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X1

NOTATION

Variables

x; profil génétique (échantillon d’entrée) avec d SNPs.

1; phénotype binaire associé a x; (par exemple, résistance ou sensibilité).

f(x) modele cible entrainé sur (z;, y;).

fs(z) modele d’ombre entrainé sur des données auxiliaires (z;, ¥ ).

1y sortie du modele : score de confiance associé a la classe prédite.

A modele d’attaque entrainé a distinguer les membres et non-membres.

Dirain sous-ensemble d’entrainement du modele cible (membres).

Diest SOus-ensemble de test du modele cible (non-membres).

Dgnadow données utilisées pour entrainer les modeles d’ombre (autres phénotypes ou jeux externes).
D), k¢ jeu d’entrainement d’un modele d’ombre f¥.
T}, jeu de test associé a Dj, pour générer des prédictions non-membres.

P ensemble de prédictions de f¥ sur Dj. (membres).

P}’ ensemble de prédictions de fsk sur T,g (non-membres).

Dagtaque €Xxemples membres/non-membres utilisés pour entrainer A.

[p1, ..., Pn] vecteur de probabilités en sortie du modele (logits normalisés).

Top-k les k plus grandes valeurs dans le vecteur [p1, ..., pp].



RESUME

Avec I’apparition du séquencage a haut débit et I’intégration de I’intelligence artificielle, de nouvelles
préoccupations liées a la vie privée ont émergé. Les données génétiques humaines, en particulier,
révelent des prédispositions aux maladies et des éléments héréditaires familiaux. Contrairement aux
données classiques, les données génomiques sont uniques, immuables et personnelles. Cette spéci-
ficité les rend particulierement vulnérables aux abus en cas de fuite ou de mauvaise gestion. Dans
ce contexte, les attaques par inférence d’appartenance (membership inference attacks — MIA) re-
présentent une menace croissante : elles permettent a un adversaire de déterminer si un échantillon
spécifique a été utilisé pour entrainer un modele d’apprentissage automatique, compromettant ainsi la
confidentialité des données biomédicales.

Ce mémoire s’inscrit dans une démarche de sensibilisation aux risques liés a la vie privée dans les
applications d’apprentissage automatique sur des données génomiques. Il vise a évaluer la robustesse
des modeles prédictifs lorsqu’ils sont exposés a des attaques d’inférence d’appartenance, en consi-
dérant deux méthodologies réalistes. La premiere repose sur la création de modeles d’ombre dans
un espace de distribution similaire a celui du modele cible, mais en s’appuyant sur des phénotypes
biologiquement corrélés. Cette stratégie exploite la proximité fonctionnelle entre certains traits me-
surés pour améliorer I’efficacité de I’attaque, tout en supposant un acces partiel a des données de
méme nature. La seconde méthodologie adopte une approche plus générique, fondée sur la généra-
lisation des connaissances : des modeles d’ombre sont formés sur des jeux de données hétérogenes,
sans similarité directe avec le modele cible, ce qui reflete un scénario plus réaliste et contraint. La
contribution principale de ce mémoire est la mise en ceuvre et 1’évaluation de ces deux méthodologies
d’attaque MIA appliquées aux données génétiques. Afin d’évaluer la pertinence et I’efficacité de ces
approches, nous avons recours a un jeu de données génomiques de levure, en raison de sa disponi-
bilité¢ publique et de son usage en recherche génomique. Ce jeu de données permet de simuler des
expériences reproductibles et représentatives tout en controlant les variables biologiques pertinentes.

Les résultats expérimentaux obtenus mettent en évidence la faisabilité d’attaques par inférence d’ap-
partenance méme en 1’absence totale d’informations sur les données d’entrainement du modele cible.
Les deux méthodologies proposées montrent des performances élevées, en particulier dans la détec-
tion des échantillons membres. Ces constats soulignent I’importance de développer des mécanismes
de défense plus robustes et adaptés aux spécificités des données génomiques. Ils révelent également
que la sécurité des modeles d’apprentissage automatique dans le domaine biomédical ne peut étre as-
surée uniquement par la limitation de 1’acces aux données, mais qu’elle nécessite aussi des garanties
algorithmiques.



INTRODUCTION

Ces dernieres années, 1’intersection entre 1’apprentissage automatique (AA) et la génomique a pro-
fondément transformé la recherche biomédicale et la médecine personnalisée. Les technologies de
séquencage a haut débit ont permis d’explorer en profondeur les relations complexes entre le gé-
notype — c’est-a-dire la composition génétique d’un individu — et le phénotype, c’est-a-dire les
caractéristiques observables telles que la taille, la susceptibilité a une maladie ou la réponse a un

traitement.

Parmi les méthodes d’analyse les plus répandues dans ce domaine, les études d’association pangé-
nomique, Genome-wide association studies (GWAS) ', occupent une place centrale. Cette méthode
statistique permet d’identifier les loci génétiques associés a une caractéristique donnée, en analysant
la fréquence de certains polymorphismes nucléotidiques simples (Single-nucleotide polymorphisms
(SNPs)), c’est-a-dire des variations portant sur un seul nucléotide a une position précise du génome,
dans de larges cohortes d’individus (Wright et Fessele, 2017). Les résultats des GWAS servent de
point de départ pour la sélection de caractéristiques et facilitent I’élaboration de modeles plus simples.
En réduisant la dimensionnalité, ils améliorent a la fois I’efficacité informatique et la valeur biologique
des prédictions. Cependant, la diffusion publique des résultats de ces études peut également entrainer
des risques accrus pour la vie privée, en exposant indirectement des informations personnelles sur les

participants.

A titre d’exemple, 1’étude pionniere de Homer ez al. (2008) a montré qu’il était possible d’identifier
la présence d’une personne dans une base de données GWAS agrégée en comparant ses données gé-
nétiques aux fréquences alléliques publiées, ou un allele désigne I’une des versions d’une séquence
d’ADN a un locus donné, généralement hérité de chaque parent. Cette capacité a détecter la pré-
sence d’un individu, méme a partir de données statistiques globales, a soulevé des inquiétudes ma-
jeures concernant la confidentialité. Apres cette révélation, les National Institutes of Health (NIH)

— I’agence fédérale américaine de recherche biomédicale — ont restreint 1’acces public a certaines

1. Les GWAS sont des études visant a identifier des associations statistiques entre des variations génétiques (comme
les SNPs) et des traits phénotypiques ou des maladies, en analysant 1’ensemble du génome d’un grand nombre d’individus

(Visscher et al., 2017)



bases de données génomiques et transféré des statistiques agrégées de GWAS sous un régime d’acces

contr6lé, afin de limiter les risques de ré-identification (Zerhouni et Nabel, 2008).

La capacité des modeles a prédire des informations sensibles souléve des enjeux majeurs pour la
protection des données personnelles. Les données génomiques sont irrévocables, propres a chaque
individu et renferment des informations héréditaires. L’utilisation de ces données pour former des
modeles d’apprentissage automatique peut entrainer des fuites d’informations, surtout si les modeles

sont mis en ceuvre dans des environnements accessibles au public ou aux chercheurs.

Parmi les menaces identifiées, les attaques par inférence d’appartenance (Membership inference attack
(MIA)) ont suscité une attention croissante. Dans ce type d’attaque, I’adversaire cherche a déterminer
si un échantillon a servi a ’entralnement d’un modele. Elle exploite les variations de comportement
du modele entre les exemples vus (membres) et ceux non vus (non-membres), surtout en cas de
surapprentissage. Le surapprentissage désigne la situation ot un modele apprend trop fidelement les
particularités (et le bruit) des données d’entralnement, au détriment de sa capacité de généralisation.
Il se manifeste par un écart notable entre les performances d’entrainement et de test, ainsi que par
des réponses surconfiantes sur les exemples vus, ce qui accroit la séparabilité membre/non-membre
exploitée par les MIAs. En ce qui concerne les données génomiques, cette fonctionnalité pourrait
révéler la participation d’une personne a une étude médicale ou son lien avec une information sensible,

ce qui pose un risque majeur pour la confidentialité.

Dans des domaines tels que la vision par ordinateur et le traitement du langage naturel, les attaques
MIA ont montré que les modeles peuvent mémoriser des données sensibles, méme involontairement.
Shokri et al. (2017) ont montré que des modeles surappris permettent d’inférer 1’appartenance d’un
échantillon avec une précision élevée. Les modeles de plongement, qui transforment des entités dis-
cretes (mots, k-mers ou catégories) en un espace vectoriel dense ou la proximité reflete des régularités
statistiques, sont utiles mais peuvent, comme I’ont montré Song et Raghunathan (2020), mémoriser et
restituer des paires mot-contexte sensibles vues a I’entralnement. Enfin, Carlini et al. (2021) ont mon-
tré que des modeles de langage peuvent régénérer mot pour mot des séquences confidentielles vues
a ’entralnement. Ces résultats soulignent I’ampleur du risque et la nécessité d’étudier ces attaques

en génomique. Si ces attaques sont bien documentées dans d’autres domaines, leur transposition a



la génomique reste marginale. Les recherches sur les MIA appliquées a la génomique sont limitées
en raison du manque de données publiques combinant génotypes de qualité et phénotypes fiables,
notamment du fait de contraintes éthiques, juridiques et de confidentialité (Gymrek ef al., 2013; Er-
lich et Narayanan, 2014). En particulier, des lois comme le HIPAA ( Health Insurance Portability
and Accountability Act) aux Etats-Unis ou le RGPD (Réglement général sur la protection des don-
nées) en Europe imposent des restrictions strictes sur I’acces aux données génétiques, car elles sont
permanentes, difficilement anonymisables et potentiellement identifiables. Enfin, la forte dimension-
nalité des données génomiques — ou le nombre de SNPs dépasse largement celui des échantillons —

accentue le risque de surapprentissage.

Pour contourner ces limitations, tout en conservant un cadre expérimental réaliste, nous avons choisi
d’utiliser des données génomiques issues de Saccharomyces cerevisiae (la levure). Les données de
levure ont été choisies pour ce projet en raison de leur diversité génétique suffisante, de leur acces-
sibilité libre ainsi que de leur annotation précise. Ces caractéristiques en font un cadre expérimental
idéal pour évaluer les attaques par inférence d’appartenance sur des données génomiques réelles, tout

en évitant les contraintes éthiques et juridiques liées aux données humaines (Skelly et al., 2013).

La plupart des recherches actuelles partent du principe qu’un adversaire connait la structure interne du
modele ciblé, ce qui correspond a un scénario en boite blanche. Dans la réalité, les adversaires n’ont
souvent acces qu’aux sorties du modele, comme dans les services d’apprentissage automatique en tant
que service (Machine learning as a service (MLAAS)), ce qui correspond a un cadre en boite noire.

Dans ce contexte, concevoir une attaque efficace est nettement plus difficile (Truex et al., 2019).

Ce mémoire explore la possibilité d’une attaque par inférence d’appartenance sur des données géno-
miques dans un contexte réaliste. L’ objectif principal est de démontrer qu’un adversaire peut détermi-
ner si un échantillon a été utilisé pour I’entrainement d’un modele cible, sans connaitre sa structure
ni accéder a ses parametres internes. Pour ce faire, I’étude se concentre sur la création d’un modele
d’ombre généralisable, formé sur un ensemble de données distinct, mais capable d’imiter efficacement
le comportement du modele cible. Un modele d’ombre est un classifieur entrainé par I’adversaire pour
reproduire le comportement du modele cible. En générant, via ces modeles, un jeu de sorties anno-

tées membre/non-membre, 1’adversaire entraine ensuite un modele d’attaque binaire capable d’inférer



I’appartenance a partir des seules sorties du modele cible en boite noire (ou de ses états internes en
boite blanche). Pour évaluer la performance des attaques, plusieurs méthodologies seront testées et
comparées, en mettant I’accent sur leur capacité a détecter précisément les membres (vrais positifs)
sans augmenter le nombre de faux positifs. Cette analyse compare différentes architectures de mo-
deles d’ombre pour déterminer les plus efficaces et les plus applicables. Opérationnellement, nous
construisons un jeu d’évaluation contr6lé membres/non-membres et reportons des métriques standard

(AUC, précision, TPR @FPR) avec intervalles de confiance sur plusieurs répétitions.

Contrairement a I’étude de Chen et al. (2020), qui applique des attaques MIA dans un cadre en boite
blanche a I’aide de données génomiques de levure, notre approche explore une situation plus réaliste
en boite noire, dans laquelle I’attaquant n’a acces qu’aux sorties du modele cible. Nous proposons
également une stratégie de généralisation fondée sur des modeles d’ombre entrainés a partir de phé-
notypes biologiquement liés ou de jeux de données hétérogénes. Méme si le cadre est plus contrai-
gnant, nos résultats sont meilleurs que ceux de 1’étude de Chen et al. (2020). Cela prouve I’efficacité
et la robustesse de notre approche. La nouveauté de ce travail réside dans 1’évaluation d’attaques
MIA en boite noire appliquées aux données génomiques, avec deux méthodologies complémentaires

(corrélation biologique et transfert généralisé), ce qui n’a pas encore été étudié dans ce contexte.

Ce projet vise a démontrer qu’il est possible, méme dans un cadre en boite noire, d’extraire des infor-
mations sensibles sur la participation d’un individu a une étude génomique, uniquement a partir des
sorties d’un modele d’apprentissage automatique. En révélant la vulnérabilité de modeles déployés
dans des contextes réalistes, ce travail souligne 1’urgence de repenser les pratiques de publication,
de partage et de protection des données génétiques. Ces résultats ont des implications majeures, tant
pour le développement de modeles robustes et responsables que pour la confiance du public dans la
recherche biomédicale et la gouvernance éthique des données. Comme 1I’ont montré McGuire et al.
(2008), le séquencage du génome entier pose des défis spécifiques en matiere de confidentialité, car il

peut révéler des informations personnelles difficilement anonymisables.

Ce mémoire est structuré comme suit :



— Chapitre 1 — Notions préliminaires en génomique et apprentissage automatique : ce chapitre
introduit le contexte général de 1’étude, les enjeux liés a la confidentialité des données géno-
miques, les motivations scientifiques et éthiques du projet, ainsi que la problématique princi-
pale centrée sur les attaques par inférence d’appartenance dans un cadre réaliste.

— Chapitre 2 — Etat de I’art : il présente une revue des travaux existants sur les MIAs, les méthodes
d’apprentissage automatique appliquées a la génomique, les approches de protection de la vie
privée, ainsi que les défis spécifiques liés a la dimensionnalité élevée et au manque de jeux de
données publics dans ce domaine.

— Chapitre 3 — Méthodologie : ce chapitre présente en détail les deux approches méthodolo-
giques développées dans le cadre de ce projet. La premiere, appelée attaque par modeles
d’ombre corrélés, repose sur I’entrainement de modeles d’ombre a partir de phénotypes auxi-
liaires biologiquement corrélés au phénotype cible. Cette méthode suppose que I’adversaire a
acces a un sous-ensemble de données appartenant au méme espace de distribution que celles
du modele cible, bien que les étiquettes soient différentes. La seconde approche, dite attaque
par transfert généralisé, s’inspire des travaux de Salem et collaborateurs et consiste a former
des modeles d’ombre sur des jeux de données totalement hétérogenes, sans lien direct avec
le domaine génomique cible. Dans ce cas, les vecteurs de sortie des modeles d’ombre sont
transformés en caractéristiques statistiques, telles que les valeurs top-k, afin d’alimenter un
modele d’attaque entrainé indépendamment.

— Chapitre 4 — Résultats et analyse : ce chapitre expose les résultats expérimentaux obtenus
pour chaque méthodologie d’attaque testée, en comparant les performances des modeles selon
différents criteres (précision, AUC (Area under the curve (AUC)), taux de vrai positif, taux
de faux positif). Il propose une analyse critique des résultats, identifie les limites du cadre
expérimental et discute de I’impact potentiel des conclusions sur la sécurité des modeles d’ap-
prentissage dans le domaine génomique.

— Chapitre 5 — Conclusion : ce dernier chapitre récapitule les contributions principales du travail,
met en lumiere les implications de ces résultats sur la confidentialité des données génomiques
et propose des pistes pour des recherches futures, notamment 1’adaptation de 1’approche a
d’autres types de données biologiques, 1’extension a des ensembles de données plus volumi-
neux ainsi que I’exploration de nouvelles architectures de modeles d’attaque ou de générali-

sation.



CHAPITRE 1
NOTIONS PRELIMINAIRES EN GENOMIQUE ET APPRENTISSAGE AUTOMATIQUE

La révolution génomique, combinée a 1’acces croissant aux données génétiques, a permis aux modeles
d’apprentissage automatique de transformer profondément le domaine de la génomique. Ces avancées
ont transformé des domaines clés tels que la médecine personnalisée, la recherche pharmaceutique
et I’épidémiologie. Toutefois, la sensibilité et la durabilité des données génétiques posent des défis
majeurs en matiere de protection de la vie privée et de sécurité. De plus, les modeles d’apprentissage
automatique peuvent mémoriser certaines données d’entrainement, ce qui peut tre exploité par des
adversaires pour révéler des informations sensibles. Dans ce chapitre, nous présentons les concepts
fondamentaux liés aux données génomiques, leur importance et les défis associés a leur protection.
Nous examinons également ’utilisation de I’apprentissage automatique dans ce domaine ainsi que les

menaces a la confidentialité, en particulier 1’attaque par inférence d’appartenance.

Exemple récent : fuite de données chez 23andMe. Un exemple récent illustrant le rdle crucial
du niveau de connaissance de 1’adversaire est la fuite de données survenue chez 23andMe en 2023.
Méme si cette attaque ne correspondait pas a une attaque d’inférence d’appartenance, elle démontre
clairement comment des informations variées peuvent servir a un attaquant pour compromettre la

confidentialité de données sensibles, comme celles contenues dans le génome.

Dans ce cas, I’attaquant a lancé une attaque par bourrage d’identifiants (credential stuffing), en pro-
fitant du fait que de nombreux utilisateurs réutilisent les mémes mots de passe sur plusieurs plate-
formes. Cette stratégie repose sur une compréhension préalable du comportement des utilisateurs.
De plus, I’attaquant a utilisé des informations d’identification obtenues lors de violations de données
précédentes, ce qui lui a permis de les tester massivement sur 23andMe, exploitant ainsi 1’absence de
contrdle de limitation de tentatives dans I’ API de connexion du site. Apres avoir compromis quelques
comptes, I’attaquant a pu profiter des fonctionnalités sociales de la plateforme, telles que la recherche

de correspondances ADN et les arbres généalogiques ! partagés, pour accéder aux données intercon-

1. Un arbre généalogique est une représentation schématique des liens de parenté entre individus, permettant de retracer

les relations familiales sur plusieurs générations.



nectées de plusieurs milliers d’autres utilisateurs. Cette attaque démontre une compréhension structu-
relle de la plateforme ciblée et une connaissance de la valeur des données. Par exemple, en ciblant des

utilisateurs d’ascendance ashkénaze juive ou chinoise, ou ceux associés a des personnes fortunées.

Ce scénario met en évidence le fait qu'un adversaire bien informé peut exploiter des failles de sé-
curité, des comportements humains et des logiques de systemes pour mener une attaque a grande
échelle, méme avec un acces limité. Cela renforce 1’idée que, dans un cadre d’inférence d’apparte-
nance, le niveau de connaissance de 1’adversaire est un facteur critique pour la réussite de I’attaque,
qu’il s’agisse de connaitre la distribution des données, les sorties du modele ou la structure du systeme
(Holthouse et al., 2025). Ces exemples motivent I’étude, dans les chapitres suivants, des attaques plus
subtiles qui exploitent les modeles d’apprentissage automatique eux-mémes, comme les attaques par

inférence d’appartenance.

1.1 Notions préliminaires en génomique

Avec I’évolution des technologies de séquencgage, les données génomiques sont devenues une res-
source essentielle dans les domaines médicaux, notamment pour la médecine de précision, la re-
cherche génétique et la modélisation prédictive. Le séquencage de I’ Acide désoxyribonucléique (ADN)
est un processus de laboratoire qui permet de cartographier la séquence complete du génome d’un
individu. Ce procédé a été initié en 1990 par le National institutes of health (NIH), et le premier sé-
quengage a été obtenu apres treize années en dépensant trois milliards de dollars. Cependant, au fil
du temps, les cofits et les délais ont fortement diminué : aujourd’hui, des protocoles de séquengage
du génome entier rapides ou ultra-rapides permettent un retour de résultats en quelques jours (mé-
diane ~2,3 jours pour I'ultra-rapide) (Kansal, 2025), tandis que le cofit par génome a chuté de fagon
marquée au cours de la derniere décennie, selon les séries du National Human Genome Research Ins-
titute (NHGRI) (Wetterstrand, 2023). Dans ce qui suit, nous rappelons bri¢vement la structure et la

réplication de I’ ADN afin de situer la nature des données produites par ces technologies.

Sur le plan moléculaire, la compréhension de la double hélice éclaire la maniere dont I’information
génétique est lue et copiée. L’ ADN est une molécule formée de deux brins complémentaires en double

hélice, dont la séquence de quatre bases nucléotidiques — 1’adénine (A), la thymine (T), la cytosine



(C) et la guanine (G) — porte I'information génétique. Ces bases nucléotidiques s’associent spécifique-
ment (A — T et C — G), fournissant un gabarit complémentaire pour la réplication. Toutefois, la haute
fidélité ne provient pas du seul appariement : elle résulte également de la sélectivité des ADN polymé-
rases, de I’activité d’exonucléase 3°—5’ (proofreading) — y compris des mécanismes de proofreading
extrinseque(extrinsic proofreading) — et de la réparation des mésappariements (MMR) agissant au ni-
veau de la fourche de réplication (Zhou et Kunkel, 2022). Ces mécanismes de fidélité conditionnent
directement la qualité des lectures et I’interprétabilité des jeux de données issus du séquengage. Enfin,
I’ordre et la composition des nucléotides (p. ex. le contenu GC) influencent I’expression, la régulation
et la fonction ; leurs effets ne se limitent pas aux protéines, mais concernent aussi les ARN non codants
et les éléments régulateurs (Grome et Isaacs, 2021). Le séquencage de I’ADN consiste & déterminer
I’ordre exact de ces nucléotides. Depuis la découverte de la structure de I’ ADN, diverses technologies
de séquencage ont été développées pour décoder efficacement les informations génétiques et, aussi,
les technologies récentes ont permis la génération massive de données de séquencage pour différentes

especes (Wong et al., 2019).

[ 51 1] (e e ) ) [ ],

FIGURE 1.1 — Illustration schématique de la séquence d’ADN composée de quatre bases (A, T, C,

G). Oestreich et al. (2021).

Sur cette base moléculaire, nous passons aux unités fonctionnelles et aux niveaux de variation per-
tinents pour 1’analyse génomique. Un gene est une unité fonctionnelle de I’ADN dont les produits
peuvent étre une protéine ou un ARN fonctionnel (p. ex. ARNt, ARNr, microARN, ARN long non
codant), et dont les régions régulatrices contrdlent ou et quand ces produits sont exprimés. Bien que
de nombreux geénes soient communs chez I’humain, des variations existent sous forme d’alleles, hé-
rités de chaque parent. Ces différences entre individus sont appelées polymorphismes génétiques. Le
type le plus fréquent est le SNP, qui implique une différence dans un seul nucléotide a une position
spécifique du génome. Les SNPs peuvent influencer 1’expression des genes et le fonctionnement des
protéines, affectant ainsi les phénotypes, ¢’est-a-dire les caractéristiques observables. Etablir la rela-

tion entre les SNPs et les phénotypes est essentiel pour identifier les facteurs génétiques associés aux



maladies (Botta et al., 2014; Wright et Fessele, 2017). Les Figures 1.2 et 1.3 illustrent respectivement

ces notions de locus/allele/génotype et le lien génotype—phénotype.

Taxonomically robust genotype-phenotype relationship
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FIGURE 1.2 — Exemple de locus, d’allele
et de génotype. Un locus est une position
spécifique sur un chromosome ou différentes
versions d’un gene, appelées alleles, peuvent

exister.

(Wright et Fessele, 2017)

FIGURE 1.3 — Exemple de relation entre gé-
notype et phénotype. Les variations géné-
tiques, telles que les SNPs, peuvent influencer
I’expression des genes et conduire a des dif-

férences phénotypiques.

(Orgogozo et al., 2015)

1.2 Données génomiques et vie privée

Le génome humain contient plus de trois milliards de paires de bases réparties sur vingt-trois chromo-
somes. L”ADN de deux individus différe en moyenne d’environ 0,5 %, mais cette faible variation peut
suffire a révéler des informations sur la santé ou les risques de maladies (Ayday et Humbert, 2017).
Les données génomiques peuvent ainsi permettre le diagnostic précoce, les interventions ciblées et
révéler des informations sur les membres d’une méme famille. Les données génétiques sont a la fois
uniques a chaque individu, partagées avec les membres de la famille et inchangées au cours de la
vie, ce qui en fait une catégorie particulierement irrévocable et a forte valeur informative d’un point
de vue éthique et en matiere de confidentialité. Par exemple, la présence de certaines variantes du
gene codant pour I’apolipoprotéine E (ApoE), combinée a des antécédents familiaux, peut augmen-

ter considérablement le risque de développer la maladie d’ Alzheimer (Ayday, 2016; Bonomi et al.,
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2020).

Un autre exemple emblématique est celui du génome d’Henrietta Lacks, une femme décédée en 1951
d’un cancer. Ses cellules, connues sous le nom de cellules HeLa, ont été utilisées a des fins de re-
cherche sans son consentement. Plusieurs années plus tard, les scientifiques ont séquencé I’ADN de
ces cellules et ont publié les données sur un site Web public (SNPedia). Cette divulgation a entrainé la
fuite d’informations confidentielles sur elle et sa famille, compromettant durablement leur vie privée

(Ayday, 2016).

Bien que des efforts d’anonymisation soient généralement appliqués avant le partage des données
génomiques, plusieurs études ont démontré qu’ils ne suffisent pas a garantir I’anonymat (Oestreich
et al., 2021). En effet, la réidentification d’individus a partir de bases de données ouvertes est ren-
due possible par le croisement de sources d’informations externes, méme sans données personnelles
explicites (Gymrek et al., 2013). Plusieurs travaux — notamment Wang et al. (2009) (apprentissage
d’informations privées a partir de statistiques agrégées) et Wang et al. (2017) (exploitation des corré-
lations entre SNPs pour la reconstruction a grande échelle) — montrent que des statistiques agrégées
de GWAS peuvent a la fois révéler I’appartenance d’un individu a une cohorte et, en s’appuyant sur
la structure de liaison, reconstruire une part substantielle de profils génétiques a partir de jeux statis-

tiques de taille modeste.

C’est pourquoi plusieurs cadres réglementaires, comme le Réglement Général sur la Protection des
Données (RGPD) en Europe et la loi Health Insurance Portability and Accountability Act (HIPAA)
aux Etats-Unis, s’efforcent de restreindre I’acces a Iutilisation des données génétiques. Cependant,
en raison de ces mesures légales, la diffusion de ces informations reste un sujet compliqué et repré-
sente un enjeu crucial pour la sécurité (Bonomi et al., 2020; Oestreich et al., 2021). Ces inquiétudes
mettent en évidence I’'importance d’élaborer des stratégies solides pour assurer la protection des don-
nées génomiques. Pour réduire les risques d’exposition, des méthodes comme la protection de la
confidentialité différentielle, le chiffrement homomorphe et 1’apprentissage fédéré ont été suggérées.
Néanmoins, ces solutions présentent encore des limites. En pratique, les mécanismes de défense (ré-
gularisation, Differentially-private stochastic gradient descent (DP-SGD), masquage de confiance,

distillation, apprentissage fédéré chiffré) visent a réduire le signal d’appartenance au prix d’un com-
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promis utilité—confidentialité et, souvent, d’un surcoiit computationnel ; une discussion plus étendue

est présentée au Chapitre 2 (Oestreich et al., 2021).

1.3 Préliminaires sur I’apprentissage automatique

L’ apprentissage automatique a pris une importance croissante en génomique, notamment en raison
du volume considérable de données générées par les technologies de séquencage a haut débit. 11
est aujourd’hui largement utilisé pour des applications telles que la découverte de médicaments, la
prédiction clinique, la médecine personnalisée ou encore I’analyse de I’expression génique, grace a sa

capacité a extraire des modeles a partir de grands ensembles de données complexes et non structurées.

Cependant, le partage de données et de modeles pose des défis en matiere de confidentialité. Non
seulement la diffusion des données brutes ou statistiques peut porter atteinte a la vie privée, mais le
partage des modeles d’apprentissage peut également compromettre la confidentialité des individus

inclus dans les ensembles d’entrainement (Shokri ef al., 2017; Yeom et al., 2018).

En effet, les modeles d’apprentissage automatique sont susceptibles de mémoriser certaines données
spécifiques utilisées lors de I’entrainement, au lieu de se limiter a une généralisation. De plus, ils
présentent souvent un comportement différent lorsqu’ils sont exposés a des données vues pendant
I’entrainement (membres) par rapport a des données nouvelles (non-membres) (Yeom et al., 2018;
Carlini et al., 2021). Ce décalage comportemental fonde les attaques par inférence d’appartenance

(MIA), présentées dans le chapitre suivant.

Surapprentissage. On parle de surapprentissage lorsque le modele apprend trop fidelement les par-
ticularités (et le bruit) de Dyin, au détriment de la généralisation. 1l se manifeste par un écart mar-
qué entre les performances d’entrainement et de test ainsi que par des sorties tres confiantes sur les

exemples vus, ce qui accroit la séparabilité membre/non-membre exploitée par les MIA.

Points de données et ensemble de données (contexte génomique).

Dans notre jeu de données de levure, un point de données correspond a une souche ¢ identifiée par un
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identifiant (par exemple 01_01, 01_02, etc.). Cette souche est décrite par un vecteur de génotypes

Xi = (gila s 7gip) S {_1> 1}17’

ou chaque composante g;; représente le génotype de la souche 7 au SNP j. Concretement, les colonnes
du fichier de génotypes portent des identifiants tels que 33070 _chrI _33070 _A_T,etc,etla
valeur g;; € {—1, 1} correspond a un codage binaire symétrique de 1’alléle observé pour ce SNP chez

la souche ¢ (par exemple —1 pour I’allele de référence et 1 pour I’alléle minoritaire).

Concretement, les colonnes du fichier de génotypes portent des identifiants tels que 33070_chrI_
33070_A_T, ou chaque étiquette encode : (i) la position du SNP sur le chromosome (33070),
(i1) le chromosome concerné (chrI), (iii) la position répétée pour compatibilité avec certains outils
génomiques, et (iv) les alleles de référence et alternatif (A et T). La valeur g;; € {—1, 1} correspond
ensuite a un codage binaire symétrique de 1’allele observé chez la souche ¢ pour ce SNP (par exemple

—1 pour I’allele de référence et 1 pour 1’allele alternatif).

La cible y; est un phénotype mesuré pour cette méme souche. Dans notre cas, les phénotypes sont
des valeurs quantitatives de croissance sous différentes conditions environnementales, organisées en
colonnes portant des noms comme 1_CobaltCl, 1_Xylose_1, 1_YPD_1, etc. Pour une tiche
de prédiction donnée, on choisit une colonne phénotypique cible (par exemple la croissance sous

1_Xylose_1)eton note y; la valeur correspondante pour la souche 3.

Un ensemble de données supervisé s’écrit alors

D = {(xi,¥i) }i1,

ou n est le nombre de souches et p le nombre de SNPs (colonnes génotypes). Ce cadre est typiquement

en grande dimension (p >> n), avec des corrélations de liaison (LD) entre SNPs.

— Entrainement (Dy,) : on considere hg(x), un algorithme d’apprentissage qui prend z en
entrée (vecteur de caractéristiques) et # comme vecteur de parametres. I’ ensemble des fonc-
tions possibles {V6, = — hgy(x)} constitue 1’espace des hypotheses. L’ objectif est d’ajuster

6 en minimisant une fonction de perte empirique L(6; D,in) afin d’obtenir de bonnes perfor-
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mances de généralisation. En pratique, le modele apprend les régularités pertinentes pour la
tache visée (De Cristofaro, 2020).

— Validation (D) : apreés I’entrainement, on évalue le modele sur un ensemble de validation
distinct pour sélectionner les hyperparametres (p. ex. régularisation, profondeur) et régler des
mécanismes comme 1’ early stopping, sans toucher a Dy (De Cristofaro, 2020).

— Evaluation (D) : une fois I'architecture et les hyperparametres figés, on mesure la perfor-
mance finale sur un ensemble de test jamais utilisé aux étapes précédentes, ce qui reflete le
comportement attendu en déploiement (prédictions sur des données non vues) (De Cristofaro,

2020).

1.4 Types d’apprentissage automatique

En régle générale, les algorithmes d’apprentissage automatique sont divisés en trois catégories : I’ap-
prentissage supervisé, I’apprentissage non supervisé et 1’apprentissage par renforcement, qui sont
déterminés en fonction du type d’information fournie par les données d’entrainement et de diverses
taches d’apprentissage. Au fil des années, de nouvelles catégories, telles que 1’apprentissage semi-
supervisé, I’apprentissage autosupervisé et 1’apprentissage génératif et discriminatif, ont été ajoutées

(Rigaki et Garcia, 2023).

1.4.1 L apprentissage supervisé

Dans I’apprentissage supervisé, les données d’entrainement sont composées d’exemples étiquetés,
c’est-a-dire que chaque entrée est associée a une sortie connue. Le modele apprend a établir une
relation entre les entrées et les sorties, ce qui lui permet de prédire correctement 1’étiquette d’une
nouvelle donnée inconnue. La tiche est appelée classification, si le domaine de sortie est catégoriel.
S’il est cardinal, la tache est régression. Par exemple, le filtrage du pourriel parmi les courriels est
une tiche de classification et la prédiction de I’4ge est une tache de régression (Papernot et al., 2018a;
De Cristofaro, 2020; Alnuaimi et Albaldawi, 2024; Rigaki et Garcia, 2023). Dans ce mémoire, nous
nous intéressons principalement a des tiches de classification supervisée, pour lesquelles plusieurs

familles de modeles sont couramment utilisées :
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— Modeéles linéaires (par exemple, régression logistique, Support Vector Machine (SVM) 1i-
néaire) : ils apprennent une frontiere de décision linéaire dans I’espace des caractéristiques
et servent souvent de modeles de référence pour évaluer les performances sur des données
génomiques (Katsara et al., 2021; Lourenco et al., 2024).

— Modeles a base d’arbres de décision (arbres, foréts aléatoires, méthodes d’amplification de
gradient comme eXtreme Gradient Boosting (XGBOOST)) : ils capturent des relations non
linéaires et des interactions entre variables, et sont largement utilisés en pratique pour des
taches de classification tabulaire (Lourengo et al., 2024; Chen et Ishwaran, 2012).

— Réseaux de neurones profonds : en particulier les réseaux entierement connectés et les ré-
seaux convolutifs unidimensionnels, capables de modéliser des relations complexes dans des
espaces de grande dimension. Dans ce travail, un réseau convolutionnel 1D est utilisé comme
modele cible pour la prédiction de phénotypes a partir de génotypes (Abdollahi-Arpanahi
et al., 2020).

Ces familles de modeles seront réutilisées et discutées dans les chapitres suivants, notamment lors de

la présentation des attaques par inférence d’appartenance et de I’état de I’art correspondant.

1.4.2 L’ apprentissage non supervisé

Lorsque les entrées ne sont pas étiquetées, on parle d’apprentissage non supervisé. L’ objectif est
d’identifier des structures sous-jacentes dans les données, en regroupant les observations pour consti-
tuer des amas (clusters). Cet apprentissage s’ appuie sur des techniques statistiques visant a découvrir
des structures latentes ou des régularités cachées au sein de données non étiquetées. On distingue clas-
siquement deux grandes familles : le regroupement (clustering) et I’extraction de regles d’association

(Alnuaimi et Albaldawi, 2024; Alzubi et al., 2018).

1.4.3 L’apprentissage semi-supervisé

L’apprentissage semi-supervisé est un mélange de I’apprentissage supervisé et non supervisé. Quand
les données étiquetées sont moins nombreuses que celles qui ne le sont pas, cet algorithme est uti-

lisé. D’abord, les données non étiquetées sont utilisées dans 1’apprentissage non supervisé afin de les
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regrouper. Par la suite, les données étiquetées sont utilisées pour classer les données d’entralnement
représentatives de chaque cluster. Cette approche permet d’attribuer automatiquement et a faible cofit

des étiquettes aux données non étiquetées (Rigaki et Garcia, 2023; Fergus et Chalmers, 2022).

1.4.4 L apprentissage par renforcement

L’apprentissage par renforcement est une branche particuliere de I’apprentissage automatique ot un
agent apprend a prendre des décisions optimales par essais-erreurs dans un environnement dyna-
mique. Cette méthode ne dépend pas des étiquettes clairement définies par un éducateur, mais d’un
mécanisme de récompense. Dans le but de maximiser le cumul des récompenses au fil du temps en
développant une stratégie efficace, 1’agent recoit un retour positif lorsqu’il adopte un comportement
favorable, sinon un retour négatif (punition). L’ apprentissage se fait donc sans connaissance préalable
et 'agent commence par des essais aléatoires, puis affine sa stratégie a mesure qu’il accumule de
I’expérience. Cette approche est appliquée dans les domaines suivants : la robotique, les jeux vidéo,
la conduite autonome (Fergus et Chalmers, 2022; Rigaki et Garcia, 2023; Alnuaimi et Albaldawi,
2024). Ces catégories s’implantent au sein d’architectures de déploiement variées qui conditionnent

directement les risques de confidentialité, comme rappelé ci-apres.

1.5 Architectures d’apprentissage

1.5.1 Apprentissage centralisé

Les méthodes d’apprentissage centralisé ont tendance a collecter et a stocker les données brutes distri-
buées générées par divers appareils ou organisations sur un serveur unique ou une grappe de serveurs
avec stockage partagé. Dans ce cadre, les données et le modele sont colocalisés : toutes les données,
qu’elles proviennent d’une ou de plusieurs sources, sont regroupées au méme endroit pour entrainer
un seul modele. Ce lieu peut étre constitué d’une ou de plusieurs machines dans un méme centre
de données. Cette architecture inclut MLAAS, ou le propriétaire des données les téléverse sur une
plateforme cloud spécialisée (Rigaki et Garcia, 2023). Cette derniere s’occupe ensuite de concevoir
et d’optimiser un modele en fonction des objectifs prédéfinis. Bien que cette solution soit souvent
pratique et performante, elle souleve des préoccupations importantes en matiere de sécurité et de

confidentialité, en particulier dans les contextes sensibles. La transmission sans restriction de données
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brutes vers des serveurs tiers et la centralisation dans une région géographique ou une entité unique
entralnent une augmentation des risques de violation de la vie privée et de fuites d’informations. De
plus, cette approche est confrontée a plusieurs limitations pratiques, telles que la dépendance a la
capacité de calcul centralisée, un temps d’apprentissage élevé et I'impossibilité d’accéder a des don-
nées distribuées géographiquement sans compromettre leur intégrité ou leur confidentialité (Liu et al.,

2019).

1.5.2 Apprentissage fédéré

L’ apprentissage fédéré est une approche efficace qui permet d’utiliser des ressources distribuées afin
d’entralner de maniere collaborative un modele d’apprentissage automatique, tout en gardant les don-
nées sur chaque appareil ou site. Contrairement aux méthodes centralisées, il ne nécessite pas le
transfert des données brutes vers un serveur centralisé. Au lieu de cela, le modele est entrainé loca-
lement sur chaque nceud (appareil ou organisation). Seules les mises a jour du modele (par exemple,
les gradients ou les poids) sont ensuite partagées et agrégées pour former un modele global. Comme
le soulignent McMahan et al. (2017) dans leur article fondateur sur I’apprentissage fédéré, cette mé-
thode repose sur le principe fondamental selon lequel il est préférable d’« amener le code vers les
données plutdt que d’amener les données vers le code ». Cela répond a des problématiques cruciales
concernant la confidentialité, la propriété des données et leur emplacement. L’ apprentissage fédéré
exploite les ressources de calcul locales réparties dans différentes régions ou institutions. Il s’appuie
généralement sur des techniques de protection, telles que le chiffrement ou d’autres mécanismes de
défense, pour garantir la sécurité et la confidentialité des données. Cette méthode permet de se confor-
mer aux exigences réglementaires en matiere de protection des données tout en exploitant la richesse
et la diversité des données distribuées pour construire des modeles plus robustes et généralisables (Liu

etal.,2022).

1.6 L attaque par I’inférence d’appartenance

Puisque les ensembles de données génomiques peuvent contenir des informations sensibles sur les
individus, il est essentiel que les modeles d’apprentissage automatique ne révelent pas, méme indi-

rectement, la présence ou 1’absence d’un individu dans les données d’entrainement.
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L’ attaque par inférence d’appartenance est une attaque permettant de prédire si une donnée spécifique
est membre ou non d’un ensemble d’entrainement d’un modele cible (Shokri et al., 2017; Hu et al.,
2022). Cette attaque repose sur le fait que les modeles se comportent souvent différemment lorsqu’ils
traitent des données vues pendant I’entralnement (membres) comparées a des données inconnues

(non-membres).

L’ attaquant peut avoir deux niveaux de connaissance : si I’attaquant posseéde toutes les informations
sur le modele cible, y compris sa distribution de données d’entrainement, son architecture et ses
parametres, I’attaque est qualifiée de « boite blanche ». Dans le cas d’une attaque en boite blanche,
I’adversaire a acces aux gradients et aux poids internes du modele, ce qui lui permet de reconstruire
des informations précises sur les échantillons d’entrainement. Ces attaques sont donc plus efficaces et

exigent des mesures de défense plus solides.

En revanche, si I’attaquant ne dispose que d’informations limitées sur la distribution des données
d’entralnement et effectue des requétes sur le modele cible sans avoir acces a ses parametres internes,
I’attaque est qualifiée de « boite noire ». Dans les MIAs basées sur un classificateur binaire, le mo-
dele d’attaque est un classificateur binaire qui déduit les membres et les non-membres de 1’ensemble
des données d’entrainement du modele cible. Pour ce faire, I’approche du modele d’ombre, présentée
par Shokri et al. (2017), est largement utilisée. Dans cette technique, 1’attaquant crée un ou plusieurs
modeles semblables au modele cible, entrainés sur des jeux de données artificiels reproduisant sa dis-
tribution, afin de simuler son comportement. En comparant les réponses obtenues, il est alors possible
de distinguer les membres des non-membres de I’ensemble d’entrainement. En boite blanche, le mo-
dele d’ombre est construit avec la méme structure et le méme algorithme d’apprentissage que ceux du
modele cible. En boite noire, I’attaquant obtient le vecteur de prédiction d’un enregistrement d’entrée

uniquement lorsqu’il interroge le modele cible.

En ce qui concerne les modeles d’ombre, 1’attaquant a acces a la fois aux données d’entrainement et
aux données de test. Cela lui permet de créer un ensemble de données qui contient les caractéristiques
et la vérité de terrain de I’appartenance des enregistrements de données d’entrainement et de test. En
utilisant cette base de données, I’attaquant peut entrainer un modele d’attaque fondé sur un algorithme

de classification binaire.
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Variantes d’attaque. Au-dela des modeles d’ombre, les MIA se déclinent en approches (i) fondées
sur le score de confiance (vecteur de probabilités, top-k, entropie), (ii) fondées sur la perte (seuil sur
{(z,y) ou rapport de vraisemblance calibré, p. ex. LiRA), (iii) label-only (sans acces aux probabilités,
via agrégation d’augmentations et marge de décision), et (iv) white-box (gradients/poids). Ces familles
different par les hypotheses d’acces et le signal exploité, mais partagent le méme objectif : discriminer

membres et non-membres.
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FIGURE 1.5 — Dans ce cas, I’adversaire n’a ac-

FIGURE 1.4 — Dans ce scénario, I’adversaire bé- cés qu’aux sorties du modele cible (par exemple,

néficie d’un acces complet a 1’architecture, aux les scores de prédiction), sans aucune informa-

poids et aux gradients du modele cible, ce qui o sur sa structure interne. Cela rend I’attaque

. . , N
facilite la mise en ceuvre d’attaques tres précises. plus difficile & concevoir, mais aussi plus géné-

Cependant, ce type d’attaque repose sur une hy- 006 et réaliste, notamment dans les contextes

pothése souvent irréaliste dans les applications 4o 4/7AAS. C’est ce défi que ce mémoire cherche

réelles (Hu er al., 2022). 2 relever (Hu ef al., 2022).

Note (notation commune aux Figures 1.4-1.5). x : entrée; h® : activation de la couche £; f(x;0) : modele paramétré

par 6; 0 : parameétres appris; p(y | ) : distribution des probabilités; ¢ : prédiction; atracker : adversaire.

Protocole d’évaluation. Pour évaluer 1’efficacité d’une attaque par inférence d’appartenance, il est
nécessaire de constituer un ensemble de données d’évaluation dont le statut d’appartenance est connu
de maniere contrdlée. Dans notre protocole, un échantillon est considéré comme membre s’il provient
du jeu d’entrainement du modele cible, et comme non-membre s’il appartient a un sous-ensemble dé-
dié de données jamais utilisées pendant I’entrainement (jeu unseen). Ces deux groupes sont construits
de maniere équilibrée afin d’éviter un biais lié aux proportions de classes. Pour chaque échantillon,
nous collectons uniquement la sortie du modele cible (probabilité prédite), sans acces a sa structure in-
terne, conformément au cadre en boite noire. Les paires (score, étiquette) ainsi obtenues constituent le
jeu d’évaluation de I’attaque, sur lequel nous mesurons les métriques classiques des MIA : exactitude,

précision, rappel, Fl-score, ainsi que le couple TPR/FPR et la courbe ROC. Ce protocole, appliqué
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de maniere identique aux deux méthodologies proposées, garantit une comparaison cohérente et une
évaluation contrdlée de la capacité du modele d’attaque a distinguer membres et non-membres. Les

détails complets sont fournis au Chapitre 2.

1.7 Objectif et contributions du projet

L’ objectif de cette étude est d’analyser et d’évaluer la vulnérabilité des modeles d’apprentissage auto-
matique face aux attaques qui révelent la confidentialité des données, comme I’attaque par inférence
d’appartenance. Une étude antérieure menée par Chen ef al. (2020) a exploré la MIA en boite blanche
sur des données génomiques. Les auteurs ont démontré que, méme dans ce contexte, des techniques
de protection comme la confidentialité différentielle peuvent atténuer le risque de réidentification. Ce-
pendant, le scénario boite blanche suppose un acces total au modele, ce qui est rarement le cas dans

les environnements réels.

Contrairement a cette approche, notre travail se concentre sur un scénario en boite noire, plus repré-
sentatif des usages réels (par exemple dans les services MLAAS), ou I’adversaire ne dispose que des
sorties du modele cible. Plus précisément, nous cherchons a implémenter une attaque par inférence
d’appartenance contre un modele prédictif inférant un phénotype a partir de données génomiques.
Notre objectif est de développer un modele d’attaque généralisable, capable de s’adapter a différentes

configurations sans nécessiter une connaissance fine du modele attaqué.

Enfin, nous visons a évaluer, dans un cadre réaliste de boite noire, la capacité d’un adversaire a inférer
I’appartenance d’échantillons a un modele génomique prédictif et a concevoir un modele d’attaque
généralisable limitant les faux positifs. Pour ce faire, nous passons en revue les attaques contre les
modeles d’apprentissage automatique avec un focus sur les MIA, synthétisons les approches récentes
et leurs métriques d’évaluation, concevons et mettons en ceuvre une MIA en boite noire sur données
génomiques, puis menons une analyse expérimentale démontrant la capacité du modele a distinguer

de facon fiable membres et non-membres tout en maitrisant les biais.
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1.8 Conclusion

L’exploitation des données génomiques par 1’apprentissage automatique ouvre des perspectives pro-
metteuses en biologie et en médecine. Cependant, elle s’accompagne de risques importants en maticre
de confidentialité, notamment liés a la possibilité d’identifier des individus ou d’inférer des informa-

tions sensibles a partir de leurs données.

En effet, toute fuite d’information génomique peut avoir des conséquences durables non seulement
pour I’individu concerné, mais aussi pour sa famille. Ce chapitre a mis en lumiere 1’'importance des
données génomiques, les risques liés a leur exposition, ainsi que les vulnérabilités spécifiques des mo-

deles d’apprentissage automatique face aux attaques visant a révéler des informations confidentielles.

Parmi ces menaces, 1’attaque par inférence d’appartenance (MIA) constitue un risque particulierement
préoccupant, car elle permet a un adversaire de déterminer si un échantillon a été utilisé pour entrai-
ner un modele donné. Ce type d’attaque est d’autant plus redoutable qu’il peut s’appliquer dans des

scénarios réalistes de boite noire, ou 1’adversaire ne connait ni les données ni la structure du modele.

Dans ce mémoire, nous proposons une attaque MIA en boite noire appliquée a un modele prédictif
entrainé sur des données génomiques de levure. Notre objectif est d’évaluer la faisabilité et la généra-
lisation de ce type d’attaque, en mettant I’accent sur la robustesse et la précision du modele d’attaque.
Le chapitre suivant présente 1’état de I’art en matiere de protection de la vie privée en apprentis-
sage automatique, en détaillant les différentes formes d’attaques existantes ainsi que les stratégies de

défense actuellement proposées.



CHAPITRE 2
PRESENTATION DE L’ETAT DE L’ART DE I’ATTAQUE D’INFERENCE
D’APPARTENANCE

Apres avoir terminé le projet du génome humain (Human genome project (HGP)), le perfectionnement
des techniques de séquencage ainsi que 1’essor des domaines de 1’informatique et des télécommuni-
cations ont permis d’accumuler, de classer, d’analyser et de diffuser une immense quantité de données
génétiques. L’accessibilité croissante des données génomiques et leur nature sensible ont suscité d’im-
portantes préoccupations en matiére de confidentialité. Etant donné que les modeles d’apprentissage
automatique (ML) peuvent fonctionner efficacement avec de vastes ensembles de données et four-
nir des prédictions précises, leur utilisation en biologie, et plus particulierement dans I’analyse des
données génomiques, est devenue de plus en plus populaire. L'intégration des modeles d’apprentis-
sage automatique dans I’analyse des données génomiques a apporté des avancées considérables. Elle
a notamment permis des progres en médecine personnalisée, en détection précoce des maladies et
en recherche biologique. Cependant, entrainer les modeles d’apprentissage automatique sur des en-
sembles de données sensibles pose des risques significatifs de fuite d’informations, car ces modeles
peuvent mémoriser et exposer certaines caractéristiques des données d’entrainement. Ces vulnérabili-
tés permettent d’attaquer les modeles d’apprentissage automatique afin de divulguer des informations
sensibles sur la confidentialité des données d’entrainement de I’apprentissage automatique (Hu et al.,

2022).

Dans la suite de ce chapitre, nous (i) organisons un panorama des principales attaques contre les mo-
deles d’apprentissage automatique, en distinguant celles qui visent la sécurité du modele de celles qui
ciblent la vie privée des données, (ii) formalisons les attaques par inférence d’appartenance ainsi que
les modeles d’adversaire et les niveaux de sortie considérés, (iii) présentons et comparons les princi-
pales approches d’attaque (modeles d’ombre, heuristiques sur les scores, comparaison différentielle),
(iv) passons en revue 1’état de I’art des MIA sur données génomiques et biomédicales, et (v) synthé-
tisons les stratégies de défense existantes (masquage de la confiance, régularisation, confidentialité

différentielle, distillation des connaissances) en les replacant dans le contexte de ce mémoire.
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2.1 Rappels sur I’apprentissage automatique

L apprentissage automatique est une branche de I'intelligence artificielle qui permet a un systeme
informatique d’apprendre a partir de données et d’améliorer ses performances sans étre explicitement
programmé pour chaque tiche. Il repose sur des algorithmes capables de détecter des motifs, de faire
des prédictions et de prendre des décisions dans des domaines variés tels que la santé, la finance, la
sécurité, la reconnaissance d’image ou encore la biologie computationnelle (Alnuaimi et Albaldawi,
2024; Muhamedyev, 2015). Nous renvoyons le lecteur au chapitre 1 pour une introduction générale

plus détaillée a I’apprentissage automatique.

2.2 Attaques sur les modeles d’apprentissage automatique

En raison du développement de I’intelligence artificielle et de 1’intégration croissante des modeles
d’apprentissage automatique dans divers domaines, comme la santé, la finance ou la sécurité et la jus-
tice, la sécurité des modeles d’apprentissage automatique et la protection des données sensibles sont
devenues un sujet crucial. Des recherches récentes ont révélé que les modeles d’apprentissage auto-
matique sont exposés a diverses attaques. Ces attaques peuvent avoir comme objectif de manipuler
le comportement du modele, d’en extraire des informations sensibles, ou encore de compromettre la
confidentialité des données d’entrainement. Les systémes d’apprentissage automatique sont confron-
tés a une variété de menaces, qui peuvent survenir a différentes étapes de leur cycle de vie, soit au
moment de I’entralnement, soit durant la phase d’inférence. Ces menaces exploitent les vulnérabilités

des modeles, des données ou des interfaces d’acces (Xue et al., 2020).

Comme illustré a la figure 2.1, un attaquant peut intervenir :
— Phase d’entrainement :
— Empoisonnement des données : manipulation des exemples/étiquettes pour biaiser 1’ap-
prentissage.
— Insertion d’échantillons malveillants : ajout de points concus pour dégrader le modele.
— Phase d’inférence :
— Attaques adversariales : envoi d’entrées soigneusement construites pour provoquer des

erreurs.
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FIGURE 2.1 — Les surfaces d’attaque dans un pipeline d’apprentissage automatique. Les attaquants
peuvent agir pendant 1’entralnement (empoisonnement de données) ou pendant I’inférence (attaques

adversariales, inférence d’appartenance, etc.).

— Inférence d’appartenance (MIA) : déduire si un exemple a servi a I’entrainement.
— Extraction de modele : répliquer le comportement (ou I’interface de programmation appli-

cative, (Application programming interface (API))) du modele cible.

2.2.1 Attaques visant la sécurité du modele

2.2.1.1 L’ attaque adversariale

Les attaques adversariales sont les attaques les plus courantes dans le domaine de 1’apprentissage au-
tomatique. Dans ce genre d’attaque, en ajoutant une petite perturbation aux données, le modele de
classification se trompe. L’attaque adversariale peut étre soit ciblée, soit non ciblée. Dans I’attaque
adversariale ciblée, les données sont changées pour obliger le modele a prédire un résultat particulier.
En revanche, I’attaque adversariale non ciblée ne cherche pas a obliger le modele a une sortie particu-
liere, mais cherche simplement a entrainer une quelconque mauvaise prédiction du modele (Rahman
et al., 2023). Ce type d’attaque est réalisé pendant la phase d’inférence, une fois le modele entrainé,

afin de manipuler ses prédictions sans en modifier les parametres internes.
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2.2.1.2 L’ attaque par empoisonnement

L’empoisonnement de données est une méthode d’attaque visant la phase d’entrainement d’un modele
d’apprentissage automatique. L’adversaire introduit dans I’ensemble d’entrainement des données ma-
licieusement congues, qu’on appelle des échantillons empoisonnés. Ces données semblent normales
a premiere vue, mais elles ont été soigneusement manipulées pour influencer négativement 1’appren-
tissage du modele. Le but peut €tre de faire échouer totalement 1’entrainement, de réduire les perfor-
mances globales du modele, ou encore de créer des comportements erronés ciblés sur certains types
d’entrées. Ce type d’attaque est particulierement insidieux, car 1’attaquant ne modifie pas directement
le fonctionnement du modele ; il respecte les étapes classiques du processus d’apprentissage, mais agit
uniquement sur les données fournies. En s’appuyant sur la confiance accordée aux données d’entrée,
I’adversaire peut corrompre subtilement le modele, parfois sans laisser de trace visible (Tian et al.,

2022).

222 Attaques visant la vie privée des données

2221 L’ attaque par inversion de modele

Dans cette attaque, I’adversaire essaie d’extraire des informations des données d’entralnement du
modele. ’adversaire peut utiliser la sortie du modele afin de reconstruire les données d’entrée pour
induire en erreur le modele cible. Fredrikson et al. (2015) ont été les premiers a proposer une méthode
pour reconstituer les caractéristiques personnelles d’un individu, telles que son apparence faciale ou
son profil génétique, a partir des scores de confiance fournis par un algorithme d’apprentissage auto-
matique. Leur étude a montré qu’un attaquant peut exploiter les prédictions du modele pour inverser
son comportement et générer une estimation plausible de 1’entrée d’origine, méme dans une situation
de boite noire. Par exemple, dans le cas d’un systeéme de reconnaissance faciale, 1’attaque permettrait
de reconstruire I’image d’un visage a partir de simples sorties de probabilité du modele. Cette attaque
met en évidence une fuite potentielle d’informations, méme lorsque les données brutes ne sont pas
directement divulguées. Elle s’effectue généralement pendant la phase d’inférence, lorsque le modele

est déja entrainé et accessible (Fredrikson et al., 2015; Rahman et al., 2023).
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2222 L’ attaque par extraction du modele

Dans I’attaque par extraction de modeles, I’adversaire interroge le modele cible en passant par une
interface de prédiction (comme une API) afin de reconstruire un modele équivalent. Bien qu’il ne
posseéde aucune connaissance préalable sur I’architecture ou les parametres internes du modele cible,
il peut choisir des entrées et observer les sorties correspondantes. A partir de ces paires entrée-sortie,
I’attaquant entraine un modele substitut qui imite le comportement du modele original (Zhang et al.,
2021). Cette attaque se déroule typiquement pendant la phase d’inférence, une fois le modele entrainé
et exposé au travers d’une interface de requéte, comme c’est souvent le cas dans les services MLAAS.
Ce procédé ne sert pas seulement a reproduire les performances du modele cible; il permet aussi
d’effectuer d’autres attaques, telles que des attaques adversariales ou des attaques d’inférence, tout
en présentant un risque élevé de vol de propriété intellectuelle. Ce type d’attaque a été démontré de
maniere concrete par Tramer et al. (2016) dans leur étude sur les modeles accessibles a travers des
API dans les services MLAAS, illustrant ainsi la facilité avec laquelle un adversaire peut extraire un

modele complexe en boite noire (Tramer et al., 2016).

2223 L’ attaque par I’inférence d’appartenance

L’attaque par inférence d’appartenance est une menace sérieuse pour la confidentialité des données,
en particulier dans les domaines sensibles, comme la santé ou la génomique. Un adversaire tente de
déterminer si un échantillon de données a été utilisé lors de I’entrailnement d’un modele d’appren-
tissage automatique. Cette capacité a inférer I’appartenance peut entrainer la divulgation de données
personnelles sensibles. Cette attaque se déroule typiquement pendant la phase d’inférence, une fois le
modele entrainé et accessible, et elle peut étre mise en ceuvre méme avec un acces limité a I’informa-

tion sur le modele cible (Shokri et al., 2017).

223 Détails sur les attaques par inférence d’appartenance

Lattaque par inférence d’appartenance détermine si un individu est dans I’ensemble d’entrainement
d’un modele ciblé ou non. Cette attaque montre une menace majeure pour la confidentialité des don-

nées, surtout dans les domaines sensibles comme la santé et la génomique.
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Imaginez un hopital qui utilise un modele d’apprentissage automatique sur le service infonuagique
afin de diagnostiquer une maladie a partir des données génomiques. Ce modele a déja été entrainé
avec les données des patients ayant fourni leurs données génomiques. Un adversaire peut interroger
ce modele pour identifier si le génome d’une personne a servi a entrainer le modele ou non, ce qui

pourrait révéler des informations sensibles sur son état de santé.

224 Pourquoi I’attaque par I’inférence d’appartenance fonctionne-t-elle ?

Quand les modeles d’apprentissage automatique sont parfaitement ajustés sur les données d’entraine-
ment, mais qu’ils généralisent mal aux données de test, on parle de surapprentissage. La relation entre
le surapprentissage de modele et la force de I’attaque par inférence d’appartenance en boite noire est
montrée par Shokri ef al. (2017). Ensuite, Yeom et al. (2018) a confirmé cet effet de surapprentis-
sage. L’adversaire utilise ce comportement du modele afin de déterminer si un enregistrement a servi
a entrainer le modele ou non. Le surapprentissage est causé par la complexité du modele et la taille
limitée de I’ensemble de données d’entrainement (Hu ef al., 2022). Les modeles complexes, tels que
les réseaux de neurones profonds (Deep neural network (DNN)), qui comportent un grand nombre
d’hyperparametres, peuvent mémoriser en détail les données d’entralnement, surtout lorsqu’ils sont
entrainés pendant plusieurs époques. Par ailleurs, lorsqu’on dispose d’un ensemble de données d’en-
trainement de taille limitée, le modele a plus de difficulté a refléter correctement la diversité réelle des
données. Cela réduit sa capacité a bien s’adapter a de nouvelles situations. De plus, le type de modele
cible joue un rdle important dans la réussite d’une attaque par inférence d’appartenance. Lorsque la
limite de décision du modele n’est pas facilement influencée par les données spécifiques, le modele est
généralement plus résistant a cette forme d’attaque. Hu et al. (2022) ont montré que certains modeles,
tels que le classifieur bayésien naif, sont moins vulnérables aux attaques par inférence d’appartenance
a cause de leur fonctionnement probabiliste et de leur tendance limitée 2 mémoriser les données d’en-
trainement. Par contre, les arbres de décision ou les réseaux de neurones, qui sont des modeles plus
complexes, ont tendance a apprendre des schémas spécifiques a partir des exemples vus pendant I’en-
trainement. Cela peut entrainer des fuites d’informations. Les auteurs soulignent également que le
nombre de classes dans un jeu de données a un impact non négligeable sur I’efficacité de 1’attaque :
plus ce nombre est élevé, plus le modele risque d’avoir un comportement différencié selon les entrées,

ce qui facilite la détection des données ayant servi a I’apprentissage (Truex et al., 2019).
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2.2.5 Niveau de connaissance de 1’adversaire

Lefficacité d’une attaque par inférence d’appartenance dépend des informations dont dispose 1’ad-

versaire sur (i) le modele cible et (ii) les données d’entrainement (Hu et al., 2022).

La connaissance du modele cible correspond au niveau d’acces de I’adversaire a ’architecture, a 1’al-
gorithme d’apprentissage et, dans certains cas, aux parametres internes du modele. Cette connaissance
donne lieu a deux cadres, soit I’attaque en boite blanche et I’attaque en boite noire. Dans un cadre de
boite blanche, I’adversaire a un acces complet a ces informations, ce qui permet de concevoir des
attaques tres précises. En revanche, dans un cadre de boite noire, 1’adversaire n’a acceés qu’aux pré-
dictions du modele (scores de confiance, classes ou logits) sans connaissance de son fonctionnement

interne.

En parallele, I’adversaire peut également avoir une connaissance partielle ou compléte de la distri-
bution des données d’entrainement. Il est souvent supposé que 1’adversaire peut obtenir un jeu de

données d’ombre provenant de la mé€me distribution que les données d’entralnement.

11 est crucial de noter que, dans les attaques en boite noire, le degré de connaissance peut varier selon
les informations fournies par le vecteur de prédiction. En effet, les attaques d’inférence d’apparte-
nance en boite noire dépendent du niveau de sortie du modele cible. Il existe trois catégories selon le
niveau d’information renvoyé par le modele :

— Vecteur complet de probabilités : 1’adversaire infere I’étiquette et peut calculer des mesures
comme la perte (p. ex., entropie croisée). C’est le cas le plus riche en information et, en
général, le plus favorable aux attaques.

— Top-k probabilités : I’information est réduite, mais 1’adversaire peut encore construire un mo-
dele d’attaque en exploitant des motifs partiels (rang, écarts entre scores, etc.), avec des per-
formances typiquement inférieures au cas précédent.

— L’étiquette seule (Label-only) : méme lorsque seule I’étiquette prédite est fournie, des attaques
restent possibles (p. ex., via des signaux de décision). Ce n’est pas le scénario le plus perfor-

mant, mais il demeure préoccupant car il montre que masquer les scores ne suffit pas.
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2.2.6 Niveau d’approche de I’attaque d’inférence d’appartenance

Selon la stratégie de 1’attaquant et des ressources disponibles, différentes approches ont été dévelop-
pées pour mener des attaques par inférence d’appartenance. Ces approches se distinguent principa-
lement par la maniere dont elles exploitent le modele cible, la quantité de connaissances nécessaires
ainsi que les outils employés pour estimer la probabilité d’appartenance d’une donnée a 1I’ensemble
d’entralnement. Voici un apercu des trois principales familles d’approches :

— Approche par classificateur (modele d’attaque supervisé) : cette technique s’ appuie sur la for-
mation d’un modele d’attaque, généralement un classificateur binaire, qui prédit si une donnée
a été vue ou non par le modele cible. Pour ce faire, 1’attaquant crée un ou plusieurs modeles
d’ombre, chacun entrainé sur un ensemble de données simulant la distribution du modele
cible. Le modele d’attaque est ensuite entrainé a partir des réponses du modele d’ombre sur
des exemples connus comme étant membres (ensemble d’entrainement) ou non (ensemble de
tests). Il apprend ainsi a détecter des différences de comportement du modele sur ces deux
types d’exemples. Cette méthode demande un minimum de connaissance du domaine ou de
la distribution des données d’entralnement, mais elle fonctionne bien, méme dans un cadre
en boite noire. Cette approche est illustrée notamment par 1’attaque pionniere de Shokri et al.
(2017).

— Approche basée sur des métriques heuristiques : dans cette famille d’attaques, 1’adversaire ne
construit pas explicitement de modele d’attaque. Il exploite directement des mesures simples
dérivées des sorties du modele cible pour estimer la probabilité d’appartenance d’un échan-
tillon. Les métriques couramment utilisées sont les suivantes :

— La perte (loss) : on suppose que les membres de I’ensemble d’entrainement ont tendance
a générer une perte plus faible.

— La confiance maximale : la plus haute probabilité attribuée a une classe.

— L’entropie de la prédiction : mesure I’incertitude du modele.

— Approche par comparaison différentielle (analyse statistique) : ici, I’attaquant utilise des mé-
thodes statistiques pour comparer le comportement du modele sur une donnée cible avec ce-
lui observé sur un ensemble de données considérées comme non-membres. L’ objectif est de
formuler I’appartenance comme une hypothese statistique a tester. Cette méthode est particu-

lierement utile pour classer les enregistrements les plus vulnérables a I’inférence. L’attaque
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pragmatique de (Long et al., 2020) illustre cette méthode avec 1’utilisation de tests d’hypo-

theses et de valeurs-p (p-values) pour détecter les enregistrements les plus vulnérables.

Plus concrétement, supposons que 1’attaquant dispose d’un ensemble de référence de m =
1000 individus dont il sait qu’ils ne font pas partie de I’ensemble d’entrainement (non-membres).
Ilinterroge le modele sur ces 1000 non-membres et obtient une distribution de pertes {£(x, ;) }7;,
typiquement comprises entre, par exemple, 0,5 et 0,8. Pour une donnée cible (z*, y*), il cal-
cule la perte /(x*, y*) et obtient une valeur tres faible, par exemple 0,05. En comptant combien
de non-membres ont une perte inférieure ou égale a cette valeur, il obtient, disons, 5 individus,
soit une proportion
5

Cette valeur-p empirique est tres faible sous I’hypotheése « non-membre » (par exemple p <
0,01); I’attaquant en déduit alors que le comportement du modele sur (z*, y*) ressemble beau-
coup plus a celui observé sur des exemples d’entralnement, et conclut que cet enregistrement

est probablement un membre de I’ensemble d’entrainement.
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TABLE 2.1 — Comparaison des approches d’attaque par inférence d’appartenance

Approche

Principe

Exemple

Avantages / Limites

Par classificateur

Entralner un mo-
dele d’attaque (ex.
binaire) basé sur les
sorties de modeles
d’ombre simulant le

modele cible

Shokri et al. (2017)

Haute précision, né-
cessite beaucoup de
données similaires

au modele cible.

Basée sur des métriques

Utilise des scores
comme la perte, la
confiance, [I’entro-
pie pour détecter
I’appartenance sans
apprentissage expli-

cite

Salem er al. (2019);
Yeom et al. (2018)

N

Facile a implémen-
ter, mais souvent

moins performant.

Comparaison différentielle

Applique des tests
statistiques pour
détecter des écarts
de  comportement
entre membres et

non-membres

Long et al. (2020)

Ne nécessite pas de
données d’entraine-
ment, mais est sen-
sible aux variations

naturelles.

2.3 Etat de I’art sur les attaques par inférence d’appartenance

Tout d’abord, Homer et collaborateurs ont prouvé qu’un attaquant peut exploiter les statistiques pu-

bliées sur un jeu de données génomiques pour inférer la présence d’un individu donné. Leur étude met

en évidence qu’il est possible de déduire la participation d’une personne (ou d’un proche) a une étude,

méme lorsque les données génétiques individuelles ne sont pas directement divulguées, mais unique-

ment des résumés statistiques, tels que les fréquences alléliques ou les distributions de génotypes. En

s’appuyant sur une approche basée sur des microréseaux d’ADN & haute densité pour le génotypage
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des SNP, ils ont proposé un cadre théorique pour comparer les fréquences alléliques d’'un mélange
d’ ADN avec celles d’une population de référence et d’un individu spécifique. Grace a une mesure de
distance spécifique et a un test statistique, leur méthode permet de détecter la présence d’un individu
dans un mélange complexe d’ADN, méme lorsqu’il ne contribue qu’a une infime proportion (moins

de 0,1%) (Homer et al., 2008; Hu et al., 2022).

Les attaques par inférence d’appartenance ont été introduites de maniere marquante par Shokri ef al.
(2017). 1ls ont démontré qu’il est possible pour un attaquant de divulguer les données d’entrainement
du modele d’apprentissage automatique, méme dans le cadre d’une boite noire. Pour atteindre cet
objectif, ils mettent en ceuvre une méthode du modele d’ombre. Le but du modele d’ombre est de
trouver les liens entre les données et les étiquettes lorsque 1’attaquant obtient les sorties du modele
cible en lui fournissant les entrées. Pour mettre en ceuvre cette méthode, 1’attaquant crée n modeles
d’ombre. Chaque modele d’ombre est entrainé sur un ensemble de données distinct de celui utilisé

pour le modele cible, mais issu de la méme distribution que 1’ensemble de données d’entralnement.

Le modele d’ombre doit se former de la méme fagon que le modele cible, mais dans le cadre de boite
noire, I’attaquant n’a aucune connaissance a propos de la structure du modele et des parametres. Une
fois les modeles d’ombre entrainés, 1’attaquant les interroge a I’aide d’exemples connus (membres)
et inconnus (non-membres) pour obtenir les sorties correspondantes. Ces données servent alors a
entralner un modele d’attaque capable de prédire, pour une nouvelle entrée, si celle-ci a été utilisée
ou non dans I’entrainement du modele cible. Plus le nombre de modeles d’ombre est élevé, plus le
modele d’attaque sera précis, car il aura été exposé a une plus grande diversité de comportements

issus de modeles similaires au modele cible.

Enfin, toutes les sorties sont utilisées afin d’entrainer un modele classificateur, appelé modele d’at-
taque, qui apprend a distinguer si une donnée a été vue (membre) ou non vue (non-membre) par le
modele cible, en se basant uniquement sur les réponses fournies par celui-ci. Ce modele peut ensuite
servir a faire des prédictions d’appartenance sur de nouvelles données. Il révele ainsi des informations

sensibles sur I’ensemble d’entrainement du modele cible (Shokri ef al., 2017).

Backes et collaborateurs ont exploré une nouvelle dimension de la confidentialité des données biomé-
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dicales en analysant les attaques par inférence d’appartenance dans le contexte des études basées sur
les expressions de microARN (miARN), de petites molécules d’ARN non codantes qui régulent 1’ex-
pression des génes en modulant la traduction ou la dégradation des ARN messagers. Contrairement
aux données génétiques statiques, comme le génome, les expressions de miARN sont influencées de
maniere dynamique par 1’état de santé d’un individu, ce qui en fait des biomarqueurs puissants, mais

sensibles.

Selon les chercheurs, il est possible pour un adversaire d’estimer avec une grande précision la partici-
pation d’une personne spécifique a une étude, méme si seules des données statistiques globales, telles
que la moyenne d’expression, sont divulguées. En utilisant des données publiques sur les miRNA, ils
montrent que, dans les jeux de données associés a des maladies, les attaques peuvent atteindre un taux

de vrais positifs de 77%, avec moins de 1% de faux négatifs.

Pour cela, deux approches d’attaque ont été proposées. La premiere consiste a calculer la distance L1,
une mesure mathématique qui calcule la somme des différences absolues entre les niveaux d’expres-
sion du miARN d’un individu cible et les moyennes issues des données de 1’étude. Plus cette distance
est faible, plus cela suggere que le profil de 1’individu est compatible avec celui des participants. La
seconde méthode repose sur un test du rapport de vraisemblance (likelihood ratio test), une technique
statistique qui compare la probabilité qu’un individu appartienne au groupe étudié et celle qu’il en soit
exclu. Ce test évalue la compatibilité d’un profil a deux suppositions : la premicre est que la personne
étudiée est présente (hypothese alternative); la seconde, qu’elle n’est pas 1a (hypothese nulle). Parmi

les deux méthodes, la seconde s’est révélée la plus efficace.

Devant ces inquiétantes observations, les auteurs ont proposé des mesures pratiques pour renforcer la
sécurité des participants. Ils ont conseillé de ne pas publier de statistiques agrégées si le jeu de données
contient moins de quelques centaines d’individus, ce qui complique I’identification d’une personne
en particulier. Pour les ensembles de données de plus petite taille, ils ont suggéré d’ajouter une part
d’aléa aux résultats publiés grace a un procédé statistique qui introduit une incertitude maitrisée. Cette
méthode permet de brouiller suffisamment les informations, tout en conservant une utilité minimale
pour I’analyse scientifique. Une autre méthode recommandée consiste a réduire significativement le

nombre de statistiques divulguées, ce qui permet de limiter les risques de réidentification (Backes
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etal., 2016).

Ensuite, Liu et collaborateurs ont proposé une nouvelle approche, "SocInf", une attaque d’inférence
d’appartenance en boite noire, sans connaitre 1’architecture du modele cible ni les données d’entrai-
nement. Cette méthode a été évaluée a partir de données de santé provenant de réseaux sociaux. Son
principe de base consiste a développer un modele de mimétisme qui imite le comportement du mo-
dele cible. Pour ce faire, I’attaquant crée des données synthétiques similaires en format aux données
d’origine. Il les regroupe ensuite en fonction des prédictions obtenues. Un processus d’apprentissage
est ensuite mis en ceuvre pour entrainer le modele de mimétisme jusqu’a ce que ses sorties deviennent
difficiles a distinguer de celles du modele cible. Sur cette base, un modele d’attaque est ensuite appris

pour estimer si une donnée particuliere a été utilisée lors de 1’entralnement initial.

Cette approche est particulierement utile dans ce domaine, car elle démontre qu’un attaquant peut at-
teindre une haute précision d’inférence sans avoir besoin de détails sur le modele cible, contrairement
a des méthodes plus traditionnelles, comme 1’entrainement de modeles d’ombre. Selon Soclnf, il suf-
fit de pouvoir consulter les prédictions du modele pour mettre en évidence des faiblesses importantes,
surtout si le modele montre un surapprentissage par rapport a ses données d’entrainement. Méme dans
des situations réelles et limitées, comme les services d’intelligence artificielle disponibles en ligne,
un adversaire peut détecter si une personne fait partie de I’ensemble de données d’entrainement, ce
qui représente une grave menace pour la confidentialité, en particulier dans les domaines sensibles
tels que les données médicales ou génétiques (Liu et al., 2019). En outre, Salem et collaborateurs ont
démontré qu’un attaquant peut identifier si un point de données particulier a été utilisé pour entrainer
le modele cible, méme s’il utilise un jeu de données distinct. Ils ont proposé une technique appelée «
attaque par transfert de données », qui assouplit les hypotheses traditionnelles des attaques par infé-
rence d’appartenance. Contrairement a 1’ attaque de Shokri et al. (2017), qui supposait la disponibilité
de plusieurs modeles d’ombre et d’un jeu de données issu de la méme distribution que celui du modele
cible, Salem et collaborateurs ont montré qu’il est possible de mener une attaque réussie avec un seul

modele d’ombre, voire avec une architecture différente de celle du modele cible.

En effet, le modele d’attaque parvient a repérer des différences générales dans la maniere dont le

modele cible réagit aux données d’entrainement (membres) et a celles qu’il n’a jamais vues (non-
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membres), méme si les jeux de données ne sont pas exactement les mémes. Il est a noter que les
algorithmes d’apprentissage automatique ont généralement une tendance a se comporter différem-
ment en fonction de leur exposition antérieure a une donnée. Cette distinction, quoique délicate, peut
étre exploitée par un attaquant, méme lorsqu’il dispose de peu d’informations ou travaille dans un

environnement contraignant.

L’ étude suggere aussi diverses sorties possibles du modele cible pouvant servir a 1’attaque : les seuls
résultats prédits, les probabilités associées, ou encore les logits. Les auteurs ont évalué leur méthode
sur une variété de jeux de données et de modeles (tels que les réseaux de neurones, les arbres de
décision ou les SVM) et ont démontré que, méme avec peu de données et des hypotheses limitées,
I’attaque reste efficace. Cela souligne la vulnérabilité intrinseque des modeles aux fuites d’informa-
tion, méme dans des cadres réalistes et contraints, comme le nuage ou les services MLAAS (Salem

etal., 2019).

Bu et collaborateurs ont proposé une nouvelle méthode d’attaque d’inférence d’appartenance qui ne
nécessite pas de disposer de I’ensemble des informations génétiques d’un individu (Bu et al., 2021).
Grice a cette méthode, I’adversaire peut s’appuyer sur des statistiques telles que les fréquences allé-
liques, c’est-a-dire la proportion d’un allele donné dans une population, ou sur les réponses binaires
de services Beacon, des interfaces publiques qui répondent par « oui » ou « non » a la question « Un
allele existe-t-il a une position spécifique dans une base de données génomique ? », afin de déterminer
la présence d’un individu dans une base de données. Pour cela, ils exploitent les haplotypes, c’est-a-
dire des combinaisons spécifiques d’alleles (variants génétiques) souvent transmises ensemble le long
d’un méme chromosome, ce qui offre plus de puissance statistique que 1’analyse de variants pris iso-
Iément. Méme si I’haplotype d’une personne n’est pas connu a I’avance, les auteurs montrent qu’il est
possible de le reconstruire a partir de ces données résumées. Cette méthode souleéve des inquiétudes
majeures en matiere de confidentialité, car elle montre que des informations sensibles peuvent étre

déduites méme sans acces direct au génome complet.

Long et collaborateurs ont proposé une nouvelle perspective sur 1’attaque d’inférence d’appartenance
en se concentrant sur 1’adversaire pragmatique qui cherche a maximiser 1’utilité de 1’attaque plu-

tot qu’a obtenir une couverture complete. Ils ont noté que, pour des modeles bien généralisés, les
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membres et les non-membres d’un jeu de données sont souvent traités de maniere similaire par le
modele, rendant les attaques classiques moins efficaces. Cependant, ils ont montré que 1’adversaire
pouvait cibler les données les plus sensibles, c’est-a-dire celles qui sont détectées plus facilement, afin

de diminuer le nombre de non-membres prédits comme membres (faux positifs).

Pour identifier les enregistrements les plus vulnérables, ils ont recours a une méthode statistique fon-
dée sur la valeur p, c’est-a-dire la probabilité d’observer un comportement au moins aussi extréme
que celui mesuré sous I’hypothese nulle (non-appartenance). Concrétement, il s’agit d’évaluer, pour
une donnée cible, dans quelle mesure la réponse du modele est compatible avec les comportements
observés typiquement chez les membres ou chez les non-membres de I’ensemble d’entrainement. Une
valeur p faible indique que la réaction du modele a cette donnée ressemble beaucoup plus a celle qu’il
aurait pour un exemple d’entrainement (membre) que pour une donnée inconnue (non-membre), ce
qui laisse supposer que cette donnée a tres probablement été utilisée lors de I’apprentissage du modele.
Long et collaborateurs ont également montré qu’il est possible d’atteindre une précision supérieure
a 95 % dans certains sous-ensembles de données, méme lorsque la précision globale d’une attaque

semble faible (par exemple, autour de 50 %) (Long et al., 2020).

Dans I’étude Membership Inference Against DNA Methylation Database, Hagestedt et collaborateurs
examinent spécifiquement les attaques par inférence d’appartenance visant des bases de données de
méthylation de I’ ADN, un mécanisme épigénétique qui ajoute un groupe méthyle sur I’ADN afin de
moduler I’activité des genes sans en changer la séquence; la méthylation joue ainsi un rdle impor-
tant dans le développement, la régulation de I’expression génique et diverses pathologies (Schiibeler,
2015). Les auteurs s’appuient largement sur les travaux existants concernant les attaques contre les
données génomiques. Leurs résultats démontrent que ces attaques sont également efficaces contre les
données de méthylation, en exploitant les statistiques résumées publiées. De plus, ils montrent que,
méme sans acces direct au profil de méthylation d’un individu, un attaquant disposant uniquement de
ses variations génomiques peut inférer son appartenance a une base de données de méthylation. Cela
est rendu possible grace a la corrélation existante entre certains génotypes et les niveaux de méthyla-
tion observés a des positions spécifiques du génome. Cette approche met en lumiere I’interconnexion
croissante des risques pour la vie privée entre les données génomiques et épigénomiques (Hagestedt

et al., 2020).
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Dans I’article Differential Privacy Protection Against Membership Inference Attack on Machine Lear-
ning for Genomic Data, les auteurs analysent le principal risque en matiere de confidentialité posé par
le partage de modeles formés a partir de données génomiques afin de prévoir un phénotype. Ils dé-
montrent que les modeles d’apprentissage automatique sont vulnérables aux attaques par inférence
d’appartenance, méme lorsque seules les prédictions finales du modele sont accessibles (cadre en
boite noire). Leur étude met en évidence que les adversaires peuvent exploiter les différences subtiles
de comportement entre les membres et les non-membres de I’ensemble d’entrainement pour deviner
si une donnée particuliere a été utilisée pendant 1’apprentissage. Ils ont aussi observé que certains
facteurs, comme le surapprentissage du modele et sa complexité, peuvent exacerber ces fuites d’in-

formation, ce qui augmente la probabilité de réussite de 1’attaque (Chen et al., 2020).

Comparativement, Shokri et collaborateurs ont proposé une méthode d’attaque plus efficace, mais
également plus exigeante en termes d’information disponible pour I’adversaire. Leur approche repose
sur la construction de plusieurs modeles d’ombre mimant la structure du modele cible et entrainés sur
des données issues de la méme distribution. Ils ont ainsi démontré une efficacité remarquable, mais

au prix d’hypotheses fortes sur la connaissance du modele et des données (Shokri et al., 2017).

Yeom et collaborateurs ont proposé une méthode treés simple, peu coliteuse computationnellement,
mais sensible a la régularisation et a la capacité du modele a généraliser. Sa méthode est basée uni-
quement sur la perte, ce qui la rend trés accessible, mais aussi trés dépendante du degré de surap-
prentissage (Yeom et al., 2018). L’approche de Salem et collaborateurs se situe entre les deux : elle
relache les hypotheses sur la distribution des données et la structure du modele cible tout en conser-
vant une performance comparable a celle de Shokri, avec une baisse de précision de quelques points
de pourcentage. Elle met en évidence les risques réels pesant sur la vie privée et souligne le besoin de
développer des modeles d’attaque plus robustes et adaptatifs. Elle montre surtout que méme avec un
seul modele d’ombre et des données différentes, il est possible d’atteindre une performance proche,

ce qui rend leur scénario plus réaliste pour des applications concretes Salem et al. (2019).
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24 Meéthodes de défense contre les attaques MIA

En raison de I’augmentation du nombre d’attaques MIA, plusieurs stratégies de défense ont été propo-
sées afin de limiter les fuites d’informations provenant des algorithmes d’apprentissage automatique.
Ces méthodes different en termes de complexité, de niveau de confidentialité et d’impact sur les
performances. Dans cette section, nous faisons un résumé des principales approches, en mettant en
évidence leurs points forts et leurs limites. Nous précisons également pour quels scénarios d’attaque

chaque méthode est la plus adaptée.

Plusieurs stratégies ont été proposées pour atténuer les attaques MIA. On peut les classer dans I'une
ou I’autre des quatre grandes catégories suivantes : le masquage de la confiance, la régularisation, la

confidentialité différentielle et la distillation des connaissances (Hu et al., 2022).

2.4.1 Masquage de la confiance (Confidence masking)

Limiter ou altérer les informations divulguées par le modele — par exemple en ne renvoyant que
I’étiquette prédite, les k meilleures probabilités, ou en injectant du bruit dans le vecteur de sortie —
réduit la surface informationnelle exploitable par un adversaire. Cette approche est particulierement
pertinente en boite noire, notamment dans les services MLAAS ol les attaquants exploitent les scores
de confiance et les classements top-k. Elle se distingue par une mise en ceuvre simple et un cofit
réduit; de plus, la calibration des probabilités et le label smoothing atténuent la surconfiance, souvent
ciblée par les attaques MIA. En revanche, son efficacité est moindre face aux attaques label-only et
aux adversaires adaptatifs entrainés sur des sorties tronquées ou bruitées, et elle peut dégrader 1’ utilité
des scores pour le seuillage, la supervision opérationnelle et 1’explicabilité (Shokri ef al., 2017; Jia
et al., 2019; Li et al., 2021; Choquette-Choo et al., 2021). Deux notions sont particulierement utiles
dans ce contexte. La calibration des probabilités vise a ajuster les scores de sortie de maniere a ce
que, par exemple, une prédiction avec une confiance de 80 % soit correcte environ 8 fois sur 10
en pratique ; un modele bien calibré est moins sujet a des surconfiances extrémes sur les exemples
d’entrainement. Le label smoothing consiste a remplacer les étiquettes one-hot (1,0,...,0) par des
distributions légerement adoucies (par exemple (0,9,0,1/(K — 1),...)), ce qui empéche le modele

d’apprendre des frontieres trop rigides et réduit 1’écart de confiance entre membres et non-membres.
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24.2 Régularisation

En réduisant la propension du modele a mémoriser — par des pénalités L.1/L.2, du dropout, de 1’aug-
mentation de données ou de la régularisation adversariale explicitement ciblée sur I’appartenance —
on réduit la différence de comportement entre les exemples connus (membres) et inconnus; cette
approche est généralement considérée comme la stratégie standard, y compris en label-only. Elle a
I’avantage d’améliorer la généralisation sans changer I’ API du modele et avec une charge d’ingénierie
raisonnable ; les versions adversariales peuvent encore diminuer la fuite d’information. Cependant, ses
limites résident dans les régimes a haute dimension et faible effectif, ou I’effet peut rester insuffisant ;
par ailleurs, le réglage des hyperparametres est complexe et des pénalisations/dropout trop intenses
nuisent a la précision (Nasr et al., 2018; Chang et al., 2019; Salem et al., 2019; Leino et Fredrikson,
2020).

2.4.3 Confidentialité différentielle

La confidentialité différentielle fournit un cadre formel pour garantir qu’un individu donné a un impact
limité et contr6lé sur la sortie globale de I’algorithme. Plus précisément, un algorithme est (e, 0)-
différentiellement privé si, pour deux bases de données ne différant que par un individu, la distribution
de ses sorties ne change que d’un facteur borné par € (et §) (Abadi et al., 2016b). Ce paradigme
est particulierement indiqué lorsque le modele est diffusé ou partagé, ou lorsqu’il est soumis a des
contraintes réglementaires : il s’agit de la seule famille de défenses offrant des garanties formelles,

avec un budget de confidentialité tracable.

Dans DP-SGD, on borne d’abord la norme des gradients individuels (clipping), puis on ajoute un bruit
gaussien calibré avant ’agrégation, ce qui permet de suivre un budget de confidentialité (¢, §) au cours
de I’entralnement (Abadi et al., 2016b). Dans PATE (Private Aggregation of Teacher Ensembles),
plusieurs modeles enseignants sont entrainés sur des partitions disjointes des données ; leurs votes sur
des exemples non étiquetés sont agrégés de maniere bruitée pour entrainer un modele éleve, de sorte

que I’influence de chaque individu reste limitée (Papernot et al., 2018b).

En contrepartie, le compromis utilité—confidentialité est notable (des valeurs de e faibles dégradent

la performance), le réglage des hyperparametres est complexe (clipping, échelle du bruit, taille de
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lot, nombre d’itérations) et, en haute dimension, le niveau de bruit requis peut devenir important

(Jayaraman et Evans, 2019; Shejwalkar et Houmansadr, 2021).

TABLE 2.2 — Comparaison des stratégies de défense contre les attaques MIA

Méthode

Principe

Avantages

Limitations / Réfé-

rences

Masquage de Ila

Limitation des sorties

Facile a implémenter,

Peut dégrader 1’utili-

confiance (label seul, top-k, | efficace contre les at- | sabilité (Shokri et al.,
bruit sur les probabili- | taques simples 2017; Jia et al., 2019)
tés)

Régularisation Réduction du surap- | Renforce la générali- | Moins efficace en
prentissage  (L1/L2, | sation, peu coliteux haute dimension
dropout, data aug- (Nasr et al., 2018;
mentation) Chang et al., 2019)

Confidentialité diffé- | Ajout de bruit pendant | Garanties formelles de | Perte de précision si-

rentielle I’apprentissage (DP- | confidentialité gnificative, tuning dif-
SGD, PATE) ficile (Abadi et al,
2016b; Papernot et al.,
2018b)
Distillation Transfert via un mo- | Réduction de la fuite | Complexité accrue,
dele enseignant sans bruit explicite résultats variables
(Shejwalkar et Hou-
mansadr, 2021;
Bernau et al., 2021)
244 Distillation des connaissances

La distillation des connaissances consiste a entrainer un modele éleve sur les sorties de 1’enseignant

afin de lisser les signaux idiosyncratiques corrélés aux exemples d’entrainement et, ce faisant, de ré-

duire I’écart de comportement entre membres et non-membres. Cette stratégie est pertinente lorsque la
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restitution de probabilités de sortie est requise (contraintes produit/MLAAS) tout en évitant I’injection
de bruit explicite. Sur le plan empirique, elle atténue la surconfiance et peut mieux préserver 1’exacti-
tude qu’une configuration DP stricte & € faible, pour un niveau de résistance comparable. Ses limites
tiennent a ’absence de garanties formelles, a une dépendance marquée au couple enseignant—éleve,
au schéma d’adoucissement des sorties et a la tiche, ainsi qu’a la possibilité pour un adversaire adap-
tatif de s’aligner si la géométrie des logits est insuffisamment modifiée (Shejwalkar et Houmansadr,

2021; Bernau et al., 2021).

2.5 Conclusion

A travers ce chapitre, nous avons exploré les recherches existantes sur les attaques par inférence d’ap-
partenance dans différents domaines de I’apprentissage automatique. Si ces attaques ont été largement
étudiées dans des contextes comme la vision par ordinateur ou le traitement du langage, leur appli-
cation aux données génomiques demeure encore marginale. Cette lacune ne reflete pas un manque
d’intérét, mais plutdt les défis spécifiques que posent les données génétiques : sensibles, complexes,
difficilement partageables, riches en variables mais pauvres en échantillons. Par ailleurs, une majorité
des travaux supposent un acces aux parametres internes du modele, ce qui est rarement réaliste dans
des contextes biomédicaux. Ce constat met en lumiere un espace encore peu exploré mais crucial : ce-
lui d’évaluer la vulnérabilité des modeles génomiques dans un cadre boite noire, ou seules les sorties
du modele sont accessibles a 1’adversaire. Notre projet s’inscrit précisément dans cette perspective,
en proposant une approche généralisable, reposant a la fois sur des modeles d’ombre entrainés a partir
de phénotypes biologiquement corrélés au phénotype cible, et sur des modeles d’ombre construits a
partir de jeux de données totalement indépendants selon une méthodologie de transfert de connais-
sances. Cette diversité dans la construction des modeles d’ombre permet d’anticiper les risques de
divulgation, méme dans des situations de contrdle d’acces restreint ou I’ attaquant ne possede que des
données limitées sur le modele cible. Ainsi, ce chapitre fournit le cadre conceptuel et 1’état de I’art
nécessaires pour analyser la vulnérabilité des modeles génomiques face aux attaques par inférence

d’appartenance.



CHAPITRE 3
METHODOLOGIE

Dans ce chapitre, la méthode utilisée pour mener une attaque par inférence d’appartenance en boite
noire sur des données génomiques sera décrite en détail. L’ objectif principal est d’évaluer la vul-
nérabilité des modeles d’apprentissage automatique aux attaques de confidentialité en prédisant si un
échantillon génomique donné faisait partie de I’ensemble de données d’entrainement du modele. Pour

y parvenir, la méthodologie est structurée en plusieurs étapes interconnectées.

Premierement, on présente en détail I’ensemble de données utilisé, en explicitant les criteres de sélec-
tion et de préparation adoptés. Nous détaillons ensuite le processus d’entrainement du modele qui est
la cible de I’attaque par inférence. De plus, nous expliquons comment créer et entrainer des modeles
d’ombre, congus pour imiter le comportement du modele cible, ce qui est crucial pour générer des
scénarios d’attaque réalistes. Par la suite, nous présentons et mettons en ceuvre un modele d’attaque
par inférence d’appartenance robuste qui utilise les schémas détectés dans les résultats des modeles

d’ombre pour déterminer I’état d’appartenance.

En outre, nous examinons minutieusement 1’efficacité de 1’attaque, en employant des critéres bien
définis pour mesurer sa précision et sa fiabilité. Dans tout ce chapitre, nous décrivons en détail 1’en-
vironnement informatique et les outils spécifiques utilisés, ce qui facilitera la reproduction. Nous
examinons également les considérations éthiques liées a la nature sensible des données génomiques,

ainsi que les limites méthodologiques inhérentes a 1’approche.

En définitive, le cadre méthodologique proposé fournit une approche structurée et rigoureuse pour
analyser les menaces a la confidentialité posées par 1’apprentissage automatique en génomique. Il
permet d’éclairer les pratiques de protection des données et de préservation de la vie privée dans ce

domaine.
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3.1 Objectif de I’expérimentation

L’ objectif principal de cette expérience est d’évaluer la faisabilité et la performance d’une attaque par
inférence d’appartenance sur des données génomiques en boite noire, en utilisant un modele d’attaque
généralisable. Afin d’assurer cette généralisabilité, 1’attaque proposée est congue pour étre indépen-
dante des individus cibles. Le modele d’attaque ne repose donc pas sur la connaissance préalable
des personnes potentiellement visées, mais apprend des schémas généraux issus de modeles d’ombre
pour inférer I’appartenance. Dans le cadre de cette étude, la généralisabilité correspond a la capacité
du modele d’attaque a fonctionner de maniére optimale sur les sorties d’un modele cible inconnu,
méme si ce modele a été entrainé sur un ensemble de données distinct ou qu’il utilise une architecture
différente de celles utilisées lors de 1’entrainement du modele d’attaque. Elle mesure la résistance
de I’attaque face a des modifications dans la nature des données, la structure du modele ou la dis-
tribution des résultats. L’ objectif est ainsi de pouvoir cibler n’importe quelle personne présentée au
modele cible, méme si elle n’a jamais été vue auparavant, ni dans les données auxiliaires, ni lors de
I’entrainement du modele d’attaque. Il s’agit de prouver que, méme en cas de ressources limitées
et de restrictions concernant 1’acces aux informations intermédiaires, il est possible de menacer la

confidentialité des sujets représentés dans les échantillons d’apprentissage.

En ce qui concerne cette étude, plusieurs limites ont été rencontrées :
— la rareté des jeux de données génomiques publiques comportant un nombre d’échantillons
suffisant ainsi que des annotations phénotypiques completes.
— la nécessité d’un ensemble de données permettant de développer a la fois un modele cible, un
modele d’ombre et un jeu d’attaque séparé.
— la grande quantité de caractéristiques, beaucoup plus élevée que le nombre d’échantillons,
rend les modeles sensibles au surapprentissage.
Dans cette expérience, nous avons choisi de nous appuyer sur I’ensemble de données utilisé dans
I’article de référence "Differential Privacy Protection Against Membership Inference Attack on Ma-
chine Learning for Genomic Data"(Chen et al., 2020). Cet article constitue la base méthodologique

principale de notre travail.
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3.2 Présentation du jeu de données

Le jeu de données sélectionné est un ensemble de données de levures provenant de I’étude "Genetic
interactions contribute less than additive effects to quantitative trait variation in yeast" (Bloom et al.,
2015). La levure (Saccharomyces cerevisiae) est un organisme modele idéal pour ce type d’expéri-
mentation. Elle posséde un génome bien contrdlé, une faible complexité génétique et des phénotypes
faciles a mesurer dans des conditions reproductibles. Elle est largement utilisée comme systeme mo-
dele dans 1’étude des mécanismes fondamentaux du vivant et des maladies humaines, grice a la si-
militude qu’elle entretient avec les eucaryotes supérieurs et a sa maniabilité génétique (Dabas et al.,

2017; Poswal et Saini, 2017).

Le jeu de données contient des informations génétiques sur 4 390 individus issus d’un croisement
entre deux souches de levure : une souche de laboratoire et une souche naturelle. Chaque individu a
été génotypé sur plus de 28 820 marqueurs SNP et phénotypé pour une vingtaine de traits quantitatifs,

majoritairement liés a la croissance cellulaire dans divers milieux.

Pour les besoins de notre expérimentation, nous nous sommes alignés sur le protocole de Chen et al.
(2020) en choisissant comme phénotype cible le trait de croissance en présence de sulfate de cuivre.
Parmi la vingtaine de traits quantitatifs disponibles, ce phénotype présente un bon compromis entre
variabilité phénotypique et signal génétique, ce qui en fait un candidat adapté pour I’étude des attaques
d’inférence d’appartenance. De plus, son utilisation nous permet de comparer plus directement nos

résultats a ceux rapportés dans 1’étude de référence de Chen et al. (2020).

Le phénotype, initialement mesuré comme une valeur quantitative de croissance, a été transformé en
variable binaire en appliquant un seuil & la valeur de croissance. Ce seuil a été choisi de maniere
a obtenir deux classes de taille comparable (croissance « faible » vs « élevée »), de facon a limiter
les déséquilibres de classes et a formuler la tiche comme un probléme de classification supervisée

binaire.

Sur les 4 390 individus initialement génotypés, nous avons d’abord exclu ceux ne disposant pas d’une

mesure phénotypique valide pour le trait sulfate de cuivre. Ensuite, apres application du seuillage et
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sous-échantillonnage de la classe majoritaire pour équilibrer les étiquettes, le jeu de données final
utilisé pour I’entrainement et 1’évaluation du modele cible contient 3 404 individus, dont 1702 dans

la classe positive (résistants au sulfate de cuivre) et 1 702 dans la classe négative (sensible).

3.2.1 Prétraitement des données

Les données de base se composent d’une matrice d’individus et de génotypes (utilisés comme carac-
téristiques), ainsi que d’un vecteur de phénotypes associés. La matrice de génotypes provient d’un
fichier tabulaire, ou chaque ligne correspond a un individu du panel de levure et chaque colonne
représente un locus SNP. Les génotypes sont codés de maniere binaire avec les entiers 1 et -1, corres-
pondant respectivement aux alleles hérités des deux souches parentales utilisées dans le croisement
expérimental. Ce mode de codage est souvent utilisé en analyse génétique, car il permet de représen-
ter efficacement les effets cumulatifs. Dans un premier temps, les individus pour lesquels la valeur du
phénotype est manquante sont retirés du jeu de données. Cette étape de filtrage permet de garantir que
les matrices de génotypes et de phénotypes ont des dimensions compatibles et que chaque échantillon
utilisé posséde une annotation valide. Les phénotypes associés a ce jeu de données correspondent a
la capacité de croissance des souches de levures dans divers milieux contenant des agents chimiques
ou des sources de carbone spécifiques. Par exemple, on y trouve la réponse cellulaire en présence
de sels métalliques (comme le chlorure de cobalt, le sulfate de cuivre ou le chlorure de magnésium),
d’agents oxydants (comme le diamide), d’antibiotiques (comme la néomycine ou la zéocine) et méme
a la croissance sur différents substrats métaboliques (comme le lactose, le lactate ou le tréhalose).
Pour éviter les biais causés par des classes déséquilibrées, un échantillonnage aléatoire de la classe
majoritaire est fait. Cela permet d’obtenir un ensemble de données équilibré. Ensuite, les individus
sont mélangés au hasard, mais avec une graine fixe pour assurer la reproductibilité. Les matrices gé-
notypique et phénotypique finales peuvent alors étre utilisées pour I’entrainement supervisé (Bloom

et al., 2015).

33 Apercu du cadre expérimental

La figure 3.1 représente la méthodologie générale d’une attaque par inférence d’appartenance pro-

posée par Shokri et al. (2017). Dans ce cadre, 1’objectif de 1’attaque par inférence d’appartenance
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consiste a savoir si une donnée cible a été utilisée pour entrainer un modele particulier ou non. L.’ad-
versaire ne connait rien sur I’architecture du modele cible ni sur ses parametres (le cadre de boite
noire). Pour atteindre cet objectif, 1’adversaire crée un modele d’ombre destiné a imiter le compor-
tement du modele cible. Ce modele est entrainé sur un jeu de données distinct de celui utilisé pour
le modele cible, mais censé provenir de la méme distribution (ou d’une distribution similaire). Cette
séparation stricte garantit que I’attaque repose uniquement sur la généralisation comportementale du

modele et non sur une fuite directe de données.
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FIGURE 3.1 — Schéma général d’une attaque par inférence d’appartenance basée sur des modeles
d’ombre (Chen et al., 2020). La figure illustre les trois étapes principales : (1) entrainement du modele
cible sur ses données privées, (2) construction de modeles d’ombre sur des données auxiliaires co-
distribuées, et (3) entralnement d’un modele d’attaque a partir des sorties membres / non-membres.
Elle sert de référence conceptuelle pour situer nos deux méthodologies par rapport au cadre proposé

initialement par Shokri ef al. (2017).

L’adversaire divise ce jeu de données auxiliaire en deux parties : I’une est utilisée pour 1’entrainement
du modele de simulation des membres et I’autre pour le test, qui simule les non-membres. En interro-
geant le modele de simulation avec ces échantillons, il obtient les vecteurs de prédiction (c’est-a-dire

les probabilités de classe) correspondant aux exemples connus comme étant des membres ou des non-
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membres.

Ces sorties sont ensuite utilisées pour entrainer un modele d’attaque, généralement un classificateur
binaire, qui apprendra a différencier les résultats typiques d’'un membre de ceux d’un non-membre.
De cette facon, I’adversaire peut ensuite interroger le modele cible avec un nouvel échantillon. En ob-
servant seulement les prédictions retournées, il peut ainsi déterminer si cet échantillon a probablement

déja fait partie de I’ensemble d’entrainement.
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FIGURE 3.2 — Création de I’ensemble de données d’entrailnement pour le modele d’attaque a partir de
plusieurs modeles d’ombre. Les sorties de ces modeles, évalués respectivement sur leurs jeux d’entrai-
nement (membres) et de test (non-membres), sont agrégées pour former deux ensembles de vecteurs
de probabilités P™ et P". Cette étape matérialise le lien entre le comportement de sur-confiance des

modeles d’ombre et les étiquettes d’appartenance utilisées pour entrainer le classificateur d’attaque.
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FIGURE 3.3 — Phase d’inférence de I’attaque par inférence d’appartenance (Shokri et al., 2017). un
exemple x est soumis au modele cible et son vecteur de probabilités f(x) est fourni a un unique mo-
dele d’attaque qui infere 1I’appartenance (membre / non-membre). L’étiquette vraie n’est pas utilisée

comme entrée ; elle ne sert qu’a I’évaluation.

Une fois le modele d’attaque entrainé, il peut étre utilisé pour prédire si un échantillon donné a été vu

par le modele cible lors de I’entrainement. La figure 3.3 illustre cette phase d’inférence.

3.4 Modele cible

Le modele cible utilisé dans cette expérience est celui proposé par Chen et al. (2020) dans leur étude
sur les attaques par inférence d’appartenance appliquée a des données génomiques en boite blanche.
Il s’agit d’un réseau de neurones convolutifs en une dimension (1D-Convolutional neural network
(CNN)), une architecture particulicrement adaptée a la structure séquentielle des données génétiques.
Ces dernieres années, les réseaux de neurones convolutifs (CNN) ont gagné en popularité dans le do-
maine de la génomique, notamment pour la prédiction des phénotypes a partir des génotypes. Cette
popularité est due a leur capacité a gérer des données extrémement complexes, caractérisées par un
grand nombre de variables (comme les SNPs) et un nombre limité d’échantillons. Dans ce type de
configuration, les méthodes traditionnelles ont tendance a surapprendre, ce qui entrave la générali-
sation. A 'inverse, la structure hiérarchique des CNN, qui combine des couches de convolution, de
pooling, de dropout et entierement connectées, permet de limiter ce phénomene. Cette architecture
facilite ’extraction automatique de motifs pertinents, tout en réduisant la dimension des données

(Sehrawat et al., 2023). Contrairement aux modeles linéaires traditionnels, les CNN peuvent captu-
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rer des interactions complexes entre les variants génétiques, comme 1’épistasie — des relations qui
échappent souvent aux méthodes statistiques classiques (Guo et Li, 2023; Zhao et al., 2016). Ils sont
capables d’apprendre progressivement des représentations plus abstraites des données d’entrée, ce
qui leur permet d’identifier des motifs génétiques récurrents associés a certains traits phénotypiques
(Sehrawat er al., 2023). En effet, les CNN se caractérisent non seulement par une précision accrue en
matiere de prévision, mais aussi par leur aptitude a produire des modeles plus stables et adaptables,
méme avec un ensemble restreint de données d’apprentissage. Ces avantages ont été démontrés dans
plusieurs études appliquant les CNN a la prédiction des phénotypes a partir de différentes sources de

variations génétiques (Gazestani et Lewis, 2019; Sehrawat et al., 2023; Zhao et al., 2016).

34.1 Description de I’architecture du modele cible

ConvlD -
Entrée Average Dense (sortie)
8 filtres Dropout
Vecteur Pooling1D Flatten 1 neurone,
kernel = rate = 0.25
SNP (n,1) pool = 2 sigmoide
5, ReLU

FIGURE 3.4 — Architecture détaillée du modele cible (1D-CNN) utilisé pour la prédiction du phéno-
type sulfate de cuivre a partir des génotypes. La figure explicite la succession des couches (convolu-
tion, pooling, dropout, aplatissement, couche dense de sortie) et indique le type de tenseur manipulé

a chaque étape.

Le modele cible utilisé dans cette expérimentation est un réseau de neurones convolutifs unidimen-
sionnels (1D-CNN), structuré de maniere simple mais efficace pour la classification binaire a partir
de données génomiques. Les réseaux CNN ont été introduits pour la premiere fois par LeCun et al.
(1998) et sont depuis largement utilisés pour I’analyse de données structurées comme les images ou
les séquences, en raison de leur capacité a extraire automatiquement des motifs locaux pertinents. Le

modele cible se compose des couches suivantes :

La premiere couche est une couche convolutionnelle 1D (Conv1D), qui applique un ensemble de
filtres (ou noyaux) sur les séquences d’entrée afin de capturer les motifs locaux entre les loci SNPs.

Cette couche utilise la fonction d’activation (Rectified linear unit (RELU)) pour introduire de la non-



49

linéarité, et une régularisation L1 est appliquée aux poids afin de limiter le surapprentissage. Ensuite,
une couche de sous-échantillonnage moyenne (AveragePooling1D) permet de réduire la dimension-
nalité en agrégeant les activations voisines, ce qui diminue la complexité du modele et améliore la
généralisation. Une couche de dropout est ensuite intégrée, désactivant aléatoirement une fraction des
neurones lors de I’entrainement afin de renforcer la robustesse du modele. Ensuite, la sortie est aplanie
grace a une couche Flatten, transformant la structure multidimensionnelle des activations précédentes
en un vecteur unidimensionnel, qui peut €tre utilisé par la couche dense suivante. Finalement, la
couche de sortie (Dense) contient un seul neurone dont I’activation dépend d’une fonction sigmoide,
produisant ainsi une probabilité d’appartenance a la classe positive. L’ensemble du réseau est entrainé
a l’aide de I’optimiseur descente de gradient stochastique (Stochastic gradient descent (SGD)) et la
fonction de perte est I’entropie croisée binaire, adaptée pour les taches de classification binaire. Le
modele prend comme entrée un vecteur de génotypes de dimension (7, 1), ou n représente le nombre
de SNPs. Chaque valeur représente le génotype d’un individu & une position spécifique. En sortie, le
modele génere une valeur scalaire comprise entre 0 et 1, représentant la probabilité qu’un échantillon
appartienne a la classe positive du phénotype. Dans le cadre de cette expérimentation, le phénotype

cible est la résistance au sulfate de cuivre, un trait binaire chez la levure.

Les hyperparameétres récapitulés dans le Tableau 3.1 reprennent ceux optimisés par Chen et al. (2020),

ce qui nous permet de comparer directement nos résultats aux leurs.



50

Composant Hyperparametre Valeur Description
Nombre de filtres 8 Nombre de noyaux appliqués sur la
(num_kernels) séquence d’entrée
ConvlD
Taille du noyau 5 Largeur du filtre utilisé
(kernel_size)
Fonction d’activation ReLU Introduit la non-linéarité
Régularisation L1 (A =0.001352) Encourage la parcimonie et réduit le
surapprentissage
AveragePoolinglD | Taille du pool 2 Réduction de la dimension par
moyenne locale
Dropout Taux de dropout 0.25 Fréquence de désactivation des neu-
(dropout_rate) rones durant I’entrainement
Flatten — — Aplatissement des activations pour
la couche dense
Nombre de neurones 1 Sortie binaire (sigmoide)
Dense (Sortie)
Fonction d’activation Sigmoide Renvoie une probabilité entre 0 et 1
Type SGD Descente de gradient stochastique
Optimiseur
Taux d’apprentissage 0.01 Vitesse de mise a jour des poids
Nombre d’époques | 50 Nombre d’itérations sur le jeu d’en-
Entrainement
(epochs) trailnement
Taille du batch | 16 Nombre d’échantillons traités si-

(batch_size)

multanément

TABLE 3.1 — Hyperparametres et description du modele cible (1D-CNN)
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Target Model Accuracy

104 — Train Accuracy
Validation Accuracy
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FIGURE 3.5 — Evolution de I’exactitude du modgle cible (1D-CNN) sur les jeux d’entrainement et de

validation au cours des 50 époques d’apprentissage.

Afin d’évaluer la qualité de I’architecture choisie, nous avons analysé 1’évolution de I’exactitude (ac-
curacy) sur les jeux d’entralnement et de validation au cours des 50 époques d’apprentissage (voir
Figure 3.5). L’exactitude d’entrainement augmente de maniere réguliere pour atteindre pres de 0,99 a
la fin de I’apprentissage, tandis que I’exactitude de validation progresse plus modérément et se stabi-
lise autour de 0,75-0,78 apres une trentaine d’époques. L’ écart observé entre les deux courbes reflete
un surapprentissage 1éger, attendu compte tenu du faible nombre d’échantillons et du grand nombre
de SNPs, mais ne s’accompagne d’aucune dégradation soudainement marquée des performances de
validation. Cela montre que le modele conserve une capacité de généralisation satisfaisante sur les

données de levure.

Dans les expériences qui suivent, nous conservons les poids correspondant a 1’époque présentant
la meilleure exactitude de validation, afin de limiter 1’effet de surapprentissage. Ces observations
confirment que 1’architecture 1D-CNN retenue est suffisamment expressive pour capturer les signaux
génétiques liés au phénotype sulfate de cuivre, tout en procurant une performance de généralisation

adéquate pour les besoins de 1’étude.
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Syntheése comparative
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Ce mémoire présente deux stratégies d’attaque distinctes pour 1’inférence d’appartenance. La pre-

migre repose sur la construction de modeles d’ombre a partir de phénotypes corrélés, tandis que la

seconde utilise des ensembles de données hétérogeénes et indépendants. Ces deux approches offrent

des perspectives complémentaires pour 1’inférence d’appartenance. Dans les sections suivantes, nous

décrivons en détail la méthodologie et le protocole expérimental associés a chacune de ces deux ap-

proches.

TABLE 3.2 — Comparaison des deux méthodologies d’attaque

Critere

Méthode 1 : Modéeles d’ombre cor-

rélés

Méthode 2 : Attaque généralisée

Source des modeles

d’ombre

Données du méme domaine, phéno-

types corrélés

Données  externes  hétérogenes

(images, textes, etc.)

Hypothese princi-
pale

Corrélation génétique suffisante entre

phénotype cible et auxiliaires

Existence de motifs génériques dans
les sorties entre membres et non-

membres

Avantage principal

Proximité biologique, meilleure re-

présentativité du modele cible

Indépendance vis-a-vis du domaine,
réutilisation possible sur plusieurs

cibles

Limite principale

Nécessite une bonne sélection des

phénotypes auxiliaires

Ecart de distribution entre les don-
nées d’entrainement et celles du mo-

dele cible

services boite noire

sont accessibles

Robustesse Forte pour des phénotypes bien choi- | Surprenante malgré 1’hétérogénéité
sis, mais limitée hors corrélation des données d’entrainement

Complexité com- | Moyenne (entrainer quelques mo- | Elevée (multiples jeux de données et

putationnelle deles similaires) post-traitement)

Applicabilité aux | Possible si des phénotypes auxiliaires | Applicable si les sorties probabilistes

du modele sont disponibles
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3.6 Stratégies d’entrailnement du modele d’ombre

L’ objectif principal de cette section est d’explorer différentes approches pour générer les données
nécessaires a I’entrainement du modele d’attaque, dans un contexte réaliste de boite noire ot I’adver-
saire n’a acces qu’aux sorties du modele cible. Nous avons mis en ceuvre et comparé deux stratégies
distinctes :

— Attaque par modele d’ombre : cette méthode consiste a créer un modele d’ombre spécifique
pour imiter le comportement du modele cible. Pour ce faire, nous avons combiné plusieurs
jeux de données, tous basés sur les mémes profils génétiques, mais associés a des phénotypes
différents. Cette diversité phénotypique permet d’entrainer un modele d’ombre capable de
généraliser le comportement du modele cible.

— Attaque par transfert de connaissances généralisée : contrairement a la premiére méthode,
celle-ci ne cherche pas a reconstruire la structure ou le comportement du modele cible. Elle
se base uniquement sur les prédictions du modele cible sur des données auxiliaires pour gé-
nérer directement les étiquettes de membres et non-membres. Par conséquent, elle évite toute
modélisation intermédiaire.

Ces deux stratégies ont été comparées afin d’évaluer leur efficacité respective pour entrainer un mo-
dele d’attaque capable de généraliser et d’identifier correctement 1’appartenance des échantillons,

méme avec une connaissance limitée du modele cible.
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3.6.1 Méthode 1 : méthodologie d’attaque par modele d’ombre

Target Dataset Prediction vector
(probabilities)
= b
—=
/ Target Model Apply attack model on
1D-CNN prediction vector from
Yeast Dataset target model
—
—=
Test dataset

N\ . __e Member’s rain

Shadow dataset ™. 2 status Attack dataset Member or

with auxiliary N . Non-member?

\ Traming dataset
N . Predictions
N o . % o +
)
. °
£ -

phenotypes

Member’s

0 status
I T S g

FIGURE 3.6 — Pipeline de la Méthode 1 : attaque généralisée par modele d’ombre basé sur des phéno-
types auxiliaires corrélés. La figure montre comment les données génomiques et les phénotypes auxi-
liaires sont utilisées pour entrainer un modele d’ombre, produire des sorties membres / non-membres,
puis former un modele d’attaque appliqué ensuite aux prédictions du modele cible. Elle illustre le role
central de la corrélation phénotypique pour rapprocher le comportement du modele d’ombre de celui

du modele cible.

Cette premiere méthode consiste a concevoir un modele d’ombre généralisé visant a simuler le fonc-
tionnement d’un modele cible entrainé sur un phénotype spécifique. Dans notre exemple, le modele
cible est un réseau de neurones convolutifs unidimensionnels (1D-CNN) entrainé pour prédire la pré-

sence ou I’absence d’un phénotype particulier (sulfate de cuivre) a partir de données de génotypes.

Etant donné la taille limitée du jeu de données génétiques disponibles, nous avons choisi de rester dans
la mé&me répartition génétique, mais en utilisant différents phénotypes pour entrainer notre modele.
Pour maximiser cette sélection, nous avons créé une matrice de corrélation entre les 19 autres phé-
notypes mesurés sur le méme groupe d’individus, en excluant le phénotype cible (sulfate de cuivre).
Cette étude visait a déterminer le phénotype le plus similaire statistiquement aux autres, afin de per-

mettre au modele d’ombre de mieux approximer le comportement du modele cible a partir d’un phé-
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notype biologiquement et structurellement proche.

Bien qu’elle soit basée sur une analyse statistique préalable, il faut noter que le phénotype cible n’a
pas été utilisé pour construire le modele d’ombre ni pour calculer les corrélations. Ainsi, 1I’adversaire
n’a aucune information spécifique sur les étiquettes du modele cible, mais seulement un acces aux
données de méme distribution associées a des phénotypes différents. D’un point de vue méthodolo-
gique, nous supposons donc que les phénotypes auxiliaires sont mesurés sur la méme cohorte que le
phénotype cible, mais dans des contextes expérimentaux différents (autres milieux de culture, autres
stress, etc.). Ce choix ne constitue pas une fuite artificielle d’information au profit de I’attaquant,
dans la mesure ot les étiquettes du phénotype cible ne sont jamais réutilisées pour entrainer les mo-
deles d’ombre. Au contraire, il reflete un scénario réaliste ot un méme individu peut apparaitre dans
plusieurs études ou essais cliniques, avec des phénotypes multiples mesurés sur un méme génome.
Dans ce cadre, I’utilisation de ces phénotypes auxiliaires permet a 1’attaquant de tirer parti de signaux
génétiques partagés entre traits corrélés, tout en respectant le cadre boite noire : seules des données
externes ou auxiliaires, distinctes des étiquettes du modele cible, sont exploitées pour construire les
modeles d’ombre. Il est important de noter que, bien que les génotypes des modeles d’ombre et
du modele cible proviennent de la méme cohorte, les ensembles utilisés pour évaluer 1’attaque sont
strictement séparés de ceux utilisés pour I’entrainement. En particulier, les exemples «membres» et
«non-membres» du modele cible sont construits a partir de sous-ensembles distincts, et les modeles
d’ombre ne sont jamais entrainés avec les étiquettes du phénotype cible. Cette séparation vise pré-
cisément a limiter le surapprentissage sur un jeu de données particulier et a préserver la capacité de

généralisation de I’attaque dans le cadre expérimental étudié.

Ce cadre est inspiré d’usages réels en médecine personnalisée, ou des modeles prédisent la réponse
a un traitement a partir du génotype. Un adversaire peut connaitre la nature de la tiche (p. ex. «
réponse au médicament X ») et disposer de données publiques/auxiliaires sur la méme population,
associées a d’autres phénotypes (p. ex. réponses a traitements voisins), sans recourir aux exemples
d’entrainement du modele cible. L’exploitation de phénotypes corrélés permet alors d’entrainer un
modele d’ombre généralisable, qui capture des signaux de surconfiance ou de mémorisation similaires

a ceux du modele cible, tout en respectant les contraintes de réalisme (boite noire) et de confidentialité.
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Correlation Matrix of Phenotypes (sans CopperSulfate)
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FIGURE 3.7 — Matrice de corrélation de Pearson entre 19 phénotypes mesurés sur un méme ensemble
de génotypes de levure. Chaque case représente la corrélation entre une paire de traits, les valeurs
élevées (en valeur absolue) signalant des phénotypes susceptibles de partager des déterminants géné-
tiques communs. Cette visualisation sert de base a la sélection de phénotype auxiliaire utilisé pour

entrainer le modele d’ombre dans la Méthode 1.

Cette matrice (voir Figure 3.7) a été construite a partir des valeurs phénotypiques mesurées pour
chaque individu, en calculant les coefficients de corrélation de Pearson entre chaque paire de phéno-
types. L’objectif est d’identifier les relations statistiques existantes entre différentes conditions envi-
ronnementales ou stress biologiques, afin de sélectionner des phénotypes auxiliaires pertinents pour

la construction d’un modele d’ombre. Une valeur absolue élevée indique une variation phénotypique



57

potentiellement similaire, ce qui peut améliorer la capacité du modele d’ombre a approximer le com-

portement du modele cible.

Apres avoir construit la matrice, nous avons déterminé les phénotypes les plus dominants en addition-
nant les valeurs absolues des coefficients de corrélation pour chaque phénotype (ligne/colonne) dans
cette derniere. Les phénotypes Lactate, Lactose, Xylose, Raffinose et Magnesium Chloride se sont dis-
tingués par les sommes les plus élevées (respectivement 5,48, 5,10, 4,98 , 4,93 et 4,60), indiquant une
forte similarité statistique avec I’ensemble des autres traits. Parmi ces phénotypes fortement corrélés,
nous avons finalement retenu Xylose comme phénotype auxiliaire principal pour I’implémentation
expérimentale. Ce choix est motivé a la fois par sa corrélation élevée avec I’ensemble des autres
traits et par des contraintes computationnelles, qui nous ont conduit a concentrer 1’analyse détaillée
sur un seul phénotype représentatif. Cette sélection permet d’entrainer le modele d’ombre sur des
phénotypes situés statistiquement au centre du réseau de corrélations, ce qui favorise 1’apprentissage
de patrons de variation phénotypique plus généraux et représentatifs. Le phénotype auxiliaire utilisé
dans cette méthode ont donc été choisis selon une approche statistique rigoureuse. En effet, la matrice
de corrélation a permis d’identifier ceux présentant les similarités les plus fortes avec I’ensemble des
traits mesurés. Le principe implicite est que les phénotypes biologiquement proches ont des sché-
mas de variation génétique similaires. Cela rend les prédictions de modele d’ombre formé sur ces

caractéristiques plus appropriées pour simuler le comportement du modele cible.

Le modele d’ombre choisi dans cette méthodologie est un classificateur de type régression logistique,
entrainé a partir des génotypes associés au phénotype auxiliaire sélectionné. La régression logistique
est couramment utilisée en génomique pour modéliser la relation entre des variants génétiques (tels
que les SNPs) et des phénotypes binaires (comme la présence ou I’absence d’une maladie). Elle
permet de mettre en évidence les variants significativement associés a un trait et de fournir des coef-
ficients interprétables, qui représentent I’impact de chaque variant sur la probabilité d’occurrence du

phénotype (Wu et al., 2009; Sperandei, 2014).

Chaque modele d’ombre est entrainé a 1’aide d’exemples connus (provenant du jeu d’entrainement)
et évalué a I’aide d’exemples inconnus (provenant du jeu de test), ce qui donne deux ensembles de

sorties : I'un pour les membres et I’autre pour les non-membres. Dans notre protocole, le modele
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d’ombre est entrainé sur des sous-ensembles dédiés, distincts de ceux utilisés pour I’entrainement et
I’évaluation du modele cible. Les exemples issus de I’ensemble d’entrainement des modeles d’ombre
sont considérés comme « membres », tandis que ceux issus de leur ensemble de test jouent le role de

« non-membres » pour la construction du jeu de données d’attaque.

Apres avoir entrainé des modeles d’ombre avec les données de levure, ils ont été utilisés pour générer
les prédictions nécessaires a la construction du jeu de données d’attaque. Chaque modele d’ombre
a fourni des estimations de probabilité, tant pour les échantillons d’entrainement (considérés comme
membres) que pour les échantillons de test (non-membres). Ces prédictions reflétent la maniere dont le
modele traite les données qu’il a vues par rapport a celles qu’il n’a jamais rencontrées, une distinction

essentielle pour une attaque d’inférence d’appartenance.

TABLE 3.3 — Conditions d’entrainement du mod¢le d’ombre (Méthode 1)

Parameétre Valeur
Type de modele Régression logistique
Pénalité L2

C (inverse de la régularisa- | 1.0

tion)

Solveur Ibfgs

Nombre maximal d’itéra- | 1000

tions

Chaque exemple est alors représenté par son vecteur de sortie (par exemple, la probabilité associée
a la classe positive pour un probléme binaire). Il porte également une étiquette : 1 s’il a été vu par
le modele (membre), O sinon (non-membre). L’ensemble de ces vecteurs (environ 1 000 exemples

équilibrés) constitue le jeu d’entrainement du modele d’attaque.

Les vecteurs issus de 1’ensemble des modeles d’ombre sont ensuite concaténés pour former le jeu de
données d’entrainement du modele d’attaque. Ce modele est entrainé pour apprendre a distinguer les

sorties typiques d’un échantillon membre de celles d’un non-membre. Nous avons utilisé ici un classi-
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fieur forét aléatoire (Breiman, 2001), connu pour sa robustesse, sa capacité a capturer des interactions
complexes et sa bonne performance sur des jeux de données de taille moyenne. Une validation croisée
n’a pas été jugée nécessaire dans ce contexte, car le jeu de données est équilibré, le modele n’est pas

fortement paramétré, et les performances se stabilisent rapidement lors de 1’entrainement.

De plus, le choix d’un modele d’ombre plus simple que le modele cible (sous forme de régression
logistique) est volontaire : il reflete un attaquant réaliste qui ne cherche pas a reproduire fidelement
P’architecture interne du 1D-CNN, mais a capturer des tendances générales entre membres et non-
membres. De la méme maniere, 1’utilisation d’une forét aléatoire comme modele d’attaque releve
d’une approche pragmatique dans un scénario de boite noire : 1’adversaire ne connait ni la structure
exacte du modele cible ni ses hyperparametres, et s’appuie donc sur un classificateur robuste, stable

et peu paramétré pour capturer les schémas discriminants dans les sorties des modeles d’ombre.

TABLE 3.4 — Conditions d’entrainement du modele d’attaque

Paramétre Valeur

Type de modele Forét aléatoire

Profondeur maximale 2

Random state 42

Taille du jeu d’attaque ~1 000 exemples (membres et non-membres)

Métriques d’évaluation Accuracy, Precision, Recall, F1, ROC AUC
3.6.2 Meéthode 2 : méthodologie d’attaque par transfert de connaissances généralisée

Dans le cadre de ce travail, I’approche par transfert de connaissances généralisées a été retenue pour

plusieurs raisons pratiques et méthodologiques.

Tout d’abord, la quantité de données génomiques de levure disponible était limitée. Pour mener une
attaque par inférence d’appartenance, il est nécessaire de diviser ces données en trois ensembles dis-
tincts : I’un pour entrainer le modele cible, un autre pour créer les modeles d’ombre et le dernier pour
tester I’attaque. Cela aurait considérablement réduit la quantité d’échantillons utilisables pour chaque

étape. Ensuite, puisque notre scénario est réaliste et du genre boite noire (I’attaquant n’a acces qu’aux
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sorties du modele cible), et que I’ objectif est de concevoir un modele d’attaque généralisé, la méthodo-
logie présentée dans I’article ML-Leaks : Model and Data Independent Membership Inference Attacks
and Defenses on Machine Learning Models (Salem et al., 2019) s’est avérée tres appropriée. Cette
méthode permet effectivement de résoudre la contrainte li€ée au nombre limité d’échantillons dispo-
nibles, en s’appuyant sur des ensembles de données externes pour entrainer les modeles d’ombre, sans

nécessiter un acces direct aux données d’entrainement du modele cible.

Cette méthode fonctionne de maniére conceptuellement distincte des attaques par modeles d’ombre
traditionnelles, que nous allons détailler ci-dessous. Dans cette méthodologie, 1’attaquant adopte une
approche différente de la méthode traditionnelle des attaques par modeles d’ombre. Contrairement a
I’approche initiale de Shokri et al. (2017), qui vise elle aussi I’inférence d’appartenance mais apprend
I’attaquant via des modeles d’ombre “miroirs” entrainés sur des données co-distribuées et étiquetées,
notre approche suit Salem et al. (2019) et entraine des modeles d’ombre sur des ensembles externes
potentiellement hétérogenes, puis extrait des résumés statistiques des sorties (p. ex. top-k, entropie,
pertes) pour entrainer le classifieur d’attaque sans acces aux données d’entralnement ni a la structure
interne du modele cible. Comme 1’attaquant ne possede ni les données d’entrainement du modele
cible ni sa structure exacte, il utilise donc un ou plusieurs ensembles de données externes, qui peuvent
étre tirés de sources tres diverses, par exemple des images, du texte ou encore des transactions. Alors,
chaque modele d’ombre est entrainé sur un sous-ensemble de ses données (considéré comme les

"membres") et il est ensuite évalué a partir d’une autre partie (considérée comme les "non-membres").

Les ensembles de données utilisés dans cette méthodologie ont été sélectionnés selon plusieurs cri-
teres : leur accessibilité publique, leur diversité structurelle (images, texte, données tabulaires, etc.),
ainsi que leur usage fréquent dans les études sur les attaques MIA, notamment dans le cadre de 1’ap-
proche de Salem et al. (2019). Ces jeux permettent de simuler différents types de comportements

modeles sans dépendre des données cibles.

Parmi ces ensembles, on retrouve notamment :

— Purchase-100 ' : un jeu de données transactionnel composé de profils d’achats binaires répartis

1. https ://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
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FIGURE 3.8 — Pipeline de la Méthode 2 : attaque par transfert de connaissances généralisée. Des
modeles d’ombre sont d’abord entrainés sur plusieurs jeux de données externes hétérogénes (images,
texte, données tabulaires, etc.) afin de capturer des motifs génériques de différences entre membres
et non-membres dans I’espace des postériors. Les caractéristiques dérivées (top-3 postériors) servent
ensuite a entrainer un modele d’attaque, qui est finalement appliqué aux sorties du modele cible de

levure, sans jamais avoir vu ses données d’entrainement.

en 100 classes. 11 est notamment utilisé dans les expériences de Salem et al. (2019).

— Adult? : un jeu de données tabulaires couramment utilisé dans ’inférence d’appartenance,
provenant du recensement des Etats-Unis. Il contient une catégorisation binaire.

— MNIST? : un jeu d’images manuscrites en niveaux de gris de chiffres (0 2 9), contenant 10
classes.

— CIFAR-10 et CIFAR-100* : deux jeux de données d’images couleur, contenant respectivement
10 et 100 classes, couvrant des objets variés (animaux, véhicules, etc.).

— Location” : un ensemble de données de géolocalisation extrait des points de check-in Fours-

2. https ://archive.ics.uci.edu/dataset/2/adult
3. https ://www.kaggle.com/datasets/hojjatk/mnist-dataset
4. https ://www.cs.toronto.edu/ kriz/cifar.html

5. https ://sites.google.com/site/yangdingqi/home/foursquare-dataset
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quare, utilisé dans plusieurs études récentes sur la confidentialité des modeles (Yang et al.,

2014).

— News © : un ensemble de données textuelles composé de 20 forums de discussion différents,

utile pour I’entrainement de modeles a partir de séquences de texte.

Du point de vue de la génomique, ces ensembles externes ne fournissent aucune information di-

recte sur la levure. Leur fonction consiste plutdt a offrir un éventail de tiches de classification su-

pervisée dans lesquelles on observe le méme phénomene structurel que dans les attaques MIA : les

exemples vus pendant I’entrainement ont tendance a produire des résultats plus confiants (postérieurs

plus concentrés, entropie plus faible) que les exemples inédits. L hypothese de transfert est donc que

ces motifs de sur-confiance dans I’espace des probabilités de sortie sont en grande partie indépen-

dants du domaine et peuvent €tre appris a partir de données arbitraires, puis réutilisés avec le modele

cible de levure. Par conséquent, 1’utilité de ces jeux d’images, de texte ou de transactions ne réside

pas dans leur signification sémantique, mais dans leur capacité a saisir des schémas génériques de

comportement de membre ou de non-membre d’un modele d’apprentissage.

TABLE 3.5 — Modeles d’ombre utilisés pour chaque ensemble de données

Nom du dataset Type de données Modéle d’ombre utilisé

MNIST Images (10 classes) CNN (2 Conv2D + MaxPooling + Dense)

CIFAR-10 Images (10 classes) CNN (blocs Conv2D avec BatchNorm et
Dropout)

CIFAR-100 Images (100 classes) EfficientNetBO0 préentrainé (ImageNet)

Adult Données tabulaires Foret aléatoire (Scikit-learn)

Purchase-100

Données tabulaires

MLP (2 couches Dense de 1024 neurones

phiques

+ Softmax)
20 Newsgroups Texte Multinomial Naive Bayes avec TF-IDF
Location (TIST) Coordonnées géogra- | MLP (3 couches avec Dense, Dropout et

Softmax)

6. https ://www.kaggle.com/datasets/everydaycodings/global-news-dataset
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TABLE 3.6 — Caractéristiques des ensembles de données externes utilisés (Méthode 2)

Nom du dataset Type de données Nb d’attributs | Nb de classes
(ordre de gran-
deur)
MNIST Images 28 x 28 en niveaux | 784 pixels 10 chiffres (0-9)
de gris
CIFAR-10 Images couleur 32x32x3 | ~ 3000 pixels 10 catégories d’ob-
jets
CIFAR-100 Images couleur 32x32x3 | ~ 3000 pixels 100 catégories
d’objets
Adult Données tabulaires (re- | ~ 100 attributs | 2 classes de revenu
censement) apres encodage
Purchase-100 Vecteurs binaires de com- | ~ 600 produits 100 segments de
portement d’achat clients
20 Newsgroups Texte (représentation TF- | ~ 5000 termes fré- | 20 groupes de dis-
IDF) quents cussion
Location (TIST) Séquences de check-ins | Quelques dizaines | Plusieurs dizaines
géolocalisés de descripteurs dé- | de lieux
rivés

Pour s’adapter aux particularités de chaque ensemble de données, des algorithmes d’apprentissage
adaptés ont été choisis pour entrainer les modeles d’ombre. Les modeles sont présentés dans le tableau
3.5. Pour sélectionner les modeles d’ombre appropriés pour chaque ensemble de données, plusieurs
facteurs ont été pris en compte : (1) la nature des données (images, tabulaires, texte, etc.), (2) la
complexité du probleme (nombre de classes, linéarité des relations), et (3) la littérature existante
sur les performances des modeles d’inférence d’appartenance. Les CNN ont été privilégiés pour les
données de type image, car ils permettent une extraction hiérarchique des motifs visuels (Shokri
etal.,2017; Salem et al., 2019; Nasr et al., 2018). Les Multilayer Perceptron (MLP) sont adaptés aux

données structurées a haute dimension comme Purchase-100 (Salem et al., 2019). Enfin, les foréts
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aléatoires et les modeles bayésiens sont efficaces pour les jeux de données plus simples ou de plus
petite taille (Yeom et al., 2018; Jayaraman et Evans, 2019). Cette approche ciblée permet d’optimiser
les performances de chaque modele d’ombre tout en garantissant la diversité des comportements

utilisés pour entrainer le modele d’attaque.

Contrairement aux approches traditionnelles qui construisent plusieurs modeles d’ombre pour simuler
le comportement du modele cible, notre méthodologie adopte une version simplifiée, dans laquelle un
seul modele d’ombre est créé pour chaque ensemble de données. Cette simplification permet non
seulement de réduire la complexité computationnelle, mais aussi de maitriser la variabilité entre les
jeux de données hétérogenes. Elle assure également une couverture suffisante des différences entre

membres et non-membres.

Une fois les prédictions des modeles d’ombre collectées (sous forme de postérieurs), un modele d’at-
taque est entrainé pour distinguer les échantillons membres des non-membres. Dans notre implé-
mentation, chaque exemple est représenté par un vecteur de caractéristiques statistiques extraites des
sorties du modele, plus précisément les trois probabilités les plus élevées parmi toutes les classes
prédites (aussi appelées top-3 postérieurs). Cette méthode d’extraction permet de résumer I’informa-
tion de sortie tout en réduisant la dimensionnalité, ce qui améliore la stabilité du modele d’attaque.
Pour constituer le jeu de données d’entrainement de 1’attaque, les sorties des modeles d’ombre sont
étiquetées en fonction de leur appartenance : les échantillons vus lors de 1’entrainement du modele
d’ombre sont étiquetés comme membres (1), et ceux utilisés pour le test comme non-membres (0).
Ces vecteurs sont ensuite concaténés pour entrainer un classificateur forét aléatoire, choisi pour sa
capacité a capturer des interactions non linéaires, sa robustesse aux variables redondantes et sa bonne

généralisation sur des jeux de taille moyenne (Breiman, 2001).

Dans notre cas, le jeu d’entrainement du modele d’attaque est construit a partir de sept jeux de données
hétérogenes (Purchase, Adult, CIFAR-10/100, MNIST, Location, News). Chaque dataset a fourni
environ 2000 a 10000 échantillons membres et non-membres, soit un total combiné de plus de 40 000
exemples d’entrainement. Le modele d’attaque est validé sur des exemples générés a partir du modele
cible réel, a savoir le CNN entrainé sur les données génomiques de levure. Pour cela, un ensemble de

membres (issus de I’entrainement du modele cible) et un ensemble de non-membres (issus d’un jeu
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de données totalement disjoint) sont soumis au modele cible, et leurs prédictions sont transformées

en top-3 postériors comme décrit ci-dessus.

Ce protocole d’évaluation permet de mesurer la capacité de généralisation de I’attaque, c’est-a-dire sa
capacité a détecter I’appartenance d’un échantillon sans jamais avoir vu le modele cible ou ses don-
nées d’origine. L’ensemble final de test est équilibré (50% membres / 50% non-membreset comprend

environ 2 000 échantillons.

3.7 Protocole de validation

Dans cette section, nous décrivons les stratégies de validation utilisées pour chacune des deux métho-

dologies proposées.

3.7.1 Méthodologie 1 : Modeles d’ombre basés sur des phénotypes corrélés

— Le jeu de données initial contient 4 390 individus génotypés. Apres filtrage des échantillons ne
disposant pas d’une mesure phénotypique valide pour le phénotype cible (sulfate de cuivre), il
reste 3 404 individus.

— Apres binarisation du phénotype et équilibrage des classes, le jeu de données final comporte
3404 échantillons, soit 1 702 individus dans la classe positive et 1 702 dans la classe négative.

— Environ 70 % de ces individus (2 383 échantillons) sont utilisés pour entrainer et évaluer le
modele cible. Ce sous-ensemble est ensuite divisé en 80 % pour I’entrainement (1 907 échan-
tillons) et 20 % pour le test du modele cible (476 échantillons).

— Les 30 % restants (1021 échantillons) sont conservés comme données non vues par le mo-
dele cible. Ces données servent de base pour constituer les exemples « non-membres » dans
I’évaluation de I’attaque.

— Pour la construction du modele d’attaque, un ensemble équilibré est formé a partir de :

— exemples « membres » : échantillons issus de I’ensemble d’entrainement du modele cible ;
— exemples « non-membres » : échantillons tirés au hasard parmi les 1021 profils réservés
et jamais vus par le modele cible.

— Dans cette premiere méthodologie, les modeles d’ombre sont entrainés sur des phénotypes
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auxiliaires mesurés sur la méme cohorte de levures, mais en utilisant des sous-ensembles
strictement séparés de ceux employés pour I’entrainement et I’évaluation du modele cible, afin

d’éviter toute fuite directe d’information et de mesurer la généralisation réelle de I’attaque.

3.7.2 Meéthodologie 2 : Transfert de connaissances généralisé

Le jeu de données génomiques initial contient 4 390 individus. Apres filtrage des phénotypes man-
quants pour le trait sulfate de cuivre, il reste 3 404 individus utilisables, qui sont répartis comme suit :
— 70% des données (2 383 individus) sont utilisés pour entrainer et évaluer le modele cible. Ce
sous-ensemble est lui-méme divisé en 80% pour I’entrainement (1 907 individus) et 20% pour

la validation (476 individus).

— Les 30% restants (1021 individus) sont conservés comme données non vues par le modele
cible. Ces données servent a constituer les exemples « non-membres » pour I’évaluation finale
de I’attaque.

— Le modele d’attaque est entrainé uniquement a partir de jeux de données externes hétérogenes
(Purchase, CIFAR, Adult, etc.), totalement indépendants des données de levure. Les modeles
d’ombre associés produisent des vecteurs de sorties (postériors) qui alimentent un classifieur
d’attaque généraliste.

— Pour tester ce classifieur sur le modele cible, on forme ensuite un ensemble équilibré d’exemples :
— « membres » : extraits de ’ensemble d’entrainement du modele cible (parmi les 1907

échantillons vus pendant I’apprentissage) ;
— «non-membres » : extraits des 1 021 échantillons jamais vus par le modele cible.
Aucune validation croisée systématique ni recherche exhaustive d’hyperparametres n’ont été effec-
tuées dans ce travail, car I’objectif principal n’était pas d’ optimiser finement la performance prédictive
de chaque modele, mais d’évaluer leur comportement dans un scénario réaliste d’attaque. Nous avons
toutefois procédé a un réglage manuel limité : pour le modele cible, nous avons repris les hyperpara-
metres proposés par Chen et al. (2020) et vérifié, au moyen de quelques essais préliminaires (variation
du nombre de filtres et du taux d’apprentissage), que les performances restaient stables. Pour les mo-
deles d’ombre (régression logistique) et le modele d’attaque (forét aléatoire), nous avons conservé
des configurations standards largement utilisées dans la littérature (régularisation L2 avec C' = 1,0,

profondeur maximale fixée a 2), aprés quelques tests exploratoires. Ce choix permet de contenir le
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cotit de calcul et se justifie par le fait que notre analyse porte avant tout sur la faisabilité et la signifi-
cativité globale des attaques, plutot que sur 1’obtention de modeles parfaitement optimisés. De plus,
une graine aléatoire fixe a été utilisée pour toutes les étapes comportant un tirage aléatoire (division

des données, rééchantillonnage, entrainement), afin de garantir la reproductibilité des résultats.

3.8 Discussion des limites et biais potentiels

Bien que les deux méthodes soient complémentaires, elles ont aussi leurs limites, qu’il est important
de mettre en évidence pour une évaluation approfondie de leur impact.

— Taille limitée de I’ensemble de données : le jeu de données génomiques utilisé repose sur
quelques milliers d’individus seulement. Cette taille restreinte impose des compromis entre
I’entrainement du modele cible, la construction des jeux membres/non-membres et la création
des modeles d’ombre. Elle augmente aussi le risque de surapprentissage et limite la validité
externe des résultats, qui doivent €tre interprétés comme une preuve de faisabilité plutdt que
comme une estimation définitive du risque pour des bases de données beaucoup plus volumi-
neuses.

— Dépendance a une architecture de modele spécifique : le modele cible est un 1D-CNN parti-
culier, dont I’architecture et les hyperparametres ont été fixés en suivant Chen et al. (2020).
Les résultats obtenus caractérisent donc avant tout la vulnérabilité de cette famille de modeles.
D’autres architectures (réseaux plus profonds, régularisation plus forte, modeles linéaires ou
ensembles) pourraient présenter un comportement différent vis-a-vis des attaques d’inférence
d’appartenance, ce qui limite la généralisation immédiate des conclusions a 1I’ensemble des
modeles utilisés en pratique sur des données biomédicales.

— Dépendance a la corrélation phénotypique : la premicre méthode repose sur I’hypothese que
les phénotypes auxiliaires utilisés pour entrainer les modeles d’ombre sont suffisamment cor-
rélés avec le phénotype cible. Cependant, cette dépendance peut restreindre la capacité de
généralisation si les phénotypes sélectionnés ne captent pas les mémes signaux génétiques
sous-jacents.

— Ecart de distribution entre les jeux de transfert : dans la seconde méthode, les modeles d’ombre
sont entrainés sur des ensembles de données externes, tres différents du domaine génomique

(images, textes, transactions, etc.). Ces écarts de distribution peuvent engendrer un décalage
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entre les distributions de sorties des modeles d’ombre et celles du modele cible, ce qui peut
affecter les performances de I’attaque généralisée. Cependant, cette méthodologie est basée
sur I’hypothese que la différence entre les échantillons de membres et de non-membres se ma-
nifeste par le biais de motifs génériques dans les vecteurs de sortie (par exemple : la confiance
du modele, la dispersion des probabilités, etc.). Bien que les raisons derriere cela puissent dif-
férer en fonction des données, nos résultats expérimentaux montrent qu’ils sont suffisamment
transférables pour permettre une attaque efficace, méme lorsque les modeles d’ombre sont en-
trainés sur des domaines tres éloignés du domaine cible. Cela suggere une certaine robustesse
de I’attaque aux variations de distribution entre les domaines.

Biais liés a I'utilisation de données de levure : les données utilisées pour entrainer le modele
cible proviennent de Saccharomyces cerevisiae, un organisme modele unicellulaire. Cette ap-
proche permet un contrdle précis des variables génétiques et expérimentales. Cependant, il
est encore nécessaire de démontrer la transférabilité des résultats a des données humaines.
En effet, les génomes humains sont beaucoup plus complexes et variables, autant dans leurs
interactions entre variants que dans I’effet de I’environnement.

Limites computationnelles et structurelles : la méthodologie d’attaque généralisée impose un
colit computationnel important 1ié a la manipulation de jeux de données hétérogenes et a 1’en-
tralnement de multiples modeles. De plus, elle suppose 1’acces a des sorties probabilistes (soft-

max), ce qui pourrait ne pas €tre disponible dans certains services de prédiction.
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FIGURE 3.9 — Comparaison des deux approches d’attaque par inférence d’appartenance (MIA). La

Méthode 1 (a gauche) repose sur la construction d’un modele d’ombre entrainé sur des phénotypes

auxiliaires génétiquement corrélés a ceux du modele cible (méme distribution), afin de produire un

vecteur de probabilité binaire servant a I’entrainement du modele d’attaque. La Méthode 2 (a droite)

adopte une stratégie de transfert de connaissances généralisée, dans laquelle des modeles d’ombre

sont entrainés sur des jeux de données hétérogenes (images, texte, données tabulaires) pour simuler

des sorties membres/non-membres. Ces prédictions sont utilisées pour extraire des vecteurs de ca-

ractéristiques statistiques (top-m posteriors), qui servent ensuite a entrainer un modele d’attaque. Le

schéma integre également une 1égende expliquant les rdles des composants (données, modeles, vec-

teurs de sortie, statut d’appartenance) pour faciliter la compréhension comparative.
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3.9 Métrique de succes de 1’attaque d’inférence d’appartenance

Etant donné que I’ objectif principal des attaques par inférence d’appartenance est de déterminer si un
échantillon a été utilisé lors de 1’entrainement d’un modele d’apprentissage automatique, il est essen-
tiel d’évaluer correctement leur performance, non seulement pour mesurer leur efficacité, mais aussi
pour estimer les risques de fuite de données sensibles dans des systemes réels. Au fil des années, les
recherches sur les MIA se sont concentrées sur I’exactitude (accuracy) comme indicateur d’évalua-
tion. Cette métrique correspond a la proportion d’échantillons pour lesquels la prédiction du modele

d’attaque est correcte, qu’il s’agisse de membres (vrais positifs) ou de non-membres (vrais négatifs).

Pour mieux comprendre la maniere dont cette métrique est calculée, il convient de présenter la matrice

de confusion associée.
Réel / Prédit | Non-membre Membre

Non-membre TN FP

Membre FN TP
La matrice de confusion est un outil fondamental en apprentissage automatique pour évaluer les per-
formances d’un classificateur, qu’il soit binaire ou multiclasses. Elle permet de visualiser la répartition

des prédictions du modele par rapport aux classes réelles des échantillons.

Chaque cellule de cette matrice représente une combinaison possible entre la classe réelle d’un échan-
tillon et la prédiction effectuée par le modele d’attaque. Les valeurs attendues (classes réelles) sont

affichées en ligne, tandis que les classes prédites figurent en colonne (Fergus et Chalmers, 2022).

Les vrais positifs (TP) correspondent aux échantillons effectivement membres, prédits comme tels.

Les faux positifs (FP) représentent les non-membres que le modele a incorrectement classés comme

membres.

Les faux négatifs (FN) sont des membres mal classés comme non-membres, tandis que les vrais

négatifs (TN) désignent les non-membres correctement identifiés.

A partir de cette matrice, on peut définir I’exactitude (accuracy) comme la proportion d’échantillons
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correctement classés par le modele, indépendamment de leur appartenance :

TP+TN

A _
WY = P Y TN+ FP+ FN

Bien que I’exactitude fournisse une premiere indication sur la performance globale du modele d’at-
taque, elle se révele souvent insuffisante dans le cas particulier des attaques par inférence d’appar-
tenance. En effet, cette métrique accorde la méme importance aux prédictions correctes (TP et TN)
et aux erreurs (FP et FN), sans prendre en compte leur impact différentiel. En effet, dans les bases
de MIA, les faux positifs (FP), c¢’est-a-dire les échantillons non membres incorrectement identifiés
comme membres, sont particulierement problématiques. Cette erreur pourrait entrainer 1’accusation
injustifiée qu’une personne a été incluse dans un ensemble de données sensibles, ce qui constitue une

violation grave de la vie privée.

Carlini et al. (2022) ont été les premiers a proposer une nouvelle approche d’évaluation, qui ne se
fonde pas sur I’exactitude, mais sur deux métriques distinctes : le taux de vrais positifs (True positive

rate (TPR)) et le taux de faux positifs (False positive rate (FPR)).

Le taux de vrais positifs (TPR) est défini comme :

TPR = e
TP+ FN
Et le taux de faux positifs (FPR) comme :
FPR = rr
 FP+TN

Ces indicateurs permettent de mieux caractériser la capacité de I’attaque a distinguer les membres des
non-membres, en mesurant séparément son efficacité (via le TPR) et son potentiel de nuisance (via
le FPR). Intuitivement, une attaque efficace devrait maximiser le TPR, c’est-a-dire identifier correcte-
ment un grand nombre de membres, tout en minimisant le FPR, afin de limiter les fausses attributions.
Le compromis TPR/FPR est entierement représenté par la courbe ROC (Receiver operating charac-
teristic (ROC)), qui trace le TPR en fonction du FPR pour toutes les valeurs possibles du seuil de
décision. Cette courbe permet donc d’évaluer la performance globale de 1’attaque, indépendamment
d’un seuil arbitraire, et d’en dériver une mesure synthétique : I’aire sous la courbe (AUC). Plus I’AUC
est proche de 1, plus ’attaque est discriminante. A I’inverse, une AUC proche de 0,5 indique un

comportement aléatoire.
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Par conséquent, I’évaluation des performances du modele d’attaque dans cette étude repose principa-
lement sur la courbe ROC, le couple TPR/FPR et I’aire sous la courbe (AUC), qui sont des indicateurs
plus robustes et informatifs que la précision seule. En plus des métriques classiques, nous utilisons

également deux mesures complémentaires : la précision (precision) et le rappel (recall).

La précision indique la proportion d’exemples prédits comme membres qui sont réellement membres
(vrais positifs parmi tous les positifs prédits). Elle permet d’évaluer la fiabilité des prédictions posi-

tives du modele d’attaque.

TP

Precision = ————
TP+ FP
Le rappel, quant a lui, mesure la capacité du modele a identifier correctement les membres réels (vrais

positifs parmi tous les membres effectifs).

TP
TP+ FN

Recall =
Dans le contexte des attaques par inférence d’appartenance, les mesures telles que la précision et le
rappel sont particulierement utiles car elles permettent une évaluation plus nuancée des performances
du modele d’attaque. Elles mettent en évidence sa sensibilité aux faux positifs et aux faux négatifs.
Cette approche est d’ailleurs employée dans les travaux de référence, comme celui de Shokri ef al.
(2017). Dans notre cas, nous avons construit les ensembles de données utilisés pour évaluer I’at-
taque de maniere équilibrée, en incluant autant d’exemples membres et non membres. Cela garantit

une évaluation équitable des mesures, telles que la précision et le rappel, sans biais introduit par un

déséquilibre des classes.

3.10 L’environnement

Les expériences ont été menées dans un environnement Python 3.9, en s’appuyant sur plusieurs bi-
bliotheques open source. Pour le prétraitement des données, nous avons utilis¢ NumPy (Harris et al.,
2020) et Pandas (McKinney et al., 2010). Les modeles d’apprentissage supervisé, y compris les mo-

deles d’ombre et les classificateurs d’attaque, ont été construits avec Scikit-learn (Pedregosa et al.,
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2011). Le modele cible, qui est un réseau de neurones convolutifs en dimension unique (1D-CNN),
a été développé avec Keras Chollet (2015), en utilisant TensorFlow comme serveur (Abadi et al.,
2016a). Enfin, les métriques d’évaluation (accuracy, TPR, FPR, AUC), ainsi que les visualisations
(matrices de confusion, courbes ROC), ont été générées a ’aide de Scikit-learn.metrics, Matplotlib

(Hunter, 2007) et Seaborn (Waskom, 2021).

3.11 Conclusion

Dans ce chapitre, nous proposons un cadre méthodologique pour évaluer les risques pour la vie privée
associés aux modeles d’apprentissage automatique utilisés avec des données génomiques. Ce cadre
comprend les étapes clés suivantes : préparation des données, prétraitement, conception du modele
cible, création de modeles d’ombre et implémentation d’une attaque par inférence d’appartenance

dans un scénario de type boite noire.

Dans la premiere méthodologie, I’implémentation par modele d’ombre classique, nous avons choisi
des modeles ayant déja fait leurs preuves dans des études antérieures en bio-informatique pour iden-
tifier un modele d’ombre performant et généralisable. Ces modeles ont été choisis pour reproduire de
maniere réaliste le comportement du modele cible. Parmi les modeles évalués, celui qui a permis la
plus grande amélioration de la performance du modele d’attaque a été choisi comme modele d’ombre
final. Ce modele a servi a créer I’ensemble des données d’attaque en produisant des exemples éti-
quetés comme appartenant ou non a un groupe. Par la suite, une forét aléatoire a été entrainé sur ces

données pour mener 1’attaque et identifier efficacement les échantillons appartenant au groupe cible.

En raison de la limitation du nombre d’échantillons disponibles pour entrainer un modele d’ombre
dans le domaine génomique, une deuxieme méthodologie inspirée de I’article de Salem et al. a
été adoptée pour implémenter 1’attaque. Contrairement aux méthodologies classiques ou le modele
d’ombre cherche a imiter le comportement du modele cible, cette approche repose sur I’utilisation de
plusieurs jeux de données publics et hétérogeénes qui sont completement différents du jeu de données
utilisé pour le modele cible. L’objectif n’est donc pas de copier exactement la logique du modele
cible, mais plutot de capturer des schémas généraux permettant de distinguer les sorties associées aux

membres et aux non-membres. Ainsi, un classifieur d’attaque généralisé, basé sur une forét aléatoire,



74

a été entrainé a partir de ces données variées afin d’évaluer la robustesse du modele cible face a des

attaques d’inférence d’appartenance dans un scénario plus réaliste et moins dépendant des données.

Le chapitre suivant présentera les résultats expérimentaux obtenus en mettant en ceuvre les méthodo-

logies décrites plus tot.



CHAPITRE 4
RESULTATS ET ANALYSE

Ce chapitre présente les résultats expérimentaux obtenus a partir des méthodologies décrites précé-
demment. Il vise a évaluer I’efficacité des attaques par inférence d’appartenance dans un contexte
génomique réaliste. La performance de divers modeles (modele cible, modeles d’ombre et modele

d’attaque) sera analysée selon plusieurs configurations.

Des expériences ont été menées sur des données réelles de levure, en utilisant des scénarios d’attaque
de type boite noire. Deux méthodes différentes ont été évaluées : la premicre consiste a créer un
modele d’ombre qui imite le comportement du modele cible, tandis que la seconde met en ceuvre une

attaque par transfert de connaissances généralisée en utilisant des ensembles de données externes.

Les résultats sont analysés a I’aide de différentes métriques, telles que la précision, I’AUC, ’exac-
titude, le rappel et la matrice de confusion, afin de mesurer a la fois la puissance de détection de
I’attaque et ses limites. Ce chapitre a également pour but de comparer les deux méthodologies et

d’identifier les facteurs ayant le plus d’impact sur la réussite ou 1’échec de I’inférence.

Dans I’article de référence, les résultats rapportés sont obtenus a partir d’un seul seed aléatoire. Afin de
garantir une comparaison équitable, nous avons donc également présenté nos résultats principaux avec
un seul seed. Cependant, pour évaluer la robustesse de notre méthode et vérifier son indépendance vis-
a-vis du choix du seed, nous avons répété chaque expérience avec cinq seeds différents et rapporté les

moyennes et écarts-types correspondants.

4.1 Evaluation du modele cible

Le modele cible, dont I’architecture a été décrite au chapitre précédent, a été entrainé sur un sous-
ensemble des données génomiques de levure, en utilisant une classification binaire du phénotype «
résistance au sulfate de cuivre ». Ce choix expérimental est directement inspiré de I’article de Chen

et al. (2020), dans lequel ce phénotype est utilis€ comme variable de sortie pour évaluer la vulnérabi-
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lité des modeles d’apprentissage automatique face aux attaques par inférence d’appartenance.

L’ objectif n’est pas d’optimiser les performances du modele, mais simplement de vérifier qu’il atteint
un niveau de précision adéquat pour jouer le role de cible dans I’attaque. A la fin de I’entrainement, le
modele affiche une précision supérieure a 95% sur les données d’entrainement, ainsi qu’une précision
de validation qui se stabilise autour de 75 a 80%. Ce comportement est cohérent avec une situation
de surajustement modéré, ce qui reste acceptable dans ce contexte expérimental, ol I’accent est mis
sur le comportement du modele vis-a-vis de 1’attaque plutdt que sur sa capacité de généralisation. Ces
performances du modele cible sont du méme ordre de grandeur que celles rapportées par Chen et al.

(2020), confirmant que notre configuration expérimentale est réaliste et comparable a I’état de I’ art.

Pour le modele cible, un total de 3404 échantillons a été utilisé. Ceux-ci ont été divisé€s en deux
groupes :

— 2383 échantillons pour I’entrainement et le test du modele cible ;

— 1021 échantillons comme jeu non vu (unseen) pour I’évaluation de 1’attaque.
Le premier groupe a ensuite été subdivisé en :

— 1907 échantillons pour I’entrainement du modele cible ;

— 476 échantillons pour son test.

4.2 Evaluation de I’attaque par modéle d’ombre

Dans cette section, nous examinons les résultats obtenus par I’attaque réalisée a I’aide de la premicre
méthodologie, basée sur la construction d’un modele d’ombre généralisé a partir de phénotypes sta-
tistiquement liés au phénotype cible. Contrairement a 1’approche de référence de Chen et al. (2020),
qui suppose que I’adversaire dispose de données étiquetées identiques a celles du modele cible pour
construire des modeles d’ombre, notre approche se veut plus réaliste : elle se fonde uniquement sur
I'utilisation de données génétiques similaires, mais associées a des phénotypes différents. Pour choisir
ces phénotypes auxiliaires, nous avons créé une matrice de corrélation entre 19 phénotypes mesurés
sur un méme groupe d’individus, en excluant le phénotype cible. Les phénotypes présentant les corré-
lations les plus fortes ont ensuite été utilisés pour entrainer un ou plusieurs modeles d’ombre, simulant

ainsi le comportement du modele cible sans jamais 1’observer directement. Parmi les phénotypes auxi-
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liaires évalués, seul Xylose a finalement été retenu pour construire le modele d’ombre, car il présentait
des performances supérieures lors de I’ attaque, démontrant ainsi sa plus grande capacité a approximer

le comportement du modele cible.

TABLE 4.1 — Résumé des caractéristiques des modeles d’ombre et d’attaque dans la méthode 1

Caractéristiques Modele d’ombre Modele d’attaque
Données utilisées Phénotype Xylose (distinct de la | Sorties (scores) du modele
cible) d’ombre pour [’entrainement,

puis sorties du modele cible pour

I’évaluation

Nombre d’échantillons 4190 2042 (1021 membres, 1021 non-
membres)
Proportion entrainement/test | 50% entrainement, 50% test — (tous les exemples utilisés pour

I’entrainement ou 1’évaluation)

Architecture du modele Logistic Regression (pénalité lo, | Random Forest (profondeur max

max_iter=1000) =2)

Il est important de préciser que les 4190 profils utilisés pour entrainer le modele d’ombre corres-
pondent a I’ensemble complet des génotypes de levure disponibles apres prétraitement (filtrage des
valeurs manquantes et binarisation) pour le phénotype auxiliaire Xylose, distinct du phénotype cible
(sulfate de cuivre). Ces profils ne servent pas a I’entrailnement du modele cible, et ne sont pas réutili-
sés pour définir les membres et non-membres de 1’attaque finale. Pour I’attaque MIA proprement dite,
les exemples « membres » sont exclusivement tirés du jeu d’entrainement du modele cible, tandis
que les « non-membres » proviennent du sous-ensemble unseen de 1021 individus qui n’ont jamais
été vus pendant I’entrainement. Ainsi, les données employées pour apprendre le modele d’ombre
restent conceptuellement séparées du protocole d’évaluation de I’attaque, ce qui limite le risque de

surapprentissage artificiel sur un ensemble de données particulier.

Les sorties probabilistes générées par le modele d’ombre entrainé sur le phénotype Xylose ont été
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utilisées pour constituer le jeu de données d’attaque. Chaque prédiction fournit un score de confiance
pour chaque échantillon, permettant de 1’associer a une étiquette binaire (membre ou non-membre) en
fonction de son origine (jeu d’entrainement ou de test). Ces vecteurs de sortie, riches en information
statistique, ont ensuite servi a entrainer un modele d’attaque (forét aléatoire) capable de distinguer les

comportements typiques d’un échantillon vu par le modele de ceux d’un échantillon inconnu.

Comparaison des métriques de performance de I'attaque MIA (Méthode 1)

---- Aléatoire (0.5)
Référence (Chen et al.)
mmm Méthode 1 (Xylose)

101

0.8f

Valeur

0.0

Accuracy Precision Recall AUC

FIGURE 4.1 — Comparaison des performances de notre approche (modele d’ombre entrainé sur le
phénotype Xylose) avec celles de 1’approche de Chen et al. (2020), selon quatre métriques clas-
siques : exactitude, précision, rappel et AUC. On observe que notre méthode améliore systématique-
ment I’exactitude et I’AUC tout en réduisant le taux de faux positifs, au prix d’une légere baisse du

rappel.

Comme le montre la Figure 4.1, pour le seed principal considéré, notre approche surpasse celle de
Chen et al. (2020) sur la majorité des métriques : I’exactitude atteint 0,63 contre 0,58 pour la référence,
la précision s’éleve a 0,62 contre 0,56, et I’ AUC passe de 0,615 a 0,655. Seul le rappel (TPR) reste
légerement inférieur a celui de la méthode de référence (0,663 contre 0,685), ce qui indique une tres
Iégere baisse dans la capacité a détecter tous les membres. Toutefois, cette différence est compensée

par une réduction significative du taux de faux positifs.
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Comparaison des courbes ROC - Référence vs Méthode 1
1.0}

0.8

0.6
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Vrais positifs (TPR)

0.2F

—— Référence (AUC = 0.61)

4 —— Méthode 1 (Xylose, AUC = 0.65)
0.0 ---- Aléatoire (AUC = 0.5)

0.0 0.2 0.4 0.6 0.8 1.0
Faux positifs (FPR)

FIGURE 4.2 — Courbes ROC comparant la méthode de référence et notre approche (modele d’ombre

basé sur Xylose).

La Figure 4.2 présente les courbes ROC comparées. La courbe correspondant a notre méthode se situe
systématiquement au-dessus de celle de Chen et al. (2020), ce qui traduit une meilleure capacité de
séparation entre les échantillons membres et non-membres. L’ amélioration de I’AUC confirme cette

observation.

Les valeurs du Tableau 4.2 correspondent a la moyenne et a I’écart-type obtenus sur cing exécutions
indépendantes (cinq seeds aléatoires différents), ce qui permet de juger la stabilité de la méthode

au-dela d’un seul seed.

TABLE 4.2 — Résumé des performances de 1’attaque par modele d’ombre corrélé (5 runs)

Métrique | Moyenne Ecart-type

Accuracy 0.6052 0.0171
Precision 0.6033 0.0161
Recall 0.6143 0.0282
Fl-score 0.6086 0.0199
AUC 0.6127 0.0346
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Dans I’ensemble, le tableau met en évidence une performance relativement stable et équilibrée pour la
méthode basée sur les modeles d’ombre corrélés (Méthode 1). Les différentes métriques (exactitude,
rappel, F1-score et AUC) se situent toutes autour de 60 %, avec de faibles écarts-types, ce qui confirme
la robustesse de I’approche. Ces résultats suggerent que ’utilisation de phénotypes biologiquement
corrélés fournit une base efficace pour entrainer des modeles d’ombre pertinents dans le cadre de

I’attaque MIA.
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L’analyse des matrices de confusion (Figures 4.3 et 4.4) révele que notre approche atteint un com-
promis plus favorable entre la détection correcte des membres (TP) et la limitation des erreurs sur
les non-membres (FP). Ce comportement est particulierement avantageux dans les scénarios de type
boite noire ot I’acces aux données est restreint. Bien que la détection correcte des membres (TP) soit
Iégerement réduite par rapport a la référence, la forte diminution du taux de faux positifs (FP) rend

notre approche globalement plus robuste.
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Méthode TPR FPR

Méthode de référence (Chenetal.) 00,6848 0,5326
Notre méthode (Xylose) 0,6631 0,4058

TABLE 4.3 — Comparaison des taux de vrais et faux positifs pour les deux méthodes

La Table 4.3 confirme que notre approche présente un taux de faux positifs nettement réduit (0,4058
contre 0,5326), ce qui diminue les alertes erronées et renforce la précision de 1’attaque. Bien que
légerement moins performante en rappel, notre méthode reste plus fiable et plus siire dans le contexte

d’une attaque en boite noire.

Ainsi, notre approche démontre qu’il est possible de mener des attaques d’inférence d’appartenance
efficaces méme dans des conditions réalistes et contraignantes, sans acces aux étiquettes ni a la struc-
ture du modele cible. Cette contribution souligne 1’urgence de développer des mécanismes de défense

adaptés a ces nouvelles menaces en génomique computationnelle.

4.3 Evaluation de I’attaque par transfert de connaissances généralisée

Dans cette section, nous examinons de maniere approfondie les résultats obtenus a I’aide de la mé-
thode d’attaque par transfert de connaissances généralisée, inspirée des travaux de Salem et al. (2019).
Contrairement a I’approche classique, ot les modeles d’ombre sont construits dans des conditions si-
milaires a celles du modele cible, cette approche repose sur I’entrainement du modele d’attaque a
partir des sorties de modeles d’ombre hétérogenes, chacun étant formé sur un ensemble de données

distinct et sans lien avec les données du modele cible.

Les modeles d’ombre utilisés dans notre expérimentation couvrent plusieurs domaines et types de
données : données tabulaires (Adult, Purchase), données textuelles (Newsgroups), données d’image
(MNIST, CIFAR), ainsi que des données de localisation. Le rdle de chacun de ces modeles est uni-
quement de générer des échantillons membres et non-membres, a partir desquels sont extraits des

vecteurs de probabilités. Ces vecteurs sont ensuite transformés en caractéristiques statistiques déri-
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vées des probabilités de sortie (par exemple, les plus grandes probabilités parmi les classes). Dans le
cas binaire du phénotype de levure, chaque exemple est en pratique résumé par la probabilité prédite
pour la classe positive p(y = 1 | x) (et sa probabilité complémentaire), ce qui constitue 1’entrée
du modele d’attaque. Dans les jeux de données multi-classes utilisés pour entrainer certains modeles
d’ombre externes (par exemple CIFAR-10/100 ou Purchase), nous retenons effectivement le top-k des
probabilités de classes comme vecteurs de caractéristiques, avec k = 10 suivant Salem et al. (2019).
En revanche, pour le modele cible de levure qui est binaire, k = 1 et seul p(y = 1 | x) (ainsi que sa
probabilité complémentaire) est utilisé comme entrée du modele d’attaque. Les vecteurs ainsi obtenus
servent a alimenter un modele d’attaque, en 1’occurrence un classificateur de type forét aléatoire, en-
trainé pour distinguer les membres des non-membres sans aucune connaissance préalable du modele

cible.

TABLE 4.4 — Résumé des caractéristiques des modeles d’ombre et d’attaque dans la méthode 2

Caractéristiques Modeles d’ombre Modele d’attaque

Données utilisées Résultats de modeles pré- | Sorties (postérieurs) du modele
entrainés sur des jeux hé- |cible sur les membres et non-
térogénes  (Purchase, Adult, | membres

CIFAR-10/100, MNIST, Loca-

tion, News)

Nombre d’échantillons 500146 2042 (1021 membres, 1021 non-

membres)

Proportion entrainement/test | 50% entrainement, 50% test Tous les exemples levure (2042)

utilisés pour I’évaluation finale

Architecture du modele

— (modeles pré-entrainés non

spécifiés)

Forét aléatoire (parametres par

défaut)

Format des entrées

Vecteurs de postérieurs (proba-
bilités de classes) issus des mo-

deles d’ombre

Probabilité de la classe positive
prédite par le modele cible (tache

binaire)
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Comparaison des métriques de performance de l'attaque MIA (Méthode 2)

---- Aléatoire (0.5)
Référence (Chen et al.)
. Méthode 2 (Généralisée)
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FIGURE 4.5 — Comparaison des performances globales entre la méthode de référence (boite blanche)
et notre approche généralisée (boite noire) sur les métriques clés de 1’attaque MIA. Malgré un acces
plus limité au modele cible, la méthode généralisée atteint une exactitude et une AUC supérieures,
ainsi qu’un rappel nettement plus élevé, ce qui illustre la puissance du transfert de connaissances entre

domaines.

L’objectif de cette évaluation est de mesurer la capacité de généralisation du modele d’attaque a partir
de sources hétérogenes. Cette propriété est essentielle dans des contextes réalistes, ou 1’adversaire ne

dispose pas de données similaires a celles du modele cible.

Les résultats illustrés dans la Figure 4.5 mettent en évidence une amélioration notable des perfor-
mances obtenues avec notre méthode par rapport a la méthode de référence. Il faut noter que la
méthode de référence se base sur un scénario en boite blanche, dans lequel I’attaquant a un acces
total a I’architecture et au poids du modele cible. En revanche, notre approche s’inscrit dans un cadre
réaliste d’attaque en boite noire, ou I’attaquant n’a acces qu’aux sorties du modele cible. Cela rend
notre méthode plus difficile, mais elle parvient tout de méme a surpasser la référence sur plusieurs
métriques. Les résultats obtenus sont comparés a ceux du modele de référence proposé par Chen et al.
(2020) a I’aide de plusieurs métriques : I’exactitude, la précision, le rappel, la courbe ROC et 1’aire

sous la courbe (AUC). La méthode généralisée atteint une exactitude de 61,4%, contre 57,6% pour
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Comparaison des courbes ROC - Référence vs Méthode 2
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FIGURE 4.6 — Courbes ROC comparant la méthode de référence (boite blanche) et notre approche
(boite noire). Notre méthode atteint une meilleure capacité de discrimination avec une AUC supé-

rieure.

la méthode de Chen. Le rappel est particulierement élevé (96,2% contre 68,4%), indiquant une capa-
cité remarquable a identifier les membres. L' AUC s’améliore également, passant de 0,61 a 0,65, ce
qui témoigne d’une meilleure séparabilité des classes. Bien que la précision reste relativement stable
(autour de 56%), cela s’explique par une légere augmentation du taux de faux positifs, un compromis

attendu dans une stratégie de rappel maximal.

Afin d’approfondir cette comparaison, chaque métrique est examinée individuellement ci-dessous a
I’aide d’un graphique dédié et d’une interprétation contextuelle. L’exactitude mesure la proportion
des prédictions correctes effectuées par le modele d’attaque sur I’ensemble des échantillons. Bien
qu’elle ne distingue pas les erreurs de type faux positif et faux négatif, elle offre une vue d’ensemble
de la performance. Notre méthode atteint une exactitude de 61,4%, contre 57,6% pour la méthode de
Chen, soit une amélioration absolue de 3,8 points. Cette progression est particulierement significative

compte tenu du contexte en boite noire.

Pour tenir compte de la variabilité liée a 1’aléatoire, chaque expérimentation a été répétée cinq fois
avec des seeds différents (19122, 42, 1234, 2025 et 777). Les métriques présentées correspondent a

la moyenne et a I’écart-type calculés sur ces cinq exécutions indépendantes. Le tableau 4.5 résume
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les performances obtenues. Les valeurs du Tableau 4.5 correspondent a la moyenne et a 1’écart-type
obtenus sur cinq exécutions indépendantes (cinqg seeds aléatoires différents), ce qui permet de juger la

stabilité de la méthode au-dela d’un seul seed.

TABLE 4.5 — Résumé des performances de I’attaque généralisée (5 runs)

Métrique | Moyenne Ecart-type

Accuracy | 0.59285 0.01479
Precision | 0.55487 0.00830

Recall 0.93810 0.02434
F1-score 0.69727 0.01302
AUC 0.62753 0.01538

Les résultats du tableau 4.5 montrent que la méthode généralisée reste globalement stable et effi-
cace sur cinq exécutions différentes. Le rappel élevé (93,8%) indique une forte capacité a détecter
les membres, tandis que 1’accuracy moyenne (59,3%) et I’AUC (62,7%) refletent une bonne perfor-
mance globale malgré un acces limité aux données du modele cible. La faible variation (écarts-types

modérés) confirme la robustesse de I’attaque face a I’aléa des initialisations.

Carlini et al. (2022) ont démontré que 1’exactitude seule ne permet pas d’évaluer adéquatement I’ effi-
cacité réelle des attaques par inférence d’appartenance. Ils recommandent plutdt de combiner le taux
de vrais positifs (TPR) et le taux de faux positifs (FPR), ainsi que de représenter les résultats sous
forme de courbe ROC. Cette courbe montre le TPR en fonction du FPR pour différents seuils de

décision, ce qui permet d’évaluer indépendamment de ce seuil la performance de I’attaque.

La courbe ROC obtenue montre que notre méthode d’attaque, bien qu’elle soit soumise a des contraintes
plus strictes (boite noire), surpasse la méthode de référence, qui a été développée dans un environ-
nement plus ouvert (boite blanche). En effet, la courbe correspondant a notre approche est toujours
située au-dessus de celle de Chen et al. (2020). Cela démontre une meilleure capacité de distinction

entre les membres et les non-membres.
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Cette supériorité se manifeste par une courbe ROC systématiquement au-dessus de celle de la méthode
de référence pour une large gamme de seuils de décision, ce qui montre qu’il existe des configurations
ou notre modele peut atteindre un TPR plus élevé pour un niveau de FPR comparable. Cette carac-
téristique est cruciale dans les scénarios réels, ou il est impératif de minimiser les faux positifs pour

éviter des conclusions hatives.

En outre, notre méthode atteint une aire sous la courbe (AUC) plus élevée, ce qui quantifie cette
amélioration de la performance. Contrairement a la méthode de référence, qui nécessite un acces
complet au modele cible (structure et poids), notre approche ne nécessite que les sorties du modele,
tout en conservant une efficacité supérieure. Cette propriété revét une importance particuliere dans les
scénarios réels, ou la maitrise du taux de faux positifs est essentielle afin d’éviter toute interprétation

erronée.

Méthode TPR FPR

Méthode de référence (Chen et al.) 0,6848 00,5326
Notre méthode (généralisée) 0,9628 0,7356

TABLE 4.6 — Comparaison des taux de vrais et faux positifs pour les deux méthodes
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Les taux de vrais positifs (TPR) et de faux positifs (FPR) permettent d’évaluer plus finement la ca-
pacité d’un modele d’attaque a distinguer les membres des non-membres. Ces deux métriques sont
fondamentales dans le cadre des attaques par inférence d’appartenance, notamment lorsqu’on souhaite
minimiser les fausses alertes tout en maximisant la détection des échantillons réellement présents dans
I’entrainement. Pour la méthode de référence (Chen et al.), le modele atteint un TPR de 0,6848, indi-
quant qu’environ 68% des membres sont correctement identifiés. Le FPR est de 0,5326, ce qui signifie
que plus de la moitié des non-membres sont incorrectement classés comme membres, entrainant un

taux d’erreur non négligeable.

En revanche, notre méthode généralisée obtient un TPR remarquablement élevé de 0,9628, démon-
trant une capacité exceptionnelle a repérer les vrais membres. Toutefois, ce résultat s’accompagne

d’un FPR plus élevé (0,7356), ce qui refléte une propension accrue a produire des faux positifs.

Ce compromis entre TPR et FPR est typique des approches cherchant a maximiser la sensibilité
(recall) au détriment de la précision. Dans des scénarios de protection de la vie privée, une telle

stratégie peut poser probléme si elle aboutit a une surdétection des membres supposés.

Il convient aussi de souligner que la comparaison entre les deux méthodes se base sur des ensembles
de données d’attaques de tailles différentes. La méthode de référence (Chen et al., 2020) utilise un
ensemble de données d’attaques créées dans un contexte contrdlé, généralement a partir d’un petit
nombre d’échantillons provenant du méme domaine que le modele cible. En revanche, notre approche
globale utilise un volume de données d’attaques générées a partir de nombreux modeles d’ombre

entrainés sur des données hétérogenes.

Cette différence de taille ne constitue pas un biais, mais reflete une hypothese réaliste dans laquelle
I’adversaire peut accumuler davantage d’exemples d’attaque provenant de modeles d’ombre variés.
Cela rend notre approche plus robuste et plus transférable dans des contextes réels, contrairement a

I’attaque de Chen, tres spécifique et dépendante du modele cible.
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TABLE 4.7 — Tableau récapitulatif des performances et caractéristiques des deux approches d’attaque

par inférence d’appartenance proposées dans ce mémoire.

Critere

Méthode 1 : Modeles d’ombre

corrélés (Xylose)

Méthode 2 Transfert de

connaissances généralisé

Type de données utilisées

Données réelles (levure), méme
distribution mais phénotype dif-

férent

Données externes (Adult, Pur-
chase, MNIST, etc.), distribu-

tions hétérogenes

Acces au modele cible

Boite noire (sorties uniquement)

Boite noire (sorties uniquement)

lité des données

TPR 66,3% 96,2 %
FPR 40,6 % 73,6%
Exactitude 63,0% 61,4%
AUC 0,655 0,657

Robustesse au bruit / variabi- | Moyenne Elevée

Dépendance au domaine

Moyenne (besoin d’un phéno-

type corrélé)

Faible (fonctionne avec données

génériques)

Complexité de mise en|Moyenne (besoin d’analyse de |Elevée (multidomaines, extrac-
ceuvre corrélation) tion statistique)
4.4 Synthése comparative des deux méthodologies

Pour mieux comprendre les distinctions entre les deux approches d’attaque présentées dans ce cha-

pitre, le tableau 4.7 propose une synthése comparative de leurs caractéristiques et de leurs perfor-

mances. En résumé, la méthode de transfert généralisé se distingue par une sensibilité accrue (TPR

élevé), mais avec un taux de faux positifs plus élevé. En revanche, la méthode axée sur les phéno-

types liés offre un meilleur équilibre entre précision et généralisation, tout en étant réaliste dans un

contexte ou 1’acces direct aux données du modele cible est restreint. Dans notre étude, nous avons uti-

lisé I’exactitude (accuracy) comme principal indicateur d’évaluation des attaques. Cela nous a permis
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de comparer directement nos résultats a ceux de 1’étude de référence de Chen ef al. (2020), qui adopte

la méme métrique dans un cadre génomique.

Cependant, a la lumiere des recommandations de Carlini et al. (2022), nous reconnaissons que les
métriques globales telles que I’accuracy ou I’AUC ne suffisent pas a elles seules a mesurer les risques
de fuite. Ces auteurs soulignent qu’il est essentiel d’évaluer le taux de détection réel (TPR) a des taux

de fausses alertes (FPR) faibles, afin de mieux cerner les menaces réelles pour la confidentialité.

Pour répondre a cette critique, nous avons intégré 1’analyse conjointe des TPR et FPR, ainsi qu’un
examen détaillé des matrices de confusion. Par exemple, dans la premiere méthodologie (modeles
d’ombre corrélés), nous obtenons un TPR de 66,3% et un FPR de 40,6%, ce qui indique que I’attaque
est capable d’identifier une proportion significative de membres, tout en maintenant un taux d’erreur
modéré. En revanche, la seconde méthodologie (transfert de connaissances généralisé) atteint un TPR
de 96,2%, mais au prix d’un FPR élevé (73,6%), traduisant un risque marqué de fausse classification

des non-membres.

De plus, selon la définition proposée par Yeom et al. (2018), une attaque peut étre jugée préoccupante
des lors que sa précision ou son rappel dépasse nettement le seuil de 50%. Dans notre cas, toutes les
méthodes testées dépassent largement ce seuil, ce qui confirme leur faisabilité pratique, méme dans

un cadre contraint de type boite noire et sur des données sensibles comme le génome.

Enfin, bien que nos scores d’exactitude ou d’AUC puissent paraitre modérés (autour de 63—-65%),
leur interprétation doit étre replacée dans le contexte. D’une part, ces niveaux sont considérés comme
critiques par plusieurs auteurs (Yeom et al., 2018), et d’autre part, méme un AUC faible peut suffire a

compromettre certains individus selon Carlini et al. (2022).

Bien que nous n’ayons pas explicitement testé la résistance des méthodes face a du bruit injecté
dans les données, les différences observées dans les taux de faux positifs suggerent que la méthode 2
pourrait étre plus sensible a la structure interne du modele cible. Comme 1I’ont montré Carlini et al.
(2022) et Shokri et al. (2017), un FPR élevé peut signaler un mauvais alignement entre le modele

d’attaque et la frontiere de décision réelle du modele cible, traduisant souvent un surapprentissage sur
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des signaux peu généralisables.

Dans certains cas limites, notamment pour des individus présentant un profil génétique marginal ou
atypique par rapport a la distribution globale, la méthode 2 a tendance a les classer a tort comme
membres. Cela indique que le modele d’attaque peut confondre rareté et appartenance, soulevant

ainsi des enjeux éthiques importants, notamment dans les contextes cliniques ou de recherche.

Ces observations confirment notre hypothese de départ : une attaque MIA peut étre rendue plus stable,
plus réaliste et plus efficace si elle repose sur un proxy biologique pertinent, méme lorsque 1’acces
direct aux données originales est restreint. En revanche, bien que la méthode généralisée offre un
TPR supérieur, son taux de faux positifs remet en question 1’idée qu’une généralisation complete soit

toujours préférable dans des domaines sensibles comme la génomique.

Du point de vue opérationnel, ces résultats peuvent étre interprétés en termes de scénarios concrets
d’attaque. Dans un contexte expérimental en génomique, un attaquant pourrait par exemple chercher a
vérifier si une souche particuliere de levure, associée a un protocole de laboratoire spécifique ou a une
collaboration industrielle, a été utilisée pour entrainer un modele publié. Dans un contexte humain,
un scénario analogue consisterait a déterminer si le génome d’un individu donné a contribué a un
modele clinique (par exemple pour prédire la réponse a un traitement). Dans les deux cas, une MIA
réussie permet de relier un individu (ou une souche) a un jeu de données potentiellement sensible, ce
qui constitue déja une fuite d’information, méme si le modele ne révele pas directement les génotypes

complets.

Concretement, un TPR de 60-65 % avec un FPR d’environ 40 % (méthode 1) signifie que, pour
100 individus réellement présents dans 1’entralnement, 1’attaquant peut en identifier correctement
une soixantaine, au prix d’une quarantaine de faux positifs parmi les non-membres. A I’inverse, la
méthode 2, avec un TPR proche de 96 % mais un FPR supérieur a 70 %, correspond a une stratégie
de « surdétection » ou presque tous les membres sont détectés, mais au prix d’un trés grand nombre
d’accusations erronées. Dans un cadre de recherche ou clinique, une telle configuration serait diffici-
lement acceptable, car elle exposerait un grand nombre de participants non impliqués a un risque de

ré-identification injustifiée.
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Ces observations suggerent que, dans la pratique, un attaquant rationnel adapterait son seuil de dé-
cision selon le contexte : soit en privilégiant un FPR plus faible (au détriment du rappel) lorsqu’il
cherche quelques cibles avec une forte confiance, soit en acceptant un FPR plus élevé lorsqu’il dis-
pose de mécanismes complémentaires de filtrage. Dans tous les cas, nos résultats montrent qu’un
attaquant bien informé pourrait exploiter ces attaques dans des conditions réalistes, ce qui renforce

I’importance d’intégrer des mécanismes de protection dans les pipelines d’analyse génomique.

En définitive, la méthode 1 s’aligne davantage avec notre objectif principal : démontrer la possibilité
d’une attaque réussie sans acces direct aux mémes données, a condition d’exploiter des structures
biologiquement corrélées. Cette approche constitue un compromis pertinent entre faisabilité, réalisme
et efficacité, tout en mettant en lumicre les limites actuelles des défenses mises en place dans les

systémes d’analyse génomique.

Nos résultats s’inscrivent également dans le prolongement des attaques fondées sur le niveau de
confiance ou la perte du modele (Yeom et al., 2018; Carlini et al., 2022). Alors que ces approches
se contentent souvent de se baser sur un seuil global appliqué a la probabilité prédite ou a la perte,
nos deux méthodologies exploitent des informations supplémentaires : soit la structure biologique des
phénotypes corrélés (méthode 1), soit la diversité de modeles d’ombre hétérogenes (méthode 2). Cela
explique que nous atteignons des performances comparables, voire supérieures, a celles rapportées

dans Ia littérature, malgré un cadre plus contraint de type boite noire.

Par ailleurs, plusieurs travaux récents se sont intéressés a I’'impact de techniques de régularisation ou
de défense, telles que la régularisation adversariale de la perte d’appartenance (Nasr et al., 2018) ou
I’entrainement différentiellement privé (DP-SGD) (Abadi et al., 2016b). Bien que ces mécanismes
n’aient pas été explicitement évalués dans nos expériences, nos résultats fournissent une ligne de base
pour de futures études qui combineraient nos scénarios d’attaque (phénotypes corrélés et transfert
généralisé) avec ces défenses. Une question ouverte importante consiste a déterminer si ces méthodes
restent efficaces lorsque I’attaquant n’a acces qu’aux sorties du modele, comme dans nos scénarios de

boite noire.



CONCLUSION

Ce mémoire avait pour objectif principal de construire et d’évaluer un modele d’attaque généralisable
contre des modeles d’apprentissage automatique appliqués aux données génétiques, dans un cadre
réaliste de boite noire. Plutdt que de supposer un acces privilégié au modele cible ou a ses données
d’entrainement, 1’étude explore la possibilité pour un adversaire d’inférer 1’appartenance d’un échan-
tillon en se basant uniquement sur des modeles d’ombre entrainés sur des données de distribution

différente, voire des phénotypes biologiquement corrélés.

Notre travail apporte plusieurs contributions originales :

— la mise en ceuvre concrete d’un cadre d’attaque MIA sur des données génétiques réelles (le-
vure), avec simulation de modele cible et construction de modeles d’ombre biologiquement
informés;

— J’adaptation du scénario MIA a des contraintes réalistes de confidentialité, sans acces aux
données ni aux parametres internes du modele cible ;

— la proposition d’une approche de transfert généralisé pour les attaques MIA, permettant d’ex-
ploiter des modeles d’ombre hétérogeénes et non alignés biologiquement.

Les résultats obtenus confirment la faisabilité et I’efficacité de ces attaques. La méthode 1 (basée sur
un phénotype corrélé comme le xylose) obtient une exactitude de 63%, une précision de 62% et une
AUC de 0,655, tout en maintenant un FPR raisonnable de 40,6%. La méthode 2 (transfert généralisé)
atteint un TPR remarquable de 96,2%, mais au prix d’un FPR plus élevé (73,6%), mettant en lumiere
le compromis entre sensibilité et spécificité dans un cadre sans alignement biologique. Ainsi, si la
méthode 2 illustre la puissance du transfert généralisé, la méthode 1 apparait plus équilibrée en termes
de compromis TPR/FPR. Dans une perspective pratique, la méthode 1 pourrait donc €étre privilégiée
dans des contextes biomédicaux réels, ol la minimisation des faux positifs est cruciale pour éviter des

interprétations erronées ou des alertes inutiles.

Ce travail présente néanmoins plusieurs limites qui ouvrent la voie a des pistes de recherche futures.
Tout d’abord, I’évaluation a été réalisée uniquement sur des données de levure, ce qui limite la portée
des conclusions pour des contextes cliniques humains. Ensuite, la méthode de transfert généralisé

souffre d’un taux de faux positifs élevé, ce qui la rend difficile a utiliser telle quelle dans des scénarios
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biomédicaux sensibles. De plus, nous n’avons pas étudié 1’impact de mécanismes de défense (par
exemple DP-SGD, régularisation adversariale ou masquage des postérieurs), de sorte que la robustesse
de nos attaques face a ces contre-mesures reste une question ouverte. Enfin, I’utilisation d’un seul type
de modele d’attaque (forét aléatoire) ne permet pas de conclure sur I’optimalité architecturale de notre

cadre.

Ces expériences montrent que la protection de la vie privée ne peut pas se limiter a restreindre 1’acces
aux modeles ou aux données : des informations résiduelles dans les sorties (scores de confiance)
peuvent suffire a compromettre I’appartenance des individus. Il s’agit d’un signal d’alerte important
pour les déploiements de systemes d’IA dans le domaine biomédical. Elles démontrent également que
des signaux d’appartenance peuvent étre captés méme dans des contextes de transfert entre domaines,

confirmant la faisabilité d’attaques MIA dans un cadre strictement boite noire.

Ce travail présente plusieurs perspectives concretes :

— Tester les algorithmes avec des données humaines synthétiques, comme UK Biobank simulée,
pour se rapprocher davantage des enjeux cliniques et éthiques réels;

— Evaluer des mécanismes de défense tels que la confidentialité différentielle (DP-SGD), le
masquage des postérieurs, ou la régularisation adversarielle ;

— Ftendre I’analyse a d’autres types de données omiques (expression génique, épigénétique),
afin d’évaluer la généralisabilité des attaques dans des espaces biologiques variés ;

— Explorer d’autres architectures pour le modele d’attaque (réseaux neuronaux légers, modeles
bayésiens calibrés) pour optimiser le compromis entre un TPR élevé et un FPR contrdlé;

— Réduire la dépendance aux corrélations phénotypiques documentées en automatisant la sélec-

tion des proxys biologiques, ou en générant des jeux de données hybrides semi-synthétiques.

En conclusion, ce mémoire démontre que méme dans un cadre strictement boite noire, les attaques
MIA peuvent réussir, notamment grace a I’exploitation intelligente de signaux résiduels ou de proxi-
mités biologiques. L’approche par modeles d’ombre biologiquement corrélés constitue une contribu-
tion novatrice et efficace, applicable dans des contextes réels. Elle révele que les corrélations naturelles

présentes dans les données omiques, si elles ne sont pas encadrées, peuvent devenir des vulnérabilités
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exploitables.

Sur le plan pratique, nos résultats soulignent plusieurs implications pour la conception et le déploie-
ment de modeles en génomique. Dans un monde ou les données génétiques sont de plus en plus
partagées entre institutions, patients et systeémes d’intelligence artificielle, il est urgent d’intégrer des
protections robustes deés la conception des modeles. D’autant plus que ces risques soulevent égale-
ment des enjeux légaux majeurs en matiere de conformité aux réglementations internationales telles
que le RGPD en Europe ou la HIPAA en Amérique du Nord. Ce travail s’inscrit dans cette logique :
anticiper les attaques futures pour mieux défendre les individus, leur vie privée, et la confiance dans

la recherche biomédicale.
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