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RÉSUMÉ

Cemémoire se penche sur la synergie entre divers paradigmes d’apprentissage biologique et algorithmique.
Enmettant l’accent sur la complémentarité et le potentiel de diversmécanismes d’apprentissage biologiques
à être formalisés mathématiquement dans un modèle, nous cherchons à éclairer leur capacité à offrir
des alternatives à l’algorithme de la rétropropagation (RP) dans les réseaux de neurones profonds (RN).
Pour ce faire, nous explorons l’intersection entre ces paradigmes, en mettant l’accent sur les mécanismes
d’apprentissage Hebbien et anti-Hebbien et la plasticité synaptique à temps dépendant (STDP), pour étudier
les dynamiques internes d’un système de neurones récurrents les intégrant. Notre objectif est d’établir
s’il est possible de créer un système artificiel étant au moins partiellement analogue à sa contrepartie
biologique dans son fonctionnement dynamique et son apprentissage (entre deux neurones) présentant
des propriétés d’apprentissage (globales).

Tout en reconnaissant l’efficacité de la rétropropagation, qui a permis des avancées significatives en intelligence
artificielle (IA) pour la génération et la classification dedonnéesmultimodales, pour le traitement du langage
naturel et pour l’apprentissage par renforcement, cette recherche souligne ses limites qui sont l’objet de
nombreuse recherche de pointe.

Notre travail adopte une approche à la fois théorique et expérimentale afind’évaluer comment ces principes,
plus biologiquement plausibles et inspirés du fonctionnement du cerveau et de sa topologie dynamique que
les méthodes courantes, peuvent offrir des processus d’apprentissage plus rapides et adaptables. Pour le
volet expérimental, nous proposons un algorithmed’apprentissage bio-inspiré pour les réseaux deneurones
récurrents (bio-RNN). Nos résultats suite à son implémentationmontrent que lemodèle proposé est initialement
performant et rapide dans l’apprentissage, suggérant une piste intéressante de recherche. Cependant, cet
avantage disparait rapidement lorsqu’on alloue un temps d’entraînement raisonnable et notre méthode
demeure bien en deçà des performances de la rétropropagation en termes de précision et de rappel absolus
sur des tâches complexes. Nous sommes néanmoins parvenus, à travers nos expériences, à démontrer que
l’intégration des principes Hebbiens dans les architectures neuronales récurrentes dynamiques est faisable
et prometteuse, soulignant la nécessité de poursuivre nos recherches pour mieux comprendre et affiner
ces méthodes alternatives.
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CHAPITRE 1

INTRODUCTION
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Grâce à l’avènement des modèles de réseaux de neurones (RN), l’intelligence artificielle (IA) a fait des

avancées considérables, s’imposant commeunediscipline centrale pour la compréhension et lamodélisation

de donnéesmassives et complexes. Que ce soit en géologie (Huang et al., 2017), en physique (Thuerey et al.,

2022), en biologie (Skolnick et al., 2017) oumême en chimie (Mater et Coote, 2019), il est désormais difficile

de trouver un champ de recherche au sein duquel cette technique ne s’est point infiltrée. L’apprentissage

profond (AP) est maintenant appliqué pour le traitement des données à travers les sciences naturelles.

La neuroscience est l’un de ces champs qui ont été propulsés vers l’avant grâce à ces techniques. D’un côté,

les chercheurs en neuroscience utilisent désormais largement des modèles de pointe afin d’interpréter les

données complexes de télémétrie qu’ils récoltent. Que ce soit pour l’imagerie à résonance magnétique

(Shahamat et Saniee Abadeh, 2020; Zhang et al., 2023), les flux en provenance d’implants (Zhang et al.,

2019), les images microscopiques (Xing et al., 2018) ou les données électro-encéphalographiques (EEG)

(Gao et al., 2021; Schirrmeister et al., 2017), l’apprentissage profond a fourni un nouvel outil d’analyse

repoussant les frontières de notre connaissance. De l’autre, la création de modélisations visant différents

processus neurologiques (Wixted et al., 2014; Wert-Carvajal et al., 2022), cognitifs (Zhang et al., 2023) et

computationnels (Wixted et al., 2014; Zhang et al., 2023; Tomasello et al., 2018) soutenant l’avènement de

la conscience leur permet de jeter une nouvelle lumière sur le fonctionnement interne du cerveau.

Pour ce qui est des algorithmes supportant cesmodèles, les chercheurs en IA ont fait des progrès phénoménaux.

Il suffit de penser aux les modèles massifs de langage (LLM) dont les avancées récentes nous amènent

à reconsidérer la notion même d’intelligence. Parmi les techniques ayant joué un rôle pivot dans cette

révolution, la propagation arrière, ou rétropropagation (RP), se distingue comme lemécanismed’apprentissage

fondamental dans les réseaux de neurones profonds (RNP) à travers une fortemajorité de leurs applications.

Que ce soit dans les modèles de diffusion (Ho et al., 2020) ou les réseaux génératifs adversariaux pour la

génération d’image (Goodfellow et al., 2020), les LSTM (Hochreiter et Schmidhuber, 1997) ou les transformeurs

(Vaswani et al., 2017) pour le traitement du langage naturel ou encore dans les techniques d’apprentissage

par renforcement comme le "Q-Learning" (Mnih et al., 2013) et le système AlphaZero (Silver et al., 2017),

on retrouve toujours la rétropropagation derrière leur entraînement et le progrès fulgurant des dernières

années n’aurait pas été possible sans elle.

La RP est un algorithme capable de résoudre un grand nombre de problèmes d’optimisation qui étaient

jusqu’alors intraitables et de surclasser marginalement un grand nombre de techniques modernes sur de
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nombreux autres. Il est donc naturel qu’elle se soit imposée comme l’algorithme de prédilection pour

une panoplie d’applications de résolution de problèmes dans différents domaines de recherche et dans

l’industrie. C’est pourquoi il est généralement accepté que les réseaux deneurones profonds et la propagation

arrière sont indispensables pour faire la classification d’image, la génération d’image et pour le traitement

du langage naturel à des niveaux atteignant l’état de l’art.

La propagation arrière, lorsqu’appliquée à l’entraînement des réseaux de neurones profonds, repose sur

un principe d’optimisation mathématique pour ajuster les poids synaptiques dudit réseau en fonction de

l’erreur de sortie. Son efficacité à traiter des problèmes complexes et sa contribution au succès des applications

d’IAmodernes sont indéniables. Cependant, cela ne l’empêchepas deprésenter certaines limites, notamment

sa tendance à nécessiter une importante quantité de données et de larges ressources computationnelles,

son apprentissage lent et progressif, et l’oubli de certains apprentissages initiaux au cours de l’entraînement

(Kemker et al., 2018). La question sur sa capacité à être l’algorithme soutenant l’intelligence artificielle

générale (tiré de l’anglais, Artificial General Intelligence, AGI dans le texte) demeure à ce jour ouverte,

puisque la rétropropagation n’est pas bio-plausible, ce qui veut dire quenous n’avons toujours pas découvert

demécanismes analogues dans le cerveaubiologique, qui est le seul système connuétant capable d’atteindre

l’intelligence générale.

Parallèlement, l’apprentissage Hebbien (Hebb, 1949), inspiré par fonctionnement du cerveau, offre une

perspective différente et complémentaire sur la façon dont les systèmes intelligents peuvent apprendre

et s’adapter. Celui-ci, évoquant le célèbre adage "les neurones qui s’activent ensemble se lient ensemble",

s’inscrit dans une démarche visant à imiter les processus d’apprentissage naturels observés dans le cerveau.

Bien que souvent considéré comme inférieur à la rétropropagation (Krotov etHopfield, 2019), l’apprentissage

Hebbien, se rapproche davantage des phénomènes d’apprentissage biologique, suggérant une voie vers une

capacité d’apprentissage universelle et rapide semblable à celle du cerveau humain.

Cette approche, bien que moins répandue dans les applications d’IA contemporaines, a été historiquement

l’objet de nombreuses recherches dans la littérature. Avec le succès de la BP, le rythme de publications sur

les algorithmes bio-inspirés et bio-plausibles s’est quelque peu estompé au cours de la dernière décennie,

mais semble cependant connaître un regain au cours des dernières années 1.

1 Il s’agit ici d’une observation empirique, basée sur notre revue de littérature
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Avec la croissance constante des modèles de pointe, les limitations de la BP deviennent de plus en plus

apparentes. Leur taille colossale nécessitant des ressources computationnelles massives et des jeux de

données massifs pour leur entraînement les rend inaccessibles pour beaucoup de chercheurs n’ayant pas

accès à ces ressources. Les différentes techniques Hebbiennes présentant l’avantage d’une plus grande

bio-plausibilitée, soulèvent la possibilité d’atteindre une forme d’apprentissage plus rapide, performante,

adaptable et permettant de mieux traiter les flux de données. Le tout en augmentant l’accessibilité et

le potentiel de démocratisation de la technologie s’il est possible d’augmenter d’ordres de magnitudes la

vitesse de convergence tant auniveaude la demandeen calcul quede la demandeendonnées d’entraînement.

Deplus, l’état plus embryonnaire dudomaine fait en sorte quedes gains considérables peuvent être effectués

avec des moyens relativement modestes.

Avec cemémoire, nous proposons une exploration de la synergie entre différents paradigmes d’apprentissage

biologiques et algorithmiques, en nous interrogeant sur leur complémentarité et leur potentiel à enrichir

notre compréhension de l’intelligence artificielle. À travers une revue critique de la littérature et le développement

demodèles et d’expériences numériques, nous chercherons à déterminer dans quellemesure la combinaison

dedifférents processusmodélisésmathématiquement peut ouvrir de nouvelles perspectives pour la conception

de systèmes intelligents plus performants et plus proches de la fonction cognitive humaine. Par conséquent,

ce travail s’inscrit dans une démarche à la fois théorique et expérimentale, visant à contribuer au dialogue

entre l’apprentissage machine (de l’anglais Machine Learning, ou ML) et les neurosciences, dans l’espoir de

rapprocher les machines des capacités et de la flexibilité des systèmes d’apprentissage biologiques.

En s’attaquant à ce sujet, ce mémoire vise à offrir une perspective interdisciplinaire entre l’intelligence

artificielle et les neurosciences, dans le but d’investiguer des pistes de recherche pour la conception d’une

nouvelle génération d’algorithmes d’apprentissage qui combinent l’efficacitémathématiquede la propagation

arrière avec la flexibilité et la robustesse de l’apprentissage Hebbien. Ce travail se positionne à l’intersection

de la recherche fondamentale et appliquée, avec l’espoir de jeter des ponts entre les modèles théoriques

d’apprentissage et leur mise en œuvre pratique dans des systèmes d’IA avancés. L’interaction entre les

différents paradigmes d’apprentissages bio-plausibles, ainsi que leur application àdes architectures neuronales

dynamiques récurrentes, constitue le cœur de cette recherche.

Afin d’explorer ces thèmes variés pour ensuite en extraire les éléments saillants sous forme d’un algorithme,

ce mémoire est divisé en quatre axes principaux: les systèmes dynamiques, l’exploration des avancées
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théoriques et expérimentales enneurosciences, l’étude approfondie des différents algorithmes d’apprentissage

pour les réseaux deneurones standard et récurrent, et enfin, notre proposition d’un algorithmed’apprentissage

dynamique semi-supervisé visant à valider l’importance des différentes contraintes et méthodes abordées.

Le chapitre 2 porte donc sur les systèmes dynamiques chaotiques et vise à établir une base théorique

commune pour la compréhension des mécanismes dirigeant les dynamiques dans notre modèle et de

l’analyse de nos résultats.

Pour le troisième chapitre, nous nous attardons à établir les fondations biologiques sur lesquelles repose

notre compréhension de l’apprentissage et de lamémoire. Enmettant en lumière lesmécanismes neuronaux,

tels que la plasticité synaptique et les dynamiques neuronales complexes, ce chapitre vise à établir une base

théorique derrière les processus cognitifs biologiques et leur modélisation informatique. En explorant les

systèmes dynamiques et lesmotifs d’activation neuronaux, nous soulignons l’importance de ces phénomènes

dans la formation de la mémoire et dans les processus d’apprentissage, établissant ainsi un cadre pour

l’intégration de ces principes dans notre proposition.

Le chapitre 4 porte quant à lui sur divers algorithmes d’apprentissage utilisés pour optimiser différents types

de réseaux deneurones. Nous commençons par présenter la technique la plus utilisée, soit la rétropropagation,

et propose une analyse critique de ses contraintes intrinsèques, telles que sa demande computationnelle

élevée et sonmanquedebio-plausibilité. Il établira également le contextemotivant la recherched’approches

alternatives ou complémentaires en IA. Ensuite, nous nous penchons sur l’apprentissage Hebbien sous

différentes formes et leur potentiel à simuler plus fidèlement les mécanismes d’apprentissage biologiques,

avec un accent particulier sur leur application au sein de réseaux neuronaux récurrents dynamiques. Ce

chapitre explore la capacité de ces méthodes à offrir des voies d’apprentissage plus naturelles et efficaces,

en particulier pour le traitement de données temporelles et séquentielles.

Subséquemment, au chapitre 5, nous formalisons la proposition de notre algorithme. Notre approche vise

à fusionner les différents concepts qui sont présentés au sein d’un cadre unifié. Cette synthèse ambitionne

de créer une fonction d’apprentissage qui, non seulement pallie les faiblesses de chaque approche prisent

isolément, mais bénéficie également de leur complémentarité pour améliorer la performance globale de

notre modèle. Pour ce faire, nous proposons notre architecture avec une nouvelle fonction de mise à jour

des états et d’apprentissage et la comparons à une architecture simple de ANN avec BP. Pour ce faire, nous
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présentons d’abord ses différentes composantes algorithmiques ainsi que différentes avenues que nous

avons explorées lors de notre implémentation en Python. Cette partie se termine par une présentation des

résultats des expériences effectuées dans le cadre de notre recherche.

Finalement, la conclusion de cemémoire propose une synthèse des découvertes réalisées à travers ces axes

de recherche, démontrant l’interaction complexe entre les principes neurologiques et leur application dans

le domaine de l’intelligence artificielle. Nous nous attardons également sur les limites de notre approche et

proposons différentes pistes d’améliorations candidates pour des recherches ultérieures plus approfondies.
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CHAPITRE 2

SYSTÈMES DYNAMIQUES
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Depuis la publication séminale de Lorenz (Lorenz, 1972) sur les attracteurs dynamiques qui a fait l’introduction

pour la première fois de "l’effet papillon", ou sensibilité aux conditions initiales, l’étudedu chaos est devenue

un champ de recherche hautement interdisciplinaire qui a des applications nombreuses et variée. Que ce

soit pour la météorologie comme dans l’article original, ou pour l’étude de l’évolution de populations, de

la dynamique des fluides ou du mouvement des groupements des corps célestes en astrophysique, cette

approche analytique nous a permis d’interpréter de nombreux phénomènes complexes qui semblaient

complètement aléatoires jusque là.

Ce chapitre vise à présenter brièvement la notion de chaos et d’attracteurs dans un système dynamique et

à détailler les types d’attracteurs principaux qui sont pertinents pour notre recherche.

2.1 Formulation

Formellement, un système dynamique est un système S qui comprend une fonction de la forme f(x)

qui détermine la dépendance temporelle d’un point dans l’espace des états possibles, autrement appelé

l’espace des phases. Plus simplement, on peut l’exprimer comme:

ẋ = f(x) (2.1)

Où x ∈ Rn et f : Rn → Rn sont une fonction lisse, dans le cadre du présent travail, le type de système

dynamique qui nous intéresse plus spécifiquement est celui des réseaux de neurones récurrents (RNN).

2.2 Réseaux de neurones récurrents

Les systèmes dynamiques peuvent prendre de nombreuses formes. La version sur laquelle nous nous

pencherons plus particulièrement pour notre recherche est celle des RNN. Ceux-ci peuvent être représentés

commeungraphe composédenoeuds, ouneurones, et d’arêtes, aussi appelés poids, connexions ou synapses,

qui lient ces différents noeuds entre eux. Chacundes noeuds dans l’ensembleX ont une valeur qui représente

leur état, avec xi le neurone à la position i.

Les connexions sont représentées sous la forme d’une matrice des poidsW où wi,j est la connexion entre

les neurones xi et xj . À chaque itération t du système, on le met à jour avec:
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Xt+1 = ϕ(XtW ) (2.2)

Où ϕ est une fonction d’activation arbitraire, par exemple la tangente hyperbolique réciproque tanh(x), la

fonction logistique σ(x) =
1

1 + e−x
, une fonction binaire bin(x) ⊂ 0, 1 ou de signe sign(x) ⊂ 0, 1.

Définition 2.1 (Motif) UnmotifY = {y0, y1, . . . , yn}dans unRNNest une configuration donnéede neurones

activés simultanément à un temps t d’un sous-ensemble de neurones de façon à ce que Y ⊂ X .

L’architecture de RNN à une couche illustrée dans 2.1 est la forme la plus simple de ce type de réseau. Les

réseaux de Hopfield dont il sera question au chapitre 4 sont de ce type.

x0 x1

x2x3

Figure 2.1 Un réseau de neurone récurrent basique à une couche de 4 neurones

Une autre architecture courante est le RNNmulticouche avec couche d’entrée. Cela nous permet de séparer

l’entrée du traitement de l’information (par les couches cachées) dans différentes matrices de poids afin de

créer une représentation abstraite pouvant être optimisée afin de générer lemotif d’activation désiré. Cette

architecture est composée d’une couche d’entrée et d’une couche cachée. Les connexions W vont de la

couche précédente à la suivante et à elle-même dans le cas des couches cachées. Le réseau est mis à jour

avec:

X0
t+1 = ϕ(X) (couche d’entrée)

X l
t+1 = ϕ(W l−1,lX l−1t+W l,lX l

t) (couche(s) cachée(s))
(2.3)

Cependant, l’absence de couche de sortie dans ces deux types de RNN limite leur utilisation puisqu’il n’est

pas possible d’effectuer un traitement dirigé de l’information (d’associer une entrée A avec une sortie

désiréeB telle queB = f(A)) tout enpermettant au réseaud’apprendre unmotif optimisé (à l’entraînement)
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en réponse à un stimuli intrant. Les réseaux dynamiques récurrents proposés parMolter et al. dans (Molter

et al., 2004; Molter et al., 2005) présentés au chapitre 4 sont un exemple de ce type de RNN.

Pour palier à ce problème, il suffit d’ajouter une couchede sortie dénuéede connexions récurrentes connectée

à la dernière couche récurrente de sorte que:

X0
t+1 = ϕ(X) (couche d’entrée)

X l
t+1 = ϕ(W l−1,lX l−1t+W l,lX l

t) (couche(s) cachée(s))

XL
t+1 = ϕ(WL−1,lXL−1

t ) (couche de sortie)

(2.4)

Cet ajout en fait un RNN multicouche avec entrée/sortie, tel qu’illustré par 2.2. Sous cette configuration,

l’entrée, le traitement de l’information et l’inférence de la sortie sont segmentés afin de permettre au

RNN d’apprendre la représentation interne (motifs d’activation des couches cachées) la plus optimale lui

permettant de générer la sortie désirée.

x00

x01

x02

x10

x11

x12

x20

Figure 2.2 Un réseau de neurone récurrent simple avec entrée/sortie à une couche cachée

Le modèle que nous proposons au chapitre 5 est de cette forme.

2.3 Espace des phases

Dans l’étude des systèmes dynamiques, l’espace des phases est une représentation géométrique, où chaque

point dans cet espace représente un état possible du système. Pour un système avec n variables, l’espace

des phases est n-dimensionnel, où chaque axe représente une des variables du système. Les trajectoires

dans cet espace décrivent comment les états du système évoluent dans le temps. Cet espace apporte une

lumière essentielle pour visualiser et comprendre la dynamique du système, y compris les attracteurs, les
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cycles limites, et les comportements chaotiques qui sont présentés plus bas. Par exemple, dans un système

mécanique simple comme un pendule, l’espace des phases peut être utilisé pour montrer les positions et

les vitesses du pendule à chaque instant, offrant une vue complète de son mouvement au fil du temps. La

figure 2.3 illustre un tel espace des états.

2.4 Attracteurs dynamiques

Un concept clé dans l’étude et la compréhension des systèmes dynamiques est celui d’un attracteur. Formellement,

un attracteur dans un système dynamique est un ensemble d’états (points dans l’espace de phase), invariant

sous un régime dynamique prédéfini, vers lequels les états voisins s’approchent asymptotiquement au fil

du temps.

Définition 2.2 (Attracteur dynamique) Prenons un système dynamique décrit par l’équation ẋ = f(x). Un

attracteur est un ensemble A = {a0, a1, . . . , am} |⊂ Rn tel que pour tout x ∈ A et t > 0,

ϕt(x) ∈ A,

où ϕt est le flux du système, pour lequel il existe un ensemble ouvert U (le bassin d’attraction) contenantA

tel que pour chaque x ∈ U ,

lim
t→∞

ϕt(x) ∈ A.

Dans le contexte de notre recherche, les attracteurs dans les réseaux neuronaux, particulièrement dans des

modèles comme les réseaux de Hopfield qui seront présentés au chapitre 4, peuvent être vus comme des

états stables ou des états demémoire dans lesquels le réseau se stabilise, après avoir commencé à partir de

certaines conditions initiales. Dans le paysage énergétique d’un tel réseau, chaque attracteur correspond à

un minimum local, et le processus d’évolution dynamique dans le réseau est semblable à l’état du système

descendant dans le paysage énergétique jusqu’à ce qu’il se stabilise dans l’un de cesminima(Hopfield, 1982).

11



Afin d’établir un langage commun pour la suite, il est important de définir les différents types d’attracteurs

principaux qui apparaissent dans la littérature et dans la présentation de nos résultats.

2.4.1 Attracteurs sur point fixe

Les attracteurs sur un point fixe sont des états stables d’un système dynamique où, indépendamment des

conditions initiales dans un certain voisinage, le système évolue vers et reste dans cet état stable.

Définition 2.3 (Attracteur sur point fixe) Formellement un attracteur dynamiqueA est dit sur un point fixe

si |A| = 1. Simplement, c’est un attracteur qui ne contient qu’un seul point dans l’espace de phases.

Ces attracteurs sont des solutions d’équilibre, où le système n’exprime aucun changement au fil du temps

une fois l’état atteint. Un exemple classique d’attracteur sur un point fixe est le système d’un pendule (avec

friction) à l’arrêt, où, indépendamment de la position initiale du pendule, il revient toujours à sa position

stable verticale et y reste.

Dans la figure 2.3, pour le système avec un coefficient de friction (en orange), le point (0,0) est un attracteur

sur point fixe, qui représente l’état du pendule à l’arrêt. On peut voir que la trajectoire tend ultimement

vers ce poids alors que limt→∞.

2.4.2 Cycle limite

Un cycle limite est une trajectoire fermée dans l’espace des phases d’un système dynamique, caractérisant

un comportement oscillatoire stable et périodique. Un exemple concret de cycle limite peut être observé

dans les oscillations de la population de certaines espèces dans un écosystème, comme le montrent les

équations de Lotka-Volterra pour les modèles prédateur-proie. (Volterra, 1926)]

2.4.3 Attracteur périodique discret

Les attracteurs périodiques discrets décrivent des systèmes dynamiques qui, après une période initiale de

convergence, oscillent périodiquement entre un nombre fini d’états formant un cycle répétitif. Ces cycles

représentent des processus périodiques ou des oscillations dans le système où, après un certain temps,
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Figure 2.3 Espace des phases d’un système représentant le mouvement d’un pendule simple avec et sans
coefficient de friction.

les valeurs des variables du système reviennent à leurs états précédents, répétant une série de motifs

indéfiniment.

Définition 2.4 (Attracteur périodique discret) Un attracteur périodique discret A est un attracteur pour

lequel 1 < |A| < ∞. Simplement, c’est un attracteur qui est composé d’un nombre fini de points dans

l’espace de phases.

La figure 2.4 est une illustration d’un tel attracteur dans un RNN simple composé de 3 neurones pleinement

connectés entre eux. La matrice des poids permettant d’obtenir cet attracteur est⎡⎢⎢⎢⎣
−1 1 1

−1 1 1

−1.1939 −0.6108 −0.3535

⎤⎥⎥⎥⎦
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Figure 2.4 Un attracteur périodique discret dans un réseau récurrent simple.

avec unbiais de [0.2805, 0.7711,−0.9976] et une fonction d’activation non continue appliqués respectivement

à chaque neurone à chaque itération.

2.4.4 Attracteurs limites

La notion d’attracteur limite se réfère à des comportements périodiques dans des systèmes dynamiques où

les trajectoires convergent vers une orbite fermée. Contrairement aux attracteurs fixes, qui tombent sur

un point, ou les attracteurs périodiques discrets, qui tendent sur un nombre fini de points, les attracteurs

limites sont des ensembles infinis de points formant des chemins fermés, des trajectoires, démontrant des

dynamiques continues et périodiques dans le temps. Formellement, un attracteur limite est simplement

un cycle limite stable.

Définition 2.5 (Cycle limite) Un cycle limite est un ensemble fermé Γ ⊂ Rn qui est une solution périodique

de l’équation différentielle 2.1. Formellement, cela signifie que pour un point x0 ∈ Γ et une période T > 0,

nous avons:

ϕT (x0) = x0,
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où ϕt est le flot généré par ẋ, et pour tout t ∈ R,

ϕt(x0) ∈ Γ.

Le cycle limite est dit "stable" si, pour tout point y dans un voisinage U de Γ, la trajectoire ϕt(y) converge

vers Γ lorsque t → ∞. Mathématiquement, cela peut être exprimé comme:

lim
t→∞

dist(ϕt(y),Γ) = 0, ∀y ∈ U.

Le cycle limite est dit "instable" si les trajectoires dans un voisinage de Γ s’en éloignent au fil du temps.

Le battement du cœur humain peut être considéré commeunattracteur limite, où le système cardiovasculaire

oscille de manière périodique pour pomper le sang, illustrant une orbite fermée d’activités qui se répètent

dans un cycle de vie stable malgré les variations entre les différents battements. Un cycle de prédateur-

proie dans un écosystème, où les populations de prédateurs et de proies oscillent de manière périodique

en est un autre exemple. Chaque espèce influence cycliquement l’autre, entraînant un motif répétitif et

prévisible de croissance et de déclin qui ne se dissipe pas avec le temps.

Le système dont l’espace des phases (pour un neurone) est illustré dans la figure 2.5 est un simple réseau

de neurones récurrents avec 2 neurones pleinement connectés entre eux. La matrice des poids permettant

d’obtenir cet attracteur est

⎡⎣−1 1

1 1

⎤⎦. Une fonction d’activation tanh(x) est appliquée à la valeur de l’état

d’un neurone pour la mettre à jour et un biais de [0.4, 0.0] est ajouté respectivement à chaque neurone à

chaque itération.

2.5 Chaos dynamique

Denombreux phénomènes, la turbulence en est un exemple, semblent à primeabord exhiber un comportement

aléatoire, bien quebasé sur des règles déterministes. Dans ces systèmes lamoindre différence infinitésimale

entre deux systèmes autrement similaires peut mener à des résultats hautement différenciés. Si nous

prenons l’exemple de lamétéorologie,malgré notre compréhension des règles qui la gouverne, nous sommes
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Figure 2.5 Un attracteur limite dans l’espace des phases d’un réseau récurrent simple

incapables de créer des modèles qui parviennent à prédire le système passé un certain horizon temporel

puisque la connaissance parfaite de l’état du système (par exemple à chaque atome près) n’est pas possible.

Même si elle l’était, le problème computationnel de prédire les états successifs serait intraitable de par la

capacité massive de capacité de calcul qu’une telle simulation requérerait. En physique, le problème des

trois corps (Gutzwiller, 1998) ou celui du pendule double (Hesse et al., 2018) est également un exemple où,

ne pouvant obtenir une mesure parfaite de la position des objets du système, nous atteignons toujours un

horizon de prédiction infranchissable. On dit ce type de système sensible aux conditions initiales.

Définition 2.6 Sensibilité aux conditions initiales : Un système dynamique est dit sensible aux conditions

initiales s’il existe une constante δ > 0 telle que, pour toute paire de conditions initiales distinctes (x0, y0),

aussi proches que l’on veut, la distance entre leurs trajectoires respectives d(xt, yt) dans l’espace des états

devient supérieure à δ après un certain temps t. Cela signifie que de petites perturbations dans les conditions

initiales peuvent entraîner des divergences exponentielles dans l’évolution du système, rendant ainsi la

prédiction à long terme impossible.

Lorenz, météorologue qui a fait la découverte de ce type de système lors de simulations météorologiques

informatiques et dont la publication séminale (Lorenz, 1963) a ouvert ce nouveau champ d’étude, défini le
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chaos simplement comme (Danforth, 2013):

Définition 2.7 (Chaos) Lorsque le présent prédit le futur, mais une approximation du présent ne détermine

pas approximativement le futur1

cette approche théorique est pertinente dans le cadre de notre recherche, car le cerveau et l’IA ne font pas

exception aux nombreux domaines des sciences naturelles ou ce champ théorique peut être appliqué. de

nombreux outils développés pour l’étude de systèmes chaotiques sont désormais utilisés en neuroscience

(Bob, 2007; Kargarnovin et al., 2023; Justin et al., 2019; Korn et Faure, 2003). sinon, les modèles proposés

par Molter sont des exemples d’application de cette théorie pour la recherche en IA (Molter et al., 2006;

Molter et al., 2007; Molter et al., 2004; Molter et al., 2005) .

Malgré l’apparence aléatoire de l’évolution de ces systèmes, lorsquenous tournons notre regard vers l’espace

des phases de ceux-ci, différentes structures émergent, permettant de les analyser sous un nouveau jour.

La figure 2.6 est un exemple de ce type d’attracteur étrange.

2.5.1 Attracteurs étranges

On retrouve les attracteurs étranges dans des systèmes dynamiques chaotiques présentant une sensibilité

extrême aux conditions initiales, où les trajectoires semblent être tirées de manière aléatoire mais sont en

fait déterministes, ayant une structure fractale (une dimension de Hausdroff non entière) et confinées à

une région de l’espace des phases.

Définition 2.8 (Attracteur étrange) Un attracteur A est dit étrange s’il rencontre les propriétés suivantes:

1. Invariant: Si x ∈ A, alors la trajectoire ϕt(x) reste dans A pour tout t ≥ 0.

2. Attraction : Il existe un voisinage U autour de A tel que pour tout x ∈ U ,

lim
t→∞

dist(ϕt(x), A) = 0.

1 traduction libre de l’anglais
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Figure 2.6 Attracteur de Lorenz

3. Sensibilité aux conditions initiales : Il existe un δ > 0 tel que, pour tout x ∈ A et pour tout voisinage V

de x, il existe y ∈ V et t > 0 tel que

∥ϕt(x)− ϕt(y)∥ > δ.

4. Structure géométrique complexe : L’attracteur a souvent une dimension fractale, ce qui signifie que son

apparence et ses détails ne changent pas, quelle que soit l’échelle à laquelle il est observé.

Ces attracteurs sont associés à des comportements complexes et imprévisibles sur le long terme. Unexemple
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simple est celui d’un pendule double, pour lequel des trajectoires dans l’espace des états ayant des points

initiaux presque identiques vont rapidement diverger. Si l’on tend vers un systèmeplus complexe, la dynamique

météorologique en est un autre, avec ses prédictions à long terme difficiles en raison de la sensibilité

aux conditions initiales. Ils sont souvent cités comme un exemple d’attracteur étrange, démontrant des

comportements complexes et imprévisibles sur une certaine échelle de temps, qui restent néanmoins confinés

à des motifs discernables et prévisibles sur des périodes plus courtes.

L’un des exemples les plus célèbres d’un attracteur étrange est l’attracteur de Lorenz (Lorenz, 1963), illustré

par la figure 2.6 qui est décrit par un système tridimensionnel gouverné par les équations:

Définition 2.9 (Attracteur de Lorenz)
ẋ = σ(y − x),

ẏ = x(ρ− z)− y,

ż = xy − βz.

Où σ, ρ, et β sont des paramètres positifs.

L’attracteur de Lorenz a été tiré d’observations dans les systèmes de convection thermique et est souvent

utilisé comme exemple classique de comportement chaotique qui résulte de dynamiques déterministes

non linéaires.

2.5.2 La limite du chaos

La limite du chaos est un état spécifique d’un système dynamique où le système opère à la frontière entre

l’ordre et le chaos complet. Dans cet état, le systèmeprésente une riche variété de comportements dynamiques,

capable de répondre de manière flexible et adaptative à des stimuli externes, tout en conservant une

structure sous-jacente déterministe. Ce type de dynamiques est caractérisé par l’oscillation aléatoire d’un

système entre différents attracteurs limites ou étranges, avec des périodes ou le système peut traverser des

états chaotiques lors de transition d’un attracteurs semi-stable à un autre.

Des exemples de la limite du chaos peuvent être observés dans divers systèmes naturels et artificiels, tels

que les modèles de calcul neuronal, les systèmes écologiques contenant des points de basculement, et
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Activation temporelle dans un réseau récurrent simple

Figure 2.7 Valeurs des états de différents neurones évoluant à travers le temps dans un réseau de neurones
récurrents simple. On voit ici qu’il existe un attracteur limite dans un système en raison dumotif périodique
visible dans ce graphique. L’axe vertical est la valeur du neurone à un temps donné et l’axe horizontal est le
nombre d’itérations (ou "step" en anglais) écoulées

dans certains régimes de dynamique des fluides, où de petits changements dans les paramètres peuvent

conduire à des transitions soudaines entre des états stables et chaotiques, tel qu’un flot linéaire qui devient

turbulent ou lors d’une transition de phase d’un liquide à un gaz.

Au niveau biologique, lors de la résolution de problèmes complexes ou de la créativité, l’activation du

cerveau se retrouve souvent à la limite du chaos. Il est théorisé que cet état est exploité pour générer

des idées neuves et des solutions innovantes, suggérant que cet équilibre dynamique favorise la flexibilité

cognitive et le traitement de l’information (Bilder et Knudsen, 2014).

2.6 Synchronisation

La synchronisation est le processus par lequel des systèmes dynamiques, qu’ils soient naturels ou artificiels,

ajustent leurs rythmes ou phases en suite à leurs interactions répétées. Ce phénomène est omniprésent

dans la nature, se manifestant dans des systèmes variés tels que des lucioles clignotant à l’unisson, des
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Synchronisation d’un système couplé

Figure 2.8 Visualisation de l’espace des phases de métronomes (ou oscillateurs) légèrements couplés dans
un système simulé

cellules cardiaques battant à l’unisson, des systèmes informatiques distribués etmêmedans les comportements

sociaux humains. Ce comportement dynamique présente souvent des transitions de phase, où un système

passe d’un état désordonné (sans synchronisation) à un état ordonné (synchronisation complète) lorsque

l’intensité du couplage critique est dépassée. Ce concept est analogue aux transitions de phase en physique,

comme le passage de l’état liquide à l’état gazeux.

2.6.1 Métronome

Une expérience simple peut illustrer ce phénomène. Il suffit de prendre plusieurs métronomesmécaniques

et de les poser sur une surface instable dans un axe de direction arbitraire y et de poser les métronomes

avec leur bras se balançant le long de cet axe. En les démarrant séquentiellement à intervalles arbitraires,

on obtient notre système. Peu à peu les différents métronome vont se synchroniser l’un après l’autre en

raison de la force exercée sur la surface à chaque changement de direction du bras de chacun d’entre eux

(Pantaleone, 2002). Une visualisation graphique de l’espace des phases d’un tel système évoluant dans le

temps se retrouve à la figure 2.8

2.6.2 Modèle de Kuramoto

Le modèle Kuramoto est une modélisation mathématique utilisé pour décrire ce type de système. Un

ensemble d’oscillateurs couplés et non linéaires, chacun ayant une fréquence propremais pouvant interagir

avec les autres oscillateurs du système. Ce modèle a été proposé par Yoshiki Kuramoto pour étudier la
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synchronisation spontanée dans des systèmes complexes (Kuramoto, 1975; Ha et al., 2016).

La dynamique de chaque oscillateur est décrite par l’équation suivante :

dθi
dt

= ωi +
K

N

N∑︂
j=1

sin(θj − θi)

Où : - θi est la phase de l’oscillateur i, - ωi est la fréquence naturelle de l’oscillateur i, - K est la force de

couplage entre les oscillateurs, -N est le nombre total d’oscillateurs dans le système.

Ce modèle montre que, sous certaines conditions, des oscillateurs d’un système peuvent se synchroniser

entre eux. Cela signifie qu’ils atteignent un état où leurs phases se verrouillent et évoluent à la même

fréquence collective, malgré une diversité initiale dans leurs fréquences naturelles. Il est largement utilisé

pour étudier des phénomènes de synchronisation et trouve des applications dans divers domaines tels que

la physique, la biologie, et les neurosciences.

2.6.3 Un cerveau synchronisé

Dans les réseaux récurrents, la synchronisation de groupes de neurones entre eux est essentielle pour

l’émergence d’attracteurs dynamiques semi-chaotiques complexes (Berner et al., 2023). Les articles de

(Karbowski et Ermentrout, 2002) et (Fischer et al., 2006), pour ne citer qu’eux, se sont intéressés à la

synchronisation à l’intérieur dedifférents oscillateurs neuronaux. Il ressort de ces recherches que la synchronicité

est atteignable dans un premier temps avec des réseaux récurrents aléatoires puis dans un second dans

des réseaux avec de l’apprentissage Hebbien pour autant que les poids inhibiteurs/excitants demeurent

balancés. Un élément étonnant qui émerge également des différentes études est la rapidité avec laquelle les

oscillateurs se synchronisent; pour les oscillateurs dont les forces synaptiques sont fixées, la synchronisation

prend dans plusieurs cas une fraction du nombre d’itérations contenu dans un cycle complet; lorsque

l’apprentissage Hebbien entre en jeu, il s’agit généralement de quelques cycles seulement pour atteindre

une certaine stabilité des dynamiques et des poids synapsiaux.
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CHAPITRE 3

LE CERVEAU
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L’intérêt pour la recherche en intelligence artificielle remonte jusqu’aux balbutiements des sciences informatiques,

qui ont vu le jour en 1936 avec la première machine de Turing. Dès 1943, McCulloch et Pitts détaillaient

la première formulation du perceptron(McCulloch et Pitts, 1943), l’unité fonctionnelle de base dans les

réseaux de neurones modernes. Le père fondateur de l’informatique, Turing lui-même, parlait de "machine

intelligente" en se référent à son invention et s’attelait dès 1948 à concevoir des algorithmes d’apprentissage

machine basés sur le fonctionnement du cerveau(Turing, 2004). L’hommederrière l’architecture de l’ordinateur

contemporain, Von Neuman, dans son livre séminal "L’ordinateur et le cerveau"(Neumann et al., 2000)1

parut en 1958, s’attarde à dresser une étude comparative entre l’ordinateur et le cerveau et à suggérer des

pistes de recherche bio-inspirées pour l’avancement de l’IA.

Depuis cette époque, les chercheurs ont perpétué cette tendance de s’inspirer de mécanismes biologiques

(Hopfield, 1982; Lobo et al., 2020), fonctionnels (Feldman, 2012; Macpherson et al., 2021), topologique

(Macpherson et al., 2021), neurologiques (Krotov etHopfield, 2019;Macpherson et al., 2021) et psychologiques

(Anderson, 2007) pour développer de nouveaux algorithmes "intelligents".

Depuis le perceptron avec la propagation arrière, de nombreuses autres techniques développées au fil des

ans ont continué à être largement inspirées par l’apprentissage neurologique, avec la mention explicite

d’inspiration biologique dans de nombreux articles proposant des variations ou de nouveaux algorithmes

d’apprentissage machine.

Cette riche histoire commune entre les sciences cognitives et l’IA, l’intérêt des plus grands penseurs des

sciences informatiques pour le cerveau et le rythme constant des découvertes en neuroscience propulsé

par les avancées continues en imagerie cérébrale, en biologie et algorithmiques nous pousse à croire que

l’intersection entre ces deux domaines est la voie à suivre pour espérer atteindre un jour l’intelligence

artificielle générale (AGI, de l’anglais artificial general intelligence).

Les transformeurs (Vaswani et al., 2017), qui sont présentés à la section 4.1.2.3 représentent l’état de l’art

en termes de capacités d’IA largement applicables. Cette technologie, à laquelle on doit les avancées

fulgurantes sur le traitement du langage naturel des dernières années, s’est révélée après coup avoir un

fonctionnement analogue à une zone de l’hippocampe, décrit ci-bas en 3.1 (Whittington et al., 2022). Cette

découverte renforce une fois de plus la dépendance de l’IA sur la neuroscience.

1 Traduction libre, de l’anglais "The computer and the brain"(Neumann et al., 2000)
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Ce chapitre vise à présenter les différentes notions neurologiques tirées de l’étude de celui-ci, humain

et animal, qui nous semblent pertinentes pour l’élaboration d’une modélisation d’un réseau dynamique

fonctionnel présentant des capacités d’optimisation tout en ayant des caractéristiques dynamiques analogues

à l’apprentissage biologique.

3.1 L’hippocampe

L’hippocampe est une structure critique du cerveau humain que l’on retrouve dans le lobe temporel du

cerveau. Il est largement considéré comme une pièce centrale du système de création et de rappel de

mémoires sémantiques et épisodiques. Par le faitmême, il est une zone centrale duprocessus d’apprentissage

à partir de nouvelles expériences. Il est également considéré comme étant une structure centrale pour la

consolidation des mémoires à court terme en mémoire à long terme (Witter, 2012).

Son fonctionnement est intimement lié à celui d’autres structures du système limbique, contribuant à la

régulation des émotions et des comportements motivés (Anand et Dhikav, 2012). L’une de ses fonctions

principales de l’hippocampeest l’encodage contextuel des stimuli sensoriels interprétés et des lieux, permettant

aux individus de se repérer dans leur environnement et de se remémorer des événements spécifiques

(mémoire épisodique) (Witter, 2012). Cela démontre le rôle central de la mémoire pour l’émergence de

comportements intelligents.

3.1.1 Organisation des neurones dans l’hippocampe

L’hippocampe comporte trois régions principales, CA1, CA2 et CA3. L’étudede la troisième, CA3, est particulièrement

intéressante dans notre contexte puisque, comportant de nombreuses connexions récurrentes vers elle-

même et vers les deux régions inférieures, via un réseau dense de cellules pyramidales interconnectées

(Witter, 2012) son graphe de connectivité en fait une forme de RNN. Ces connexions forment un circuit auto-

associatif, permettant à la région CA3 de jouer un rôle crucial dans le stockage et le rappel d’information

(Bennett et al., 1994). Son organisation unique facilite la formation de motifs d’activité spécifiques, ou

"ensembles deneurones" s’activant de façonordonné et périodique, qui représentent l’encodagedes éléments

ou des aspects d’expériences mémorisées. Ce circuit a la capacité de sauvegarder ces motifs à l’intérieur

d’attracteurs limites pour un rappel ultérieur même après une seule exposition à un stimuli distinct.

Dans le domaine de l’intelligence artificielle plus spécifiquement, la structure et la fonction de la région

25



CA3 de l’hippocampe ont inspiré le développement d’algorithmes pour l’apprentissage de mémoires dans

des réseaux de neurones récurrents dès 1982 (Hopfield, 1982). De nombreuses recherches subséquentes

ont tenté de reproduire les mécanismes de l’apprentissage auto-associatif et la capacité de généralisation

observés dans CA3 (Hopfield, 1984; Gosti et al., 2019; Lobo et al., 2020; Macpherson et al., 2021), qui nous

offrent des pistes pour la création de systèmes capables d’apprendre de manière autonome à partir de

séquences d’événements et de se remémorer des informations de manière contextuelle. Pour ne citer

qu’un exemple concret, les modèles de mémoire associative basés sur les principes de fonctionnement de

CA3 sont explorés afin d’améliorer la reconnaissance de motifs, la prédiction de séquences et la navigation

autonome dans des environnements complexes (Lobo et al., 2020; Macpherson et al., 2021).

3.2 Le cerveau comme système dynamique

Le cerveauhumain peut être représenté commeun systèmedynamiquede la formeSt+1 = f(St, Isensorielle, γ),

où l’état des neurones S au temps t est fonction de leur état précédent, des entrées sensorielles et γ un

terme général qui englobe toutes les spécificités biochimiques ayant un impact sur l’état des neurones.

Cette formalisation est désormais fréquemment utilisée par les chercheurs pour créer des modèles de RNP

et de RNN afin d’étudier l’impact de la variation des différents paramètres appartenant abstrait dans γ,

tel que différents neurotransmetteurs(Holca-Lamarre et al., 2017; Pickering et Pesola, 2014; Graupner et

Gutkin, 2009; Yin et Wang, 2016).

3.2.1 Attracteur pour la navigation spatiale

Dans la régionCA1 de l’hippocampe, il existe des neurones uniques qui génèrent des influx nerveux lorsqu’un

sujet se trouve à un endroit précis dans l’espace appelé "neurone de lieu" (en anglais "place-cells"). Un

autre type de neurones, toujours dans cette région s’activera lorsque le sujet pose des actions qui auront

pour effet de modifier son emplacement dans l’espace, ou même l’espace en lui-même (O’Keefe, 1976).

Concrètement, cela suggère qu’un neurone précis du premier type s’active chaque fois que nous nous

trouvons sur le seuil d’une porte et un neurone du second type s’active si nous ouvrons cette porte.

Plus récemment, les recherches de (Hafting et al., 2005) ont révélé quedans le cortex entorhinal dorsomédial,

qui est fortement connecté à CA1, il existe des neurones qui s’activent périodiquement lorsque le sujet se

trouve à des endroits précis dans l’espace. Ces neurones sont appelés "neurones de grilles", car si l’on

cartographie les emplacements où l’une de ces cellules est activée alors qu’un rat se déplace dans un espace
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fini (par exemple, une boîte), ceux-ci s’activent à des intervalles réguliers pour former un motif de grille

triangulaire.

Ce type d’activation périodique contextuelle démontre donc la présence d’une oscillation sur un point fixe,

si l’on tient compte seulement du neurone en question, et d’attracteurs cycliques, si l’on prend en compte

la suite complète d’activations menant au potentiel d’action du neurone observé, dans le cerveau. Nous

pouvons également en retirer que ces attracteurs font partie des éléments de base constituant le modèle

interne qui est créé par le cerveau pour traiter l’information et générer des actions.

3.2.2 Bruit stochastique

Comme tout ingénieur en fait l’expérience rapidement dans sa carrière, le monde physique est désordonné

et il existe un écart fondamental dès lors que l’on tente d’appliquer la théorie expérimentalement. Le

cerveau n’échappe pas à cette règle, et bien que les neurones suivent des règles bien précises qui dictent

leur dynamique, il arrive qu’ils ne s’activent sans que celui-ci ne reçoive suffisamment de potentiels d’actions

pour le justifier. Également, il arrive que malgré des stimuli entrants suffisants, un neurone fasse défaut et

ne produise pas d’influx nerveux alors que toutes les conditions sont réunies pour que ce soit le cas (Faisal

et al., 2008).

Le cerveau contient ainsi par défaut un certain bruit stochastique de fond. Toutefois, il est maintenant

reconnuque cebruit peut avoir des effets positifs pour les calculs effectués dans le cerveau, tel que l’augmentation

de signaux faibles via un processus appelé la résonance stochastique (Faisal et al., 2008). Également, il a

été prouvé que la présence de bruit au moment de l’entraînement de réseaux de neurones profond permet

l’apprentissage d’une représentation plus précise et robuste par ce dernier (Neelakantan et al., 2015), ainsi

qu’une réduction du surapprentissage (Noh et al., 2017). Ce bruit stochastique est potentiellement ainsi

non pas une limitation du système mais bien un avantage au niveau computationnel. Ceci expliquerait

également qu’il soit toujours présent après 521millions d’années d’évolution (Strausfeld et al., 2016), suggérant

également qu’il s’agisse d’un mécanisme finement optimisé.

3.2.3 Le cerveau à la limite du chaos

Selon le modèle développé dans les recherches de (Kitzbichler et al., 2009), le cerveau opère à la limite

du chaos, ses dynamiques internes alternant entre des périodes prolongées en verrouillage de phase et
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de changements rapides, exploitant cet état pour optimiser son traitement de l’information, sa flexibilité

cognitive et sa capacité à transiter rapidement entre différents états fonctionnels. Les travaux de Knudsen

suggèrent également que la limite du chaos est essentielle pour la créativité (Bilder et Knudsen, 2014).

Ils proposent que des dynamiques malsaines puissent expliquer certains des dysfonctionnements associés

à des conditions psychologiques telles que la schizophrénie, dans le cas où les dynamiques seraient trop

chaotiques, ou le syndrome d’Asperger, dans le cas où elles seraient trop ordonnées. On peut en déduire

que le changement entre les différents attracteurs dominant constitue un point critique essentiel pour une

cognition saine et productive et qu’il existe un délicat point d’équilibre optimal vers lequel le cerveau doit

tendre pour effectuer un traitement efficace de l’information. Suivant les modélisations de (Steyn-Ross

et al., 2014), le cerveau exhiberait pareillement ce régime dynamique lors des phases de sommeil profond,

dénotant son importance pour diverses fonctions cérébrales.

3.3 Apprentissage en ligne en un coup

Nous pouvons tous ramener dans notre esprit des souvenirs d’événements marquants issus d’une époque

révolue. Que ce soit une graduation, un mariage ou l’odeur de notre première voiture neuve à son premier

jour, les données sensorielles associées à ces évènements n’ont été présentées à notre cerveau qu’une

seule fois et, pourtant, leur seule évocation est suffisante pour les ramener en mémoire. Signifiant qu’il est

possible d’y accéder même une fois que plusieurs années se sont écoulées, quelques fois des décennies,

même suite aux nombreux changements plastiques qui sont survenus dans le cerveaupar le biais de nouveaux

souvenirs et de consolidation d’apprentissages. Ce typedemémoire pérenne illustre bien l’unedes capacités

exceptionnelles de notre cerveau, l’apprentissage en un coup pérenne d’un stimulus.

Un autre exemple de cette capacité de mémorisation à partir d’une seule exposition est notre capacité à

reconnaître une personne que nous n’avons vue qu’une seule fois ou de retrouver notre chemin dans un

environnement où nous ne nous sommes rendus qu’une seule fois. Mais notre capacité d’apprentissage en

un coup ne se limite pas à la mémorisation. Les travaux de (Tiedemann et al., 2022) dévoilent l’existence

d’un modèle génératif interne qui permet de créer des variations appartenant à une catégorie donnée à

partir d’une seule image de cette catégorie.

Différentes études ont également révélé qu’il est possible pour des sujets de se remémorer des séquences

d’images qui ne leur avaient été présentées qu’une seule fois sur des périodes allant de quelques heures à

quelques jours (Jacques et al., 2013; MacLeod et al., 2018).
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La question de comprendre les mécanismes impliqués qui rendent possible une telle faculté en est une

qui préoccupe les neuroscientifiques et est le sujet de nombreuses recherches (Turner et Onysk, 2022; Lee

et al., 2015). Elle comporte deux volets: l’apprentissage en un coup et la rétention sur le long terme. Ces

deux catégories ont fait l’objet de nombreuses études et cette section vise à en présenter certaines qui sont

pertinentes pour le présent travail de recherche.

3.3.1 Apprentissage en ligne à long terme

Shaw et Porte ont démontré que des souvenirs pouvaient être modifiés via le rappel (Shaw et Porter,

2015). Dans leur expérience, les sujets étaient appelés à se remémorer des souvenirs semi-lointains et les

chercheurs mentionnaient un élément marquant fictif, tel qu’une arrestation en énonçant le souvenir. Tous

les sujets ont à ce moment relevé que cet élément n’avait pas pris place dans le souvenir en question.

Cependant, lorsque quelques mois plus tard lors d’une seconde rencontre, les sujets étaient appelés à

relater le souvenir, celui-ci incluait l’élément fictif pour une partie des participants. Cela est induit par

le fait que la mémoire ne fonctionne pas comme un enregistreur, mais s’applique plutôt à reconstruire

les évènements à partir d’un sous-ensemble compressé de l’information original (Loftus, 1996), soutenant

également l’existence d’un modèle génératif interne permettant de décompresser une mémoire encodée.

Ces faux souvenirs causent de nombreux problèmes, notamment au niveau du système de justice: "Le

nombred’erreurs d’identifications conduisant à des accusations erronées, combiné au fait que le témoignage

oculaire est accepté trop facilement par des jurys, est un réel problème pour la justice"2

Ces expériences soulignent la nature "en ligne" du cerveau, où la limite entre l’apprentissage et le rappel est

floue, tel que corroboré par de nombreux travaux subséquents (Jacques et al., 2013; Siestrup et Schubotz,

2023),et qu’elle est même inexistante dans certains cas (Censor et al., 2010).

Dans le cas d’expériences traumatiques, comment la thérapie peut aider à recadrer des souvenirs afin qu’ils

soient mieux intégrés dans le but qu’ils cessent de causer du tort au patient (Kar, 2011) est un exemple

positif des outils thérapeutiques qui utilisent ce principe neurologique. Cependant, sans ce travail cognitif

d’accès et d’édition, le souvenir peut demeurer inchangé sur de très longues périodes. Cela implique un

mécanisme neurologique qui régule à un haut niveau la plasticité de certains neurones en fonction des

informations que leurs synapses encodent et de leur positionnement topologique dans le graphe de calcul

2 Également tiré de (Loftus, 1996), p. 201, traduis de l’anglais par Pierre de Sutter
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cérébral (Larzabal et al., 2018).

3.4 Activation binaire

La signalisation neuronale et lemétabolismeénergétique sont intrinsèquement liés aux propriétés biochimiques

des cellules nerveuses. La neurotransmission, reposant sur la libération et la réception deneurotransmetteurs

dans la fente synaptique, est régulée par une série de réactions chimiques spécifiques. Ces processus sont

étroitement liés à la disponibilité de substrats énergétiques comme le glucose et l’oxygène, ainsi qu’à la

disponibilité des neurotransmetteurs dans les terminaisons synaptiques, éléments nécessaires pour une

activité neuronale soutenue. Ces ressources étant limitées, les travaux de (Macpherson et al., 2021) suggèrent

qu’une activation binaire permettrait une gestion plus efficace des ressources énergétiques.

Le voltage de lamembranedes neurones comporte donc deux états principaux en cequi attrait à la transmission

de l’information. Lorsqu’elle se trouve sous le potentiel seuil, généralement entre -50mV et -55mV, elle est

désactivée et très peu d’informations sont transmises aux neurones en aval (Hammond, 2015). Lorsque le

seuil est atteint, les canaux ioniquesNa+ s’ouvrent, dépolarisant lamembrane en laissant entrer les ionsNa+

extracellulaires jusqu’à atteindre un voltage d’environ 30mV. Le neurone à ce moment est activé et l’influx

nerveux est propagé par l’axone aux synapses qui libèrent ensuite leurs vésicules de neurotransmetteurs aux

neurones subséquents dans le graphe computationnel. Par la suite, les canaux ioniques Na+ se referment

alors que ceux K+ s’ouvrent, créant un flot d’ions de potassium qui quittent la cellule, re-polarisant par le

fait même la membrane jusqu’à son état initial et le dépassant dans le cas où le neurone est peu myéliné

(Hammond, 2015).

3.4.1 Réfraction

Suite à son activation, un neurone tombe en état de réfraction pour une période de quelque millisecondes.

Pendant cette période, il ne peut se réactiver à nouveau et est considéré comme insensible aux stimuli

entrants. Cela évite dans un premier qu’un neurone soit trop activé à répétition et dans un second, cela

laisse le temps aux neurones en aval d’intégrer son signal sans qu’il n’y ai possibilité de confusion entre deux

pics subséquents. Cette période permet également au neurone de revenir à son équilibre biochimique, au

niveau de la concentration d’ions à l’interne, évitant par le fait même des impulsions ambigües (dans le cas

ou le voltage du neurone lors du pic ne pourrait pas atteindre sa valeur habituelle).
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3.4.2 Encodage de l’intensité dans la fréquence

Cependant, ce n’est pas parce que les impulsions des neurones sont binaires que celles-ci ne sont pas

en mesure d’encoder une gradation du stimuli d’entrée. Bien que les neurones génèrent des potentiels

d’action de manière tout ou rien, à amplitude fixe, l’intensité d’un stimulus est encodée via la fréquence

de ces potentiels d’action. Ce phénomène, connu sous le nom d’encodage fréquentiel, permet au système

nerveux de transmettre des informations sur l’amplitude du stimulus (Tabas et von Kriegstein, 2021). La

fréquence des pics d’activations augmente avec l’intensité du stimulus, permettant ainsi une modulation

fine de l’activité neuronale en réponse à l’environnement dans un contexte où l’amplitude de l’activation

en elle-même n’est pas un paramètre.

3.5 Règle d’apprentissage locale

L’intelligence peut être vue comme un phénomène émergent résultant de l’interaction complexe entre de

nombreux éléments simples. Dans des systèmes tels que les réseaux de neurones, l’intelligence n’est pas

attribuable à un élément uniquemais émerge de l’organisation collective et de la dynamiquedes interactions

neuronales. Cette perspective suggère que l’intelligence est en partie le produit de règles locales et simples

opérant à l’échelle des composants individuels, engendrant des comportements complexes et adaptatifs à

une échelle supérieure.

L’intelligence des fourmis est un exemple classique d’intelligence collective et émergente qui est basée

sur des règles simples et locales. Sans une supervision centrale, les fourmis parviennent à résoudre des

problèmes complexes, comme la recherche de nourriture ou la construction et la défense de la fourmilière, à

travers des interactions locales entre individus (Millonas, 1992; DAVIDMORGAN, 2009). Ces comportements

sont régis par des règles simples d’interaction et de communication basées, entre autres, sur le dépôt de

phéromones (Czaczkes et Heinze, 2015; DAVID MORGAN, 2009), qui guident collectivement le groupe vers

des solutions efficientes (Gelblum et al., 2020).

3.5.1 Plasticité synaptique temporelle

La plasticité synaptiquedépendante du tempsde l’activité neuronale (STDP, de l’anglais spike-timedependent

plasticity), est unmécanisme fondamental d’apprentissage et demémorisation dans les réseaux deneurones

biologiques. Elle réfère à la modification de la force des connexions synaptiques en fonction du temps
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d’occurrence relatif des potentiels d’action entre les neurones pré- et post- synaptiques (Buonomano et

Carvalho, 2009).

La règle de base de la STDP stipule que si un neurone pré-synaptique s’active avant un neurone post-

synaptique (pré-puis-post), cela renforce la synapse, facilitant la transmission future des signaux. Inversement,

si le neuronepost-synaptique aunepointe avant le neuronepré-synaptique (post-avant-pré), la force synaptique

est atténuée, rendant la transmission ultérieure de signaux plus difficile (Feldman, 2012).

La STDP est également influencée par la synchronicité des rafales de potentiels d’activation. Des rafales

synchronisées entre neurones pré- et post-synaptiques peuvent renforcer significativement les synapses,

favorisant l’émergence de groupes neuronaux synchronisés (Anisimova et al., 2022) essentiels pour la formation

de réseaux fonctionnels et pour l’encodage de l’information (Palva et al., 2010; Rolls et Treves, 2011)

3.5.1.1 Facteurs additionnels

Comme un grand nombre de processus biologique acquit à travers l’évolution, il existe une multitude de

facteurs additionnels qui ont un impact sur la potentiation des neurones et la plasticité. Les concentrations

intra- et extracellulaires des différents ions positifs et négatifs responsables de la variation du voltage de

la membrane (Barreto et Cressman, 2011), la disponibilité dans la terminaison synaptique des vésicules

contenant les neurotransmetteurs requis pour la transmission des impulsions en aval (Lou et al., 2012) et

même la quantité de sous-produits indésirables des réactions chimiques impliqués dans la transmission

d’influx nerveux telle l’amyloïde (Karisetty et al., 2020) sont tous des éléments qui viennent moduler les

caractéristiques fonctionnelles des neurones en temps réel. Ces éléments sont des champs de recherche

actifs extrêmement complexes en raisondu grandnombred’interactions impliquées et dépassent largement

le cadre des travaux présentés ici. Nous nous en tenons par conséquent à la forme simplifiée de la STDP.

3.5.1.2 Algorithme

Formellement l’algorithme simplifié de la STDP biologique peut être exprimé comme suit (algorithme tiré

de (Song et al., 2000)):

Soitwij la capacité de transmission des synapses du neurone i aux dendrites du neurone j. Le changement

synaptique∆wij suite à une activation peut être modélisé :
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∆W =

⎧⎪⎨⎪⎩
A+ × exp

(︁ tpre−tpost
τ

)︁
, si tpost > tpre

A− × exp
(︁ tpost−tpre

τ

)︁
, si tpost < tpre

(3.1)

oùW représente les poids synaptiques,A+ etA− sont les taux d’apprentissage, tpre et tpost sont les temps

d’occurrences des impulsions des neurones pré et post-synaptiques, respectivement, et τ est la constante

de temps.

3.6 Autres facteurs

3.6.1 Alpha, Beta, Theta, Delta

Il existe différentes fréquences caractérisant les propriétés fonctionnelles et dynamiques du cerveau. Celles-

ci sont généralement reconnues comme jouant un rôle fondamental dans la modulation et la coordination

de l’activité neuronale. Ces rythmes sont cruciaux pour une variété de fonctions cognitives et reflètent

différents états de conscience. Leur modulation pendant les processus d’apprentissage et de mémorisation

suggère que les différents régimes cérébraux contribuent à l’optimisation et à la consolidation du traitement

de l’information.

Les ondes bêta (14-30Hz) sont les plus rapides et reflètent des états d’alerte, de concentration et de cognition

active. Elles sont caractéristiques des périodes de prise de décision, de résolution de problèmes et d’autres

activités mentales intensives (nuryadi et al., 2020). Une augmentation de l’activité bêta vers son régime

plus élevé est souvent liée à l’anxiété ou à l’excitation (Ribas et al., 2018).

Les ondes alpha (8-13Hz) sont particulièrement présentes dans un état de relaxation avec les yeux fermés,

mais elles diminuent lors de l’ouverture des yeux ou de la concentration mentale (Moini et Piran, 2020).

Elles sont souvent associées à des états de calme, de méditation (katyal et goldin, 2021), et servent de pont

entre la conscience et le subconscient, facilitant la créativité (Fink et Benedek, 2014) et la mémorisation

(Makada et al., 2016).

En continuant vers les fréquences plus basses, nous arrivons aux ondes thêta (4-8 Hz) qui sont typiquement

associées aux états de sommeil léger, ou de relaxation profonde (Moini et Piran, 2020). Les ondes thêta

jouent un rôle crucial dans les mécanismes de plasticité cérébrale (tsanov et manahan vaughan, 2009;
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tang et al., 2019), l’intégration sensorielle et sont par conséquent importantes pour l’apprentissage, la

mémorisation et l’intuition.

Finalement, les ondes delta (0.1-4Hz) sont quant à elles principalement observées pendant le sommeil

profond sans rêves et chez les très jeunes enfants durant le développement du cerveau (Moini et Piran,

2020). Ce sont les plus lentes, présentent la plus grande amplitude et sont synonymes de régénération, de

réparation autant au niveau corporel (hoda elkhenany et al., 2018) que cérébral (nina e. fultz et al., 2019).

On observe ici qu’un ralentissement des ondes cérébral est associé avec des états progressivement plus

détendus et également un apprentissage plus prononcé et profond, alors qu’une accélération tend à engendrer

des états d’alerte progressivement plus accentués.

3.6.2 Neurotransmetteurs

Les neurotransmetteurs, comme le glutamate, le GABA, la dopamine, et la sérotonine, modulent l’activité

neuronale et influencent des processus cérébraux variés tels que l’apprentissage (Tellez et al., 2012b), la

motivation et l’adaptabilité comportementale (Peters et al., 2021). Ils agissent commedesmessagers chimiques,

facilitant ou inhibant la transmission synaptique (Reis et al., 2009), et leur concentration et libération sont

ajustées en réponse à l’activité neuronale et aux exigences de l’apprentissage dans différents contextes

(Tellez et al., 2012a; Uddén et al., 2010; Olvera-Cortés et al., 2008; Wert-Carvajal et al., 2022), soulignant

leur rôle primordial dans la modulation de la plasticité synaptique. Ceux-ci permettent une modulation en

temps réel à la fois globale (Decot et al., 2017) et sélectives (Gao et Goldman-Rakic, 2003) des différents

circuits neuronaux à travers le cerveau.

Dans le contexte de notre recherche, nous retenons ici simplement quemalgré les règles d’activation locales

mentionnées plus haut, la bio-plausabilité n’exclut pas nécessairement une formede communication diffuse

plus globale ayant un effet global sur le réseau.

3.7 Organisation des neurones dans le cortex en colonnes

Dès 1957, les recherches deMountcastle ont permis dedécouvrir l’unité structurelle et fonctionnelle fondamentale

du cortex cérébral, la minicolonne. Ces colonnes ont une composition et une organisation similaires les

unes par rapport autres, constituées d’environ 80 à 110 neurones disposés de façon cylindrique avec une
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orientation perpendiculaire à sa surface qui est répétée à travers le cerveau, de façon à former un pavage sur

le plan couvrant le cortex(Mountcastle, 1957). Densément interconnectés, les neurones la composant ont un

champ réceptif similaire et travaillent de concert pour traiter un influx nerveux distinct. C’est pourquoi elles

sont considérées comme les briques élémentaires du traitement de l’information dans le cerveau, chaque

colonne se spécialisant dans le traitement d’un type spécifiqued’information sensorielle ou cognitive (Molnár,

2013).

Les mini-colonnes sont organisées en groupe variant de 50 à 100 minicolonnes appelées hypercolonnes.

Cette architecture permet de faciliter le filtrage, qui est à la base du principe de l’attention, et l’organisation

interne permet un traitement hiérarchique de l’information. Aussi, les travaux de (Hubel et Wiesel, 1968)

soutiennent qu’il existerait aussi une organisation hiérarchique entre les hypercolonnes elles-mêmes et il a

été avancé que cette hiérarchie de traitements est l’un des éléments clés dans l’organisation et l’abstraction

d’informations complexes à travers le cerveau (Peissig et Tarr, 2007) et cemodèle a été reproduit informatiquement

pour réaliser la prédiction et la planification complexe impliquant différentes échelles de temps (Niu et al.,

2022).

3.7.1 Architecture modulaire

L’arrangement du cerveau en un graphe de traitement topologiquement hiérarchique (Hubel et Wiesel,

1968) est donc facilité par l’organisation du cerveau en unités fonctionnelles distinctes, capables de traiter

des informations de manière semi-indépendante. Chaque minicolonne, ou module, étant spécialisée dans

un type spécifique de traitement d’information, cela permet une parallélisation et une intégration efficace

des tâches cognitives (Peissig et Tarr, 2007). Cettemodularité favorise aussi la robustesse du systèmeneural,

car les dysfonctionnements localisés peuvent être isolés sans perturber l’ensemble du réseau. C’est souvent

le cas d’ailleurs lors de la perte de stimuli sensoriels dû, par exemple, à une amputation ou à un problème

neurologique que les zones qui étaient dédiées au traitement de cette information se réorganisent pour

traiter de nouveaux stimuli évitant de devenir inutilisées et démontrant la compétition entre les différents

stimuli pour leur traitement (Knecht et al., 1998). Inversement, lorsqu’une régiondu cerveau est endommagée,

la topologie du graphe cérébral semodifie de façon à rediriger les informations traitées par la zonedétériorée

vers une zone saine (Jones et Adkins, 2015).
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3.7.2 Dynamiques internes

Les dynamiques internes des colonnes neuronales et desmodules cérébraux sont régies par des interactions

complexes entre les neurones au sein d’une même couche de la colonne, entre les différentes couches et

entre les différentes colonnes. Ces dynamiques sont caractérisées par des boucles de rétroaction et des

mécanismes d’inhibition latérale qui permettent d’ajuster et de stabiliser l’activité neuronale en réponse

à des stimuli internes et externes (Hubel et Wiesel, 1968) pour converger sur des attracteurs significatifs

(Peissig et Tarr, 2007).

3.8 Mémoire associative contextuelle

La mémoire associative contextuelle se réfère à la capacité du cerveau à former et récupérer des souvenirs

basés sur les associations entre des stimuli et leur contexte. Elle implique l’intégration d’informations

provenant de différentes sources sensorielles et leur stockage dans une représentation cohésive qui peut

être activée par des indices contextuels. Ce typedemémoire est essentiel pour naviguer dans des environnements

complexes et pour la prise de décision, car elle permet aux individus de se rappeler des expériences passées

dans des contextes similaires et d’utiliser ces souvenirs pour guider les comportements futurs.

3.8.1 Intégration globale de l’information

Une recherche qui exprime bien cette intégration globale de l’information est celle effectuée par (Williams

et Bargh, 2008). L’expérience commençait dans l’ascenseur, à l’insu du sujet, alors qu’un complice demandait

au sujet si ce dernier pouvait tenir son breuvage le temps que le complice prenne des notes. Les sujets

étaient divisés en deux groupes: le premier groupe se faisait tendre un breuvage chaud (café) et le second un

breuvage froid (café glacé). Plus tard dans l’expérience, les chercheurs demandaient aux sujets de décrire la

personne qu’ils avaient croisée dans l’ascenseur. Le groupe ayant tenu le breuvage chaud était plus enclin à

décrire la personne dans l’ascenseur plus positivement, donc en utilisant des adjectifs comme chaleureuse,

généreuse, sociale ou plus joyeuse, que ceux qui avait tenu le breuvage froid. On peut voir ici comment un

stimulus sensoriel de bas niveau, la température au niveau de la main, qui est traité de façon inconsciente

vient néanmoins impacter la perception de la réalité du sujet sans que celui-ci en soit conscient.

36



CHAPITRE 4

ALGORITHMES
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Maintenant que nous avons établi les différents éléments théoriques en neurosciences qui supportent

les décisions faites dans la formulation de notre proposition, nous nous tournons maintenant vers les

différentes approches algorithmiques proposées dans la littérature sur l’apprentissage machine. Le présent

chapitre vise à offrir un survol des techniques les plus pertinentes pour le cadre de notre recherche.

4.1 Propagation arrière

La première technique est également la plus connue et la plus utilisée de celles que nous avons retenues.

Il s’agit de la propagation arrière, ou rétropropagation. Il n’y a pas de consensus officiel sur son origine

puisque différents concepts s’en approchant et s’y rattachant ont été définis à plusieurs moments sous

différentes formes plus ou moins abouties. Nous pouvons néanmoins retracer la première utilisation du

terme "correction d’erreur via la propagation arrière" à (Rosenblatt, 1963) en 1962. Huit ans plus tard Seppo

Linnainmaa publie la version moderne telle que nous la connaissons aujourd’hui (Linnainmaa, 1970).

La RP applique le théorème de dérivation des fonctions composées de Leibniz. Elle estime le gradient

des différents poids dans un réseau de neurones afin de les optimiser itérativement par rapport à l’erreur

calculée à partir de la différence entre une prévision en sortie du réseau sur un vecteur d’entrée et la sortie

réelle attendue pour cette entrée. Cette différence est calculée à l’aide de la fonction d’erreur, qui varie en

fonction du problème que l’on tente de résoudre. Cette fonction est le terme que l’on tente d’optimiser au

moment de l’entraînement d’un réseau de neurones.

4.1.1 Algorithme original

L’algorithme est composé de quatre éléments principaux: la propagation avant, le calcul de l’erreur, la

rétropropagation de l’erreur et la mise à jour des poids. Formellement:

Définition 4.1 (Rétropropagation) 1. Propagation avant

Pour chaque couche l = 1, . . . , L du réseau, où L est la dernière couche, calculer les activations :

a[l] = f [l](z[l]) où z[l] = W [l]a[l−1] + b[l]
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avec a[0] étant l’entrée du réseau, W [l] et b[l] étant respectivement les poids et les biais de la couche l, et

f [l] la fonction d’activation pour la couche l.

2. Calcul de l’erreur

Calculer l’erreur à la dernière couche (L) :

δ[L] =
∂L
∂a[L]

⊙ f ′[L](z[L])

où L est la fonction de perte, et⊙ représente le produit d’Hadamard (élément par élément).

3. Rétropropagation de l’erreur

Pour chaque couche l = L− 1, . . . , 1, rétropropager l’erreur :

δ[l] = ((W [l+1])T δ[l+1])⊙ f ′[l](z[l])

4. Mise à jour des poids et des biais

Mettre à jour les poids et les biais en utilisant le gradient de la fonction de perte par rapport à ces paramètres

:

W [l] = W [l] − η
∂L

∂W [l]
= W [l] − ηδ[l](a[l−1])T

b[l] = b[l] − η
∂L
∂b[l]

= b[l] − ηδ[l]

où η est le taux d’apprentissage.

39



Remarque : f ′[l](z[l]) représente la dérivée de la fonction d’activation par rapport à l’entrée z[l] de la couche

l, qui est nécessaire pour le calcul des gradients par la règle de la chaîne.

Cette procédure est répétée pour un nombre défini d’itérations ou jusqu’à ce que la fonction de perte

converge vers un minimum.

4.1.2 Avancées

4.1.2.1 Réseaux profonds

Avec le perfectionnement de la technique et l’augmentation exponentielle de la capacité de calcul, les

réseaux de neurones ont pu croître pour devenir toujours plus profonds (avec de plus en plus de couches

cachées). Supportant cette croissance, le perfectionnement de différents aspects de la technique. Que

ce soit, les "skip connections (He et al., 2016) facilitant la propagation du gradient sur de plus grandes

distances, le "dropout" pour améliorer la robustesse et limiter le sur-apprentissage ou l’introduction des

fonctions d’activation de type "ReLu" et "LeakyReLu", les avancées ont été nombreuses depuis la conception

de l’algorithme original permettant aux modèles de l’état de l’art de passer de 8 couches avec le AlexNet

(Krizhevsky et al., 2012) à plus de 1000 couches pour lesResidualNets(He et al., 2016).

4.1.2.2 Réseaux de neurones convolutifs

L’algorithme des réseaux de neurones convolutifs ou CNN (de l’anglais convolutional neural networks) est

composéedeplusieurs étapes clées, dont la convolution, l’activation, le pooling, et finalement la rétropropagation

pour ajuster les poids. Formellement, les équations de base pour ces étapes sont:

1. Convolution :

Z
(l)
ij =

M−1∑︂
m=0

N−1∑︂
n=0

W (l)
mnX

(l−1)
(i+m)(j+n) + b(l) (4.1)

où Z
(l)
ij est la sortie de la couche de convolution l à la position (i, j), W (l)

mn est le poids du noyau de

convolution à la position (m,n) dans la couche l, X(l−1)
(i+m)(j+n) est l’entrée à la position (i + m, j + n)

de la couche précédente l − 1, et b(l) est le biais de la couche l.

2. Activation (par exemple, fonction ReLU) :

A
(l)
ij = max(0, Z

(l)
ij ) (4.2)
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où A(l)
ij est la sortie activée à la position (i, j) dans la couche l.

3. Pooling (par exemple, max pooling) :

P
(l)
ij = max

(m,n)∈R
A

(l)
(i+m)(j+n) (4.3)

où P
(l)
ij est la sortie du pooling à la position (i, j) dans la couche l, et R est la région du pooling autour de

la position (i, j).

4. Rétropropagation : La rétropropagation dans les CNN est plus complexe en raison de la convolution et

du pooling. Le gradient de l’erreur par rapport aux poids de convolution est calculé en tenant compte de la

contribution de chaque poids au signal de sortie. La formule générale est similaire à celle des réseaux de

neurones pleinement connectés, mais l’application pratique nécessite de prendre en compte la structure

spécifique des CNN. Sa formulation n’est pas particulièrement pertinente pour notre recherche et c’est

pourquoi nous nous limitons aux principes généraux exposés ci-haut.

4.1.2.3 Transformeurs

Parmi les récentes avancées en recherche qui ont permises de faire augmenter les capacités techniques

des réseaux de neurones artificiels, l’une d’entre elles se distingue particulièrement en matière de capacité

et d’impact sur la recherche. Il s’agit des Transformeurs(Vaswani et al., 2017). Les transformeurs ont été

originalement conçus comme un mécanisme d’attention afin de permettre à un réseau plus traditionnel de

stocker des informations en nombre beaucoup plus important que les techniques de l’époque, telles que

les LSTM (Hochreiter et Schmidhuber, 1997), ne le permettaient, de façon plus durable, et plus rapidement

(en nombre d’exemples) (Vaswani et al., 2017). Les modèles de traitement du langage naturel les plus

développés et les plus performants appartiennent d’ailleurs à cette famille d’architecture de réseaux: GPT-3

(Brown et al., 2020), GPT-4 (OpenAI et al., 2024), BERT.(Devlin et al., 2019)

Malgré l’approche mathématique qui a menée à leur élaboration (Vaswani et al., 2017), ils sont en mesure

de répliquer les représentations spatiales que l’on retrouve dans l’hippocampe (Whittington et al., 2022)

tel que les "neurones de grille" (Hafting et al., 2005) et les "neurones de lieu" (O’Keefe, 1976). Cette

architecture présente aussi de fortes similarités avec certains modèles de l’hippocampe développés en

neurosciences, ce qui l’a initialement établie comme candidate d’algorithme de base pour notre recherche.
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L’article (Ramsauer et al., 2021) prouve que les modifications apportées à l’architecture des réseaux de

neurones profonds pour obtenir un transformeur, font de ces derniers un isomorphisme computationnel

(au niveau du traitement de l’information) aux réseaux de Hopfields continus modernes. Ces derniers sont

fortement inspirés du principe d’auto-associativité observé dans l’hippocampe (Krotov et Hopfield, 2016).

Cependant, puisque la version de la mémoire associative visée est celle des Hopfields modernes(Krotov et

Hopfield, 2016), l’adaptation à partir des Hopfields classiques requise pour traiter les R nécessite le retrait

de la fonction Hebbienne. Cela l’éloigne du processus biologique analogue, raison qui nous a poussés à

écarter cette architecture comme point de départ pour nos travaux.

Néanmoins il s’agit ici d’unedémonstration comment l’intégration deprincipes computationnels et dynamiques

du cerveaupeut bénificier aux algorithmes d’apprentissagemodernes. C’est d’ailleurs, alliée aux performances

impressionnantes des transformeurs, l’une desmotivations qui nous a poussé à étudier lesRéseaux compétitifs

Hebbiens.

4.1.3 Limitations

4.1.3.1 Apprentissage lent

La propagation arrière, bien qu’efficace pour ajuster les poids synaptiques dans les réseaux de neurones

profonds, souffre d’une convergence lente. Plus le réseau est profond et complexe, plus ce problème

est magnifié, culminant avec des frais de calcul estimés à 25 millions $ et 3 mois pour l’entraînement des

dernières itérations des modèles de langage modernes. En plus de réduire l’accessibilité à l’entraînement,

ce type demodèle à des compagnies disposant de fonds de recherche faramineux, ces coûts prohibitifs sont

également des freins majeurs à l’avancement de la recherche puisque très peu de chercheurs ont accès à

des ressources à cette échelle.

4.1.3.2 Méthodes séquentielles ad hoc

La nature "stateless" (sans état) de la propagation arrière, où chaque mise à jour des poids est effectuée

indépendamment des états précédents du réseau, contraste fortement avec le fonctionnement dynamique

et adaptatif du cerveau humain (Palva et al., 2010; Knecht et al., 1998). Ce dernier maintient et utilise des

états internes persistants pour traiter les informations temporelles et contextuelles (Hammond, 2015; Tabas

et von Kriegstein, 2021), une capacité que la propagation arrière standard ne capture pas. C’est grâce en
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partie à ces états que les réseaux de neurones biologiques sont en mesure d’intégrer des informations

temporelles (Rolls et Treves, 2011).

La rétropagation ne disposant pas de mécanisme analogue, elle ne permet pas par défaut d’approximer

des fonctions qui évoluent dans le temps et est limitée au traitement d’entrées statiques. De nombreuses

techniques ont été développées au fil des années pour contrevenir à cette limitation. Les réseaux récurrents

(Graves et al., 2013) d’abord, mais qui nécessite de calculer tous les états intermédiaires du début à la fin

de la séquence à apprendre, ce qui les rend gourmands en calcul et souffre des problèmes de la disparition

et de l’explosion des gradients, réduisant son efficacité ainsi que son potentiel applicatif. L’architecture

légèrement plus évoluée des LSTM (Hochreiter et Schmidhuber, 1997) vise à pallier au problème et bien

qu’elle permette d’améliorer largement l’efficacité des modèles, cela n’élimine pas le problème de coût

computationnel ainsi que l’impossibilité d’intégrer des informations qui précèdent la fenêtre de contexte

établie lors de l’entraînement. Plus récemment, les architectures incluant le principe de l’attention (Vaswani

et al., 2017) ont permis de progresser significativement au niveau des séries séquentielles notamment dans

le cas des modèles de langage massifs (LLM) qui ont désormais des capacités suffisamment avancées pour

permettre leur application à une large gamme de tâches variées (OpenAI et al., 2024).

4.1.3.3 Demande de calcul fixe

Toujours au niveau des limitations computationnelles, la rétropagation, dans sa forme standard, requiert

unequantité de calcul prédéterminéepour chaquepassage avant et arrière à travers le réseau, indépendamment

de la complexité intrinsèque ou de la simplicité de la tâche en cours d’apprentissage. Cette approche fixe ne

reflète pas la capacité adaptative du cerveau humain à allouer des ressources de calcul de manière flexible,

augmentant l’effort pour des tâches complexes tout en économisant de l’énergie pour des processus plus

simples. Cette rigidité augmente dans unpremier temps les coûts reliés à l’exploitation de ce type demodèle

puisque pour un nombre de mots fixé, une réponse à une question simple requiert le même calcul qu’une

marginalement plus complexe. En second lieu, cela limite également les performances, car l’absence de

cette capacité d’adapter la complexité du traitement requis en fonction de la complexité de la tâche fait en

sorte qu’il n’est pas possible de dédier plus de ressources pour résoudre des problèmes qui requièrent des

abstractions de plus haut niveau.
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4.1.3.4 Difficulté de l’apprentissage par renforcement

La prémisse entière de l’algorithme de la propagation arrière est basée sur l’accès à une fonction d’erreur

pouvant être appliqué sur la sortie de la dernière couche. Cela pose problèmedans le cadre de l’apprentissage

par renforcement, car cela signifie que nous devons définir une fonction de perte sur mesure pour le

problèmevisé. Cela limite entres autres la généralisation d’une architecture à différents types deproblématiques

puisque cette fonction doit être redéfinie pour chaque application. Également, il est difficile d’évaluer

la qualité d’une fonction de perte avant l’entraînement, ce qui est problématique, car celle-ci définit les

performances qu’il sera possible d’obtenir avec un modèle donné.

4.1.3.5 Apprentissage non-supervisé

Comme pour le point précédent, le besoin d’une fonction d’erreur externe donnée pour l’entraînement

réduit drastiquement son applicabilité dans un contexte d’apprentissage non supervisé. Bien que les travaux

de (Devlin et al., 2019) adaptent la rétropagation pour effectuer des tâches non-supervisées, il s’agit de

mécanismes ad hoc qui viennent eux-mêmes avec leur propre ensemble de limitations.

4.2 Apprentissage Hebbien

L’apprentissage Hebbien, nommé d’après Donald Hebb qui l’a initialement proposé dans son ouvrage "The

Organization of Behavior" en 1949 (Hebb, 1949), est l’un des principes fondateurs en neuroscience et en

intelligence artificielle qui stipule que le renforcement des connexions entre deux neurones est dirigé par

les activations simultanées répétées de ceux-ci.

L’idée principale de l’apprentissage Hebbien peut être résumée par la phrase souvent citée: "Les neurones

qui s’activent ensemble, se connectent ensemble." Mathématiquement, cela se traduit par une mise à jour

des poids synaptiques selon la formule :

∆wij = α ∗ (xi ∗ xj) (4.4)

où wij est le poids de la connexion du neurone i au neurone j, α est le taux d’apprentissage, et xi, xj ∈

{0, 1} sont les activations des neurones i et j, respectivement.

44



L’apprentissage anti-hebbien, au contraire, est la réduction du poid lorsque les neurones xi et xj sont

inversement corrélés. Pour l’inclure dans l’équation 4.4 il suffit de modifier les valeurs d’activation tel que

xi, xj ∈ {−1, 1}.

4.2.1 Règle d’apprentissage locale

Cette règle d’apprentissage est dite "locale" car la mise à jour du poids synaptique dépend uniquement des

activités locales des neurones connectés par cette synapse, sans nécessiter une connaissance globale de

l’état du réseau ou de l’erreur de sortie. Bien que l’apprentissage Hebbien remplisse cette contrainte, de

nombreuses implémentations incluent des paramètres d’apprentissage globaux, tels que le taux d’apprentissage

α, peuvent influencer l’échelle à laquelle les poids synaptiques sont ajustés. Par ailleurs, des mécanismes

faisant fi de la localité comme la normalisation des poids ou la régulation homéostatique (Bush et al., 2010)

sont souvent considérés pour maintenir la stabilité globale du réseau et il peut être argumenté que ceux-ci

ne contreviennent pas à la bio-plausibilité, ayant des analogues bio-chimiques (Lee et Kirkwood, 2019).

4.2.2 Apprentissage par renforcement

L’apprentissageHebbien a été lié à l’apprentissage par renforcement, notamment par le biais demodèles qui

intègrent une fonction de récompense comme facteurmodulateur des changements synaptiques, favorisant

un apprentissage orienté vers des objectifs spécifiques. Unexemple concret qui démontre que cette approche

peut être utilisée en pratique pour transformer des influx neuronaux en signaux de contrôle pour un robot

est présenté dans les travaux de (Mahmoudi et al., 2013) qui sont parvenus à faire contrôler une prothèse

par un sujet à l’aide d’un implant neuronal.

4.2.3 Temporalité

La dimension temporelle peut être intégrée dans l’apprentissage Hebbien (Mahmoudi et al., 2013) pour

prendre en compte le timing précis des activations neuronales, menant à des modifications comme la STDP,

où l’ordre et le timing des potentiels d’action influencent la manière dont les connexions se renforcent ou

s’affaiblissent. Cette variante sera visitée plus en détail dans la section 4.2.4.
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4.2.4 Avancées

À travers les années, de nombreuses propositions tentant d’adapter l’algorithme de base à diverses fins ont

vu le jour. Celles-ci vont de l’intégration de contraintes biologiques plus réalistes (Hopfield, 1982; Hopfield,

1984; Song et al., 2000), au développement de modèles capables de simuler des fonctions cognitives

complexes pour la recherche en neurosciences (Tomasello et al., 2018; Hoerzer et al., 2014; Bush et al.,

2010), en passant par l’application de principes Hebbiens pour l’apprentissage non supervisé de réseaux de

neurones artificiels (Krotov et Hopfield, 2019) et pour l’apprentissage par renforcement tel que mentionné

plus haut (Mahmoudi et al., 2013).

4.2.5 Limites

Malgré son importance historique, l’apprentissageHebbienprésente des limitations, notamment sa tendance

à conduire à une saturation, lorsque les poids sont limités à une valeur plafond, ou à une explosion, lorsque

les poids ne sont pas limités, des poids synaptiques sans mécanismes de régulation1. Aussi, bien que ses

performances soient prometteuses dans certaines applications, à ce jour nous ne sommes toujours pas

parvenus à en faire une approche aussi versatile et performante que la propagation arrière. Ces limitations

ne sont cependant pas inhérentes à l’apprentissage Hebbien en soi, l’existence même du cerveau et ses

nombreuses capacités décrites précédemment le prouvent, mais plutôt des effets collatéraux découlant

des spécificités et des simplifications nécessaire à sa modélisation dans les implémentations historiques. Il

inspire d’ailleurs des recherches continues pour développer des modèles d’apprentissage plus flexibles et

adaptatifs, dont celles mentionnées dans la section précédente en sont quelques exemples.

4.3 Mémoires associatives (Hopfield)

Les Hopfields sont un ensemble de techniques d’apprentissage Hebbien qui sont basées sur l’approche

proposée par (Hopfield, 1982). Il s’agit d’un réseaux Hebbien, dont les corrélations synaptiques entre deux

neurones mènent au renforcement de leurs connexions, qui agit comme une mémoire adressable par

contenu avec une activation binaire.

1 Cela est facilement dérivable à partir de l’équation 4.4. Si unmotif spécifique est représenté de nombreuses fois dans les données

d’entraînement, les modifications successives s’additionnes rapidement pour mener à la saturation ou à une croissance rapides

des poids impliqués dans ce motif.
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4.3.1 Algorithme original

Lors de la phase d’apprentissage, le réseau est présenté avec unmotif, à l’aide duquel il met à jour ses poids

en suivant l’équation Hebbienne présentée dans la section précédente, soit:

∆Wij = α ∗ (xi ∗ xj) (4.5)

Où x est le vecteur d’entrée (le motif),W est la matrice de poids et α est le taux (vitesse) d’apprentissage.

Ensuite, au moment de récupérer une information, on présente un motif corrompu correspondant à l’un

de ceux sur lequel le modèle a été entraîné, et le réseau évalue en retournant le motif le plus près selon ses

apprentissages.

La règle de mise à jour est la suivante

Ŷ = sign(W TX) (4.6)

Où Ŷ représente l’état interne du réseau (de chacun des neurones) ainsi que le vecteur de sortie.

La mise à jour de l’état peut être faite de façon simultanée comme dans 4.5, ou itérative (un neurone à la

fois). Plusieurs itérations (mises à jour) successives peuvent être faites afin d’assurer que la sortie est dans

un état stable et donc qui a convergé (pour lequel des mises à jour subséquentes ne produisent plus aucun

changement). Pour notre approche présentée au chapitre 5, nous avons choisi d’appliquer la mise à jour

synchrone de tous les neurones en raison de sa plus grande simplicité mathématique et computationnelle.

4.3.2 Avancées

4.3.2.1 Augmentation de la taille de la mémoire

Il est à noter que des états parasitaires émergent lorsque les motifs ne sont pas suffisamment uniques

(orthogonaux) les uns par rapport aux autres ou lorsque nous excédons la capacité de stockage, qui est de

0.14 motif par neurone dans le modèle pour les Hopfields classiques (Hertz et al., 1991). Cette capacité a

été largement améliorée depuis (Storkey, 1997; Feng et Tirozzi, 1997; Gosti et al., 2019) et varie grandement

en fonction des différentes approches, chacune comportant des avantages et inconvénients qui leur sont

propres mais dont les spécificités dépassent la portée de notre synthèse.
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Plusieurs de ces techniques consistent à élargir le bassin d’attraction desmotifsmémorisés, soit demaximiser

la distance qu’il est possible d’avoir pour que le réseau converge entre le vecteur mémorisé et le vecteur

présenté, afin de limiter la probabilité que des états parasitaires apparaissent (Folli et al., 2017) (Storkey,

1999).

La méthode que nous proposons se distingue de ces approches par le fait qu’elle vise à effectuer une

classification et non une simple mémorisation. Notre but est par conséquent, à l’instar de cette technique,

d’élargir les bassins d’attractions des attracteurs associés à chacun des motifs, qui sont des chiffres dans

notre implémentation, afin que celui-ci englobe toutes les instances possibles du même chiffre (0-9).

4.3.2.2 Hopfield continus

Les Hopfields ont également des vartiantes qui travaillent sur des nombres R en place de simples motifs

binaires (Hopfield, 1984; Movellan, 1991; Talaván et Yáñez, 2005). Cependant leur plus grande complexité

rend leur adaptation plus ardue à notre cas d’utilisation et c’est pourquoi nous nous sommes simplement

basés sur la version binaire pour notre recherche.

4.3.2.3 Mémoire associative bi-directionnelle

On voit à travers la formule 4.5 que la matrice de poid obtenue est symétrique puisqu’il n’y a pas de

distinction entre l’entrée et la sortie. Dans cette forme simple, la fonction de mise à jour est de type

Lyapunov (Hertz et al., 1991) ce qui garanti qu’elle convergera ultimement vers un état d’énergie qui est

un minima d’énergie (telle que définie dans (Hopfield, 1982)) local (Liapounoff, 1907) (ou une oscillation

entre deux états lorsque la mise à jour de tous les noeuds est simultanée). Une approche différente est

d’associer un motif avec un autre, générant une mémoire associative bi-directionnelle (Kosko, 1988).

L’équation pour l’apprentissage d’unematrice depoids qui encodeune série d’associations (X0, Y0), . . . , (Xn, Yn)

est simplement:

∆W =

n∑︂
i=0

XT
i Yi (4.7)

Pour ce qui est de récupérer Yi à partir deXi, il s’agit de la même formule que pour les Hopfields standards,
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telle que définie dans 4.6.

Cette approche est intéressante pour notre recherche puisqu’en place d’un attracteur sur un point fixe, elle

permet d’encoder une série d’états successifs, à l’image du fonctionnement de l’hippocampe, permettant

l’encodage de séries temporelles. Également, il est possible d’encoder des cycles simplement en apprenant

une série d’associations du type (X0, X1), (X1, X2), . . . , (Xn, X0). De cette façon, X0 génère X1, X1

génèreX2 et ainsi de suite jusqu’à ce que la boucle soit bouclée avecXn qui génère le point de départ du

cycle.

4.3.3 Limitations

Il existe des limitations majeures qui freinent l’application industrielle de ces techniques. En effet, malgré

les améliorations qu’elles ont subites et leur prévalence, avec plus de 27 000 citations enregistrées, dans

la littérature, les Hopfields ne sont toujours pas utilisés de façon majeure dans aucun domaine à l’extérieur

de la recherche.

4.3.3.1 Techniques plus efficaces

Les mémoires associatives démontrent des capacités intéressantes qui ont des applications telles que le

stockage d’informations, la compression, la correction d’erreur, trouver le plus proche voisin d’un vecteur

dans l’ensemble des vecteurs mémorisés et, pour les mémoires associatives bi-directionnelles, d’associer

une entrée avec une sortie. Cependant, pour chacun ces cas d’applications, il existe des techniques qui sont

plus optimisées autant au niveau de l’espace de stockage que de la demande en calcul requis, ce qui rend

leur utilisation non souhaitable pour les cas où l’on tente d’effectuer l’une de ces opérations. Là où elles

se démarquent est leurs capacités d’effectuer toutes ces tâches à la fois. C’est précisément la raison pour

laquelle nous nous y intéressons dans le cadre de notre recherche.

4.3.3.2 États parasitaires

Comme mentionné plus haut, une mémoire associative peut converger vers un état dit "parasitaire" qui

est une chimère entre deux entrées et qui représente un minima local dans la mise à jour des états. Ces

états chimères qui sont généralement une combinaison entre deux motifs mémorisés (Hertz et al., 1991)

freinent l’adoption de cette méthode puisqu’il n’existe pas de méthode directe et peu coûteuse en termes
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de calcul pour déterminer si l’état final représente bien un vecteur qui a été sauvegardé dans le réseau de

façon volontaire ou involontaire.

4.4 Apprentissage compétitif

L’apprentissage compétitif est une sous-catégorie de l’apprentissage dans les réseaux de neurones, qui

consiste à attribuer une fonction d’utilité à chaque neurone et à effectuer un apprentissage modulé par

cette valeur sur les données entrantes.

4.4.1 Cartes de Kohonen

La technique la plus populaire qui l’incorpore est celle des cartes de Kohonen(Kohonen, 1990), aussi appelée

dans la littérature "cartes autoadaptatives" (en anglais, Self-Organizing Maps ou SOM). Le principe consiste

à sélectionner un neurone gagnant pour chacun des intrants, et d’attribuer les poids permettant l’activation

maximale de ce neurone pour les prochaines itérations ou cette donnée sera présentée. Lorsque les poids

d’un neurone gagnant sont mis à jour, on met également à jour, dans une mesure moindre, les poids des

neurones qui lui sont environnants, comme déterminé par une fonction de proximité entre les neurones.

De cette façon ceux-ci représentent une couverture de l’espace des intrants possibles.

4.4.1.1 Algorithme

La mise à jour des poids dans un SOM est formulée de la manière suivante:

∆wij = α(t) · hci(t) · (x− wij)

où : - wij est le poids entre l’élément i du motif d’entrée et le neurone j dans la carte. - α(t) est le taux

d’apprentissage à l’instant t, qui diminue généralement avec le temps. - hci(t) est la fonction de voisinage

autour du neurone gagnant c à l’instant t, qui détermine l’influence du neurone gagnant sur ses voisins. -

x est le vecteur d’entrée.

La fonction de voisinage hci(t) comme la fonction gaussienne est souvent choisie:
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hci(t) = exp

(︃
−∥rc − ri∥2

2σ2(t)

)︃

où : - rc et ri sont les positions des neurones c (gagnant) et i dans la carte, respectivement. - σ(t) est

l’écart-type de la fonction de voisinage à l’instant t, qui diminue également avec le temps.

4.4.1.2 Avancées

Depuis leur création, les cartes de Kohonen ont connu plusieurs avancées, modifications et améliorations

significatives, élargissant ainsi leur champ d’application et leur efficacité. L’une des évolutions notables

est l’introduction de techniques d’apprentissage adaptatif, qui permettent de régler dynamiquement les

paramètres tels que le taux d’apprentissage et le rayon de voisinage en fonction de l’état d’apprentissage du

réseau (Shah-Hosseini et Safabakhsh, 2000). Cela conduit à une convergence plus rapide et à unemeilleure

qualité de la cartographie. Les variantes dynamiques des cartes de Kohonen, capables de modifier leur

structure, tel qu’avec l’ajout de neurones au cours de l’apprentissage, ont été développées pour mieux

s’adapter à la complexité des données traitées (Hsu et al., 2009). L’intégration de la notion de temps, avec

des modèles tels que les cartes de Kohonen récurrentes, a permis le traitement de séquences temporelles

et de données séquentielles (Shah-Hosseini et Safabakhsh, 2000). En outre, l’application des cartes de

Kohonen à des domaines spécifiques a entraîné le développement de variantes spécialisées, comme celles

conçues pour le traitement du langagenaturel (Honkela, 1998) oupour des applications biomédicales (Skupin

et al., 2013), où elles aident à identifier desmodèles complexes dans les données génétiques ouprotéomiques.

Ces avancées ont non seulement enrichi la théorie sous-jacente des cartes de Kohonenmais ont également

étendu leur portée à de nouvelles frontières de la recherche et de leur application pratique. Cependant,

malgré ces améliorations, elles offrent rarement les meilleures performances ce qui explique que leur

utilisation pratique demeure limitée dans l’industrie.

4.4.1.3 Limites

Mis à part les applications pointues où elle excelle, cette approche, demeure relativement ésotérique

et s’applique généralement à des problèmes bien spécifiques en raison des limitations inhérentes à sa

structure. Tout d’abord, la convergence du modèle n’est pas toujours garantie (Kohonen, 2013), et les

résultats peuvent varier significativement en fonction de l’initialisation et de l’ordre de présentation des

données. Enfin, leur nature statique ne permet pas de traiter efficacement des données séquentielles de
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façon innée, ce qui réduit leur applicabilité à des tâches où la dimension temporelle est importante.

4.5 Attracteurs spatio-temporel hebbien

Molter et Bersini ont travaillé sur une série de recherches (Molter et al., 2006) portant sur les attracteurs

spatio-temporaux dans des réseaux hebbien récurrents, se distinguant de toutes les techniques présentées

jusqu’ici qui portent sur des attracteurs sur point fixe.

Dans leurs travaux, ils introduisent la notion de frustration dans un réseau récurrent Hebbien, qui renvoie

à une dynamique où le réseau neuronal se trouve dans un état de chaos frustré: "Le chaos frustré est

un régime dynamique qui apparaît dans un réseau lorsque la structure globale est telle que les motifs de

connectivité locaux, responsables de comportements oscillatoires stables et significatifs, sont entrelacés,

menant à des attracteurs en compétition mutuelle et à une itinérance imprévisible parmi des apparitions

brèves de ces attracteurs."(Molter et al., 2006) 2. À travers leurs expériences, ils sont parvenus à démontrer

que ce régimedynamiquepermettait la génération dedynamiques complexes, incluant des régimes chaotiques,

qui sont utiles pour la prévention de la prolifération de données parasites lorsque le réseau est confronté à

des stimuli ambigus ou non appris.

La frustration déstabilise le réseau et provoque un ’vagabondage’ erratique parmi les orbites périodiques

caractérisant le même réseau lorsqu’il est connecté de manière non frustrée . Celle-ci est obtenue par

la superposition de plusieurs matrices de connectivité qui, prises individuellement, conduiraient à des

régimes oscillatoires, induit un chaos qui est caractérisé par la détection d’orbites répulsives cachées dans

l’attracteur chaotique.

4.5.1 Algorithme

Le RNN qui est présenté dans (Molter et al., 2006) et exhibant des dynamiques de chaos frustré vise à

traiter des stimuli externes pour générer des dynamiques internes qui peuvent apprendre et stocker des

informations sous forme d’attracteurs spatio-temporels est défini comme suit:

Le réseau est pleinement connecté, chaque activation neuronale étant une fonction des impacts des autres

neurones ainsi que des stimuli externes. Les activations neuronales sont mises à jour demanière synchrone

2 En anglais, traduction libre
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à chaque pas de temps discret. La description mathématique du réseau est la suivante :

L’activation xi du neurone i au temps n+ 1 est donnée par :

xi(n+ 1) = f(neti(n)) (4.8)

où neti(n) est le potentiel d’entrée pour le neurone i au temps n, calculé comme :

neti(n) =
N∑︂
j=1

wijxj(n) +

M∑︂
s=1

wisιs (4.9)

-N est le nombre de neurones dans le réseau.

-M est le nombre d’unités constituant le stimulus.

- wij est le poids synaptique de la connexion du neurone j au neurone i.

- wis est le poids de l’unité s du stimulus externe sur le neurone i.

- ιs est la s-ième unité du stimulus externe.

- f est une fonction d’activation saturante (ici tanh), utilisée pour assurer la non-linéarité du réseau et

limiter l’amplitude des activations neuronales.

4.5.1.1 Algorithme d’apprentissage

L’apprentissage dans ce réseau est réalisé à l’aide d’un mécanisme Hebbien asymétrique, qui est adapté

pour capturer et renforcer des corrélations temporelles spécifiques entre les entrées et les sorties. Deux

tâches d’apprentissage principales sont proposées:

1. Apprentissage "out-supervised" : Dans cette approche, des stimuli externes sont explicitement mappés

à des attracteurs cycliques définis au préalable par les chercheurs. Les poids sont ajustés à l’aide d’une
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fonction Hebbienne pour renforcer la stabilité de ces mappings.

2. Apprentissage "in-supervised" : Cette méthode est moins supervisée et biologiquement plausible. Elle

permet au réseaude créer ses propres représentations internes des stimuli externes sans quedes attracteurs

spécifiques ne soient prédéfinis. Le réseau apprend à réagir aux stimuli en générant des séquences cycliques

internes, dont la périodicité et la structure ne sont pas spécifiées à l’avance.
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CHAPITRE 5

CONTRIBUTION
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Maintenant que nous avons établi la base théorique sur laquelle nous nous appuyons pour formuler notre

algorithme, nous pouvons formaliser celui-ci. Pour ce faire, nous tâchons d’aborddedistiller notre problématique

et les notions vues précédemment pour ensuite proposer notre propre modèle de réseau de neurones

récurrent bio-plausible (bio-RNN) et son algorithme d’apprentissage.

5.1 Méthodologie

Nous avons établi dans notre revue de littérature que l’apprentissage par rétropropagation comporte des

limitations qui sont inhérentes à sa formalisation. Bien que l’avancement de ces techniques semble accélérer

de façon exponentielle à ce moment, nous croyons que ses déficiences vont ultimemement définir un

seuil au-delà duquel il sera coûteux de maintenir ce rythme de progression. Alors que l’originalité de la

propagation arrière s’estompe peu à peu et que les limites qui en découlent deviennent plus apparentes,

l’intérêt porté sur les techniques alternatives augmente. Commepar le passé, beaucoup se tournent vers les

neurosciences pour y trouver de l’inspiration et des intuitions. Que ce soit le besoin d’une fonction d’erreur

prédéfinie, le nombre faramineux d’exemples nécessaires pour atteindre une saturation de l’apprentissage

(lemoment qui précède immédiatement le sur-apprentissage), lemanqued’unedimensionnalité temporelle,

l’oubli catastrophique ou d’autres facteurs, l’absence de ces contraintes dans le cerveau humain est une

preuve que ces limitations ne sont pas inhérentes à l’apprentissage dans des réseaux de neurones profonds.

Ce ne sont que des restrictions engendrées par nos techniques actuelles.

Nous avons choisi d’explorer les bio-RNN pour de multiples raisons. (1) Nous croyons que certaines des

avancées qui ont rendu possible l’évolution rapide et les gains de performance des RN avec RP pourraient

être applicables et ainsi bénéficier à de nombreux algorithmes développés par le passé. L’augmentation

de la disponibilité des jeux de données toujours plus larges, l’augmentation de la capacité de calcul et les

optimisationsmathématiques de l’apprentissage sont des exemples de facteurs qui peuvent potentiellement

profiter à ces techniques aujourd’hui. (2) La progression constante de la compréhension des mécanismes

neurologiques sous-jacents à la cognition est également un atout qui peut nous inspirer pour le développement

denos algorithmes ainsi quenous renseigner sur les pistes d’optimisation qui semblent être les plus prometteuses.

(3) Nous croyons qu’il existe de meilleures formalisations algorithmiques que la RP pour l’apprentissage

dans les RN, ouvrant la porte à des découvertes majeures améliorant substantiellement les performances

sur une large gamme de tâches. (4) Finalement, nous croyons que les algorithmes bio-plausibles, en raison

des éléments qui vont dans ce sens que nous avons présentés, sont la voie avec le plus de potentiel pour

56



faire avancer l’IA vers l’intelligence artificielle générale.

5.1.1 Cadre expérimental

Pour la présente recherche, nous nous intéressons à un problème relativement simple afin d’être enmesure

d’évaluer notre algorithme malgré son manque de maturité et l’absence d’optimisations qui en découle.

Nous nous sommes arrêtés sur la classification d’image comme tâche d’entraînement et d’évaluation de

notre modèle. Ce choix est motivé dans un premier temps par la riche histoire de la recherche sur cette

problématique. Cela implique qu’il y a une grande variété dans les jeux de données disponibles, autant en

terme de taille que de complexité. L’existence de jeux de données simple nous permet d’évaluer notre

algorithme malgré son manque de maturité et d’itérer rapidement en raison du temps d’entraînement

réduit que ceux-ci requierent pour que l’apprentissage soit observable. L’existence de jeux de données plus

complexe fait en sorte que nous pourrons aisément augmenter le niveau de complexité dans des recherches

futures. Dans un second, la littérature abondante sur ce sujet et les implémentations diversifiées qu’elle

nous offre nous permet d’évaluer adéquatement où se situe notre algorithmeen rapport avec les techniques

existantes.

5.1.1.1 Le jeu de données MNIST

Pour l’entraînement et l’évaluation de notre algorithme, nous avons retenu le populaire jeu de données

MNIST (Deng, 2012). Ce jeu de données est fréquemment utilisé pour tester de nouveaux algorithmes en

raison qu’il est (1) suffisamment simple pour un algorithme non-optimisé d’être en mesure d’obtenir un

score raisonnable dès lors qu’il a une capacité d’apprentissage non-nulle, (2) suffisamment complexe pour

démontrer que l’algorithme est en mesure d’apprendre et/ou de mémoriser des caractéristiques latentes

non-triviales dans le jeu dedonnées et (3) sonutilisation fréquente dans la littérature nous permet également

de comparer directement notre algorithme avec d’autres techniques (Deng, 2012; LeCun et Cortes, 2005;

Krotov etHopfield, 2019; Byerly et al., 2020) et simplifie le processus d’implémentation demodèles comapratifs.

Ces éléments sont d’autant plus applicables dans la recherche présentée ici puisqu’une des métriques à

laquelle nous accordons de l’importance est la vitesse d’apprentissage au moment de l’initialisation et non

la capacité théorique après un nombre élevé d’itérations sur l’ensemble d’entraînement.
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5.1.1.2 Protocole des données

Pour évaluer notre modèle, nous avons décidé d’utiliser un sous-ensemble du jeu de données MNIST d’une

taille de 10000 exemples. Cet ensemble a été mis de côté et n’est pas utilisé lors de l’entraînement. La

taille de jeux d’entraînement, quant à elle, est de 60000 images. Les images du jeu de données sont des

images en noir et blanc, qui se présentent sous la forme de matrices de 28X28 (une par image) contenant

des valeurs entre 0 et 256. Puisque notre réseau est binaire, nous transformons au préalable l’image en

une image binaire. D’autres options s’offraient à nous, tel que mettre en entrée les valeurs telles quelles,

normalisées entre 0 et 1, ou encore d’encoder temporellement l’intensité des pixels. Cependant, la gestion

des dynamiques dans des systèmes relativement large comme le nôtre est déjà suffisamment ardue dans

ses formes les plus simples, ce qui nous a poussés à sélectionner l’option la plus accessible nous permettant

de mieux isoler d’autres variables essentielles lors de nos tests.

5.1.1.3 Modèles comparatoires

Afindepouvoir situer les performances denotre algorithmepar rapport aux techniques populaires actuelles,

nous avons choisi d’implémenter quelques réseaux de neurones artificiels simples composés d’une et de

deux couches cachées. Notre choix de sélectionner des architectures simples est motivé par plusieurs

facteurs. Dans un premier temps, le nombre d’itérations d’apprentissage requises pour obtenir un résultat

donné croît avec la largeur et la profondeur du réseau.

Figure 5.1 Évolution de l’apprentissage pour différentes tailles de RN

Puisque le cadre de notre recherche est de démontrer que notre approche est viable,nous jugeons que

la démonstration et la comparaison de ses capacités à petite échelle est plus appropriée. La réduction en

58



complexité résultante nous permet de (1) itérer plus rapidement grâce à un temps d’entraînement réduit, (2)

d’écarter ainsi plus rapidement les approches moins prometteuses, (3) de réduire le nombre de variables à

investiguer avant de pouvoir déterminer si une technique oumodification est viable ou non, (4) de réduire le

nombre d’hyper-paramètres à explorer et (5) demesurer notre approche avec d’autres algorithmes ayant un

niveau similaire de maturité. Les résultats obtenus sur le jeu de données avec les différentes architectures

sont présentés dans la figure 5.1.

Ces résultats nous permettent de comparer notre approche avec la RP en évaluant l’impact des variations

du nombre de neurones et du nombre d’exemples d’entraînement sur la précision du modèle. Il est à noter

que nous avons utilisé la fonction d’activation sigmoïde pour obtenir les résultats présentés dans la figure

5.1. Nous avons fait ce choix dans le but de représenter la RP dans sa forme traditionnelle. Le tout, dans

le but d’être en mesure de la comparer dans un contexte similaire à notre méthode, sans les nombreuses

optimisations intégrées suite à près d’un demi siècle de recherche.

Nous souhaitons souligner deux points clés à retenir qui seront pertinents lors de la présentation de nos

résultats à la section 5.3. Le premier est qu’avec l’augmentation du nombre de neurones et de couches,

la vélocité de l’apprentissage semble diminuer progressivement en début d’entraînement. Ce facteur est

résolu à la fin de l’exécution. Sur des entraînements plus longs que ceux illustrés dans 5.1, les modèles

plus larges prennent inévitablement le dessus sur ceux plus petits, mais nous n’avons pas jugé pertinent de

les inclure puisque nous mettons plus d’importance sur la rapidité d’apprentissage que sur la performance

maximale. Le second est qu’avec l’augmentation de la taille du réseau, la précision devient de moins en

moins stable.

5.1.2 Contraintes biologiques

À ce stade, un bon nombre de concepts théoriquesmultidisciplinaires qui peuvent êtres pris en compte pour

l’élaboration d’un algorithme d’apprentissage pour des réseaux récurrents bio-plausibles(Bio-RNN) ont été

couverts. Cependant, il ne nous est malheureusement pas possible de les intégrer dans leur ensemble dans

la présente recherche en raison du niveau élevé de complexité que cela entraînerait. Autant au niveau de

l’implémentation que de le l’évaluation, un nombre croissant de paramètres rends l’étude de l’impact de

chacuns d’entres eux plus ardue. Nous avons donc choisi un sous-ensemble composé de ceux que nous

croyons être les plus pertinents pour notre contexte expérimental afin de les implémenter.
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Le terme "bio-plausible" peut être appliqué à une grande famille d’algorithmes avec une définition qui varie

en fonction de du domaine et de la recherche en question, en raison du grand nombre de contraintes

et de la complexité des processus variés d’apprentissage dans le cerveau. Nous avons donc posé notre

propre sélection sur les éléments que nous considérons inclure dans notre approche. Au niveau de la bio-

plausibilité nous avons retenu les contraintes décrites dans les paragraphes suivants.

5.1.2.1 Règles d’activation et de plasticité locales

L’une des contraintes que nous nous imposons est que la règle d’apprentissage soit locale. Concrètement,

cela implique que toutes les informations qui mènent à unemodulation du lien synaptique et de l’activation

proviennent des neurones pré- et post-synaptiques. Concrètement, les neurones mettent à jour leurs poids

simultanément et une connexion entre deux neurones ne tient compte que des informations présentes

et historiques appartenant à son champ de perception (les neurones de la couche précédente, courante

et suivante). Cette contrainte, nous croyons, ouvre la porte à une meilleure mise en échelle de notre

proposition puisqu’elle permet un accroissement du nombre de neurones dans le réseau sans que cela

n’ait un impact sur le fonctionnement local des neurones déjà présents dans une architecture donnée. Ce

choix est également motivé par le fait qu’il permet une meilleure optimisation éventuelle s’il s’avérait que

cet algorithme doive être parrallélisé sur plusieurs cartes graphiques puisque les calculs de mise à jour ne

dépendent que d’informations locales.

5.1.2.2 Fonction d’activation binaire

Nous avons choisi d’utiliser une fonction d’activation binaire en place d’une fonction non-linéaire continue.

Bien que de l’information soit perdue dans la compression dichotomique, celle-ci offre différents avantages

qui compensent la perte d’information accessible aux calculs subséquents. Puisque notre réseau n’utilise

pas la rétropropagation, nous pouvons nous permettre d’utiliser une fonction nondifférentiable. Elle simplifie

l’analyse numérique des dynamiques, l’implémentation de l’algorithme, et l’analyse visuelle des états et des

modifications des poids synaptiques suite à l’entraînement. D’ailleurs une branche entière de l’intelligence

artificielle est consacrée réseaux de neurones à pics (SNN, de l’anglais "spiking neural networks") en raison

de leur efficacité computationnelle. Cette efficacité permet de concevoir des processeurs neuromorphiques

optimisés spécialement pour les SNN (Lobo et al., 2020) à faible demande énergétique, qui est l’une des

motivations derrière ces recherches (Asghar et al., 2021). L’utilisation de cette fonction nous permet donc

à terme d’envisager exécuter notre algorithme sur de tels processeurs, ce qui représente un avantage par
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rapport au côté énergivore de la RP.

5.1.2.3 Plasticité temporelle

Commenous l’avons vu à la section 3.5.1, la STDP est l’un desmécanismes ayant attrait à la plasticité des plus

étudiés et il est soupçonné qu’elle soit l’un des mécanismes fondamentaux de l’apprentissage biologique.

Par conséquent il s’agit de l’un des principes qu’il nous semblait naturel d’intégrer à notre algorithme.

Puisque nous visons à induire des cycles limites de périodeN = 2, comme spécifié à la section 5.2.1.1, pour

valider notre approche avant de tenter de créer des attracteurs plus complexes, cela implique simplement

d’appliquer une fonction Hebbienne et anti-Hebbienne qui prend en compte les activations des neurones

aux temps t− 1, t et t+ 1.

5.1.2.4 Inhibition équilibrée

Niu et al. ont démontré que dans un cadre de système dynamique, il est possible d’encoder une grande

quantité d’informations avec très peu de neurones actifs (Niu et al., 2022). Les recherches de Yu et al.

suggèrent qu’un ratio excitation/αinhibition équilibré, avec α le facteur d’échelle approprié, permet des

dynamiques saines permettant d’encoder un maximum d’information tout en permettant une économie

des ressources énergétiques (Yu et al., 2018). Ils proposent qu’il s’agit également d’une adaptation optimisant

les dynamiques des influx nerveux pour atteindre une meilleure extraction des connaissances à partir de

l’information sensorielle et une meilleure capacité de rétention de l’information. Le cerveau lui-même

est peu densément connecté et à tout moment, seulement une petite fraction des neurones sont actifs

simultanément (Wixted et al., 2014). À ce stade il n’existe toujours pas de preuve qu’un cerveau ne pourrait

être composé demoins de neurones et être plus densément connecté en offrant lemême niveau d’entropie

que leur forme actuelle et avec une dépense énergétique similaire. Cela nous pousse à croire qu’il y a

donc des justifications fonctionnelles et computationnelles pourmaintenir une activité globale relativement

faible au niveau de l’impact de cette mesure sur les dynamiques. Pour ces raisons, nous jugeons judicieux

d’inclure ce paramètre dans notre modélisation.

5.1.3 Attracteurs limites

La plupart desméthodesmodernes d’IA, dont tout le domaine de l’apprentissage profondutilisant la propagation

arrière, les SVM, les cartes deKohonenet autres ne sont pas considérés commeétant des systèmes dynamiques
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au moment de l’inférence. Ce sont simplement des fonctions paramétrées au moment de l’entraînement.

Une fois la phase d’apprentissage terminée, ils convergeront toujours vers le même point fixe lorsque

présenté avec une entrée donnée.

Le cerveauquant à lui est un systèmedynamique à états, où les états passés ont un impact sur le fonctionnement

et le résultat des calculs. La dimension spatio-temporelle guide les dynamiques endictant les états successifs

du système. Cela lui permet entres autres de traiter des données séquentielles de façon innée, puisque cette

dimension temporelle est nécessaire pour l’apparition de cycles-limites, qui ont eux-mêmeune composante

temporelle. Certainesméthodes comme les réseaux deHopfields et leurs variantes (Hopfield, 1982; Hopfield,

1984; Krotov etHopfield, 2019; Kosko, 1988; Storkey, 1997), en sont également,mais leur attracteur converge

néanmoins vers un point fixe. Notre approche se de démarque de la majorité des approches présentées,

à l’image de (Molter et al., 2006; Molter et al., 2007) en tentant d’encoder le traitement de l’information

dans un attracteur encodé à l’intérieur d’un cycle-limite plutôt que sur un point fixe.

Denombreux travaux démontrent quedes attracteurs dynamiques sains sont nécessaires pour un traitement

cérébral approprié de l’information (Preissl et al., 1996; Tomasello et al., 2018; Molter et al., 2006; Faisal

et al., 2008; Molter et al., 2007; Molter et al., 2004). Cela suggère un avantage computationnel de cette

approche par rapport à un attracteur sur un point fixe.

Les résultats de Molter et al. sur l’augmentation de la capacité de stockage des mémoires associatives

lorsque des cycles-limites sont mémorisés en place d’entrées fixes (Molter et al., 2004). Dans des travaux

subséquents (Molter et al., 2006; Molter et al., 2007) sur le chaos frustré ainsi que sur l’apprentissage

nons supervisé dans leur modèle (Molter et al., 2005) nous font croire qu’il s’agit d’une approche viable et

prometteuse.

5.1.4 Inspiration algorithmique

5.1.4.1 Hopfield

L’algorithme de base derrière notre version n’est autre que celui des mémoires associatives. La variante

sélectionnée est celle bi-directionnelle et où tous les neurones sont mis à jour de façon synchrone.

Dans le cas de la directionnalité, notre choix est motivé par le fait que nous voulons établir des attracteurs
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limites, dans notre cas nous ciblons des cycles ayant une période de longueur N . Pour ce faire le réseau

doit apprendre des transitions d’états convergeant sur un cycle limite et non vers un point fixe.

5.1.4.2 Chaos frustré

Nous avons également emprunté la notion de chaos frustré défini dans Bersini et Molter (Molter et al.,

2006; Molter et al., 2007) et repris leur version de mémoire associative spatio-temporelle présentée dans

(Molter et al., 2005). La formede la fonction d’activation reste similaire à l’équation 4.8 et nous généralisons

l’équation 4.9 à n couches pour prendre en compte notre couche de sortie. Nous obtenons donc, pour la

couche d’entrée l = 0:

net0i (n) = ιi (5.1)

- ιs est la j-ième unité du stimuli externe (le vecteur d’entrée).

Pour les couches cachées, nous avons:

netli(n) =
N l−1∑︂
j=1

w
[l−1,l]
[ji] σ(xlj(n− 1)) +

nl∑︂
j=1

wl,l
jiσ(x

l
j(n− 1)) +

nl+1∑︂
j=1

w
[l+1,l]
ji σ(xlj(n− 1)) (5.2)

- l est le nombre de couches dans le réseau.

- nl est le nombre de neurones dans la couche l du réseau.

- wk,l
j,i est le poids synaptique de la connexion du neurone j de la couche k au neurone i de la couche l.

-σ est une fonction d’activation saturante utilisée pour assurer la non-linéarité du réseau et limiter l’amplitude

des activations neuronales. dans notre cas, celle décrite par l’équation 5.4.

Finalement pour la couche de sortie l = L nous avons:
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netli(n) =
nl−1∑︂
j=1

w
[l−1,l]
[ji] σ(xlj(n− 1)) (5.3)

cette dernière pourrait inclure des connexions récurrentes pour le calcul de son état, cependant dans notre

cas nous travaillons avec des vecteurs de sortie de type "one-hot" (un seul des neurones est activé à la fois),

ce qui rend ce calcul superflu.

l’objectif de notre approche est de formaliser une règle de mise à jour de l’état et des connexions d’un

réseau récurrent qui sera en mesure d’apprendre à converger vers différents cycles limites déterminés

par les données d’entrée démontrant la capacité d’effectuer un traitement de l’information. leurs travaux

représentent un pas dans cette direction puisqu’ils ont démontré qu’il s’agissait d’une avenue viable pour

mémoriser différents motifs. nous tenterons de démontrer que ça l’est également dans le cas du traitement

de l’information, en posant commehypothèse que celui-ci sera enmesure d’identifier des régularités statistiques

provenant du jeu de données et d’en extraire des caractéristiques significatives pour effectuer une tâche de

classification.

5.1.5 Notation

afin de simplifier les formules pour en faciliter la compréhension, nous utilisons la notation matricielle pour

les équations qui suivent. les différentes variables qui seront principalement utilisées dans celles-ci sont:

w est l’ensemble des matrices de poids pour le réseau

wa,b est une matrice de poids (connexions) de la couche a à la couche b du réseau. wa,a est donc une

matrice de connections récurrente pour a. pour notre réseau simple avec une couche d’entrée,

une couche cachée et une couche de sortie présenté ici, nous avons donc w0,1 qui sont les poids

connectant la couche d’entrée à la couche cachée, w1,1 qui sont les connections récurrentes de la

couche cachée et w1,2 qui sont les poids de la couche cachée à la couche de sortie.

wa,b
i,j est le poids entre le neurone i de la couche a et le neurone j de la couche b.

x est un tenseur contenant tous les états.
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xl[t] est la matrice d’états de la couche l au temps t. dans un réseau à l couches, la couche l = 0 est la

couche d’entrée, les couches l = {1, ..., l − 2} sont les couches cachées et la couche l = l − 1 est la

couche de sortie.

xl
i[t] est l’états du neurone i de la couche l au temps t.

img est la valeur du vecteur d’entrée, soit les images du dataset.

pmax est la valeur minimum pour un poids.

pmin est la valeur maximum pour un poids.

mseuil est la valeur au-delà de laquelle un neurone s’active.

mmax est la valeur maximum pour l’état d’un neurone.

mmin est la valeur minimum pour l’état d’un neurone.

e est la valeur d’énergie d’un neurone.

voici également la notation des opérateurs que nous utilisons

◦ produit d’hadamard, ou par élément.

× produit matriciel, ou le produit cartésien dans le cas de multiplication de 2 vecteurs.

m⊤ transposée dem.

certaines fonctions sont construites à travers plusieurs équation, afin d’en simplifier la compréhension. dans

ces cas, nous utilisons la notation prime. si nous tentions d’exprimer une fonction complexe f(x) à l’aide

de trois équations nous aurions:

f ′(x) serait la fonctions dans sa version la plus simple

f ′′(x) est une fonction plus complexe (p. ex. on y a ajouté un terme)

f(x) la fonction finale, telle qu’elle se retrouve dans notre algorithme
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aussi, afin de simplifier la compréhension, nous assignons parfois un scalaire à un vecteur, matrcie ou

tenseur. dans ce cas nous entendons simplement assigner la valeur scalaire à tous les éléments de la

matrice, vecteur ou tenseur. nous appliquons également des fonction scalaire à des vecteurs, matrices

ou tenseurs. cela signifie que la fonction est appliquée individuellement à chacun des éléments du tenseur.

de cette façon pour une matrice x de dimension n×m nous avons

x = 0 est équivalent à x =
(︁ 011 ... 01m

... . . . ...
0n1 ... 0nm

)︁

y = f(x) nous donnes y =
(︁ f(x11) ... f(x1M )

... . . . ...
f(xN1) ... f(xNM )

)︁
5.1.6 Architecture

Afin d’être en mesure de bien évaluer les performances du modèle proposé, nous avons opté pour une

architecture de base, soit une couche cachée connectée à une couche d’entrée et à une couche de sortie. La

couche cachée est récurrente, ce qui veut dire qu’elle est pleinement connectée avec elle-même. Formellement,

notre architectureApeut être définie avecA = (X,W )oùX = {X0, X1, X2},W = {W 0,1,W 1,1,W 1,2}.

Nous avons choisi de retirer les connexionsW 2,1 puisque celles-ci avaient un impact négatif sur la précision

de notre modèle. Un réseau avec une seule couche cachéeX1 est désirable pour valider si notre approche

présente du potentiel, car cela nous permet de vérifier que le réseau est en mesure d’apprendre une

représentation des données exploitables sans les signaux dynamiques des couches supérieures qui pourrait

venir brouiller les performances.

5.2 Proposition

La techniquequenous avons développée est composéede trois couches. La première est la couched’entrée,

la seconde est la couche cachée qui vise à extraire une représentation des données et la dernière s’attarde

à classifier cette représentation. Cette section présente en détails chacun des termes contenus dans la

formalisation mathématique de celle-ci.

5.2.1 Activation

La fonction d’activation retenue est la fonction binaire. En plus de sa simplicité et de son origine biologique,

nous l’avons également pour la facilité avec laquelle elle nous permet de faire des calculs impliquant seulement
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ou excluant complètement les neurones actifs à un temps t. Notre fonction d’activation est ϕ(x) où x est

le potentiel de membrane (l’état) d’un neurone ϕ est la fonction définie par:

ϕ(x) =

⎧⎪⎨⎪⎩
1 si x > mseuil

0 si x < mseuil

(5.4)

Oùmseuil est le potentiel seuil de la membrane (au-delà duquel le neurone s’active). Nous dénotonsΦ(X)

l’application de ϕ à chacun des éléments d’un tenseur.

5.2.1.1 Durée cyclique cible

Puisque nous nous intéressons pour l’instant à la forme la plus simple de notre modèle, nous avons choisi

le d’avoir pour cible un cycle minimal de période N = 2. Nous nous sommes arrêtés sur cette périodicité

afin de valider notre approche pour plusieurs raisons. (1) Faciliter l’implémentation. Pour déterminer la

cible d’apprentissage (section 5.2.1.4), avecN = 2 nous devons prendre en compte 3 itérations, soit t− 1,

t et t+ 1. En augmentantN nous devrons également augmenter le nombre d’états à inclure dans le calcul

de la cible. Il ne nous est pas évident à ce stade de quelle façon cela doit être fait et allonger le cycle

représentait par conséquent un risque qui ne nous semblait pas nécessaire à ce stade de développement.

(2) Augmenter la probabilité que notre méthode converge. Plus le cycle est long, plus la probabilité que

des erreures s’accumulent durant le cycle et que l’attracteur ne change de bassin d’attraction durant son

exécution et que l’algorithme ne converge pas. (3) Faciliter l’analyse subséquente des dynamiques et des

attracteurs présents dans le modèle entraîné.

5.2.1.2 Fixer l’entrée du réseau

Afin de générer une prédiction sur la classe associée à une image, nous devons dans un premier temps

présenter cette image au réseau. L’image est d’abord aplatie de façon à prendre la matrice 28× 28 pour en

faire le vecteur img de taille 1× 784. Nous passons ensuite le vecteur img dans la fonction d’activation 5.4

avecmseuil = 0 afin d’en faire un vecteur binaire. Par la suite, celui-ci est présenté au réseau avec

X0 = Φ(img) (5.5)
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Afin de faciliter l’obtention d’une dynamique cyclique dans le réseau nous avons opté d’alterner l’entrée

entre les données du jeu et un vecteur nul. Puisque notre période cible est de N = 2, nous changeons

l’entrée à chaque itération entre l’équation 5.7 et

X0 = 0 (5.6)

En d’autres mots, nous avons un compteur n qui est incrémenté à chaque itération. L’entrée clignote en

changeant d’état à chaque itération (p. ex lorsque nous sommes à une itération n qui est paire, l’entrée est

déterminée par la formule 5.7 et lorsquen est impaire l’entrée est le vecteur nul tel que décrit par l’équation

5.6. Formellement:

ι(imgi) =

⎧⎪⎨⎪⎩
ϕ(imgi) si l’itération courante ( n ) est paire

0 si l’itération courante ( n ) est impaire
(5.7)

Nous dénotons I(img) lorsque cette fonction est appliquée à chaque élément d’un vecteur.

5.2.1.3 Réfraction

Un attracteur fixe n’est pas l’objectif de notre entreprise et pourrait venir brouiller les résultats rendant

difficile de cerner si les précisions obtenues sont attribuables aux dynamiques de notre algorithme ou

simplement à de l’association Hebbienne classique. Afin d’éviter que le réseau ne tende vers celui-ci, nous

avons implémente Il s’agit également d’un élément qui ajoute à la similarité avec l’analogue biologique, tel

que présenté à la section 3.4.1.

ρ(xli[t]) = xli[t] ◦ (1− ϕ(xli[t− 1])) +mref ∗ ϕ(xli[t− 1]) (5.8)

Ce qui nous donne en notation matricielle:

P (X[t]) = X[t] ◦ (1− Φ(X[t− 1])) +mref ∗ Φ(X[t− 1]) (5.9)
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5.2.1.4 Cible d’apprentissage

L’algorithmequenous proposons ici est une formedemémoire associative bi-directionnelle telle queprésentée

au chapitre 4. Par conséquent la règle d’apprentissage est basée sur la formule 4.7, dans laquelle on a le

vecteur sourceX et le vecteur cible Y . Nous devons donc définir le vecteur cible Y pour la couche cachée

ainsi que pour la couche de sortie, de façon à être en mesure de mettre à jourW 0,1,W 1,1 etW 1,2. Nous

commençons par itérer le réseau pendant un certain temps pour le laisser converger, en utilisant l’équation

5.5 pour déterminer notre entrée.

ous avons pris comme point de départ une règle de base qui détermine qu’elle est l’activation optimale de

la couche cachéeX1[t] pour obtenir l’activation observée surX1[t+1]. En d’autres termes, nous mettons

à jour le réseau pendant n itérations pour lui laisser le temps de converger, puis nous tentons de renforcer

l’attracteur dans lequel il a abouti:

Θ′(X l[t]) = W [l,k] × Φ(Xk[t+ 1])⊤ +W [l,l] × Φ(X l[t+ 1])⊤ (5.10)

Les neurones en état de réfraction, donc pour lesquels il est impossible qu’ils se soient activés au temps t

peu importe leurs entrées, doivent être retirés de la cible, car cela reviendrait à d’optimiser la potentiation

d’un neurone i au temps t pour queϕ(xli[t]) = 1, alors que le neurone était activé au temps t−1, ce qui n’est

pas autorisé par le principe de réfraction. Nous ajoutons donc un produit d’Hadamard avec 1−ϕ(xli[t−1])

donc un terme afin que θ′(xli[t]) = 0 si i est en état de réfraction au temps t de façon à ce qu’il n’y ait pas

de modification pour ce neurone à cette itération:

Θ′′(X l[t]) = (W [l,k] × Φ(Xk[t+ 1])⊤) + (W [l,l] × Φ(X l[t+ 1])⊤))

◦ (1− Φ(X l[t− 1]))

(5.11)

avec k = l + 1 dans notre cas.

Le premier terme concerne le signal venant de la couche supérieure, alors que le second est celui provenant
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dans la couche courante, via les connexions récurrentes. Finalement, nous ajoutons un termepour l’apprentissage

anti-Hebbien afin de réduire les connexions entre des neurones activés au temps t vers ceux qui l’étaient

au temps t− 1:

Θ(X l[t]) = ((W [l,k] × Φ(Xk[t+ 1])⊤) + (W [l,l] × Φ(X l[t+ 1])⊤))

◦ (1− Φ(X l[t− 1]))− (mref ∗ Φ(X l[t− 1]))

(5.12)

5.2.1.5 Énergie

Dans le but d’implémenter une compétition implicite entre les neurones, nous avons introduit le concept de

l’énergie qui vise à moduler les changements d’état en fonction de la fréquence d’activation du neurone par

le passé. Pour ce faire aumoment de calculer le δ d’activation d’une itération à la suivante, nousmultiplions

le δ par une valeur, que nous appelons l’énergie de ce neurone. Formellement, pour un neuronexi au temps

t, son énergie exi au temps t+ 1 est donnée par ex[t+1] = ex[t] + ϵ(x[t]) avec la fonction ϵ définie par:

δϵ(x) =

⎧⎪⎨⎪⎩
e− si x > mseuil

e+ si x < mseuil

(5.13)

En d’autres termes, l’énergie du neurone est réduite de |e−| lorsqu’il est activé et récupère e+ lorsqu’il ne

l’est pas. La valeur initiale de l’énergie est de 1.0.

5.2.1.6 Inférence

L’équation de base pour la mise à jour des états consécutifs est la même que pour l’apprentissage dans

les mémoires associatives à l’exception que le second terme est donné par la cible d’apprentissage au lieu

d’être le vecteur d’état du réseau:

X l[t+ 1]′ = X l[t] + Φ(X [l−1][t])×W l−1,l +Φ(X l[t])×W l,l (5.14)
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Nous y ajoutons ensuite la réfraction qui met des neurones activés à l’itération précédente àmref :

X l[t+ 1]′′ = ((X l[t] + Φ(X [l−1][t])×W l−1,l +Φ(X l[t])×W l,l)

◦ (1− Φ(X l[t− 1])) + (mref ∗ Φ(X l[t− 1])))

(5.15)

Finalement, nous avons le terme qui module l’activation en fonction de l’énergie de chaque neurone pour

obtenir:

X l[t+ 1] = (X l[t] + (Φ(X [l−1][t])×W l−1,l +Φ(X l[t])×W l,l) ◦ ϵ(X l[t]))

◦ (1− Φ(X l[t− 1])) + (mref ∗ Φ(X l[t− 1]))

(5.16)

5.2.1.7 Apprentissage

La version de base pour l’apprentissage est donc:

∆W l,k[t] = λ ∗ Φ(X l
[ t− 1])×Θ(Xk[t])⊤ (5.17)

Pour forcer 5.17 l’apprentissage d’un cycle de périodeN = 2 au sein des couches récurrentes, lorsque l = k:

∆W l,l[t] = λ ∗ (Φ(X l[t− 1])×Θ(X l[t])⊤ +Θ(X l[t− 1])× Φ(X l[t])⊤) (5.18)

et l’équation 5.17 est inchangée lorsque l ̸= k.
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5.2.1.8 Détermination initiale du signe des poids

Les poids sont initialisés en suivant une distribution gaussienne centrée sur 0 afin de balancer les forces

excitantes et inhibantes dans le réseau. Une fois cette initialisation faite, le signe des connexions (positif

ou négatif) est fixé pour la suite afin de maintenir cet équilibre. Pour ce faire, nous ajoutons un terme

pour multiplier par tanh(W ). Cela a également pour effet d’éviter qu’une valeur δw ne soit trop grande,

augmentant la stabilité de l’apprentissage:

W ′[t+ 1] = tanh(W [t− 1]) ◦ (W +∆W [t]) (5.19)

5.2.1.9 Bloquer la valeur des poids

Finalement, afind’éviter que les valeurs des poids n’explose avec le temps, ce qui entraverait l’apprentissage,

nous appliquons une fonction clip(w
[l,k]
i,j ) ’a tous les poids

Ce qui nous donne:

W [t] = clip(W ′[t]) (5.20)

avec la fonction clip(x) définie comme:

clip(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x si x >= pmin et x <= pmax

pmin si x < pmin

pmax si x > pmax

(5.21)

Onpeut donc voir que l’on apprend ici un cycle allant de l’activation précédente vers la cible et de la cible vers

l’activation précédente. Lors de première implémentation, le second terme de l’addition était absent, car

nous voulions favoriser une émergence naturelle de cycles limites. Cependant, après quelques expériences

comparatives, nous avons constaté que l’ajout de ce terme améliorait significativement les performances

du modèle (+ 10%) à l’évaluation. Nous avons donc opté de l’inclure dans la version présentée ici, mais
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nous y reviendrons au moment de la discussion afin de proposer nos hypothèses concernant les facteurs

derrières cette disparité ainsi que nos proposition pour le retirer dans le futur afin de permettre des cycles

plus long que n = 2.

Tableau 5.1 Paramètres

Nom du paramètre Description Valeur

mseuil Le seuil au-delà duquel un neurone s’active 0.0

mmin La valeur minimum de l’état d’un neurone -0.8

mmax La valeur maximale de l’état d’un neurone 0.5

pmin La valeur minimale qu’un poid peut prendre -0.1

pmax La valeur maximale qu’un poid peut prendre 0.1

λ Taux d’apprentissage 0.035

bruit Le bruit stochastique pour l’apprentissage 0.015

e+ δe lorsque le neurone n’est pas activé 0.04

e− δe lorsque le neurone est activé -0.2

5.2.2 Paramètres globaux

Les paramètres globaux utilisés pour obtenir les résultats exposés dans la figure 5.2 sont présentés dans le

tableau 5.1. Une fois que nous avons eu une implémentation fonctionnelle de notre algorithme, nous avons

effectué de nombreuses séries d’entraînements automatisées variant les différents paramètres définis plus

haut afin de trouver la valeur optimale pour chacun d’entre eux.

5.3 Résultats

Suite à cette recherche, nous avons obtenu les paramètres présentés dans le tableau 5.1. Le graphique

5.2 relate l’évolution de la précision sur le jeu de donnée d’évaluation durant le processus d’entraînement.

Celle-ci cessait de s’améliorer entre 30 000 et 50 000 images d’entraînement, et la meilleure performance

obtenue à l’issue de l’apprentissage était un taux d’erreur de 8.6%. On peut y voir que notre proposition

de bio-RNN est en mesure d’apprendre avec un nombre limité d’exemples, mais semble plafonner lorsque

le taux d’erreur se situe entre 12% et 8%.
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Tout d’abord, le tracé enmauve représente l’évolution de la performance d’une simplemémoire associative

bi-directionnelle à 1024 neurones. Celle-ci fait office de point de référence, puisqu’il s’agit de l’algorithme

standard qui se rapproche le plus denotre proposition. Par conséquent, il s’agissait pour nous de la performance

de base que nous souhaitions atteindre initialement. On peut voir que la performance plafonne rapidement

à 67% avant de se détériorer progressivement. Nous sommes parvenus à atteindre cet objectif assez

rapidement lors du développement de notre algorithme, et nous nous sommes par la suite tournés vers

la RP comme étalon d’évaluation.

Figure 5.2 Évolution de l’apprentissage de notre algorithme bio-RNN

Nous avons testé trois versions différentes de notre algorithme. Nous avons sélectionné le réseau à 1024

neurones dans la couche cachée avec la RP provenant de nos expériences présentées dans la figure 5.1

comme point de comparaison principal. Cette décision est motivée par le fait qu’il s’agit de l’architecture

la plus près de celle que nous avons utilisée pour une grande majorité de nos tests avec notre bio-RNN,

soit celle avec 1024 neurones dans la couche cachée. Les performances de cette dernière sont illustrées

à l’aide du tracé en bleu dans la figure 5.2. On peut voir que notre approche apprend à un rythme plus

élevé que la RP et maintient son avance sur toute la première époque (passage complet du jeu de donnée

d’entraînement). À terme, la RP continue de s’améliorer alors que notre approche plafonne et bien que nous

comptons tenter d’améliorer ce résultat dans des recherches futures, il n’en demeure pasmoins intéressant

dans notre contexte puisque la rapidité de l’apprentissage était l’une des métriques principales qui nous

intéressaient.
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Le tracé en vert est le résultat d’une légère modification de notre algorithme tel que présenté dans les

sections précédentes. Avant d’effectuer l’apprentissage sur une entrée donnée, nous vérifions comment le

réseau la classifie. Si l’inférence s’avère prédire une classe erronée, nous exécutons par la suite normalement

l’algorithme demise à jour des poids. En contrepartie, si la classification est juste, nous passons directement

au prochain exemple sans modifier les poids.

C’est la raisonpour laquelle les données s’arrêtent juste avant les 10000 images d’entraînement. Simplement

l’époque s’est terminée avec lemodèle ayant traité seulement 9317 images sur les 60000du jeu de données

avec un taux d’erreur final de 9.2%. Cette mesure ne s’est pas avérée avoir d’impact sur la performance,

mais elle a permis de démontrer qu’avec un nombre limité de données de qualitée, couvrant la distribution

du jeu de données et étant suffisament orthogonales les unes par rapport aux autres, notre algorithme est

en mesure d’apprendre drastiquement plus rapidement. Nous obtenons une précision qui progresse deux

ordres de magnitudes plus vite que la RP. Cela démontre un potentiel énorme pour notre algorithme s’il est

en mesure d’affiner sa performance globale.

L’absencedemodèles bio-RNNavecmoins deneurones est délibérée. Lors de nos expériences, la performance

diminuait linéairement en fonction de la réduction de la taille de la couche cachée en deçà de 1024. Ce

résultat n’était pas surprenant outre mesure, puisqu’en raison des dynamiques cycliques que nous tentons

d’induire, nous nous attendions à ce qu’un nombre minimal de noeuds soit nécessaire pour que des cycles

variés émergent naturellement.

Un autre point à relever est qu’avec l’accroissement de la taille du réseau, on voit une certaine diminution

de la vitesse d’apprentissage, mais celle-ci est moins notable que pour la RP, tel qu’illustré dans le graphique

5.1. Également, les performances sont beaucoup plus stables avec une variation nettement inférieure lors de

la progression de l’entraînement. Ces deux éléments sont fort intéressants car ils supposent une meilleure

mise en échelle des bio-RNN que de la RP. Avec les modèles massifs qui sont désormais la norme, souvent

dans les milliards de paramètres et dépassant parfois le billion, des améliorations même marginales à ces

niveaux peuvent entraîner des économies significatives en termes de ressources pour l’entraînement des

modèles de pointe. Cela permettrait de développer des modèles plus large et plus performant à coût égal

ou des modèles similaires à moindre coût.
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5.3.1 Analyse visuelle

Une analyse visuelle des poidsW 0,1 suite à l’apprentissage, que l’on peut retrouver dans la figure 5.3, révèle

plusieurs éléments intéressants. Chaque image s’y retrouvant représente un ensemble de connexions allant

de l’entrée à un neurone de la couche caché, soit appartenant àW 0,1. En d’autres terme il s’agit de champs

récepteurs de neurones cachés sur l’entrée. À noter qu’il s’agit dun sous-ensemble des neurones de la

couche cachée illustré à titre indicatifs, leur grand nombre ne permettant pas de les afficher entièrement

de façon lisible.

Tout d’abord, on y reconnait qu’un apprentissage sensé prend définitivement place et que chaque neurone

apprend à s’activer suivant des caractéristiques abstraites de l’entrée, tel que prévu. Également, on peut y

voir que dans les zones extérieures, qui ne contiennent généralement pas d’informations (les pixels qui sont

presque toujours à 0 dans les jeux d’entraînement et d’évaluation), aucun apprentissage ne prend place.

Figure 5.3 Les matrices deW 0,1 pour un ensemble de neurones après l’apprentissage

Nous avons tenté divers moyens pour pallier à ceci, puisqu’intuitivement ces poids devraient tendre vers 0

afin que lorsqu’une image sort légèrement de la distribution des données d’entraînement, elle ait plus de
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probabilité d’être néanmoins bien classifiée (p. ex. si le nombre dans une image est légèrement décalé vers

la gauche ou la droite, des pixels actifs de cette image vont activer des neurones qui ne devraient pas l’être

en raison de ces connexions qui sont demeurées inchangées depuis l’initialisation).

On peut observer que les images générées par les poids connectant les neurones à la couche d’entrée

semblent être bruitées dans leur périphérie. Il semblerait que ces poids, qui sont sous-utilisés puisque très

peu activés par les données d’entrées, ne sont pas modifiés par le réseau lors de l’entraînement puisque

qu’aucun signal n’y transige. Ils restent donc hautement similaires à leur configuration initiale, ce qui

entraîne ce phénomène. Cette observation est encourageante dans le cadre de notre recherche, car cela

semble suggérer d’une part que l’oubli catastrophique de la RP pourrait être mitigé par notre approche

puisque les apprentissages anciens demeurent cristallisés dès lors que la distribution des données d’entrées

est suffisamment différente de celles apprises au préalable. Dans un second temps, cela suggère également

que le réseau dispose de connexions inutilisées pouvant êtremises à profit dans l’apprentissage de données

qui diffèrent de la distribution initiale. Plus de recherches seront nécéssaires pour valider ces postulats.

Les images de la figure 5.3.1 illustrent quand à elles un sous-ensemble du champs récepteur des neurones

cachés sur les autres neurones cachées. Il s’agit donc d’une visualisation des connexions récurrentes de

W 1,1. On y observe, dans un premier temps, qu’il n’y a que très peu de poids positifs (en jaune). Cela

découle de 5.7. Lorsque l’entrée est nulle, il est normal que peu de neurones soient activés dans la couche

caché, ceux qui le sont n’étant qu’activer par les connexions récurrente. Nous croyons également que cela

est dû au fait que lorsque l’entrée est présente (équation 5.5) cela stimule un grand nombre de neurones à

s’activer. Par conséquent, substantiellement moins de neurones sont réceptif à être activer en raison de la

réfraction (5.9).

5.4 Optimisations

L’algorithmeprésenté ici est le résultat final d’un processus d’optimisation qui s’est étendu sur denombreuses

itérations. Aufil de ce développement, de nombreuses variations de l’algorithme initial ont étéméthodiquement

testées dans le but d’en affiner la performance et l’efficacité.

Plusieurs de ces variations incluaient des éléments bio-plausibles que nous croyions initialement judicieux

d’intégrer, mais que nous avons finalement retirés puisqu’ils impactaient négativement la précision lors

de l’inférence. Cela n’infirme pas complètement leur pertinence pour des recherches futures mais, comme

77



Figure 5.4 Les matrices deW 1,1 pour un ensemble de neurones après l’apprentissage

nous l’avons, l’apprentissage biologique est unprocessus excessivement complexe sur lequel nous en connaissons

toujours bien peu. En pratique, cela signifie qu’un principe donné A peut n’être valable que lorsqu’un

mécanisme complémentaire B est présent. Il se peut également que l’abstraction que nous en avons fait

soit trop simpliste ou ne soit simplement pas appropriée dans le contexte. Un exemple est la taille des

cycles abordé à la section 5.4.1. Il se peut qu’il existe un motif particulier de connectivité, ou des propriétés

biochimiques de certains neurotransmetteurs, qui doivent être présent avec une concentration précise

dans le liquide céphalo-rachidien, qui régule l’émergence, la période et la synchronisation des attracteurs

temporels. Or, nous n’avons aucunmoyen à ce staded’être enmesure dedéterminer ce genre dedépendance

pour les intégrer dans notremodèle. Nous nous sommes donc résolus à simplement retirer ces éléments qui

venaient substantiellement impacter négativement la performance de notre proposition. Il n’en demeure

que ces éléments représentent des questions de recherche ouvertes sur lesquelles nous comptons revenir

lors des recherches ultérieures.

D’autres se sont révélées particulièrement notables puisqu’elles démontrent la pertinence de certains choix
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qui ont été faits dans l’implémentation finale. Finalement, certains des détails d’implémentations n’ont pas

été couverts dans la formalisationmathématique présentée car nous avons jugé qu’il était plus judicieux de

les exposer suite à la présentation des résultats. Par conséquent, cette section vise à fournir un aperçu de

ces variantes significatives, mettant en lumière les ajustements et les améliorations qui ont été apportées

au fur et à mesure de l’avancement de nos recherches.

5.4.1 Cycles forcés

Nous avons tenté de retirer l’apprentissage explicite des cycles défini dans l’équation 5.18 afin de laisser

le modèle apprendre par lui-même les cycles qu’il désirait avec une période arbitraire, car nous n’avons

croisé aucune base théorique qui dicte que nous devons explicitement imposer le cycle au moment de

l’apprentissage. Nous avions même comme hypothèse initiale que pour une entrée donnée le réseau

pouvait vagabonder entre différents attracteurs et qu’il pouvait y avoir une valeur à le faire, lui permettant

demieux discriminer les images améliorant ainsi la classification. Cependant, après avoir comparé expérimentalement

les deux approches, il en est ressorti qu’il était optimal de forcer l’apprentissage d’un cycle oscillatoire de

périodeN = 2, avec une amélioration de la précision d’environ 10%− 15% au moment de l’évaluation.

5.4.2 Détermination initial du signe des poids

La détermination initiale des poids est une contrainte que nous avions incluse dès le départ dans notre

modèle. Nous avions inclus cette contrainte en raison de sa contrepartie biologique, où un neurone est

soit de type "excitant" soit de type "inhibiteur". Cependant nous n’avons pas jugé utile de l’implémenter

au niveau des neurones en soi et nous nous sommes contentés de les fixer au niveau des connexions

individuelles, ne voyant pas de différence flagrante au niveau logique et mathématique qui justifierait de le

faire. Durant nos recherches, le retrait de cette contrainte a fait l’objet d’expérimentations avec pour résultat

un effondremment complet de l’apprentissage, ce qui est venu nous confirmer dans notre décision.

5.4.3 Affaiblissement temporel des poids

Unautre de ces éléments, quenous avions initialement jugé pertinent d’implémenter dans notre algorithme

et qui est documenté comme processus biologique, est le déclin temporel des synapses inutilisés. Nous

avons tenté de l’inclure sous diverses formes, entres autres afin de faire tendre les connexions provenante la

périphérie de l’image vers 0. Puisque celles-ci ne devraient pas avoir d’impact sur l’activation ou l’inhibition
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Figure 5.5 Les matrices de W 0,1 pour un ensemble de neurones après l’apprentissage, avec un
affaiblissement temporel des poids

des neurones de la couche cachée, nous croyions que les affaiblir au fil du temps mènerait à une meilleure

précision du modèle.

Cependant ces tentatives sont demeurées infructueuses. Au mieux ayant un impact légèrement négatif

sur la précision du modèle et dans les cas les plus désastreux menant à un effondrement complet des

performances après environs 5000−15000 itérations d’apprentissage. La figure 5.5 est tiré d’une expérience

implémentant cettemesure et illustre l’effet de cettemesure sur les poids d’entrée dumodèle. Visuellement,

cela semble faire plus de sens que les poids tirés de nos résultats illustrés dans la figure 5.3 mais en pratique

la performance atteint un plafond inférieur (et plus rapidement), soit 79%, contre 90% sans cette mesure.

Cependant en raison de sa provenance biologique, nous croyons qu’une optimisation de la sorte représente

une avenue expérimentale intéressante qui peut justifier des recherches futures dans cette direction.
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CHAPITRE 6

CONCLUSION
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Il est indéniable que la rétropropagation a été un moteur essentiel dans les progrès de l’IA, permettant la

résolution de problèmes autrefois intraitables et l’atteinte de performances de pointe dans de nombreuses

tâches. Cependant, nous croyons, en raisondes arguments qui ont été présentés, qu’il est désirable d’explorer

des alternatives plus proches desmécanismes d’apprentissage biologiques. L’apprentissageHebbien et anti-

Hebbien, la STDP, les systèmes dynamiques et les mémoires associatives, en tant que représentants de

ces alternatives, offrent des perspectives intéressantes pour le développement de nouveaux algorithmes.

Inspirés par les principes biologiques de la plasticité synaptique, ils nous éclairent sur des approches plus

naturelles et potentiellement plus efficaces pour effectuer l’apprentissage dans des réseaux de neurones

récurrents, bien qu’ils aient été historiquement relégués au second plan par rapport à la rétropropagation

en raisonde leurs performances inférieures dans denombreux contextes, ce qui nous a poussés à sélectionner

cette approche comme point de départ pour la création de notre algorithme.

Dans cemémoire nous avons vu comment le cerveauhumain peut être décrit commeun systèmedynamique

qui alterne constamment entre différents états sans nécessairement atteindre un équilibre stable. Cette

flexibilité, due à sa nature chaotique intrinsèque, lui permet de réagir de manière adaptative aux stimuli

internes et externes. Cette caractéristique est cruciale pour les fonctions cognitives, où le cerveau doit

être en mesure de passer rapidement d’un état à un autre pour encoder et récupérer des informations.

Nous avons également présenté divers algorithmes pertinents dans notre contexte, sur lesquels nous nous

sommes basés pour concevoir notre approche.

À travers une approche à la fois théorique et expérimentale, nous avons exploré les fondements dedifférents

paradigmes d’apprentissage biologiques et artificiels, ainsi que leur application potentielle dans des architectures

neuronales récurrentes dynamiques. Notre proposition d’un algorithme d’apprentissage bio-inspiré pour

les RNN représente un pas dans cette direction en démontrant la faisabilité et l’efficacité possible d’une

fusion entre ces différentes approches. Pour ce faire, nous avons formalisé unnouvel algorithmed’apprentissage

inspiré par la biologie qui a été présenté en détails. Inspiré du fonctionnement général des mémoires

associatives et basé sur les travaux de (Molter et al., 2005), nous avons généralisé ces approches à plusieurs

couches et avons implémenté une version simple à 3 couches afin de démontrer experimentalement sa

validité.

Bien que notre modèle offre des performances globales limitées, ne parvenant pas à surclasser un grand

nombre de techniques ML sur la classification d’image, nous sommes néanmoins parvenus à atteindre
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certains des objectifs que nous nous étions fixés.

Dans unpremier temps, notremodèle démontre des capacités d’apprentissage rapides commenous l’espérions,

étant enmesure d’atteindre uneperformancede 80.5% après avoir été entraîné sur seulement 1505 exemples,

contre plus de 21000 pour notre implémentation comparative d’ANN avec propagation arrière. Cependant,

malgré cette supériorité initiale de notre modèle, notre approche demeure inférieure en termes absolus.

En effet, alors que notre proposition sature à autour de 40 000 itérations, la rétropropagation continue

de s’améliorer sur plusieurs époques, pour éventuellement atteindre un taux d’erreur < 4%. Cependant

la RP ne parvenant pas à surpasser notre algorithme en 1 époque. Cependant, si nous entraînons les

modèles pendant plusieurs époques, éventuellement lesmodèle avec la RP finissent toujours par reprendre

le dessus, obtenant eventuellement un taux d’erreur entre 5% et < 1% tout dépendant de l’architecture

évaluée et du nombre d’époques d’entraînement.

Dans un second temps, nous avons atteint notre second objectif, parvenu à encoder le traitement de

l’information à l’intérieur de cycles limites. Ainsi faisant, nous avons pudémontrer que ce typededynamique

dispose des capacités nécessaires pour soutenir l’apprentissage dans des réseaux de neurones récurrents

et qu’il s’agit par conséquent d’une piste de recherche viable.

Finalement, nos différentes expériences nous ont également permis d’évaluer différents concepts biologiques

dans le cadre de leur application aux RNN. Cela nous a permis d’apprendre que de fixer les poids comme

étant inhibiteur ou excitant à l’initialisationmenait à un apprentissage plus robustemenant à unediminution

du taux d’erreur pour la tâche de classification. Nous avons également pu constater que l’affaiblaissement

temporel des poids était contre productif dans ce type de contexte expérimental.

Bien que nos résultats préliminaires si situent en-deçà de l’état de l’art, nous sommes néanmoins convaincus

qu’il s’agit d’une approche prometteuse qui mérite d’être poussée plus loin. Au fil de nos recherches,

nous avons implémenté différentes variantes de notre algorithme afin de tester l’impact que pouvaient

avoir différents paramètres et différentes formalisations sur la performance. De nombreuses autres ont

été considérées, mais leurs mises en pratique dépassaient le cadre du présent travail. Elles représentent

néanmoins des pistes d’amélioration envisageables pour nos recherches futures. L’utilisation de cycles plus

longs, l’implémentation de règles favorisant la synchronisation de groupes de neurones, l’implémentation

de la régression logistique pour l’optimisation des connexions de la dernière couche cachée à la couche
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de sortie ainsi que l’ajout de couches récurrentes latérales, donc étant connecté bi-directionnelement avec

seulement une autre couche sont toutes des pistes que nous considérons explorer dans nos travaux futurs.
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