néomycine ou la zéocine) et même

à la croissance sur différents substrats métaboliques (comme le lactose, le lactate ou le tréhalose).

Pour éviter les biais causés par des classes déséquilibrées, un échantillonnage aléatoire de la classe

majoritaire est fait. Cela permet d’obtenir un ensemble de données équilibré. Ensuite, les individus

sont mélangés au hasard, mais avec une graine fixe pour assurer la reproductibilité. Les matrices gé-

notypique et phénotypique finales peuvent alors être utilisées pour l’entraînement supervisé (Bloom

et al., 2015).

3.3 Aperçu du cadre expérimental

La figure 3.1 représente la méthodologie générale d’une attaque par inférence d’appartenance pro-

posée par Shokri et al. (2017). Dans ce cadre, l’objectif de l’attaque par inférence d’appartenance
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consiste à savoir si une donnée cible a été utilisée pour entraîner un modèle particulier ou non. L’ad-

versaire ne connaît rien sur l’architecture du modèle cible ni sur ses paramètres (le cadre de boîte

noire). Pour atteindre cet objectif, l’adversaire crée un modèle d’ombre destiné à imiter le compor-

tement du modèle cible. Ce modèle est entraîné sur un jeu de données distinct de celui utilisé pour

le modèle cible, mais censé provenir de la même distribution (ou d’une distribution similaire). Cette

séparation stricte garantit que l’attaque repose uniquement sur la généralisation comportementale du

modèle et non sur une fuite directe de données.

FIGURE 3.1 – Schéma général d’une attaque par inférence d’appartenance basée sur des modèles

d’ombre (Chen et al., 2020). La figure illustre les trois étapes principales : (1) entraînement du modèle

cible sur ses données privées, (2) construction de modèles d’ombre sur des données auxiliaires co-

distribuées, et (3) entraînement d’un modèle d’attaque à partir des sorties membres / non-membres.

Elle sert de référence conceptuelle pour situer nos deux méthodologies par rapport au cadre proposé

initialement par Shokri et al. (2017).

L’adversaire divise ce jeu de données auxiliaire en deux parties : l’une est utilisée pour l’entraînement

du modèle de simulation des membres et l’autre pour le test, qui simule les non-membres. En interro-

geant le modèle de simulation avec ces échantillons, il obtient les vecteurs de prédiction (c’est-à-dire

les probabilités de classe) correspondant aux exemples connus comme étant des membres ou des non-
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membres.

Ces sorties sont ensuite utilisées pour entraîner un modèle d’attaque, généralement un classificateur

binaire, qui apprendra à différencier les résultats typiques d’un membre de ceux d’un non-membre.

De cette façon, l’adversaire peut ensuite interroger le modèle cible avec un nouvel échantillon. En ob-

servant seulement les prédictions retournées, il peut ainsi déterminer si cet échantillon a probablement

déjà fait partie de l’ensemble d’entraînement.

FIGURE 3.2 – Création de l’ensemble de données d’entraînement pour le modèle d’attaque à partir de

plusieurs modèles d’ombre. Les sorties de ces modèles, évalués respectivement sur leurs jeux d’entraî-

nement (membres) et de test (non-membres), sont agrégées pour former deux ensembles de vecteurs

de probabilités Pm et Pn. Cette étape matérialise le lien entre le comportement de sur-confiance des

modèles d’ombre et les étiquettes d’appartenance utilisées pour entraîner le classificateur d’attaque.
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FIGURE 3.3 – Phase d’inférence de l’attaque par inférence d’appartenance (Shokri et al., 2017). un

exemple x est soumis au modèle cible et son vecteur de probabilités f(x) est fourni à un unique mo-

dèle d’attaque qui infère l’appartenance (membre / non-membre). L’étiquette vraie n’est pas utilisée

comme entrée ; elle ne sert qu’à l’évaluation.

Une fois le modèle d’attaque entraîné, il peut être utilisé pour prédire si un échantillon donné a été vu

par le modèle cible lors de l’entraînement. La figure 3.3 illustre cette phase d’inférence.

3.4 Modèle cible

Le modèle cible utilisé dans cette expérience est celui proposé par Chen et al. (2020) dans leur étude

sur les attaques par inférence d’appartenance appliquée à des données génomiques en boîte blanche.

Il s’agit d’un réseau de neurones convolutifs en une dimension (1D-Convolutional neural network

(CNN)), une architecture particulièrement adaptée à la structure séquentielle des données génétiques.

Ces dernières années, les réseaux de neurones convolutifs (CNN) ont gagné en popularité dans le do-

maine de la génomique, notamment pour la prédiction des phénotypes à partir des génotypes. Cette

popularité est due à leur capacité à gérer des données extrêmement complexes, caractérisées par un

grand nombre de variables (comme les SNPs) et un nombre limité d’échantillons. Dans ce type de

configuration, les méthodes traditionnelles ont tendance à surapprendre, ce qui entrave la générali-

sation. À l’inverse, la structure hiérarchique des CNN, qui combine des couches de convolution, de

pooling, de dropout et entièrement connectées, permet de limiter ce phénomène. Cette architecture

facilite l’extraction automatique de motifs pertinents, tout en réduisant la dimension des données

(Sehrawat et al., 2023). Contrairement aux modèles linéaires traditionnels, les CNN peuvent captu-
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rer des interactions complexes entre les variants génétiques, comme l’épistasie — des relations qui

échappent souvent aux méthodes statistiques classiques (Guo et Li, 2023; Zhao et al., 2016). Ils sont

capables d’apprendre progressivement des représentations plus abstraites des données d’entrée, ce

qui leur permet d’identifier des motifs génétiques récurrents associés à certains traits phénotypiques

(Sehrawat et al., 2023). En effet, les CNN se caractérisent non seulement par une précision accrue en

matière de prévision, mais aussi par leur aptitude à produire des modèles plus stables et adaptables,

même avec un ensemble restreint de données d’apprentissage. Ces avantages ont été démontrés dans

plusieurs études appliquant les CNN à la prédiction des phénotypes à partir de différentes sources de

variations génétiques (Gazestani et Lewis, 2019; Sehrawat et al., 2023; Zhao et al., 2016).

3.4.1 Description de l’architecture du modèle cible

Entrée

Vecteur

SNP (n, 1)

Conv1D

8 filtres

kernel =

5, ReLU

Average

Pooling1D

pool = 2

Dropout

rate = 0.25
Flatten

Dense (sortie)

1 neurone,

sigmoïde

FIGURE 3.4 – Architecture détaillée du modèle cible (1D-CNN) utilisé pour la prédiction du phéno-

type sulfate de cuivre à partir des génotypes. La figure explicite la succession des couches (convolu-

tion, pooling, dropout, aplatissement, couche dense de sortie) et indique le type de tenseur manipulé

à chaque étape.

Le modèle cible utilisé dans cette expérimentation est un réseau de neurones convolutifs unidimen-

sionnels (1D-CNN), structuré de manière simple mais efficace pour la classification binaire à partir

de données génomiques. Les réseaux CNN ont été introduits pour la première fois par LeCun et al.

(1998) et sont depuis largement utilisés pour l’analyse de données structurées comme les images ou

les séquences, en raison de leur capacité à extraire automatiquement des motifs locaux pertinents. Le

modèle cible se compose des couches suivantes :

La première couche est une couche convolutionnelle 1D (Conv1D), qui applique un ensemble de

filtres (ou noyaux) sur les séquences d’entrée afin de capturer les motifs locaux entre les loci SNPs.

Cette couche utilise la fonction d’activation (Rectified linear unit (RELU)) pour introduire de la non-
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linéarité, et une régularisation L1 est appliquée aux poids afin de limiter le surapprentissage. Ensuite,

une couche de sous-échantillonnage moyenne (AveragePooling1D) permet de réduire la dimension-

nalité en agrégeant les activations voisines, ce qui diminue la complexité du modèle et améliore la

généralisation. Une couche de dropout est ensuite intégrée, désactivant aléatoirement une fraction des

neurones lors de l’entraînement afin de renforcer la robustesse du modèle. Ensuite, la sortie est aplanie

grâce à une couche Flatten, transformant la structure multidimensionnelle des activations précédentes

en un vecteur unidimensionnel, qui peut être utilisé par la couche dense suivante. Finalement, la

couche de sortie (Dense) contient un seul neurone dont l’activation dépend d’une fonction sigmoïde,

produisant ainsi une probabilité d’appartenance à la classe positive. L’ensemble du réseau est entraîné

à l’aide de l’optimiseur descente de gradient stochastique (Stochastic gradient descent (SGD)) et la

fonction de perte est l’entropie croisée binaire, adaptée pour les tâches de classification binaire. Le

modèle prend comme entrée un vecteur de génotypes de dimension (n, 1), où n représente le nombre

de SNPs. Chaque valeur représente le génotype d’un individu à une position spécifique. En sortie, le

modèle génère une valeur scalaire comprise entre 0 et 1, représentant la probabilité qu’un échantillon

appartienne à la classe positive du phénotype. Dans le cadre de cette expérimentation, le phénotype

cible est la résistance au sulfate de cuivre, un trait binaire chez la levure.

Les hyperparamètres récapitulés dans le Tableau 3.1 reprennent ceux optimisés par Chen et al. (2020),

ce qui nous permet de comparer directement nos résultats aux leurs.
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Composant Hyperparamètre Valeur Description

Conv1D

Nombre de filtres

(num_kernels)

8 Nombre de noyaux appliqués sur la

séquence d’entrée

Taille du noyau

(kernel_size)

5 Largeur du filtre utilisé

Fonction d’activation ReLU Introduit la non-linéarité

Régularisation L1 (λ = 0.001352) Encourage la parcimonie et réduit le

surapprentissage

AveragePooling1D Taille du pool 2 Réduction de la dimension par

moyenne locale

Dropout Taux de dropout

(dropout_rate)

0.25 Fréquence de désactivation des neu-

rones durant l’entraînement

Flatten — — Aplatissement des activations pour

la couche dense

Dense (Sortie)
Nombre de neurones 1 Sortie binaire (sigmoïde)

Fonction d’activation Sigmoïde Renvoie une probabilité entre 0 et 1

Optimiseur
Type SGD Descente de gradient stochastique

Taux d’apprentissage 0.01 Vitesse de mise à jour des poids

Entraînement
Nombre d’époques

(epochs)

50 Nombre d’itérations sur le jeu d’en-

traînement

Taille du batch

(batch_size)

16 Nombre d’échantillons traités si-

multanément

TABLE 3.1 – Hyperparamètres et description du modèle cible (1D-CNN)
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FIGURE 3.5 – Évolution de l’exactitude du modèle cible (1D-CNN) sur les jeux d’entraînement et de

validation au cours des 50 époques d’apprentissage.

Afin d’évaluer la qualité de l’architecture choisie, nous avons analysé l’évolution de l’exactitude (ac-

curacy) sur les jeux d’entraînement et de validation au cours des 50 époques d’apprentissage (voir

Figure 3.5). L’exactitude d’entraînement augmente de manière régulière pour atteindre près de 0,99 à

la fin de l’apprentissage, tandis que l’exactitude de validation progresse plus modérément et se stabi-

lise autour de 0,75–0,78 après une trentaine d’époques. L’écart observé entre les deux courbes reflète

un surapprentissage léger, attendu compte tenu du faible nombre d’échantillons et du grand nombre

de SNPs, mais ne s’accompagne d’aucune dégradation soudainement marquée des performances de

validation. Cela montre que le modèle conserve une capacité de généralisation satisfaisante sur les

données de levure.

Dans les expériences qui suivent, nous conservons les poids correspondant à l’époque présentant

la meilleure exactitude de validation, afin de limiter l’effet de surapprentissage. Ces observations

confirment que l’architecture 1D-CNN retenue est suffisamment expressive pour capturer les signaux

génétiques liés au phénotype sulfate de cuivre, tout en procurant une performance de généralisation

adéquate pour les besoins de l’étude.
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3.5 Synthèse comparative

Ce mémoire présente deux stratégies d’attaque distinctes pour l’inférence d’appartenance. La pre-

mière repose sur la construction de modèles d’ombre à partir de phénotypes corrélés, tandis que la

seconde utilise des ensembles de données hétérogènes et indépendants. Ces deux approches offrent

des perspectives complémentaires pour l’inférence d’appartenance. Dans les sections suivantes, nous

décrivons en détail la méthodologie et le protocole expérimental associés à chacune de ces deux ap-

proches.

TABLE 3.2 – Comparaison des deux méthodologies d’attaque

Critère Méthode 1 : Modèles d’ombre cor-

rélés

Méthode 2 : Attaque généralisée

Source des modèles

d’ombre

Données du même domaine, phéno-

types corrélés

Données externes hétérogènes

(images, textes, etc.)

Hypothèse princi-

pale

Corrélation génétique suffisante entre

phénotype cible et auxiliaires

Existence de motifs génériques dans

les sorties entre membres et non-

membres

Avantage principal Proximité biologique, meilleure re-

présentativité du modèle cible

Indépendance vis-à-vis du domaine,

réutilisation possible sur plusieurs

cibles

Limite principale Nécessite une bonne sélection des

phénotypes auxiliaires

Écart de distribution entre les don-

nées d’entraînement et celles du mo-

dèle cible

Robustesse Forte pour des phénotypes bien choi-

sis, mais limitée hors corrélation

Surprenante malgré l’hétérogénéité

des données d’entraînement

Complexité com-

putationnelle

Moyenne (entraîner quelques mo-

dèles similaires)

Élevée (multiples jeux de données et

post-traitement)

Applicabilité aux

services boîte noire

Possible si des phénotypes auxiliaires

sont accessibles

Applicable si les sorties probabilistes

du modèle sont disponibles
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3.6 Stratégies d’entraînement du modèle d’ombre

L’objectif principal de cette section est d’explorer différentes approches pour générer les données

nécessaires à l’entraînement du modèle d’attaque, dans un contexte réaliste de boîte noire où l’adver-

saire n’a accès qu’aux sorties du modèle cible. Nous avons mis en œuvre et comparé deux stratégies

distinctes :

— Attaque par modèle d’ombre : cette méthode consiste à créer un modèle d’ombre spécifique

pour imiter le comportement du modèle cible. Pour ce faire, nous avons combiné plusieurs

jeux de données, tous basés sur les mêmes profils génétiques, mais associés à des phénotypes

différents. Cette diversité phénotypique permet d’entraîner un modèle d’ombre capable de

généraliser le comportement du modèle cible.

— Attaque par transfert de connaissances généralisée : contrairement à la première méthode,

celle-ci ne cherche pas à reconstruire la structure ou le comportement du modèle cible. Elle

se base uniquement sur les prédictions du modèle cible sur des données auxiliaires pour gé-

nérer directement les étiquettes de membres et non-membres. Par conséquent, elle évite toute

modélisation intermédiaire.

Ces deux stratégies ont été comparées afin d’évaluer leur efficacité respective pour entraîner un mo-

dèle d’attaque capable de généraliser et d’identifier correctement l’appartenance des échantillons,

même avec une connaissance limitée du modèle cible.
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3.6.1 Méthode 1 : méthodologie d’attaque par modèle d’ombre

FIGURE 3.6 – Pipeline de la Méthode 1 : attaque généralisée par modèle d’ombre basé sur des phéno-

types auxiliaires corrélés. La figure montre comment les données génomiques et les phénotypes auxi-

liaires sont utilisées pour entraîner un modèle d’ombre, produire des sorties membres / non-membres,

puis former un modèle d’attaque appliqué ensuite aux prédictions du modèle cible. Elle illustre le rôle

central de la corrélation phénotypique pour rapprocher le comportement du modèle d’ombre de celui

du modèle cible.

Cette première méthode consiste à concevoir un modèle d’ombre généralisé visant à simuler le fonc-

tionnement d’un modèle cible entraîné sur un phénotype spécifique. Dans notre exemple, le modèle

cible est un réseau de neurones convolutifs unidimensionnels (1D-CNN) entraîné pour prédire la pré-

sence ou l’absence d’un phénotype particulier (sulfate de cuivre) à partir de données de génotypes.

Étant donné la taille limitée du jeu de données génétiques disponibles, nous avons choisi de rester dans

la même répartition génétique, mais en utilisant différents phénotypes pour entraîner notre modèle.

Pour maximiser cette sélection, nous avons créé une matrice de corrélation entre les 19 autres phé-

notypes mesurés sur le même groupe d’individus, en excluant le phénotype cible (sulfate de cuivre).

Cette étude visait à déterminer le phénotype le plus similaire statistiquement aux autres, afin de per-

mettre au modèle d’ombre de mieux approximer le comportement du modèle cible à partir d’un phé-
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notype biologiquement et structurellement proche.

Bien qu’elle soit basée sur une analyse statistique préalable, il faut noter que le phénotype cible n’a

pas été utilisé pour construire le modèle d’ombre ni pour calculer les corrélations. Ainsi, l’adversaire

n’a aucune information spécifique sur les étiquettes du modèle cible, mais seulement un accès aux

données de même distribution associées à des phénotypes différents. D’un point de vue méthodolo-

gique, nous supposons donc que les phénotypes auxiliaires sont mesurés sur la même cohorte que le

phénotype cible, mais dans des contextes expérimentaux différents (autres milieux de culture, autres

stress, etc.). Ce choix ne constitue pas une fuite artificielle d’information au profit de l’attaquant,

dans la mesure où les étiquettes du phénotype cible ne sont jamais réutilisées pour entraîner les mo-

dèles d’ombre. Au contraire, il reflète un scénario réaliste où un même individu peut apparaître dans

plusieurs études ou essais cliniques, avec des phénotypes multiples mesurés sur un même génome.

Dans ce cadre, l’utilisation de ces phénotypes auxiliaires permet à l’attaquant de tirer parti de signaux

génétiques partagés entre traits corrélés, tout en respectant le cadre boîte noire : seules des données

externes ou auxiliaires, distinctes des étiquettes du modèle cible, sont exploitées pour construire les

modèles d’ombre. Il est important de noter que, bien que les génotypes des modèles d’ombre et

du modèle cible proviennent de la même cohorte, les ensembles utilisés pour évaluer l’attaque sont

strictement séparés de ceux utilisés pour l’entraînement. En particulier, les exemples «membres» et

«non-membres» du modèle cible sont construits à partir de sous-ensembles distincts, et les modèles

d’ombre ne sont jamais entraînés avec les étiquettes du phénotype cible. Cette séparation vise pré-

cisément à limiter le surapprentissage sur un jeu de données particulier et à préserver la capacité de

généralisation de l’attaque dans le cadre expérimental étudié.

Ce cadre est inspiré d’usages réels en médecine personnalisée, où des modèles prédisent la réponse

à un traitement à partir du génotype. Un adversaire peut connaître la nature de la tâche (p. ex. «

réponse au médicament X ») et disposer de données publiques/auxiliaires sur la même population,

associées à d’autres phénotypes (p. ex. réponses à traitements voisins), sans recourir aux exemples

d’entraînement du modèle cible. L’exploitation de phénotypes corrélés permet alors d’entraîner un

modèle d’ombre généralisable, qui capture des signaux de surconfiance ou de mémorisation similaires

à ceux du modèle cible, tout en respectant les contraintes de réalisme (boîte noire) et de confidentialité.
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FIGURE 3.7 – Matrice de corrélation de Pearson entre 19 phénotypes mesurés sur un même ensemble

de génotypes de levure. Chaque case représente la corrélation entre une paire de traits, les valeurs

élevées (en valeur absolue) signalant des phénotypes susceptibles de partager des déterminants géné-

tiques communs. Cette visualisation sert de base à la sélection de phénotype auxiliaire utilisé pour

entraîner le modèle d’ombre dans la Méthode 1.

Cette matrice (voir Figure 3.7) a été construite à partir des valeurs phénotypiques mesurées pour

chaque individu, en calculant les coefficients de corrélation de Pearson entre chaque paire de phéno-

types. L’objectif est d’identifier les relations statistiques existantes entre différentes conditions envi-

ronnementales ou stress biologiques, afin de sélectionner des phénotypes auxiliaires pertinents pour

la construction d’un modèle d’ombre. Une valeur absolue élevée indique une variation phénotypique
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potentiellement similaire, ce qui peut améliorer la capacité du modèle d’ombre à approximer le com-

portement du modèle cible.

Après avoir construit la matrice, nous avons déterminé les phénotypes les plus dominants en addition-

nant les valeurs absolues des coefficients de corrélation pour chaque phénotype (ligne/colonne) dans

cette dernière. Les phénotypes Lactate, Lactose, Xylose, Raffinose et Magnesium Chloride se sont dis-

tingués par les sommes les plus élevées (respectivement 5,48, 5,10, 4,98 , 4,93 et 4,60), indiquant une

forte similarité statistique avec l’ensemble des autres traits. Parmi ces phénotypes fortement corrélés,

nous avons finalement retenu Xylose comme phénotype auxiliaire principal pour l’implémentation

expérimentale. Ce choix est motivé à la fois par sa corrélation élevée avec l’ensemble des autres

traits et par des contraintes computationnelles, qui nous ont conduit à concentrer l’analyse détaillée

sur un seul phénotype représentatif. Cette sélection permet d’entraîner le modèle d’ombre sur des

phénotypes situés statistiquement au centre du réseau de corrélations, ce qui favorise l’apprentissage

de patrons de variation phénotypique plus généraux et représentatifs. Le phénotype auxiliaire utilisé

dans cette méthode ont donc été choisis selon une approche statistique rigoureuse. En effet, la matrice

de corrélation a permis d’identifier ceux présentant les similarités les plus fortes avec l’ensemble des

traits mesurés. Le principe implicite est que les phénotypes biologiquement proches ont des sché-

mas de variation génétique similaires. Cela rend les prédictions de modèle d’ombre formé sur ces

caractéristiques plus appropriées pour simuler le comportement du modèle cible.

Le modèle d’ombre choisi dans cette méthodologie est un classificateur de type régression logistique,

entraîné à partir des génotypes associés au phénotype auxiliaire sélectionné. La régression logistique

est couramment utilisée en génomique pour modéliser la relation entre des variants génétiques (tels

que les SNPs) et des phénotypes binaires (comme la présence ou l’absence d’une maladie). Elle

permet de mettre en évidence les variants significativement associés à un trait et de fournir des coef-

ficients interprétables, qui représentent l’impact de chaque variant sur la probabilité d’occurrence du

phénotype (Wu et al., 2009; Sperandei, 2014).

Chaque modèle d’ombre est entraîné à l’aide d’exemples connus (provenant du jeu d’entraînement)

et évalué à l’aide d’exemples inconnus (provenant du jeu de test), ce qui donne deux ensembles de

sorties : l’un pour les membres et l’autre pour les non-membres. Dans notre protocole, le modèle
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d’ombre est entraîné sur des sous-ensembles dédiés, distincts de ceux utilisés pour l’entraînement et

l’évaluation du modèle cible. Les exemples issus de l’ensemble d’entraînement des modèles d’ombre

sont considérés comme « membres », tandis que ceux issus de leur ensemble de test jouent le rôle de

« non-membres » pour la construction du jeu de données d’attaque.

Après avoir entraîné des modèles d’ombre avec les données de levure, ils ont été utilisés pour générer

les prédictions nécessaires à la construction du jeu de données d’attaque. Chaque modèle d’ombre

a fourni des estimations de probabilité, tant pour les échantillons d’entraînement (considérés comme

membres) que pour les échantillons de test (non-membres). Ces prédictions reflètent la manière dont le

modèle traite les données qu’il a vues par rapport à celles qu’il n’a jamais rencontrées, une distinction

essentielle pour une attaque d’inférence d’appartenance.

TABLE 3.3 – Conditions d’entraînement du modèle d’ombre (Méthode 1)

Paramètre Valeur

Type de modèle Régression logistique

Pénalité L2

C (inverse de la régularisa-

tion)

1.0

Solveur lbfgs

Nombre maximal d’itéra-

tions

1000

Chaque exemple est alors représenté par son vecteur de sortie (par exemple, la probabilité associée

à la classe positive pour un problème binaire). Il porte également une étiquette : 1 s’il a été vu par

le modèle (membre), 0 sinon (non-membre). L’ensemble de ces vecteurs (environ 1 000 exemples

équilibrés) constitue le jeu d’entraînement du modèle d’attaque.

Les vecteurs issus de l’ensemble des modèles d’ombre sont ensuite concaténés pour former le jeu de

données d’entraînement du modèle d’attaque. Ce modèle est entraîné pour apprendre à distinguer les

sorties typiques d’un échantillon membre de celles d’un non-membre. Nous avons utilisé ici un classi-
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fieur forêt aléatoire (Breiman, 2001), connu pour sa robustesse, sa capacité à capturer des interactions

complexes et sa bonne performance sur des jeux de données de taille moyenne. Une validation croisée

n’a pas été jugée nécessaire dans ce contexte, car le jeu de données est équilibré, le modèle n’est pas

fortement paramétré, et les performances se stabilisent rapidement lors de l’entraînement.

De plus, le choix d’un modèle d’ombre plus simple que le modèle cible (sous forme de régression

logistique) est volontaire : il reflète un attaquant réaliste qui ne cherche pas à reproduire fidèlement

l’architecture interne du 1D-CNN, mais à capturer des tendances générales entre membres et non-

membres. De la même manière, l’utilisation d’une forêt aléatoire comme modèle d’attaque relève

d’une approche pragmatique dans un scénario de boîte noire : l’adversaire ne connaît ni la structure

exacte du modèle cible ni ses hyperparamètres, et s’appuie donc sur un classificateur robuste, stable

et peu paramétré pour capturer les schémas discriminants dans les sorties des modèles d’ombre.

TABLE 3.4 – Conditions d’entraînement du modèle d’attaque

Paramètre Valeur

Type de modèle Forêt aléatoire

Profondeur maximale 2

Random state 42

Taille du jeu d’attaque ∼1 000 exemples (membres et non-membres)

Métriques d’évaluation Accuracy, Precision, Recall, F1, ROC AUC

3.6.2 Méthode 2 : méthodologie d’attaque par transfert de connaissances généralisée

Dans le cadre de ce travail, l’approche par transfert de connaissances généralisées a été retenue pour

plusieurs raisons pratiques et méthodologiques.

Tout d’abord, la quantité de données génomiques de levure disponible était limitée. Pour mener une

attaque par inférence d’appartenance, il est nécessaire de diviser ces données en trois ensembles dis-

tincts : l’un pour entraîner le modèle cible, un autre pour créer les modèles d’ombre et le dernier pour

tester l’attaque. Cela aurait considérablement réduit la quantité d’échantillons utilisables pour chaque

étape. Ensuite, puisque notre scénario est réaliste et du genre boîte noire (l’attaquant n’a accès qu’aux
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sorties du modèle cible), et que l’objectif est de concevoir un modèle d’attaque généralisé, la méthodo-

logie présentée dans l’article ML-Leaks : Model and Data Independent Membership Inference Attacks

and Defenses on Machine Learning Models (Salem et al., 2019) s’est avérée très appropriée. Cette

méthode permet effectivement de résoudre la contrainte liée au nombre limité d’échantillons dispo-

nibles, en s’appuyant sur des ensembles de données externes pour entraîner les modèles d’ombre, sans

nécessiter un accès direct aux données d’entraînement du modèle cible.

Cette méthode fonctionne de manière conceptuellement distincte des attaques par modèles d’ombre

traditionnelles, que nous allons détailler ci-dessous. Dans cette méthodologie, l’attaquant adopte une

approche différente de la méthode traditionnelle des attaques par modèles d’ombre. Contrairement à

l’approche initiale de Shokri et al. (2017), qui vise elle aussi l’inférence d’appartenance mais apprend

l’attaquant via des modèles d’ombre “miroirs” entraînés sur des données co-distribuées et étiquetées,

notre approche suit Salem et al. (2019) et entraîne des modèles d’ombre sur des ensembles externes

potentiellement hétérogènes, puis extrait des résumés statistiques des sorties (p. ex. top-k, entropie,

pertes) pour entraîner le classifieur d’attaque sans accès aux données d’entraînement ni à la structure

interne du modèle cible. Comme l’attaquant ne possède ni les données d’entraînement du modèle

cible ni sa structure exacte, il utilise donc un ou plusieurs ensembles de données externes, qui peuvent

être tirés de sources très diverses, par exemple des images, du texte ou encore des transactions. Alors,

chaque modèle d’ombre est entraîné sur un sous-ensemble de ses données (considéré comme les

"membres") et il est ensuite évalué à partir d’une autre partie (considérée comme les "non-membres").

Les ensembles de données utilisés dans cette méthodologie ont été sélectionnés selon plusieurs cri-

tères : leur accessibilité publique, leur diversité structurelle (images, texte, données tabulaires, etc.),

ainsi que leur usage fréquent dans les études sur les attaques MIA, notamment dans le cadre de l’ap-

proche de Salem et al. (2019). Ces jeux permettent de simuler différents types de comportements

modèles sans dépendre des données cibles.

Parmi ces ensembles, on retrouve notamment :

— Purchase-100 1 : un jeu de données transactionnel composé de profils d’achats binaires répartis

1. https ://www.kaggle.com/c/acquire-valued-shoppers-challenge/data



61

FIGURE 3.8 – Pipeline de la Méthode 2 : attaque par transfert de connaissances généralisée. Des

modèles d’ombre sont d’abord entraînés sur plusieurs jeux de données externes hétérogènes (images,

texte, données tabulaires, etc.) afin de capturer des motifs génériques de différences entre membres

et non-membres dans l’espace des postériors. Les caractéristiques dérivées (top-3 postériors) servent

ensuite à entraîner un modèle d’attaque, qui est finalement appliqué aux sorties du modèle cible de

levure, sans jamais avoir vu ses données d’entraînement.

en 100 classes. Il est notamment utilisé dans les expériences de Salem et al. (2019).

— Adult 2 : un jeu de données tabulaires couramment utilisé dans l’inférence d’appartenance,

provenant du recensement des États-Unis. Il contient une catégorisation binaire.

— MNIST 3 : un jeu d’images manuscrites en niveaux de gris de chiffres (0 à 9), contenant 10

classes.

— CIFAR-10 et CIFAR-100 4 : deux jeux de données d’images couleur, contenant respectivement

10 et 100 classes, couvrant des objets variés (animaux, véhicules, etc.).

— Location 5 : un ensemble de données de géolocalisation extrait des points de check-in Fours-

2. https ://archive.ics.uci.edu/dataset/2/adult

3. https ://www.kaggle.com/datasets/hojjatk/mnist-dataset

4. https ://www.cs.toronto.edu/ kriz/cifar.html

5. https ://sites.google.com/site/yangdingqi/home/foursquare-dataset
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quare, utilisé dans plusieurs études récentes sur la confidentialité des modèles (Yang et al.,

2014).

— News 6 : un ensemble de données textuelles composé de 20 forums de discussion différents,

utile pour l’entraînement de modèles à partir de séquences de texte.

Du point de vue de la génomique, ces ensembles externes ne fournissent aucune information di-

recte sur la levure. Leur fonction consiste plutôt à offrir un éventail de tâches de classification su-

pervisée dans lesquelles on observe le même phénomène structurel que dans les attaques MIA : les

exemples vus pendant l’entraînement ont tendance à produire des résultats plus confiants (postérieurs

plus concentrés, entropie plus faible) que les exemples inédits. L’hypothèse de transfert est donc que

ces motifs de sur-confiance dans l’espace des probabilités de sortie sont en grande partie indépen-

dants du domaine et peuvent être appris à partir de données arbitraires, puis réutilisés avec le modèle

cible de levure. Par conséquent, l’utilité de ces jeux d’images, de texte ou de transactions ne réside

pas dans leur signification sémantique, mais dans leur capacité à saisir des schémas génériques de

comportement de membre ou de non-membre d’un modèle d’apprentissage.

TABLE 3.5 – Modèles d’ombre utilisés pour chaque ensemble de données

Nom du dataset Type de données Modèle d’ombre utilisé

MNIST Images (10 classes) CNN (2 Conv2D + MaxPooling + Dense)

CIFAR-10 Images (10 classes) CNN (blocs Conv2D avec BatchNorm et

Dropout)

CIFAR-100 Images (100 classes) EfficientNetB0 préentraîné (ImageNet)

Adult Données tabulaires Fôret aléatoire (Scikit-learn)

Purchase-100 Données tabulaires MLP (2 couches Dense de 1024 neurones

+ Softmax)

20 Newsgroups Texte Multinomial Naive Bayes avec TF-IDF

Location (TIST) Coordonnées géogra-

phiques

MLP (3 couches avec Dense, Dropout et

Softmax)

6. https ://www.kaggle.com/datasets/everydaycodings/global-news-dataset
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TABLE 3.6 – Caractéristiques des ensembles de données externes utilisés (Méthode 2)

Nom du dataset Type de données Nb d’attributs

(ordre de gran-

deur)

Nb de classes

MNIST Images 28×28 en niveaux

de gris

784 pixels 10 chiffres (0–9)

CIFAR-10 Images couleur 32×32×3 ∼ 3 000 pixels 10 catégories d’ob-

jets

CIFAR-100 Images couleur 32×32×3 ∼ 3 000 pixels 100 catégories

d’objets

Adult Données tabulaires (re-

censement)

∼ 100 attributs

après encodage

2 classes de revenu

Purchase-100 Vecteurs binaires de com-

portement d’achat

∼ 600 produits 100 segments de

clients

20 Newsgroups Texte (représentation TF-

IDF)

∼ 5 000 termes fré-

quents

20 groupes de dis-

cussion

Location (TIST) Séquences de check-ins

géolocalisés

Quelques dizaines

de descripteurs dé-

rivés

Plusieurs dizaines

de lieux

Pour s’adapter aux particularités de chaque ensemble de données, des algorithmes d’apprentissage

adaptés ont été choisis pour entraîner les modèles d’ombre. Les modèles sont présentés dans le tableau

3.5. Pour sélectionner les modèles d’ombre appropriés pour chaque ensemble de données, plusieurs

facteurs ont été pris en compte : (1) la nature des données (images, tabulaires, texte, etc.), (2) la

complexité du problème (nombre de classes, linéarité des relations), et (3) la littérature existante

sur les performances des modèles d’inférence d’appartenance. Les CNN ont été privilégiés pour les

données de type image, car ils permettent une extraction hiérarchique des motifs visuels (Shokri

et al., 2017; Salem et al., 2019; Nasr et al., 2018). Les Multilayer Perceptron (MLP) sont adaptés aux

données structurées à haute dimension comme Purchase-100 (Salem et al., 2019). Enfin, les forêts
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aléatoires et les modèles bayésiens sont efficaces pour les jeux de données plus simples ou de plus

petite taille (Yeom et al., 2018; Jayaraman et Evans, 2019). Cette approche ciblée permet d’optimiser

les performances de chaque modèle d’ombre tout en garantissant la diversité des comportements

utilisés pour entraîner le modèle d’attaque.

Contrairement aux approches traditionnelles qui construisent plusieurs modèles d’ombre pour simuler

le comportement du modèle cible, notre méthodologie adopte une version simplifiée, dans laquelle un

seul modèle d’ombre est créé pour chaque ensemble de données. Cette simplification permet non

seulement de réduire la complexité computationnelle, mais aussi de maîtriser la variabilité entre les

jeux de données hétérogènes. Elle assure également une couverture suffisante des différences entre

membres et non-membres.

Une fois les prédictions des modèles d’ombre collectées (sous forme de postérieurs), un modèle d’at-

taque est entraîné pour distinguer les échantillons membres des non-membres. Dans notre implé-

mentation, chaque exemple est représenté par un vecteur de caractéristiques statistiques extraites des

sorties du modèle, plus précisément les trois probabilités les plus élevées parmi toutes les classes

prédites (aussi appelées top-3 postérieurs). Cette méthode d’extraction permet de résumer l’informa-

tion de sortie tout en réduisant la dimensionnalité, ce qui améliore la stabilité du modèle d’attaque.

Pour constituer le jeu de données d’entraînement de l’attaque, les sorties des modèles d’ombre sont

étiquetées en fonction de leur appartenance : les échantillons vus lors de l’entraînement du modèle

d’ombre sont étiquetés comme membres (1), et ceux utilisés pour le test comme non-membres (0).

Ces vecteurs sont ensuite concaténés pour entraîner un classificateur forêt aléatoire, choisi pour sa

capacité à capturer des interactions non linéaires, sa robustesse aux variables redondantes et sa bonne

généralisation sur des jeux de taille moyenne (Breiman, 2001).

Dans notre cas, le jeu d’entraînement du modèle d’attaque est construit à partir de sept jeux de données

hétérogènes (Purchase, Adult, CIFAR-10/100, MNIST, Location, News). Chaque dataset a fourni

environ 2000 à 10000 échantillons membres et non-membres, soit un total combiné de plus de 40 000

exemples d’entraînement. Le modèle d’attaque est validé sur des exemples générés à partir du modèle

cible réel, à savoir le CNN entraîné sur les données génomiques de levure. Pour cela, un ensemble de

membres (issus de l’entraînement du modèle cible) et un ensemble de non-membres (issus d’un jeu
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de données totalement disjoint) sont soumis au modèle cible, et leurs prédictions sont transformées

en top-3 postériors comme décrit ci-dessus.

Ce protocole d’évaluation permet de mesurer la capacité de généralisation de l’attaque, c’est-à-dire sa

capacité à détecter l’appartenance d’un échantillon sans jamais avoir vu le modèle cible ou ses don-

nées d’origine. L’ensemble final de test est équilibré (50% membres / 50% non-membreset comprend

environ 2 000 échantillons.

3.7 Protocole de validation

Dans cette section, nous décrivons les stratégies de validation utilisées pour chacune des deux métho-

dologies proposées.

3.7.1 Méthodologie 1 : Modèles d’ombre basés sur des phénotypes corrélés

— Le jeu de données initial contient 4 390 individus génotypés. Après filtrage des échantillons ne

disposant pas d’une mesure phénotypique valide pour le phénotype cible (sulfate de cuivre), il

reste 3 404 individus.

— Après binarisation du phénotype et équilibrage des classes, le jeu de données final comporte

3 404 échantillons, soit 1 702 individus dans la classe positive et 1 702 dans la classe négative.

— Environ 70 % de ces individus (2 383 échantillons) sont utilisés pour entraîner et évaluer le

modèle cible. Ce sous-ensemble est ensuite divisé en 80 % pour l’entraînement (1 907 échan-

tillons) et 20 % pour le test du modèle cible (476 échantillons).

— Les 30 % restants (1 021 échantillons) sont conservés comme données non vues par le mo-

dèle cible. Ces données servent de base pour constituer les exemples « non-membres » dans

l’évaluation de l’attaque.

— Pour la construction du modèle d’attaque, un ensemble équilibré est formé à partir de :

— exemples « membres » : échantillons issus de l’ensemble d’entraînement du modèle cible ;

— exemples « non-membres » : échantillons tirés au hasard parmi les 1 021 profils réservés

et jamais vus par le modèle cible.

— Dans cette première méthodologie, les modèles d’ombre sont entraînés sur des phénotypes
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auxiliaires mesurés sur la même cohorte de levures, mais en utilisant des sous-ensembles

strictement séparés de ceux employés pour l’entraînement et l’évaluation du modèle cible, afin

d’éviter toute fuite directe d’information et de mesurer la généralisation réelle de l’attaque.

3.7.2 Méthodologie 2 : Transfert de connaissances généralisé

Le jeu de données génomiques initial contient 4 390 individus. Après filtrage des phénotypes man-

quants pour le trait sulfate de cuivre, il reste 3 404 individus utilisables, qui sont répartis comme suit :

— 70% des données (2 383 individus) sont utilisés pour entraîner et évaluer le modèle cible. Ce

sous-ensemble est lui-même divisé en 80% pour l’entraînement (1 907 individus) et 20% pour

la validation (476 individus).

— Les 30% restants (1 021 individus) sont conservés comme données non vues par le modèle

cible. Ces données servent à constituer les exemples « non-membres » pour l’évaluation finale

de l’attaque.

— Le modèle d’attaque est entraîné uniquement à partir de jeux de données externes hétérogènes

(Purchase, CIFAR, Adult, etc.), totalement indépendants des données de levure. Les modèles

d’ombre associés produisent des vecteurs de sorties (postériors) qui alimentent un classifieur

d’attaque généraliste.

— Pour tester ce classifieur sur le modèle cible, on forme ensuite un ensemble équilibré d’exemples :

— « membres » : extraits de l’ensemble d’entraînement du modèle cible (parmi les 1 907

échantillons vus pendant l’apprentissage) ;

— « non-membres » : extraits des 1 021 échantillons jamais vus par le modèle cible.

Aucune validation croisée systématique ni recherche exhaustive d’hyperparamètres n’ont été effec-

tuées dans ce travail, car l’objectif principal n’était pas d’optimiser finement la performance prédictive

de chaque modèle, mais d’évaluer leur comportement dans un scénario réaliste d’attaque. Nous avons

toutefois procédé à un réglage manuel limité : pour le modèle cible, nous avons repris les hyperpara-

mètres proposés par Chen et al. (2020) et vérifié, au moyen de quelques essais préliminaires (variation

du nombre de filtres et du taux d’apprentissage), que les performances restaient stables. Pour les mo-

dèles d’ombre (régression logistique) et le modèle d’attaque (forêt aléatoire), nous avons conservé

des configurations standards largement utilisées dans la littérature (régularisation L2 avec C = 1,0,

profondeur maximale fixée à 2), après quelques tests exploratoires. Ce choix permet de contenir le
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coût de calcul et se justifie par le fait que notre analyse porte avant tout sur la faisabilité et la signifi-

cativité globale des attaques, plutôt que sur l’obtention de modèles parfaitement optimisés. De plus,

une graine aléatoire fixe a été utilisée pour toutes les étapes comportant un tirage aléatoire (division

des données, rééchantillonnage, entraînement), afin de garantir la reproductibilité des résultats.

3.8 Discussion des limites et biais potentiels

Bien que les deux méthodes soient complémentaires, elles ont aussi leurs limites, qu’il est important

de mettre en évidence pour une évaluation approfondie de leur impact.

— Taille limitée de l’ensemble de données : le jeu de données génomiques utilisé repose sur

quelques milliers d’individus seulement. Cette taille restreinte impose des compromis entre

l’entraînement du modèle cible, la construction des jeux membres/non-membres et la création

des modèles d’ombre. Elle augmente aussi le risque de surapprentissage et limite la validité

externe des résultats, qui doivent être interprétés comme une preuve de faisabilité plutôt que

comme une estimation définitive du risque pour des bases de données beaucoup plus volumi-

neuses.

— Dépendance à une architecture de modèle spécifique : le modèle cible est un 1D-CNN parti-

culier, dont l’architecture et les hyperparamètres ont été fixés en suivant Chen et al. (2020).

Les résultats obtenus caractérisent donc avant tout la vulnérabilité de cette famille de modèles.

D’autres architectures (réseaux plus profonds, régularisation plus forte, modèles linéaires ou

ensembles) pourraient présenter un comportement différent vis-à-vis des attaques d’inférence

d’appartenance, ce qui limite la généralisation immédiate des conclusions à l’ensemble des

modèles utilisés en pratique sur des données biomédicales.

— Dépendance à la corrélation phénotypique : la première méthode repose sur l’hypothèse que

les phénotypes auxiliaires utilisés pour entraîner les modèles d’ombre sont suffisamment cor-

rélés avec le phénotype cible. Cependant, cette dépendance peut restreindre la capacité de

généralisation si les phénotypes sélectionnés ne captent pas les mêmes signaux génétiques

sous-jacents.

— Écart de distribution entre les jeux de transfert : dans la seconde méthode, les modèles d’ombre

sont entraînés sur des ensembles de données externes, très différents du domaine génomique

(images, textes, transactions, etc.). Ces écarts de distribution peuvent engendrer un décalage
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entre les distributions de sorties des modèles d’ombre et celles du modèle cible, ce qui peut

affecter les performances de l’attaque généralisée. Cependant, cette méthodologie est basée

sur l’hypothèse que la différence entre les échantillons de membres et de non-membres se ma-

nifeste par le biais de motifs génériques dans les vecteurs de sortie (par exemple : la confiance

du modèle, la dispersion des probabilités, etc.). Bien que les raisons derrière cela puissent dif-

férer en fonction des données, nos résultats expérimentaux montrent qu’ils sont suffisamment

transférables pour permettre une attaque efficace, même lorsque les modèles d’ombre sont en-

traînés sur des domaines très éloignés du domaine cible. Cela suggère une certaine robustesse

de l’attaque aux variations de distribution entre les domaines.

— Biais liés à l’utilisation de données de levure : les données utilisées pour entraîner le modèle

cible proviennent de Saccharomyces cerevisiae, un organisme modèle unicellulaire. Cette ap-

proche permet un contrôle précis des variables génétiques et expérimentales. Cependant, il

est encore nécessaire de démontrer la transférabilité des résultats à des données humaines.

En effet, les génomes humains sont beaucoup plus complexes et variables, autant dans leurs

interactions entre variants que dans l’effet de l’environnement.

— Limites computationnelles et structurelles : la méthodologie d’attaque généralisée impose un

coût computationnel important lié à la manipulation de jeux de données hétérogènes et à l’en-

traînement de multiples modèles. De plus, elle suppose l’accès à des sorties probabilistes (soft-

max), ce qui pourrait ne pas être disponible dans certains services de prédiction.
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FIGURE 3.9 – Comparaison des deux approches d’attaque par inférence d’appartenance (MIA). La

Méthode 1 (à gauche) repose sur la construction d’un modèle d’ombre entraîné sur des phénotypes

auxiliaires génétiquement corrélés à ceux du modèle cible (même distribution), afin de produire un

vecteur de probabilité binaire servant à l’entraînement du modèle d’attaque. La Méthode 2 (à droite)

adopte une stratégie de transfert de connaissances généralisée, dans laquelle des modèles d’ombre

sont entraînés sur des jeux de données hétérogènes (images, texte, données tabulaires) pour simuler

des sorties membres/non-membres. Ces prédictions sont utilisées pour extraire des vecteurs de ca-

ractéristiques statistiques (top-m posteriors), qui servent ensuite à entraîner un modèle d’attaque. Le

schéma intègre également une légende expliquant les rôles des composants (données, modèles, vec-

teurs de sortie, statut d’appartenance) pour faciliter la compréhension comparative.
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3.9 Métrique de succès de l’attaque d’inférence d’appartenance

Étant donné que l’objectif principal des attaques par inférence d’appartenance est de déterminer si un

échantillon a été utilisé lors de l’entraînement d’un modèle d’apprentissage automatique, il est essen-

tiel d’évaluer correctement leur performance, non seulement pour mesurer leur efficacité, mais aussi

pour estimer les risques de fuite de données sensibles dans des systèmes réels. Au fil des années, les

recherches sur les MIA se sont concentrées sur l’exactitude (accuracy) comme indicateur d’évalua-

tion. Cette métrique correspond à la proportion d’échantillons pour lesquels la prédiction du modèle

d’attaque est correcte, qu’il s’agisse de membres (vrais positifs) ou de non-membres (vrais négatifs).

Pour mieux comprendre la manière dont cette métrique est calculée, il convient de présenter la matrice

de confusion associée.
Réel / Prédit Non-membre Membre

Non-membre TN FP

Membre FN TP

La matrice de confusion est un outil fondamental en apprentissage automatique pour évaluer les per-

formances d’un classificateur, qu’il soit binaire ou multiclasses. Elle permet de visualiser la répartition

des prédictions du modèle par rapport aux classes réelles des échantillons.

Chaque cellule de cette matrice représente une combinaison possible entre la classe réelle d’un échan-

tillon et la prédiction effectuée par le modèle d’attaque. Les valeurs attendues (classes réelles) sont

affichées en ligne, tandis que les classes prédites figurent en colonne (Fergus et Chalmers, 2022).

Les vrais positifs (TP) correspondent aux échantillons effectivement membres, prédits comme tels.

Les faux positifs (FP) représentent les non-membres que le modèle a incorrectement classés comme

membres.

Les faux négatifs (FN) sont des membres mal classés comme non-membres, tandis que les vrais

négatifs (TN) désignent les non-membres correctement identifiés.

À partir de cette matrice, on peut définir l’exactitude (accuracy) comme la proportion d’échantillons
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correctement classés par le modèle, indépendamment de leur appartenance :

Accuracy =
TP + TN

TP + TN + FP + FN

Bien que l’exactitude fournisse une première indication sur la performance globale du modèle d’at-

taque, elle se révèle souvent insuffisante dans le cas particulier des attaques par inférence d’appar-

tenance. En effet, cette métrique accorde la même importance aux prédictions correctes (TP et TN)

et aux erreurs (FP et FN), sans prendre en compte leur impact différentiel. En effet, dans les bases

de MIA, les faux positifs (FP), c’est-à-dire les échantillons non membres incorrectement identifiés

comme membres, sont particulièrement problématiques. Cette erreur pourrait entraîner l’accusation

injustifiée qu’une personne a été incluse dans un ensemble de données sensibles, ce qui constitue une

violation grave de la vie privée.

Carlini et al. (2022) ont été les premiers à proposer une nouvelle approche d’évaluation, qui ne se

fonde pas sur l’exactitude, mais sur deux métriques distinctes : le taux de vrais positifs (True positive

rate (TPR)) et le taux de faux positifs (False positive rate (FPR)).

Le taux de vrais positifs (TPR) est défini comme :

TPR =
TP

TP + FN

Et le taux de faux positifs (FPR) comme :

FPR =
FP

FP + TN

Ces indicateurs permettent de mieux caractériser la capacité de l’attaque à distinguer les membres des

non-membres, en mesurant séparément son efficacité (via le TPR) et son potentiel de nuisance (via

le FPR). Intuitivement, une attaque efficace devrait maximiser le TPR, c’est-à-dire identifier correcte-

ment un grand nombre de membres, tout en minimisant le FPR, afin de limiter les fausses attributions.

Le compromis TPR/FPR est entièrement représenté par la courbe ROC (Receiver operating charac-

teristic (ROC)), qui trace le TPR en fonction du FPR pour toutes les valeurs possibles du seuil de

décision. Cette courbe permet donc d’évaluer la performance globale de l’attaque, indépendamment

d’un seuil arbitraire, et d’en dériver une mesure synthétique : l’aire sous la courbe (AUC). Plus l’AUC

est proche de 1, plus l’attaque est discriminante. À l’inverse, une AUC proche de 0,5 indique un

comportement aléatoire.



72

Par conséquent, l’évaluation des performances du modèle d’attaque dans cette étude repose principa-

lement sur la courbe ROC, le couple TPR/FPR et l’aire sous la courbe (AUC), qui sont des indicateurs

plus robustes et informatifs que la précision seule. En plus des métriques classiques, nous utilisons

également deux mesures complémentaires : la précision (precision) et le rappel (recall).

La précision indique la proportion d’exemples prédits comme membres qui sont réellement membres

(vrais positifs parmi tous les positifs prédits). Elle permet d’évaluer la fiabilité des prédictions posi-

tives du modèle d’attaque.

Precision =
TP

TP + FP

Le rappel, quant à lui, mesure la capacité du modèle à identifier correctement les membres réels (vrais

positifs parmi tous les membres effectifs).

Recall =
TP

TP + FN

Dans le contexte des attaques par inférence d’appartenance, les mesures telles que la précision et le

rappel sont particulièrement utiles car elles permettent une évaluation plus nuancée des performances

du modèle d’attaque. Elles mettent en évidence sa sensibilité aux faux positifs et aux faux négatifs.

Cette approche est d’ailleurs employée dans les travaux de référence, comme celui de Shokri et al.

(2017). Dans notre cas, nous avons construit les ensembles de données utilisés pour évaluer l’at-

taque de manière équilibrée, en incluant autant d’exemples membres et non membres. Cela garantit

une évaluation équitable des mesures, telles que la précision et le rappel, sans biais introduit par un

déséquilibre des classes.

3.10 L’environnement

Les expériences ont été menées dans un environnement Python 3.9, en s’appuyant sur plusieurs bi-

bliothèques open source. Pour le prétraitement des données, nous avons utilisé NumPy (Harris et al.,

2020) et Pandas (McKinney et al., 2010). Les modèles d’apprentissage supervisé, y compris les mo-

dèles d’ombre et les classificateurs d’attaque, ont été construits avec Scikit-learn (Pedregosa et al.,
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2011). Le modèle cible, qui est un réseau de neurones convolutifs en dimension unique (1D-CNN),

a été développé avec Keras Chollet (2015), en utilisant TensorFlow comme serveur (Abadi et al.,

2016a). Enfin, les métriques d’évaluation (accuracy, TPR, FPR, AUC), ainsi que les visualisations

(matrices de confusion, courbes ROC), ont été générées à l’aide de Scikit-learn.metrics, Matplotlib

(Hunter, 2007) et Seaborn (Waskom, 2021).

3.11 Conclusion

Dans ce chapitre, nous proposons un cadre méthodologique pour évaluer les risques pour la vie privée

associés aux modèles d’apprentissage automatique utilisés avec des données génomiques. Ce cadre

comprend les étapes clés suivantes : préparation des données, prétraitement, conception du modèle

cible, création de modèles d’ombre et implémentation d’une attaque par inférence d’appartenance

dans un scénario de type boîte noire.

Dans la première méthodologie, l’implémentation par modèle d’ombre classique, nous avons choisi

des modèles ayant déjà fait leurs preuves dans des études antérieures en bio-informatique pour iden-

tifier un modèle d’ombre performant et généralisable. Ces modèles ont été choisis pour reproduire de

manière réaliste le comportement du modèle cible. Parmi les modèles évalués, celui qui a permis la

plus grande amélioration de la performance du modèle d’attaque a été choisi comme modèle d’ombre

final. Ce modèle a servi à créer l’ensemble des données d’attaque en produisant des exemples éti-

quetés comme appartenant ou non à un groupe. Par la suite, une forêt aléatoire a été entraîné sur ces

données pour mener l’attaque et identifier efficacement les échantillons appartenant au groupe cible.

En raison de la limitation du nombre d’échantillons disponibles pour entraîner un modèle d’ombre

dans le domaine génomique, une deuxième méthodologie inspirée de l’article de Salem et al. a

été adoptée pour implémenter l’attaque. Contrairement aux méthodologies classiques où le modèle

d’ombre cherche à imiter le comportement du modèle cible, cette approche repose sur l’utilisation de

plusieurs jeux de données publics et hétérogènes qui sont complètement différents du jeu de données

utilisé pour le modèle cible. L’objectif n’est donc pas de copier exactement la logique du modèle

cible, mais plutôt de capturer des schémas généraux permettant de distinguer les sorties associées aux

membres et aux non-membres. Ainsi, un classifieur d’attaque généralisé, basé sur une forêt aléatoire,
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a été entraîné à partir de ces données variées afin d’évaluer la robustesse du modèle cible face à des

attaques d’inférence d’appartenance dans un scénario plus réaliste et moins dépendant des données.

Le chapitre suivant présentera les résultats expérimentaux obtenus en mettant en œuvre les méthodo-

logies décrites plus tôt.



CHAPITRE 4

RÉSULTATS ET ANALYSE

Ce chapitre présente les résultats expérimentaux obtenus à partir des méthodologies décrites précé-

demment. Il vise à évaluer l’efficacité des attaques par inférence d’appartenance dans un contexte

génomique réaliste. La performance de divers modèles (modèle cible, modèles d’ombre et modèle

d’attaque) sera analysée selon plusieurs configurations.

Des expériences ont été menées sur des données réelles de levure, en utilisant des scénarios d’attaque

de type boîte noire. Deux méthodes différentes ont été évaluées : la première consiste à créer un

modèle d’ombre qui imite le comportement du modèle cible, tandis que la seconde met en œuvre une

attaque par transfert de connaissances généralisée en utilisant des ensembles de données externes.

Les résultats sont analysés à l’aide de différentes métriques, telles que la précision, l’AUC, l’exac-

titude, le rappel et la matrice de confusion, afin de mesurer à la fois la puissance de détection de

l’attaque et ses limites. Ce chapitre a également pour but de comparer les deux méthodologies et

d’identifier les facteurs ayant le plus d’impact sur la réussite ou l’échec de l’inférence.

Dans l’article de référence, les résultats rapportés sont obtenus à partir d’un seul seed aléatoire. Afin de

garantir une comparaison équitable, nous avons donc également présenté nos résultats principaux avec

un seul seed. Cependant, pour évaluer la robustesse de notre méthode et vérifier son indépendance vis-

à-vis du choix du seed, nous avons répété chaque expérience avec cinq seeds différents et rapporté les

moyennes et écarts-types correspondants.

4.1 Évaluation du modèle cible

Le modèle cible, dont l’architecture a été décrite au chapitre précédent, a été entraîné sur un sous-

ensemble des données génomiques de levure, en utilisant une classification binaire du phénotype «

résistance au sulfate de cuivre ». Ce choix expérimental est directement inspiré de l’article de Chen

et al. (2020), dans lequel ce phénotype est utilisé comme variable de sortie pour évaluer la vulnérabi-
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lité des modèles d’apprentissage automatique face aux attaques par inférence d’appartenance.

L’objectif n’est pas d’optimiser les performances du modèle, mais simplement de vérifier qu’il atteint

un niveau de précision adéquat pour jouer le rôle de cible dans l’attaque. À la fin de l’entraînement, le

modèle affiche une précision supérieure à 95% sur les données d’entraînement, ainsi qu’une précision

de validation qui se stabilise autour de 75 à 80%. Ce comportement est cohérent avec une situation

de surajustement modéré, ce qui reste acceptable dans ce contexte expérimental, où l’accent est mis

sur le comportement du modèle vis-à-vis de l’attaque plutôt que sur sa capacité de généralisation. Ces

performances du modèle cible sont du même ordre de grandeur que celles rapportées par Chen et al.

(2020), confirmant que notre configuration expérimentale est réaliste et comparable à l’état de l’art.

Pour le modèle cible, un total de 3404 échantillons a été utilisé. Ceux-ci ont été divisés en deux

groupes :

— 2383 échantillons pour l’entraînement et le test du modèle cible ;

— 1021 échantillons comme jeu non vu (unseen) pour l’évaluation de l’attaque.

Le premier groupe a ensuite été subdivisé en :

— 1907 échantillons pour l’entraînement du modèle cible ;

— 476 échantillons pour son test.

4.2 Évaluation de l’attaque par modèle d’ombre

Dans cette section, nous examinons les résultats obtenus par l’attaque réalisée à l’aide de la première

méthodologie, basée sur la construction d’un modèle d’ombre généralisé à partir de phénotypes sta-

tistiquement liés au phénotype cible. Contrairement à l’approche de référence de Chen et al. (2020),

qui suppose que l’adversaire dispose de données étiquetées identiques à celles du modèle cible pour

construire des modèles d’ombre, notre approche se veut plus réaliste : elle se fonde uniquement sur

l’utilisation de données génétiques similaires, mais associées à des phénotypes différents. Pour choisir

ces phénotypes auxiliaires, nous avons créé une matrice de corrélation entre 19 phénotypes mesurés

sur un même groupe d’individus, en excluant le phénotype cible. Les phénotypes présentant les corré-

lations les plus fortes ont ensuite été utilisés pour entraîner un ou plusieurs modèles d’ombre, simulant

ainsi le comportement du modèle cible sans jamais l’observer directement. Parmi les phénotypes auxi-



77

liaires évalués, seul Xylose a finalement été retenu pour construire le modèle d’ombre, car il présentait

des performances supérieures lors de l’attaque, démontrant ainsi sa plus grande capacité à approximer

le comportement du modèle cible.

TABLE 4.1 – Résumé des caractéristiques des modèles d’ombre et d’attaque dans la méthode 1

Caractéristiques Modèle d’ombre Modèle d’attaque

Données utilisées Phénotype Xylose (distinct de la

cible)

Sorties (scores) du modèle

d’ombre pour l’entraînement,

puis sorties du modèle cible pour

l’évaluation

Nombre d’échantillons 4190 2042 (1021 membres, 1021 non-

membres)

Proportion entraînement/test 50% entraînement, 50% test – (tous les exemples utilisés pour

l’entraînement ou l’évaluation)

Architecture du modèle Logistic Regression (pénalité l2,

max_iter=1000)

Random Forest (profondeur max

= 2)

Il est important de préciser que les 4190 profils utilisés pour entraîner le modèle d’ombre corres-

pondent à l’ensemble complet des génotypes de levure disponibles après prétraitement (filtrage des

valeurs manquantes et binarisation) pour le phénotype auxiliaire Xylose, distinct du phénotype cible

(sulfate de cuivre). Ces profils ne servent pas à l’entraînement du modèle cible, et ne sont pas réutili-

sés pour définir les membres et non-membres de l’attaque finale. Pour l’attaque MIA proprement dite,

les exemples « membres » sont exclusivement tirés du jeu d’entraînement du modèle cible, tandis

que les « non-membres » proviennent du sous-ensemble unseen de 1021 individus qui n’ont jamais

été vus pendant l’entraînement. Ainsi, les données employées pour apprendre le modèle d’ombre

restent conceptuellement séparées du protocole d’évaluation de l’attaque, ce qui limite le risque de

surapprentissage artificiel sur un ensemble de données particulier.

Les sorties probabilistes générées par le modèle d’ombre entraîné sur le phénotype Xylose ont été
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utilisées pour constituer le jeu de données d’attaque. Chaque prédiction fournit un score de confiance

pour chaque échantillon, permettant de l’associer à une étiquette binaire (membre ou non-membre) en

fonction de son origine (jeu d’entraînement ou de test). Ces vecteurs de sortie, riches en information

statistique, ont ensuite servi à entraîner un modèle d’attaque (forêt aléatoire) capable de distinguer les

comportements typiques d’un échantillon vu par le modèle de ceux d’un échantillon inconnu.

FIGURE 4.1 – Comparaison des performances de notre approche (modèle d’ombre entraîné sur le

phénotype Xylose) avec celles de l’approche de Chen et al. (2020), selon quatre métriques clas-

siques : exactitude, précision, rappel et AUC. On observe que notre méthode améliore systématique-

ment l’exactitude et l’AUC tout en réduisant le taux de faux positifs, au prix d’une légère baisse du

rappel.

Comme le montre la Figure 4.1, pour le seed principal considéré, notre approche surpasse celle de

Chen et al. (2020) sur la majorité des métriques : l’exactitude atteint 0,63 contre 0,58 pour la référence,

la précision s’élève à 0,62 contre 0,56, et l’AUC passe de 0,615 à 0,655. Seul le rappel (TPR) reste

légèrement inférieur à celui de la méthode de référence (0,663 contre 0,685), ce qui indique une très

légère baisse dans la capacité à détecter tous les membres. Toutefois, cette différence est compensée

par une réduction significative du taux de faux positifs.
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FIGURE 4.2 – Courbes ROC comparant la méthode de référence et notre approche (modèle d’ombre

basé sur Xylose).

La Figure 4.2 présente les courbes ROC comparées. La courbe correspondant à notre méthode se situe

systématiquement au-dessus de celle de Chen et al. (2020), ce qui traduit une meilleure capacité de

séparation entre les échantillons membres et non-membres. L’amélioration de l’AUC confirme cette

observation.

Les valeurs du Tableau 4.2 correspondent à la moyenne et à l’écart-type obtenus sur cinq exécutions

indépendantes (cinq seeds aléatoires différents), ce qui permet de juger la stabilité de la méthode

au-delà d’un seul seed.

TABLE 4.2 – Résumé des performances de l’attaque par modèle d’ombre corrélé (5 runs)

Métrique Moyenne Écart-type

Accuracy 0.6052 0.0171

Precision 0.6033 0.0161

Recall 0.6143 0.0282

F1-score 0.6086 0.0199

AUC 0.6127 0.0346
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Dans l’ensemble, le tableau met en évidence une performance relativement stable et équilibrée pour la

méthode basée sur les modèles d’ombre corrélés (Méthode 1). Les différentes métriques (exactitude,

rappel, F1-score et AUC) se situent toutes autour de 60 %, avec de faibles écarts-types, ce qui confirme

la robustesse de l’approche. Ces résultats suggèrent que l’utilisation de phénotypes biologiquement

corrélés fournit une base efficace pour entraîner des modèles d’ombre pertinents dans le cadre de

l’attaque MIA.

FIGURE 4.3 – Matrice de confusion – Mé-

thode de référence

FIGURE 4.4 – Matrice de confusion –

Notre méthode

L’analyse des matrices de confusion (Figures 4.3 et 4.4) révèle que notre approche atteint un com-

promis plus favorable entre la détection correcte des membres (TP) et la limitation des erreurs sur

les non-membres (FP). Ce comportement est particulièrement avantageux dans les scénarios de type

boîte noire où l’accès aux données est restreint. Bien que la détection correcte des membres (TP) soit

légèrement réduite par rapport à la référence, la forte diminution du taux de faux positifs (FP) rend

notre approche globalement plus robuste.
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Méthode TPR FPR

Méthode de référence (Chen et al.) 0,6848 0,5326

Notre méthode (Xylose) 0,6631 0,4058

TABLE 4.3 – Comparaison des taux de vrais et faux positifs pour les deux méthodes

La Table 4.3 confirme que notre approche présente un taux de faux positifs nettement réduit (0,4058

contre 0,5326), ce qui diminue les alertes erronées et renforce la précision de l’attaque. Bien que

légèrement moins performante en rappel, notre méthode reste plus fiable et plus sûre dans le contexte

d’une attaque en boîte noire.

Ainsi, notre approche démontre qu’il est possible de mener des attaques d’inférence d’appartenance

efficaces même dans des conditions réalistes et contraignantes, sans accès aux étiquettes ni à la struc-

ture du modèle cible. Cette contribution souligne l’urgence de développer des mécanismes de défense

adaptés à ces nouvelles menaces en génomique computationnelle.

4.3 Évaluation de l’attaque par transfert de connaissances généralisée

Dans cette section, nous examinons de manière approfondie les résultats obtenus à l’aide de la mé-

thode d’attaque par transfert de connaissances généralisée, inspirée des travaux de Salem et al. (2019).

Contrairement à l’approche classique, où les modèles d’ombre sont construits dans des conditions si-

milaires à celles du modèle cible, cette approche repose sur l’entraînement du modèle d’attaque à

partir des sorties de modèles d’ombre hétérogènes, chacun étant formé sur un ensemble de données

distinct et sans lien avec les données du modèle cible.

Les modèles d’ombre utilisés dans notre expérimentation couvrent plusieurs domaines et types de

données : données tabulaires (Adult, Purchase), données textuelles (Newsgroups), données d’image

(MNIST, CIFAR), ainsi que des données de localisation. Le rôle de chacun de ces modèles est uni-

quement de générer des échantillons membres et non-membres, à partir desquels sont extraits des

vecteurs de probabilités. Ces vecteurs sont ensuite transformés en caractéristiques statistiques déri-
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vées des probabilités de sortie (par exemple, les plus grandes probabilités parmi les classes). Dans le

cas binaire du phénotype de levure, chaque exemple est en pratique résumé par la probabilité prédite

pour la classe positive p(y = 1 | x) (et sa probabilité complémentaire), ce qui constitue l’entrée

du modèle d’attaque. Dans les jeux de données multi-classes utilisés pour entraîner certains modèles

d’ombre externes (par exemple CIFAR-10/100 ou Purchase), nous retenons effectivement le top-k des

probabilités de classes comme vecteurs de caractéristiques, avec k = 10 suivant Salem et al. (2019).

En revanche, pour le modèle cible de levure qui est binaire, k = 1 et seul p(y = 1 | x) (ainsi que sa

probabilité complémentaire) est utilisé comme entrée du modèle d’attaque. Les vecteurs ainsi obtenus

servent à alimenter un modèle d’attaque, en l’occurrence un classificateur de type forêt aléatoire, en-

traîné pour distinguer les membres des non-membres sans aucune connaissance préalable du modèle

cible.

TABLE 4.4 – Résumé des caractéristiques des modèles d’ombre et d’attaque dans la méthode 2

Caractéristiques Modèles d’ombre Modèle d’attaque

Données utilisées Résultats de modèles pré-

entraînés sur des jeux hé-

térogènes (Purchase, Adult,

CIFAR-10/100, MNIST, Loca-

tion, News)

Sorties (postérieurs) du modèle

cible sur les membres et non-

membres

Nombre d’échantillons 500146 2042 (1021 membres, 1021 non-

membres)

Proportion entraînement/test 50% entraînement, 50% test Tous les exemples levure (2042)

utilisés pour l’évaluation finale

Architecture du modèle – (modèles pré-entraînés non

spécifiés)

Forêt aléatoire (paramètres par

défaut)

Format des entrées Vecteurs de postérieurs (proba-

bilités de classes) issus des mo-

dèles d’ombre

Probabilité de la classe positive

prédite par le modèle cible (tâche

binaire)
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FIGURE 4.5 – Comparaison des performances globales entre la méthode de référence (boîte blanche)

et notre approche généralisée (boîte noire) sur les métriques clés de l’attaque MIA. Malgré un accès

plus limité au modèle cible, la méthode généralisée atteint une exactitude et une AUC supérieures,

ainsi qu’un rappel nettement plus élevé, ce qui illustre la puissance du transfert de connaissances entre

domaines.

L’objectif de cette évaluation est de mesurer la capacité de généralisation du modèle d’attaque à partir

de sources hétérogènes. Cette propriété est essentielle dans des contextes réalistes, où l’adversaire ne

dispose pas de données similaires à celles du modèle cible.

Les résultats illustrés dans la Figure 4.5 mettent en évidence une amélioration notable des perfor-

mances obtenues avec notre méthode par rapport à la méthode de référence. Il faut noter que la

méthode de référence se base sur un scénario en boîte blanche, dans lequel l’attaquant a un accès

total à l’architecture et au poids du modèle cible. En revanche, notre approche s’inscrit dans un cadre

réaliste d’attaque en boîte noire, où l’attaquant n’a accès qu’aux sorties du modèle cible. Cela rend

notre méthode plus difficile, mais elle parvient tout de même à surpasser la référence sur plusieurs

métriques. Les résultats obtenus sont comparés à ceux du modèle de référence proposé par Chen et al.

(2020) à l’aide de plusieurs métriques : l’exactitude, la précision, le rappel, la courbe ROC et l’aire

sous la courbe (AUC). La méthode généralisée atteint une exactitude de 61,4%, contre 57,6% pour
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FIGURE 4.6 – Courbes ROC comparant la méthode de référence (boîte blanche) et notre approche

(boîte noire). Notre méthode atteint une meilleure capacité de discrimination avec une AUC supé-

rieure.

la méthode de Chen. Le rappel est particulièrement élevé (96,2% contre 68,4%), indiquant une capa-

cité remarquable à identifier les membres. L’AUC s’améliore également, passant de 0,61 à 0,65, ce

qui témoigne d’une meilleure séparabilité des classes. Bien que la précision reste relativement stable

(autour de 56%), cela s’explique par une légère augmentation du taux de faux positifs, un compromis

attendu dans une stratégie de rappel maximal.

Afin d’approfondir cette comparaison, chaque métrique est examinée individuellement ci-dessous à

l’aide d’un graphique dédié et d’une interprétation contextuelle. L’exactitude mesure la proportion

des prédictions correctes effectuées par le modèle d’attaque sur l’ensemble des échantillons. Bien

qu’elle ne distingue pas les erreurs de type faux positif et faux négatif, elle offre une vue d’ensemble

de la performance. Notre méthode atteint une exactitude de 61,4%, contre 57,6% pour la méthode de

Chen, soit une amélioration absolue de 3,8 points. Cette progression est particulièrement significative

compte tenu du contexte en boîte noire.

Pour tenir compte de la variabilité liée à l’aléatoire, chaque expérimentation a été répétée cinq fois

avec des seeds différents (19122, 42, 1234, 2025 et 777). Les métriques présentées correspondent à

la moyenne et à l’écart-type calculés sur ces cinq exécutions indépendantes. Le tableau 4.5 résume
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les performances obtenues. Les valeurs du Tableau 4.5 correspondent à la moyenne et à l’écart-type

obtenus sur cinq exécutions indépendantes (cinq seeds aléatoires différents), ce qui permet de juger la

stabilité de la méthode au-delà d’un seul seed.

TABLE 4.5 – Résumé des performances de l’attaque généralisée (5 runs)

Métrique Moyenne Écart-type

Accuracy 0.59285 0.01479

Precision 0.55487 0.00830

Recall 0.93810 0.02434

F1-score 0.69727 0.01302

AUC 0.62753 0.01538

Les résultats du tableau 4.5 montrent que la méthode généralisée reste globalement stable et effi-

cace sur cinq exécutions différentes. Le rappel élevé (93,8%) indique une forte capacité à détecter

les membres, tandis que l’accuracy moyenne (59,3%) et l’AUC (62,7%) reflètent une bonne perfor-

mance globale malgré un accès limité aux données du modèle cible. La faible variation (écarts-types

modérés) confirme la robustesse de l’attaque face à l’aléa des initialisations.

Carlini et al. (2022) ont démontré que l’exactitude seule ne permet pas d’évaluer adéquatement l’effi-

cacité réelle des attaques par inférence d’appartenance. Ils recommandent plutôt de combiner le taux

de vrais positifs (TPR) et le taux de faux positifs (FPR), ainsi que de représenter les résultats sous

forme de courbe ROC. Cette courbe montre le TPR en fonction du FPR pour différents seuils de

décision, ce qui permet d’évaluer indépendamment de ce seuil la performance de l’attaque.

La courbe ROC obtenue montre que notre méthode d’attaque, bien qu’elle soit soumise à des contraintes

plus strictes (boîte noire), surpasse la méthode de référence, qui a été développée dans un environ-

nement plus ouvert (boîte blanche). En effet, la courbe correspondant à notre approche est toujours

située au-dessus de celle de Chen et al. (2020). Cela démontre une meilleure capacité de distinction

entre les membres et les non-membres.
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FIGURE 4.7 – Matrice de confusion – Mé-

thode de référence

FIGURE 4.8 – Matrice de confusion – Notre mé-

thode

Cette supériorité se manifeste par une courbe ROC systématiquement au-dessus de celle de la méthode

de référence pour une large gamme de seuils de décision, ce qui montre qu’il existe des configurations

où notre modèle peut atteindre un TPR plus élevé pour un niveau de FPR comparable. Cette carac-

téristique est cruciale dans les scénarios réels, où il est impératif de minimiser les faux positifs pour

éviter des conclusions hâtives.

En outre, notre méthode atteint une aire sous la courbe (AUC) plus élevée, ce qui quantifie cette

amélioration de la performance. Contrairement à la méthode de référence, qui nécessite un accès

complet au modèle cible (structure et poids), notre approche ne nécessite que les sorties du modèle,

tout en conservant une efficacité supérieure. Cette propriété revêt une importance particulière dans les

scénarios réels, où la maîtrise du taux de faux positifs est essentielle afin d’éviter toute interprétation

erronée.

Méthode TPR FPR

Méthode de référence (Chen et al.) 0,6848 0,5326

Notre méthode (généralisée) 0,9628 0,7356

TABLE 4.6 – Comparaison des taux de vrais et faux positifs pour les deux méthodes
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Les taux de vrais positifs (TPR) et de faux positifs (FPR) permettent d’évaluer plus finement la ca-

pacité d’un modèle d’attaque à distinguer les membres des non-membres. Ces deux métriques sont

fondamentales dans le cadre des attaques par inférence d’appartenance, notamment lorsqu’on souhaite

minimiser les fausses alertes tout en maximisant la détection des échantillons réellement présents dans

l’entraînement. Pour la méthode de référence (Chen et al.), le modèle atteint un TPR de 0,6848, indi-

quant qu’environ 68% des membres sont correctement identifiés. Le FPR est de 0,5326, ce qui signifie

que plus de la moitié des non-membres sont incorrectement classés comme membres, entraînant un

taux d’erreur non négligeable.

En revanche, notre méthode généralisée obtient un TPR remarquablement élevé de 0,9628, démon-

trant une capacité exceptionnelle à repérer les vrais membres. Toutefois, ce résultat s’accompagne

d’un FPR plus élevé (0,7356), ce qui reflète une propension accrue à produire des faux positifs.

Ce compromis entre TPR et FPR est typique des approches cherchant à maximiser la sensibilité

(recall) au détriment de la précision. Dans des scénarios de protection de la vie privée, une telle

stratégie peut poser problème si elle aboutit à une surdétection des membres supposés.

Il convient aussi de souligner que la comparaison entre les deux méthodes se base sur des ensembles

de données d’attaques de tailles différentes. La méthode de référence (Chen et al., 2020) utilise un

ensemble de données d’attaques créées dans un contexte contrôlé, généralement à partir d’un petit

nombre d’échantillons provenant du même domaine que le modèle cible. En revanche, notre approche

globale utilise un volume de données d’attaques générées à partir de nombreux modèles d’ombre

entraînés sur des données hétérogènes.

Cette différence de taille ne constitue pas un biais, mais reflète une hypothèse réaliste dans laquelle

l’adversaire peut accumuler davantage d’exemples d’attaque provenant de modèles d’ombre variés.

Cela rend notre approche plus robuste et plus transférable dans des contextes réels, contrairement à

l’attaque de Chen, très spécifique et dépendante du modèle cible.
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TABLE 4.7 – Tableau récapitulatif des performances et caractéristiques des deux approches d’attaque

par inférence d’appartenance proposées dans ce mémoire.

Critère Méthode 1 : Modèles d’ombre

corrélés (Xylose)

Méthode 2 : Transfert de

connaissances généralisé

Type de données utilisées Données réelles (levure), même

distribution mais phénotype dif-

férent

Données externes (Adult, Pur-

chase, MNIST, etc.), distribu-

tions hétérogènes

Accès au modèle cible Boîte noire (sorties uniquement) Boîte noire (sorties uniquement)

TPR 66,3% 96,2%

FPR 40,6% 73,6%

Exactitude 63,0% 61,4%

AUC 0,655 0,657

Robustesse au bruit / variabi-

lité des données

Moyenne Élevée

Dépendance au domaine Moyenne (besoin d’un phéno-

type corrélé)

Faible (fonctionne avec données

génériques)

Complexité de mise en

œuvre

Moyenne (besoin d’analyse de

corrélation)

Élevée (multidomaines, extrac-

tion statistique)

4.4 Synthèse comparative des deux méthodologies

Pour mieux comprendre les distinctions entre les deux approches d’attaque présentées dans ce cha-

pitre, le tableau 4.7 propose une synthèse comparative de leurs caractéristiques et de leurs perfor-

mances. En résumé, la méthode de transfert généralisé se distingue par une sensibilité accrue (TPR

élevé), mais avec un taux de faux positifs plus élevé. En revanche, la méthode axée sur les phéno-

types liés offre un meilleur équilibre entre précision et généralisation, tout en étant réaliste dans un

contexte où l’accès direct aux données du modèle cible est restreint. Dans notre étude, nous avons uti-

lisé l’exactitude (accuracy) comme principal indicateur d’évaluation des attaques. Cela nous a permis
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de comparer directement nos résultats à ceux de l’étude de référence de Chen et al. (2020), qui adopte

la même métrique dans un cadre génomique.

Cependant, à la lumière des recommandations de Carlini et al. (2022), nous reconnaissons que les

métriques globales telles que l’accuracy ou l’AUC ne suffisent pas à elles seules à mesurer les risques

de fuite. Ces auteurs soulignent qu’il est essentiel d’évaluer le taux de détection réel (TPR) à des taux

de fausses alertes (FPR) faibles, afin de mieux cerner les menaces réelles pour la confidentialité.

Pour répondre à cette critique, nous avons intégré l’analyse conjointe des TPR et FPR, ainsi qu’un

examen détaillé des matrices de confusion. Par exemple, dans la première méthodologie (modèles

d’ombre corrélés), nous obtenons un TPR de 66,3% et un FPR de 40,6%, ce qui indique que l’attaque

est capable d’identifier une proportion significative de membres, tout en maintenant un taux d’erreur

modéré. En revanche, la seconde méthodologie (transfert de connaissances généralisé) atteint un TPR

de 96,2%, mais au prix d’un FPR élevé (73,6%), traduisant un risque marqué de fausse classification

des non-membres.

De plus, selon la définition proposée par Yeom et al. (2018), une attaque peut être jugée préoccupante

dès lors que sa précision ou son rappel dépasse nettement le seuil de 50%. Dans notre cas, toutes les

méthodes testées dépassent largement ce seuil, ce qui confirme leur faisabilité pratique, même dans

un cadre contraint de type boîte noire et sur des données sensibles comme le génome.

Enfin, bien que nos scores d’exactitude ou d’AUC puissent paraître modérés (autour de 63–65%),

leur interprétation doit être replacée dans le contexte. D’une part, ces niveaux sont considérés comme

critiques par plusieurs auteurs (Yeom et al., 2018), et d’autre part, même un AUC faible peut suffire à

compromettre certains individus selon Carlini et al. (2022).

Bien que nous n’ayons pas explicitement testé la résistance des méthodes face à du bruit injecté

dans les données, les différences observées dans les taux de faux positifs suggèrent que la méthode 2

pourrait être plus sensible à la structure interne du modèle cible. Comme l’ont montré Carlini et al.

(2022) et Shokri et al. (2017), un FPR élevé peut signaler un mauvais alignement entre le modèle

d’attaque et la frontière de décision réelle du modèle cible, traduisant souvent un surapprentissage sur
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des signaux peu généralisables.

Dans certains cas limites, notamment pour des individus présentant un profil génétique marginal ou

atypique par rapport à la distribution globale, la méthode 2 a tendance à les classer à tort comme

membres. Cela indique que le modèle d’attaque peut confondre rareté et appartenance, soulevant

ainsi des enjeux éthiques importants, notamment dans les contextes cliniques ou de recherche.

Ces observations confirment notre hypothèse de départ : une attaque MIA peut être rendue plus stable,

plus réaliste et plus efficace si elle repose sur un proxy biologique pertinent, même lorsque l’accès

direct aux données originales est restreint. En revanche, bien que la méthode généralisée offre un

TPR supérieur, son taux de faux positifs remet en question l’idée qu’une généralisation complète soit

toujours préférable dans des domaines sensibles comme la génomique.

Du point de vue opérationnel, ces résultats peuvent être interprétés en termes de scénarios concrets

d’attaque. Dans un contexte expérimental en génomique, un attaquant pourrait par exemple chercher à

vérifier si une souche particulière de levure, associée à un protocole de laboratoire spécifique ou à une

collaboration industrielle, a été utilisée pour entraîner un modèle publié. Dans un contexte humain,

un scénario analogue consisterait à déterminer si le génome d’un individu donné a contribué à un

modèle clinique (par exemple pour prédire la réponse à un traitement). Dans les deux cas, une MIA

réussie permet de relier un individu (ou une souche) à un jeu de données potentiellement sensible, ce

qui constitue déjà une fuite d’information, même si le modèle ne révèle pas directement les génotypes

complets.

Concrètement, un TPR de 60–65 % avec un FPR d’environ 40 % (méthode 1) signifie que, pour

100 individus réellement présents dans l’entraînement, l’attaquant peut en identifier correctement

une soixantaine, au prix d’une quarantaine de faux positifs parmi les non-membres. À l’inverse, la

méthode 2, avec un TPR proche de 96 % mais un FPR supérieur à 70 %, correspond à une stratégie

de « surdétection » où presque tous les membres sont détectés, mais au prix d’un très grand nombre

d’accusations erronées. Dans un cadre de recherche ou clinique, une telle configuration serait diffici-

lement acceptable, car elle exposerait un grand nombre de participants non impliqués à un risque de

ré-identification injustifiée.
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Ces observations suggèrent que, dans la pratique, un attaquant rationnel adapterait son seuil de dé-

cision selon le contexte : soit en privilégiant un FPR plus faible (au détriment du rappel) lorsqu’il

cherche quelques cibles avec une forte confiance, soit en acceptant un FPR plus élevé lorsqu’il dis-

pose de mécanismes complémentaires de filtrage. Dans tous les cas, nos résultats montrent qu’un

attaquant bien informé pourrait exploiter ces attaques dans des conditions réalistes, ce qui renforce

l’importance d’intégrer des mécanismes de protection dans les pipelines d’analyse génomique.

En définitive, la méthode 1 s’aligne davantage avec notre objectif principal : démontrer la possibilité

d’une attaque réussie sans accès direct aux mêmes données, à condition d’exploiter des structures

biologiquement corrélées. Cette approche constitue un compromis pertinent entre faisabilité, réalisme

et efficacité, tout en mettant en lumière les limites actuelles des défenses mises en place dans les

systèmes d’analyse génomique.

Nos résultats s’inscrivent également dans le prolongement des attaques fondées sur le niveau de

confiance ou la perte du modèle (Yeom et al., 2018; Carlini et al., 2022). Alors que ces approches

se contentent souvent de se baser sur un seuil global appliqué à la probabilité prédite ou à la perte,

nos deux méthodologies exploitent des informations supplémentaires : soit la structure biologique des

phénotypes corrélés (méthode 1), soit la diversité de modèles d’ombre hétérogènes (méthode 2). Cela

explique que nous atteignons des performances comparables, voire supérieures, à celles rapportées

dans la littérature, malgré un cadre plus contraint de type boîte noire.

Par ailleurs, plusieurs travaux récents se sont intéressés à l’impact de techniques de régularisation ou

de défense, telles que la régularisation adversariale de la perte d’appartenance (Nasr et al., 2018) ou

l’entraînement différentiellement privé (DP-SGD) (Abadi et al., 2016b). Bien que ces mécanismes

n’aient pas été explicitement évalués dans nos expériences, nos résultats fournissent une ligne de base

pour de futures études qui combineraient nos scénarios d’attaque (phénotypes corrélés et transfert

généralisé) avec ces défenses. Une question ouverte importante consiste à déterminer si ces méthodes

restent efficaces lorsque l’attaquant n’a accès qu’aux sorties du modèle, comme dans nos scénarios de

boîte noire.



CONCLUSION

Ce mémoire avait pour objectif principal de construire et d’évaluer un modèle d’attaque généralisable

contre des modèles d’apprentissage automatique appliqués aux données génétiques, dans un cadre

réaliste de boîte noire. Plutôt que de supposer un accès privilégié au modèle cible ou à ses données

d’entraînement, l’étude explore la possibilité pour un adversaire d’inférer l’appartenance d’un échan-

tillon en se basant uniquement sur des modèles d’ombre entraînés sur des données de distribution

différente, voire des phénotypes biologiquement corrélés.

Notre travail apporte plusieurs contributions originales :

— la mise en œuvre concrète d’un cadre d’attaque MIA sur des données génétiques réelles (le-

vure), avec simulation de modèle cible et construction de modèles d’ombre biologiquement

informés ;

— l’adaptation du scénario MIA à des contraintes réalistes de confidentialité, sans accès aux

données ni aux paramètres internes du modèle cible ;

— la proposition d’une approche de transfert généralisé pour les attaques MIA, permettant d’ex-

ploiter des modèles d’ombre hétérogènes et non alignés biologiquement.

Les résultats obtenus confirment la faisabilité et l’efficacité de ces attaques. La méthode 1 (basée sur

un phénotype corrélé comme le xylose) obtient une exactitude de 63%, une précision de 62% et une

AUC de 0,655, tout en maintenant un FPR raisonnable de 40,6%. La méthode 2 (transfert généralisé)

atteint un TPR remarquable de 96,2%, mais au prix d’un FPR plus élevé (73,6%), mettant en lumière

le compromis entre sensibilité et spécificité dans un cadre sans alignement biologique. Ainsi, si la

méthode 2 illustre la puissance du transfert généralisé, la méthode 1 apparaît plus équilibrée en termes

de compromis TPR/FPR. Dans une perspective pratique, la méthode 1 pourrait donc être privilégiée

dans des contextes biomédicaux réels, où la minimisation des faux positifs est cruciale pour éviter des

interprétations erronées ou des alertes inutiles.

Ce travail présente néanmoins plusieurs limites qui ouvrent la voie à des pistes de recherche futures.

Tout d’abord, l’évaluation a été réalisée uniquement sur des données de levure, ce qui limite la portée

des conclusions pour des contextes cliniques humains. Ensuite, la méthode de transfert généralisé

souffre d’un taux de faux positifs élevé, ce qui la rend difficile à utiliser telle quelle dans des scénarios
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biomédicaux sensibles. De plus, nous n’avons pas étudié l’impact de mécanismes de défense (par

exemple DP-SGD, régularisation adversariale ou masquage des postérieurs), de sorte que la robustesse

de nos attaques face à ces contre-mesures reste une question ouverte. Enfin, l’utilisation d’un seul type

de modèle d’attaque (forêt aléatoire) ne permet pas de conclure sur l’optimalité architecturale de notre

cadre.

Ces expériences montrent que la protection de la vie privée ne peut pas se limiter à restreindre l’accès

aux modèles ou aux données : des informations résiduelles dans les sorties (scores de confiance)

peuvent suffire à compromettre l’appartenance des individus. Il s’agit d’un signal d’alerte important

pour les déploiements de systèmes d’IA dans le domaine biomédical. Elles démontrent également que

des signaux d’appartenance peuvent être captés même dans des contextes de transfert entre domaines,

confirmant la faisabilité d’attaques MIA dans un cadre strictement boîte noire.

Ce travail présente plusieurs perspectives concrètes :

— Tester les algorithmes avec des données humaines synthétiques, comme UK Biobank simulée,

pour se rapprocher davantage des enjeux cliniques et éthiques réels ;

— Évaluer des mécanismes de défense tels que la confidentialité différentielle (DP-SGD), le

masquage des postérieurs, ou la régularisation adversarielle ;

— Étendre l’analyse à d’autres types de données omiques (expression génique, épigénétique),

afin d’évaluer la généralisabilité des attaques dans des espaces biologiques variés ;

— Explorer d’autres architectures pour le modèle d’attaque (réseaux neuronaux légers, modèles

bayésiens calibrés) pour optimiser le compromis entre un TPR élevé et un FPR contrôlé ;

— Réduire la dépendance aux corrélations phénotypiques documentées en automatisant la sélec-

tion des proxys biologiques, ou en générant des jeux de données hybrides semi-synthétiques.

En conclusion, ce mémoire démontre que même dans un cadre strictement boîte noire, les attaques

MIA peuvent réussir, notamment grâce à l’exploitation intelligente de signaux résiduels ou de proxi-

mités biologiques. L’approche par modèles d’ombre biologiquement corrélés constitue une contribu-

tion novatrice et efficace, applicable dans des contextes réels. Elle révèle que les corrélations naturelles

présentes dans les données omiques, si elles ne sont pas encadrées, peuvent devenir des vulnérabilités
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exploitables.

Sur le plan pratique, nos résultats soulignent plusieurs implications pour la conception et le déploie-

ment de modèles en génomique. Dans un monde où les données génétiques sont de plus en plus

partagées entre institutions, patients et systèmes d’intelligence artificielle, il est urgent d’intégrer des

protections robustes dès la conception des modèles. D’autant plus que ces risques soulèvent égale-

ment des enjeux légaux majeurs en matière de conformité aux réglementations internationales telles

que le RGPD en Europe ou la HIPAA en Amérique du Nord. Ce travail s’inscrit dans cette logique :

anticiper les attaques futures pour mieux défendre les individus, leur vie privée, et la confiance dans

la recherche biomédicale.
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