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IA Intelligence Artificielle.

AGI Intelligence Artificielle Générale.
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EEG Electro-encéphalogramme.

LSTM Réseau de neurone a longue mémoire a court terme, de I'anglais "Long short-term memory".

STDP Spike-Time Dependent Plasticity.
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RNN Réseau de neurone récurrent.

bioRNN Réseau de neurone récurrent bio-inspiré ou bio-plausible.

LLM Modéele de langage massif, de I'anglais "Large Language Model".



RESUME

Ce mémoire se penche sur la synergie entre divers paradigmes d’apprentissage biologique et algorithmique.
En mettant I'accent sur lacomplémentarité et le potentiel de divers mécanismes d’apprentissage biologiques
a étre formalisés mathématiquement dans un modéle, nous cherchons a éclairer leur capacité a offrir
des alternatives a I'algorithme de la rétropropagation (RP) dans les réseaux de neurones profonds (RN).
Pour ce faire, nous explorons l'intersection entre ces paradigmes, en mettant I'accent sur les mécanismes
d’apprentissage Hebbien et anti-Hebbien et |a plasticité synaptique a temps dépendant (STDP), pour étudier
les dynamiques internes d’'un systéeme de neurones récurrents les intégrant. Notre objectif est d'établir
s'il est possible de créer un systéme artificiel étant au moins partiellement analogue a sa contrepartie
biologique dans son fonctionnement dynamique et son apprentissage (entre deux neurones) présentant
des propriétés d’apprentissage (globales).

Tout enreconnaissant I'efficacité de la rétropropagation, qui a permis des avancées significatives enintelligence
artificielle (1A) pour la génération et la classification de données multimodales, pour le traitement du langage
naturel et pour l'apprentissage par renforcement, cette recherche souligne ses limites qui sont l'objet de
nombreuse recherche de pointe.

Notre travail adopte une approche ala fois théorique et expérimentale afin d’évaluer comment ces principes,
plus biologiquement plausibles et inspirés du fonctionnement du cerveau et de sa topologie dynamique que
les méthodes courantes, peuvent offrir des processus d’apprentissage plus rapides et adaptables. Pour le
volet expérimental, nous proposons un algorithme d’apprentissage bio-inspiré pour les réseaux de neurones
récurrents (bio-RNN). Nos résultats suite a son implémentation montrent que le modéle proposé est initialement
performant et rapide dans I'apprentissage, suggérant une piste intéressante de recherche. Cependant, cet
avantage disparait rapidement lorsqu’on alloue un temps d’entrainement raisonnable et notre méthode
demeure bien en deca des performances de la rétropropagation en termes de précision et de rappel absolus
sur des taches complexes. Nous sommes néanmoins parvenus, a travers nos expériences, a démontrer que
I'intégration des principes Hebbiens dans les architectures neuronales récurrentes dynamiques est faisable
et prometteuse, soulignant la nécessité de poursuivre nos recherches pour mieux comprendre et affiner
ces méthodes alternatives.



CHAPITRE 1
INTRODUCTION



Grace a l'avénement des modéles de réseaux de neurones (RN), I'intelligence artificielle (IA) a fait des
avancées considérables, s'imposant comme une discipline centrale pour lacompréhension et la modélisation
de données massives et complexes. Que ce soit en géologie (Huang et al., 2017), en physique (Thuerey et al.,
2022), en biologie (Skolnick et al., 2017) ou méme en chimie (Mater et Coote, 2019), il est désormais difficile
de trouver un champ de recherche au sein duquel cette technique ne s’est point infiltrée. L'apprentissage

profond (AP) est maintenant appliqué pour le traitement des données a travers les sciences naturelles.

La neuroscience est I'un de ces champs qui ont été propulsés vers I'avant grace a ces techniques. D’un c6té,
les chercheurs en neuroscience utilisent désormais largement des modeéles de pointe afin d’interpréter les
données complexes de télémétrie qu'ils récoltent. Que ce soit pour I'imagerie a résonance magnétique
(Shahamat et Saniee Abadeh, 2020; Zhang et al., 2023), les flux en provenance d’implants (Zhang et al.,
2019), les images microscopiques (Xing et al., 2018) ou les données électro-encéphalographiques (EEG)
(Gao et al., 2021; Schirrmeister et al., 2017), I'apprentissage profond a fourni un nouvel outil d’analyse
repoussant les frontiéres de notre connaissance. De l'autre, la création de modélisations visant différents
processus neurologiques (Wixted et al., 2014; Wert-Carvajal et al., 2022), cognitifs (Zhang et al., 2023) et
computationnels (Wixted et al., 2014; Zhang et al., 2023; Tomasello et al., 2018) soutenant I'avénement de

la conscience leur permet de jeter une nouvelle lumiére sur le fonctionnement interne du cerveau.

Pour ce qui est des algorithmes supportant ces modéles, les chercheurs en A ont fait des progrés phénoménaux.
Il suffit de penser aux les modeéles massifs de langage (LLM) dont les avancées récentes nous aménent

a reconsidérer la notion méme d’intelligence. Parmi les techniques ayant joué un role pivot dans cette
révolution, la propagation arriére, ou rétropropagation (RP), se distingue comme le mécanisme d’apprentissage
fondamental dans les réseaux de neurones profonds (RNP) a travers une forte majorité de leurs applications.
Que ce soit dans les modeéles de diffusion (Ho et al., 2020) ou les réseaux génératifs adversariaux pour la
génération d’'image (Goodfellow et al., 2020), les LSTM (Hochreiter et Schmidhuber, 1997) ou les transformeurs
(Vaswani et al., 2017) pour le traitement du langage naturel ou encore dans les techniques d’apprentissage
par renforcement comme le "Q-Learning" (Mnih et al., 2013) et le systéme AlphaZero (Silver et al., 2017),

on retrouve toujours la rétropropagation derriére leur entrainement et le progrés fulgurant des derniéres

années n'aurait pas été possible sans elle.

La RP est un algorithme capable de résoudre un grand nombre de problémes d’optimisation qui étaient

jusgu’alors intraitables et de surclasser marginalement un grand nombre de techniques modernes sur de



nombreux autres. Il est donc naturel qu'elle se soit imposée comme l'algorithme de prédilection pour
une panoplie d’applications de résolution de problémes dans différents domaines de recherche et dans
I'industrie. C'est pourquoi il est généralement accepté que les réseaux de neurones profonds et la propagation
arriere sont indispensables pour faire la classification d'image, la génération d’image et pour le traitement

du langage naturel a des niveaux atteignant I'état de I'art.

La propagation arriéere, lorsqu'appliquée a I'entrainement des réseaux de neurones profonds, repose sur
un principe d'optimisation mathématique pour ajuster les poids synaptiques dudit réseau en fonction de
I'erreur de sortie. Son efficacité a traiter des problemes complexes et sa contribution au succés des applications
d’lA modernes sont indéniables. Cependant, cela ne I'empéche pas de présenter certaines limites, notamment
sa tendance a nécessiter une importante quantité de données et de larges ressources computationnelles,
son apprentissage lent et progressif, et I'oubli de certains apprentissages initiaux au cours de I'entrainement
(Kemker et al., 2018). La question sur sa capacité a étre I'algorithme soutenant I'intelligence artificielle
générale (tiré de l'anglais, Artificial General Intelligence, AGI dans le texte) demeure a ce jour ouverte,
puisque la rétropropagation n’est pas bio-plausible, ce qui veut dire que nous n'avons toujours pas découvert
de mécanismes analogues dans le cerveau biologique, qui est le seul systéme connu étant capable d’atteindre

I'intelligence générale.

Parallélement, I'apprentissage Hebbien (Hebb, 1949), inspiré par fonctionnement du cerveau, offre une
perspective différente et complémentaire sur la facon dont les systémes intelligents peuvent apprendre
et s'adapter. Celui-ci, évoquant le célébre adage "les neurones qui s'activent ensemble se lient ensemble",
s'inscrit dans une démarche visant a imiter les processus d'apprentissage naturels observés dans le cerveau.
Bien que souvent considéré comme inférieur a la rétropropagation (Krotov et Hopfield, 2019), I'apprentissage
Hebbien, se rapproche davantage des phénomenes d’apprentissage biologique, suggérant une voie vers une

capacité d’apprentissage universelle et rapide semblable a celle du cerveau humain.

Cette approche, bien que moins répandue dans les applications d’|A contemporaines, a été historiquement
I'objet de nombreuses recherches dans la littérature. Avec le succes de la BP, le rythme de publications sur
les algorithmes bio-inspirés et bio-plausibles s'est quelque peu estompé au cours de la derniére décennie,

mais semble cependant connaitre un regain au cours des derniéres années .

' Il s'agit ici d’'une observation empirique, basée sur notre revue de littérature



Avec la croissance constante des modéles de pointe, les limitations de la BP deviennent de plus en plus
apparentes. Leur taille colossale nécessitant des ressources computationnelles massives et des jeux de
données massifs pour leur entrainement les rend inaccessibles pour beaucoup de chercheurs n'ayant pas
acces a ces ressources. Les différentes techniques Hebbiennes présentant I'avantage d’une plus grande
bio-plausibilitée, soulévent la possibilité d’atteindre une forme d’apprentissage plus rapide, performante,
adaptable et permettant de mieux traiter les flux de données. Le tout en augmentant I'accessibilité et
le potentiel de démocratisation de la technologie s'il est possible d’augmenter d'ordres de magnitudes la
vitesse de convergence tant au niveau de lademande en calcul que de la demande en données d’entrainement.
De plus, I'état plus embryonnaire du domaine fait en sorte que des gains considérables peuvent étre effectués

avec des moyens relativement modestes.

Avec ce mémoire, nous proposons une exploration de la synergie entre différents paradigmes d’apprentissage
biologiques et algorithmiques, en nous interrogeant sur leur complémentarité et leur potentiel a enrichir
notre compréhension de I'intelligence artificielle. A travers une revue critique de la littérature et le développement
de modeéles et d’expériences numériques, nous chercherons a déterminer dans quelle mesure la combinaison

de différents processus modélisés mathématiquement peut ouvrir de nouvelles perspectives pour la conception
de systemes intelligents plus performants et plus proches de la fonction cognitive humaine. Par conséquent,

ce travail s'inscrit dans une démarche a la fois théorique et expérimentale, visant a contribuer au dialogue

entre I'apprentissage machine (de I'anglais Machine Learning, ou ML) et les neurosciences, dans I'espoir de

rapprocher les machines des capacités et de la flexibilité des systémes d’apprentissage biologiques.

En s'attaquant a ce sujet, ce mémoire vise a offrir une perspective interdisciplinaire entre l'intelligence
artificielle et les neurosciences, dans le but d’investiguer des pistes de recherche pour la conception d'une
nouvelle génération d’algorithmes d’apprentissage qui combinent I'efficacité mathématique de la propagation
arriere avec la flexibilité et la robustesse de I'apprentissage Hebbien. Ce travail se positionne a l'intersection
de la recherche fondamentale et appliquée, avec I'espoir de jeter des ponts entre les modéles théoriques
d’apprentissage et leur mise en ceuvre pratique dans des systémes d’IA avancés. L'interaction entre les
différents paradigmes d’apprentissages bio-plausibles, ainsi que leur application a des architectures neuronales

dynamiques récurrentes, constitue le coeur de cette recherche.

Afin d’explorer ces thémes variés pour ensuite en extraire les éléments saillants sous forme d’un algorithme,

ce mémoire est divisé en quatre axes principaux: les systémes dynamiques, |'exploration des avancées



théoriques et expérimentales en neurosciences, I'étude approfondie des différents algorithmes d’apprentissage
pour les réseaux de neurones standard et récurrent, et enfin, notre proposition d’'un algorithme d’apprentissage

dynamique semi-supervisé visant a valider I'importance des différentes contraintes et méthodes abordées.

Le chapitre 2 porte donc sur les systemes dynamiques chaotiques et vise a établir une base théorique
commune pour la compréhension des mécanismes dirigeant les dynamiques dans notre modéle et de

I'analyse de nos résultats.

Pour le troisieme chapitre, nous nous attardons a établir les fondations biologiques sur lesquelles repose
notre compréhension de 'apprentissage et de lamémoire. En mettant en lumiére les mécanismes neuronaux,
tels que la plasticité synaptique et les dynamiques neuronales complexes, ce chapitre vise a établir une base
théorique derriére les processus cognitifs biologiques et leur modélisation informatique. En explorant les
systémes dynamiques et les motifs d’activation neuronaux, nous soulignons I'importance de ces phénoménes
dans la formation de la mémoire et dans les processus d’apprentissage, établissant ainsi un cadre pour

I'intégration de ces principes dans notre proposition.

Le chapitre 4 porte quant a lui sur divers algorithmes d'apprentissage utilisés pour optimiser différents types
deréseaux de neurones. Nous commencons par présenter la technique la plus utilisée, soit la rétropropagation,
et propose une analyse critique de ses contraintes intrinséques, telles que sa demande computationnelle
élevée et son manque de bio-plausibilité. Il établira également le contexte motivant la recherche d’approches
alternatives ou complémentaires en IA. Ensuite, nous nous penchons sur l'apprentissage Hebbien sous
différentes formes et leur potentiel a simuler plus fidélement les mécanismes d'apprentissage biologiques,
avec un accent particulier sur leur application au sein de réseaux neuronaux récurrents dynamiques. Ce
chapitre explore la capacité de ces méthodes a offrir des voies d’apprentissage plus naturelles et efficaces,

en particulier pour le traitement de données temporelles et séquentielles.

Subséquemment, au chapitre 5, nous formalisons la proposition de notre algorithme. Notre approche vise
a fusionner les différents concepts qui sont présentés au sein d'un cadre unifié. Cette synthése ambitionne
de créer une fonction d’apprentissage qui, non seulement pallie les faiblesses de chaque approche prisent
isolément, mais bénéficie également de leur complémentarité pour améliorer la performance globale de
notre modeéle. Pour ce faire, nous proposons notre architecture avec une nouvelle fonction de mise a jour

des états et d’apprentissage et la comparons a une architecture simple de ANN avec BP. Pour ce faire, nous



présentons d’abord ses différentes composantes algorithmiques ainsi que différentes avenues que nous
avons explorées lors de notre implémentation en Python. Cette partie se termine par une présentation des

résultats des expériences effectuées dans le cadre de notre recherche.

Finalement, la conclusion de ce mémoire propose une synthése des découvertes réalisées a travers ces axes
de recherche, démontrant I'interaction complexe entre les principes neurologiques et leur application dans
le domaine de l'intelligence artificielle. Nous nous attardons également sur les limites de notre approche et

proposons différentes pistes d’améliorations candidates pour des recherches ultérieures plus approfondies.



CHAPITRE 2
SYSTEMES DYNAMIQUES



Depuis la publication séminale de Lorenz (Lorenz, 1972) sur les attracteurs dynamiques qui a fait I'introduction
pour la premiére fois de "I'effet papillon", ou sensibilité aux conditions initiales, I'étude du chaos est devenue
un champ de recherche hautement interdisciplinaire qui a des applications nombreuses et variée. Que ce
soit pour la météorologie comme dans l'article original, ou pour I'étude de I'évolution de populations, de
la dynamique des fluides ou du mouvement des groupements des corps célestes en astrophysique, cette
approche analytique nous a permis d’interpréter de nombreux phénomeénes complexes qui semblaient

complétement aléatoires jusque la.

Ce chapitre vise a présenter brievement la notion de chaos et d’attracteurs dans un systéme dynamique et

a détailler les types d’attracteurs principaux qui sont pertinents pour notre recherche.

2.1 Formulation

Formellement, un systéme dynamique est un systéme S qui comprend une fonction de la forme f(z)
qui détermine la dépendance temporelle d’un point dans l'espace des états possibles, autrement appelé

I'espace des phases. Plus simplement, on peut I'exprimer comme:

i = f(z) (2.1)

Ouz € R"et f : R® — RR™ sont une fonction lisse, dans le cadre du présent travail, le type de systéme

dynamique qui nous intéresse plus spécifiquement est celui des réseaux de neurones récurrents (RNN).

2.2 Réseaux de neurones récurrents

Les systemes dynamiques peuvent prendre de nombreuses formes. La version sur laquelle nous nous
pencherons plus particulierement pour notre recherche est celle des RNN. Ceux-ci peuvent étre représentés
comme un graphe composé de noeuds, ou neurones, et d’arétes, aussi appelés poids, connexions ou synapses,
quilient ces différents noeuds entre eux. Chacun des noeuds dans I'ensemble X ont une valeur quireprésente

leur état, avec x; le neurone a la position 1.

Les connexions sont représentées sous la forme d’une matrice des poids IV ol w; ; est la connexion entre

les neurones z; et x; . A chaque itération ¢ du systéme, on le met a jour avec:



X1 = 6(X,W) (2.2)

Ou ¢ est une fonction d’activation arbitraire, par exemple la tangente hyperbolique réciproque tanh(z), la

1
fonction logistique o(z) = ————, une fonction binaire bin(x) C 0, 1 ou de signe sign(x) C 0, 1.

1+e

Définition 2.1 (Motif) UnmotifY = {yo, y1, - .., yn } dansun RNN est une configuration donnée de neurones

activés simultanément a un temps t d’un sous-ensemble de neurones de facon a ce que Y C X.

L'architecture de RNN a une couche illustrée dans 2.1 est la forme la plus simple de ce type de réseau. Les

réseaux de Hopfield dont il sera question au chapitre 4 sont de ce type.

Figure 2.1 Un réseau de neurone récurrent basique a une couche de 4 neurones

Une autre architecture courante est le RNN multicouche avec couche d’entrée. Cela nous permet de séparer
I’entrée du traitement de I'information (par les couches cachées) dans différentes matrices de poids afin de
créer une représentation abstraite pouvant étre optimisée afin de générer le motif d’activation désiré. Cette
architecture est composée d’'une couche d’entrée et d’'une couche cachée. Les connexions IV vont de la
couche précédente a la suivante et a elle-méme dans le cas des couches cachées. Le réseau est mis a jour

avec:

X1 =6(X) (couche dentrée)
(2.3)

X{ = o(WHHX - WHX])  (couche(s) cachéel(s))

Cependant, I'absence de couche de sortie dans ces deux types de RNN limite leur utilisation puisqu’il n’est
pas possible d'effectuer un traitement dirigé de I'information (d’associer une entrée A avec une sortie

désirée Btelleque B = f(A)) tout en permettant au réseau d’apprendre un motif optimisé (a I’entrainement)



en réponse a un stimuli intrant. Les réseaux dynamiques récurrents proposés par Molter et al. dans (Molter

et al., 2004; Molter et al., 2005) présentés au chapitre 4 sont un exemple de ce type de RNN.

Pour palier a ce probléme, il suffit d’ajouter une couche de sortie dénuée de connexions récurrentes connectée

a la derniere couche récurrente de sorte que:

X{1 = ¢(X) (couche d’entrée)
X{ = o(WHX " 1 WHX])  (couche(s) cachée(s)) (2.4)

Xt = o(WEH X1 (couche de sortie)

Cet ajout en fait un RNN multicouche avec entrée/sortie, tel qu'illustré par 2.2. Sous cette configuration,
I’entrée, le traitement de l'information et I'inférence de la sortie sont segmentés afin de permettre au
RNN d'apprendre la représentation interne (motifs d'activation des couches cachées) la plus optimale lui

permettant de générer la sortie désirée.

Figure 2.2 Un réseau de neurone récurrent simple avec entrée/sortie a une couche cachée

Le modéle que nous proposons au chapitre 5 est de cette forme.

2.3 Espace des phases

Dans I’étude des systémes dynamiques, I’espace des phases est une représentation géométrique, oti chaque
point dans cet espace représente un état possible du systéme. Pour un systeme avec n variables, I'espace
des phases est n-dimensionnel, ol chaque axe représente une des variables du systéme. Les trajectoires
dans cet espace décrivent comment les états du systéme évoluent dans le temps. Cet espace apporte une

lumiére essentielle pour visualiser et comprendre la dynamique du systeme, y compris les attracteurs, les
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cycles limites, et les comportements chaotiques qui sont présentés plus bas. Par exemple, dans un systéme
mécanique simple comme un pendule, I'espace des phases peut étre utilisé pour montrer les positions et
les vitesses du pendule a chaque instant, offrant une vue compléte de son mouvement au fil du temps. La

figure 2.3 illustre un tel espace des états.

2.4 Attracteurs dynamiques

Un concept clé dans I'étude et la compréhension des systémes dynamiques est celui d’un attracteur. Formellement,
un attracteur dans un systeéme dynamique est un ensemble d’états (points dans I'espace de phase), invariant
sous un régime dynamique prédéfini, vers lequels les états voisins s'approchent asymptotiquement au fil

du temps.

Définition 2.2 (Attracteur dynamique) Prenons un systéme dynamique décrit par I'équation & = f(x). Un

attracteur est un ensemble A = {ag, a1, ...,a,} |C R" tel que pour tout z € Aett > 0,

gbt(a:) € A,

ou ¢y est le flux du systeme, pour lequel il existe un ensemble ouvert U (le bassin d'attraction) contenant A

tel que pour chaque x € U,

tlg]élo oi(x) € A.

Dans le contexte de notre recherche, les attracteurs dans les réseaux neuronaux, particulierement dans des
modeéles comme les réseaux de Hopfield qui seront présentés au chapitre 4, peuvent étre vus comme des
états stables ou des états de mémoire dans lesquels le réseau se stabilise, aprés avoir commencé a partir de
certaines conditions initiales. Dans le paysage énergétique d’'un tel réseau, chaque attracteur correspond a
un minimum local, et le processus d’évolution dynamique dans le réseau est semblable a I'état du systéeme

descendant dans le paysage énergétique jusqu’a ce qu’il se stabilise dans I'un de ces minima(Hopfield, 1982).

1)



Afin d'établir un langage commun pour la suite, il est important de définir les différents types d’attracteurs

principaux qui apparaissent dans la littérature et dans la présentation de nos résultats.

2.4 Attracteurs sur point fixe

Les attracteurs sur un point fixe sont des états stables d’un systéme dynamique ou, indépendamment des

conditions initiales dans un certain voisinage, le systéme évolue vers et reste dans cet état stable.

Définition 2.3 (Attracteur sur point fixe) Formellement un attracteur dynamique A est dit sur un point fixe

si|A| = 1. Simplement, c’est un attracteur qui ne contient qu’un seul point dans I'espace de phases.

Ces attracteurs sont des solutions d'équilibre, ou le systéme n’exprime aucun changement au fil du temps
une fois I’état atteint. Un exemple classique d’attracteur sur un point fixe est le systéme d’un pendule (avec
friction) a I'arrét, ou, indépendamment de la position initiale du pendule, il revient toujours a sa position

stable verticale et y reste.

Dans la figure 2.3, pour le systéme avec un coefficient de friction (en orange), le point (0,0) est un attracteur
sur point fixe, qui représente I'état du pendule a l'arrét. On peut voir que la trajectoire tend ultimement

vers ce poids alors que lim;_ .

2.4.2 Cycle limite

Un cycle limite est une trajectoire fermée dans I'espace des phases d’un systéme dynamique, caractérisant
un comportement oscillatoire stable et périodique. Un exemple concret de cycle limite peut étre observé
dans les oscillations de la population de certaines espéces dans un écosystéme, comme le montrent les

équations de Lotka-Volterra pour les modéles prédateur-proie. (Volterra, 1926)]

2.4.3 Attracteur périodique discret

Les attracteurs périodiques discrets décrivent des systémes dynamiques qui, aprés une période initiale de
convergence, oscillent périodiquement entre un nombre fini d'états formant un cycle répétitif. Ces cycles

représentent des processus périodiques ou des oscillations dans le systéme ou, aprés un certain temps,
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Figure 2.3 Espace des phases d’un systéme représentant le mouvement d’'un pendule simple avec et sans
coefficient de friction.

les valeurs des variables du systéme reviennent a leurs états précédents, répétant une série de motifs

indéfiniment.

Définition 2.4 (Attracteur périodique discret) Un attracteur périodique discret A est un attracteur pour
lequel 1 < |A| < oo. Simplement, c’est un attracteur qui est composé d’un nombre fini de points dans

I'espace de phases.

La figure 2.4 est une illustration d’un tel attracteur dans un RNN simple composé de 3 neurones pleinement

connectés entre eux. La matrice des poids permettant d'obtenir cet attracteur est

-1 1 1
-1 1 1
—-1.1939 —0.6108 —0.3535
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Figure 2.4 Un attracteur périodique discret dans un réseau récurrent simple.

avec un biais de [0.2805, 0.7711, —0.9976] et une fonction d’activation non continue appliqués respectivement

a chaque neurone a chaque itération.

2.4.4 Attracteurs limites

La notion d’attracteur limite se référe a des comportements périodiques dans des systémes dynamiques ol
les trajectoires convergent vers une orbite fermée. Contrairement aux attracteurs fixes, qui tombent sur
un point, ou les attracteurs périodiques discrets, qui tendent sur un nombre fini de points, les attracteurs
limites sont des ensembles infinis de points formant des chemins fermés, des trajectoires, démontrant des

dynamiques continues et périodiques dans le temps. Formellement, un attracteur limite est simplement

un cycle limite stable.

Définition 2.5 (Cycle limite) Un cycle limite est un ensemble fermé I’ C R™ qui est une solution périodique
de I'équation différentielle 2.1. Formellement, cela signifie que pour un point xo € I" et une période T' > 0,

nous avons:

7 (x0) = 0,
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ou ¢; est le flot généré par i, et pour tout t € R,

¢t($0) erl.

Le cycle limite est dit "stable" si, pour tout point y dans un voisinage U de T', la trajectoire ¢.(y) converge

vers I lorsque t — oco. Mathématiquement, cela peut étre exprimé comme:

lim dist(¢(y), ') =0, Yy eU.

t—00

Le cycle limite est dit "instable" si les trajectoires dans un voisinage de I" s’en éloignent au fil du temps.

Le battement du coeur humain peut étre considéré comme un attracteur limite, ot le systéme cardiovasculaire
oscille de maniére périodique pour pomper le sang, illustrant une orbite fermée d’activités qui se répétent
dans un cycle de vie stable malgré les variations entre les différents battements. Un cycle de prédateur-
proie dans un écosystéme, ou les populations de prédateurs et de proies oscillent de maniéere périodique
en est un autre exemple. Chaque espéce influence cycliquement l'autre, entrainant un motif répétitif et

prévisible de croissance et de déclin qui ne se dissipe pas avec le temps.

Le systéme dont I'espace des phases (pour un neurone) est illustré dans la figure 2.5 est un simple réseau

de neurones récurrents avec 2 neurones pleinement connectés entre eux. La matrice des poids permettant

-1
d’obtenir cet attracteur est . Une fonction d’activation tanh(x) est appliquée a la valeur de I'état
1 1

d’un neurone pour la mettre a jour et un biais de [0.4, 0.0] est ajouté respectivement a chaque neurone a

chaque itération.

2.5 Chaos dynamique

De nombreux phénomeénes, la turbulence en est un exemple, semblent a prime abord exhiber un comportement
aléatoire, bien que basé sur des régles déterministes. Dans ces systémes la moindre différence infinitésimale
entre deux systémes autrement similaires peut mener a des résultats hautement différenciés. Si nous

prenons I'exemple de la météorologie, malgré notre compréhension des régles quila gouverne, nous sommes
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Figure 2.5 Un attracteur limite dans I'espace des phases d’un réseau récurrent simple

incapables de créer des modeéles qui parviennent a prédire le systéme passé un certain horizon temporel
puisque la connaissance parfaite de I'état du systéme (par exemple a chaque atome prés) n’est pas possible.
Méme si elle I'était, le probléme computationnel de prédire les états successifs serait intraitable de par la
capacité massive de capacité de calcul qu’une telle simulation requérerait. En physique, le probleme des
trois corps (Gutzwiller, 1998) ou celui du pendule double (Hesse et al., 2018) est également un exemple ou,
ne pouvant obtenir une mesure parfaite de la position des objets du systéme, nous atteignons toujours un

horizon de prédiction infranchissable. On dit ce type de systéme sensible aux conditions initiales.

Définition 2.6 Sensibilité aux conditions initiales : Un systeme dynamique est dit sensible aux conditions
initiales s'il existe une constante 6 > 0 telle que, pour toute paire de conditions initiales distinctes (z, yo),
aussi proches que l'on veut, la distance entre leurs trajectoires respectives d(x., y;) dans l'espace des états
devient supérieure a § aprés un certain temps t. Cela signifie que de petites perturbations dans les conditions
initiales peuvent entrainer des divergences exponentielles dans I'évolution du systeme, rendant ainsi la

prédiction a long terme impossible.

Lorenz, météorologue qui a fait la découverte de ce type de systéme lors de simulations météorologiques

informatiques et dont la publication séminale (Lorenz, 1963) a ouvert ce nouveau champ d’étude, défini le
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chaos simplement comme (Danforth, 2013):

Définition 2.7 (Chaos) Lorsque le présent prédit le futur, mais une approximation du présent ne détermine

pas approximativement le futur'

cette approche théorique est pertinente dans le cadre de notre recherche, car le cerveau et I'lA ne font pas
exception aux nombreux domaines des sciences naturelles ou ce champ théorique peut étre appliqué. de
nombreux outils développés pour I'étude de systémes chaotiques sont désormais utilisés en neuroscience
(Bob, 2007; Kargarnovin et al., 2023; Justin et al., 2019; Korn et Faure, 2003). sinon, les modéles proposés
par Molter sont des exemples d’application de cette théorie pour la recherche en IA (Molter et al., 2006;

Molter et al., 2007; Molter et al., 2004; Molter et al., 2005) .

Malgré I'apparence aléatoire de I'évolution de ces systémes, lorsque nous tournons notre regard vers I'espace
des phases de ceux-ci, différentes structures émergent, permettant de les analyser sous un nouveau jour.

La figure 2.6 est un exemple de ce type d'attracteur étrange.

2.51 Attracteurs étranges

On retrouve les attracteurs étranges dans des systémes dynamiques chaotiques présentant une sensibilité
extréme aux conditions initiales, ou les trajectoires semblent étre tirées de maniére aléatoire mais sont en
fait déterministes, ayant une structure fractale (une dimension de Hausdroff non entiére) et confinées a

une région de I'espace des phases.

Définition 2.8 (Attracteur étrange) Un attracteur A est dit étrange s’il rencontre les propriétés suivantes:
1. Invariant: Si x € A, alors la trajectoire ¢;(x) reste dans A pour tout t > 0.

2. Attraction : Il existe un voisinage U autour de A tel que pour tout x € U,

tlggo dist(¢¢(x), A) = 0.

' traduction libre de I'anglais
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Z Axis

Figure 2.6 Attracteur de Lorenz

3. Sensibilité aux conditions initiales : Il existe un § > 0 tel que, pour tout x € A et pour tout voisinage V

de x, il existe y € V ett > 0 tel que

lpe(z) — Pe(y)l| > 6.

4. Structure géométrique complexe : L'attracteur a souvent une dimension fractale, ce qui signifie que son

apparence et ses détails ne changent pas, quelle que soit I'échelle a laquelle il est observé.

Ces attracteurs sont associés a des comportements complexes et imprévisibles sur le long terme. Un exemple
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simple est celui d’un pendule double, pour lequel des trajectoires dans I'espace des états ayant des points
initiaux presque identiques vont rapidement diverger. Sil'on tend vers un systéme plus complexe, la dynamique
météorologique en est un autre, avec ses prédictions a long terme difficiles en raison de la sensibilité
aux conditions initiales. lls sont souvent cités comme un exemple d’attracteur étrange, démontrant des
comportements complexes et imprévisibles sur une certaine échelle de temps, qui restent néanmoins confinés

a des motifs discernables et prévisibles sur des périodes plus courtes.

L'un des exemples les plus célébres d’un attracteur étrange est l'attracteur de Lorenz (Lorenz, 1963), illustré

par la figure 2.6 qui est décrit par un systeme tridimensionnel gouverné par les équations:

Définition 2.9 (Attracteur de Lorenz)
t=o0(y—x),
y = ZE(p - Z) - Y,

z=uxy— Bz

Ou o, p, et 3 sont des parameétres positifs.

L'attracteur de Lorenz a été tiré d'observations dans les systémes de convection thermique et est souvent
utilisé comme exemple classique de comportement chaotique qui résulte de dynamiques déterministes

non linéaires.

2.5.2 La limite du chaos

La limite du chaos est un état spécifique d’'un systéme dynamique ou le systeme opere a la frontiére entre
I'ordre et le chaos complet. Dans cet état, le systéme présente une riche variété de comportements dynamiques,
capable de répondre de maniére flexible et adaptative a des stimuli externes, tout en conservant une
structure sous-jacente déterministe. Ce type de dynamiques est caractérisé par l'oscillation aléatoire d'un
systéme entre différents attracteurs limites ou étranges, avec des périodes ou le systeme peut traverser des

états chaotiques lors de transition d’un attracteurs semi-stable a un autre.

Des exemples de la limite du chaos peuvent étre observés dans divers systémes naturels et artificiels, tels

que les modeles de calcul neuronal, les systémes écologiques contenant des points de basculement, et
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Activation temporelle dans un réseau récurrent simple
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Figure 2.7 Valeurs des états de différents neurones évoluant a travers le temps dans un réseau de neurones
récurrents simple. On voit ici qu'il existe un attracteur limite dans un systéme en raison du motif périodique
visible dans ce graphique. L'axe vertical est la valeur du neurone a un temps donné et I'axe horizontal est le
nombre d’itérations (ou "step" en anglais) écoulées

dans certains régimes de dynamique des fluides, ou de petits changements dans les paramétres peuvent
conduire a des transitions soudaines entre des états stables et chaotiques, tel qu'un flot linéaire qui devient

turbulent ou lors d'une transition de phase d’un liquide a un gaz.

Au niveau biologique, lors de la résolution de problémes complexes ou de la créativité, l'activation du
cerveau se retrouve souvent a la limite du chaos. Il est théorisé que cet état est exploité pour générer
des idées neuves et des solutions innovantes, suggérant que cet équilibre dynamique favorise la flexibilité

cognitive et le traitement de I'information (Bilder et Knudsen, 2014).

2.6 Synchronisation

La synchronisation est le processus par lequel des systéemes dynamiques, qu'ils soient naturels ou artificiels,
ajustent leurs rythmes ou phases en suite a leurs interactions répétées. Ce phénoméne est omniprésent

dans la nature, se manifestant dans des systemes variés tels que des lucioles clignotant a I'unisson, des
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Synchronisation d’un systéme couplé
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Figure 2.8 Visualisation de I'espace des phases de métronomes (ou oscillateurs) légérements couplés dans
un systéme simulé

cellules cardiaques battant a l'unisson, des systémes informatiques distribués et méme dans les comportements
sociaux humains. Ce comportement dynamique présente souvent des transitions de phase, ot un systéme
passe d’un état désordonné (sans synchronisation) a un état ordonné (synchronisation compléte) lorsque
I'intensité du couplage critique est dépassée. Ce concept est analogue aux transitions de phase en physique,

comme le passage de I'état liquide a I'état gazeux.

2.6.1 Métronome

Une expérience simple peut illustrer ce phénomene. Il suffit de prendre plusieurs métronomes mécaniques
et de les poser sur une surface instable dans un axe de direction arbitraire y et de poser les métronomes
avec leur bras se balancant le long de cet axe. En les démarrant séquentiellement a intervalles arbitraires,
on obtient notre systeme. Peu a peu les différents métronome vont se synchroniser I'un aprés l'autre en
raison de la force exercée sur la surface a chaque changement de direction du bras de chacun d’entre eux
(Pantaleone, 2002). Une visualisation graphique de I'espace des phases d’un tel systéme évoluant dans le

temps se retrouve a la figure 2.8

2.6.2 Modéle de Kuramoto

Le modeéle Kuramoto est une modélisation mathématique utilisé pour décrire ce type de systéeme. Un
ensemble d’oscillateurs couplés et non linéaires, chacun ayant une fréquence propre mais pouvant interagir

avec les autres oscillateurs du systéme. Ce modéle a été proposé par Yoshiki Kuramoto pour étudier la
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synchronisation spontanée dans des systémes complexes (Kuramoto, 1975; Ha et al., 2016).

La dynamique de chaque oscillateur est décrite par I'équation suivante :

N
do; K
at Nz:: n(6; — )

Ou : - 0; est la phase de l'oscillateur 4, - w; est la fréquence naturelle de l'oscillateur 4, - K est la force de

couplage entre les oscillateurs, - IV est le nombre total d'oscillateurs dans le systéme.

Ce modele montre que, sous certaines conditions, des oscillateurs d’un systéme peuvent se synchroniser
entre eux. Cela signifie qu'ils atteignent un état ou leurs phases se verrouillent et évoluent a la méme
fréquence collective, malgré une diversité initiale dans leurs fréquences naturelles. Il est largement utilisé
pour étudier des phénomeénes de synchronisation et trouve des applications dans divers domaines tels que

la physique, la biologie, et les neurosciences.

2.6.3 Un cerveau synchronisé

Dans les réseaux récurrents, la synchronisation de groupes de neurones entre eux est essentielle pour
I’émergence d’attracteurs dynamiques semi-chaotiques complexes (Berner et al., 2023). Les articles de
(Karbowski et Ermentrout, 2002) et (Fischer et al., 2006), pour ne citer qu'eux, se sont intéressés a la
synchronisation a I'intérieur de différents oscillateurs neuronaux. Il ressort de ces recherches que la synchronicité
est atteignable dans un premier temps avec des réseaux récurrents aléatoires puis dans un second dans
des réseaux avec de l'apprentissage Hebbien pour autant que les poids inhibiteurs/excitants demeurent
balancés. Un élément étonnant qui émerge également des différentes études est la rapidité avec laquelle les
oscillateurs se synchronisent; pour les oscillateurs dont les forces synaptiques sont fixées, la synchronisation
prend dans plusieurs cas une fraction du nombre d’itérations contenu dans un cycle complet; lorsque
I'apprentissage Hebbien entre en jeu, il s'agit généralement de quelques cycles seulement pour atteindre

une certaine stabilité des dynamiques et des poids synapsiaux.
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CHAPITRE 3
LE CERVEAU
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L'intérét pour la recherche enintelligence artificielle remonte jusqu’aux balbutiements des sciences informatiques,
qui ont vu le jour en 1936 avec la premiére machine de Turing. Dés 1943, McCulloch et Pitts détaillaient

la premiére formulation du perceptron(McCulloch et Pitts, 1943), I'unité fonctionnelle de base dans les
réseaux de neurones modernes. Le pére fondateur de I'informatique, Turing lui-méme, parlait de "machine
intelligente" en se référent a son invention et s'attelait dés 1948 a concevoir des algorithmes d’apprentissage
machine basés sur le fonctionnement du cerveau(Turing, 2004). L’homme derriére I'architecture de 'ordinateur
contemporain, Von Neuman, dans son livre séminal "L'ordinateur et le cerveau"(Neumann et al., 2000)’

parut en 1958, s'attarde a dresser une étude comparative entre I'ordinateur et le cerveau et a suggérer des

pistes de recherche bio-inspirées pour I'avancement de I'lA.

Depuis cette époque, les chercheurs ont perpétué cette tendance de s’inspirer de mécanismes biologiques
(Hopfield, 1982; Lobo et al., 2020), fonctionnels (Feldman, 2012; Macpherson et al., 2021), topologique
(Macpherson etal., 2021), neurologiques (Krotov et Hopfield, 2019; Macpherson et al., 2021) et psychologiques

(Anderson, 2007) pour développer de nouveaux algorithmes "intelligents".

Depuis le perceptron avec la propagation arriére, de nombreuses autres techniques développées au fil des
ans ont continué a étre largement inspirées par I'apprentissage neurologique, avec la mention explicite
d’inspiration biologique dans de nombreux articles proposant des variations ou de nouveaux algorithmes

d’apprentissage machine.

Cette riche histoire commune entre les sciences cognitives et I'lA, I'intérét des plus grands penseurs des
sciences informatiques pour le cerveau et le rythme constant des découvertes en neuroscience propulsé
par les avancées continues en imagerie cérébrale, en biologie et algorithmiques nous pousse a croire que
I'intersection entre ces deux domaines est la voie a suivre pour espérer atteindre un jour l'intelligence

artificielle générale (AGlI, de I'anglais artificial general intelligence).

Les transformeurs (Vaswani et al., 2017), qui sont présentés a la section 4.1.2.3 représentent I'état de I'art
en termes de capacités d'lIA largement applicables. Cette technologie, a laquelle on doit les avancées
fulgurantes sur le traitement du langage naturel des derniéres années, s'est révélée aprés coup avoir un
fonctionnement analogue a une zone de I'hippocampe, décrit ci-bas en 3.1 (Whittington et al., 2022). Cette

découverte renforce une fois de plus la dépendance de I'lA sur la neuroscience.

' Traduction libre, de I'anglais "The computer and the brain"(Neumann et al., 2000)
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Ce chapitre vise a présenter les différentes notions neurologiques tirées de I'étude de celui-ci, humain
et animal, qui nous semblent pertinentes pour I'élaboration d’'une modélisation d’un réseau dynamique
fonctionnel présentant des capacités d’optimisation tout en ayant des caractéristiques dynamiques analogues

a l'apprentissage biologique.

3.1 L’hippocampe

L'hippocampe est une structure critique du cerveau humain que I'on retrouve dans le lobe temporel du
cerveau. |l est largement considéré comme une piéce centrale du systéme de création et de rappel de
mémoires sémantiques et épisodiques. Par le fait méme, il est une zone centrale du processus d’apprentissage
a partir de nouvelles expériences. Il est également considéré comme étant une structure centrale pour la

consolidation des mémoires a court terme en mémoire a long terme (Witter, 2012).

Son fonctionnement est intimement lié a celui d’autres structures du systéme limbique, contribuant a la
régulation des émotions et des comportements motivés (Anand et Dhikav, 2012). L'une de ses fonctions
principales de I'hippocampe est I'’encodage contextuel des stimuli sensoriels interprétés et des lieux, permettant
aux individus de se repérer dans leur environnement et de se remémorer des événements spécifiques
(mémoire épisodique) (Witter, 2012). Cela démontre le réle central de la mémoire pour I'émergence de

comportements intelligents.

3.11 Organisation des neurones dans I’hippocampe

L'hippocampe comporte trois régions principales, CA1, CA2 et CA3. L'étude de la troisieme, CA3, est particulierement
intéressante dans notre contexte puisque, comportant de nombreuses connexions récurrentes vers elle-

méme et vers les deux régions inférieures, via un réseau dense de cellules pyramidales interconnectées
(Witter, 2012) son graphe de connectivité en fait une forme de RNN. Ces connexions forment un circuit auto-
associatif, permettant a la région CA3 de jouer un réle crucial dans le stockage et le rappel d'information
(Bennett et al., 1994). Son organisation unique facilite la formation de motifs d’activité spécifiques, ou
"ensembles de neurones" s’activant de facon ordonné et périodique, qui représentent I'encodage des éléments

ou des aspects d'expériences mémorisées. Ce circuit a la capacité de sauvegarder ces motifs a I'intérieur

d’attracteurs limites pour un rappel ultérieur méme aprés une seule exposition a un stimuli distinct.

Dans le domaine de l'intelligence artificielle plus spécifiquement, la structure et la fonction de la région
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CAS3 de I'hippocampe ont inspiré le développement d’algorithmes pour I'apprentissage de mémoires dans
des réseaux de neurones récurrents dés 1982 (Hopfield, 1982). De nombreuses recherches subséquentes
ont tenté de reproduire les mécanismes de l'apprentissage auto-associatif et la capacité de généralisation
observés dans CA3 (Hopfield, 1984; Gosti et al., 2019; Lobo et al., 2020; Macpherson et al., 2021), qui nous
offrent des pistes pour la création de systemes capables d’apprendre de maniére autonome a partir de
séquences d'événements et de se remémorer des informations de maniére contextuelle. Pour ne citer
qu’un exemple concret, les modeles de mémoire associative basés sur les principes de fonctionnement de
CAS3 sont explorés afin d’'améliorer la reconnaissance de motifs, la prédiction de séquences et la navigation

autonome dans des environnements complexes (Lobo et al., 2020; Macpherson et al., 2021).

3.2 Le cerveau comme systéeme dynamique

Le cerveau humain peut étre représenté comme un systéme dynamique de laforme S; 11 = f(St, Isensorieiles ),
ou I'état des neurones S au temps ¢ est fonction de leur état précédent, des entrées sensorielles et v un
terme général qui englobe toutes les spécificités biochimiques ayant un impact sur I'état des neurones.
Cette formalisation est désormais fréquemment utilisée par les chercheurs pour créer des modeles de RNP
et de RNN afin d'étudier I'impact de la variation des différents parameétres appartenant abstrait dans ~,
tel que différents neurotransmetteurs(Holca-Lamarre et al., 2017; Pickering et Pesola, 2014; Graupner et

Gutkin, 2009; Yin et Wang, 2016).

3.21 Attracteur pour la navigation spatiale

Dans larégion CA1de I'hippocampe, il existe des neurones uniques qui générent des influx nerveux lorsqu’un
sujet se trouve a un endroit précis dans 'espace appelé "neurone de lieu" (en anglais "place-cells"). Un
autre type de neurones, toujours dans cette région s’activera lorsque le sujet pose des actions qui auront
pour effet de modifier son emplacement dans I'espace, ou méme l'espace en lui-méme (O’Keefe, 1976).
Concrétement, cela suggére qu’'un neurone précis du premier type s'active chaque fois que nous nous

trouvons sur le seuil d'une porte et un neurone du second type s'active si nous ouvrons cette porte.

Plus récemment, les recherches de (Hafting et al., 2005) ont révélé que dans le cortex entorhinal dorsomédial,
qui est fortement connecté a CA1, il existe des neurones qui s’activent périodiquement lorsque le sujet se
trouve a des endroits précis dans I'espace. Ces neurones sont appelés "neurones de grilles", car si I'on

cartographie les emplacements ot I'une de ces cellules est activée alors qu’un rat se déplace dans un espace
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fini (par exemple, une boite), ceux-ci s'activent a des intervalles réguliers pour former un motif de grille

triangulaire.

Ce type d’activation périodique contextuelle démontre donc la présence d’'une oscillation sur un point fixe,
si I'on tient compte seulement du neurone en question, et d’attracteurs cycliques, si I'on prend en compte
la suite compléte d’activations menant au potentiel d’action du neurone observé, dans le cerveau. Nous
pouvons également en retirer que ces attracteurs font partie des éléments de base constituant le modéle

interne qui est créé par le cerveau pour traiter I'information et générer des actions.

3.2.2 Bruit stochastique

Comme tout ingénieur en fait I'expérience rapidement dans sa carriére, le monde physique est désordonné
et il existe un écart fondamental dés lors que l'on tente d’appliquer la théorie expérimentalement. Le
cerveau n'échappe pas a cette régle, et bien que les neurones suivent des regles bien précises qui dictent
leur dynamique, il arrive qu’ils ne s'activent sans que celui-ci ne recoive suffisamment de potentiels d’actions
pour le justifier. Egalement, il arrive que malgré des stimuli entrants suffisants, un neurone fasse défaut et
ne produise pas d'influx nerveux alors que toutes les conditions sont réunies pour que ce soit le cas (Faisal

et al., 2008).

Le cerveau contient ainsi par défaut un certain bruit stochastique de fond. Toutefois, il est maintenant
reconnu que ce bruit peut avoir des effets positifs pour les calculs effectués dans le cerveau, tel que I'augmentation
de signaux faibles via un processus appelé la résonance stochastique (Faisal et al., 2008). Egalement, il a

été prouvé que la présence de bruit au moment de I’entrainement de réseaux de neurones profond permet
I'apprentissage d’une représentation plus précise et robuste par ce dernier (Neelakantan et al., 2015), ainsi
gu’une réduction du surapprentissage (Noh et al., 2017). Ce bruit stochastique est potentiellement ainsi

non pas une limitation du systéme mais bien un avantage au niveau computationnel. Ceci expliquerait
également qu'il soit toujours présent aprés 521 millions d’années d’évolution (Strausfeld et al., 2016), suggérant

également qu'il s'agisse d’'un mécanisme finement optimisé.

3.2.3 Le cerveau a la limite du chaos

Selon le modéle développé dans les recherches de (Kitzbichler et al., 2009), le cerveau opére a la limite

du chaos, ses dynamiques internes alternant entre des périodes prolongées en verrouillage de phase et
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de changements rapides, exploitant cet état pour optimiser son traitement de I'information, sa flexibilité
cognitive et sa capacité a transiter rapidement entre différents états fonctionnels. Les travaux de Knudsen
suggérent également que la limite du chaos est essentielle pour la créativité (Bilder et Knudsen, 2014).
IIs proposent que des dynamiques malsaines puissent expliquer certains des dysfonctionnements associés
a des conditions psychologiques telles que la schizophrénie, dans le cas ou les dynamiques seraient trop
chaotiques, ou le syndrome d’Asperger, dans le cas ou elles seraient trop ordonnées. On peut en déduire
gue le changement entre les différents attracteurs dominant constitue un point critique essentiel pour une
cognition saine et productive et qu'il existe un délicat point d’équilibre optimal vers lequel le cerveau doit
tendre pour effectuer un traitement efficace de I'information. Suivant les modélisations de (Steyn-Ross
et al., 2014), le cerveau exhiberait pareillement ce régime dynamique lors des phases de sommeil profond,

dénotant son importance pour diverses fonctions cérébrales.

3.3 Apprentissage en ligne en un coup

Nous pouvons tous ramener dans notre esprit des souvenirs d'événements marquants issus d’'une époque
révolue. Que ce soit une graduation, un mariage ou l'odeur de notre premiére voiture neuve a son premier
jour, les données sensorielles associées a ces événements n'ont été présentées a notre cerveau qu’une
seule fois et, pourtant, leur seule évocation est suffisante pour les ramener en mémoire. Signifiant qu'il est
possible d'y accéder méme une fois que plusieurs années se sont écoulées, quelques fois des décennies,
méme suite aux nombreux changements plastiques qui sont survenus dans le cerveau par le biais de nouveaux
souvenirs et de consolidation d’apprentissages. Ce type de mémoire pérenneillustre bien I'une des capacités

exceptionnelles de notre cerveau, I'apprentissage en un coup pérenne d'un stimulus.

Un autre exemple de cette capacité de mémorisation a partir d'une seule exposition est notre capacité a
reconnaitre une personne que nous n’avons vue qu’une seule fois ou de retrouver notre chemin dans un
environnement ol nous ne nous sommes rendus qu’une seule fois. Mais notre capacité d’apprentissage en
un coup ne se limite pas a la mémorisation. Les travaux de (Tiedemann et al., 2022) dévoilent I'existence
d’un modele génératif interne qui permet de créer des variations appartenant a une catégorie donnée a

partir d’une seule image de cette catégorie.

Différentes études ont également révélé qu'’il est possible pour des sujets de se remémorer des séquences
d’images qui ne leur avaient été présentées qu'une seule fois sur des périodes allant de quelques heures a

quelques jours (Jacques et al., 2013; MacLeod et al., 2018).
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La question de comprendre les mécanismes impliqués qui rendent possible une telle faculté en est une
qui préoccupe les neuroscientifiques et est le sujet de nombreuses recherches (Turner et Onysk, 2022; Lee
et al., 2015). Elle comporte deux volets: I'apprentissage en un coup et la rétention sur le long terme. Ces
deux catégories ont fait I'objet de nombreuses études et cette section vise a en présenter certaines qui sont

pertinentes pour le présent travail de recherche.

3.31 Apprentissage en ligne a long terme

Shaw et Porte ont démontré que des souvenirs pouvaient étre modifiés via le rappel (Shaw et Porter,
2015). Dans leur expérience, les sujets étaient appelés a se remémorer des souvenirs semi-lointains et les
chercheurs mentionnaient un élément marquant fictif, tel qu'une arrestation en énoncant le souvenir. Tous
les sujets ont & ce moment relevé que cet élément n’'avait pas pris place dans le souvenir en question.
Cependant, lorsque quelques mois plus tard lors d’une seconde rencontre, les sujets étaient appelés a
relater le souvenir, celui-ci incluait I'élément fictif pour une partie des participants. Cela est induit par
le fait que la mémoire ne fonctionne pas comme un enregistreur, mais s’applique plutot a reconstruire
les événements a partir d’'un sous-ensemble compressé de I'information original (Loftus, 1996), soutenant
également l'existence d’'un modéle génératif interne permettant de décompresser une mémoire encodée.
Ces faux souvenirs causent de nombreux problémes, notamment au niveau du systéme de justice: "Le
nombre d’erreurs d’identifications conduisant a des accusations erronées, combiné au fait que le témoignage

oculaire est accepté trop facilement par des jurys, est un réel probléme pour la justice'?

Ces expériences soulignent la nature "en ligne" du cerveau, ou la limite entre I'apprentissage et le rappel est
floue, tel que corroboré par de nombreux travaux subséquents (Jacques et al., 2013; Siestrup et Schubotz,

2023),et qu'elle est méme inexistante dans certains cas (Censor et al., 2010).

Dans le cas d’expériences traumatiques, comment la thérapie peut aider a recadrer des souvenirs afin qu'’ils
soient mieux intégrés dans le but qu’ils cessent de causer du tort au patient (Kar, 2011) est un exemple
positif des outils thérapeutiques qui utilisent ce principe neurologique. Cependant, sans ce travail cognitif
d’acces et d'édition, le souvenir peut demeurer inchangé sur de tres longues périodes. Cela implique un
mécanisme neurologique qui régule a un haut niveau la plasticité de certains neurones en fonction des

informations que leurs synapses encodent et de leur positionnement topologique dans le graphe de calcul

2 Egalement tiré de (Loftus, 1996), p. 201, traduis de I'anglais par Pierre de Sutter
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cérébral (Larzabal et al., 2018).

3.4 Activation binaire

La signalisation neuronale et le métabolisme énergétique sont intrinséquement liés aux propriétés biochimiques
des cellules nerveuses. La neurotransmission, reposant sur la libération et la réception de neurotransmetteurs
dans la fente synaptique, est régulée par une série de réactions chimiques spécifiques. Ces processus sont
étroitement liés a la disponibilité de substrats énergétiques comme le glucose et I'oxygéne, ainsi qu’a la
disponibilité des neurotransmetteurs dans les terminaisons synaptiques, éléments nécessaires pour une
activité neuronale soutenue. Ces ressources étant limitées, les travaux de (Macpherson et al., 2021) suggérent

gu’une activation binaire permettrait une gestion plus efficace des ressources énergétiques.

Le voltage de lamembrane des neurones comporte donc deux états principaux en ce qui attrait a la transmission
de I'information. Lorsqu’elle se trouve sous le potentiel seuil, généralement entre -50mV et -55mV, elle est
désactivée et tres peu d’informations sont transmises aux neurones en aval (Hammond, 2015). Lorsque le
seuil est atteint, les canaux ioniques Na+ s'ouvrent, dépolarisant la membrane en laissant entrer les ions Na+
extracellulaires jusqu’a atteindre un voltage d’environ 30mV. Le neurone a ce moment est activé et I'influx
nerveux est propagé par I'axone aux synapses qui libérent ensuite leurs vésicules de neurotransmetteurs aux
neurones subséquents dans le graphe computationnel. Par la suite, les canaux ioniques Na+ se referment
alors que ceux K+ s’'ouvrent, créant un flot d’ions de potassium qui quittent la cellule, re-polarisant par le
fait méme la membrane jusqu’a son état initial et le dépassant dans le cas ou le neurone est peu myéliné

(Hammond, 2015).

3.41 Réfraction

Suite a son activation, un neurone tombe en état de réfraction pour une période de quelque millisecondes.
Pendant cette période, il ne peut se réactiver a nouveau et est considéré comme insensible aux stimuli
entrants. Cela évite dans un premier qu’un neurone soit trop activé a répétition et dans un second, cela
laisse le temps aux neurones en aval d’intégrer son signal sans qu'il n'y ai possibilité de confusion entre deux
pics subséquents. Cette période permet également au neurone de revenir a son équilibre biochimique, au
niveau de la concentration d’ions a I'interne, évitant par le fait méme des impulsions ambigtlies (dans le cas

ou le voltage du neurone lors du pic ne pourrait pas atteindre sa valeur habituelle).
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3.4.2 Encodage de l'intensité dans la fréquence

Cependant, ce n'est pas parce que les impulsions des neurones sont binaires que celles-ci ne sont pas
en mesure d'encoder une gradation du stimuli d’entrée. Bien que les neurones générent des potentiels
d’action de maniére tout ou rien, a amplitude fixe, I'intensité d'un stimulus est encodée via la fréquence
de ces potentiels d’action. Ce phénomeéne, connu sous le nom d’encodage fréquentiel, permet au systéme
nerveux de transmettre des informations sur I'amplitude du stimulus (Tabas et von Kriegstein, 2021). La
fréquence des pics d’activations augmente avec l'intensité du stimulus, permettant ainsi une modulation
fine de I'activité neuronale en réponse a I’environnement dans un contexte ou I'amplitude de I'activation

en elle-méme n'est pas un parameétre.

3.5 Régle d'apprentissage locale

L'intelligence peut étre vue comme un phénomeéne émergent résultant de I'interaction complexe entre de
nombreux éléments simples. Dans des systémes tels que les réseaux de neurones, l'intelligence n’est pas
attribuable a un élément unique mais émerge de l'organisation collective et de la dynamique des interactions
neuronales. Cette perspective suggere que l'intelligence est en partie le produit de régles locales et simples
opérant a I’échelle des composants individuels, engendrant des comportements complexes et adaptatifs a

une échelle supérieure.

L'intelligence des fourmis est un exemple classique d’intelligence collective et émergente qui est basée
sur des regles simples et locales. Sans une supervision centrale, les fourmis parviennent a résoudre des
problémes complexes, comme la recherche de nourriture ou la construction et la défense de la fourmiliére, a
travers des interactions locales entre individus (Millonas, 1992; DAVID MORGAN, 2009). Ces comportements
sont régis par des régles simples d'interaction et de communication basées, entre autres, sur le dépot de
phéromones (Czaczkes et Heinze, 2015; DAVID MORGAN, 2009), qui guident collectivement le groupe vers

des solutions efficientes (Gelblum et al., 2020).

3.5.1 Plasticité synaptique temporelle

La plasticité synaptique dépendante du temps de I'activité neuronale (STDP, de I'anglais spike-time dependent
plasticity), est un mécanisme fondamental d’apprentissage et de mémorisation dans les réseaux de neurones

biologiques. Elle référe a la modification de la force des connexions synaptiques en fonction du temps
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d’occurrence relatif des potentiels d’action entre les neurones pré- et post- synaptiques (Buonomano et

Carvalho, 2009).

La regle de base de la STDP stipule que si un neurone pré-synaptique s’active avant un neurone post-
synaptique (pré-puis-post), cela renforce la synapse, facilitant la transmission future des signaux. Inversement,
si le neurone post-synaptique a une pointe avant le neurone pré-synaptique (post-avant-pré), la force synaptique

est atténuée, rendant la transmission ultérieure de signaux plus difficile (Feldman, 2012).

La STDP est également influencée par la synchronicité des rafales de potentiels d’activation. Des rafales
synchronisées entre neurones pré- et post-synaptiques peuvent renforcer significativement les synapses,
favorisant I'’émergence de groupes neuronaux synchronisés (Anisimova et al., 2022) essentiels pour la formation

de réseaux fonctionnels et pour I'encodage de I'information (Palva et al., 2010; Rolls et Treves, 2011)

3.5.11 Facteurs additionnels

Comme un grand nombre de processus biologique acquit a travers I’évolution, il existe une multitude de
facteurs additionnels qui ont un impact sur la potentiation des neurones et la plasticité. Les concentrations
intra- et extracellulaires des différents ions positifs et négatifs responsables de la variation du voltage de
la membrane (Barreto et Cressman, 2011), la disponibilité dans la terminaison synaptique des vésicules
contenant les neurotransmetteurs requis pour la transmission des impulsions en aval (Lou et al., 2012) et
méme la quantité de sous-produits indésirables des réactions chimiques impliqués dans la transmission
d’influx nerveux telle I'amyloide (Karisetty et al., 2020) sont tous des éléments qui viennent moduler les
caractéristiques fonctionnelles des neurones en temps réel. Ces éléments sont des champs de recherche
actifs extrémement complexes en raison du grand nombre d’interactions impliquées et dépassent largement

le cadre des travaux présentés ici. Nous nous en tenons par conséquent a la forme simplifiée de la STDP.

3.5.1.2 Algorithme

Formellement I'algorithme simplifié de la STDP biologique peut étre exprimé comme suit (algorithme tiré

de (Song et al., 2000)):

Soit w;; la capacité de transmission des synapses du neurone ¢ aux dendrites du neurone j. Le changement

synaptique Aw;; suite a une activation peut étre modélisé :
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Ay X exp (fRre—tpost si tpost > tpre
AW = —— (3.1)

A_ x exp (EIRI) i tpost < tpre

ou W représente les poids synaptiques, A, et A_ sont les taux d’apprentissage, tpre et tpost sont les temps
d'occurrences des impulsions des neurones pré et post-synaptiques, respectivement, et 7 est la constante

de temps.

3.6 Autres facteurs

3.6.1 Alpha, Beta, Theta, Delta

Il existe différentes fréquences caractérisant les propriétés fonctionnelles et dynamiques du cerveau. Celles-
ci sont généralement reconnues comme jouant un réle fondamental dans la modulation et la coordination
de l'activité neuronale. Ces rythmes sont cruciaux pour une variété de fonctions cognitives et refletent
différents états de conscience. Leur modulation pendant les processus d’apprentissage et de mémorisation
suggere que les différents régimes cérébraux contribuent a I'optimisation et a la consolidation du traitement

de l'information.

Les ondes béta (14-30Hz) sont les plus rapides et refletent des états d’alerte, de concentration et de cognition
active. Elles sont caractéristiques des périodes de prise de décision, de résolution de problémes et d’autres
activités mentales intensives (nuryadi et al., 2020). Une augmentation de I'activité béta vers son régime

plus élevé est souvent liée a I'anxiété ou a 'excitation (Ribas et al., 2018).

Les ondes alpha (8-13Hz) sont particulierement présentes dans un état de relaxation avec les yeux fermés,
mais elles diminuent lors de I'ouverture des yeux ou de la concentration mentale (Moini et Piran, 2020).
Elles sont souvent associées a des états de calme, de méditation (katyal et goldin, 2021), et servent de pont
entre la conscience et le subconscient, facilitant la créativité (Fink et Benedek, 2014) et la mémorisation

(Makada et al., 2016).

En continuant vers les fréquences plus basses, nous arrivons aux ondes théta (4-8 Hz) qui sont typiquement
associées aux états de sommeil léger, ou de relaxation profonde (Moini et Piran, 2020). Les ondes théta

jouent un réle crucial dans les mécanismes de plasticité cérébrale (tsanov et manahan vaughan, 2009;
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tang et al., 2019), I'intégration sensorielle et sont par conséquent importantes pour 'apprentissage, la

mémorisation et I'intuition.

Finalement, les ondes delta (0.1-4Hz) sont quant a elles principalement observées pendant le sommeil
profond sans réves et chez les trés jeunes enfants durant le développement du cerveau (Moini et Piran,
2020). Ce sont les plus lentes, présentent la plus grande amplitude et sont synonymes de régénération, de

réparation autant au niveau corporel (hoda elkhenany et al., 2018) que cérébral (nina e. fultz et al., 2019).

On observe ici qu'un ralentissement des ondes cérébral est associé avec des états progressivement plus
détendus et également un apprentissage plus prononcé et profond, alors qu’une accélération tend a engendrer

des états d’alerte progressivement plus accentués.

3.6.2 Neurotransmetteurs

Les neurotransmetteurs, comme le glutamate, le GABA, la dopamine, et la sérotonine, modulent I'activité
neuronale et influencent des processus cérébraux variés tels que 'apprentissage (Tellez et al., 2012b), la
motivation et 'adaptabilité comportementale (Peters et al., 2021). lls agissent comme des messagers chimiques,
facilitant ou inhibant la transmission synaptique (Reis et al., 2009), et leur concentration et libération sont
ajustées en réponse a l'activité neuronale et aux exigences de I'apprentissage dans différents contextes
(Tellez et al., 2012a; Uddén et al., 2010; Olvera-Cortés et al., 2008; Wert-Carvajal et al., 2022), soulignant
leur réle primordial dans la modulation de la plasticité synaptique. Ceux-ci permettent une modulation en
temps réel 3 la fois globale (Decot et al., 2017) et sélectives (Gao et Goldman-Rakic, 2003) des différents

circuits neuronaux a travers le cerveau.

Dans le contexte de notre recherche, nous retenons ici simplement que malgré les regles d’activation locales
mentionnées plus haut, la bio-plausabilité n’exclut pas nécessairement une forme de communication diffuse

plus globale ayant un effet global sur le réseau.

3.7 Organisation des neurones dans le cortex en colonnes

Dés 1957, les recherches de Mountcastle ont permis de découvrir I'unité structurelle et fonctionnelle fondamentale
du cortex cérébral, la minicolonne. Ces colonnes ont une composition et une organisation similaires les

unes par rapport autres, constituées d’environ 80 a 110 neurones disposés de facon cylindrique avec une
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orientation perpendiculaire a sa surface qui est répétée a travers le cerveau, de facon a former un pavage sur
le plan couvrant le cortex(Mountcastle, 1957). Densément interconnectés, les neurones lacomposant ont un
champ réceptif similaire et travaillent de concert pour traiter un influx nerveux distinct. C'est pourquoi elles
sont considérées comme les briques élémentaires du traitement de I'information dans le cerveau, chaque
colonne se spécialisant dans le traitement d’un type spécifique d’'information sensorielle ou cognitive (Molnér,

2013).

Les mini-colonnes sont organisées en groupe variant de 50 a 100 minicolonnes appelées hypercolonnes.
Cette architecture permet de faciliter le filtrage, qui est a la base du principe de I'attention, et I'organisation
interne permet un traitement hiérarchique de I'information. Aussi, les travaux de (Hubel et Wiesel, 1968)
soutiennent qu’il existerait aussi une organisation hiérarchique entre les hypercolonnes elles-mémes et il a
été avancé que cette hiérarchie de traitements est I'un des éléments clés dans I'organisation et I'abstraction
d’informations complexes a travers le cerveau (Peissig et Tarr, 2007) et ce modéle a été reproduit informatiquement
pour réaliser la prédiction et la planification complexe impliquant différentes échelles de temps (Niu et al.,

2022).

3.71 Architecture modulaire

L'arrangement du cerveau en un graphe de traitement topologiquement hiérarchique (Hubel et Wiesel,
1968) est donc facilité par 'organisation du cerveau en unités fonctionnelles distinctes, capables de traiter
des informations de maniére semi-indépendante. Chaque minicolonne, ou module, étant spécialisée dans
un type spécifique de traitement d’'information, cela permet une parallélisation et une intégration efficace
des taches cognitives (Peissig et Tarr, 2007). Cette modularité favorise aussila robustesse du systéme neural,
car les dysfonctionnements localisés peuvent étre isolés sans perturber I'ensemble du réseau. C’est souvent
le cas d'ailleurs lors de la perte de stimuli sensoriels d, par exemple, a3 une amputation ou a un probléeme
neurologique que les zones qui étaient dédiées au traitement de cette information se réorganisent pour
traiter de nouveaux stimuli évitant de devenir inutilisées et démontrant la compétition entre les différents
stimuli pour leur traitement (Knecht et al., 1998). Inversement, lorsqu’une région du cerveau est endommagée,
latopologie du graphe cérébral se modifie de facon a rediriger les informations traitées par la zone détériorée

vers une zone saine (Jones et Adkins, 2015).
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3.7.2 Dynamiques internes

Les dynamiques internes des colonnes neuronales et des modules cérébraux sont régies par des interactions
complexes entre les neurones au sein d’'une méme couche de la colonne, entre les différentes couches et
entre les différentes colonnes. Ces dynamiques sont caractérisées par des boucles de rétroaction et des
mécanismes d’inhibition latérale qui permettent d’ajuster et de stabiliser I'activité neuronale en réponse
a des stimuli internes et externes (Hubel et Wiesel, 1968) pour converger sur des attracteurs significatifs

(Peissig et Tarr, 2007).

3.8 Mémoire associative contextuelle

La mémoire associative contextuelle se référe a la capacité du cerveau a former et récupérer des souvenirs
basés sur les associations entre des stimuli et leur contexte. Elle implique I'intégration d'informations
provenant de différentes sources sensorielles et leur stockage dans une représentation cohésive qui peut
étre activée par des indices contextuels. Ce type de mémoire est essentiel pour naviguer dans des environnements
complexes et pour la prise de décision, car elle permet aux individus de se rappeler des expériences passées

dans des contextes similaires et d'utiliser ces souvenirs pour guider les comportements futurs.

3.8.1 Intégration globale de I'information

Une recherche qui exprime bien cette intégration globale de I'information est celle effectuée par (Williams
et Bargh, 2008). L'expérience commencait dans I'ascenseur, a l'insu du sujet, alors qu’un complice demandait
au sujet si ce dernier pouvait tenir son breuvage le temps que le complice prenne des notes. Les sujets
étaient divisés en deux groupes: le premier groupe se faisait tendre un breuvage chaud (café) et le second un
breuvage froid (café glacé). Plus tard dans I'expérience, les chercheurs demandaient aux sujets de décrire la
personne qu'ils avaient croisée dans I'ascenseur. Le groupe ayant tenu le breuvage chaud était plus enclin a
décrire la personne dans I'ascenseur plus positivement, donc en utilisant des adjectifs comme chaleureuse,
généreuse, sociale ou plus joyeuse, que ceux qui avait tenu le breuvage froid. On peut voir ici comment un
stimulus sensoriel de bas niveau, la température au niveau de la main, qui est traité de facon inconsciente

vient néanmoins impacter la perception de la réalité du sujet sans que celui-ci en soit conscient.
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CHAPITRE 4
ALGORITHMES
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Maintenant que nous avons établi les différents éléments théoriques en neurosciences qui supportent
les décisions faites dans la formulation de notre proposition, nous nous tournons maintenant vers les
différentes approches algorithmiques proposées dans la littérature sur I'apprentissage machine. Le présent

chapitre vise a offrir un survol des techniques les plus pertinentes pour le cadre de notre recherche.

41 Propagation arriére

La premiere technique est également la plus connue et la plus utilisée de celles que nous avons retenues.
Il s’agit de la propagation arriére, ou rétropropagation. Il n'y a pas de consensus officiel sur son origine
puisque différents concepts s’en approchant et s'y rattachant ont été définis a plusieurs moments sous
différentes formes plus ou moins abouties. Nous pouvons néanmoins retracer la premieére utilisation du
terme "correction d’erreur via la propagation arriére" a (Rosenblatt, 1963) en 1962. Huit ans plus tard Seppo

Linnainmaa publie la version moderne telle que nous la connaissons aujourd’hui (Linnainmaa, 1970).

La RP applique le théoréme de dérivation des fonctions composées de Leibniz. Elle estime le gradient
des différents poids dans un réseau de neurones afin de les optimiser itérativement par rapport a l'erreur
calculée a partir de la différence entre une prévision en sortie du réseau sur un vecteur d’entrée et la sortie
réelle attendue pour cette entrée. Cette différence est calculée a I'aide de la fonction d’erreur, qui varie en
fonction du probleme que I'on tente de résoudre. Cette fonction est le terme que I'on tente d’optimiser au
moment de I'entrainement d’'un réseau de neurones.

411 Algorithme original

L'algorithme est composé de quatre éléments principaux: la propagation avant, le calcul de l'erreur, la

rétropropagation de l'erreur et la mise a jour des poids. Formellement:

Définition 4.1 (Rétropropagation) 1. Propagation avant

Pour chaque couchel = 1,..., L du réseau, ou L est la derniére couche, calculer les activations :

al = FUGHY o Sl = willgl-1 4 pll
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avec al¥! étant I'entrée du réseau, W et bl étant respectivement les poids et les biais de la couche [, et

f Ja fonction d’activation pour la couche I.
2. Calcul de I'erreur

Calculer I'erreur a la derniere couche (L) :

Si) a(z[ﬁu o f (1)

ou L est la fonction de perte, et © représente le produit d’Hadamard (élément par élément).
3. Rétropropagation de I’erreur

Pour chaque couchel = L — 1,...,1, rétropropager l'erreur :

5[1] _ ((W[l+1])T5[l+1]) o) f/[l}(z[l])

4. Mise a jour des poids et des biais

Mettre a jour les poids et les biais en utilisant le gradient de la fonction de perte par rapport a ces parametres

W[l] — W[l} _ naawﬁ[l] _ W[l} o 775[l](a[l_1])T
oL
= 40— O i) gl

ou n est le taux d'apprentissage.
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Remarque : ' U (z l]) représente la dérivée de la fonction d’activation par rapport a l'entrée 21 de la couche

{, qui est nécessaire pour le calcul des gradients par la regle de la chaine.

Cette procédure est répétée pour un nombre défini d’itérations ou jusqu’a ce que la fonction de perte

converge vers un minimum.

4.1.2 Avancées

41.21 Réseaux profonds

Avec le perfectionnement de la technique et I'augmentation exponentielle de la capacité de calcul, les
réseaux de neurones ont pu croitre pour devenir toujours plus profonds (avec de plus en plus de couches
cachées). Supportant cette croissance, le perfectionnement de différents aspects de la technique. Que
ce soit, les "skip connections (He et al., 2016) facilitant la propagation du gradient sur de plus grandes
distances, le "dropout" pour améliorer la robustesse et limiter le sur-apprentissage ou I'introduction des
fonctions d’activation de type "RelLu" et "LeakyReLu", les avancées ont été nombreuses depuis la conception
de l'algorithme original permettant aux modéles de I'état de I'art de passer de 8 couches avec le Alex N et

(Krizhevsky et al., 2012) a plus de 1000 couches pour les Residual N ets(He et al., 2016).

41.2.2 Réseaux de neurones convolutifs

L'algorithme des réseaux de neurones convolutifs ou CNN (de I'anglais convolutional neural networks) est
composée de plusieurs étapes clées, dont la convolution, I'activation, le pooling, et finalement la rétropropagation

pour ajuster les poids. Formellement, les équations de base pour ces étapes sont:

1. Convolution :

M—-1N-1 l )
1 l
ZO ZO Wi X (i+m)(G+n) T b (4.1)

ou ZZ-(? est la sortie de la couche de convolution [ a la position (3, j), WT(,% est le poids du noyau de

(1-1)
(i+m)(j+n)

de la couche précédente [ — 1, et b() est le biais de la couche 1.

convolution a la position (m,n) dans la couche [, X est I'entrée a la position (i + m,j + n)

2. Activation (par exemple, fonction ReLU) :

AY = max(0, ) (4.2)

v )
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ou Ag) est la sortie activée a la position (i, j) dans la couche [.

3. Pooling (par exemple, max pooling) :

P-@ = max A(l)

U T er” i+m) () (4.3)

ou Pg) est la sortie du pooling a la position (7, j) dans la couche [, et R est la région du pooling autour de

la position (3, j).

4. Rétropropagation : La rétropropagation dans les CNN est plus complexe en raison de la convolution et
du pooling. Le gradient de I'erreur par rapport aux poids de convolution est calculé en tenant compte de la
contribution de chaque poids au signal de sortie. La formule générale est similaire a celle des réseaux de
neurones pleinement connectés, mais I'application pratique nécessite de prendre en compte la structure
spécifique des CNN. Sa formulation n’est pas particulierement pertinente pour notre recherche et c’est

pourguoi nous nous limitons aux principes généraux exposés ci-haut.

4.1.2.3 Transformeurs

Parmi les récentes avancées en recherche qui ont permises de faire augmenter les capacités techniques
des réseaux de neurones artificiels, I'une d’entre elles se distingue particulierement en matiére de capacité
et d’'impact sur la recherche. Il s'agit des Transformeurs(Vaswani et al., 2017). Les transformeurs ont été
originalement concus comme un mécanisme d’attention afin de permettre a un réseau plus traditionnel de
stocker des informations en nombre beaucoup plus important que les techniques de I'’époque, telles que
les LSTM (Hochreiter et Schmidhuber, 1997), ne le permettaient, de facon plus durable, et plus rapidement
(en nombre d’exemples) (Vaswani et al., 2017). Les modéles de traitement du langage naturel les plus
développés et les plus performants appartiennent d’ailleurs a cette famille d’architecture de réseaux: GPT-3

(Brown et al., 2020), GPT-4 (OpenAl et al., 2024), BERT.(Devlin et al., 2019)

Malgré I'approche mathématique qui a menée a leur élaboration (Vaswani et al., 2017), ils sont en mesure
de répliquer les représentations spatiales que I'on retrouve dans I’hippocampe (Whittington et al., 2022)
tel que les "neurones de grille" (Hafting et al., 2005) et les "neurones de lieu" (O’'Keefe, 1976). Cette
architecture présente aussi de fortes similarités avec certains modéles de I’hippocampe développés en

neurosciences, ce qui l'a initialement établie comme candidate d’algorithme de base pour notre recherche.
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L'article (Ramsauer et al., 2021) prouve que les modifications apportées a 'architecture des réseaux de
neurones profonds pour obtenir un transformeur, font de ces derniers un isomorphisme computationnel
(au niveau du traitement de l'information) aux réseaux de Hopfields continus modernes. Ces derniers sont
fortement inspirés du principe d’auto-associativité observé dans I’hippocampe (Krotov et Hopfield, 2016).
Cependant, puisque la version de la mémoire associative visée est celle des Hopfields modernes(Krotov et
Hopfield, 2016), 'adaptation a partir des Hopfields classiques requise pour traiter les R nécessite le retrait
de la fonction Hebbienne. Cela I'éloigne du processus biologique analogue, raison qui nous a poussés a

écarter cette architecture comme point de départ pour nos travaux.

Néanmoins il s’agit ici d’'une démonstration comment I'intégration de principes computationnels et dynamiques
du cerveau peut bénificier aux algorithmes d'apprentissage modernes. C'est d'ailleurs, alliée aux performances
impressionnantes des transformeurs, I'une des motivations qui nous a poussé a étudier les Réseaux compétitifs

Hebbiens.

4.1.3 Limitations

41.31 Apprentissage lent

La propagation arriére, bien qu’efficace pour ajuster les poids synaptiques dans les réseaux de neurones
profonds, souffre d’'une convergence lente. Plus le réseau est profond et complexe, plus ce probléeme
est magnifié, culminant avec des frais de calcul estimés a 25 millions $ et 3 mois pour I'entrainement des
derniéres itérations des modéles de langage modernes. En plus de réduire I'accessibilité a I'entrainement,
ce type de modele a des compagnies disposant de fonds de recherche faramineux, ces colts prohibitifs sont
également des freins majeurs a I'avancement de la recherche puisque trés peu de chercheurs ont accés a

des ressources a cette échelle.

41.3.2 Méthodes séquentielles ad hoc

La nature "stateless" (sans état) de la propagation arriére, ou chaque mise a jour des poids est effectuée
indépendamment des états précédents du réseau, contraste fortement avec le fonctionnement dynamique
et adaptatif du cerveau humain (Palva et al., 2010; Knecht et al., 1998). Ce dernier maintient et utilise des
états internes persistants pour traiter les informations temporelles et contextuelles (Hammond, 2015; Tabas

et von Kriegstein, 2021), une capacité que la propagation arriére standard ne capture pas. C'est grace en

42



partie a ces états que les réseaux de neurones biologiques sont en mesure d’intégrer des informations

temporelles (Rolls et Treves, 2011).

La rétropagation ne disposant pas de mécanisme analogue, elle ne permet pas par défaut d’approximer
des fonctions qui évoluent dans le temps et est limitée au traitement d’entrées statiques. De nombreuses
techniques ont été développées au fil des années pour contrevenir a cette limitation. Les réseaux récurrents
(Graves et al., 2013) d’abord, mais qui nécessite de calculer tous les états intermédiaires du début a la fin
de la séquence a apprendre, ce qui les rend gourmands en calcul et souffre des problémes de la disparition
et de I'explosion des gradients, réduisant son efficacité ainsi que son potentiel applicatif. L'architecture
légérement plus évoluée des LSTM (Hochreiter et Schmidhuber, 1997) vise a pallier au probléme et bien
gu’elle permette d’'améliorer largement l'efficacité des modéles, cela n’élimine pas le probleme de co(t
computationnel ainsi que I'impossibilité d’intégrer des informations qui précédent la fenétre de contexte
établie lors de I'entrainement. Plus récemment, les architectures incluant le principe de I'attention (Vaswani
et al., 2017) ont permis de progresser significativement au niveau des séries séquentielles notamment dans
le cas des modéles de langage massifs (LLM) qui ont désormais des capacités suffisamment avancées pour

permettre leur application a une large gamme de tiches variées (OpenAl et al., 2024).

41.3.3 Demande de calcul fixe

Toujours au niveau des limitations computationnelles, la rétropagation, dans sa forme standard, requiert
une quantité de calcul prédéterminée pour chaque passage avant et arriére a travers le réseau, indépendamment
de la complexité intrinséque ou de la simplicité de la tAche en cours d’apprentissage. Cette approche fixe ne
refléte pas la capacité adaptative du cerveau humain a allouer des ressources de calcul de maniére flexible,
augmentant l'effort pour des taches complexes tout en économisant de I'énergie pour des processus plus
simples. Cette rigidité augmente dans un premier temps les colts reliés a I'exploitation de ce type de modele
puisque pour un nombre de mots fixé, une réponse a une question simple requiert le méme calcul qu'une
marginalement plus complexe. En second lieu, cela limite également les performances, car I'absence de
cette capacité d’adapter la complexité du traitement requis en fonction de la complexité de la tache fait en
sorte qu'il n’est pas possible de dédier plus de ressources pour résoudre des problémes qui requierent des

abstractions de plus haut niveau.
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41.3.4 Difficulté de I'apprentissage par renforcement

La prémisse entiére de l'algorithme de la propagation arriére est basée sur I'accés a une fonction d'erreur
pouvant étre appliqué sur la sortie de la derniére couche. Cela pose probléme dans le cadre de I'apprentissage
par renforcement, car cela signifie que nous devons définir une fonction de perte sur mesure pour le
probléme visé. Cela limite entres autres la généralisation d’une architecture a différents types de problématiques
puisque cette fonction doit é&tre redéfinie pour chaque application. Egalement, il est difficile d'évaluer

la qualité d’'une fonction de perte avant I'entrainement, ce qui est problématique, car celle-ci définit les

performances qu'il sera possible d'obtenir avec un modéle donné.

41.3.5 Apprentissage non-supervisé

Comme pour le point précédent, le besoin d’'une fonction d'erreur externe donnée pour I'entrainement
réduit drastiquement son applicabilité dans un contexte d’apprentissage non supervisé. Bien que les travaux
de (Devlin et al., 2019) adaptent la rétropagation pour effectuer des tiches non-supervisées, il s’agit de

mécanismes ad hoc qui viennent eux-mémes avec leur propre ensemble de limitations.

4.2 Apprentissage Hebbien

L'apprentissage Hebbien, nommé d’aprés Donald Hebb qui I'a initialement proposé dans son ouvrage "The
Organization of Behavior" en 1949 (Hebb, 1949), est I'un des principes fondateurs en neuroscience et en
intelligence artificielle qui stipule que le renforcement des connexions entre deux neurones est dirigé par

les activations simultanées répétées de ceux-ci.

L'idée principale de I'apprentissage Hebbien peut étre résumée par la phrase souvent citée: "Les neurones
qui s'activent ensemble, se connectent ensemble." Mathématiquement, cela se traduit par une mise a jour

des poids synaptiques selon la formule :

Awi]‘ = Q * ((El * :L’j) (4-4)

ou wj; est le poids de la connexion du neurone ¢ au neurone j, « est le taux d’'apprentissage, et z;, x; €

{0,1} sont les activations des neurones i et j, respectivement.
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Lapprentissage anti-hebbien, au contraire, est la réduction du poid lorsque les neurones z; et x; sont
inversement corrélés. Pour I'inclure dans I'équation 4.4 il suffit de modifier les valeurs d’activation tel que

Ti, Tj € {—1, 1}.

4.21 Régle d'apprentissage locale

Cette régle d’apprentissage est dite "locale" car la mise a jour du poids synaptique dépend uniquement des
activités locales des neurones connectés par cette synapse, sans nécessiter une connaissance globale de
I’état du réseau ou de l'erreur de sortie. Bien que I'apprentissage Hebbien remplisse cette contrainte, de
nombreuses implémentations incluent des paramétres d’apprentissage globaux, tels que le taux d’apprentissage
«, peuvent influencer I'échelle a laquelle les poids synaptiques sont ajustés. Par ailleurs, des mécanismes
faisant fi de la localité comme la normalisation des poids ou la régulation homéostatique (Bush et al., 2010)
sont souvent considérés pour maintenir la stabilité globale du réseau et il peut étre argumenté que ceux-ci

ne contreviennent pas a la bio-plausibilité, ayant des analogues bio-chimiques (Lee et Kirkwood, 2019).

422 Apprentissage par renforcement

L'apprentissage Hebbien a été lié a 'apprentissage par renforcement, notamment par le biais de modéles qui
intégrent une fonction de récompense comme facteur modulateur des changements synaptiques, favorisant
un apprentissage orienté vers des objectifs spécifiques. Un exemple concret qui démontre que cette approche
peut étre utilisée en pratique pour transformer des influx neuronaux en signaux de contrdle pour un robot
est présenté dans les travaux de (Mahmoudi et al., 2013) qui sont parvenus a faire contrdler une protheése

par un sujet a I'aide d'un implant neuronal.

4.2.3 Temporalité

La dimension temporelle peut étre intégrée dans I'apprentissage Hebbien (Mahmoudi et al., 2013) pour
prendre en compte le timing précis des activations neuronales, menant a des modifications comme la STDP,
ou l'ordre et le timing des potentiels d’action influencent la maniére dont les connexions se renforcent ou

s'affaiblissent. Cette variante sera visitée plus en détail dans la section 4.2.4.
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4.2.4 Avancées

A travers les années, de nombreuses propositions tentant d’adapter I'algorithme de base a diverses fins ont
vu le jour. Celles-ci vont de I'intégration de contraintes biologiques plus réalistes (Hopfield, 1982; Hopfield,
1984; Song et al., 2000), au développement de modéles capables de simuler des fonctions cognitives
complexes pour la recherche en neurosciences (Tomasello et al., 2018; Hoerzer et al., 2014; Bush et al.,
2010), en passant par I'application de principes Hebbiens pour I'apprentissage non supervisé de réseaux de
neurones artificiels (Krotov et Hopfield, 2019) et pour I'apprentissage par renforcement tel que mentionné

plus haut (Mahmoudi et al., 2013).

4.2.5 Limites

Malgré sonimportance historique, I'apprentissage Hebbien présente des limitations, notamment sa tendance
a conduire a une saturation, lorsque les poids sont limités a une valeur plafond, ou a une explosion, lorsque
les poids ne sont pas limités, des poids synaptiques sans mécanismes de régulation'. Aussi, bien que ses
performances soient prometteuses dans certaines applications, a ce jour nous ne sommes toujours pas
parvenus a en faire une approche aussi versatile et performante que la propagation arriére. Ces limitations
ne sont cependant pas inhérentes a I'apprentissage Hebbien en soi, I'existence méme du cerveau et ses
nombreuses capacités décrites précédemment le prouvent, mais plutét des effets collatéraux découlant
des spécificités et des simplifications nécessaire a sa modélisation dans les implémentations historiques. Il
inspire d’ailleurs des recherches continues pour développer des modéles d’'apprentissage plus flexibles et

adaptatifs, dont celles mentionnées dans la section précédente en sont quelques exemples.

4.3 Mémoires associatives (Hopfield)

Les Hopfields sont un ensemble de techniques d’apprentissage Hebbien qui sont basées sur I'approche
proposée par (Hopfield, 1982). Il s'agit d’'un réseaux Hebbien, dont les corrélations synaptiques entre deux
neurones menent au renforcement de leurs connexions, qui agit comme une mémoire adressable par

contenu avec une activation binaire.

! Cela est facilement dérivable a partir de I’équation 4.4. Si un motif spécifique est représenté de nombreuses fois dans les données
d’entrainement, les modifications successives s'additionnes rapidement pour mener a la saturation ou a une croissance rapides

des poids impliqués dans ce motif.
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4.3.1 Algorithme original

Lors de la phase d’apprentissage, le réseau est présenté avec un motif, a I'aide duquel il met a jour ses poids

en suivant I'équation Hebbienne présentée dans la section précédente, soit:

AW;j = a * (z; * ;) (4.5)

Ou x est le vecteur d’entrée (le motif), W est la matrice de poids et « est le taux (vitesse) d’apprentissage.

Ensuite, au moment de récupérer une information, on présente un motif corrompu correspondant a I'un
de ceux sur lequel le modéle a été entrainé, et le réseau évalue en retournant le motif le plus prés selon ses

apprentissages.

La regle de mise a jour est la suivante

Y = sign(WTX) (4.6)

Ou Y représente I'état interne du réseau (de chacun des neurones) ainsi que le vecteur de sortie.

La mise a jour de I'état peut étre faite de facon simultanée comme dans 4.5, ou itérative (un neurone a la
fois). Plusieurs itérations (mises a jour) successives peuvent étre faites afin d’assurer que la sortie est dans
un état stable et donc qui a convergé (pour lequel des mises a jour subséquentes ne produisent plus aucun
changement). Pour notre approche présentée au chapitre 5, nous avons choisi d’appliquer la mise a jour

synchrone de tous les neurones en raison de sa plus grande simplicité mathématique et computationnelle.

4.3.2 Avancées

4.3.21 Augmentation de la taille de la mémoire

Il est a noter que des états parasitaires émergent lorsque les motifs ne sont pas suffisamment uniques
(orthogonaux) les uns par rapport aux autres ou lorsque nous excédons la capacité de stockage, qui est de
0.14 motif par neurone dans le modéle pour les Hopfields classiques (Hertz et al., 1991). Cette capacité a
été largement améliorée depuis (Storkey, 1997; Feng et Tirozzi, 1997; Gosti et al., 2019) et varie grandement
en fonction des différentes approches, chacune comportant des avantages et inconvénients qui leur sont

propres mais dont les spécificités dépassent la portée de notre synthése.
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Plusieurs de ces techniques consistent a élargir le bassin d’attraction des motifs mémorisés, soit de maximiser
la distance qu'il est possible d’avoir pour que le réseau converge entre le vecteur mémorisé et le vecteur
présenté, afin de limiter la probabilité que des états parasitaires apparaissent (Folli et al., 2017) (Storkey,

1999).

La méthode que nous proposons se distingue de ces approches par le fait qu'elle vise a effectuer une
classification et non une simple mémorisation. Notre but est par conséquent, a I'instar de cette technique,
d’élargir les bassins d'attractions des attracteurs associés a chacun des motifs, qui sont des chiffres dans

notre implémentation, afin que celui-ci englobe toutes les instances possibles du méme chiffre (0-9).

4.3.2.2 Hopfield continus

Les Hopfields ont également des vartiantes qui travaillent sur des nombres R en place de simples motifs
binaires (Hopfield, 1984; Movellan, 1991; Talavan et Yafiez, 2005). Cependant leur plus grande complexité
rend leur adaptation plus ardue a notre cas d’utilisation et c'est pourquoi nous nous sommes simplement

basés sur la version binaire pour notre recherche.

4.3.2.3 Mémoire associative bi-directionnelle

On voit a travers la formule 4.5 que la matrice de poid obtenue est symétrique puisqu’il n'y a pas de
distinction entre I'entrée et la sortie. Dans cette forme simple, la fonction de mise a jour est de type
Lyapunov (Hertz et al., 1991) ce qui garanti qu’elle convergera ultimement vers un état d'énergie qui est
un minima d’énergie (telle que définie dans (Hopfield, 1982)) local (Liapounoff, 1907) (ou une oscillation
entre deux états lorsque la mise a jour de tous les noeuds est simultanée). Une approche différente est

d’associer un motif avec un autre, générant une mémoire associative bi-directionnelle (Kosko, 1988).

L'équation pour I'apprentissage d’une matrice de poids qui encode une série d’associations (Xo, Yp), . . ., (Xp, Yn)

est simplement:

AW =Y X[ (4.7)
=0

Pour ce qui est de récupérer Y; a partir de X, il s’agit de la méme formule que pour les Hopfields standards,
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telle que définie dans 4.6.

Cette approche est intéressante pour notre recherche puisqu’en place d'un attracteur sur un point fixe, elle
permet d’encoder une série d'états successifs, a I'image du fonctionnement de I'hippocampe, permettant
I'encodage de séries temporelles. Egalement, il est possible d’encoder des cycles simplement en apprenant
une série d’associations du type (Xo, X1), (X1, X2),...,(Xn, Xo). De cette facon, X, génére X1, X;
génére X, et ainsi de suite jusqu’a ce que la boucle soit bouclée avec X, qui génére le point de départ du

cycle.

4.3.3 Limitations

Il existe des limitations majeures qui freinent I'application industrielle de ces techniques. En effet, malgré
les améliorations qu'elles ont subites et leur prévalence, avec plus de 27 000 citations enregistrées, dans
la littérature, les Hopfields ne sont toujours pas utilisés de facon majeure dans aucun domaine a l'extérieur

de la recherche.

4.3.3.1 Techniques plus efficaces

Les mémoires associatives démontrent des capacités intéressantes qui ont des applications telles que le
stockage d’informations, la compression, la correction d’erreur, trouver le plus proche voisin d'un vecteur
dans I'ensemble des vecteurs mémorisés et, pour les mémoires associatives bi-directionnelles, d’associer
une entrée avec une sortie. Cependant, pour chacun ces cas d’applications, il existe des techniques qui sont
plus optimisées autant au niveau de I'espace de stockage que de la demande en calcul requis, ce qui rend
leur utilisation non souhaitable pour les cas ou I'on tente d’effectuer I'une de ces opérations. La ou elles
se démarquent est leurs capacités d'effectuer toutes ces taches a la fois. C'est précisément la raison pour

laquelle nous nous y intéressons dans le cadre de notre recherche.

4.3.3.2 Etats parasitaires

Comme mentionné plus haut, une mémoire associative peut converger vers un état dit "parasitaire” qui
est une chimére entre deux entrées et qui représente un minima local dans la mise a jour des états. Ces
états chiméres qui sont généralement une combinaison entre deux motifs mémorisés (Hertz et al., 1991)

freinent I'adoption de cette méthode puisqu’il n’existe pas de méthode directe et peu coliteuse en termes
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de calcul pour déterminer si I'état final représente bien un vecteur qui a été sauvegardé dans le réseau de

facon volontaire ou involontaire.

4.4 Apprentissage compétitif

L'apprentissage compétitif est une sous-catégorie de I'apprentissage dans les réseaux de neurones, qui
consiste a attribuer une fonction d'utilité a chaque neurone et a effectuer un apprentissage modulé par

cette valeur sur les données entrantes.

4.4 Cartes de Kohonen

La technique la plus populaire quil'incorpore est celle des cartes de Kohonen(Kohonen, 1990), aussi appelée
dans la littérature "cartes autoadaptatives" (en anglais, Self-Organizing Maps ou SOM). Le principe consiste
a sélectionner un neurone gagnant pour chacun des intrants, et d'attribuer les poids permettant I'activation
maximale de ce neurone pour les prochaines itérations ou cette donnée sera présentée. Lorsque les poids
d’un neurone gagnant sont mis a jour, on met également a jour, dans une mesure moindre, les poids des
neurones qui lui sont environnants, comme déterminé par une fonction de proximité entre les neurones.

De cette facon ceux-ci représentent une couverture de I'espace des intrants possibles.

4.4.1.1 Algorithme

La mise a jour des poids dans un SOM est formulée de la maniére suivante:

Awij = a(t) - hei(t) - (x — wij)

ou : - w;; est le poids entre I'élément ¢ du motif d’entrée et le neurone j dans la carte. - a(t) est le taux
d’apprentissage a I'instant ¢, qui diminue généralement avec le temps. - h.;(t) est la fonction de voisinage
autour du neurone gagnant c a l'instant ¢, qui détermine l'influence du neurone gagnant sur ses voisins. -

x est le vecteur d’entrée.

La fonction de voisinage h.;(t) comme la fonction gaussienne est souvent choisie:
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hei(t) = exp <—HTC ril )

202(t)

ou : - r. et r; sont les positions des neurones ¢ (gagnant) et i dans la carte, respectivement. - o(t) est

I'écart-type de la fonction de voisinage a l'instant ¢, qui diminue également avec le temps.

4.41.2 Avancées

Depuis leur création, les cartes de Kohonen ont connu plusieurs avancées, modifications et améliorations
significatives, élargissant ainsi leur champ d’application et leur efficacité. L'une des évolutions notables
est I'introduction de techniques d’apprentissage adaptatif, qui permettent de régler dynamiquement les
paramétres tels que le taux d’apprentissage et le rayon de voisinage en fonction de I'état d’apprentissage du
réseau (Shah-Hosseini et Safabakhsh, 2000). Cela conduit a une convergence plus rapide et a une meilleure
qualité de la cartographie. Les variantes dynamiques des cartes de Kohonen, capables de modifier leur
structure, tel qu’avec I'ajout de neurones au cours de l'apprentissage, ont été développées pour mieux
s'adapter a la complexité des données traitées (Hsu et al., 2009). L'intégration de la notion de temps, avec
des modeéles tels que les cartes de Kohonen récurrentes, a permis le traitement de séquences temporelles
et de données séquentielles (Shah-Hosseini et Safabakhsh, 2000). En outre, 'application des cartes de
Kohonen a des domaines spécifiques a entrainé le développement de variantes spécialisées, comme celles
concues pour le traitement du langage naturel (Honkela, 1998) ou pour des applications biomédicales (Skupin
etal., 2013), ot elles aident 4 identifier des modéles complexes dans les données génétiques ou protéomiques.
Ces avancées ont non seulement enrichi la théorie sous-jacente des cartes de Kohonen mais ont également
étendu leur portée a de nouvelles frontieres de la recherche et de leur application pratique. Cependant,
malgré ces améliorations, elles offrent rarement les meilleures performances ce qui explique que leur

utilisation pratique demeure limitée dans I'industrie.

4.41.3 Limites

Mis a part les applications pointues ou elle excelle, cette approche, demeure relativement ésotérique
et s'applique généralement a des problemes bien spécifiques en raison des limitations inhérentes a sa
structure. Tout d’abord, la convergence du modéle n'est pas toujours garantie (Kohonen, 2013), et les
résultats peuvent varier significativement en fonction de l'initialisation et de I'ordre de présentation des

données. Enfin, leur nature statique ne permet pas de traiter efficacement des données séquentielles de
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facon innée, ce qui réduit leur applicabilité a des taches ou la dimension temporelle est importante.

4.5 Attracteurs spatio-temporel hebbien

Molter et Bersini ont travaillé sur une série de recherches (Molter et al., 2006) portant sur les attracteurs
spatio-temporaux dans des réseaux hebbien récurrents, se distinguant de toutes les techniques présentées

jusqu’ici qui portent sur des attracteurs sur point fixe.

Dans leurs travauy, ils introduisent la notion de frustration dans un réseau récurrent Hebbien, qui renvoie
a une dynamique ou le réseau neuronal se trouve dans un état de chaos frustré: "Le chaos frustré est
un régime dynamique qui apparait dans un réseau lorsque la structure globale est telle que les motifs de
connectivité locaux, responsables de comportements oscillatoires stables et significatifs, sont entrelacés,
menant a des attracteurs en compétition mutuelle et a une itinérance imprévisible parmi des apparitions
bréves de ces attracteurs."(Molter et al., 2006) 2. A travers leurs expériences, ils sont parvenus a démontrer
que ce régime dynamique permettait la génération de dynamiques complexes, incluant des régimes chaotiques,
qui sont utiles pour la prévention de la prolifération de données parasites lorsque le réseau est confronté a

des stimuli ambigus ou non appris.

La frustration déstabilise le réseau et provoque un 'vagabondage’ erratique parmi les orbites périodiques
caractérisant le méme réseau lorsqu’il est connecté de maniére non frustrée . Celle-ci est obtenue par
la superposition de plusieurs matrices de connectivité qui, prises individuellement, conduiraient a des
régimes oscillatoires, induit un chaos qui est caractérisé par la détection d’orbites répulsives cachées dans

I'attracteur chaotique.

4.51 Algorithme

Le RNN qui est présenté dans (Molter et al., 2006) et exhibant des dynamiques de chaos frustré vise a
traiter des stimuli externes pour générer des dynamiques internes qui peuvent apprendre et stocker des

informations sous forme d’attracteurs spatio-temporels est défini comme suit:

Le réseau est pleinement connecté, chaque activation neuronale étant une fonction des impacts des autres

neurones ainsi que des stimuli externes. Les activations neuronales sont mises a jour de maniére synchrone

2 En anglais, traduction libre
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a chaque pas de temps discret. La description mathématique du réseau est la suivante :

L'activation x; du neurone 7 au temps n + 1 est donnée par :

zi(n+1) = f(net;(n)) (4.8)

ou net;(n) est le potentiel d’entrée pour le neurone i au temps n, calculé comme :

N M
neti(n) = Z wijwj(n) + E Wigls (4.9)
j=1 s=1

- N est le nombre de neurones dans le réseau.

- M est le nombre d'unités constituant le stimulus.

- w;; est le poids synaptique de la connexion du neurone j au neurone .
- w;, est le poids de I'unité s du stimulus externe sur le neurone 1.

- 15 est la s-ieme unité du stimulus externe.

- f est une fonction d’activation saturante (ici tanh), utilisée pour assurer la non-linéarité du réseau et
limiter I'amplitude des activations neuronales.
4.5.1.1 Algorithme d’apprentissage

L'apprentissage dans ce réseau est réalisé a I'aide d’'un mécanisme Hebbien asymétrique, qui est adapté
pour capturer et renforcer des corrélations temporelles spécifiques entre les entrées et les sorties. Deux

taches d’apprentissage principales sont proposées:

1. Apprentissage "out-supervised" : Dans cette approche, des stimuli externes sont explicitement mappés

a des attracteurs cycliques définis au préalable par les chercheurs. Les poids sont ajustés a I'aide d'une
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fonction Hebbienne pour renforcer la stabilité de ces mappings.

2. Apprentissage "in-supervised" : Cette méthode est moins supervisée et biologiquement plausible. Elle
permet au réseau de créer ses propres représentations internes des stimuli externes sans que des attracteurs
spécifiques ne soient prédéfinis. Le réseau apprend a réagir aux stimuli en générant des séquences cycliques

internes, dont la périodicité et la structure ne sont pas spécifiées a I'avance.
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CHAPITRE 5
CONTRIBUTION
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Maintenant que nous avons établi la base théorique sur laquelle nous nous appuyons pour formuler notre
algorithme, nous pouvons formaliser celui-ci. Pour ce faire, nous tadchons d'abord de distiller notre problématique
et les notions vues précédemment pour ensuite proposer notre propre modéle de réseau de neurones

récurrent bio-plausible (bio-RNN) et son algorithme d’apprentissage.

5.1 Méthodologie

Nous avons établi dans notre revue de littérature que I'apprentissage par rétropropagation comporte des
limitations qui sont inhérentes a sa formalisation. Bien que I'avancement de ces techniques semble accélérer
de facon exponentielle 3 ce moment, nous croyons que ses déficiences vont ultimemement définir un
seuil au-dela duquel il sera coliteux de maintenir ce rythme de progression. Alors que l'originalité de la
propagation arriere s'estompe peu a peu et que les limites qui en découlent deviennent plus apparentes,
I'intérét porté sur les techniques alternatives augmente. Comme par le passé, beaucoup se tournent vers les
neurosciences pour y trouver de l'inspiration et des intuitions. Que ce soit le besoin d’une fonction d'erreur
prédéfinie, le nombre faramineux d’exemples nécessaires pour atteindre une saturation de I'apprentissage
(le moment qui précede immédiatement le sur-apprentissage), le manque d’une dimensionnalité temporelle,
I'oubli catastrophique ou d’autres facteurs, I'absence de ces contraintes dans le cerveau humain est une
preuve que ces limitations ne sont pas inhérentes a I'apprentissage dans des réseaux de neurones profonds.

Ce ne sont que des restrictions engendrées par nos techniques actuelles.

Nous avons choisi d’explorer les bio-RNN pour de multiples raisons. (1) Nous croyons que certaines des
avancées qui ont rendu possible I'évolution rapide et les gains de performance des RN avec RP pourraient
étre applicables et ainsi bénéficier 3 de nombreux algorithmes développés par le passé. L'augmentation
de la disponibilité des jeux de données toujours plus larges, I'augmentation de la capacité de calcul et les
optimisations mathématiques de I'apprentissage sont des exemples de facteurs qui peuvent potentiellement
profiter a ces techniques aujourd’hui. (2) La progression constante de la compréhension des mécanismes
neurologiques sous-jacents a la cognition est également un atout qui peut nous inspirer pour le développement
de nos algorithmes ainsi que nous renseigner sur les pistes d'optimisation qui semblent étre les plus prometteuses.
(3) Nous croyons qu'il existe de meilleures formalisations algorithmiques que la RP pour I'apprentissage
dans les RN, ouvrant la porte a des découvertes majeures améliorant substantiellement les performances
sur une large gamme de taches. (4) Finalement, nous croyons que les algorithmes bio-plausibles, en raison

des éléments qui vont dans ce sens que nous avons présentés, sont la voie avec le plus de potentiel pour
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faire avancer I'lA vers I'intelligence artificielle générale.

511 Cadre expérimental

Pour la présente recherche, nous nous intéressons a un probléme relativement simple afin d'étre en mesure
d’évaluer notre algorithme malgré son manque de maturité et I'absence d’optimisations qui en découle.
Nous nous sommes arrétés sur la classification d’image comme tache d’entrainement et d’évaluation de
notre modéle. Ce choix est motivé dans un premier temps par la riche histoire de la recherche sur cette
problématique. Cela implique qu’il y a une grande variété dans les jeux de données disponibles, autant en
terme de taille que de complexité. L'existence de jeux de données simple nous permet d'évaluer notre
algorithme malgré son manque de maturité et d’itérer rapidement en raison du temps d'entrainement
réduit que ceux-ci requierent pour que l'apprentissage soit observable. L'existence de jeux de données plus
complexe fait en sorte que nous pourrons aisément augmenter le niveau de complexité dans des recherches
futures. Dans un second, la littérature abondante sur ce sujet et les implémentations diversifiées qu'elle
nous offre nous permet d’évaluer adéquatement ou se situe notre algorithme en rapport avec les techniques

existantes.

5.1.1.1 Le jeu de données MNIST

Pour I'entrainement et I'’évaluation de notre algorithme, nous avons retenu le populaire jeu de données
MNIST (Deng, 2012). Ce jeu de données est fréquemment utilisé pour tester de nouveaux algorithmes en
raison qu'il est (1) suffisamment simple pour un algorithme non-optimisé d’étre en mesure d’obtenir un
score raisonnable dés lors qu'il a une capacité d’apprentissage non-nulle, (2) suffisamment complexe pour
démontrer que l'algorithme est en mesure d’apprendre et/ou de mémoriser des caractéristiques latentes
non-triviales dans le jeu de données et (3) son utilisation fréquente dans la littérature nous permet également
de comparer directement notre algorithme avec d’autres techniques (Deng, 2012; LeCun et Cortes, 2005;
Krotov et Hopfield, 2019; Byerly et al., 2020) et simplifie le processus d'implémentation de modéles comapratifs.
Ces éléments sont d’autant plus applicables dans la recherche présentée ici puisqu’une des métriques a
laquelle nous accordons de I'importance est la vitesse d’apprentissage au moment de l'initialisation et non

la capacité théorique aprés un nombre élevé d'itérations sur I'ensemble d’entrainement.
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5.1.1.2 Protocole des données

Pour évaluer notre modéle, nous avons décidé d’utiliser un sous-ensemble du jeu de données MNIST d'une
taille de 10000 exemples. Cet ensemble a été mis de coté et n'est pas utilisé lors de I'entrainement. La
taille de jeux d’entrainement, quant a elle, est de 60000 images. Les images du jeu de données sont des
images en noir et blanc, qui se présentent sous la forme de matrices de 28 X 28 (une par image) contenant
des valeurs entre 0 et 256. Puisque notre réseau est binaire, nous transformons au préalable I'image en
une image binaire. D'autres options s'offraient a nous, tel que mettre en entrée les valeurs telles quelles,
normalisées entre 0 et 1, ou encore d’encoder temporellement I'intensité des pixels. Cependant, la gestion
des dynamiques dans des systémes relativement large comme le notre est déja suffisamment ardue dans
ses formes les plus simples, ce qui nous a poussés a sélectionner 'option la plus accessible nous permettant

de mieux isoler d’autres variables essentielles lors de nos tests.

51.1.3 Modéles comparatoires

Afin de pouvoir situer les performances de notre algorithme par rapport aux techniques populaires actuelles,
nous avons choisi d'implémenter quelques réseaux de neurones artificiels simples composés d’'une et de
deux couches cachées. Notre choix de sélectionner des architectures simples est motivé par plusieurs
facteurs. Dans un premier temps, le nombre d’itérations d’apprentissage requises pour obtenir un résultat

donné croit avec la largeur et la profondeur du réseau.
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Figure 5.1 Evolution de I'apprentissage pour différentes tailles de RN

Puisque le cadre de notre recherche est de démontrer que notre approche est viable,nous jugeons que

la démonstration et la comparaison de ses capacités a petite échelle est plus appropriée. La réduction en
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complexité résultante nous permet de (1) itérer plus rapidement grace a un temps d’entrainement réduit, (2)
d’écarter ainsi plus rapidement les approches moins prometteuses, (3) de réduire le nombre de variables a
investiguer avant de pouvoir déterminer si une technique ou modification est viable ou non, (4) de réduire le
nombre d’hyper-paramétres a explorer et (5) de mesurer notre approche avec d’autres algorithmes ayant un
niveau similaire de maturité. Les résultats obtenus sur le jeu de données avec les différentes architectures

sont présentés dans la figure 5.1.

Ces résultats nous permettent de comparer notre approche avec la RP en évaluant I'impact des variations
du nombre de neurones et du nombre d’exemples d’entrainement sur la précision du modéle. |l est a noter
gue nous avons utilisé la fonction d’activation sigmoide pour obtenir les résultats présentés dans la figure
5.1. Nous avons fait ce choix dans le but de représenter la RP dans sa forme traditionnelle. Le tout, dans
le but d’étre en mesure de la comparer dans un contexte similaire a notre méthode, sans les nombreuses

optimisations intégrées suite a prés d'un demi siécle de recherche.

Nous souhaitons souligner deux points clés a retenir qui seront pertinents lors de la présentation de nos
résultats a la section 5.3. Le premier est qu’avec I'augmentation du nombre de neurones et de couches,
la vélocité de I'apprentissage semble diminuer progressivement en début d’entrainement. Ce facteur est
résolu a la fin de I'exécution. Sur des entrainements plus longs que ceux illustrés dans 5.1, les modéles
plus larges prennent inévitablement le dessus sur ceux plus petits, mais nous n'avons pas jugé pertinent de
les inclure puisque nous mettons plus d'importance sur la rapidité d’apprentissage que sur la performance
maximale. Le second est qu’avec 'augmentation de la taille du réseau, la précision devient de moins en

moins stable.

51.2 Contraintes biologiques

A ce stade, un bon nombre de concepts théoriques multidisciplinaires qui peuvent étres pris en compte pour
I’élaboration d’un algorithme d’apprentissage pour des réseaux récurrents bio-plausibles(Bio-RNN) ont été
couverts. Cependant, il ne nous est malheureusement pas possible de les intégrer dans leur ensemble dans
la présente recherche en raison du niveau élevé de complexité que cela entrainerait. Autant au niveau de
I'implémentation que de le I'évaluation, un nombre croissant de paramétres rends I'étude de I'impact de
chacuns d’entres eux plus ardue. Nous avons donc choisi un sous-ensemble composé de ceux que nous

croyons étre les plus pertinents pour notre contexte expérimental afin de les implémenter.
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Le terme "bio-plausible" peut étre appliqué a une grande famille d'algorithmes avec une définition qui varie
en fonction de du domaine et de la recherche en question, en raison du grand nombre de contraintes
et de la complexité des processus variés d’apprentissage dans le cerveau. Nous avons donc posé notre
propre sélection sur les éléments que nous considérons inclure dans notre approche. Au niveau de la bio-

plausibilité nous avons retenu les contraintes décrites dans les paragraphes suivants.

51.21 Régles d’activation et de plasticité locales

L'une des contraintes que nous nous imposons est que la régle d’apprentissage soit locale. Concrétement,
celaimplique que toutes les informations qui ménent a une modulation du lien synaptique et de 'activation
proviennent des neurones pré- et post-synaptiques. Concrétement, les neurones mettent a jour leurs poids
simultanément et une connexion entre deux neurones ne tient compte que des informations présentes
et historiques appartenant a son champ de perception (les neurones de la couche précédente, courante
et suivante). Cette contrainte, nous croyons, ouvre la porte a une meilleure mise en échelle de notre
proposition puisqu’elle permet un accroissement du nombre de neurones dans le réseau sans que cela
n'ait un impact sur le fonctionnement local des neurones déja présents dans une architecture donnée. Ce
choix est également motivé par le fait qu'il permet une meilleure optimisation éventuelle s'il s’avérait que
cet algorithme doive étre parrallélisé sur plusieurs cartes graphiques puisque les calculs de mise a jour ne

dépendent que d’'informations locales.

51.2.2 Fonction d’activation binaire

Nous avons choisi d'utiliser une fonction d’activation binaire en place d’une fonction non-linéaire continue.
Bien que de I'information soit perdue dans la compression dichotomique, celle-ci offre différents avantages
qui compensent la perte d’information accessible aux calculs subséquents. Puisque notre réseau n'utilise
pas larétropropagation, nous pouvons nous permettre d’utiliser une fonction non différentiable. Elle simplifie
I'analyse numérique des dynamiques, I'implémentation de I'algorithme, et I'analyse visuelle des états et des
modifications des poids synaptiques suite a I'entrainement. D’ailleurs une branche entiére de 'intelligence
artificielle est consacrée réseaux de neurones a pics (SNN, de I'anglais "spiking neural networks") en raison
de leur efficacité computationnelle. Cette efficacité permet de concevoir des processeurs neuromorphiques
optimisés spécialement pour les SNN (Lobo et al., 2020) a faible demande énergétique, qui est I'une des
motivations derriére ces recherches (Asghar et al., 2021). L'utilisation de cette fonction nous permet donc

a terme d’envisager exécuter notre algorithme sur de tels processeurs, ce qui représente un avantage par
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rapport au coté énergivore de la RP.

51.2.3 Plasticité temporelle

Comme nous I'avons vu a la section 3.5.1, la STDP est I'un des mécanismes ayant attrait a la plasticité des plus
étudiés et il est soupconné qu’elle soit I'un des mécanismes fondamentaux de I'apprentissage biologique.
Par conséquent il s’agit de I'un des principes qu’il nous semblait naturel d’'intégrer a notre algorithme.
Puisque nous visons a induire des cycles limites de période NV = 2, comme spécifié a la section 5.2.1.1, pour
valider notre approche avant de tenter de créer des attracteurs plus complexes, cela implique simplement
d’appliquer une fonction Hebbienne et anti-Hebbienne qui prend en compte les activations des neurones

auxtempst —1,tett + 1.

51.2.4 Inhibition équilibrée

Niu et al. ont démontré que dans un cadre de systéme dynamique, il est possible d’encoder une grande
quantité d’informations avec trés peu de neurones actifs (Niu et al., 2022). Les recherches de Yu et al.
suggerent qu’un ratio excitation/ainhibition équilibré, avec « le facteur d'échelle approprié, permet des
dynamiques saines permettant d’encoder un maximum d’information tout en permettant une économie
des ressources énergétiques (Yu etal., 2018). lls proposent qu'il s’agit également d’une adaptation optimisant
les dynamiques des influx nerveux pour atteindre une meilleure extraction des connaissances a partir de
I'information sensorielle et une meilleure capacité de rétention de l'information. Le cerveau lui-méme
est peu densément connecté et a tout moment, seulement une petite fraction des neurones sont actifs
simultanément (Wixted et al., 2014). A ce stade il n’existe toujours pas de preuve qu’un cerveau ne pourrait
étre composé de moins de neurones et étre plus densément connecté en offrant le méme niveau d’entropie
que leur forme actuelle et avec une dépense énergétique similaire. Cela nous pousse a croire qu'il y a
donc des justifications fonctionnelles et computationnelles pour maintenir une activité globale relativement
faible au niveau de I'impact de cette mesure sur les dynamiques. Pour ces raisons, nous jugeons judicieux

d’inclure ce parameétre dans notre modélisation.

5.1.3 Attracteurs limites

La plupart des méthodes modernes d’lA, dont tout le domaine de I'apprentissage profond utilisant la propagation

arriére, les SVM, les cartes de Kohonen et autres ne sont pas considérés comme étant des systémes dynamiques
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au moment de I'inférence. Ce sont simplement des fonctions paramétrées au moment de I'entrainement.
Une fois la phase d'apprentissage terminée, ils convergeront toujours vers le méme point fixe lorsque

présenté avec une entrée donnée.

Le cerveau quant a lui est un systéme dynamique a états, ou les états passés ont un impact sur le fonctionnement
et le résultat des calculs. La dimension spatio-temporelle guide les dynamiques en dictant les états successifs

du systéme. Cela lui permet entres autres de traiter des données séquentielles de facon innée, puisque cette
dimension temporelle est nécessaire pour I'apparition de cycles-limites, qui ont eux-méme une composante
temporelle. Certaines méthodes comme les réseaux de Hopfields et leurs variantes (Hopfield, 1982; Hopfield,
1984; Krotov et Hopfield, 2019; Kosko, 1988; Storkey, 1997), en sont également, mais leur attracteur converge
néanmoins vers un point fixe. Notre approche se de démarque de la majorité des approches présentées,

a l'image de (Molter et al., 2006; Molter et al., 2007) en tentant d’encoder le traitement de I'information

dans un attracteur encodé a I'intérieur d’un cycle-limite plutét que sur un point fixe.

De nombreux travaux démontrent que des attracteurs dynamiques sains sont nécessaires pour un traitement
cérébral approprié de I'information (Preiss| et al., 1996; Tomasello et al., 2018; Molter et al., 2006; Faisal
et al., 2008; Molter et al., 2007; Molter et al., 2004). Cela suggére un avantage computationnel de cette

approche par rapport a un attracteur sur un point fixe.

Les résultats de Molter et al. sur I'augmentation de la capacité de stockage des mémoires associatives
lorsque des cycles-limites sont mémorisés en place d’entrées fixes (Molter et al., 2004). Dans des travaux
subséquents (Molter et al., 2006; Molter et al., 2007) sur le chaos frustré ainsi que sur l'apprentissage
nons supervisé dans leur modéle (Molter et al., 2005) nous font croire qu’il s’agit d’'une approche viable et

prometteuse.

5.1.4 Inspiration algorithmique

5.1.4.1 Hopfield

L'algorithme de base derriére notre version n’est autre que celui des mémoires associatives. La variante

sélectionnée est celle bi-directionnelle et ol tous les neurones sont mis a jour de facon synchrone.

Dans le cas de la directionnalité, notre choix est motivé par le fait que nous voulons établir des attracteurs
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limites, dans notre cas nous ciblons des cycles ayant une période de longueur N. Pour ce faire le réseau

doit apprendre des transitions d'états convergeant sur un cycle limite et non vers un point fixe.

5.1.4.2 Chaos frustré

Nous avons également emprunté la notion de chaos frustré défini dans Bersini et Molter (Molter et al.,
2006; Molter et al., 2007) et repris leur version de mémoire associative spatio-temporelle présentée dans
(Molter et al., 2005). Laforme de la fonction d’activation reste similaire a I’équation 4.8 et nous généralisons
I'équation 4.9 a n couches pour prendre en compte notre couche de sortie. Nous obtenons donc, pour la

couche d'entrée | = 0:

netd(n) = 1; (5.1)

- 15 est la j-iéme unité du stimuli externe (le vecteur d'entrée).

Pour les couches cachées, nous avons:

Nl—l ,nl l+1
net!(n) = Z wgz}l’l]o(;ré»(n -1))+ Zwé’;a(x )+ Z UH o (n—1)) (5.2)
=1 =1

- [ est le nombre de couches dans le réseau.
- n! est le nombre de neurones dans la couche [ du réseau.
k

N
-wy; » est le poids synaptique de la connexion du neurone j de la couche k au neurone i de la couche /.

- o est une fonction d’activation saturante utilisée pour assurer la non-linéarité du réseau et limiter I'amplitude

des activations neuronales. dans notre cas, celle décrite par I'équation 5.4.

Finalement pour la couche de sortie [ = L nous avons:
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netl(n Z iy o (@l (n - 1)) (5.3)

cette derniéere pourrait inclure des connexions récurrentes pour le calcul de son état, cependant dans notre
cas nous travaillons avec des vecteurs de sortie de type "one-hot" (un seul des neurones est activé a la fois),

ce qui rend ce calcul superflu.

I'objectif de notre approche est de formaliser une régle de mise a jour de I'état et des connexions d'un
réseau récurrent qui sera en mesure d’apprendre a converger vers différents cycles limites déterminés
par les données d’entrée démontrant la capacité d'effectuer un traitement de I'information. leurs travaux
représentent un pas dans cette direction puisqu'ils ont démontré qu'’il s'agissait d'une avenue viable pour
mémoriser différents motifs. nous tenterons de démontrer que ca I'est également dans le cas du traitement
de l'information, en posant comme hypothése que celui-ci sera en mesure d’identifier des régularités statistiques
provenant du jeu de données et d’'en extraire des caractéristiques significatives pour effectuer une tache de

classification.

5.1.5 Notation

afin de simplifier les formules pour en faciliter la compréhension, nous utilisons la notation matricielle pour

les équations qui suivent. les différentes variables qui seront principalement utilisées dans celles-ci sont:

w est I'ensemble des matrices de poids pour le réseau

@b est une matrice de poids (connexions) de la couche a a la couche b du réseau. w®“ est donc une

w
matrice de connections récurrente pour a. pour notre réseau simple avec une couche d'entrée,
une couche cachée et une couche de sortie présenté ici, nous avons donc w®! qui sont les poids
connectant la couche d’entrée a la couche cachée, w'! qui sont les connections récurrentes de la

couche cachée et w! 2 qui sont les poids de la couche cachée 2 la couche de sortie.

b . . .
wf’] est le poids entre le neurone ¢ de la couche a et le neurone 5 de la couche b.
2

x est un tenseur contenant tous les états.
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x![t] est la matrice d’états de la couche [ au temps t. dans un réseau a [ couches, la couche I = 0 est la
couche d’entrée, les couches i = {1, ...,1 — 2} sont les couches cachées et la couche [ = [ — 1 est la

couche de sortie.
xl[t] estl'états du neurone i de la couche [ au temps t.
tmg est la valeur du vecteur d’entrée, soit les images du dataset.
Pmaz €St lavaleur minimum pour un poids.
Pmin €stlavaleur maximum pour un poids.
Mseusl €St la valeur au-dela de laquelle un neurone s’active.
Mmae ©Stlavaleur maximum pour I'état d’'un neurone.
Mmin €St la valeur minimum pour I'état d'un neurone.

e estlavaleur d'énergie d’un neurone.

voici également la notation des opérateurs que nous utilisons

o produit d’hadamard, ou par élément.
X produit matriciel, ou le produit cartésien dans le cas de multiplication de 2 vecteurs.

m?' transposée de m.

certaines fonctions sont construites a travers plusieurs équation, afin d’en simplifier la compréhension. dans
ces cas, nous utilisons la notation prime. si nous tentions d’exprimer une fonction complexe f(x) a l'aide

de trois équations nous aurions:

f'(x) serait la fonctions dans sa version la plus simple
f”(x) estune fonction plus complexe (p. ex. ony a ajouté un terme)

f(x) lafonction finale, telle qu'elle se retrouve dans notre algorithme
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aussi, afin de simplifier la compréhension, nous assignons parfois un scalaire a un vecteur, matrcie ou
tenseur. dans ce cas nous entendons simplement assigner la valeur scalaire a tous les éléments de la
matrice, vecteur ou tenseur. nous appliquons également des fonction scalaire a des vecteurs, matrices
ou tenseurs. cela signifie que la fonction est appliquée individuellement a chacun des éléments du tenseur.

de cette facon pour une matrice  de dimension n x m nous avons

011 ... O1m
x = 0 estéquivalentaz = ( : -. : )
Ont - Onm
flz11) ... flzim)
y = f(x) nousdonnesy=( : - : )

flzn1) - f(l’z.\fM)

5.1.6 Architecture

Afin d’étre en mesure de bien évaluer les performances du modéle proposé, nous avons opté pour une
architecture de base, soit une couche cachée connectée a une couche d’entrée et a une couche de sortie. La
couche cachée est récurrente, ce qui veut dire gu’elle est pleinement connectée avec elle-méme. Formellement,
notre architecture A peut étre définieavec A = (X, W)ou X = {Xg, X1, Xo}, W = {WoL Wbl Wwi2},
Nous avons choisi de retirer les connexions 2! puisque celles-ci avaient un impact négatif sur la précision
de notre modéle. Un réseau avec une seule couche cachée X! est désirable pour valider si notre approche
présente du potentiel, car cela nous permet de vérifier que le réseau est en mesure d’apprendre une
représentation des données exploitables sans les signaux dynamiques des couches supérieures qui pourrait

venir brouiller les performances.
5.2 Proposition

La technique que nous avons développée est composée de trois couches. La premiére est la couche d’entrée,
la seconde est la couche cachée qui vise a extraire une représentation des données et la derniére s’attarde
a classifier cette représentation. Cette section présente en détails chacun des termes contenus dans la

formalisation mathématique de celle-ci.

5.21 Activation

La fonction d’activation retenue est la fonction binaire. En plus de sa simplicité et de son origine biologique,

nous I'avons également pour la facilité avec laquelle elle nous permet de faire des calculs impliquant seulement
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ou excluant complétement les neurones actifs a un temps ¢. Notre fonction d’activation est ¢(x) ou = est

le potentiel de membrane (I'état) d’'un neurone ¢ est la fonction définie par:

1 six> Mgenil
P(x) = (5.4)

0 six < Mgeyil

OU mygey; est le potentiel seuil de la membrane (au-dela duquel le neurone s’active). Nous dénotons ®(X)

I'application de ¢ a chacun des éléments d’un tenseur.

5.2.11 Durée cyclique cible

Puisque nous nous intéressons pour l'instant a la forme la plus simple de notre modele, nous avons choisi
le d’avoir pour cible un cycle minimal de période N = 2. Nous nous sommes arrétés sur cette périodicité
afin de valider notre approche pour plusieurs raisons. (1) Faciliter I'implémentation. Pour déterminer la
cible d’apprentissage (section 5.2.1.4), avec N = 2 nous devons prendre en compte 3 itérations, soit ¢ — 1,
tett + 1. En augmentant /N nous devrons également augmenter le nombre d’états a inclure dans le calcul
de la cible. Il ne nous est pas évident a ce stade de quelle facon cela doit étre fait et allonger le cycle
représentait par conséquent un risque qui ne nous semblait pas nécessaire a ce stade de développement.
(2) Augmenter la probabilité que notre méthode converge. Plus le cycle est long, plus la probabilité que
des erreures s’accumulent durant le cycle et que I'attracteur ne change de bassin d’attraction durant son
exécution et que l'algorithme ne converge pas. (3) Faciliter I'analyse subséquente des dynamiques et des

attracteurs présents dans le modéle entrainé.

5.2.1.2 Fixer I'entrée du réseau

Afin de générer une prédiction sur la classe associée a une image, nous devons dans un premier temps
présenter cette image au réseau. L'image est d'abord aplatie de facon a prendre la matrice 28 x 28 pour en
faire le vecteur img de taille 1 x 784. Nous passons ensuite le vecteur img dans la fonction d’activation 5.4

avec mgeyi; = 0 afin d’en faire un vecteur binaire. Par la suite, celui-ci est présenté au réseau avec

X% = ®(img) (5.5)
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Afin de faciliter I'obtention d’'une dynamique cyclique dans le réseau nous avons opté d’alterner I'entrée
entre les données du jeu et un vecteur nul. Puisque notre période cible est de N = 2, nous changeons

I’entrée a chaque itération entre I'équation 5.7 et

X%=0 (5.6)

En d'autres mots, nous avons un compteur n qui est incrémenté a chaque itération. L'entrée clignote en
changeant d’état a chaque itération (p. ex lorsque nous sommes a une itération n qui est paire, I'entrée est
déterminée par la formule 5.7 et lorsque n est impaire I'entrée est le vecteur nul tel que décrit par I'équation

5.6. Formellement:

' ¢(img;) sil'itération courante ( n ) est paire
t(img;) = (5.7)
0 si I'itération courante (n ) est impaire

Nous dénotons I (img) lorsque cette fonction est appliquée a chaque élément d’un vecteur.

5.2.1.3 Réfraction

Un attracteur fixe n’est pas l'objectif de notre entreprise et pourrait venir brouiller les résultats rendant
difficile de cerner si les précisions obtenues sont attribuables aux dynamiques de notre algorithme ou
simplement a de I'association Hebbienne classique. Afin d'éviter que le réseau ne tende vers celui-ci, nous
avons implémente Il s’agit également d’un élément qui ajoute a la similarité avec I'analogue biologique, tel

que présenté a la section 3.4.1.

p(al[t]) = alft] o (1 — ([t — 1])) + myes * Pkt — 1)) (5.8)

Ce qui nous donne en notation matricielle:

P(X[t]) = X[t] o (1 — ®(X[t — 1)) + myey * B(X[t — 1]) (5.9)
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5.2.1.4 Cible d’apprentissage

L'algorithme que nous proposons ici est une forme de mémoire associative bi-directionnelle telle que présentée
au chapitre 4. Par conséquent la régle d’apprentissage est basée sur la formule 4.7, dans laquelle on a le
vecteur source X et le vecteur cible Y. Nous devons donc définir le vecteur cible Y pour la couche cachée
ainsi que pour la couche de sortie, de facon a étre en mesure de mettre a jour W1, Whl et W2, Nous
commencons par itérer le réseau pendant un certain temps pour le laisser converger, en utilisant I'équation

5.5 pour déterminer notre entrée.

ous avons pris comme point de départ une régle de base qui détermine qu’elle est I'activation optimale de
la couche cachée X! [t] pour obtenir l'activation observée sur X[t + 1]. En d’autres termes, nous mettons
a jour le réseau pendant n itérations pour lui laisser le temps de converger, puis nous tentons de renforcer

I'attracteur dans lequel il a abouti:

' (X't]) = W x &(X*[t +1)) T + W x (X[t +1))7 (5.10)

Les neurones en état de réfraction, donc pour lesquels il est impossible qu'ils se soient activés au temps ¢
peu importe leurs entrées, doivent étre retirés de la cible, car cela reviendrait a d'optimiser la potentiation
d’un neurone i au temps ¢ pour que ¢(z}[t]) = 1, alors que le neurone était activé au temps t— 1, ce qui n’est
pas autorisé par le principe de réfraction. Nous ajoutons donc un produit d’'Hadamard avec 1 — d)(a:i [t—1])
donc un terme afin que 9’(352 [t]) = O i est en état de réfraction au temps ¢ de facon a ce qu'il n'y ait pas

de modification pour ce neurone a cette itération:

O"(x' ) = WH x o(x*it +1)T) + W x &X't +1)) 7))
o(1—a(X't—1])

(5.11)

avec k = [ + 1 dans notre cas.

Le premier terme concerne le signal venant de la couche supérieure, alors que le second est celui provenant
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dans la couche courante, via les connexions récurrentes. Finalement, nous ajoutons un terme pour I'apprentissage
anti-Hebbien afin de réduire les connexions entre des neurones activés au temps ¢ vers ceux qui I'étaient

autempst — 1:

OX't]) = (W x o(X*it +1))T) + W x o(X!' [t + 1)) 7))
o (1= (X't —1])) — (myes * (X't — 1))

(5.12)

5.2.1.5 Energie

Dans le but d'implémenter une compétition implicite entre les neurones, nous avons introduit le concept de
I'énergie qui vise 3 moduler les changements d’état en fonction de la fréquence d’activation du neurone par
le passé. Pour ce faire au moment de calculer le § d’activation d’une itération a la suivante, nous multiplions
le § par une valeur, que nous appelons I'énergie de ce neurone. Formellement, pour un neurone x; au temps

t, son énergie e, au temps ¢ + 1 est donnée par e, ;1] = €,y + e(z[t]) avec la fonction e définie par:

e~ SiX > Mgeyil
de(x) = (5.13)

et six< Mgeyil

En d’autres termes, I’énergie du neurone est réduite de |e™| lorsqu’il est activé et récupére e™ lorsqu’il ne
I’est pas. La valeur initiale de I'énergie est de 1.0.
5.2.1.6 Inférence

L'’équation de base pour la mise a jour des états consécutifs est la méme que pour I'apprentissage dans
les mémoires associatives a I'exception que le second terme est donné par la cible d’apprentissage au lieu

d’étre le vecteur d'état du réseau:

X't + 1) = XUt + o(x 1)) x w4 o(X![t]) x W (5.14)
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Nous y ajoutons ensuite la réfraction qui met des neurones activés a I'itération précédente a 1. :

X't +1)" = (X' + (X)) x WM 4 (X)) x W)
o (1= @(X'[t — 1])) + (myeg + 2(X'[t — 1])))

(5.15)

Finalement, nous avons le terme qui module I'activation en fonction de I’énergie de chaque neurone pour

obtenir:

X'+ 1) = (X[ + (X E]) x W4 (X)) x W o e(X'[t])
o (1= (X[t = 1])) + (mres  D(X'[t — 1))

(5.16)

5.21.7 Apprentissage

La version de base pour I'apprentissage est donc:

AWM = A = d(X[t - 1]) x O(XF[e]) T (5.17)

Pour forcer 5.17 'apprentissage d’un cycle de période N = 2 au sein des couches récurrentes, lorsque | = k:

AW = X« (&X't — 1)) x (X)) T + (X[t — 1]) x 2(X'[t]) ) (5.18)

et ’équation 5.17 est inchangée lorsque | # k.
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5.2.1.8 Détermination initiale du signe des poids

Les poids sont initialisés en suivant une distribution gaussienne centrée sur 0 afin de balancer les forces
excitantes et inhibantes dans le réseau. Une fois cette initialisation faite, le signe des connexions (positif
ou négatif) est fixé pour la suite afin de maintenir cet équilibre. Pour ce faire, nous ajoutons un terme
pour multiplier par tanh(1/'). Cela a également pour effet d’éviter qu’une valeur dw ne soit trop grande,

augmentant la stabilité de 'apprentissage:

W[t +1] = tanh(W [t — 1]) o (W + AW[¢t]) (5.19)

5.21.9 Bloquer la valeur des poids

Finalement, afin d'éviter que les valeurs des poids n'explose avec le temps, ce qui entraverait I'apprentissage,

nous appliquons une fonction clip(wz[l}k]) 'a tous les poids

Ce qui nous donne:

Wt] = clip(W'[t]) (5.20)
avec la fonction clip(x) définie comme:
T Si X >= Pmin €t X <= Pmax
clip(x) = ¢ i Si X < Pmin (5.21)

Pmax Si X > Pmax

On peut donc voir que I'on apprend ici un cycle allant de I'activation précédente vers la cible et de la cible vers
I'activation précédente. Lors de premiére implémentation, le second terme de I'addition était absent, car
nous voulions favoriser une émergence naturelle de cycles limites. Cependant, aprés quelques expériences
comparatives, nous avons constaté que I'ajout de ce terme améliorait significativement les performances

du modéle (4 10%) a I'’évaluation. Nous avons donc opté de I'inclure dans la version présentée ici, mais

72



nous y reviendrons au moment de la discussion afin de proposer nos hypothéses concernant les facteurs
derriéres cette disparité ainsi que nos proposition pour le retirer dans le futur afin de permettre des cycles

plus long que n = 2.

Tableau 5.1 Parameétres

Nom du paramétre Description Valeur
Mesewil Le seuil au-dela duquel un neurone s'active 0.0
Mmin La valeur minimum de I’état d'un neurone  -0.8
Mynaz La valeur maximale de I'état d’'un neurone 0.5
DPmin La valeur minimale qu’un poid peut prendre  -0.1
Pmax La valeur maximale qu’un poid peut prendre 0.1

A Taux d’apprentissage 0.035
bruit Le bruit stochastique pour I'apprentissage  0.015
et de lorsque le neurone n’est pas activé 0.04
e de lorsque le neurone est activé -0.2
5.2.2 Parameétres globaux

Les parameétres globaux utilisés pour obtenir les résultats exposés dans la figure 5.2 sont présentés dans le
tableau 5.1. Une fois que nous avons eu une implémentation fonctionnelle de notre algorithme, nous avons
effectué de nombreuses séries d’entrainements automatisées variant les différents paramétres définis plus

haut afin de trouver la valeur optimale pour chacun d’entre eux.

5.3 Résultats

Suite a cette recherche, nous avons obtenu les paramétres présentés dans le tableau 5.1. Le graphique
5.2 relate I'évolution de la précision sur le jeu de donnée d’évaluation durant le processus d’entrainement.
Celle-ci cessait de s'améliorer entre 30 000 et 50 000 images d’entrainement, et la meilleure performance
obtenue a l'issue de I'apprentissage était un taux d’erreur de 8.6%. On peut y voir que notre proposition
de bio-RNN est en mesure d’apprendre avec un nombre limité d’exemples, mais semble plafonner lorsque

le taux d’erreur se situe entre 12% et 8%.
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Tout d’abord, le tracé en mauve représente I'évolution de la performance d’une simple mémoire associative
bi-directionnelle a 1024 neurones. Celle-ci fait office de point de référence, puisqu'’il s'agit de l'algorithme
standard qui se rapproche le plus de notre proposition. Par conséquent, il s’agissait pour nous de la performance
de base que nous souhaitions atteindre initialement. On peut voir que la performance plafonne rapidement
a 67% avant de se détériorer progressivement. Nous sommes parvenus a atteindre cet objectif assez
rapidement lors du développement de notre algorithme, et nous nous sommes par la suite tournés vers

la RP comme étalon d’évaluation.
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Figure 5.2 Evolution de 'apprentissage de notre algorithme bio-RNN

Nous avons testé trois versions différentes de notre algorithme. Nous avons sélectionné le réseau a 1024
neurones dans la couche cachée avec la RP provenant de nos expériences présentées dans la figure 5.1
comme point de comparaison principal. Cette décision est motivée par le fait qu'il s’agit de I'architecture
la plus prés de celle que nous avons utilisée pour une grande majorité de nos tests avec notre bio-RNN,
soit celle avec 1024 neurones dans la couche cachée. Les performances de cette derniére sont illustrées
a l'aide du tracé en bleu dans la figure 5.2. On peut voir que notre approche apprend a un rythme plus
élevé que la RP et maintient son avance sur toute la premiére époque (passage complet du jeu de donnée
d’entrainement). A terme, la RP continue de s'améliorer alors que notre approche plafonne et bien que nous
comptons tenter d’'améliorer ce résultat dans des recherches futures, il n’'en demeure pas moins intéressant
dans notre contexte puisque la rapidité de I'apprentissage était I'une des métriques principales qui nous

intéressaient.
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Le tracé en vert est le résultat d’une légére modification de notre algorithme tel que présenté dans les
sections précédentes. Avant d'effectuer I'apprentissage sur une entrée donnée, nous vérifions comment le
réseau la classifie. Sil’inférence s’avéere prédire une classe erronée, nous exécutons par la suite normalement
I'algorithme de mise a jour des poids. En contrepartie, si la classification est juste, nous passons directement

au prochain exemple sans modifier les poids.

C'estlaraison pour laquelle les données s'arrétent juste avant les 10 000 images d’entrainement. Simplement
I'époque s'est terminée avec le modéle ayant traité seulement 9317 images sur les 60 000 du jeu de données
avec un taux d’erreur final de 9.2%. Cette mesure ne s’est pas avérée avoir d’impact sur la performance,
mais elle a permis de démontrer qu’avec un nombre limité de données de qualitée, couvrant la distribution
du jeu de données et étant suffisament orthogonales les unes par rapport aux autres, notre algorithme est
en mesure d’'apprendre drastiquement plus rapidement. Nous obtenons une précision qui progresse deux
ordres de magnitudes plus vite que la RP. Cela démontre un potentiel énorme pour notre algorithme s'il est

en mesure d'affiner sa performance globale.

L'absence de modeles bio-RNN avec moins de neurones est délibérée. Lors de nos expériences, la performance
diminuait linéairement en fonction de la réduction de la taille de la couche cachée en deca de 1024. Ce
résultat n'était pas surprenant outre mesure, puisqu’en raison des dynamiques cycliques que nous tentons
d’induire, nous nous attendions a ce qu'un nombre minimal de noeuds soit nécessaire pour que des cycles

variés émergent naturellement.

Un autre point a relever est qu’avec I'accroissement de la taille du réseau, on voit une certaine diminution
de la vitesse d’apprentissage, mais celle-ci est moins notable que pour la RP, tel qu’illustré dans le graphique
5.1. Egalement, les performances sont beaucoup plus stables avec une variation nettement inférieure lors de
la progression de I'entrainement. Ces deux éléments sont fort intéressants car ils supposent une meilleure
mise en échelle des bio-RNN que de la RP. Avec les modeles massifs qui sont désormais la norme, souvent
dans les milliards de parameétres et dépassant parfois le billion, des améliorations méme marginales a ces
niveaux peuvent entrainer des économies significatives en termes de ressources pour |I'entrainement des
modéles de pointe. Cela permettrait de développer des modéles plus large et plus performant a coGt égal

ou des modeles similaires & moindre co(t.
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5.3.1 Analyse visuelle

Une analyse visuelle des poids /%! suite a I'apprentissage, que I'on peut retrouver dans la figure 5.3, révéle
plusieurs éléments intéressants. Chaque image s'y retrouvant représente un ensemble de connexions allant
de I'entrée & un neurone de la couche caché, soit appartenant a W1, En d’autres terme il s’agit de champs
récepteurs de neurones cachés sur I'entrée. A noter qu'il s’agit dun sous-ensemble des neurones de la
couche cachée illustré a titre indicatifs, leur grand nombre ne permettant pas de les afficher entierement

de facon lisible.

Tout d’abord, on y reconnait qu’un apprentissage sensé prend définitivement place et que chaque neurone
apprend a s’activer suivant des caractéristiques abstraites de I'entrée, tel que prévu. Egalement, on peut y
voir que dans les zones extérieures, qui ne contiennent généralement pas d’informations (les pixels qui sont

presque toujours a 0 dans les jeux d’entrainement et d’évaluation), aucun apprentissage ne prend place.

.04

—0.04

Figure 5.3 Les matrices de W 1 pour un ensemble de neurones apres l'apprentissage

Nous avons tenté divers moyens pour pallier a ceci, puisqu’intuitivement ces poids devraient tendre vers 0

afin que lorsqu’une image sort légérement de la distribution des données d’entrainement, elle ait plus de
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probabilité d’étre néanmoins bien classifiée (p. ex. sile nombre dans une image est légérement décalé vers
la gauche ou la droite, des pixels actifs de cette image vont activer des neurones qui ne devraient pas I'étre

en raison de ces connexions qui sont demeurées inchangées depuis I'initialisation).

On peut observer que les images générées par les poids connectant les neurones a la couche d’entrée
semblent étre bruitées dans leur périphérie. Il semblerait que ces poids, qui sont sous-utilisés puisque tres
peu activés par les données d’entrées, ne sont pas modifiés par le réseau lors de I'entrainement puisque
gu’aucun signal n'y transige. lls restent donc hautement similaires a leur configuration initiale, ce qui
entraine ce phénomeéne. Cette observation est encourageante dans le cadre de notre recherche, car cela
semble suggérer d’'une part que l'oubli catastrophique de la RP pourrait étre mitigé par notre approche
puisque les apprentissages anciens demeurent cristallisés dés lors que la distribution des données d'entrées
est suffisamment différente de celles apprises au préalable. Dans un second temps, cela suggére également
que le réseau dispose de connexions inutilisées pouvant étre mises a profit dans l'apprentissage de données

qui différent de la distribution initiale. Plus de recherches seront nécéssaires pour valider ces postulats.

Les images de la figure 5.3.1illustrent quand a elles un sous-ensemble du champs récepteur des neurones
cachés sur les autres neurones cachées. Il s’agit donc d’une visualisation des connexions récurrentes de
WLl Onvy observe, dans un premier temps, qu’il n'y a que trés peu de poids positifs (en jaune). Cela
découle de 5.7. Lorsque I'entrée est nulle, il est normal que peu de neurones soient activés dans la couche
caché, ceux qui le sont n’étant qu’activer par les connexions récurrente. Nous croyons également que cela
est d0 au fait que lorsque I'entrée est présente (équation 5.5) cela stimule un grand nombre de neurones a
s'activer. Par conséquent, substantiellement moins de neurones sont réceptif a étre activer en raison de la

réfraction (5.9).

5.4 Optimisations

L'algorithme présenté ici est le résultat final d’'un processus d’optimisation qui s'est étendu sur de nombreuses
itérations. Aufil de ce développement, de nombreuses variations de I'algorithme initial ont été méthodiquement

testées dans le but d'en affiner la performance et I'efficacité.

Plusieurs de ces variations incluaient des éléments bio-plausibles que nous croyions initialement judicieux
d’intégrer, mais que nous avons finalement retirés puisqu’ils impactaient négativement la précision lors

de I'inférence. Cela n’infirme pas complétement leur pertinence pour des recherches futures mais, comme
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Figure 5.4 Les matrices de W1 1 pour un ensemble de neurones aprés l'apprentissage

0.02

0.00

nous l'avons, I'apprentissage biologique est un processus excessivement complexe sur lequel nous en connaissons
toujours bien peu. En pratique, cela signifie qu’un principe donné A peut n’étre valable que lorsqu’un
mécanisme complémentaire B est présent. Il se peut également que 'abstraction que nous en avons fait
soit trop simpliste ou ne soit simplement pas appropriée dans le contexte. Un exemple est la taille des
cycles abordé a la section 5.4.1. Il se peut qu'il existe un motif particulier de connectivité, ou des propriétés
biochimiques de certains neurotransmetteurs, qui doivent étre présent avec une concentration précise
dans le liquide céphalo-rachidien, qui régule I'émergence, la période et la synchronisation des attracteurs
temporels. Or, nous n'avons aucun moyen a ce stade d'étre en mesure de déterminer ce genre de dépendance
pour les intégrer dans notre modéle. Nous nous sommes donc résolus a simplement retirer ces éléments qui
venaient substantiellement impacter négativement la performance de notre proposition. Il n’en demeure
que ces éléments représentent des questions de recherche ouvertes sur lesquelles nous comptons revenir

lors des recherches ultérieures.

D’autres se sont révélées particulierement notables puisqu’elles démontrent la pertinence de certains choix
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qui ont été faits dans I'implémentation finale. Finalement, certains des détails d’'implémentations n'ont pas
été couverts dans la formalisation mathématique présentée car nous avons jugé qu'il était plus judicieux de
les exposer suite a la présentation des résultats. Par conséquent, cette section vise a fournir un apercu de
ces variantes significatives, mettant en lumiére les ajustements et les améliorations qui ont été apportées

au fur et 3 mesure de I'avancement de nos recherches.

5.41 Cycles forcés

Nous avons tenté de retirer I'apprentissage explicite des cycles défini dans I'équation 5.18 afin de laisser
le modele apprendre par lui-méme les cycles qu’il désirait avec une période arbitraire, car nous n'avons
croisé aucune base théorique qui dicte que nous devons explicitement imposer le cycle au moment de
I'apprentissage. Nous avions méme comme hypothése initiale que pour une entrée donnée le réseau
pouvait vagabonder entre différents attracteurs et qu'il pouvait y avoir une valeur a le faire, lui permettant
de mieux discriminer les images améliorant ainsi la classification. Cependant, aprés avoir comparé expérimentalement
les deux approches, il en est ressorti qu’il était optimal de forcer I'apprentissage d’un cycle oscillatoire de

période N = 2, avec une amélioration de la précision d'environ 10% — 15% au moment de I’évaluation.

5.4.2 Détermination initial du signe des poids

La détermination initiale des poids est une contrainte que nous avions incluse des le départ dans notre
modeéle. Nous avions inclus cette contrainte en raison de sa contrepartie biologique, ol un neurone est
soit de type "excitant" soit de type "inhibiteur". Cependant nous n’avons pas jugé utile de I'implémenter
au niveau des neurones en soi et nous nous sommes contentés de les fixer au niveau des connexions
individuelles, ne voyant pas de différence flagrante au niveau logique et mathématique qui justifierait de le
faire. Durant nos recherches, le retrait de cette contrainte afait I'objet d’expérimentations avec pour résultat

un effondremment complet de I'apprentissage, ce qui est venu nous confirmer dans notre décision.

5.4.3 Affaiblissement temporel des poids

Un autre de ces éléments, que nous avions initialement jugé pertinent d’'implémenter dans notre algorithme
et qui est documenté comme processus biologique, est le déclin temporel des synapses inutilisés. Nous
avons tenté de I'inclure sous diverses formes, entres autres afin de faire tendre les connexions provenante la

périphérie de I'image vers 0. Puisque celles-ci ne devraient pas avoir d’impact sur I'activation ou I'inhibition
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Figure 5.5 Les matrices de Wy pour un ensemble de neurones aprés l'apprentissage, avec un
affaiblissement temporel des poids

des neurones de la couche cachée, nous croyions que les affaiblir au fil du temps ménerait a une meilleure

précision du modeéle.

Cependant ces tentatives sont demeurées infructueuses. Au mieux ayant un impact légérement négatif
sur la précision du modéle et dans les cas les plus désastreux menant a un effondrement complet des
performances apres environs 5000— 15000 itérations d’apprentissage. La figure 5.5 est tiré d’'une expérience
implémentant cette mesure et illustre I'effet de cette mesure sur les poids d’entrée du modele. Visuellement,
cela semble faire plus de sens que les poids tirés de nos résultats illustrés dans la figure 5.3 mais en pratique
la performance atteint un plafond inférieur (et plus rapidement), soit 79%, contre 90% sans cette mesure.
Cependant en raison de sa provenance biologique, nous croyons qu’une optimisation de la sorte représente

une avenue expérimentale intéressante qui peut justifier des recherches futures dans cette direction.
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CHAPITRE 6
CONCLUSION
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Il est indéniable que la rétropropagation a été un moteur essentiel dans les progrés de I'lA, permettant la
résolution de problémes autrefois intraitables et I'atteinte de performances de pointe dans de nombreuses
taches. Cependant, nous croyons, en raison des arguments qui ont été présentés, qu’il est désirable d’explorer
des alternatives plus proches des mécanismes d’apprentissage biologiques. L'apprentissage Hebbien et anti-
Hebbien, la STDP, les systémes dynamiques et les mémoires associatives, en tant que représentants de
ces alternatives, offrent des perspectives intéressantes pour le développement de nouveaux algorithmes.
Inspirés par les principes biologiques de la plasticité synaptique, ils nous éclairent sur des approches plus
naturelles et potentiellement plus efficaces pour effectuer 'apprentissage dans des réseaux de neurones
récurrents, bien qu'’ils aient été historiquement relégués au second plan par rapport a la rétropropagation
en raison de leurs performances inférieures dans de nombreux contextes, ce qui nous a poussés a sélectionner

cette approche comme point de départ pour la création de notre algorithme.

Dans ce mémoire nous avons vu comment le cerveau humain peut étre décrit comme un systéme dynamique
qui alterne constamment entre différents états sans nécessairement atteindre un équilibre stable. Cette
flexibilité, due a sa nature chaotique intrinséque, lui permet de réagir de maniére adaptative aux stimuli
internes et externes. Cette caractéristique est cruciale pour les fonctions cognitives, ou le cerveau doit
étre en mesure de passer rapidement d’'un état a un autre pour encoder et récupérer des informations.
Nous avons également présenté divers algorithmes pertinents dans notre contexte, sur lesquels nous nous

sommes basés pour concevoir notre approche.

Atravers une approche a la fois théorique et expérimentale, nous avons exploré les fondements de différents
paradigmes d'apprentissage biologiques et artificiels, ainsi que leur application potentielle dans des architectures
neuronales récurrentes dynamiques. Notre proposition d'un algorithme d’apprentissage bio-inspiré pour
les RNN représente un pas dans cette direction en démontrant la faisabilité et I'efficacité possible d’une
fusion entre ces différentes approches. Pour ce faire, nous avons formalisé un nouvel algorithme d’apprentissage
inspiré par la biologie qui a été présenté en détails. Inspiré du fonctionnement général des mémoires
associatives et basé sur les travaux de (Molter et al., 2005), nous avons généralisé ces approches a plusieurs
couches et avons implémenté une version simple a 3 couches afin de démontrer experimentalement sa

validité.

Bien que notre modéle offre des performances globales limitées, ne parvenant pas a surclasser un grand

nombre de techniques ML sur la classification d'image, nous sommes néanmoins parvenus a atteindre
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certains des objectifs que nous nous étions fixés.

Dans un premier temps, notre modele démontre des capacités d’'apprentissage rapides comme nous I'espérions,
étant en mesure d’atteindre une performance de 80.5% aprés avoir été entrainé sur seulement 1505 exemples,
contre plus de 21000 pour notre implémentation comparative d’ANN avec propagation arriére. Cependant,
malgré cette supériorité initiale de notre modéle, notre approche demeure inférieure en termes absolus.

En effet, alors que notre proposition sature a autour de 40 000 itérations, la rétropropagation continue

de s’améliorer sur plusieurs époques, pour éventuellement atteindre un taux d'erreur < 4%. Cependant

la RP ne parvenant pas a surpasser notre algorithme en 1 époque. Cependant, si nous entrainons les
modeéles pendant plusieurs époques, éventuellement les modéle avec la RP finissent toujours par reprendre

le dessus, obtenant eventuellement un taux d’erreur entre 5% et < 1% tout dépendant de 'architecture

évaluée et du nombre d’époques d’entrainement.

Dans un second temps, nous avons atteint notre second objectif, parvenu a encoder le traitement de
I'information al'intérieur de cycles limites. Ainsifaisant, nous avons pu démontrer que ce type de dynamique
dispose des capacités nécessaires pour soutenir I'apprentissage dans des réseaux de neurones récurrents

et qu’il s’agit par conséquent d’une piste de recherche viable.

Finalement, nos différentes expériences nous ont également permis d'évaluer différents concepts biologiques
dans le cadre de leur application aux RNN. Cela nous a permis d'apprendre que de fixer les poids comme
étant inhibiteur ou excitant a l'initialisation menait a un apprentissage plus robuste menant a une diminution
du taux d'erreur pour la tache de classification. Nous avons également pu constater que I'affaiblaissement

temporel des poids était contre productif dans ce type de contexte expérimental.

Bien que nos résultats préliminaires si situent en-deca de I'état de I'art, nous sommes néanmoins convaincus
qgu'’il s'agit d’'une approche prometteuse qui mérite d’étre poussée plus loin. Au fil de nos recherches,
nous avons implémenté différentes variantes de notre algorithme afin de tester I'impact que pouvaient
avoir différents paramétres et différentes formalisations sur la performance. De nombreuses autres ont
été considérées, mais leurs mises en pratique dépassaient le cadre du présent travail. Elles représentent
néanmoins des pistes d’'amélioration envisageables pour nos recherches futures. Lutilisation de cycles plus
longs, I'implémentation de regles favorisant la synchronisation de groupes de neurones, I'implémentation

de la régression logistique pour l'optimisation des connexions de la derniére couche cachée a la couche
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de sortie ainsi que I'ajout de couches récurrentes latérales, donc étant connecté bi-directionnelement avec

seulement une autre couche sont toutes des pistes que nous considérons explorer dans nos travaux futurs.
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