UNIVERSITE DU QUEBEC A MONTREAL

CARACTERISATION DE N(EUDS VIA CHIRURGIE DE DEHN

THESE
PRESENTEE
COMME EXIGENCE PARTIELLE

DU DOCTORAT EN MATHEMATIQUES

PAR

PATRICIA SORYA

AOUT 2025



UNIVERSITE DU QUEBEC A MONTREAL
Service des bibliothéques

Avertissement

La diffusion de cette thése se fait dans le respect des droits de son auteur, qui a signé le
formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles
supérieurs (SDU-522 — Rév.12-2023). Cette autorisation stipule que «conformément a
larticle 11 du Réglement no 8 des études de cycles supérieurs, ['auteur] concéde a
'Université du Québec a Montréal une licence non exclusive d’utilisation et de
publication de la totalit¢ ou d’'une partie importante de [son] travail de recherche pour
des fins pédagogiques et non commerciales. Plus précisément, [lauteur] autorise
I'Université du Québec a Montréal a reproduire, diffuser, préter, distribuer ou vendre des
copies de [son] travail de recherche a des fins non commerciales sur quelque support
que ce soit, y compris I'Internet. Cette licence et cette autorisation n’entrainent pas une
renonciation de [la] part [de l'auteur] a [ses] droits moraux ni a [ses] droits de propriété
intellectuelle. Sauf entente contraire, [I'auteur] conserve la liberté de diffuser et de
commercialiser ou non ce travail dont [il] posséde un exemplaire.»



REMERCIEMENTS

Je remercie chaleureusement mes directeurs de recherche Steven Boyer et Duncan McCoy
pour leur encouragement et support soutenus. Leur engagement & transmettre leurs con-
naissances et leur enthousiasme a partager des idées mathématiques ont été une grande
source de motivation et d’inspiration tout au long de mon parcours doctoral. Je les re-
mercie également pour leurs conseils avisés en matiére de carriére mathématique, m’ayant
notamment soutenue financiérement afin de partager mes réalisations lors de conférences

et séminaires & travers le monde. Enfin, ils ont su me transmettre leur passion pour la

recherche mathématique et je leur en suis profondément reconnaissante.

Merci au Fonds de recherche du Québec et a 'Institut des sciences mathématiques pour

leur soutien financier m’ayant permis de me consacrer a ce projet.

Je salue mes collégues Zakaria Baammi, Giacomo Bascapé, Marc-André Brochu et Sarah
Zbida qui ont agrémenté mes apprentissages de discussions enrichissantes et d’expériences

partagées.

Je remercie ma collaboratrice Laura Wakelin, & qui je dois une grande partie de mon
épanouissement mathématique. Nos rencontres hebdomadaires ont stimulé mon désir

d’apprendre et de contribuer & de nouvelles découvertes.

Merci a Paul, Vara, Kevin, Jacob et Dan de m’avoir accompagnée & travers chaque étape

de ce cheminement et de m’avoir encouragée a trouver ma voie.

ii



TABLE DES MATIERES

LISTE DES FIGURES .. o ix
LISTE DES TABLE AU X .. e X
RESUME ... xi
AB S T R A C T xii
INTRODUGCTION .o e 1
0.1 RESUltats ... 2
0.2 Organisation de la thése et résumés des chapitres ... 4
CHAPITRE 1 PRELIMINAIRES ... i 6
1.1  Géométrie des variétés de dimension trois............covveiiiieiieineinneenan.. 6
1.1.1  Surfaces essentielles ...........oiiiiiii i 6
1.1.2  Variétés hyperboliques ..........cooiiiiii e 7
1.1.3  Espaces fibrés de Seifert ............coo i 7
1.1.4 Décompositions des variétés de dimension trois......................... ... 8
1.1.5  Trichotomie des noeuds ........ooouiiiiii 10
1.2 Chirurgie et remplissage de Dehn .............coo i 12
1.2.1  Définitions et notation .............oiiiiiiii i 12
1.2.2  Surfaces et distance entre pentes.............cooviiiiiiiiiii i, 13
1.3 Homologie de Heegaard Floer ........ ... 15
1.3.1 Complexe de Heegaard Floer................oo i, 15

iii



1.3.2 Homologie de Heegaard Floer d’une sphére d’homologie rationnelle ...... 16

1.3.3 Complexe de Floer de noeud............cooiiiiiii i 17
1.3.4 Homologie de Heegaard Floer d’une chirurgie de Dehn .................... 18
1.3.5 Grandes pentes de chirurgie et pentes caractérisantes...................... 19
CHAPITRE 2 PENTES CARACTERISANTES DE N(EUDS SATELLITES ....... 21
2.0 ADSETACE . .ottt 21
2.1 IntrodUcCtion. . ... 22
2.1.1  Structure of Paper. ... ....ooiii i 24
2.1.2  Outline of proof ... ... 25
2.2 Notation and preliminaries .............oooiiiii i i 27
2.3 JSJ decompositions and the surgered piece..............ooiiiiiiiiiiiiiii 31
2.4 Distinguished SlOpes . ... ... i 40
2.4.1 Filled patterns and companion knots .................. i, 40
2.4.2  General pattern Case ..........oiuiiiii i 42
2.4.3 Tterated cable case ....... ..o 43
2.5 Surgered pieces are sent to surgered PieCes ..........ovviiiiii i 45
2.5.1  Composing pattern CASE ..........o.uieuineiie e 47
2.5.2  Cable and twice-iterated cable case.............. ... 49
2.5.3  Other pattern case ....... ..o 50
2.6 Proof of Theorem 1. ... ... i 56

v



2.6.1 Exterior of a torus KNObt. .....coutii 57

2.6.2  COMPOSINE SPACE .« vttt ettt ettt et e e e et 58
2.6.3 Exterior of a hyperbolic link .......... ... 59
2.6.4  Cable SPACE . ...t 60
2.7 Characterizing slopes for cables with only Seifert fibred pieces .................... 61
2.8 Characterizing slopes for composite knots..................ooiiiiii. 63
2.8.1 The surgered submanifold ............. ... i 64
2.8.2  Fillings of a hyperbolic piece ......... ..o 66
2.8.3 Non-integral toroidal surgeries ... 68

CHAPITRE 3 BORNES EFFECTIVES SUR LES PENTES CARACTERISANTES

POUR TOUT NEUD .. 74
3.0 ADSEIACt ..ot 74
3.1 Introduction. .. ...oo i 75
3.1.1 Determining a value for C(K) .........ooiiiiiiiiii i, 76
3.1.2  Winding number Zero ............oooiiiiiii 79
.13 OULHNE oo 80
3.1.4  Acknowledgements .............oiiiii it 80
3.2 Prellminaries .. ....oooo i 81
3.2.1  Satellite Knots ......oooouiii 81
3.2.2  JSJ decompositions . .........oouiiii i 82
3.2.3  DENN SUTEETY ..ottt e 84



3.2.4  Hyperbolic geometry .........viuii 86

3.3 Determining a value for C(K) ........ooiiiiiii i 88
3.3.1  The hyperbolic Case .........ouiuii i 89
3.3.2  The cable Case ...t 90
3.3.3  Proof of Theorem 3.1.2 .. .. oo 93

3.4 Winding NUMDET ZETO ...ttt 94
3.4.1 Splicifiable Knots ... ..ot 95
3.4.2 Maximal nullhomologous Rolfsen twist coefficient .......................... 98
3.4.3 Proof of Theorem 3.1.8 .. .. oo 99

3.0 BXAIIDIES e 100
3.5.1 Examples of Theorem 3.1.2. ... ... i 101
3.5.2  Examples of Theorem 3.1.8. .. ... .o i 103

CHAPITRE 4 CALCUL DU COMPLEXE DE FLOER DE N@EUD POUR LES

NEUDS D’EPAISSEUR UN ..o 110
4.0 ADS T AC . oot 110
4.1 IntrodUcCtion. .. ..o 110
4.1.1  Structure of Paper. .. ...ttt 113
4.1.2  Acknowledgements ........ ... 113
4.2 Algebraic SEttINE. ...\ttt ettt e 114
4.2.1  Basic CONSTTUCHION . .. v vttt 114
4.2.2  Knot Floer complex as an F[U, U~ ']-module.......................oooon.. 114

vi



4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.2.3 Knot Floer complex as an Flu,v]-module ................................ 116

4.2.4 Equivalence between algebraic settings ... 117
4.2.5  Thickness .....ooiii i 120
Chain homotopy equivalence of lifts .......... ... . . 121
4.3.1 Horizontal and vertical arrows ........... ... 121
4.3.2 Chain homotopy equivalence ............oiuiiiieii it 122
Finding a lift: an overview........ ... 124
Matricial representation. .............uooii i 125
4.5.1 Entries for horizontal and vertical arrows ....................c i 126
4.5.2 Entries for possible diagonal arrows ............. ... 126
SOIVING O d2 = 0 .o 127
4.6.1 Consecutive diagonal arrows ...........c.cooiiiiiiiiiiiiiiii 127
4.6.2 Linear system of equations ................ oo 129
Implementation ... .. ..o 131
Finiteness of non-integral non-characterizing slopes: an overview ................. 133
4.8.1 Property SpliFf. ... oo 133
4.8.2  Summary of results. .. .. ..o 134
4.8.3 Organization towards Theorem 4.1.2 ... ... ... i 136
Finiteness of non-integral non-characterizing slopes: thickness one ............... 137
4.9.1  Computing Al ... 137

vii



4.9.2 Implementation in SageMath.......... ... i

4.10 Finiteness of non-integral non-characterizing slopes: thickness two ...............

4.10.1 Structure of A,Jg for thickness-two knots............oooiiiiii ...

4.10.2 Property SpliFf for thickness-two knots .............. ... ...

4.10.3 Computations for thickness-two knots......................... .

CONCLUSION

BIBLIOGRAPHIE ..

viii



LISTE DES FIGURES

Figure 2.1 The set of characterizing slopes for the connected sum of 949 and any
non-trivial knot K is Q \Z ... ... 23

Figure 2.2 Left: A satellite K = P(J) and the JSJ torus 7 = Vp N S3; Right: The
longitude on T @Iven DBy J .....oooiiii 29

Figure 2.3 Homeomorphism carrying filled pattern space to exterior of companion

Figure 2.4 Left: Generators of Hi(Y;Z) on the base orbifold of Y; Right: Gener-
ators of Hy(Y(T;0);7Z) where Y is depicted as a link exterior in a solid torus
bounded DY T .o oo 52

Figure 2.5 Composing space seen as a link complement in S ......................... 65

Figure 2.6  Surgery description of a non-integral toroidal surgery along a hyperbolic

knot in ST X D2 L 71
Figure 3.1 The knot B_52(W_7(31),41#61) from Example 3.5.5. ..................... 103
Figure 3.2 A knot with “small” systole and “large” signature........................... 106

Figure 4.1 The complex CFK*(K) for the (2, —1)-cable of the left-handed trefoil . 116

Figure 4.2 The complex C’FKﬁ’u J (K) for the (2, —1)-cable of the left-handed trefoil118

,0

1X



Tableau 1.1

Tableau 2.1

Tableau 2.2

Tableau 3.1

Tableau 4.1

Tableau 4.2

Tableau 4.3

ness two

Tableau 4.4

LISTE DES TABLEAUX

Surfaces Fy et F5 du Théoréme 1.2.1...... ... i, 14
Distinguished slopes on 7 and 77 ... ... 43
Regular fibre slopes on T and 77 ... 45
JSJ pieces of the exterior of a knot K. ................................... 84

Knots with 12 crossings for which Conjecture 4.8.1 remains unresolved 135
Thickness-two knots up to 16 crossings and property SpliFf............. 136

Structure of A,Jg and satisfaction of property SpliFf for knots of thick-

Thickness-two knots with 17 crossings and property SpliFf.............. 149



RESUME

Cette thése s’intéresse aux chirurgies de Dehn caractérisantes pour les nceuds dans la sphére
de dimension trois. Une pente p/q est dite caractérisante pour un nceud K si la classe
d’homéomorphisme préservant 1'orientation de la p/qg-chirurgie de Dehn le long de K déter-
mine la classe d’isotopie de K. Etendant des travaux antérieurs de Lackenby et McCoy,
nous établissons qu’'une pente p/q est caractérisante pour un noeud K donné si le dénomi-
nateur |g| est suffisamment grand. Notamment, nous montrons que toute pente non-entiére
est caractérisante pour les nceuds composés. Dans une collaboration avec Wakelin, nous
quantifions effectivement 1’énoncé sur les grandes valeurs de |¢| en construisant explicite-
ment, pour tout nceud K donné, une borne C(K) telle que si |¢| > C(K), alors toute
pente p/q est caractérisante pour K. Finalement, nous développons et implémentons un
algorithme calculant le complexe de Floer de noeud pour les nceuds d’épaisseur au plus
1. En Pappliquant a I’étude de l'effet du numérateur |p|, nous vérifions que pour la vaste
majorité des nceuds avec au plus 17 croisements, a I’exception d’au plus un nombre fini de
pentes, toutes les pentes non entiéres sont caractérisantes.

Mots-clés : topologie de basse dimension, théorie des noeuds, chirurgie de Dehn, homologie
de Heegaard Floer
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ABSTRACT

This thesis focuses on characterizing Dehn surgeries for knots in the three-dimensional
sphere. A slope p/q is said to be characterizing for a knot K if the orientation-preserving
homeomorphism type of the p/g-Dehn surgery along K determines the isotopy class of K.
Extending earlier work of Lackenby and McCoy, we show that a slope p/q is characterizing
for a given knot K if the denominator |q| is sufficiently large. Notably, we show that every
non-integral slope is characterizing for composite knots. In a collaboration with Wakelin,
we effectively quantify the statement about large values of |g| by explicitly constructing,
for any given knot K, a bound C(K) such that if |¢| > C(K), then any slope p/q is
characterizing for K. Finally, we develop and implement an algorithm to compute the
knot Floer complex for knots of thickness at most 1. Applying this to study the effect of
the numerator |p|, we verify that for the vast majority of knots with at most 17 crossings,
all but at most finitely many non-integral slopes are characterizing.

Keywords : low-dimensional topology, knot theory, Dehn surgery, Heegaard Floer homology
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INTRODUCTION

Gordon et Luecke établissent en 1989 un résultat fondamental en topologie de basse di-
mension (Gordon et Luecke, 1989): la classe d’isotopie d'un noeud K dans la sphére de
dimension trois S? est complétement déterminée par la classe d’homéomorphisme préser-
vant l'orientation de son extérieur S3- = 53 \ int(vK), obtenu en retirant de la sphére S3
Iintérieur d’un voisinage tubulaire ¥K du noeud K. Une question qui en découle est la
suivante: quelles modifications peut-on apporter & la variété S;’( de sorte que l'information
du neeud K soit préservée? Une construction d’intérét est la chirurgie de Dehn le long de
K. Elle consiste en coller a S;} un tore solide selon un paramétre p/q € QU {1/0}, appelé
pente de chirurgie, produisant ainsi nouvelle variété de dimension trois, notée S;’{(p/ q).
Cette opération est prédominante dans la construction de variétés de dimension trois. En
effet, toute variété fermée, connexe et orientée peut étre obtenue par chirurgie de Dehn
le long d’un entrelacs (Lickorish, 1962; Wallace, 1960). De plus, toute telle variété est le
bord d’une variété de dimension quatre simplement connexe. Ainsi, plusieurs problémes
en topologie des variétés de dimensions trois et quatre peuvent étre formulés en termes de
chirurgie de Dehn. Pour comprendre ces variétés, il est donc pertinent de se demander

quelle information est retenue a propos d’un nceud aprés une telle opération.

Cette these établit, pour un nceud K quelconque, des conditions sur une pente p/q garan-
tissant que le nceud K soit le seul & produire la variété S3.(p/q) via p/g-chirurgie. Plus
précisément, une pente p/q est dite caractérisante pour un noeeud K si I’énoncé suivant est
vrai: si K’ est un noeud pour lequel il existe un homéomorphisme S3-(p/q) = Si.(p/q)

préservant l'orientation, alors K’ est forcément équivalent a isotopie prés a K.



0.1 Résultats

Le résultat principal de la thése est un prolongement des travaux de Lackenby et McCoy
sur les noeuds hyperboliques et toriques, respectivement (Lackenby, 2019; McCoy, 2020).

En étudiant le cas des nceuds satellites, nous obtenons ’énoncé général suivant.

Théoréme 1. (Sorya, 2024, Théoréme 1) Soit K un neeud dans S3. Il existe une constante

C(K) > 0 telle que si |q| > C(K), alors p/q est une pente caractérisante pour K.

En particulier, lorsque K est un nceud composé, cette constante C'(K) peut étre réalisée

par le nombre entier 1.

Théoréme 2. (Sorya, 2024, Théoréme 2) Toute pente non entiére est caractérisante pour

tout neud composé.

Ce résultat donne lieu & une famille infinie de noeuds pour lesquels 'ensemble des pentes

caractérisantes est entiérement connu.

Corollaire 3. (Sorya, 2024, Corollaire 3) Soient K1 un neud non trivial et Ko un neud
de Baker-Motegi (Baker et Motegi, 2018, Exemple 4.5). Alors l’ensemble des pentes carac-
térisantes pour K1#Ky est Q \ Z.

Il s’agit du premier et seul ensemble de pentes caractérisantes entiérement connu & ce
jour qui n’est pas égal & Q. En effet, les seuls autres ensembles de pentes caractérisantes
entiérement connus sont ceux du noeud trivial (Kronheimer et al., 2007), du noeud de tréfle
et du noeud en huit (Ozsvath et Szabo, 2019), pour lesquels toutes les pentes p/q € Q sont

caractérisantes.

A défaut de connaitre I’ensemble des pentes caractérisantes pour les autres cas en général,

il est tout de méme possible de construire explicitement une borne C(K) réalisant le



Théoréme 1 pour tout nceud. En collaboration avec Laura Wakelin, nous établissons le

résultat suivant.

Théoréme 4. (Sorya et Wakelin, 2024, Théoréme 1.1) Soit K un neud dans S3. Une
réalisation explicite de la constante C'(K) du Théoréme 1 peut étre obtenue a partir de
Uinformation de la décomposition JSJ de lextérieur du neud, c’est-a-dire de la géométrie

des piéces JSJ et des applications de recollement entre celles-ci.

Ces conclusions significatives a propos de 'effet du paramétre g sur la caractérisation de
K via chirurgie de Dehn nous orientent naturellement vers la question de ’existence d’une
borne analogue pour le numérateur p. La famille de nceuds de Baker et Motegi mentionnée
dans le Corollaire 3 démontre qu’il est impossible d’établir une telle borne pour tout nceud.
Or, a ce jour, aucun exemple n’est connu pour lequel une infinité de pentes p/q seraient non
caractérisantes pour 1 < |¢| < C(K). Cette observation conduit & une conjecture de McCoy
stipulant que pour tout nceud, toute pente non entiére est caractérisante a ’exception d’au

plus un nombre fini de pentes. (McCoy, 2025, Conjecture 1.1).

Nous vérifions la véracité de cette conjecture pour la vaste majorité des noceuds avec au plus

17 croisements.

Théoréme 5. Au moins 95,79% des 9 755 329 neeuds premiers avec au plus 17 croisements

ne possédent qu’au plus un nombre fini de pentes mon entiéres non caractérisantes.

Ce résultat expérimental est obtenu en vérifiant une condition algébrique formulée par
McCoy (McCoy, 2025, Theorem 1.2, Theorem 1.3) concernant des modules d’homologie
émanant du complexe de Floer de neud CFK(K) du neeud K étudié. Ce riche invariant
développé au début des années 2000 (Rasmussen, 2003; Ozsvath et Szabo6, 2004) permet
I’étude de diverses propriétés d’un neeud, telles que son genre et son caractére fibré. Cepen-

dant son calcul n’est pas aisé: il n’existe pas & ce jour d’algorithme implanté calculant le



complexe de Floer de noeud d’un nceud quelconque. Dans le but d’étudier la conjecture
de McCoy, nous développons un algorithme calculant le complexe de Floer de noeud pour
tout noeud d’épaisseur au plus un, ot I’épaisseur d’un noeud est I'étendue des écarts entre

les bidegrés des générateurs du complexe.

Cet algorithme se base sur le fait que le quotient CF K (K)/(uv) du complexe de Floer de
neeud, vu comme un Flu, v]-module ou F est le corps a deux éléments, ne posséde qu’'un

unique relévement & homotopie filtrée prés pour les noeuds d’épaisseur au plus un.

Théoréme 6. (Sorya, 2025, Théoréme 1) Soit K un neud d’épaisseur au plus un. Son com-

pleze de Floer de neeud CF K (K) est complétement déterminé par le quotient CF K (K)/(uv).

Ainsi, 'algorithme consiste a calculer un relévement du quotient CFK (K)/(uv), ce dernier
étant obtenu via un algorithme développé par Ozvath et Szabo (Ozsvath et Szabo, 2019).
En étendant les stratégies derriére ce calcul, nous parvenons également & comprendre les
modules d’homologie de Heegaard Floer d’intérét poue certains nceuds d’épaisseur plus
grande que 1. Ainsi, le résultat empirique du Théoréme 5 découle du calcul des complexes

de Floer pour les nceuds avec au plus 17 croisements.

0.2 Organisation de la thése et résumés des chapitres

Cette thése par articles est composée de la présente introduction, de quatre chapitres et

d’une conclusion.

Le premier chapitre pose les bases topologiques nécessaires aux développements présentés
dans la thése. Les décompositions premiére, JSJ et de Heegaard y sont passées en revue.
La chirurgie de Dehn y est définie et d’importants résultats sur les pentes de chirurgies
contenant certaines surfaces y sont rappelés. Enfin, ce premier chapitre révise la description

de I’homologie de Heegaard Floer de variétés obtenues via chirurgie de Dehn.



Le coeur de la thése consiste en trois articles répartis a travers les chapitres 2, 3 et 4.
Le chapitre 2 est constitué de 'article Characterizing slopes for satellite knots (Sorya,
2024), publié dans le journal Advances in Mathematics. 11 comporte la démonstration des
Théoreme 1 et 2. Le chapitre 3 présente 'article Effective bounds on characterising slopes
for all knots (Sorya et Wakelin, 2024), rédigé en collaboration avec Laura Wakelin et ayant
comme résultat principal le Théoréme 4. Le chapitre 4 est basé sur 'article Computing the
knot Floer complex of knots of thickness one (Sorya, 2025). Il comprend la démonstration

du Théoréme 6 et les plus récents résultats computationnels menant au Théoréme 5.

La conclusion propose une synthése des réalisations de la thése et envisage des contributions

des méthodes élaborés aux connaissances en topologie de basse dimension.



CHAPITRE 1
PRELIMINAIRES

1.1 Géométrie des variétés de dimension trois

Dans cette section, nous rappelons les principales propriétés géométriques des variétés
en dimension trois qui seront utilisées dans cette thése. Tout au long de la discussion, les

variétés considérées sont de dimension trois et elles sont compactes, connexes et orientables.

1.1.1 Surfaces essentielles
Les surfaces essentielles jouent un role important dans la classification des variétés orienta-
bles en dimension trois.

Définition 1.1.1. Une surface S proprement plongée dans une variété de dimension trois

M est dite essentielle si elle:

1. n’est pas le bord d’une boule dans M;
2. n’est pas paralléle au bord de M;

3. est incompressible, ¢’est-a-dire que le bord 0D de tout disque D C M tel que DNS =
0D est le bord d’un disque dans S;

4. est incompressible au bord, c’est-a-dire que pour tout disque D tel que 0D = a U S
ol v, 3 sont des arcs tels que a = 9D NS et §=0D \ a C OM, il existe un disque
D' C S tel que a C 0D et OD"\ av C OM.

Définition 1.1.2. Une variété est dite

e réductible si elle posséde une sphére essentielle et irréductible sinon;



e toroidale si elle posséde un tore essentiel et atoroidale sinon.

1.1.2 Variétés hyperboliques

Le théoréme de géométrisation de Thurston démontré par Perelman implique que l'intérieur
d’une variété posséde une géométrie hyperbolique & volume fini si et seulement si elle
est irréductible et atoroidale, ne posséde ni disque ni couronne essentiels, et son groupe

fondamental est infini. Dans ce cas, la variété est dite hyperbolique.

Toute variété hyperbolique M peut étre décrite comme la fermeture d’un quotient H? /T de
I'espace hyperbolique H? = {(x,y,2) € R*|z > 0} par I'action d’un sous-groupe I' discret
et sans torsion du groupe d’isométries de H?, muni de la métrique (dz? + dy? + dz?)/z>.
Chaque composante de bord de M est associée a une cuspide de int(M ), homéomorphe a
T?x[0,00). Sa préimage par le quotient H* — H? /T consiste en des horoboules isométriques
aBy ={(z,y,2) € H?|2z > h} pour un h > 0 € R. Un woisinage cuspidal mazimal a comme
préimage des horoboules By, ou h est le supremum tel que pour tout A’ < h, ces horoboules
s'intersectent dans H3. Le bord de ce voisinage cuspidal maximal hérite de la métrique
euclidienne (dz? + dy?)/h?, qu’on utilise pour définir les notions d’aire d’une cuspide et de

longueur d’une courbe le long d’une composante de bord de M.

1.1.3 Espaces fibrés de Seifert

Une autre classe de variétés irréductibles élémentaire est celle des variétés irréductibles
possédant une structure de fibré de Seifert. Les variétés possédant une telle structure
sont appelées des variétés de Seifert ou des espaces fibrés de Seifert. 1l s’agit de variétés
possédant une fibration en cercles ot chaque fibre a un voisinage S' x D? dont la fibration
est difféomorphe a celle obtenue de la facon suivante. On considére [0,1] x D? et les

segments [0,1] x {x},x € D% On identifie {0} x D? a {1} x D? aprés avoir appliqué a



D? une rotation de 27p/q, ot p et ¢ > 1 sont premiers entre eux. Ceci donne lieu & une
fibration de S! x D? avec des fibres formées du recollement de ¢ segments [0,1] x {z} et

une fibre formée d’un segment [0, 1] x {0} avec les bouts recollés.

Une fibre d'une variété de Seifert est dite exceptionnelle si la fibration de son voisinage
correspond & celle obtenue par une rotation de 27p/q ot ¢ # 1, et on dit qu’elle est d’ordre

q. Les autres fibres sont dites régulieres et elles sont d’ordre 1.

L’espace quotient obtenu en identifiant chaque fibre d’une variété de Seifert & un point
est une orbivariété. 1l s’agit d’une surface munie de points cones, chacun correspondant
a une fibre exceptionnelle. On note B(aq,...,a;) lorbivariété de surface B avec points
cones d’ordres ai,...,ay, oi 'ordre d’'un point céne est celui de la fibre exceptionnelle

correspondante.

1.1.4 Décompositions des variétés de dimension trois

Dans cette sous-section, nous passons en revue les décompositions classiques des variétés
de dimension trois. Les surfaces essentielles définissent deux décompositions canoniques,
soient la décomposition premiére le long de sphéres essentielles et la décomposition JSJ
le long de tores essentiels. Une autre décomposition d’intérét est la décomposition de

Heegaard pour les variétés fermées.

1.1.4.1 Décomposition premiére

Une variété qui n’est pas S° est dite premiére si elle ne contient pas de sphére essentielle
séparante. Toute variété irréductible qui n’est pas S® est donc premiére, et 'unique variété
a la fois réductible et premiére est S? x S'. Pour toute variété M, il existe un ensemble

de sphéres essentielles séparantes tel que le découpage de M le long de ces sphéres donne



sa décomposition premiére. Il s’agit de I'unique décomposition M = Mi#...#M,, ou
M; % S3 sont des variétés premiéres et X#Y dénote la somme connere de X et Y,
obtenue en retirant une boule de X et une boule de Y, puis en les recollant le long des

bords sphériques résultants.

1.1.4.2 Décomposition JSJ

Les variétés irréductibles peuvent elles-mémes étres subdivisées davantage le long de tores
essentiels. Pour toute variété M compacte, irréductible et orientée de dimension trois dont
le bord est une union (possiblement vide) de tores, il existe une collection minimale T
de tores essentiels disjoints telle que chaque composante connexe de M \ T est soit une
variété hyperbolique, soit un espace fibré de Seifert (Jaco et Shalen, 1979; Johannson,
1979). Cette collection est unique a isotopie prés. La décomposition de Jaco-Shalen et
Johansson, communément appelée décomposition JSJ, est donnée par M = M U...U My,
ou les M;,i =1,...,m sont les fermetures des composantes de M \ T, et par I'information

du recollement le long des composantes de bord toriques des M;.

Etant donné un tore 7' € T entre deux variétés M; et M; de la décomposition JSJ d'une
variété M, l'information de recollement le long de T' est donnée par un isomorphisme
H\(T}; Z) — Hi(Tj;Z), ou T et Tj sont respectivement les composantes de bord de M; et

M; correspondant a 7.

1.1.4.3 Décomposition de Heegaard

Une décomposition de Heegaard pour une variété M fermée et connexe est une paire de
corps a anses Hi, Ho de méme genre g, telle que M = Hy U Hy et Hy N Hy = 0Hy =
0Hs. Cette décomposition peut étre obtenue en considérant une triangulation de M. Un

voisinage tubulaire du 1-squelette de cette triangulation forme alors le corps & anse H; et



son complément est le corps & anses Ho. Le recollement entre H; et Hs correspond a la
donnée d’un g-tuplet de courbes fermées simples, linéairement indépendantes en homologie
et disjointes o = (a1, ..., aq) plongées dans 0H;. Pour chaque courbe a;,i =1...,g, on
colle une 2-anse D? x [—1,1] & Hj le long de dD? x [—1,1] en identifiant 5; = dD? x {0}
a ;. Le bord de la variété résultante est une spheére, a laquelle il existe une unique fagon

de recoller une boule. Les 2-anses et cette boule forment le corps & anses Hs.

Cette information peut étre représentée par une surface ¥ =2 H; N Hy de genre g munie
des g-tuplets de courbes a et § = (B1,...,08y). Le triplet (X, a, ) est un diagramme de
Heegaard pour M et il contient toute I'information nécessaire pour reconstruire la variété

M.

La surface Hy N Hy plongée dans M est une surface de Heegaard de M. Contrairement
aux décompositions présentées précédemment, la décomposition de Heegaard d’une variété
n’est pas unique. En fait, il existe un infinité de classes d’isotopie de surfaces de Heegaard

pour une variété donnée.

1.1.5 Trichotomie des nceuds

Un noeud K dans la sphére de dimension trois S est un plongement lisse K : St < S3.
Deux neeuds sont considérés équivalents s’il existe une isotopie entre eux. L’extérieur d’un
noeud est la variété S3 = S3\ int(vK) obtenue en retirant de S Dintérieur d'un voisinage
tubulaire K de K. La classe d’homéomorphisme préservant ['orientation de S ;} caractérise

complétement la classe d’isotopie de K.

Théoréme 1.1.1. (Gordon et Luecke, 1989, Theoréme du complément du nceud) Deux
neuds K1 et Ko sont équivalents si et seulement si leurs extérieurs S})’ﬁ et 5’%{2 sont homéo-

morphes via un homéomorphisme préservant l’orientation.
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Les nceuds peuvent donc étre décrits selon la topologie de leur extérieur. En tant que cas
particulier du théoréme de géométrisation, Thurston établit la classification suivante des

neeuds dans la sphére de dimension trois.

Théoréme 1.1.2. (Thurston, 1982) Un neud K dans S3 appartient & ezactement une des

familles suivantes:

o neeuds hyperboliques, i.e. S?{ est une variété hyperbolique;
e neeuds toriques, i.e. S;’{ est un espace fibré de Seifert;

e neeuds satellites, i.e. 5’?( contient un tore essentiel.

Les nceuds hyperboliques possédent d’intéressants invariants topologiques en vertu de la
rigidité de Mostow-Prasad (Prasad, 1973). Pour K un nceud hyperbolique, le volume de
K est le volume de la variété hyperbolique Sﬁ( et la systole de K est la longueur de la plus
courte géodésique de S}”(. Cette terminologie pourra aussi étre généralisée a des entrelacs

L dont Pextérieur S3 = S3\ int(vL) posséde une métrique hyperbolique & volume fini.

Les noeuds toriques, en plus d’étre les seuls a avoir un extérieur fibré de Seifert, sont aussi
caractérisés par le fait qu’ils peuvent étre placé sur un tore 7' dénoué dans S3. Ainsi, un
neceud torique T, ; représente une classe ap + b\ € Hi(T;7Z) = Z{p, A), ot p1 et A bordent

chacun un disque essentiel de S® \ int(v7T).

Les nceuds satellites sont quant a eux caractérisés par le fait qu’ils possédent une décom-
position JSJ non triviale. La topologie de I'extérieur de ces nceuds est examinée en détail

au chapitre 2.

11



1.2 Chirurgie et remplissage de Dehn

1.2.1 Définitions et notation

Le remplissage de Dehn d’une variété M le long d’une composante de bord torique T  est
obtenu de la fagon suivante. On fixe d’abord une base {u, A} de Hi(T;Z) = Z & Z. Une
courbe simple fermée le long de T représente a signe prés une classe pu + g\ ol p et ¢
sont premiers entre eux. Cette classe, noté p/q € Q U {1/0} est appelée pente. Le p/q-
remplissage de Dehn de M le long de T est obtenu en collant un tore solide le long de
T de sorte que la courbe bordant un disque essentiel du tore solide soit identifiée & un
représentant de la pente p/q. On note la variété ainsi obtenue M (7T;p/q), ou simplement
M(p/q) si M ne posséde qu’'un seule composante de bord torique. Si M posséde plusieurs
composantes de bord toriques 11, ...,T,, on peut itérer cette construction afin d’obtenir

la variéte M (T1;p1/q1) ... (Tn; pn/@n) qu'on notera M (T4, ..., Tu;p1/q1, - - - Pn/n)-

Lorsque M est 'extérieur d’un nceud K, c’est-a-dire M = S %, alors un remplissage de Dehn
de M est appelé une chirurgie de Dehn le long de K. Cette terminologie fait référence au
processus de retrait d’un voisinage tubulaire de K dans S%, homéomorphie & un tore solide,
suivi du recollement d’un nouveau tore solide. Dans le cas d’une chirurgie de Dehn, une
pente p/q est typiquement exprimée dans la base {u, A\} de H1(9S%;7Z) ot u est le bord
d’un disque essentiel de VK et X est le bord d’une surface dans S;’(. Ces deux courbes sont
uniques & isotopie prés: il existe un unique disque essentiel & isotopie prés dans un tore
solide, et pour une courbe simple N = au + bA C 9S3- triviale dans H;(S3;Z), 'inclusion
i+ 083 < S% induit i,\ = ap = 0 et donc N = bA = A. Les courbes p et A sont
respectivement appelées le méridien et la longitude du nceud. Elles sont orientées selon la
convention ot le méridien poussé dans S;’( et la longitude ont un nombre d’enlacement de

+1. Suivant la notation établie plus haut, la variété obtenue est notée S3-(p/q).

Cette construction peut étre généralisée aux entrelacs L = Ly U ... U L, dans S3, ou

12



chaque L;,i = 1,...,n, est un noeud. On notera S3(L;,,...,Li;p1/q1,---,pr/qk) la var-

iété obtenue par p;/gj-chirurgies, j = 1,...,k, le long des composantes L;,,...,L;, C L
respectivement.
1.2.2 Surfaces et distance entre pentes

La présence de surfaces essentielles ou de Heegaard dans les variétés obtenues par remplis-
sage de Dehn nous permettra d’obtenir des bornes sur le nombre de points d’intersection

entre certains couples de pentes.

Definition 1.2.1. Soient « et § des pentes sur une composante de bord torique 1" d’une
variété de dimension trois. La distance entre deux pentes « et 3, notée A(q, f3), est égale
a la valeur absolue du nombre d’intersection algébrique entre av et 5. Si o = pu + g et

B = ru+ s\ pour une base {u, A} de H1(T;7Z), on a alors

Ao, B) = A(p/q,r/s) = |ps — qr].

Théoréme 1.2.1. Soit M une variété irréductible a composante de bord torique T' et sotent
ay et ag des pentes le long de T. Soient Fy et Fy des surfaces plongées dans M(T; o) et
M(T; ag) respectivement. Si M, Fy et Fy sont telles qu’indiquées dans le tableau 1.1, alors

Aag,a9) < 1.
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- b S? essentielle S? de Heegaard T? de Heegaard T? essentiel
1
S2% ess. | (Gordon et (Gordon et M hyperbolique | [OM| > 2 (Wu,
Luecke, 1987) Luecke, 1987) ou toroidale 1992)
(Boyer et Zhang,
1998)
S? Heeg. (Gordon et M pas fibré de -
Luecke, 1989) Seifert (Culler
et al., 1987)
T? Heeg. M pas fibré de -
Seifert (Culler
et al., 1987)

Tableau 1.1: Surfaces F} et F5 du Théoréme 1.2.1

Le tableau 1.1 est inspiré de (Gordon, 1999), ot 'on peut trouver des énoncés analogues a

celui du Théoréme 1.2.1 pour d’autres types de surfaces.

Notons que le cas out F} et Fb sont toutes deux des sphéres de Heegaard correspond au

théoréme du complément du noeud (Théoréme 1.1.1). Les cas ot Fj est une sphére ou un

tore de Heegaard et Fy est un tore de Heegaard sont des cas particulier du théoréme de

chirurgie cyclique (Culler et al., 1987), dont I’énoncé général concerne tous les remplissages

avec groupe fondamental cyclique. Remarquons de plus que le cas ou F; est une sphére

essentielle et Fy est une sphére de Heegaard est une version faible de la conjecture du

cdblage, qui stipule que seuls les nceuds cables, qui sont en particulier non hyperboliques,

peuvent produire des variétés réductibles via chirurgie de Dehn.
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1.3 Homologie de Heegaard Floer

L’homologie de Heegaard Floer d’une variété fermée de dimension trois, définie & partir
d’un diagramme de Heegaard de la variété, est un invariant qui nous permettra d’étudier
le lien entre un noeud et ses chirurgies sous un point de vue algébrique. Dans cette sous-
section, nous rappelons les grandes lignes de la construction d’un complexe de Heegaard
Floer et de celle d’'un complexe de Floer de noeud, et relions ces deux notions pour les

chirurgies de Dehn.

1.3.1 Complexe de Heegaard Floer

Soit Y une variété fermée de dimension trois et un diagramme de Heegaard pointé H =
(3, a, B, w) qui consiste en la donnée d’un diagramme de Heegaard (X, «, 8) pour Y ou X
est de genre g, agrémenté d’un point de base w € ¥\ «U . Dénotons par F le corps a deux
éléments Z /27, et soit U une variable formelle de degré —2. On construit a partir de H le

compleze de Heegaard Floer CF™>(H) de Y, un F[U, U ~!]-module, de la fagon suivante.

On consideére le g-produit symétrique Sym9(X) = ([, X)/S,, ou le groupe symétrique S,

agit par permutation des composantes >. Le complexe CF>°(H) est engendré par les points
d’intersection entre les sous-espaces To = (a1 X ... X ag)/Sg et Tg = (B1 X ... x By)/Sy
dans Sym?(X). Puisque Sym?(X) posséde une structure complexe, pour z,y € T, NTg, on
peut considérer ’ensemble mo(z,y) des classes d’homotopie de disques de Whitney entre
x et y, c’est-a~dire des fonctions holomorphes ¢ : D C C — Sym9(X) tels que ¢(i) = =z,
6(—i) = y, ({2, R(2) > 0}) C Ta et 9({z,R(2) < 0}) C T,

Dénotant par p(¢) la dimension attendue de l’espace de modules M(¢) des représentants

de ¢, on a que si u(¢) = 1, alors le quotient de M(¢) par I'action de translation de R sur
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D\ {3, —i} = [-1,1] x iR est de dimension nulle. Ceci permet de définir la différentielle

= > > # /R) - U@y,

y€TaNTg pem2(2,y)
p(e)=1

ol Ny, () est le nombre algébrique d’intersection entre ¢(D) et ({w} X H;g:_ll Y)/Sy

Les éléments de T, N Ty sont partitionnés parmi les structures Spin® de Y de sorte
que ma(z,y) # @ seulement si z et y sont associés & la méme structure Spin® (Ozsvath
et Szabo, 2004, Lemma 2.19). Ainsi, CF*°(H) admet une décomposition CF*°(H) =
Discspinc(y) CFF(H,5), ot CF>*(H,s) est engendré par les éléments de To N Ty associés

a la structure s € Spin®(Y).

1.3.2 Homologie de Heegaard Floer d’une sphére d’homologie rationnelle

Soit H un diagramme de Heegaard pour Y. Posons CF~(H) le F[U]-sous-complexe de
CF>(H) composé¢ des éléments U'z,z € T, NTg,i >0 et CFT(H) = CF>*(H)/CF~(H).
Les groupes d’homologie de CF~(H) et CFT(H) ne dépendent pas du choix de dia-
gramme de Heegaard pointé H pour Y (Ozsvath et Szabd, 2004, Théoréme 11.1). Ces
groupes, dénotés HE~(Y) et HFT(Y), sont les groupes d’homologie de Heegaard Floer
« moins » et « plus » de Y respectivement. Ils admettent une décomposition HF*(Y) =

Dscspinc(v) HF*(Y,s) induite par celle de CF>(H).

Lorsque Y est un sphére d’homologie rationnelle, les groupes HEF~(Y) et HF(Y) sont
munis d'une Q-gradation absolue (Ozsvath et Szabd, 2006, Théoréme 7.1) et les deux
groupes contiennent la méme information & décalage de degré prés. Dans cette thése, nous
étudierons les chirurgies de Dehn Y = S;’((p/ q), des sphéres d’homologie rationnelle, en

utilisant le groupe HE*(Y).

Dans ce contexte, les groupes HF (Y, s),s € Spin®(Y), se décomposent en tant que F[U]-
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modules en

HF+(Y,5) = T+ ¥ HFred(sz)a

ott T+ =F[U, U1 /UF[U] et HF,q(Y,s), le groupe d’homologie de Heegaard Floer réduit,

est isomorphe & une somme directe finie ; F[U]/U™ ,n; > 1.

1.3.3 Complexe de Floer de nceud

Lorsque Y est obtenu via chirurgie de Dehn le long d’un neeud K dans S, la structure de
HF™*(Y,s) en tant que F[U]-module gradué est déterminée par le complexe de Floer de K,

dont nous résumons la construction dans cette sous-section.

Un noeud K dans S? donne lieu & un diagramme de Heegaard doublement pointé H =
(2, a, B,w, 2) tel que (I, a, ) est un diagramme de Heegaard de S3 et w,z € ¥\ a U .
Considérant ¥ dans S3 comme 'intersection des corps en anses H; et Hy de la décompo-
sition de Heegaard donnée par H, on a K = aUb ol a est un arc dans X \ « reliant w et
z, que l'on pousse légérement dans Hy, et b est un arc dans 3 \ § reliant z & w, que l'on

pousse légérement dans Ho.

Le diagramme pointé H, = (X,a,,w) donne lieu au complexe de Heegaard Floer
CF>®(Hy) = (F[U,U(To NTs),d). On obtient le compleze de Floer de noeud de K,
dénoté CFK*(K), en agrémentant C'F>°(H,,) d’une bigradation donnée par I'information

du point z de la facon suivante.

Soit ¢ € ma(z,y) tel que p(¢p) = 1. Les degrés de Maslov et d’Alevander relatifs de U'z et
U'y pour tout i € Z sont données par M (U'z)—M (Uly) = 1—2n,,(¢) et A(U'z)—A(U'y) =
n,(¢) — nyw(p) respectivement. De plus, U agit relativement par M (Ulx) = M(x) — 2i et
A(U'z) = A(x) —i. Le degré de Maslov absolu est assigné de sorte que I’homologie de
CF~(Hy)/U, isomorphe a F, soit supportée en degré 0. Le degré d’Alexander absolu est
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quant & lui assigné de sorte que ’homologie de Floer de noeud fﬂ??((K) de K, définie
comme étant I’homologie du complexe associé gradué de CF~(H,,)/U, ait des filtrations
d’Alexander maximale et minimale égales en valeur absolue. De plus, on munit le complexe
d’une filtration sur Z @ Z telle que pour tout z € T, N Tg, U'x soit au niveau de filtration
(—i, A(U'x)).

Tel que la notation le suggére, I’homologie de Floer de noeud HFK (K) est un invariant
pour K, alors que le complexe de Floer de noeud CFK®(K) est un invariant pour K
a homotopie Z & Z-filtrée prés, tous deux en tant que modules bigradués par les degrés

d’Alexander et de Maslov (Ozsvath et Szabo, 2004, Théoréme 3.1).

Au chapitre 4, nous donnons une description du complexe de Floer de noeud en tant que
Flu, v]-module, ce qui permet de considérer le quotient par 'idéal (uv) mentionné dans

I’énoncé du Théoréme 6.

1.34 Homologie de Heegaard Floer d’une chirurgie de Dehn

Les structures Spin® de Y = S3.(p/q) étant en bijection avec le premier groupe d’homologie
de Y, on peut étiqueter chaque structure Spin® par un élément de i € Z/pZ. La structure
de F[U]-module gradu¢ de HF(S3(p/q),i) pour p,q > 0 est déterminée par les entiers
D, 4,1 et le complexe de Floer de noeud CFK*(K). Fixons un représentant de CFK*(K)
et dénotons le aussi CF K (K) par abus de notation.

Posons Ag le groupe d’homologie du complexe obtenu en quotientant CF K (K) par le

sous-complexe de filtration strictement plus petite a (0, k).

Le groupe A;r se décompose en T & A};Ed, ol AZEd est tel qu’il existe un V}, tel que pour

tout N > Vi, UNAred = 0.
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Le Q-degré de 1 € T+ dans la décomposition
HF*(S%(p/q),1) = T+ & HFea(Sk (p/q).7)

est alors donné par d(p, q,7) —2 max{V{ J VH - ZJ }, o d(p, g, 1) est un nombre rationnel

qui ne dépend que de p,q et i (Ozsvath et Szabd, 2003a, Proposition 4.8).

Dénotant par T(N) le F[U]-sous-module de 7+ généré par UN~!, la composante

HF,ea(S3-(p/q),4) admet une décomposition

(@A’”WSD@ D TV ) | @ | D TV )

SEZ a n>14n n>1—n

ou n = 0 ou 1 selon que BJ < — [FTPJ ou BJ > — V*TPJ respectivement. Les supports
des parenthéses du milieu et de droite sont déterminés par p, ¢, i et les entiers Vj, (Gainullin,

2017, Corollaire 14).

1.3.5 Grandes pentes de chirurgie et pentes caractérisantes

Il existe un entier v > 0 € Z avec la propriété que Vi, = 0 pour tout k¥ > v+ (Ni et Wu,
2015). 1 s’ensuit que lorsque p/q > 2vt — 1, les composantes T(V_{mJ) et T( VMPJ)

q q

de la décomposition de H Fyea(S3-(p/q), i) sont triviales.

De plus, dans le contexte de pentes caractérisantes, lorsque deux noeuds K et K’ partagent
une méme p/g-chirurgie de Dehn avec p/q > qut(K)+4q* —2q+12, alors Vi.(K) = Vi, (K’)
pour tout k € Z (McCoy, 2025, Proposition 3.8).

Ceci permet d’étudier des nceuds K et K’ partageant une méme chirurgie de grande pente
en se concentrant sur la structure de leurs modules Azed. En ce faisant et en utilisant
les Théoréemes 1 et 2 de la présente thése, McCoy démontre que pour tout nceud, seul au

plus un nombre fini de pentes p/q avec |g| > 3 ne sont pas caractérisantes (McCoy, 2025,
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Théoréme 1.2). Pour |g| = 2, il obtient un condition suffisante sur la structure des modules
Aﬁ d’un noeud (McCoy, 2025, Theorem 1.3) afin que celui-ci ne posséde qu’au plus un
nombre fini de pentes p/2 non caractérisantes, et donc au plus un nombre fini de pentes

non entiéres non caractérisantes.
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CHAPITRE 2
PENTES CARACTERISANTES DE N(EUDS SATELLITES

Le premier article composant cette thése est publié dans le journal Advances in Mathemat-
ics sous le titre Characterizing slopes for satellite knots. Une analyse approfondie de la
décomposition JSJ de 'extérieur d’un nceud et de ses chirurgies de Dehn y est exposée. En
particulier, nous identifions des pentes distinguées le long des tores de la décomposition.
Ceux-ci constituent l'outil central de la démonstration du Théoréme 1, laquelle occupe la
majeure partie de 'article. Nous y démontrons également 1’énoncé du Théoréme 4 dans
le cas des noeuds satellites dont I'extérieur ne contient que des piéces fibrées de Seifert et
dans le cas des noeuds composés, ce dernier correspondant au Théoréme 2. Basée sur l'idée
générale derriére le Théoréme 1, la démonstration du Théoréme 2 fait de plus appel de fagon
innovante & plusieurs résultats de la littérature sur les remplissages de Dehn de variétés

hyperboliques. Une place substantielle lui est donc consacrée dans ce premier article.

2.0 Abstract

A slope p/q is said to be characterizing for a knot K if the homeomorphism type of the
p/q-Dehn surgery along K determines the knot up to isotopy. Extending previous work of
Lackenby and McCoy on hyperbolic and torus knots respectively, we study satellite knots
to show that for a knot K, any slope p/q is characterizing provided |g| is sufficiently large.
In particular, we establish that every non-integral slope is characterizing for a composite
knot. Our approach consists of a detailed examination of the JSJ decomposition of a surgery
along a knot, combined with results from other authors giving constraints on surgery slopes

that yield manifolds containing certain surfaces.
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2.1 Introduction

A non-trivial slope p/q is said to be characterizing for a knot K in S% if whenever there
exists an orientation-preserving homeomorphism S3-(p/q) = S3.(p/q) between the p/g-
Dehn surgery along K and the p/g-Dehn surgery along some knot K’ then K = K’ where
“=" denotes an equivalence of knots up to isotopy. In (Lackenby, 2019), Lackenby proved

that every knot has infinitely many characterizing slopes by showing that any slope is

characterizing for a knot K, provided |p| < |q| and |qg| is sufficiently large.

The main theorem of the present paper strengthens this result.

Theorem 2.1.1. Let K be a knot in S3. Then any slope p/q is characterizing for K,
provided |q| is sufficiently large.

In (Kronheimer et al., 2007), Kronheimer, Mrowka, Ozsvath and Szab6 proved that all non-
trivial slopes are characterizing for the unknot. McCoy showed in (McCoy, 2020) that if K
is a torus knot, there are only finitely many non-integral slopes that are non-characterizing
for K, thus giving the torus knot case of the theorem. Lackenby showed the hyperbolic
knot case in (Lackenby, 2019). In this paper, we establish the theorem for any knot by

studying the case of satellite knots.

The extension to satellite knots requires a distinct approach, as it cannot be simply derived
from the cases of hyperbolic and torus knots. This is due to the presence of essential tori in
the exterior of a satellite knot, which lead to a non-trivial JSJ decomposition of the knot’s
exterior. Hence, Dehn surgery along a satellite knot involves attaching a solid torus to a
torus boundary component of a manifold that is not a knot exterior. Our strategy therefore
consists of an in-depth analysis of the topology of Dehn fillings of manifolds that arise as
JSJ pieces of a knot exterior, along with a description of the gluing between these manifolds

through the distance between specific slopes. In particular, we rely on the rigidity of Seifert
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fibred structures, as well as results pertaining to fillings of non-Seifert fibred manifolds that

contain certain surfaces.

Moreover, the ideas employed in the proof of Theorem 2.1.1 can be adapted to derive
explicit bounds on |g| for some families of satellite knots. We obtain the following result

for composite knots.

Theorem 2.1.2. If K is a composite knot, then every non-integral slope is characterizing

for K.

Baker and Motegi constructed composite knots for which every integral slope is non-
characterizing (Figure 2.1 based on (Baker et Motegi, 2018, Theorem 1.6(2) and Example
4.5)). As a corollary, Theorem 2.1.2 gives the complete list of non-characterizing slopes for

these knots.

L
U

Figure 2.1: The set of characterizing slopes for the con-

nected sum of 949 and any non-trivial knot K is Q \ Z

Tiré de « Characterizing slopes for satellite knots », par P. Sorya,

2024, Advances in Mathematics, 450, Article 109746. CC BY-NC 4.0

Corollary 2.1.3. The set of non-characterizing slopes for Baker and Motegi’s composite

knots consists of all integral slopes. ]
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To the author’s knowledge, this yields the first examples of knots for which the complete list
of non-characterizing slopes is known and is not empty. Indeed, the other known examples
of a complete list are for the unknot, the trefoil and the figure-8 knot, for which all slopes

are characterizing (Kronheimer et al., 2007; Ozsvath et Szabo, 2019).

The constraints given by the topology of the exterior of composite knots also lead to the

following result.

Theorem 2.1.4. If K is a knot with an exterior consisting solely of Seifert fibred JSJ
pieces, with one of them being a composing space, then any slope that is neither integral

nor half-integral is a characterizing slope for K.
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2.1.1 Structure of paper

After introducing our notation in Section 2.2, the paper is structured into three main parts.
The first, covered in Section 2.3, describes the JSJ decomposition of a surgery along a knot.
The second, consisting of Sections 2.4, 2.5 and 2.6, presents the proof of Theorem 2.1.1.
Finally, Sections 2.7 and 2.8 establish explicit bounds that realize the main theorem for

certain families of knots.
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2.1.2 Outline of proof

Dehn surgery along a knot K is obtained by gluing a solid torus to the boundary of S%,
the exterior of K in S%. This boundary is contained in a single JSJ piece of the JSJ
decomposition of S?{. Thus, to understand the topology of a surgery, we must study the
fillings of manifolds that arise as JSJ pieces of a knot exterior. We do so in Section 2.3,
where we describe the JSJ decomposition of S3-(p/q). In particular, when |g| is sufficiently
large, there is one JSJ piece that contains the surgery solid torus; we call it the surgered

prece.

For a fixed non-trivial knot K, suppose there is some knot K’ such that there exists an
orientation-preserving homeomorphism S3 (p/q) = S3.(p/q). Two scenarios may occur:
the surgered piece of S3-(p/q) is not mapped to the surgered piece of S3 (p/q), or the
surgered pieces are mapped one to another. Most of the work towards Theorem 2.1.1 lies
in the study of the first case. For each possible description of K as a pattern P and a
companion knot J, we demonstrate that there is a lower bound on |g| determined solely by
K such that the outermost JSJ piece of S3 is not mapped to the surgered piece of S })’(, (p/q).

This yields the following proposition, whose proof occupies Sections 2.4 and 2.5.

Proposition 2.1.5. Let K be a knot. Suppose |q| > 2. If there exists an orientation-
preserving homeomorphism S3-(p/q) = S3.(p/q) for some knot K', then the homeomor-
phism sends the surgered piece of S3-(p/q) to the surgered piece of S./(p/q), provided |q| is
sufficiently large.

It follows that for |g| sufficiently large, we find ourselves in the situation where an orientation-
preserving homeomorphism S3-(p/q) = S3.(p/q) must send the surgered pieces one to an-
other. In that case, the JSJ structures of S and S})’{, agree away from the JSJ pieces that

yielded the surgered pieces. Hence, the problem is now reduced to determining a bound
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on |q| such that the surgered pieces were in fact obtained from the same manifold. This is

done in Section 2.6.

In the final two sections of the paper, we outline explicit bounds that realize Theorem 2.1.1

for certain families of knots.

In Section 2.7, we provide a lower bound for |g| that ensures that p/q is a characterizing
slope for a cable K whose exterior contains only Seifert fibred JSJ pieces. This bound is
obtained from the proof of Theorem 2.1.1. In particular, when K is not an n-times iterated
cable of a torus knot, n > 1, we show that every slope that is not integral or half-integral

is characterizing for K.

In Section 2.8, we demonstrate Theorem 2.1.2, which gives a realization of Theorem 2.1.1
for composite knots when |¢| > 1. Up until this section, we have assumed |g| > 2, which
guaranteed that hyperbolic fillings of JSJ pieces of a knot exterior were also hyperbolic.
To lower the bound to |q| > 1, we need to consider the possibility of exceptional fillings
of hyperbolic manifolds. We are able to constrain the topology of half-integer fillings of
hyperbolic manifolds of interest by relying on various results that provide upper bounds
on the distance between surgery slopes yielding manifolds that contain certain surfaces
(Wu, 1992; Gordon et Luecke, 1996; Boyer et Zhang, 1998; Wu, 1998). We also use the
classification by Gordon and Luecke of hyperbolic knots in S$% and in S' x D? that admit
half-integral toroidal surgeries (Gordon et Luecke, 2004). As a result, we establish that if
a non-integral surgery along a knot is obtained from the filling of a hyperbolic JSJ piece,
then it can never be orientation-preserving homeomorphic to a non-integral surgery along
a composite knot. Theorem 2.1.2 then follows from the argument in Section 2.6 regarding

composing spaces.
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2.2 Notation and preliminaries

Let K be a knot in S3. We denote by S?( the exterior of K in S3, i.e., the manifold obtained
by removing the interior of a closed tubular neighbourhood v K of K in S3. We write P(.J)
for the satellite knot with pattern P and companion knot J. The winding number of P is
the absolute value of the algebraic intersection number between P and an essential disc in
V = S! x D% The exterior of the satellite P(.J) is a gluing Vp U S3 where Vp denotes the

exterior of P seen as a knot in V. We call Vp the pattern space associated to P.

Recall that for any compact irreducible orientable 3-manifold M whose boundary is a
(possibly empty) union of tori, there is a minimal collection T of properly embedded disjoint
essential tori such that each component of M \ T is either a hyperbolic or a Seifert fibred
manifold, and such a collection is unique up to isotopy (Jaco et Shalen, 1979; Johannson,

1979). The JSJ decomposition of M is given by
M=MyUM; U...UM;,

where each M is the closure of a component of M \ T. A manifold M, is called a JSJ piece
of M and a torus in the collection T is called a JSJ torus of M. Any homeomorphism
between compact irreducible orientable 3-manifolds can be seen as sending JSJ pieces to

JSJ pieces, up to isotopy.
The JSJ piece of Sg’{ containing the boundary of v K is said to be outermost in S;’{.

For T a torus, fix a basis {p, A} of Hi(T;Z) = Z & Z. A simple closed curve on T
represents a class pu + g\ up to sign, where p and ¢ are coprime.We denote this class by
p/q € QU {1/0} and we call it a slope. The distance between two slopes p/q and r/s is
A(p/q,r/s) = |ps—qr| and it corresponds to the absolute value of the algebraic intersection

number between curves representing p/q and r/s.
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If M is a 3-manifold with toroidal boundary components 71, ..., T, with fixed bases {p;, \; }
for each H1(7;;7Z),i =1,...,n, then

M(ﬂvvnapl/ql)’pn/Qn)

denotes the Dehn fillings along a simple closed curve representing p;/q; on 7; for each
i=1,...,n. If only one boundary component of M is filled, we may simply write M (p/q)
if it is clear from context which boundary component is filled. If M is connected, there is
a unique slope v on 9M that has finite order in Hy(M;Z), called the rational longitude of
M. We refer to the rational longitude as the longitude if it is of order 1 in Hy(M;Z).

When the manifold M is a knot exterior S?(, a slope p/q on 85;’( is expressed in terms
of the coordinates of H;(0S3;7Z) given by the homotopy class of a curve that bounds an
essential disc in vK, the meridian of S3., and the homotopy class of a curve that bounds
a surface in S;}, the longitude of S;}, with orientations following the usual convention (a
meridional curve pushed into S})’( and a longitudinal curve have linking number +1). The
meridian is well-defined by Gordon and Luecke’s knot complement theorem (Gordon et
Luecke, 1989, Theorem 1) and the longitude is the unique element of Hy(0S5;Z) that is
null-homologous in Hy(S%;7). The slope 1/0 corresponds to the meridian, while the slope
0/1 corresponds to the longitude. We will refer to this preferred basis as the one given by

the knot K.

When K is a satellite, we have the following.

Lemma 2.2.1. Let K be a satellite knot. For each JSJ torus T of S3-, there is a pattern
P and a knot J such that K = P(J) and T = Vp N S3.

Proof. Let T be a JSJ torus of S3. It separates S3 into A Uy B, where B contains
K = 0S3.. Note that S = §2.(1/0) 2 AUz B(K;1/0). By the loop theorem, any torus
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in $% bounds a solid torus, so either A or B(K;1/0) must be a solid torus. Since T is
incompressible in A by definition of a JSJ torus, we have that B(K;1/0) is a solid torus.

Its core is a non-trivial knot J in S%. Thus, A is homeomorphic to S?.

Let V.= B(K;1/0) = B Uk (vK). Then B is the solid torus V with the interior of v K
removed. We can thus see K as a knot in V. By the incompressibility of 7, K intersects
every essential disc in V' at least once. Also, K is not the core of V' because 7 is not

boundary parallel in S3.. Hence, V '\ int(vK) is the pattern space for a pattern P. O

Definition 2.2.2. Let T be a JSJ torus of S3.. We say that T decomposes K into P and
J if T separates S3- into Vp and S§ as described by Lemma 2.2.1.

If T decomposes K into P and J, we fix the preferred basis of H1(7;Z) to be the one
given by the meridian p; and longitude Ay of J (Figure 2.2), i.e., a slope p/q along T
corresponds to the class puy + gy € H1(T;7Z) = Hy (95’?}, 7).

&) @

Figure 2.2: Left: A satellite K = P(J) and the JSJ torus
T = Vp N S3; Right: The longitude on 7T given by .J

Tiré de « Characterizing slopes for satellite knots », par P. Sorya,

2024, Advances in Mathematics, 450, Article 109746. CC BY-NC 4.0
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Conversely, a pattern space Vp is the data of a knot P in a solid torus V', along with a slope
Aon 7 = JV that intersects u once, where p is the slope that bounds a disc in V. Gluing
Vp to a knot exterior S?} by respectively identifying p and A to the meridian and longitude
of J results in the exterior of the knot K = P(J). The preferred basis of H1(7T;Z), where
T is seen as a JSJ torus of S is {u, A\}.

Furthermore, for the boundary component P = JvP of Vp, there is a unique class Ap €
H,(P;Z) that is homologous to wA € Hi(7;Z) in Vp, where w is the winding number of
P (see for instance (Gordon, 1983, p.692)). The preferred basis of H;(P;Z) is thus given

by Ap and up, the class of a curve that bounds an essential disc in v P.

Lemma 2.2.3. Let K = P(J) be a satellite knot. The classes Ap and up € Hy(P;Z)

defined above coincide with the longitude and meridian of S})’(.

Proof. The meridian of S’?{ and the slope up coincide because they both bound an essential

disc in VK.

In 5%, the class Ap is homologous to w times the longitude X of 53, where w is the winding

number of P. Let ap be a curve on 053 = P representing Ap.

If w = 0, then ap bounds a surface in S;’(, so Ap is the longitude of S?(.

If w # 0, then there is a surface F in S5 such that

-

OF = (| |a;)Uap,

=1

where «; are curves on 953 representing .

By definition of A, each «; bounds a surface S; C S3, i = 1,...,w. The union of F with
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the S; gives a surface in S5, whose boundary is ap. Hence, Ap coincides with the longitude

of S}?’(. O

If a pattern P in a solid torus V intersects an essential disc in V' once, then P is a composing
pattern. Note that if K = Kj# K> is a composite (or connected sum) of knots K; and Ko,
then K = Pj(K3) = P»(K;) where Pj, P, are composing patterns such that P (U) = K;
and P(U) = Ka, where U is the unknot.

The (r, s)-cable of a knot J is denoted by C s(J), where s is the winding number of the
cable pattern. We may assume that s > 0 since the (r,s) and (—r, —s)-cable patterns are
equivalent. The pattern space Vi, , is an (r, s)-cable space. It is the outermost JSJ piece of
the exterior of C, 4(J). Further, it admits a Seifert fibration with base orbifold an annulus
with one cone point of order s. On its boundary component corresponding to &S’gm( 7y
the (r, s)-cable space has regular fibres of slope rs/1. On the other boundary component

coinciding with 953, a regular fibre has slope /s in the coordinates given by .J.

We denote by T, the (a,b)-torus knot. Its exterior is Seifert fibred, with two exceptional

fibres of orders |a| and |b|. The regular fibres have slope ab/1 on 85%1 -

2.3 JSJ decompositions and the surgered piece

The JSJ pieces of a non-trivial knot exterior take on one of four special types. Here is a

version of this result found in (Budney, 2006).

Theorem 2.3.1. (Budney, 2006, Theorem 4.18) In the JSJ decomposition of the exterior

of a non-trivial knot, the outermost JSJ piece is either

1. the exterior of a torus knot;
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2. a composing space, i.e., a Seifert fibre space with at least 3 boundary components and

base orbifold a planar surface with no cone points;

3. the exterior of a hyperbolic knot or link such that if the component of the link corre-

sponding to the knot is remowved, the resulting link is the unlink;

4. a cable space, i.e., a Seifert fibre space with base orbifold an annulus with one cone

point.

By Lemma 2.2.1, a JSJ torus of the exterior S3. of a knot K is the boundary of the exterior
of a non-trivial knot in S3. Therefore, each JSJ piece of S?( is the outermost piece of some
knot exterior, which implies that every JSJ piece of S})’( belong to one of the types listed
in Theorem 2.3.1.

Homological calculations from (Gordon, 1983) lead to the following two results.

Lemma 2.3.2. (Gordon, 1983, Lemma 3.3) Let P(J) be a satellite knot, where P has
winding number w. Denote the boundary components of the pattern space Vp by P = OvP

and T = 85:0}.

(i) Hi(Vp(P;p/q);Z) = Z & (L] gpwl), where g, is the greatest common divisor of p

and w;
(i) The kernel of Hi(T;Z) — H1(Vp(P;p/q); Z) induced by inclusion is generated by
(P/gpw)p + (qw2/gp,w)>‘ ifw#0

n ifw=20

where {p, A} is the basis of H1(T;Z) given by J.
Proposition 2.3.3. (Gordon, 1983, Corollary 7.3) Let K = C,.s(J) be cable knot.
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1. If |grs — p| > 1, then S3(p/q) is the union along their boundary of S5 and a Seifert

fibre space with incompressible boundary;

2. If lqrs — p| = 1, then S§(p/q) = S5(p/(qs?)).

Note that if |grs — p| = 1, then g, s = 1 and p/(¢gs?) is a well-defined slope.

Gordon and Luecke showed that if p/q is not an integer, then the surgery S3(p/q) is
irreducible (Gordon et Luecke, 1987, Theorem 1). Thus, it admits a JSJ decomposition.
For the rest of this section, we focus our attention on the topology of the JSJ pieces of
S3.(p/q) when |g| > 2. The next theorem from (Lackenby, 2019) combines results from
various authors (Gordon et Luecke, 1999; Gordon et Wu, 2000; Scharlemann, 1990; Wu,
1992).

Theorem 2.3.4. (Lackenby, 2019, Theorem 2.8) Let M be the exterior of a hyperbolic link
in S% with components Lo, L, ...,Lp,n > 1, such that the link formed by the components
Ly, ..., Ly, is the unlink. Let o be a slope on Lo = OvLy C OM and let p be the slope on
Lo that bounds a disc in vLg. If A(o,u) > 2, then M (Ly;0) is hyperbolic.

Let K be a non-trivial knot and Yy U Y; U...UY} be the JSJ decomposition of its exterior
S3., where Yj is the outermost piece. The Dehn surgery S3(p/q) is obtained by filling Yo
along K = 053 C 9Yj.

Proposition 2.3.5. If |q| > 2, the filling Yo(K;p/q) is either a Seifert fibre space or a

hyperbolic manifold. In particular,

1. IfYy is the exterior of a hyperbolic link that is not a knot, then Yy(IC; p/q) is hyperbolic;

2. If Yy is a composing space, then Yo(KC;p/q) is Seifert fibred with base orbifold a planar

surface with at least two boundary components and one cone point of order |q|;
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3. If Yy is an (r,s)-cable space and |qrs — p| > 1, then Yo(K;p/q) is Seifert fibred with

base orbifold a disc with two cone points of orders |qrs — p| and s;

4. If Yy is an (r, s)-cable space and |qrs — p| =1, then Yo(KC;p/q) is a solid torus.

Proof. If Yy = S3 and K is a hyperbolic knot, then Yo (K;p/q) = S3-(p/q) does not contain
an essential sphere or an incompressible torus if |g| > 2, so it is either hyperbolic or Seifert
fibred (Gordon et Luecke, 1995, Theorem 1.1). If Yy = S})’{ and K is a torus knot, then
Yo(K;p/q) = S3-(p/q) is Seifert fibred if |g| > 1 (Moser, 1971, Proposition 3.1).

If Y} is the exterior of a hyperbolic link, then by Theorem 2.3.4, Y5 (K;p/q) is hyperbolic if

lq| > 2.

If Yy is a composing space, a regular fibre on K has slope 1/0. If |¢g| > 1, we have
A(1/0,p/q) = |q| > 1, so the surgery slope does not coincide with the regular fibre slope.
The Seifert fibred structure of Yy thus extends to the surgery solid torus adding an ex-
ceptional fibre of order |g|. Moreover, a composing space has at least three boundary

components, so Yy(IC; p/q) has at least two boundary components.

If Yy is an (r,s)-cable space, a regular fibre on K has slope rs/1. If |¢g| > 1, we have
A(rs/1,p/q) = |qrs — p| # 0, so the surgery slope does not coincide with the regular
fibre slope. The Seifert fibred structure of Yy thus extends to the surgery solid torus. If
|grs — p| > 1, the surgery adds an exceptional fibre of order |grs — p|. If |grs —p| = 1, then
the surgery solid torus is regularly fibred in Yy(KC; p/q), so Yy(K;p/q) has base orbifold a

disc and one cone point. It is a solid torus. ]

Proposition 2.3.6. Suppose |q| > 2. The JSJ decomposition of S3-(p/q) is either

Yo(Kip/q)UY1UY2U...UY,
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or

Yi(T;p/(gs?) UYaU...UYy,

where J = YyNYy and s > 2. The second scenario occurs precisely when K is a cable knot

Cy.s(J), Y1 is the outermost piece of S3, and |qrs — p| = 1.

Proof. By the previous proposition, Yy(K;p/q) is either Seifert fibred or hyperbolic. If it

is hyperbolic or closed, then the result is immediate.

If Yo(KC; p/q) is Seifert fibred and has boundary, i.e., in cases (2),(3) and (4) of Proposition
2.3.5, then Yy(K;p/q) might admit a Seifert structure that extends across adjacent JSJ
pieces. By definition of the JSJ decomposition, this structure would have to differ from the

one inherited from the Seifert structure on Yj.

Only cases (3) and (4) of Proposition 2.3.5, which correspond to K being the cable of a

knot J, may give rise to manifolds Yy(KC; p/q) that admit multiple Seifert fibred structures.

In case (3), Yo(K;p/q) admits more than one Seifert fibred structure when it is a twisted
I-bundle over the Klein bottle. One is inherited from Y{; and has base orbifold a disc with
two cone points each of order 2, and the other has base orbifold a M6bius band with no

cone points.

This second structure has regular fibres that are non-meridional and non-integral on
Yo(K;p/q) if |g| > 1. Indeed, a regular fibre of this structure corresponds to the gen-
erator of the Z/2Z summand of Hy(Yo(K;p/q);Z) = Z @ ZJ27Z. Let puy + ¢ j €
H,(0Yy(KC;p/q); Z) be the class of a regular fibre in the coordinates given by J. Let
i: H1(0Yo(K;p/q);Z) — Hy(Yo(K;p/q); Z) be induced by inclusion. Then 2(p'uy + ¢'Aj)

generates the kernel of i. Since s = |qgrs — p| = 2, p is even. By Lemma 2.3.2(ii), ker:
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is generated by (p/2)us + 2¢\;. Since g and r are odd, we have that p is divisible by 4,
from which we deduce that p'uy + ¢'A\; = (p/4)ps + g\, which is non-meridional and

non-integral.

Therefore, this Seifert fibred structure does not extend to an adjacent Seifert fibred JSJ
piece Y7, because the slope of a regular fibre of Y7 on the JSJ torus J = Yp N Y] is either
meridional (if Y7 is a composing space) or integral (if Y] is a torus knot exterior or a cable
space) in the coordinates given by the meridian pu; and longitude A\j of the companion

knot J.

In case (4), K is a cable knot C;. 4(J) such that |grs—p| = 1, and Y,(K; p/q) is a solid torus.
By Proposition 2.3.3, S%(p/q) = S3(p/(gs?)). We have |gs®| > |g| > 2. We iterate the
above argument for S3(p/(gs?)) to reduce to case (4) of Proposition 2.3.5 for S3(p/(gs?)).

We show that this case does not occur if |g| > 1.

Suppose Y1 (J;p/(gs?)) is a solid torus. Then Y; must be an (v, s')-cable space and |qrs —
p| = |gs?r's’ — p| = 1 (Proposition 2.3.3). Hence, |q(rs — s?r's’)] = 2 or 0. As |q|,s > 1,
the first case does not occur, and the second case happens only if rs — s’s’ = 0, but this

contradicts r and s being coprime. O

It follows that the surgery solid torus is contained in exactly one JSJ piece of S;’((p/ q)

when |g| > 2.

Definition 2.3.7. Suppose |g| > 2. The surgered piece of Si(p/q) is the JSJ piece of
S%.(p/q) that contains the surgery solid torus. It corresponds to either Yy(K;p/q) or
Y1(J;p/(qs?)), as outlined in Proposition 2.3.6.

The topology of the surgered piece is summarized as follows.
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Proposition 2.3.8. Suppose |q| > 2. The surgered piece of S3-(p/q) is a filling Y (p/(qt?))

of a JSJ piece Y of S3., for some integer t > 1. In particular,

1. Y(p/(qt?)) has non-empty boundary and is hyperbolic if and only if Y is the exterior
of a hyperbolic link that is not a knot;

2. Y (p/(qt?)) is Seifert fibred with base orbifold a planar surface with at least two bound-

ary components and one cone point of order |qt?| if and only if Y is a composing space;

3. Y(p/(qt?)) is Seifert fibred with base orbifold a disc with two cone points if and only
if Y is a cable space. In particular, if Y is an (r,s)-cable space, then the cone points

have orders |qt?rs —p| > 1 and s.

Furthermore, if |q| > 8, then

4. Y(p/(qt?)) is closed and Seifert fibred if and only if Y is the exterior of a torus knot;

5. Y(p/(qt?)) is closed and hyperbolic if and only if Y is the exterior of a hyperbolic
knot.

Proof. The converses of (1), (2), (3) follow from Proposition 2.3.5. We deduce the direct

implications from Theorem 2.3.1 as follows.

If Y (p/(qt?)) is not closed and is hyperbolic, then Y is hyperbolic with at least two boundary

components, so it must be the exterior of a hyperbolic link that is not a knot.

If Y(p/(qt?)) is Seifert fibred and has n > 1 boundary components, then Y must be Seifert
fibred (Theorem 2.3.4) and it has n + 1 boundary components. Hence, if n > 2, Y is a

composing space, while if n =1, Y is a cable space.
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When |g| > 8, it is a result of Lackenby and Meyerhoff (Lackenby et Meyerhoff, 2013,
Theorem 1.2) that if Y is the exterior of a hyperbolic knot, then Y (p/(gt?)) must also be
hyperbolic. Conversely, if Y (p/(qt?)) is closed and hyperbolic, then Y is the exterior of
knot that must be hyperbolic.

If Y is the exterior of a torus knot, then Y (p/(qt?)) is Seifert fibred (Moser, 1971, Propo-
sition 3.1). Conversely, if Y (p/(qt?)) is closed and Seifert fibred, Y is a knot exterior that
must be Seifert fibred, by the result of Lackenby and Meyerhoff. The only knots whose

exteriors are Seifert fibred are torus knots (Moser, 1971, Theorem 2). O

The five types of surgered pieces described in Proposition 2.3.8 correspond to fillings of

distinct types of JSJ pieces of a knot exterior.

Corollary 2.3.9. Suppose |q| > 2 and let K and K' be knots. Suppose further that the
surgered piece Y (p/(qt?)) of S3-(p/q) is homeomorphic to the surgered piece Y'(p'/(q'(¥')?))
of S3/(p'/q).

1. If Y(p/(qt?)) and Y'(p'/(¢'(¥')?)) have non-empty boundary, then Y and Y’ are of

the same type, as listed by Theorem 2.5.1.

2. Furthermore, if |q| > 8 and if Y (p/(qt?)) and Y'(p'/(¢'(¥')?)) are closed, then' Y and

Y’ are both torus knots or both hyperbolic knots. ]

Comparing with Theorem 2.3.1, we obtain additional constraints on the structure of the

surgered piece.

Proposition 2.3.10. Suppose |q| > 2. LetY be the JSJ piece of S})’( such that the surgered
piece of Sx-(p/q) is a filling Y (p/(qt?)) for some integer t > 1. If Y (p/(qt*)) is homeomor-

phic to a JSJ piece of a knot exterior, then
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1. Y is not the exterior of a knot;

2. Y(p/(qt?)) is homeomorphic to the exterior of a hyperbolic knot or link such that if a
specific component of the link is removed, the resulting link is the unlink, if and only

if Y is hyperbolic;

3. Y(p/(qt?)) is homeomorphic to an (r, |qt?|)-cable space if and only if Y is a composing

space;

4. Y(p/(qt?)) is homeomorphic to the esterior of a torus knot if and only if Y is an

(r, s)-cable space.

Proof. For (1), we observe that if Y is the exterior of a knot, then Y (p/(qt?)) is a closed

manifold. However, all JSJ pieces of a knot exterior have non-empty boundary.

The implications of (2), (3) and (4) follow from Proposition 2.3.8. We show their converses.

If Y is hyperbolic, then by (1), it is not the exterior of a knot. Hence, Y (p/(qt?)) is
hyperbolic by Proposition 2.3.8. By Theorem 2.3.1, a hyperbolic JSJ piece of a knot

exterior is as stated in (2).

If Y is a composing space, then Y (p/(qt?)) is Seifert fibred with only one exceptional fibre
of order |qt?| (Proposition 2.3.8). By Theorem 2.3.1, cable spaces are the only Seifert fibred
JSJ pieces of a knot exterior with only one exceptional fibre. An (r, s)-cable space has an

exceptional fibre of order s, so Y (p/(qt?)) is an (r, |qt?|)-cable space.

If Y is an (r, s)-cable space, Y (p/(qt?)) is Seifert fibred with two exceptional fibres (Propo-
sition 2.3.8). By Theorem 2.3.1, torus knot exteriors are the only Seifert fibred JSJ pieces

of a knot exterior with two exceptional fibres. O
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2.4 Distinguished slopes

The goal of Sections 2.4 and 2.5 is to prove the following proposition.

Proposition 2.4.1. Let K be a satellite knot and T be a JSJ torus of S3. that decomposes
K into P and J. There exists a constant L(T) with the following property. Suppose
\g| > 2. If there exists an orientation-preserving homeomorphism Ss-(p/q) = Sy (p/q) for
some knot K', then the homeomorphism does not map the outermost piece of S?} - S})’((p/q)

to the surgered piece of S3-(p/q), provided |q| > L(T).

Note that if 7 is compressible in the statement of Proposition 2.4.1, then the outermost
piece of S3 inside S3-(p/q) is not a JSJ piece of S3(p/q), so the conclusion holds with

L(T) = 2. Therefore, in the subsequent discussion, we will assume that 7 is incompressible

in S%(p/q).

2.4.1 Filled patterns and companion knots

Throughout Section 2.4, we will consider the following scenario.

The satellite knot K is fixed. Suppose there is a knot K’ such that there exists an
orientation-preserving homeomorphism S% (p/q) = S3.(p/q), mapping JSJ pieces of S5 (p/q)
to JSJ pieces of S3(p/q).

Let X, X’ be the surgered pieces of S3(p/q), Si.(p/q) respectively. Suppose that the
homeomorphism does not send X to X’. Then X' is the image of a JSJ piece of S (p/q)
that is not X. That JSJ piece in S;’( (p/q) is the outermost piece of S§ C S})’( for some knot
J. Let T = 05?}. This is a JSJ torus of S})’{. By Lemma 2.2.1, T decomposes K into a
pattern P and the knot J.
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The JSJ torus 7 is sent by the homeomorphism to a JSJ torus 7' of S%.(p/q), which is
also a JSJ torus of S3., by Proposition 2.3.6. By Lemma 2.2.1, 7’ decomposes K’ into a

pattern P’ and a knot J'.

Let P and P’ respectively denote the boundary components dvP and Ov P’ of Vp and Vpr,
the pattern spaces associated to P and P’. The homeomorphism S3(p/q) = S;’{, (p/q)
then restricts to a homeomorphism between Vp(P;p/q) and S?},, and between SL?} and

Vpr(P';p/q) (Figure 2.3).

%?} ’If Vp(P;p/q)
Vp(Pip/a) T S3,

Figure 2.3: Homeomorphism carrying filled pattern space to exterior of companion knot

Tiré de « Characterizing slopes for satellite knots », par P. Sorya,

2024, Advances in Mathematics, 450, Article 109746. CC BY-NC 4.0

We will now identify distinguished slopes on the JSJ tori T C Si-(p/q) and T’ C Si.(p/q).
Information about the gluing of JSJ pieces along their boundaries will be obtained by
analyzing the distances between these slopes. In Section 2.5, we will rely on the fact that
distances between slopes are preserved by homeomorphisms to establish constraints on the

coefficients p and gq.



2.4.2 General pattern case

In the scenario described in Section 2.4.1 and Figure 2.3, we have the following lemma.

Lemma 2.4.2. The greatest common divisor gy, of p and w is 1.

Proof. On one hand, we have Hi(Vp(P;p/q);Z) = Z & (Z/gpwZ) (Lemma 2.3.2(i)). On
the other hand, Hl(Sf},; Z) = Z. Since Sf}, = Vp(P;p/q), we conclude that g,., = 1. O

Our first distinguished slope on 7 C S3(p/q) is the longitude of Vp(P;p/q) seen as a
knot exterior. Combining Lemma 2.3.2(ii) with Lemma 2.4.2, we have that this slope
corresponds to the class

pug +quXy if w # 0,

1%, ifw=0
in Hi(T;Z) = H1(953%;Z), where p; and A; are the meridian and longitude of S% respec-

tively.

Our second distinguished slope on 7 C S3-(p/q) is the meridian of Vp(P;p/q) seen as a

knot exterior. Let xu; + yAs be a class corresponding to this slope.

On T’ C S3.,(p/q), we have two analogous distinguished slopes: the meridian and the lon-
gitude of Vp/(P’;p/q) seen as a knot exterior. Let x'py + 3y’ Ay be a class in Hi(T';Z) =
H;(dS3,;Z) corresponding to this meridian, where z;7 and A; are the meridian and lon-

gitude of S’f}’, respectively.
Lemma 2.4.3. (i) The meridian zpuy +y\; of Vp(P;p/q) is such that |x| = |g(w')?|.

(ii) The meridian x'iy +y' Xy of Ve (P'sp/q) is such that |2'| = |qu?|.
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Proof. The homeomorphism S3-(p/q) = S3.(p/q) sends the meridian zu;+yA s of Ve(P;p/q)
to the meridian gy of Sf’},, and the longitude A\ of S§ to the longitude puy + q(w’)*\y of

Vp:(P';p/q). Since the homeomorphism preserves distances between slopes, we have

=2 (57) =2 (5 ) =l

We obtain (ii) symmetrically. O

Table 2.1 summarizes this discussion.

T T
Meridian of q(wpy +yryif w #0
Vp(Pip/a) =2 S3 | As if w' =0 a
Longitude of ppg +quw?hy  ifw#0 A
Ve(Pip/q) =53 | s if w=0
Meridian of qulpy +y'Ap ifw#0
§3 2 V(P p/a) " A it w = 0
Longitude of A pug + q(w’)? Ay if w' #0
5% 2= Vp/(P';p/q) L if w' =0

Tableau 2.1: Distinguished slopes on 7 and 7’

Tiré de « Characterizing slopes for satellite knots », par P. Sorya,

2024, Advances in Mathematics, 450, Article 109746. CC BY-NC 4.0

2.4.3 Iterated cable case

In the case where P is an iterated cable, we also distinguish the slopes of regular Seifert

fibres in the scenario described in Section 2.4.1 and Figure 2.3.
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Lemma 2.4.4. If P is an iterated cable C, . Cry 5,Cry 51, # 1, then

n,Sn *

1. The JSJ piece of Vp(P;p/q) with boundary component T is Seifert fibred and its

reqular fibre has slope ripny + s1Ay on T;

2. The outermost JSJ piece of S?}, is Seifert fibred and its reqular fibre has integral slope
kpg + Xyoon T, for some k € 7.

Proof. Let V; be (r;,s;)-cable spaces for i = 1,...,n. The pattern space Vp has JSJ
decomposition V1 UVLU. ..UV, where T C V7. A regular fibre of V4 has slope ripuj+s1As
on 7.

If Vp(P;p/q) contains an incompressible torus, then it is clear that the regular fibre slope
on 7 remains unchanged. Furthermore, V; is homeomorphic to the outermost piece of S?},,
which must also be a cable space. Hence, a regular fibre of the outermost piece of S3, has

integral slope on 7' = 053,.

If Vp(P;p/q) contains no incompressible torus, then it is a filling of V; by Proposition
2.3.3. By hypothesis (Figure 2.3), this filling is homeomorphic to a JSJ piece of S})’(,. By
Proposition 2.3.10, this piece is the exterior of a torus knot. It follows that the Seifert
fibred structure on Vp(P;p/q) is unique, and it is the one inherited from V;. Moreover,
the torus 7' C S%.,(p/q) is the boundary of a torus knot exterior, so a regular fibre has

integral slope on 7. O

Thus, the homeomorphism S%(p/q) = S%.(p/q) maps the slope r1p; + s1A; on T to a
slope kuj + Ay on T', where k € Z.
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T T

Regular fibre in

; ripg +s1Ag | kpg + Ay
Ve(P;p/q) = S

Tableau 2.2: Regular fibre slopes on 7 and T’

Tiré de « Characterizing slopes for satellite knots », par P. Sorya,

2024, Advances in Mathematics, 450, Article 109746. CC BY-NC 4.0

2.5 Surgered pieces are sent to surgered pieces

This section is dedicated to demonstrating Proposition 2.4.1, from which Proposition 2.1.5

follows easily.

Proposition 2.1.5. Let K be a knot. Suppose |q| > 2. If there exists an orientation-
preserving homeomorphism S3-(p/q) = S3.(p/q) for some knot K', then the homeomor-
phism sends the surgered piece of S3-(p/q) to the surgered piece of S3./(p/q), provided |q| is
sufficiently large.

Proof. If K is not a satellite knot, then the result follows from Proposition 2.3.6, so suppose

K is a satellite knot. Set
L(K) = m%X{L(T), T is a JSJ torus of S%},
where the L(T)’s are given by Proposition 2.4.1. Let |q| > L(K).
Suppose there is an orientation-preserving homeomorphism S3-(p/q) 2 S5 (p/q) that does
not carry the surgered piece X of S3-(p/q) to the surgered piece X’ of S3,(p/q). Then, as

described in Section 2.4.1, X’ is the image of a JSJ piece of S;’{ (p/q) that is the outermost

piece of the exterior of some knot J such that S3 C S3.. Let T = 053.
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Proposition 2.4.1 implies that since |g| > L(K) > L(T), the outermost piece of S3 cannot
be mapped to the surgered piece X', a contradiction. Therefore, if |¢| > L(K), then any
orientation-preserving homeomorphism S3-(p/q) = S, (p/q) must send the surgered pieces

one to another. O

The proof of Proposition 2.4.1 is divided into three cases: composing patterns, once or

twice-iterated cables, and other patterns.

For the last two cases, we will need a simplified version of a theorem from Cooper and

Lackenby, as well as some related lemmas.

Theorem 2.5.1. (Cooper et Lackenby, 1998, Theorem 4.1) Let M be a compact orientable
3-manifold with boundary a union of tori. Let ¢ > 0. Then there are finitely many compact
orientable hyperbolic 3-manifolds X and slopes o on some component of X such that
M = X(o) and where the length of each slope o is at least 27 + €, when measured using

some horoball neighbourhood of the cusp of X that is being filled.

Lemma 2.5.2. Let Y be a hyperbolic JSJ piece of a knot exterior and let Ly be the cusp
of Y along which the trivial filling yields the exterior of an unlink. Let l(p/q) be the length
of the slope p/q on Ly, measured in a mazximal horoball neighbourhood N of Ly. Then

(p/q) > lal/V/3.

Proof. By a geometric argument as in (Cooper et Lackenby, 1998, Lemma 2.1) or (Agol,
2000, Theorem 8.1), the lengths of two slopes 01,02 on Ly satisty l(o1)l(02) > Area(ON) -
A(oy,02). By Theorem 1.2 of (Gabai et al., 2021)), Area(ON) > 2v/3. By taking o1 = p/q
and o9 = 1/0, and by the 6-theorem (Agol, 2000; Lackenby, 2000), we get

l(p/q) > 2V/3 - 14|/1(1/0) > |a|/V/3. O

46



The next lemma follows the approach of (Lackenby, 2019, Theorem 1.1, Case 2).

Lemma 2.5.3. Let Y be a JSJ piece of the exterior of a knot. There exists a constant
L(Y') with the following property. Let Y’ be a hyperbolic JSJ piece of the exterior of a knot,
with boundary component Lo such that Y'(Lo;1/0) is S3 or the exterior of an unlink. If
Y'(Loip/q) =Y, then |q| < L(Y).

Proof. Let € = 1/15. By Theorem 2.5.1, there are finitely many manifolds {X;} that
are JSJ pieces of a knot exterior, and finitely many slopes {pj,/q;,} of length at least
21 + 1/15 (measured in a maximal horoball neighbourhood in X;) such that X;(pj;,/q;,)
is homeomorphic to Y. Set L(Y) = max{|qg;|,11}. If |¢| > L(Y'), then by the previous
lemma, I(p/q) > 11/v/3 > 2m+1/15, but p/q ¢ {p;,/q;;}- It follows that for any hyperbolic

JSJ piece Y as in the statement, the filling Y'(Ly;p/q) cannot be homeomorphic to Y. [

2.5.1 Composing pattern case

We begin the proof of Proposition 2.4.1 by considering the case of composing patterns.

Lemma 2.5.4. Let P be a composing pattern and P = OvP C 0Vp. If |q| > 1, then the

filling Vp(P;p/q) is not homeomorphic to a knot exterior.

Proof. Let Y C Vp be the composing space containing P. Let n 4+ 1 be the number of

boundary components of Y.

If n > 2, then Y (P;p/q) is Seifert fibred and has more than two boundary components
(proof of Proposition 2.3.5(2)), so it is not a JSJ piece of a knot exterior by Proposition
2.3.10.

Suppose now that n = 2. Then Vp =Y U S;’ﬁ for some knot K;. The filling Y (P;p/q) is
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Seifert fibred (proof of Proposition 2.3.5(2)), and on the JSJ torus T = 8S%, of Vp(P;p/q),
a regular fibre of Y (P;p/q) has meridional slope.

By Lemma 2.3.10, if J’ is a knot such that S(g}, has the same JSJ pieces in its decomposi-
tion as Vp(P;p/q), then J' must be a cable of K;. By the knot complement theorem, if
Vp(P;p/q) were homeomorphic to S:?;,, then the meridian on 77 would be mapped to the
meridian on 7{ = 85}5{1 C S3,. Further, regular fibres of Y (P;p/q) would be mapped to
regular fibres of the outermost cable space of S3,. However, a regular fibre of the outer-
most cable space of S3, does not have meridional slope on T/, and a cable space possesses a
unique Seifert fibred structure. Hence, Vp(P;p/q) cannot be homeomorphic to the exterior

of a knot. O

Proposition 2.5.5. Let K = K\#Ko# ... #K, be a composite knot, where the K;’s are
prime for each i = 1,...,n. Let T be a JSJ torus of S;’( that decomposes K into P,
a composing pattern, and K; for some i € {1,...,n}. Suppose there is an orientation-
preserving homeomorphism S3-(p/q) = S3.,(p/q) for some knot K' where |q| > 2. Then the

homeomorphism does not map the outermost piece of S?Q to the surgered piece of S3-(p/q)-

Proof. Let P = OvP C OVp. If the homeomorphism maps the outermost piece of S})’(i to
the surgered piece of S3.(p/q), then Vp(P;p/q) is homeomorphic to a knot exterior by
the discussion of Section 2.4.1 and Figure 2.3. By Lemma 2.5.4, this cannot happen if
lq| > 2. O

Proof of Proposition 2.4.1. Let T be a JSJ torus of S;’{ that decomposes K into P and J.
Suppose there exists a knot K’ such that there is an orientation-preserving homeomorphism
S3(p/q) = S}”{, (p/q). By Proposition 2.5.5, if P is a composing pattern, we may take
L(T) = 2.
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2.5.2 Cable and twice-iterated cable case

We proceed with the case when P is a once or twice-iterated cable.

Proof of Proposition 2.4.1 (continued). We now suppose that P is a cable C;, 4, or a twice-
iterated cable Cy, 5, (Cr, s,). Recall that the JSJ torus 7 decomposes K into P and a knot
J. Let Y be the outermost piece of S?}. Let Y’ be the JSJ piece of S?(, such that the
surgered piece of S3,(p/q) is X' =Y'(p/(q(t')?),t' > 1 (Proposition 2.3.8).

Suppose the homeomorphism S3-(p/q) 2 S3.,(p/q) carries the outermost piece Y of S3 to
the surgered piece of S3,(p/q), as described in Section 2.4.1. We look at each possibility
for Y given by Proposition 2.3.10.

If Y is hyperbolic, then Y” is also hyperbolic if |¢| > 2, according to Proposition 2.3.10(2).
By Lemma 2.5.3, there is a constant L(Y') such that |q| < |q(¢')?| < L(Y).

If Y is an (r, s)-cable space, then Y’ is a composing space by Proposition 2.3.10(3) and K’
is a composite knot. Using the notation in Figure 2.3, 7’ separates K’ into a composing
pattern P’ and some companion knot J’. By the discussion of Section 2.4.1, Vp/(P';p/q)

is homeomorphic to S, but this contradicts Lemma 2.5.4 applied to P’ when |g| > 2.

If Y is the exterior of a torus knot Ty, p, |a| > |b] > 1, then Y is an (1, s’)-cable space by
Proposition 2.3.10(4). Since the orders of exceptional fibres in S%a , and X' coincide, we

have without loss of generality

lal = lq(")*r's’ — pl. (1)

Recall that the JSJ torus 7 C dY is mapped by the homeomorphism S3.(p/q) = S3. (p/q)
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to the JSJ torus 77 C X', in the notation of Figure 2.3. As distances are preserved between
slopes that are carried one to another, we have the following equality by comparing Table

2.2 (regular fibre slopes) and the last row of Table 2.1 (longitudinal slopes) from Section

ri 0 k p 1 \2
A (D) A (S ) =)k — ).
m=a(501) = (i) e

Combining this with equation (1) yields

2.4:

[a(t)?] - 1(s) %k = r's'| = |r1 £ a.

Since 7/, 5" # 0 are coprime, we have (s')%k — r's’ # 0. This implies that |q| < |r1| + |a|.

Summing up, suppose 7 decomposes K into P and J, where P = C, 5, or Cy, 5,(Cr, 1)
Denoting the outermost JSJ piece of S?} by Y, we let
L(Y) from Lemma 2.5.3 if Y is hyperbolic,
L(T) =142 if Y is an (r, s)-cable space,
Ir1] + |al if Y is the exterior of a torus knot T p.

Then if |g| > L(T), and if there exists and orientation-preserving homeomorphism S%-(p/q) =

S ?(, (p/q) for some knot K’, the outermost piece Y of S E)} is not carried to the surgered piece

of S/ (p/q)-

2.5.3 Other pattern case

To conclude the proof of Proposition 2.4.1, it remains to study patterns that are neither
composing patterns nor once or twice-iterated cables. We will be using the Cyclic surgery

theorem by Culler, Gordon, Luecke and Shalen.

Theorem 2.5.6. (Culler et al., 1987, Cyclic surgery theorem) Let M be a compact, con-
nected, irreducible, orientable 3-manifold such that OM is a torus. Suppose that M is not

a Seifert fibre space. If m(M(o1)) and m1(M(o2)) are cyclic, then Aoy, 092) < 1.
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We want to apply this theorem to the case where M is a filling of a pattern space. To do
so, we must show that this filling is not a Seifert fibre space. We will need the following

homological lemma about fillings of composing spaces.

Lemma 2.5.7. Let Y be a composing space with three boundary components T,7T1,7Ta.
Denote by h the slope of a regular fibre on each boundary component of Y. Suppose o1 and
o9 are slopes on T and Ta respectively, that are homologous in Y (T;0) for some surgery

slope o on T. Then A(h,o01) = A(h,02) = kA(h,0) for some k € Z.

Proof. There are slopes A1 and A2 on 71 and Ts respectively such that {h, \;} generates
H\(Ti;Z), i = 1,2, and {h, A\a — A1} generates H;(7;Z) (Figure 2.4). Further, the images
induced by inclusion of h, A1, A2 into Y generate H;(Y;Z). Write

o =mh + n()\g — )\1),
o1 = a1h+ bl)\la

02 = agh + baAa.

The o-surgery along 7 adds the relation mh +n(A2 — A1) in H1 (Y (T;0);Z). Hence, if 01

and oy are homologous in Y (7;0), then
(alh + bl)\l) + k‘(mh + n()\g — /\1)) = azh + bg)\g,
for some k € Z. This implies that by = by = kn, giving us

A(h,o1) = A(h,09) = kn = kEA(h, o). O
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Figure 2.4: Left: Generators of H1(Y;Z) on the base orbifold of Y; Right: Generators
of Hi(Y(T;0);Z) where Y is depicted as a link exterior in a solid torus bounded by 72

Tiré de « Characterizing slopes for satellite knots », par P. Sorya,

2024, Advances in Mathematics, 450, Article 109746. CC BY-NC 4.0

Proposition 2.5.8. Suppose P is a pattern that is neither a composing pattern, nor a
cable Cy, s, or a twice-iterated cable Cy, 5,(Cr,.s,). Let T be the boundary component of Vp
that is not OvP. Then the filling Vp(T;m/n) is not a Seifert fibre space for |m| sufficiently

large.

Proof. The pattern space Vp admits a JSJ decomposition V3 U Vo U ... U V) where V] is
the JSJ piece that contains 7. Recall from the discussion following Definition 2.2.2 that
we express slopes along 7 in the coordinates given by slopes u and A such that gluing the
exterior of a knot J by respectively identifying p and A to the meridian and longitude of J
yields the exterior of the knot P(J).

If V1 is hyperbolic, there are only finitely many slopes m/n such that Vi(7;m/n) is not
hyperbolic. So V4 (T;m/n) is hyperbolic for |m| sufficiently large, and Vp(T;m/n) is not

a Seifert fibre space.
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If V1 is a Seifert fibre space, then by Theorem 2.3.1, V; is either a composing space or an

(r1, s1)-cable space.

Suppose V; is a composing space. For Vp(T;m/n) to be Seifert fibered, the JSJ pieces
adjacent to V7 in Vp must be Seifert fibred and Vi (7;m/n) must admit a Seifert fibred
structure that differs from the one inherited by the fibration on V;. The only such possibility
is if Vi(T;m/n) is a trivial I-bundle over the torus. Recall that the regular fibres of V}
have meridional slopes on each boundary component of V7. Let 71 and 73 be the boundary
components of V1(7;m/n). As regular fibres are homologous in V4 (7;m/n), Lemma 2.5.7
says the distance on 77 between the meridian of 77 and a regular fibre of Vi(7T;m/n) is

equal to the distance on 73 between the meridian of 73 and a regular fibre of Vi (T;m/n).

Suppose the pieces adjacent to Vi in Vp are Seifert fibred. Note that since P is not a
composing pattern, V1 (7;m/n) shares a boundary component, say 7, with a cable space
V5 whose regular fibre has non-integral slope on 77. The other boundary component 75 of
Vi(T;m/n) is shared with a torus knot exterior or a cable space V3, whose regular fibre has
integral slope on 73. By Lemma 2.5.7, the Seifert fibred structure of V4 (7;m/n) cannot
extend across both V5 and V3, so Vp(7;m/n) is not Seifert fibred.

Suppose now that Vj is an (ry, s1)-cable space. Let V5 be the JSJ piece of Vp that shares

a boundary component 77 with V.

Suppose that 77 remains incompressible in Vp(7;m/n). The pattern space Vp is either
the union of V; with a hyperbolic Vs, or it decomposes into at least three JSJ pieces. In
the first case, Vp(T;m/n) is clearly not Seifert fibred. In the second case, a Seifert fibred
structure on V1 (7;m/n) might extend across a Seifert fibred structure on V2. However, a
JSJ piece of a knot exterior admits a unique Seifert fibred structure, so the structure on

Va does not extend across the other JSJ pieces of Vp(T;m/n).
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Suppose now that the torus 77 is compressed in V1 (7;m/n). On Ty and T, the regular fibres
of V1 have respective slopes r1s1/1 and 71 /s1. By a similar reasoning as that of Proposition
2.3.5, cases (3) and (4), we have |ms; — rin| = 1. For homological reasons (analogous to

Lemma 2.3.2), the filling Vp(7;m/n) is homeomorphic to (Vp \ V1)(T1;ms?/n).

If V5 is hyperbolic or a composing space, we iterate the argument previously given for Vj.

If V4 is an (rg, sg)-cable space, let 72 be its boundary component that is not 7;. Let V3 be
the JSJ piece of Vp such that V3 N Vo = T3. The Seifert fibred structure on Va(77;ms?/n)
might extend across V3 only if Va(71;ms?/n) is a solid torus or a twisted I-bundle over the
Klein bottle. This occurs when |ms?sy — ron| = 1 or 2. Combining this with the fact that

|msi; —rin| = 1, we have that (m,n) must be a solution to the system

s1 —T1 m +1 +1
= or
3%32 —7r9 n +1 +2
As ro and sy are coprime,
s1 =T
det #0.
8%82 —T9

Therefore, there are only finitely many slopes m/n such that the Seifert fibred structure

on Va(T1;ms?/n) extends across Vs.

Consequently, Vp(7T;m/n) is not a Seifert fibre space for |m| sufficiently large. O

Proof of Proposition 2.4.1 (continued). Recall that T is a JSJ torus of S;’( that decomposes
K into P and J. Suppose there exists a knot K’ such that there is an orientation-preserving

homeomorphism S3-(p/q) = S5/ (p/q) where |g| > 2.

We now suppose that P is neither a composing pattern nor a once or twice-iterated cable.

Suppose the homeomorphism S3-(p/q) 2 S5 (p/q) carries the outermost piece Y of S3 to
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the surgered piece of S3.,(p/q), as described in the scenario of Section 2.4.1. By Lemma
2.4.3, there is a slope z/y = q(w’)?/y on T that is the meridian of Vp(P;p/q) seen as a

knot exterior, where w’ is the winding number of P’. See Figure 2.3.

By Lemma 2.5.8, there exists a bound L(P) such that if |m| > L(P), then Vp(T;m/n)
is not a Seifert fibre space. If w’ # 0, suppose that |¢q| > L(P). The inequality |z| =
lq(w")?| > |q| > L(P) implies that Vp(T;z/y) is not a Seifert fibre space. On one hand,
the filling of Vp(P; p/q) along the meridian z /y is the trivial filling Vp(P, T;p/q, x/y) = S3.
On the other hand, Vp(P;1/0) is the trivial filling of the pattern P, so it is homeomorphic
to a solid torus. Consequently, Vp(P,T;1/0,z/y) is homeomorphic to the lens space Ly .
We obtain that both the p/q and 1/0-fillings of the non-Seifert fibred manifold Vp(T;z/y)
yield manifolds with cyclic fundamental groups. By the Cyclic surgery theorem (Theorem

2.5.6), we have |¢| = A(p/q,1/0) < 1, which contradicts |g| > 2.

Suppose now that w’ = 0. If the surgered piece X’ of S3.(p/q) were Seifert fibred, then it
would be a filling of either a cable space or a composing space (Proposition 2.3.10). In both
cases, w’ would be non-zero, a contradiction. Therefore, X’ is hyperbolic. As |¢| > 2, X’
is the p/(q(t')?)-filling of a hyperbolic JSJ piece of S3,, ¢’ > 1 (Proposition 2.3.8(1)). By
Lemma 2.5.3, there exists a constant L(Y") such that X’ is homeomorphic to the outermost

piece Y of S only if |g| < L(Y).
Setting L(T) = max{L(P),L(Y)} gives the desired bound.

This completes the proof of Proposition 2.4.1. O
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2.6 Proof of Theorem 1

Proposition 2.1.5 tells us that if |g| is sufficiently large, an orientation-preserving homeomor-
phism S3-(p/q) = S3.(p/q) restricts to a homeomorphism between the surgered pieces of
S3.(p/q) and S%,(p/q). By the knot complement theorem, this homeomorphism preserves
the slopes on the boundary of the surgered pieces. To complete the proof of Theorem 2.1.1,
we must show that it further restricts to the JSJ pieces of S}i{ and 5}5{, that were filled to

produce the surgered pieces.

First, we need the following intermediate results.

Proposition 2.6.1. Let K and K’ be knots such that there exists an orientation-preserving
homeomorphism Si-(p/q) = S%.,(p'/d'). If the core of the surgery solid torus in Si-(p/q) is
mapped to the core of the surgery solid torus in S3.,(p'/q'), then K = K.

Proof. Let v and v’ be the cores of the surgery solid tori of S3-(p/q) and S%,(p'/q’) respec-
tively. Since v is sent to v’ by the homeomorphism, the neighbourhoods v(v) and v(v')
are also sent one to another by the homeomorphism. Therefore, S3(p/q) \ int(v(v)) =
S3\ int(vK) is homeomorphic to S3,(p'/q') \ int(v(v')) = S3\ int(vK’), which implies that
K = K’ by the knot complement theorem. O

Lemma 2.6.2. Ifq, p, r, s, v, s’ are integers such that |q| > 2 and |qrs—p| = |qr's' —p| =

1, then rs =1's’.
Proof. We have |q(rs —r's")| = 0 or 2. But |¢| > 2, so |¢(rs —'s)| =0 and rs =1's’. O

Let K be a non-trivial knot, and suppose there is a knot K’ such that there exists an

orientation-preserving homeomorphism S (p/q) = S%.(p/q). Let X, X’ be the surgered
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pieces of S%(p/q), S3.(p/q) respectively. Let Y, Y’ be the JSJ pieces of S5, S3., such that
X =Y(p/(qt?)) and X' =Y'(p/(q(t')?)), for some t,t' > 1 (Proposition 2.3.8).

We now assume, by Proposition 2.1.5, that |¢| is large enough such that X and X’ are sent
one to another by the homeomorphism S3-(p/q) = S3.,(p/q). We will study each possibility
listed in Theorem 2.3.1 for Y and show in each case that K = K’ for |q| sufficiently large.

2.6.1 Exterior of a torus knot

Suppose Y is the exterior of a torus knot. In this case, K is a torus knot or a cable of
a torus knot (Proposition 2.3.8). By McCoy, if K is a torus knot, we have that K = K’
for |q| sufficiently large (McCoy, 2020). So suppose K is a cable knot C, 4(7T,5) such that

lgrs — p| = 1.

By Corollary 2.3.9, Y’ is also the exterior of a torus knot if |q| > 8. Therefore, K’ is either

a torus knot or a cable of a torus knot by Proposition 2.3.6.

We have the following corollary of a proposition from McCoy.

Proposition 2.6.3. (McCoy, 2020, Proposition 1.5) If an (r, s)-cable of a torus knot shares

a p/q-surgery with a torus knot where |q| > 1, then |q| = s.

It follows that the cable K = C, (7T, 5) cannot share a p/q surgery with a torus knot when
lg| > s. Hence, if |[¢q| > s and 8, K’ is a cable of a torus knot Cys o(T¢ q) where |gr's’—p| = 1.

We thus have an homeomorphism

5%, (p/(as%) = 5., ,(p/ (a(s')?))
by Proposition 2.3.3. This gives the homeomorphism of base orbifolds

S*(lal, [bl, las*ab — pl) = S*(|el, |d], la(s")*cd — pl).
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Comparing orders of cone points, without loss of generality, assume that |b| = |d| and

la| = |q(s")%cd — p|. By combining this with |grs — p| = 1, we find
lal - [(s")?cd = rs)| = la £ 1].

The right-hand side is a non-zero integer since |a| > 1, which implies that |g| < |a| + 1.

Consequently, if |¢| > |a|] + 1, the homeomorphism S%a’b(p/(qsz)) o Sr_?;c’d (p/(q(s")?)) sends
the core of the surgery solid torus in S%a,b(p/(q‘sQ)) of order |gs?ab — p| to the core of the
surgery solid torus in S%c’d (p/(q(s")?)) of order |q(s’)2ed—p|. By Proposition 2.6.1, we obtain
that T, = T.4. Furthermore, the equality of orders yields gs?ab — p = £(q(s')%cd — p),
but since |¢| > 1 and p and ¢ are coprime, the only possibility is gs?ab — p = q(s")?cd — p,
which in turn gives s = s’. By Lemma 2.6.2, since |¢| > |a| + 1 > 2, we have C, ¢ = Cyv o.
Hence, Cr (T, p) = Cp o (Te,a), that is, K = K’, as desired.

2.6.2 Composing space

Suppose Y is a composing space. By Corollary 2.3.9, Y’ is also a composing space if |q| > 2.
By Proposition 2.3.8(2), X and X’ are Seifert fibred, each with one exceptional fibre of
order |qt?| and |g(#')?| respectively. These exceptional fibres correspond to the cores of the

surgery solid tori in X and X'.

Since X = X', the unique exceptional fibre of X is sent to the unique exceptional fibre of X’
by the homeomorphism S3-(p/q) = S5/ (p/q). This implies that t = . If t = 1, then these
exceptional fibres are precisely the cores of the surgery solid tori of S% (p/q) and S (p/q).
Then K’ = K, by Proposition 2.6.1. If ¢ > 1, by Proposition 2.3.6, t is the winding number
of cable patterns C,; and Cys; such that K = C,4(J) and K’ = Cyv4+(J'), where J and J’
are composite knots. By Proposition 2.3.3, we have S3(p/(qt?)) = S3,(p/(¢qt?)) and J = J'

by Proposition 2.6.1. Since |¢rt — p| = 1 and |¢r't — p| = 1, Lemma 2.6.2 tells us that
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r = 7', and we conclude that K = K.

2.6.3 Exterior of a hyperbolic link

Suppose Y is the exterior of a hyperbolic knot or link. By Corollary 2.3.9, Y’ is also the
exterior of a hyperbolic knot or link if |g| > 8. Recall that Y(p/(qt?)) = Y'(p/(q(¥')?)).
We will apply the following theorem by Lackenby and use the arguments in his proof of
(Lackenby, 2019, Case 2 of Theorem 1.1).

Theorem 2.6.4. (Lackenby, 2019, Theorem 3.1) Let M be S® or the exterior of the unknot
or unlink in S3, and let K be a hyperbolic knot in M. Let Mg = M \int(vK). There exists
a constant C(K) with the following property. If Mk(c) = Mg/ (c") for some hyperbolic
knot K' in M and some o’ such that A(o’, ') > C(K), where (i is the slope that bounds
a disc in vK', and if the homeomorphism restricted to the boundary of M is the identity,
then (M,K) = (M,K') and 0 = o’.

Lemma 2.6.5. For |q| sufficiently large, Y =Y’ and t =t'.

Proof. Let n+ 1 be the number of boundary components of Y and Y’. If n = 0, let M be
S3. If n > 1, let M be the exterior of the unlink with n components. By Theorem 2.3.1,

Y and Y’ are respectively homeomorphic to exteriors of hyperbolic knots H and H' in M.

By the argument in the last paragraph of (Lackenby, 2019, proof of Theorem 1.1, p.13),
there is a knot H” in M such that (M, H') = (M, H") and there exists an homeomorphism
My (p/(qt?)) = My (p/(q(t')?)) which is the identity when restricted to the boundary
of M. Let C(H) be the constant given by Theorem 2.6.4 for H. If |¢| > C(H), then
lq(t")?| > C(H). By Theorem 2.6.4, (M, H) = (M, H") and p/(qt*) = p/(q(t')?). Therefore,
(M,H)= (M,H'),soY 2Y' and t =1 O
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In S3 and S?(, respectively, the JSJ pieces Y, Y are the outermost pieces of the exteriors
of knots .J,J'. We thus have S3(p/(¢qt?)) = S3,(p/(qt?)) which restricts to Y (p/(qt?)) =
Y'(p/(qt?)). This is precisely the scenario of (Lackenby, 2019, Case 2 of Theorem 1.1). We
adapt the relevant parts of its proof using our notation to conclude the case when Y is

hyperbolic.

Proposition 2.6.6. Let C(H) be as in the proof of Lemma 2.6.5. If |q| > max{8,C(H)},
then K = K'.

Proof. The homeomorphism (M, H) = (M, H') from the Lemma 2.6.5 gives a homeomor-
phism A : $3\ (53 \ int(Y)) — S\ (5% \ int(Y”)) that sends J to J'.

Further, S (p/q) = S3.(p/q) restricts to a homeomorphism S3 \ int(Y) = S3, \ int(Y”)
which agrees with h on the boundary. We can thus extend it to a homeomorphism (52, .J) =
(83,J'). Hence, J = J'. If t =1, then K = J and K’ = J' and we are done. If ¢ > 1, then
K and K’ are cables of J = J'. By Lemma 2.6.2, K = K. O

2.6.4 Cable space

Suppose Y is an (71, s1)-cable space. By Corollary 2.3.9, Y is also a cable space if |g| > 2.
Therefore, K and K’ are once or twice-iterated cables of knots J and J’ respectively. Let

us write

I o) re=1 o) =1
07’2752 (Cﬁ,sl(‘])) ift>1 Cré,sg (Cr’l,s’l(‘]/)) if ¢ > 1

Proposition 2.6.7. If |q| > 2, then K = K'. That is:

(i) J=J';
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(ii) CT1781 = Cr’l,s’l ;

(iii) t =1, and Cy, 5, = Cr’Q,s’Q if t > 1.

Proof. Since S%(p/q) \ X = S% and S%.(p/q) \ X’ = S3,, the homeomorphism 5% (p/q) =
S%.,(p/q) restricts to a homeomorphism between S5 and S3,. This implies (i) by the knot

complement theorem.

By (i), the meridians and longitudes forming the bases of H1(9S%;Z) and H1(0S3,;Z) are
respectively sent one to another. The regular fibres of X and X’ have respective slopes
r1/s1 and 7} /s] on X and 0X’, and both Seifert fibred structures have base orbifold a
disc with two cone points. If a given oriented manifold admits a Seifert fibration with
base orbifold a disc and two cone points, then there is no other Seifert fibration on this
manifold with the same orbifold structure. It follows that the slopes ri/sy and ] /s] are

equal. Hence, Cy, 5, = Cyr o+ showing (ii).

The longitudes of X and X’ coincide and have respective slopes p/(q(ts1)?) and p/(q(t's})?),
so q(ts1)? = q(t's})?. Since s; = s} by (ii), we get the equality ¢t = ¢/. If t+ > 1, then
t = sy = sy, and C, 5, = Cyy o by Lemma 2.6.2, which proves (iii). O

This concludes the proof of Theorem 2.1.1.

2.7 Characterizing slopes for cables with only Seifert fibred pieces

For some specific families of satellite knots, an explicit bound for |g| that realizes Theorem
2.1.1 can be expressed. The following result is obtained from the treatment of Seifert fibred

JSJ pieces throughout Sections 2.5 and 2.6.

Theorem 2.7.1. Let K be a cable knot with an exterior consisting solely of Seifert fibred
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JSJ pieces. A slope p/q is characterizing for K if:

(i) |g| > 2 and K is not an n-times iterated cable of a torus knot, n > 1;
(i1) |q| > |ri| + |a| and K is an n-times iterated cable of Cy, s, (Typ),|al > |b] > 1,n > 1;

(iii) |q| > max{8, s1,|r1| + |a|} and K is a cable Cy, s, (Tup), |al > |b] > 1.

Proof. We first show that Proposition 2.1.5 is realized. Suppose K’ is a knot such that
there exists an orientation-preserving homeomorphism S%(p/q) = S%.,(p/q). If S3-(p/q) is

Seifert fibred, Proposition 2.1.5 is immediately realized.

If S3(p/q) contains a JSJ torus, then the surgered piece X’ of S3(p/q) is not a filling of
a knot exterior. It follows that the JSJ decomposition of S%, does not contain hyperbolic
pieces if |q| > 2. The surgered piece X’ is thus Seifert fibred and it is a filling of a JSJ

piece Y’ of S;’{, that is either a composing space or a cable space (Proposition 2.3.8).

If Y’ is a composing space, then by Lemma 2.5.4 and Section 2.4.1, X’ must be the image
by the homeomorphism of the surgered piece of S3-(p/q) if |g| > 2.

If Y is a cable space and if X’ is not the image of the surgered piece of S%(p/ q), then
X' is the image of the exterior of a torus knot T, in S3 (Proposition 2.3.10). Using the
notation introduced in Section 2.4.1, let T = 35%1 , and let P be the pattern such that 7°

decomposes K into P and T .

Suppose K is not an n-times iterated cable of Cy., s, (T p),n > 1. Then the pattern space Vp
contains a composing space that shares all its boundary components with other JSJ pieces

of S;’(. By the proof of Proposition 2.5.8, Vp(T;q(w')?/y) is not Seifert fibred. Applying
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the Cyclic surgery theorem (Theorem 2.5.6) as described in Section 2.5, we obtain that

l¢| = 1, contradicting (i).

If K is an n-times iterated cable of Cy, s, (Tgp),n > 1, we apply the same method as in
Section 2.5.2 to compare the distances between the regular fibre slope and the longitudinal
slope on T and 7’. This yields the inequality |q| < |r1| + |a|, which implies that if (ii)
holds, X’ must be the image of the surgered piece of S3-(p/q).

The theorem now follows, as (i), (ii) and (iii) are greater than or equal to the bounds from

Section 2.6. 0

Note that Theorem 2.7.1(i) is equivalent to Theorem 2.1.4 when applied to cable knots. If
K is not a cable knot in Theorem 2.1.4, then it is a composite knot and the result follows

from Theorem 2.1.2, which we prove in the next section.

Theorem 2.1.4. If K is a knot with an exterior consisting solely of Seifert fibred JSJ
pieces, with one of them being a composing space, then any slope that is neither integral

nor half-integral is a characterizing slope for K.

Remark 2.7.2. We relied on the constructive nature of Seifert fibred spaces to compute
the above bounds. If S;’{ contains hyperbolic JSJ pieces, the task becomes more difficult.
Indeed, for generic cases, we need to determine values that realize Theorems 2.5.1 and 2.6.4.
Recently, Wakelin established a lower bound on |¢| for a slope p/q to be characterizing for
certain hyperbolic patterns (Wakelin, sous presse). In forthcoming work with Wakelin, we

combine her findings and our study of Seifert fibred JSJ pieces to obtain further results.

2.8 Characterizing slopes for composite knots

We now turn to the proof of Theorem 2.1.2.
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Theorem 2.1.2. If K is a composite knot, then every non-integral slope is characterizing

for K.

2.8.1 The surgered submanifold

Thus far, we have made the assumption |g| > 2, allowing us to define the surgered piece
of a surgery along a knot. When |g| = 2, the surgered piece may not be defined as in
Definition 2.3.7 if the resulting manifold is obtained from filling a hyperbolic JSJ piece.
Indeed, the surgery operation can create essential tori, or it might yield a Seifert fibre space

which admits a Seifert fibred structure that extends to other JSJ pieces.

Definition 2.8.1. Let YUY, UYo U...UY, be the JSJ decomposition of the exterior of
a knot K.

If |g| > 1, then up to re-indexing the Y;, the JSJ decomposition of S3-(p/q) is of the form
(XoUXjU...UX ) U(Y;UY; 11 U...UY,),

for some 1 <4 < n and m > 0, and where none of the X;’s are JSJ pieces of S?(. The

manifold Xo U X; U...U X, is the surgered submanifold of S3-(p/q).

If the surgered submanifold is a JSJ piece of S3-(p/q), i.e., m = 0, then we may also call it

the surgered piece of S3-(p/q).

Remark 2.8.2. This definition is compatible with Definition 2.3.7. In fact, the surgered
submanifold of a surgery S3.,(p/q) may not be a surgered piece only in the case where the

outermost piece of S%, is hyperbolic (proof of Proposition 2.3.6 and Proposition 2.3.3).

We obtain an analogue of Proposition 2.1.5 for composite knots when |g| > 1.

Proposition 2.8.3. Let K be a composite knot and suppose there exists an orientation-

preserving homeomorphism Si-(p/q) = Ss.(p/q) for some knot K'. If |q| > 1, then the
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homeomorphism S3-(p/q) = S3/(p/q) carries the surgered piece of Sy (p/q) to a JSJ piece

of the surgered submanifold of S;’(,.

Proof. Let K = K1#Ks# ... #K,, where the K;’s are prime for each i = 1,...,n. Let Y
be the outermost composing space of 5’;’(. It is homeomorphic to the exterior of the link in
S3 with unknotted components Lo, L1, .. ., L, such that each pair (Lg, L;) fori = 1,...,n,
is a Hopf link and the link formed by Li,..., L, is the unlink with n components. Let
L; = 0vL; be the boundary components of Y (Figure 2.5). By Remark 2.8.2, the surgered
piece X = Y (Lo;p/q) of S3-(p/q) is well-defined.

Lo

A
U\

L1 Lo ... Ly,

Figure 2.5: Composing space seen as a link complement in S3

Tiré de « Characterizing slopes for satellite knots », par P. Sorya,

2024, Advances in Mathematics, 450, Article 109746. CC BY-NC 4.0

Suppose the homeomorphism S3-(p/q) = S%.(p/q) does not carry X into the surgered
submanifold X’ of S})’(,. Then there is a component K; of K,i € {1,...,n}, whose exterior
contains a submanifold homeomorphic to X’. Let T = (95'?(1_ C S;’(. The JSJ torus T
decomposes K into a composing pattern P and K;. The homeomorphism sends T to a JSJ
torus 7' of S3.(p/q) that separates S3.(p/q) into a manifold homeomorphic to S?Q and
the exterior of a knot J'. As a result, Vp(P;p/q) is homeomorphic to the exterior of J',

which contradicts Lemma 2.5.4. O]
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2.8.2 Fillings of a hyperbolic piece

In order to prove Theorem 2.1.2, we must demonstrate that the surgered submanifold of
S%.,(p/q) does not result from filling a hyperbolic JSJ piece of S3.,. Therefore, we now focus
on the topology of the surgered submanifold of S%.,(p/q), under the assumption that the
outermost piece of S})’{, is hyperbolic. In this subsection, we study the surgery S})’{, (p/q) by
itself, without taking into account any constraints arising from an orientation-preserving

homeomorphism S3(p/q) = S5/ (p/q).

Recall from Theorem 2.3.1 that if Y’ is a hyperbolic JSJ piece in the exterior of a knot,
then Y is either the exterior of a hyperbolic knot L{ in S or the exterior of a hyperbolic
link in S3 with components L, L}, ..., L such that the link formed by L}, ..., L] is the

unlink with n components. From now on, we will denote the boundary components of such

a hyperbolic piece Y’ by L, = OvL,, i =0,...,n.

Proposition 2.8.4. Let Y’ be a hyperbolic JSJ piece of a knot exterior. If Y'(L{;p'/q') is
homeomorphic to either a composing space or to a p/q-filling of a composing space where

lq| > 1, then |¢'| < 1.

Proof. Let Y be a composing space with n + 1 boundary components labelled as in Figure
2.5. Whitout loss of generality, suppose that Y'(Ly;p’/¢’) is homeomorphic to Y (Lo; p/q),
a Seifert fibre space with one exceptional fibre of order |g| > 1. Then Y’ also has n + 1
boundary components. Up to permuting indices, we can assume that for each i =1,...,n,

the homeomorphism maps £} to L;.
There exists infinitely many slopes o1 on £} such that the cores of the surgery solid torus

is an exceptional fibre in Y'(L{, £1;p/q’,01). There also exists infinitely many slopes o;

on each L), i = 2,...,n, such that the core of the surgery solid tori are regular fibres
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in Y'(L(, LL;p'/q,0i). Since hyperbolic manifolds possess only finitely many exceptional
surgery slopes on each of their torus boundary components, we can choose o1, ..., 0, such

that Y/ = Y'(L£y,...,L;01,...,04,) is hyperbolic.

Now, ?( 0;P'/q’) has base orbifold S? with two exceptional fibres, which means that it has
cyclic fundamental group. On the other hand, Y”(£{; 1/0) is homeomorphic to the exterior
of the unlink with n components. Therefore, i/v’( 0:1/0) is a connected sum of manifolds
with cyclic fundamental groups. By Boyer and Zhang (Boyer et Zhang, 1998, Corollary
1.4), or the Cyclic surgery theorem (Theorem 2.5.6) if the connected sum is trivial, we

must have |¢'| = A(p'/q’,1/0) < 1 since Y7 is not Seifert fibred.

Suppose now that Y'(L{;p’/q’) is homeomorphic to a composing space with n boundary
components. The argument is similar to that above. There are infinitely many slopes o; on
each component L of Y’ (L; p'/q") such that the cores of the surgery solid tori correspond-
ing to o1, 09 are exceptional fibres and the cores of the surgery solid tori corresponding to
03,...,0, are regular fibres. We can choose the o;’s so that Y = Y'(LY, ..., L5001, 00)
is hyperbolic. Then i}/’( 0;0' /') and i/v’( 0;1/0) are fillings of a hyperbolic manifold that
are respectively a manifold with cyclic fundamental group and a connected sum of mani-
folds with cyclic fundamental groups. We conclude as before with (Boyer et Zhang, 1998,
Corollary 1.4) or Theorem 2.5.6. O

Lemma 2.8.5. Let K be a knot such that the outermost piece Y' of S;’{, s hyperbolic. If

\g| > 1, then the JSJ tori of S, are incompressible in S3(p/q).

Proof. We may assume that K’ is a satellite knot as otherwise, the statement is vacuously
true. The surgered submanifold of S5 (p/q) contains Y’(Ly; p/q). Suppose Y'(L{; p/q) has
compressible boundary. As S%.,(p/q) is irreducible, Y'(L{;p/q) is also irreducible, so it

must be a solid torus. This implies that Y’ has two boundary components and, therefore,
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as Y'(L{;1/0) is also a solid torus, a result of Wu (Wu, 1992, Theorem 1) implies that
lg| = A(p/q,1/0) < 1, which contradicts our assumption |q| > 1. Hence, Y'(L{;p/q) has

incompressible boundary and as a consequence, the JSJ tori of Si’(, are incompressible in

S%(p/q). O

Corollary 2.8.6. Let K' be a knot such that the outermost piece Y’ of Sf(, s hyperbolic.
If lq| > 1, then the surgered submanifold of Sy (p/q) is either Y'(Ly;p/q), or the union of
Y'(Ly;p/q) and some Seifert fibred JSJ pieces of S%, sharing a boundary component with
Y’ in S3.,. O

2.8.3 Non-integral toroidal surgeries

We now study the surgered submanifold of S3,(p/q) in the context of an orientation-

preserving homeomorphism S% (p/q) = S3.(p/q) where K is a composite knot.

Recall that a 3-manifold is said to be toroidal if it contains an essential torus, and atoroidal
otherwise. The following proposition narrows down our investigation to hyperbolic mani-

folds that admit a non-integral toroidal surgery.

Proposition 2.8.7. Let K be a composite knot. Suppose there exists an orientation-
preserving homeomorphism S3-(p/q) = S3./(p/q) where K’ is such that the outermost piece

Y’ of S%. is hyperbolic. If |q| > 1, then Y'(L{;p/q) is toroidal.

Proof. By Proposition 2.8.3, the homeomorphism S3 (p/q) = 5% (p/q) sends the surgered
piece X of S3-(p/q) to a JSJ piece of the surgered submanifold X’ of S3.(p/q).

Suppose Y'(L{;p/q) is atoroidal. Then by Corollary 2.8.6, X’ has trivial JSJ decomposi-
tion, which means that it is homeomorphic to X, a filling of a composing space. Hence,

Y'(Ly; p/q) is homeomorphic to a submanifold of a filling of a composing space.
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Since Y'(L{; p/q) has incompressible torus boundary components, it must be homeomorphic
to either a filling of a composing space or a composing space, since these are the only
submanifolds of X’ that have such a boundary. However, this contradicts Proposition

2.8.4. U

Lemma 2.8.8. Let Y' be a hyperbolic JSJ piece of a knot exterior with at least three
boundary components. If |q| > 1, then Y'(L{;p/q) is atoroidal.

Proof. The filling Y’ (£(;1/0) is the complement of the unlink and it has compressible
boundary. If Y'(L{;p/q) contains an essential torus, then by a result of Wu (Wu, 1998,
Theorem 4.1), we have |¢| = A(p/q,1/0) < 1, contradicting the assumption |g| > 1. O

Eudave-Munioz contructed in (Eudave-Munioz, 1997) a family of hyperbolic knots that
admit half-integral toroidal surgeries. These surgeries produce a union of two Seifert fibre
spaces. Gordon and Luecke proved that if a hyperbolic knot admits a non-integral toroidal
surgery, then it belongs to Eudave-Mufioz’s family and the surgery slope is half-integral

(Gordon et Luecke, 2004).

Lemma 2.8.9. Let K be a composite knot. Suppose there exists an orientation-preserving
homeomorphism S3-(p/q) = S3.(p/q) where K’ is such that the outermost piece of S3- is
hyperbolic. If |q| > 1, then K' is not a hyperbolic knot.

Proof. By Eudave-Muiioz, Gordon and Luecke, any non-integral surgery along a hyperbolic
knot contains at most one essential torus. However, the surgery Sg’((p/ q) contains at least

two essential tori, the boundary components of the surgered piece being such tori. O

We obtain the next corollary by combining Proposition 2.8.7 and the two preceding lemmas.
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Corollary 2.8.10. Let K be a composite knot. Suppose there exists an orientation-
preserving homeomorphism S3.(p/q) = S3.(p/q) where K’ is such that the outermost piece

Y’ of S})’(, is hyperbolic. If |q| > 1, then Y’ has exactly two boundary components. O

Gordon and Luecke also classified in (Gordon et Luecke, 2004) all hyperbolic knots in solid
tori which admit non-integral toroidal surgeries. They are derived from Eudave-Munoz’s
construction mentioned above, and the resulting surgeries have link surgery descriptions as
in Figure 2.6. The labels L; identify the link components and the a;’s are the corresponding
surgery slopes, which correspond to the slopes «, 3,7 in (Gordon et Luecke, 2004). The
component L, is left unfilled. The essential torus T is pictured. If u; is the slope on OvL;
that bounds a disc in vL;, then A(w;, p1;) > 2 (Gordon et Luecke, 2004, Proof of Corollary
A.2). Hence, the surgery is the union along T of two Seifert fibre spaces M7 and My, with
respective base orbifolds a disc with two cone points of orders A(ay, p1) and A(ag, p2),

and an annulus with one cone point of order A(ag, ps).

Proposition 2.8.11. (Gordon et Luecke, 2004, Proof of claim in proof of Corollary A.2)
Let € be the exterior of a hyperbolic knot K in S* x D? such that £(Ko; o) is toroidal and
A(o,p) > 1, where p bounds a disc in vKy. Then E(Ko;0) is the union of Seifert fibre
spaces My and My. Suppose OMsy = OE(Ko; o) = O(S' x D?). The slope of a regular fibre of
My on 9(St x D?) does not coincide with the slope that bounds a disc in € (Ko; 1) = S x D2.

Proof. We follow (Gordon et Luecke, 2004), in which the solid torus containing Kj is de-
noted L(«, 3,7, *,1/2) and the non-integral toroidal filling £(Ko; o) is denoted L(a, 3,7, *,1/0).
If A(o, ) > 1 and E(Kp; o) is toroidal, then by the discussion above, £(Ky; o) is the union

of Seifert fibre spaces My and Ms, and its surgery description is given by Figure 2.6.

Let h be the slope of a regular fibre of My on & = 9(S! x D?). Suppose by contradiction
that h bounds a disc in £(Ko; ) = S x D2. Then &(S, Ko; h, 1) = S? x S,
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L2,0é2

Figure 2.6: Surgery description of a non-integral

toroidal surgery along a hyperbolic knot in S* x D?

Tiré de « Characterizing slopes for satellite knots », par P. Sorya,

2024, Advances in Mathematics, 450, Article 109746. CC BY-NC 4.0

In the surgery description from Figure 2.6, filling along & corresponds to filling along Lj.
One can see that filling M5 along a regular fibre yields the connected sum of a lens space
and a solid torus whose meridian has distance one with a regular fibre of M;. Hence,
E(S,Ko; h, o) is either a lens space or a connected sum of lens spaces. Since A(o, 1) > 1,
this implies that £(S;h) is reducible (Gordon et Luecke, 1996, Theorem 1.2; Boyer et
Zhang, 1998, Corollary 1.4).

Write £(S;h) = N1#Ny. Then S% x St =2 £(S,Ko; h, 1) = N1#N2(Ko; p). But S% x S*
does not contain a separating S2, which means that Ny = 52 x S! and Ny (Ko; p) = S3.
It follows that £(S,Ko; h,0) = (S? x SV)#Ns(Ko; o). This contradicts the assertion that

E(S,Ko;h,0) is a lens space or a connected sum of lens spaces, as such spaces do not

contain a non-separating essential sphere. O

Proposition 2.8.12. Let K be a composite knot. Let K' be a knot such that the outermost
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piece of S3., is hyperbolic. If |q| > 1, then there is no orientation-preserving homeomor-

phism between S3%(p/q) and S3.(p/q).

Proof. Suppose by contradiction that there exists an orientation-preserving homeomor-
phism

S3-(p/q) = S3.(p/q) where K’ is such that the outermost piece Y’ of S3. is hyperbolic,
and where |q| > 1. By Corollary 2.8.6, the surgered submanifold of S%.(p/q) contains
Y'(Ly;p/q). By Corollary 2.8.10 and Proposition 2.8.7, Y’ is the exterior of a knot in
a solid torus and Y’'(L{;p/q) is a non-integral toroidal filling. By Gordon and Luecke,
Y'(L{; p/q) is the union of two Seifert fibre spaces M; and Ms, with respective base orb-

ifolds a disc with two cone points and an annulus with one cone point.

Let X be the surgered piece of S3-(p/q) and let X’ be its image in S5, (p/q) by the home-
omorphism S3-(p/q) = S3./(p/q). Since X' is a filing of a composing space, we have
X' NY'(Ly;p/q) = M (proof of Proposition 2.3.5(2)). Let 7' = 9Y'(L}; p/q) C OMs. In
S%.,, the torus 7' decomposes K’ into P’ and J'. Let £ = Vpr and P’ = ovP'.

The torus 77 is the image by the homeomorphism of an incompressible torus 7 in X C S3..
Although this torus might not be a JSJ torus of S3., it separates S?( into a pattern space
Vp and a knot exterior S?}, where P is a composing pattern (and J is a composite knot if

T is not a JSJ torus). Let P = OvP C 0Vp.
We thus have homeomorphisms Vp(P;p/q) = E(P';p/q) and S3 = S3,. These imply that
the meridian on 7 given by J is sent by the homeomorphism S3-(p/q) & S%.,(p/q) to the

meridian on 7’ given by J', by the knot complement theorem.

By construction of satellite knots, the meridian on 7’ given by J’ coincides with the slope
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that bounds a disc in £(P’; 1/0). By Proposition 2.8.11, this slope does not coincide with the
slope of a regular fibre of My on 7’. On the other hand, a regular fibre on T in Vp(P;p/q)

comes from the Seifert fibred structure of a composing space, so it has meridional slope.

Hence, regular fibres on 7 are not mapped to regular fibres on 7’. This contradicts the
unicity of the Seifert fibred structure on a Seifert fibre space with base orbifold an annulus

and one cone point. O

Proof of Theorem 2.1.2. Let K be a composite knot and suppose there is an orientation-
preserving homeomorphism S3 (p/q) = S%,(p/q) for some knot K’, where |g| > 1. Ac-
cording to Proposition 2.8.3, the surgered piece of S;’((p/ q) is carried into the surgered
submanifold of S3.(p/q). Proposition 2.8.12 implies that the surgered submanifold of
S3.,(p/q) is a JSJ piece of S3,(p/q), and it is the p/(qt*)-filling of a JSJ piece Y’ of S3.,

for some ¢t > 1.

According to Proposition 2.8.3, this filling Y’(p/(qt?)) is homeomorphic to the surgered
piece of S3(p/q), a filling of a composing space with one exceptional fibre of order |g|.
By Proposition 2.8.4, Y’ is Seifert fibred. Since Y’(p/(gt?)) has at least two boundary
components, Y is a composing space by Theorem 2.3.1. The exceptional fibre of Y’(p/(qt?))
has order |qt?| = |q|, so t = 1 and K’ is not a cable. Therefore, we conclude that K =

K'. U
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CHAPITRE 3
BORNES EFFECTIVES SUR LES PENTES CARACTERISANTES POUR
TOUT NEUD

Le deuxiéme article de cette thése, ayant pour titre original Effective bounds on character-
ising slopes for all knots, est rédigé en collaboration avec Laura Wakelin. En combinant
des idées issues du travail de Wakelin sur la réalisation de la constante C(K') du Théoréme
1 pour les nceuds hyperboliques (Wakelin, sous presse) et l'application du Théoréme de
chirurgie cyclique (Culler et al., 1987) tel qu'employé dans la démonstration du Théoréme
1, nous réalisons quantitativement chaque étape menant & ce dernier, donnant ainsi lieu
au Théoréme 4. De plus, nous développons une stratégie nouvelle permettant de trouver
la valeur optimale de C'(K') dans certains cas. En s’inspirant d’une construction de Brakes
afin d’obtenir une méme variété par des chirurgies de Dehn le long de nceuds distincts
(Brakes, 1980), nous montrons que pour certains nceuds, on peut constructivement trouver
une valeur de C'(K) qui réalise le Théoréme 1 et pour laquelle il existe un nceud K’ différent

de K partageant la méme 1/C(K)-chirurgie de Dehn.

3.0 Abstract

A slope p/q is characterising for a knot K C S? if the orientation-preserving homeomor-
phism type of the manifold S%(p/ q) obtained by performing Dehn surgery of slope p/q
along K uniquely determines the knot K. We combine new applications of results from hy-
perbolic geometry with previous individual work of the authors to determine, for any given
knot K, an explicit bound C(K) such that |¢| > C(K) implies that p/q is a characterising
slope for K.
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3.1 Introduction

Given a knot K C S3, one can perform Dehn surgery of slope p/q € Q U {1/0} on K
to produce a new 3-manifold S3-(p/q) = S3- U v(K), where S3- := S3 \ int(v(K)) is the
exterior of K and the fraction p/q specifies how to glue back in the solid torus v(K) =
St x D?. When p/q = 1/0, we have S3.(1/0) = S? and it is impossible to uniquely
determine the knot K from the oriented homeomorphism type of the manifold obtained by
this procedure. However, this is not true for a general slope p/q € Q. We say that a slope

p/q € Q is characterising for a knot K C S? if the existence of an orientation-preserving

homeomorphism S3-(p/q) 2 S3.,(p/q) for K' C S? implies that K = K'.

The Dehn surgery characterisation problem asks which slopes p/q € Q are characterising
for a given knot K. So far, it has been solved for the unknot, the trefoil knots and the figure-
eight knot, for which all slopes in Q are characterising (Kronheimer et al., 2007; Ozsvath
et Szabo, 2019), as well as for an infinite family of composite knots, for which the set of
characterising slopes is precisely Q \ Z (Sorya, 2024). An advance towards answering this
question for knots in general is a result of Sorya, building on prior work on the subject
(Lackenby, 2019; McCoy, 2020), which says that for any knot K C S?, there exists a
constant C(K) such that every slope p/q with |¢| > C(K) is characterising for K (Sorya,
2024). Whilst the proof of existence of C(K) is non-constructive in general, the present
paper provides an explicit value of C(K) that depends only on the JSJ decomposition of

the exterior of K.

Theorem 3.1.1. Let K C S? be a knot with exterior S%, Then the JSJ decomposition
of S3; — namely, the geometry of the JSJ pieces of S, together with the gluing maps
between them — explicitly determines a constant C(K) such that if |q| > C(K), then p/q is

a characterising slope for K.
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For torus knots Ty, the constant C(K') can be realised as max{8, |a|, |b|} (McCoy, 2020).
For hyperbolic knots, Wakelin showed that C(K) can be constructed using the systole of
the hyperbolic knot exterior (Wakelin, sous presse). For satellite knots, explicit bounds are
known for prime knots whose exteriors consist only of Seifert fibred JSJ pieces and for all

composite knots (Sorya, 2024); for the latter, we can take C(K) = 1.

This leaves the case where K is a prime satellite knot whose exterior contains at least one
hyperbolic JSJ piece. In this paper, we construct a value for C(K) for such knots which
only depends on the geometry of the hyperbolic JSJ pieces of S, and how they are glued
within the full JSJ decomposition.

3.1.1 Determining a value for C(K)

The remaining case of C(K) is realised by taking the maximum of three geometric constants,

Q(K), R(K) and S(K), which we now introduce and define.

Theorem 3.1.2. Let K be a prime satellite knot whose exterior is not a graph manifold.

If |q| > max{Q(K), R(K),S(K)}, then p/q is a characterising slope for K.

To define these constants, consider the JSJ decomposition of S3,. Each JSJ piece of S is
homeomorphic to the exterior of a unique link L = LoUL1U...UL,,_1 with a distinguished
component Ly such that L\ Ly = U™ ! is a (possibly empty) unlink (Budney, 2006,
Proposition 2.4). Denote by p; the meridian of the i*" component of U™ ! fori =1,...,m—

1. When L is hyperbolic, we set

q(L) := {\/6\/3<1.9793Sys2(g30 + 28.78) J

t(L) == {\/émax{o, (i) | Li € Lyi # O}J :
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s(L) == Nﬁﬁ(sy:(g%) + 28.78>J ;

where sys(S?) denotes the length of the shortest geodesic in S? and I(y;) is the length of

i C GS%; these quantities are described in more detail in Subsection 3.2.4.

Let X denote the set of hyperbolic JSJ pieces of Sﬁ(. For each X € X, let Lx denote the

unique hyperbolic link corresponding to X in the satellite construction of K.

To define Q(K), we only need to consider one JSJ piece of S%(. If K is a cable of a knot
K , let Y be the JSJ piece of S%( containing 8S§?; otherwise, let Y be the JSJ piece of Sﬁ(

o . 3
containing 0S,.

Définition 3.1.3. Define Q(K) := max{34,q(Ly)} if Y € X and set Q(K) = 0 otherwise.

For the constant R(K), we use t(Lx) for X € X, which can only contribute non-trivially
if |0X] > 2.

Définition 3.1.4. Define R(K) := max{1,¢(Lx) | X € X'}.

Finally, the constant S(K) involves every X € X which does not contain 8S§(.

Définition 3.1.5. Define S(K) := max{25,s5(Lx) | X € X, 0S% ¢ X}.

Combining these new constants with the ones from previous work, we obtain the following

explicit description of a constant C(K') that realises Theorem 3.1.1 for all knots.

Theorem 3.1.6. Let K C S3 be a knot with exterior Sﬁ(.

(i) If K is the unknot, set C(K) = 0.
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(i1) If K is a composite knot, set C(K) = 1.

(113) If K is a prime knot and Sﬁ( 15 a graph manifold, express K as an iterated cable

C

Tn,Sn

o Cry 5, Cry 51 (J), where s; is the winding number of Cy., s, and J is either a

torus knot or a composite knot, and set

max{8, |al, |b|} if J is a torus knot T, p, and n =0,

max{8, |s1|,|r1| + |al,|ri| +[b]}  if J is a torus knot Top and n =1,
C(K)=

max{|ri| + |a|, || + 0]} if J is a torus knot T, p, and n > 2,

2 if J is a composite knot.

(iv) If K is a prime knot and S3; is not a graph manifold, set

C(K) =max{Q(K),R(K),S(K)}.

If |q| > C(K), then p/q is a characterising slope for K.

Proof. The first case is due to (Kronheimer et al., 2007); the second case is (Sorya, 2024,
Theorem 2); the third case comes from (McCoy, 2020, Theorem 1.1) and (Sorya, 2024,
Theorem 7.1); the fourth case is (Wakelin, sous presse, Theorem 1.3) together with Theorem
3.1.2. O

The most challenging part of the proof of Theorem 3.1.2 lies in showing that the de-
nominator bound |g| > max{R(K), S(K)} ensures that any orientation-preserving homeo-
morphism f : S%(p/q) — S%.(p/q) restricts (possibly after an isotopy) to one between the
surgered pieces — the JSJ pieces containing the surgery curves — thereby realising (Sorya,

2024, Propostion 4.1). This is encompassed in the following result.
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Proposition 3.1.7. Let K be a prime satellite knot whose exterior is not a graph manifold.
Suppose that there is an orientation-preserving homeomorphism f : Sﬁ((p/q) — S% (p/q)

for some knot K'.

If lq| > max{R(K), S(K)}, then f maps the surgered piece of S3.(p/q) to the surgered piece
of Sier (p/a)-

Once we have proved Proposition 3.1.7, Theorem 3.1.2 will then follow from the techniques
of (Sorya, 2024) when the surgered piece is Seifert fibred and from the bound |g| > Q(K)

previously introduced in (Wakelin, sous presse) when the surgered piece is hyperbolic.

3.1.2 Winding number zero

Note that in general, the bound provided by Theorem 3.1.2 may not be optimal. However,
in certain cases of prime satellite knots whose exteriors are not graph manifolds, we can

use a slightly different approach via a new constant T'(K') to find a refined value for C(K).

Theorem 3.1.8. Let K be a satellite knot such that for every choice of satellite description
K = P(J), the pattern P has winding number zero.

If |q| > max{Q(K),T(K)}, then p/q is a characterising slope for K.

With this strategy, we may be able to improve the bound used to ensure that an orientation-
preserving homeomorphism f : S} (p/q) — S (p/q) restricts to one between surgered pieces.
Namely, instead of assuming that |¢| > max{R(K),S(K)}, we write K = P(J) and use
the fact that the pattern P has winding number zero to deduce that f restricts to a homeo-
morphism between the surgered pieces unless |p| = 1. If we write K/ = P’(J’) and suppose

that f(S%) = S%,(£1/q) and f(S%(£1/q)) = S%,, we can express these +1/g-surgeries as

79



Rolfsen Fg-twists. We obstruct this by introducing a constant 7'(K) encoding a certain

unknotting property of the companion J. This leads to the following proposition.

Proposition 3.1.9. Let K be a satellite knot such that for every choice of satellite de-
scription K = P(J), the pattern P has winding number zero. Suppose that there is an

orientation-preserving homeomorphism f : S3-(p/q) — S3.(p/q) for some knot K.

If lq| > max{2,T(K)}, then f maps the surgered piece of S3-(p/q) to the surgered piece of
Sk (p/a).

Combining Proposition 3.1.9 with Wakelin’s previous work (Wakelin, sous presse) leads to

Theorem 3.1.8. Furthermore, we show that sometimes this bound is optimal.

3.1.3 Outline

The paper is organised as follows. Section 3.2 reviews the structure of satellite knots, as
well as JSJ decompositions of knot exteriors and their Dehn fillings, and recaps useful
results from hyperbolic geometry. Section 3.3 presents the proof of Theorem 3.1.2. Section
3.4 contains the proof of Theorem 3.1.8. Section 3.5 comprises applications of our main
results: we give examples showing how to compute the bound from Theorem 3.1.2 and

investigate some special cases where the bound from Theorem 3.1.8 is optimal.
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3.2 Preliminaries

In this section, we review satellite knots, JSJ decompositions and hyperbolic geometry in

the context of this article.

3.2.1 Satellite knots

Let L=LyUL{U...UL,_1 be an m-component link in S?, where each component L; is
a knot. We denote by S? the exterior of L in S?: the manifold obtained by removing the

interior of a closed tubular neighbourhood v(L) of L in S3.

A slope on a boundary component dv(L;) of S?i is an isotopy class of essential simple closed
curves representing an element of Hy(0v(L;);Z) up to sign. The meridian p; on dv(L;) is
the unique slope that bounds a disc in v(L;). Let M; be the manifold obtained by Dehn
filling, for each j # i, the boundary component dv(L;) of S along ju;, so that M; = Si'
The longitude X\; on Ov(L;) = OM; is the unique slope that is trivial in H;(M;;Z). Fixing
{pi, \i} as a basis for H1(0v(L;);Z), the slope p/q € QU {1/0} refers to pu; + gA; up to

sign, where p;, ¢; are coprime.

We write P(J) for the satellite knot with pattern P and non-trivial companion knot .J.
The pattern P can be described as a 2-component link QQ U U, where U is the unknot and
@ is a knot inside the solid torus S?] which is neither its core nor a local knot. The satellite

knot P(J) is obtained by splicing U with J; the exterior of P(J) is the splice of S%, and
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S% along Ov(U) and dv(J), i.e. the meridian yy and longitude Ay of U are identified with

the longitude A; and meridian py of J, respectively.

The winding number of the pattern P = @ U U is the absolute value of the algebraic
intersection number between () and an essential disc in the solid torus S:;’]. If @ happens
to be unknotted, then we can swap the components of P via an isotopy and observe that
the definition of the winding number respects this exchange for homological reasons. If a
pattern P = @ U U is such that @ intersects an essential disc in S3U geometrically once,
then P is called a composing pattern and P(J) is precisely the composite knot Q#J (also
called the connected sum of @ and J). If a pattern P = @ U U is such that @ is isotopic

in S}, to a torus knot, then P is a cable pattern or cable link and P(J) is a cable knot.

3.2.2 JSJ decompositions

Recall that for any compact orientable irreducible 3-manifold M whose boundary is a
(possibly empty) union of tori, there is a minimal collection T of properly embedded disjoint
essential tori such that each component of M\ T is either a hyperbolic 3-manifold or a Seifert
fibre space; such a collection is unique up to isotopy (Jaco et Shalen, 1979; Johannson,

1979). The JSJ decomposition of M is
M= MyuUM{U...UM;g,

where each M; is the closure of a component of M \ T. Each M; is called a JSJ piece
of M and each torus in the collection T is called a JSJ torus of M. If all of the JSJ
pieces of M are Seifert fibred, then M is said to be a graph manifold. Any homeomorphism
between compact orientable irreducible 3-manifolds must preserve the JSJ decomposition

up to isotopy.

We will be most interested in the case where M is the exterior S% of a knot K. The unique
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JSJ piece of S3; containing the boundary of v(K) is said to be the outermost JSJ piece of

s3.

When K is a torus knot or a hyperbolic knot, its exterior Si{ contains no JSJ tori. When
K is a satellite knot, each JSJ torus splits S% into a pattern space S?; and a knot exterior
S% such that K can be described as P(J) (Sorya, 2024, Lemma 2.1). In particular, this

description may not be unique.

The JSJ pieces of a knot exterior take on one of four special types, which are all home-
omorphic to the exterior of a certain type of link in S®. The isotopy class of this link is

uniquely determined by gluing maps arising in the satellite construction.

Theorem 3.2.1. (Budney, 2006, Proposition 2.4, Theorem 4.18) Let K be a non-trivial
knot and let' Y be a JSJ piece of the exterior of K. Then'Y is homeomorphic to the exterior
of alink L = LoUL1U...UL,,_1 with a distinguished component Ly such that L\ Ly = ym—1

1s the unlink.

Furthermore, this link L is unique up to isotopy, given the condition that for each i # 0,
the gluing map used in the satellite construction of K corresponds to splicing L; with a

non-trivial knot J;.

This unique link L corresponding to Y can be classified into one of the following four types.

(i) L is a torus knot Ty, i.e. S? is a Seifert fibre space whose base orbifold is a disc

with two cone points of orders |a| and |b|.

(ii) L is a cable link C,. s, i.e. S3 is a Seifert fibre space whose base orbifold is an annulus

with one cone point of order |s| (where s is the winding number of the cable pattern,).

(11i) L is a composing link, i.e. S% is a Seifert fibre space with at least three boundary
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components whose base orbifold is a planar surface with no cone points.

w) L is a hyperbolic link, i.e. S3 is a hyperbolic 3-manifold.
L

This is summarised in the table below.

Case | Link L

JSJ piece Y = S%

SF'S orbifold

K when Y is outermost

T, torus knot

C).s cable link

S%TS cable space

)
)

(iii) | L composing link S?i composing space
)

L hyperbolic link

SE} torus knot exterior
a,b

S‘z hyperbolic link exterior

D?(|al, [b])
A?(|s])
5,108 > 3

T4 p torus knot
Chrs (K) cable knot
K1# K5 composite knot

K knot of hyperbolic type

Tableau 3.1: JSJ pieces of the exterior of a knot K.

The distinguished component Lg of the link L in the statement of Theorem 3.2.1 is said to be

outermost; similarly, the outermost boundary component of Y = S?i refers to Ov(Lg) C 9Y.

3.2.3 Dehn surgery

Let M be a 3-manifold and let Tp,. ..

, Tmm—1 denote the toroidal boundary components of

OM. For fixed bases {u;, A\;} for each H1(T;;Z),i =0,...,m — 1, let

M(T3; pi/q:)

denote the manifold obtained by Dehn filling M along a simple closed curve representing

Pifi + ¢; A; up to sign on T;. If it is clear from context which boundary component of M is

filled, then we may simply write M (p/q).

If M is a link exterior S% and Lo, ...

S (Li; pi/ai)
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, L1 are the components of L, we may write




instead of S3 (0v(L;);pi/qi). Furthermore, the slopes p;/g; are assumed to be expressed
with respect to the basis of Hy(0v(L;);Z) given by the meridian and longitude of L;, as

defined earlier.

Performing Dehn surgery on a knot K to obtain the manifold S% (p/q) corresponds to
Dehn filling the outermost JSJ piece of Sﬁ( along a slope p/q on the boundary component
corresponding to Jv(K). The following proposition shows that if |¢| > 2, then the core of
the surgery solid torus is contained inside a single JSJ piece of S3-(p/q). We call this piece

the surgered piece.

Proposition 3.2.2. (Sorya, 2024, Proposition 3.6) Let K be a non-trivial knot with exterior
Si( and let YoUYy U...UY} be the JSJ decomposition of S%, where Yy is the outermost

; 3
piece of Sy,

If |q| > 2, then the JSJ decomposition of S3:(p/q) takes one of the following forms:

(i) Yo(Ov(K);p/q) UY1UY2U. ... UY,

(i) Yi(YonYi;p/qs*) UYa U... UYy,

where case (ii) occurs precisely when K = CT,S(IA() 1s a cable knot, Y7 is the outermost piece

OfS%, |s| > 2 and |p — gqrs| = 1.

Therefore the surgered piece can be described as Y (p/qt?), where either Y = Yy and t = 1
orY =Yy and t > 1.
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3.2.4 Hyperbolic geometry

When considering the hyperbolic JSJ pieces contributing to the constants in Theorem 3.1.2,

we will require some quantitative results from hyperbolic geometry.

Recall that a hyperbolic 3-manifold M is one whose interior admits a complete finite-
volume hyperbolic metric. A toroidal boundary component T C M is the boundary at
infinity of a cusp of the interior of M. Each of these has a well-defined mazimal horocusp
neighbourhood N (T'), whose boundary 0N (T') inherits a unique Euclidean metric from the
hyperbolic metric (see for instance (Lackenby, 2019, Section 2)).

Définition 3.2.3. Let o be a slope on a toroidal boundary component T' C M.

e The area A(T') of T is the Euclidean area of ON(T).

e The length (o) of o is the Euclidean length of a geodesic representative of o on

ON(T).

e The normalised length I(c) of o is given by (o) = I(0)//A(T).

Slope length is related to the geometry of Dehn fillings. The 6-theorem (Agol, 2000;
Lackenby, 2000) states that filling a hyperbolic 3-manifold along any slope o of length

l(o) > 6 must give a hyperbolic 3-manifold.

The lengths (or normalised lengths) of a pair of slopes on the same boundary component
T C OM can be related to the distance A between them (the absolute value of their

algebraic intersection number), as presented in (Wakelin, sous presse, Lemma 4.2).

Lemma 3.2.4. Let o and o’ be slopes on the same toroidal boundary component T of a

hyperbolic 3-manifold.
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o The area A(T) of T satisfies the universal bound A(T) > 2v/3.

o The length I(y) of v satisfies I(y)l(p) > Ay, p) - A(T).

e The normalised length () of v satisfies 1(7)l(p) > A(y, ).

Proof. The first inequality comes from v/3 being a universal lower bound for the volume of
a maximal horocusp neighbourhood N (Gabai et al., 2021, Theorem 1.2) and the fact that
the area of ON is equal to twice the volume of N (Gabai et al., 2021, Section 1). The others
follow from (Cooper et Lackenby, 1998, Lemma 2.13) or (Agol, 2000, Theorem 8.1). O

Now we will move on to consider closed curves in the interior of M. We denote the length

of any geodesic v C M with respect to the hyperbolic metric by I(7).

Définition 3.2.5. The systole sys(M) of a hyperbolic 3-manifold M is the length (7o) of

a shortest geodesic v C M.

There is a quantitative relationship between the length () of a simple geodesic v C M
and the normalised length [ (u) of its meridian u considered as a slope on the boundary

torus of the maximal horocusp neighbourhood of M \ v(7) corresponding to ~.

Theorem 3.2.6. (Futer et al., 2022, Corollary 6.13) Let M be a hyperbolic 3-manifold and
let v C M be a simple geodesic with meridian p. If Z(,u) > 7.823, then

21

i < ()2 — 28.78

When we perform Dehn filling along a slope ¢ C 9M such that M (o) is a hyperbolic
manifold, the hyperbolic metric on M deforms to a complete hyperbolic metric on the

surgered manifold M (o), in which the core v of the surgery solid torus becomes a geodesic.
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Moreover, the meridian of v is precisely the slope o. Therefore we can apply this result to
relate the normalised length I(c) of the filling slope ¢ and the hyperbolic length I(v) of the

core curve v of the filling.

3.3 Determining a value for C(K)

We now turn to the proof of Theorem 3.1.2. Let K C S be a prime knot whose exterior
Sﬁ( is not a graph manifold. Since hyperbolic knots have already been studied (Wakelin,

sous presse), we may also assume that K is a satellite knot.

Suppose that there is an orientation-preserving homeomorphism f : S%(p/ q) — S‘}(, (p/q)
for some other knot K’ C S3, where |¢| > 2. Then K’ is also a satellite knot by Proposition
3.2.2. Let Y and Y’ be the JSJ pieces of §3 and S3., such that Y (p/qt?) and Y’(p/qt’)
are the surgered pieces of S3-(p/q) and S3./(p/q), respectively (where ¢, ¢’ > 1).

The main part of our argument lies in proving Proposition 3.1.7. This tells us that if |¢| >
max{R(K), S(K)}, then the initial orientation-preserving homeomorphism f : S3-(p/q) —
S3./(p/q) restricts to one between the surgered pieces, so that f(Y (p/qt?)) = Y/ (p/qt'?).

To prove Proposition 3.1.7, we will go through each possible case from Theorem 3.2.1 for Y.
Firstly, note that Y’ cannot be the exterior of a torus knot, otherwise S, (p/q) = Y'(p/qt"?)
would contain no JSJ tori. Secondly, if Y’ is a composing space, then S3.,(p/q) contains
the filling S%, (p/qt"?) of a composing pattern P’, which must be homeomorphic to a knot
exterior if f(Y(p/qt?)) # Y'(p/qt"?); according to (Sorya, 2024, Lemma 5.4), this cannot
happen for |g| > 1. This leaves us with two cases: either Y’ is hyperbolic or Y’ is a cable

space.
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3.3.1 The hyperbolic case

Suppose now that Y’ is hyperbolic.

Recall that for a hyperbolic JSJ piece X C Si{, we defined

s(Lx) = {\/6\/§<Sys(2§% ) + 28.78>J,

where Lx is the unique link corresponding to X in the satellite construction of K. We

claim that taking |g| > max{25,5(Lx)} obstructs the filling Y'(p/qt?) of our hyperbolic

JSJ piece Y’ from becoming homeomorphic to another hyperbolic JSJ piece X C S% \Y,
ie. f(X)#Y'(p/qt").

Note that the definition of §(L) for a hyperbolic link L only depends on the homeomorphism
type of S2, so we may also define s(X) for any hyperbolic 3-manifold X, with sys(X) taking

the place of sys(S? ), to obtain a more general statement.

Lemma 3.3.1. Let Y’ be a hyperbolic JSJ piece of a knot exterior. Consider a non-trivial
slope ¢’ = d' /b on the outermost boundary component of Y'. Let X be any hyperbolic

3-manifold.

If |b'| > max {25,s(X)}, then Y'(d'/b') ¢ X.

Proof. By the 6-theorem (Agol, 2000; Lackenby, 2000), the meridional slope p = 1/0 of the
outermost boundary component of Y’ has length I(u) < 6. Applying Lemma 3.2.4 to the
slopes u=1/0 and o/ = o’ /¥ gives

/ /
l(w) V63
Suppose that |b'| > max{25,s(X)}. Then
26
I(o') > > 7.823
6v/3



and hence we can apply (Futer et al., 2022, Corollary 6.13). We also have

(o) > 2

1
L, [ 2T g7
V6V/3 sys(X)
and so Theorem 3.2.6 gives us the following bound on the length of the core curve v’ of the
filling Y'(a’/V):

27
<
l(07)? — 28.78
Since v’ is a geodesic in Y'(a’/b') with length strictly less than sys(X), we have Y'(a'/b") %
X. O

1(v') <

sys(X).

We now apply Lemma 3.3.1 to the setting of Proposition 3.1.7. Recall that
S(K) =max{25,5(Lyx) | X € X, 0S% ¢ X},

where X is the set of hyperbolic JSJ pieces X C S3..

Proof of Proposition 3.1.7 (hyperbolic case). Suppose that f(X) = Y’(p/qt"?) for some JSJ
piece X of S3-(p/q) which is not its surgered piece. Since |gt’?| > |g| > 2, X must have
been a hyperbolic JSJ piece of S, so X € X and 9S3, ¢ X. Let Ly be the unique
link corresponding to X in the satellite construction of K. By Lemma 3.3.1, we have
lal < lgt?| < s(Lx) < S(K). O

3.3.2 The cable case

We are left with the case when Y’ is a cable space.

Let X be a hyperbolic JSJ piece of S‘}{ and let Ly = LoU Ly U...U L,,_1 be the unique

link corresponding to X, where Lg is the outermost component as usual. Recall that we
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defined
t(Lx) = [V3max{0,1(y;) | Li € L,i # 0} |.

If Y’ is a cable space and the homeomorphism f : S (p/q) — S%/(p/q) does not restrict to
one between the surgered pieces, then the preimage of Y'(p/qt'?) is the exterior Si}] C S3
of a torus knot J by Theorem 3.2.1. Let P be the pattern such that K = P(J). The JSJ
torus 8S3 C S3.(p/q) is mapped by f to the boundary of Y'(p/qt”®) in S3.(p/q), which
also bounds the exterior S3, C S%, of a knot J'. It follows that K’ can be described

as a satellite P’(J’) such that the homeomorphism f restricts to f(S%(p/q)) = S, and
f(87) =S/ (p/a)-

We claim that taking |¢| > R(K) obstructs this situation from happening, thus completing
the proof of Proposition 3.1.7. A key ingredient is our assumption that the exterior of K is
not a graph manifold: in particular, since S?} is a torus knot exterior, the pattern space S?D
must contain a hyperbolic JSJ piece X. We'll perform a clever filling of Si’p that realises

(Sorya, 2024, Proposition 5.8) in our context.

Lemma 3.3.2. Let K be a satellite knot by a pattern P = QUU. Let Xp be the set of hy-
perbolic JSJ piece of S3P and, for each X € Xp, let Lx denote the unique link corresponding
to X in the satellite construction of K. Let a/b be a slope on the boundary component T

of S‘?D corresponding to U .

If Xp # @ and |b| > max{1,v(Lx) | X € Xp}, then the filling S5(T;a/b) is not a Seifert

fibre space.

Proof. Let Lx = Lo U ...U Ly,_1 be the link corresponding to an X € Xp, where Lg is

outermost.
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If S3(T;a/b) is a Seifert fibre space, then no X € Xp can be a JSJ piece of SL(T;a/b).
Since |b| > 1, the proof of (Sorya, 2024, Proposition 5.8) implies that there is some X € Xp
and some 7 # 0 such that Ov(L;) either is T itself or is glued to the exterior of an iterated

cable pattern containing 7" inside S%. In both cases, we see that S%(7T;a/b) contains a

manifold X (L;;a/bc?), X € Xp, such that |bc?| > |b| > v(Lx).

We claim that the assumption |b| > v(Ly) ensures that the filling X (L;;a/bc?) remains
hyperbolic. Applying Lemma 3.2.4 to the distinct pair of slopes ¢ = a/bc? and p; = 1/0

along L; gives

2v3|bc?| _ 2v3(x(Lx) +1) _ 2v3(V3l(1;))
l(O') > l(,uz) > Z(Mz) > Z(Mz)

By the 6-theorem, X (L;;a/bc?) is hyperbolic. Therefore S%(T;a/b) cannot be a Seifert

= 6.

fibre space. O

We’ll apply this to solve our last remaining case of Proposition 3.1.7. Recall that
R(K) =max{l,v(Lx) | X € X},

where X is the set of hyperbolic JSJ pieces X C S3..

Proof of Proposition 3.1.7 (cable case). Write K = P(J) and K’ = P'(J’) as in the dis-
cussion at the beginning of this subsection. Let T = Sng N Sg. Since Y is a cable space, P’
has winding number w’ # 0. By (Sorya, 2024, Lemma 4.3), the preimage of the meridian
pyr of J' has slope y/qu’ 2 along T', for some integer y, in the coordinates given by the link
component U of P = Q U U which corresponds to T. Let M = S%L(T;y/qu’ 2). Observe
that

M(p/q) = S5 (pny) = S?,
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M(1/0) = S (pyr) = Lly, qu'®).

By Lemma 3.3.2, the manifold M is not a Seifert fibre space. However, M (p/q) and M (1/0)
are cyclic surgeries for M such that |g| > 1, contradicting the cyclic surgery theorem (Culler

et al., 1987). O

3.3.3 Proof of Theorem 3.1.2

Having completed the proof of Proposition 3.1.7, we see that the orientation-preserving
homeomorphism f : S%(p/q) — S5 (p/q) restricts to f(Y (p/qt?)) = Y'(p/qt'*). We claim
that in fact Y =Y’ as JSJ pieces.

Proposition 3.3.3. Let K be a prime satellite knot whose exterior is not a graph manifold.
Suppose that there is an orientation-preserving homeomorphism f : Sﬁ((p/q) — S% (p/q)

for some knot K'.

Let Y and Y’ be the JSJ pieces such that f restricts to a slope-preserving homeomorphism
between the surgered pieces Y (p/qt?) and Y’(p/qt/z). Let L and L' be the links corresponding

toY and Y’ in the satellite constructions of K and K', respectively.

If lq| > Q(K), then Y =YY", in the sense that Y =Y’ and L = L'.

Proof. We run through the cases in Theorem 3.2.1. Note that Y cannot be a torus knot
exterior, as the exterior of K is assumed to contain at least one hyperbolic JSJ piece. If
Y is a composing space or a cable space, then (Sorya, 2024, Sections 6.2 and 6.4) imply
that Y =Y’. If Y is a hyperbolic JSJ piece, then taking |¢| > Q(K) = max{34, q(L)} and
applying (Wakelin, sous presse, Proposition 4.8) implies that Y =Y. O

Finally, we return to the caveat that the outermost JSJ pieces of Si and Si, may or may
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not be cable spaces that become solid tori after filling, as in case (ii) of Proposition 3.2.2.

This can be resolved by considering cosmetic surgeries.

Proof of Theorem 3.1.2. Let K be a prime satellite knot whose exterior is not a graph
manifold. Suppose that there is an orientation-preserving homeomorphism f : S% (p/q) —
S3./(p/q) for some knot K’. By Proposition 3.1.7, this restricts to a slope-preserving home-
omorphism between the surgered pieces: f(Y (p/qt?)) = Y'(p/qt’?), where ¢, > 1. By
Proposition 3.3.3, it follows that Y = Y’. Therefore we can write K and K’ as (possibly
trivial) cables of the same non-trivial knot K whose exterior has outermost piece Y =Y.

Observe that we can write:

(p/at?),

(p/at’).

Sk(p/q) =

3
Sk
Sk (p/q) = S

Ift # ', then K hasa pair of distinct cosmetic surgery slopes of the same sign, contradicting
(Ni et Wu, 2015, Theorem 1.2). Therefore ¢ = ¢’ and, by (Sorya, 2024, Lemma 6.2), we
deduce that K = K'. m

3.4 Winding number zero

The goal of this section is to prove Theorem 3.1.8. Recall that K will now be a satellite knot
for which every satellite description K = P(J) is by a pattern P with winding number zero.
We will show that a different strategy can be used to obstruct the swapping of JSJ pieces
in an orientation-preserving homeomorphism f : S3.(p/q) — S3.(p/q): instead of assuming
that |¢| > max{R(K), S(K)} as in Proposition 3.1.7, we will take |¢| > max{2, T(K)} and
prove Proposition 3.1.9. The new bound T'(K) arises from showing that for such a knot
K, the swapping of JSJ pieces can only occur for finitely many possibilities, which can

sometimes be identified and avoided directly.
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3.4.1 Splicifiable knots

Recall that a nullhomologous Rolfsen t-twist on a knot J refers to performing —1/¢t-surgery
along a nullhomologous unknot in the exterior of J, thus adding ¢ full twists to J in this
location. We call the integer ¢ involved in this process the nullhomologous Rolfsen twist

coefficient.

Définition 3.4.1. Let K = P(J) be a satellite knot. If the pattern P = Q U U has
winding number zero, ) is unknotted and J can be unknotted by some nullhomologous

Rolfsen t-twist, then we say that K is t-splicifiable with respect to the pair (P, J).

The reason for this choice of terminology is illustrated in the following result.

Proposition 3.4.2. Let K = P(J) be a satellite knot by a pattern P with winding number

ZET0.

There exists a satellite knot K' = P'(J') and an orientation-preserving homeomorphism

f:Sk(p/a) = Sk (' /d) with f(Sh(p/q)) = S and f(S3) = SL(p'/q') if and only if
Ip| = [p'| =1 and K is +q'-splicifiable with respect to (P,.J).

Furthermore, S3.(¥1/q) = S3,,(F1/¢') is homeomorphic to the splice of the knot exteriors
S3 and S3, and K’ is £q-splicifiable with respect to (P',J").

Remark 3.4.3. Brakes (Brakes, 1980) provides a general method for constructing an
orientation-preserving homeomorphism f : S?D( 7 (p/q) — S?D,( J,)(p’ /q') such that f(S%(p/q)) =
S3, and f(S3) = S}, (p'/¢'). Proposition 3.4.2 says that if such a manifold is obtained from
a knot K = P(J), where P is a pattern with winding number zero, then Brakes’ construc-
tion is in fact the only possibility. We will soon see that this restricts the existence of

non-characterising slopes for K with large denominator.
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The following lemma is key to the proof of Proposition 3.4.2.

Lemma 3.4.4. Let K = P(J) and K' = P'(J') be satellite knots and let p/q and p'/q

be non-trivial slopes along K and K', respectively. Suppose that there is an orientation-

preserving homeomorphism f : S3.(p/q) — S5 (v’ /¢') with f(S%(p/q)) = S3, and f(S3) = S%, (v /).

Then P has winding number w = 0 if and only if P’ has winding number w' = 0. Moreover,
if these winding numbers are zero, then |p| = |p'| = 1, P(U) = Q and P'(U'") = Q' are
both unknotted patterns and S3-(p/q) = S3./(p'/q’) is homeomorphic to the splice of the knot

exteriors S?] and 83/,

Proof. Write P =Q UU and P’ = Q" UU’. From our satellite constructions, we have the

following identifications between meridians and longitudes:

kg = Ay
K =P(J)) < ;
AJ = pu
pr = A
K =P(J) :
Ay = pu

Given the homeomorphism f between fillings, recall from (Sorya, 2024, Lemma 4.3) that
the meridians and longitudes of companion knots can be expressed as follows (for some
integers y and y/'):

py =y'po +qdwAy

f(SEp/0) =S5 = ) ;
Ay = quw'py + pAu

[y = ypy: + quApr
F85) =sbv'/d) = :
Ay = qwpy +p' Ay
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We observe that

pr = pu B =AJ Avr = Ag
w =0 < <= — — w=0.

Ay = Au Ay = g pur = [y

Moreover, this gluing map produces precisely the splice of the knot exteriors S?’J and SSJ,.

Consider the manifolds S%(U; pv) and S%,(U’; py). Since pyr = py and py = pyr, these
manifolds are in fact the knot exteriors S% and 8‘22,, respectively. These both have non-

trivial S3-fillings:

SH(p/a) = S5 () = SP,

So (' /d) = S5 (py) = S°.

We conclude that we must have unknotted patterns, P(U) = @ and P'(U) = )/, and that

Ip| = [p| = 1, as required. O

Combining this lemma with Brakes’ construction, we complete the proof of Proposition

3.4.2.

Proof of Proposition 3.4.2. Let K = P(J) be +¢’-splicifiable with respect to (P,J) and
write P =QUU. Since @ is unknotted and P has winding number zero, we can now
perform a nullhomologous Rolfsen +¢-twist to U along @, for any choice of coefficient with
lgl > 1, to obtain a knot J' with f(S%(F1/¢)) =S3,. Since J can be unknotted by a
Rolfsen +¢-twist, there must also be a pattern P’ for which f(S3) = S%,(¥1/¢'). Thus
Brakes’ construction gives a +¢-splicifiable knot K’ = P’(J’) as in the statement of the

theorem. Lemma 3.4.4 gives the other direction. O
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By specialising ¢ to be a nullhomologous Rolfsen twist coefficient which unknots the com-

panion of a splicifiable knot, we obtain non-characterising slopes.

Corollary 3.4.5. Let K = P(J) be a satellite knot which is —t-splicifiable with respect to
(P, J).

Then there exists a satellite knot K' = P'(J") which is —t-splicifiable with respect to (P',J")

such that there is an orientation-preserving homeomorphism f : S} (1/t) — S3.,(1/t) with

F(SH(1/8) = % and £(S3) = Sh(1/1).

Furthermore, if K # K', then 1/t is a non-characterising slope for K and K'. ]

This generalises (Wakelin, sous presse, Theorem 1.8), which corresponds to the special case
when K = P(J) is a multiclasped Whitehead double of a double twist knot, demonstrating
that this process can be used to realise non-characterising slopes with arbitrarily high

denominator.

3.4.2 Maximal nullhomologous Rolfsen twist coefficient

We are now ready to define the constant T'(K) appearing in Theorem 3.1.8.

First, we observe that the construction leading to the non-characterising slopes in Corollary
3.4.5 bounds an unknotting nullhomologous Rolfsen twist coefficient. To the best of the
authors’ knowledge, this is the first such proof which does not require extra conditions on

either the knot or the twist.

Corollary 3.4.6. Let J be a non-trivial knot which can be unknotted by a nullhomologous

Rolfsen t-twist for some t € Z. There there is a mazimal possible value t(J) > 0 for |t|.
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Proof. Choose a satellite knot K = P(J), where P has winding number zero, P(U) = U
and S} (F1/q) 2 S for all ¢ € Z. For instance, if J is not a twist knot, take the Whitehead
double K = W (J); if J is a twist knot, take a multiclasped Whitehead double K = W™(J)

with |n| > 2.

Suppose for contradiction that no such t(.J) exists. Then there are infinitely many ¢ € Z
such that J can be unknotted by a single nullhomologous Rolfsen +¢-twist. Thus K is +¢-
splicifiable for infinitely many ¢ € Z. By Corollary 3.4.5, there are infinitely many knots
K., # K such that S} (F1/q) = S%,iq(q:l/q). This contradicts (Sorya, 2024, Theorem
1.1). O

Given such a knot J, we call the integer t(J) its mazimal nullhomologous Rolfsen twist

coefficient.

Définition 3.4.7. Define T'(K) := max{0, t(J) | K is splicifiable with respect to a pair (P, J)}.
We are now in a position to prove Theorem 3.1.8.

3.4.3 Proof of Theorem 3.1.8

We begin with the proof of Proposition 3.1.9, which uses the bound T'(K) to obstruct the
swapping of JSJ pieces in a homeomorphism between surgeries. Recall that we are in the
case where K is a satellite knot for which every satellite description K = P(J) is by a

pattern P with winding number zero.

Proof of Proposition 3.1.9. Suppose that there is an orientation-preserving homeomorphism
f:S3(p/q) = S} (p/q) for some slope p/q with |¢| > max{2, T(K)}. Since we have |q| > 2,

Proposition 3.2.2 ensures that the JSJ pieces of the surgered manifolds are well-defined.
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Suppose that the surgered pieces of S (p/q) and S (p/q) are not mapped to one another
by f. Then, by the same reasoning as in Subsection 3.3.2, we can describe the knots
K, K’ as satellites P(J), P'(J), respectively, such that f(S%(p/q)) = S, and f(S3) =
S%,(p/q). By Proposition 3.4.2, the knot K must be *g-splicifiable, which implies that
J can be unknotted by a nullhomologous Rolfsen +¢-twist. By Definition 3.4.7, we have
lg| < t(J) < T(K), a contradiction. O

The orientation-preserving homeomorphism f thus restricts to one between the surgered

pieces. It remains to deduce that K = K’.

Proof of Theorem 3.1.8. Let K be a satellite knot such that for every choice of satellite
description K = P(J), the pattern P has winding number zero. Suppose that there is
an orientation-preserving homeomorphism f : S% (p/q) — S%.(p/q) for some knot K’ and
slope p/q with |¢| > max{Q(K),T(K)}. By Proposition 3.1.9, this restricts to a slope-
preserving homeomorphism between the surgered pieces. Since K is a satellite knot of
hyperbolic type, we can now apply Proposition 3.3.3 and the cosmetic surgery argument

used in the proof of Theorem 3.1.2 to deduce that K = K’. O

3.5 Examples

We conclude this article with a series of examples exhibiting the utility of our main results.

We will begin by showcasing Theorem 3.1.2 through some illustrative examples. Recall that
the bound C(K) = max{Q(K), R(K), S(K)} only depends on the hyperbolic JSJ pieces of
the knot exterior S%.. We will find a value for this C(K) using the computer programme

SnapPy (Culler et al., 2024).
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For certain knots, Theorem 3.1.8 will give a refinement C(K) = max{Q(K),T(K)}. This
depends on the maximal nullhomologous Rolfsen twist coefficient of a companion for K,
which is generally harder to compute, but we will use the fact that T'(K) is known (often

to be just 0 or 1) in many cases.

3.5.1 Examples of Theorem 3.1.2

We will first give an example which simply demonstrates how to compute the bound in

Theorem 3.1.2. We will then see how this is affected by making modifications to the knot.

Example 3.5.1. Let K = B(W(31),41#61) be the satellite knot of hyperbolic type con-
structed by splicing the Borromean rings B with W(3;) (the Whitehead double of the
right-handed trefoil) and 41#6; (the connected sum of the figure-eight knot and the steve-

dore knot).

By Theorem 3.1.2, only the hyperbolic JSJ pieces of S contribute to C(K) = max{Q(K),
R(K),S(K)}. We have

Q(K) = max{34, q(B)} = max{34, 18} = 34;
R(K) = max{1,t(B),t(W),t(41),t(61)} = max{1,2,2,0,0} = 2;

S(K) = max{25,5(W),s(4;),5(61)} = max{25, 18, 18,22} = 25;
which gives C(K) = max{34,2,25} = 34.

Remark 3.5.2. Let K be a knot of hyperbolic type with hyperbolic outermost JSJ piece
Y and corresponding link Ly. Let K = C, 5 (I? ) be any cable of K. The only change from
the bound C([A() to the bound C(K) is the extra contribution of §(Ly ), as Y is no longer
the outermost JSJ piece. However, it is easy to see from the formulae that s(Ly) < q(Ly).

Therefore we can in fact take C(K) = C(K).
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Example 3.5.3. Let K = C12(B(W(31),41#61)) be the (1, 2)-cable of the knot in Exam-
ple 3.5.1. Then we can take C(K) = 34 by Remark 3.5.2.

Remark 3.5.4. Let L = Lo U U™ ! be a hyperbolic link and consider any link obtained
by adding a nullhomologous Rolfsen twist to L along a component of U™ !. Performing
such a twist does not change the homeomorphism type of the link exterior, so its systole is
unchanged and hence both q(L) and s(L) are unaffected. However, t(L) is defined in terms

of the meridians of the link components, so any such change to L may affect this.

Example 3.5.5. Let K = B_52(W_7(31),41#61) be the knot constructed in almost the
same way as the one in Example 3.5.1, but with a —7-twisted Whitehead link and with
B_5 2 denoting the Borromean rings twisted along two of its unlink components —5 and 2

times, respectively. Then we can compute
R(K) = max{1,t(B_52),v(W_7),v(41),v(61)} = max{1,24,36,0,0} = 36

and take C(K) = max{Q(K), R(K), S(K)} = max{34, 36,25} = 36.
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ed

Figure 3.1: The knot B_52(W_7(31),41#61) from Example 3.5.5.
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3.5.2 Examples of Theorem 3.1.8

In many cases, the alternative swapping obstruction used in the proof of Theorem 3.1.8
allows us to refine the realisation of C(K). Not only do the non-characterising slopes in
Corollary 3.4.5 give a lower bound on the optimal value for C(K), but Theorem 3.1.8 may

also improve the realisation obtained by Theorem 3.1.2.

Although it might not always be easy to check whether a knot can be unknotted by a
single nullhomologous Rolfsen twist, nor to determine the constant T'(K), we will show
that T(K) = 0 for certain satellites of knots with large signature and T'(K) < 1 for
certain satellites of knots which are composite or fibred. Furthermore, we’ll see that when

T(K) > Q(K), we obtain an optimal value for C(K).

3.5.2.1 Satellites of knots with large signature

In the following situation, we will see that T'(K) = 0.

Corollary 3.5.6. Let K be a satellite knot such that for every choice of satellite description
K = P(J), the winding number of P is zero but K is not splicifiable with respect to (P, J).
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If |q] > Q(K), then p/q is a characterising slope for K.

Proof. By definition, we have T'(K) = 0 because there is no satellite description K = P(J)
such that K is splicifiable with respect to (P, J). By Theorem 3.1.8, we have that every
slope p/q with |¢| > max{Q(K),T(K)} = Q(K) is characterising for K. O

Recall that the surgery description number sd(K) of a knot K is defined to be the minimum
number of regions required to unknot K via nullhomologous Rolfsen twists. Note that t(K)
is only defined when sd(K') = 1. The surgery description number is related to several other
knot invariants (Allen et al., 2024). Here, we observe that the signature of a knot gives a

lower bound for its surgery description number.

Lemma 3.5.7. Let K be a knot. Then its signature o(K) satisfies @ < sd(K).

Proof. The signature o(K) is a lower bound for twice the topological 4-genus, 2g]°F (K)
(Kauffman et Taylor, 1976). Let go(K) be the minimal difference between the genera of a
Seifert surface F' for K and a subsurface F/ C F bounded by a knot K’ with Alexander
polynomial Ag: = 1. We have gfOF(K) < g,(K) since a knot K’ with Ay = 1 has
giOP(K) = 0 (Freedman, 1982). Performing the nullhomologous Rolfsen twists relating

K to the unknot in succession, we obtain a sequence of knots Kj;,i = 0,...,sd(K), where

Ko = K and K,qg) = U is the unknot. Using (McCoy, 2021, Theorem 1.1), we see that

sd(K)—1
9a(K) = |9a(Ko) = ga(Ksarc))| = Y 19a(K:) = ga(Kit1)| < sd(K).
i=0
Combining this with the earlier inequalities gives the result. O

By definition, the companion J of a satellite knot P(J) that is splicifiable with respect
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to (P,J) must have sd(J) = 1. Combining Corollary 3.5.6 with Lemma 3.5.7 yields the

following.

Corollary 3.5.8. Let K be a satellite knot such that for every choice of satellite description
K = P(J), the winding number of P is zero and the companion J has signature satisfying

(D) > 4.

If |q| > Q(K), then p/q is a characterising slope for K.

Proof. Write K = P(J). Since |o(J)| > 4, Lemma 3.5.7 implies that J cannot be unknotted
via a nullhomologous Rolfsen twist so K is not splicifiable with respect to (P, J). This being
true for every satellite description K = P(J), we apply Corollary 3.5.6. O

Below is an example of a knot for which this result yields a better bound than the one

given by Theorem 3.1.2.

Example 3.5.9. Let J be the hyperbolic knot pictured in Figure 3.2 and let K =
W(J) be its Whitehead double. We have Q(K) = max{34,q(W)} = 34 and R(K) =
max{1,t(W)} = 1. Moreover, SnapPy tells us that sys(S3) ~ 0.0141687, so S(K) =
max{25,6(J)} = 70. Theorem 3.1.2 then gives a realisation of C(K) as max{34, 1,70} = 70.
However, we also have o(J) = —38, so T(K) = 0 and our bound can be improved to

max{Q(K),T(K)} = max{34,0} = 34 by Corollary 3.5.8.
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Figure 3.2: A knot with “small” systole and “large” signature.

3.5.2.2 Satellites of composite and fibred knots

Lackenby (Lackenby, 1997) showed that for any composite or fibred knot J, if sd(J) =1

then in fact t(J) = 1. This yields the following corollary for certain satellites of such knots.

Corollary 3.5.10. Let K be a satellite knot such that for every choice of satellite descrip-
tion K = P(J), the winding number of P = QU U is zero, and if Q is unknotted, then the

companion J is either composite or fibred.

If |q| > Q(K), then p/q is a characterising slope for K.

Proof. By assumption, K may be splicifiable with respect to a pair (P, J) only when J is
either a composite knot or a fibred knot. Hence any knot J that contributes to T'(K) has
maximal nullhomologous Rolfsen twist coefficient t(J) = 1 according to (Lackenby, 1997).
Therefore Q(K) >34 > 1> T(K) and we apply Theorem 3.1.8. O

Corollary 3.5.10 provides more examples of knots for which the bound obtained from this
result is an improvement on the bound coming from Theorem 3.1.2. First, we make the

following simple observation.

106



Lemma 3.5.11. Let K be a satellite knot of hyperbolic type. If

- 1237
T Q(K)? —172.68V/3

sys(X)

for every hyperbolic JSJ piece X which is not outermost in S3;, then Q(K) < S(K).

Proof. The hypothesis implies that Q(K) < s(Lx) for every non-outermost hyperbolic JSJ

piece X, where Lx is the link corresponding to X in the satellite construction of K. Hence

Q(K) < S(K). O

This allows us to construct examples where the bound from Theorem 3.1.2 is C(K) = S(K)
but Theorem 3.1.8 gives an improved bound C(K) = Q(K).

Example 3.5.12. Let J be a fibred hyperbolic knot and let K = W (J) be its White-
head double. Applying Corollary 3.5.10, we obtain a realisation of C(K) as Q(K) = 34.
By Lemma 3.5.11, this is an improvement of the realisation obtained by Theorem 3.1.2
whenever

124/3
sys(S3) < V3T 0.0762003.

T 342 — 172.68V/3

For instance, take J to be the fibred pretzel knot P(—2,—77,77) (Gabai, 1986). We have
sys(S3) & 0.0035737 < 0.0762003.

Whilst Corollary 3.5.10 realises the bound C(K) as Q(K) = 34, Theorem 3.1.2 realises
C(K) as max{Q(K), R(K), S(K)} = max{34, 1,136} = 136 > 34.

Example 3.5.13. Let J be the connected sum of two simple knots J; and Jo and let
K = W(J) be its Whitehead double. There are three possible satellite descriptions of
K, each corresponding to a JSJ torus of S%.: W(J), Po(J1) and Py(J2), where P; is the

composing pattern W(J;) UU for i = 1,2. Since the winding number of W is zero, the
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winding number of P; is also zero. Furthermore, the component W (.J;) of P; is knotted.
Therefore K satisfies the conditions of Corollary 3.5.10, and we obtain a realisation of C(K)
as 34. If J; or Js is hyperbolic, suppose that the condition of Lemma 3.5.11 is satisfied.
Then, as in Example 3.5.12; this is an improvement of the bound coming from Theorem

3.1.2.

3.5.2.3 Optimal bounds

The bound from Theorem 3.1.2 is unlikely to be optimal due to the nature of its construc-

tion. However, in some cases the refined bound from Theorem 3.1.8 is truly optimal.

Corollary 3.5.14. Let K be a satellite knot such that for every choice of satellite descrip-
tion K = P(J), K is splicifiable with respect to (P, J). Suppose that T(K) > Q(K).

If |q| > T(K), then p/q is a characterising slope for K and this is the optimal such bound.

Proof. First, observe that 1/7T'(K) is a non-characterising slope for K. Lemma 3.4.4 tells us
that any non-characterising slope with larger denominator would have to correspond to an
orientation-preserving homeomorphism between surgeries which restricts to one between
the surgered pieces. However, if |¢| > Q(K), then no such non-characterising slope can

exist. Hence our bound is optimal when T(K) > Q(K). O

Whilst Q(K) is computable (Hodgson et Weeks, 1994), it is generally harder to find an
explicit value for T'(K). In all of our previous examples, we had T'(K) < Q(K). Suppose
that K = P(J) is a satellite of a simple knot J by a hyperbolic pattern P such that K
is splicifiable with respect to (P,J). If it is known that t(J) > 1, then one can follow
Lackenby’s algorithm in (Lackenby, 2003) to find the exact value of t(J) and hence T'(K).
The following example shows that this can be made arbitrarily high, so that T'(K) > Q(K).
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Example 3.5.15. Let K = W"™(T}") be a multiclasped Whitehead double of a double
twist knot with max{m,t} > 1. Both 1/m and 1/t are non-characterising slopes for K
which can be realised by nullhomologous Rolfsen twists unknotting 77" (Wakelin, sous
presse, Theorem 1.8). Since t(7}") > max{m,t} > 1, we may choose m,n,t such that
T(K) > Q(K) = max{34,q(W")} and we can apply Corollary 3.5.14. For instance, if
n = 1, then for any m,t > 34, we have that T(K) > Q(K) = 34. Thus T'(K), which can

be obtained by Lackenby’s algorithm, is optimal.
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CHAPITRE 4
CALCUL DU COMPLEXE DE FLOER DE N(EUD POUR LES NEUDS
D’EPAISSEUR UN

Le troisiéme article de cette thése, dont le titre original est Computing the knot Floer
complex of knots of thickness one, est divisé en deux volets principaux. Dans le premier
volet, nous présentons ’algorithme de calcul du complexe de Floer de noceud pour les noeuds
d’épaisseur au plus un. Nous y établissons les bases théoriques, dont le Théoréme 6, et nous
décrivons son implémentation dans le logiciel de calcul formel SageMath. Le second volet est
consacré & ’étude des chirurgies de Dehn caractérisantes, en s’appuyant sur I'algorithme
précédemment développé. Nous y décrivons les étapes théoriques et computationnelles

menant au Théoréme 5.

4.0 Abstract

We develop and implement an algorithm that computes the full knot Floer complex of
knots of thickness one. As an application, by extending this algorithm to certain knots
of thickness two, we show that all but finitely many non-integral Dehn surgery slopes are

characterizing for most knots with up to 17 crossings.

4.1 Introduction

Knot Floer homology, introduced by Rasmussen (Rasmussen, 2003) and independently
by Ozsvath and Szabd (Ozsvath et Szabo, 2004), is a knot invariant that has proven to
be effective for studying various topological properties of knots in S2, such as fibredness,
genus and concordance. It can be obtained from a richer algebraic structure, the knot Floer

complex. This complex retains more data about the knot, providing further invariants, some
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of which are particularly useful for the study of Dehn surgeries.

While there are available algorithms for computing knot Floer homology, there is currently
no implemented algorithm that effectively outputs the knot Floer complex of an arbitrary
knot in S3. The grid diagram algorithm of Manolescu, Ozsvath and Sarkar (Manolescu
et al., 2009) has led to a program that calculates knot Floer homology (Baldwin et Gillam,
2012), but the high number of generators it considers makes it impractical for the computa-
tion of the full knot Floer complexes. Another knot Floer homology calculator, developed
by Ozsvath and Szab6 (Ozsvath et Szabo, 2019), uses bordered algebras to provide more
information about the knot Floer complex, but it only yields a quotiented version rather

than the full complex.

In this paper, we present and implement an algorithm that recovers the full knot Floer
complex of any knot of thickness at most one in S3, from the quotiented complex of

Ozsvath and Szabd.

Theorem 4.1.1. The full knot Floer complex of a knot of thickness at most one is deter-

mined by the data of its horizontal and vertical arrows.

The algorithm is grounded in the work of Popovié¢ (Popovié¢, 2025b) who classified the
direct sum components of knot Floer complexes of knots of thickness one. The proof of

this classification has Theorem 4.1.1 as a consequence.

We apply our algorithm to the study of characterizing Dehn surgeries. We show that
for the vast majority of knots with up to 17 crossings, all but finitely many non-integral
Dehn surgeries are characterizing. This supports McCoy’s conjecture asserting the same

statement for all knots (McCoy, 2025, Conjecture 1.1).

Theorem 4.1.2. Out of the 9 755 329 prime knots with at most 17 crossings, at least
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95.79% admit only finitely many non-integral non-characterizing Dehn surgeries.

This result is achieved by computationally verifying an algebraic condition formulated by
McCoy, property SpliFf, concerning the homology modules Ag of the knot Floer complex.
We first identify knots whose knot Floer homology is simple enough to guarantee this
condition, by using McCoy’s previous work for knots of thickness at most one (McCoy,

2025, Corollary 1.4, Proposition 1.6) and the following proposition for thickness-two knots.

Proposition 4.1.3. Let K be a knot of thickness two. Let p be an integer such that
for all s, the knot Floer homology group @d(K, s) 1is non-zero only for gradings d €
{s+ps+p—1s+p—2}

Suppose p € {0,1,2}. If for each k > 0, at least one of the groups ﬁﬁ(k+p(K, k) or
HFK k+p—2(I, k) is trivial, then K and its mirror both satisfy property SpliFf. Therefore,

K admits only finitely many non-integral non-characterizing Dehn surgeries.

We then compute the structure of the modules Az for most of the knots that do not
verify (McCoy, 2025, Proposition 1.6) or Proposition 4.1.3. For thickness-one knots, this
is done by using our algorithm to compute the full knot Floer complex, from which we
extract the modules A;. For thickness-two knots, we adapt the algorithm to recover
sufficient information about the modules A,Jg and apply it to cases within our computational
capabilities. In particular, for all knots with up to 16 crossings, our strategy yields the full
knot Floer complex due to the work of Hanselman who computationally verified, using
immersed curves, that the statement of Theorem 4.1.1 holds for these knots (Hanselman,
2023, Corollary 12.6). We note that Hanselman’s computation also provides a description
of their knot Floer complex, as immersed curves turn out to capture the necessary structure

for these knots.
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Furthermore, our computation showcases the limitations of McCoy’s algebraic condition in
addressing (McCoy, 2025, Conjecture 1.1), with the remaining 4.21% of unresolved cases
providing examples of knots that do not satisfy property SpliFf. Notably, this includes
knots of thickness one, whereas previously identified examples had thickness at least two

(McCoy, 2025, Proposition 3.3(ii), Example 3.4).

4.1.1 Structure of paper

The paper is organized as follows. In Section 4.2, we introduce the algebraic settings in
which knot Floer complexes will be studied. Section 4.3 contains the proof of Theorem
4.1.1. In Section 4.4, we present an overview of the algorithm for computing the knot
Floer complex of knots of thickness at most one. Section 4.5 translates the problem into a
computational framework where the differential map is encoded as a matrix. In Section 4.6,
we show that certain degree constraints reduce the problem to a system of linear equations.
Section 4.7 describes the SageMath implementation of the algorithm. In Sections 4.8, 4.9

and 4.10 we extend and apply our algorithm to study characterizing Dehn surgeries.
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4.2 Algebraic setting

Knot Floer complexes come in a variety of algebraic flavours. We are interested in the full
knot Floer complex, from which all other variants can be derived. This full complex can
itself be described in different algebraic settings. We present two such settings and we show

that the data they encode is equivalent.

4.2.1 Basic construction

We first recall the basics of the construction of a knot Floer complex. From a knot K in
S3. we obtain a doubly pointed Heegaard diagram H = (¥, o, 8, w, 2), where ¥ is a genus-g
surface, o and (3 are sets of g curves on Y. and w, z are the two basepoints. A knot Floer
complex for K associated to H is generated by T, NTg = (a1 X ... X ag) N (1 X ... X By)
in the g-fold symmetric product Sym?(3). The differential of a knot Floer complex counts
certain representatives of Whitney discs ¢ € ma(x, y) between two generators z,y € ToNTg,

and their intersections with certain auxiliairy submanifolds associated to the basepoints.

In this section, we will assume that any knot Floer complex mentioned refers to a fixed
knot K and is obtained from a fixed Heegaard diagram H for K. The knot Floer complex
is an invariant of K up to filtered chain homotopy equivalence and does not depend on the
choice of H. Therefore, instead of writing CFK°(H) for instance, we may simply write

CFK>(K).

4.2.2 Knot Floer complex as an F[U, U ~!]-module

We now recall the classical presentation of the knot Floer complex CFK*(K) as an
F[U,U~']-module from (Ozsvath et Szabo, 2004), a knot invariant up to filtered homo-

topy equivalence. F denotes the field with two elements and U is a formal variable. Let
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CFK~(K) be the chain complex generated by T, NTg over the ring F[U] with differential
given by
dv= > Y #M(g)/R)- Uy,

yETNTg pema(z,y)
m(¢)=1

where M (¢) is the moduli space of holomorphic representatives of the Whitney disc ¢, p(¢)
is the expected dimension of M(¢), and n,,(¢) is the algebraic intersection number of ¢ with

{w} x Sym9~(X). The chain complex CFK*®(K) is defined as CF K~ (K) Qp FIU, U

We may visually depict a representative of CFK*(K) in a Z @ Z lattice as follows. An
element U'z, z € T,NTg, has position (—i, A(U'x)), where A(U'z) is the Alexander grading
of Uz. We have in fact A(U'x) = A(x) — i, so all elements U'x,i € Z are represented on

a diagonal line of slope 1 intersecting the vertical axis at A(x). If there is a Whitney disc

¢ € ma(x,y), u(¢) =1, then A(U'z) — A(U'y) = n=(¢) — nw(9).

Homogeneous elements of CFK*(K) are endowed with an additional grading called the
Maslov grading. The action of multiplication by U, modifies this grading by —2, i.e.
M(Utz) = M(z) — 2i. If there is a Whitney disc ¢ € m2(z,y), u(¢) = 1, then M (U'x) —
M (Uly) = 1—2n,(¢). Thus, the differential lowers the Maslov grading by 1, making it the
homological degree on CFK>(K). Therefore, we may interchangeably use grading and

degree to refer to the Maslov grading.

Arrows are drawn between generators to indicate the differential. Arrows are said to be
horizontal, vertical or diagonal with respect to this visual representation. The position of
an element in the Z$ Z lattice indicates its filtration level, with respect to the partial order
on Z @ 7Z given by

(i,4) < (@,j") <= i<i and j < j',

with a strict inequality if 7 < ¢’ or j < j'.
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The filtered chain homotopy class of CFK*(K) can be represented by a reduced chain
complex (see for instance (Hedden et Watson, 2018, Section 2.1)). Let x and y be generators
of a reduced representative (C,d) of CFK>(K) such that U*y has non-zero coefficient in
d(U'z). Since the differential d strictly lowers the filtration, we have U*y < U’z. Therefore,
—k < —iand A(y) — k < A(z) — i, where —k < —i or A(y) — k < A(z) —i.

X0 U71,772
U_213
T 2
Uz o< U x5
T2 U71$3
¥ o 772
.
Uz b 1 U= “xg
< U T4
-1
U2{L'0 UIQ U x5
€3

U2I1 €

Uxy e e

Figure 4.1: The complex CF K> (K) for the (2, —1)-cable of the left-handed trefoil

423 Knot Floer complex as an F[u, v]-module

We also recall the presentation of the knot Floer complex CF Ky, ,(K) as an Flu, v]-
module, also a knot invariant up to homotopy equivalence, as introduced in (Zemke, 2017)
and summarized in (Hom, 2020). As before, F is the field with two elements and w, v are
formal variables. The ring F[u, v] is bigraded by a u-grading gr, and a v-grading gr, such

that (gru(u), gre(u)) = (=2,0) and (gru(v), gre(v)) = (0, —2). The complex C'F Ky, ) (K)
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is generated by T, N Tg over F[u, v] and the differential is given by

o= Y, Y #(M(Q)/R) ur @y,
YETaNTy $Ema(z,y)
n(@)=1

A representative of C'F Ky, (K') admits a decomposition into direct summands A (K), s €
7, consisting of all F-linear combinations of elements u‘v/z,z € Ty N Tg,(i,j) € Z @ Z,
that have A-grading s € Z, where A(u‘v/z) = (gry(v'v/z) — gry(u'v’/z)) /2. The A-grading
A(z) of a generator x € T, N Ty agrees with its Alexander grading A(x). Since the
action of multiplication by u modifies the u-grading by —2 and the multiplication by v
leaves it untouched, and vice versa for the v-grading, we have gry(u'v/z) = gr,(z) — 2i
and gr,(u'v/z) = gry(x) — 2j. The u-grading of u’v/z agrees with the Maslov grading of
Ulz € CFK®(K) described above.

In a visual representation of As(K) for some s € Z, an element u'v/z,z € T, N Ty has
relative position (—i,—j) in the Z @ Z lattice. Arrows are drawn between generators to
indicate the differential. This complex has an implicit filtration given by the powers of u
and v, since by definition, the differential always increases these powers. This agrees with
the partial order on Z @ Z mentioned above. We may extend this visual representation to

the tensor product As(K) ®p(yy) Fluv, (uv)~1], which we denote by CFKg, S(K).

4.2.4 Equivalence between algebraic settings

The two algebraic settings contain the same information for a given knot, as given by the

next proposition.

Proposition 4.2.1. (Zemke, 2017, Section 1.5) Let CFKS® . (H), s € Z and CFK*(H)

F[u7v] 75

be representatives of C’FK]?[”U J S(K) and CFK>(K) respectively, obtained from the same

Heegaard diagram H. Then each complex CFKICFTH o] J(H), s € Zisisomorphic to CF K> (H)

by an isomorphism that respects both the filtration up to translation and the F[U,U1]-
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Figure 4.2: The complex CFK, o(K) for the (2, —1)-cable of the left-handed trefoil

module structure, by setting U = uwv.

Proof. We define a map ¢, : CFKg), J(H) = CFK®*(H) in the following way.

Let z € T, N Ty, so that x is a generator of both CF Ky, ) (H) and CFK*(H). Set
os(uiviz) = Ulz. We show that ¢, is a U*!-equivariant filtered chain isomorphism realizing

the proposition.

1) s is injective:

For a fixed i, there is only one possible power j of v such that u‘v/z € CF Kﬁu . J(H),
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i.e. A(u'v/z) = s. Indeed,

s = A(u'v/z)
= (gru(u'vz) — gry(u'v’z)) /2
= (gru(z) — 2i — gry(z) +2j)/2

= (1 —1) + Ax)
implies that —j = A(z) —i — s.

2) s is surjective:

An element Uz € CFK™(H) has antecedent u'v'~ 4@z € CFK | (H).

Flu,v],s
3) s preserves the filtration up to translation:

The element uivsTi=4@) g ¢ CFKR, . .(H) and its image U’z € CFK>(H) have

respective filtration levels (—i, A(x)—i—s) and (—i, A(z)—1i). Therefore, ¢, translates

filtration levels by (0, s).

4) @y is U -equivariant:

We have ¢4 ((uv)T! - ulviz) = g (uiFloi*ly) = UFly = U . Uly = UFlp (v’ ).

5) s is a chain map:

By definition of the differentials, we have

ws(dmu,v]u"vjx):sos< >y #(M(¢)/R)-ui+"w<¢>vﬂ'+nz<¢>y>
yETaNTg pema(z,y)
p(o)=1

_ Z Z #(M(¢)/R).@S(ui+nw(¢)vj+nz(¢)y)
yeTamTB ¢€7T2 (‘T?y)
u(p)=1

= Y Y HME)/R) Uy
y€ETaNTg pem2(z,y)
n(d)=1

= d(U'z)
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- dF[u,v]‘PS(uinx) [

Applying the reduction lemma of (Hedden et Watson, 2018, Section 2.1) in a mirrored way
to CFK]g[Ouw],S(H) and CFK>(H), we obtain from Proposition 4.2.1 a U*l-equivariant
filtered chain isomorphism ¢, : Cs — C between reduced representatives of C'F Kﬁ’um]ﬁ(K )
and CFK*(K) respectively. We can recover the (reduced) summands As(K) of CF Ky,
from CFK>(K) by restricting ;! to elements with filtration (i, j) < (s,0).

4.2.5 Thickness

Both algebraic settings contain the data of the knot Floer homology fTFT{(K) of the knot:
on one hand, fﬁ?((K) = OF Ky (K)/(u,v) and on the other hand, Ijﬁf(K) is the
homology of the associated graded complex of CFK~(K)/U. Reduced representatives of
CFKply) and CFK*(K) have generating sets that are in bijection with the generating
set of HFK (K). We denote by HFEK (K, a) the knot Floer homology of K in Alexander
grading a.

The thickness of a knot K is defined from fTFT((K) = @aezﬁ((K, a).

Definition 4.2.2. The thickness of a knot K is the number

th(K) = max{|(M(z) — A(x)) — (M(y) — A(y))|, z,y generators of ﬁﬁ((K)}

A low thickness imposes constraints on the possible arrows representing the differential
map. We will apply these constraints in the next section, where we focus on knots of

thickness one.

120



4.3 Chain homotopy equivalence of lifts

4.3.1 Horizontal and vertical arrows

The algorithm of Ozsvath and Szab6 mentioned in the introduction outputs the quotient
of a reduced representative of CF Ky, ,)(K) by uv, for any knot K given as input (Culler
et al., 2024). From now on, we will assume that all chain complexes mentioned are reduced.
In this subsection, we recall how the horizontal and vertical arrows of the full complex

CF Ky, (K) are captured by this quotiented complex for any knot K.

Proposition 4.3.1. Let (C, d) be a reduced representative of CF Kgy, ) (K). Then (C,d)/(uv)
is obtained from the data of the horizontal and vertical arrows of (C,d). Conversely, the

)
data of the horizontal and vertical arrows of (C,d) is contained in (C,d)/(uv).

Proof. Let x be a generator of C. The differential of [z] in (C,d)/(uv) is given by

[da] = > ey [uoivy)
y generator
of C

for some ¢, € F and iy, j, > 0 € Z. If i, and j, are both non-zero, then [u®v/vy] = 0 and

therefore

W= X (Tl X abml).
y generator * j,=0 iy=0

textofC
which is precisely the data of horizontal and vertical arrows leaving x in (C, d).

Since C' is generated over F[u,v], this also gives the data of horizontal and vertical arrows

leaving u“v’z for all i,j € Z. O

Note that, due to the isomorphism from the discussion following Proposition 4.2.1, the
arrows of the quotient complex (C,d)/(uv) also provide the data of the horizontal and

vertical arrows of a reduced representative of CF K> (K).
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To recover the full knot Floer complex from (C, d)/(uv), we need to find a lift of (C, d)/(uv)
to a chain complex (C’,d’) over F[u,v] which is chain homotopy equivalent to (C,d). By
Proposition 4.3.1, if this lift (C”,d’) is reduced, we know that it must contain the same

data of horizontal and vertical arrows as (C, d).

4.3.2 Chain homotopy equivalence

The lifts of (C, d)/(uv) to complexes over F[u, v], for representatives (C, d) of CF Ky, ,)(K),
may belong to distinct chain homotopy classes. However, when the thickness of K is at

most one, all such complexes are in fact equivalent.

Theorem 4.3.2. Let K be a knot of thickness at most one and let (C,d) be a reduced
representative of CF Ky, ) (K). Then all lifts of (C,d)/(uv) to a reduced complex over

Flu,v] are isomorphic.

Theorem 4.3.2 combined with Proposition 4.3.1 immediately implies Theorem 4.1.1.

Theorem 4.1.1. The full knot Floer complex of a knot of thickness at most one is deter-

mined by the data of its horizontal and vertical arrows. ]

The case of thickness zero in Theorem 4.3.2 is trivial since all representatives of C F Ky, ) (K)
contain only horizontal and vertical arrows. In particular, Petkova showed that the chain
homotopy class C'F Ky, (K) of a knot of thickness zero is determined by the knot’s
Alexander polynomial and 7 invariant (Petkova, 2013, Theorem 4). For knots of thickness

one, this is a consequence of the proof of the following result of Popovié.

Theorem 4.3.3. (Popovi¢, 2025b, Theorem 1.1) Let K be a knot of thickness one. Then
CF Ky (K) splits uniquely as a direct sum of an Flu, v]-standard complex of thickness at

most 1 and trivial local systems, each of which belongs to a specific set of systems L.
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The F[u, v]-standard complex of Theorem 4.3.3 is an [F[u, v]-realization of a standard com-
plex as originally defined in (Dai et al., 2021, Definition 4.3). The exact description of the
local systems in £ can be found in the statement of (Popovi¢, 2025b, Theorem 1.1), but

the key property of L relevant to our purposes is the following.

Proposition 4.3.4. (Popovi¢, 2025b, Proposition 4.11) Let C' be a chain complex over
Flu, v] of thickness one and let L € L be a local system such that C/(uv) = L/(uv)®A/(uv)
for some Flu,v]-chain complex A. Then C = L & A.

Proof of Theorem 4.3.2. Let K be a knot of thickness one. Let (C,d) be a representative
of the chain homotopy class of C'F Ky, , and let (C’,d’) be a lift of (C,d)/(uv) over Flu, v]

at the level of chain complexes. Note that C' = C' as bigraded F[u, v]-modules, so we may

write (C,d') = (C',d).

We decompose the differential map d into d = H4+V 4D, where H,V and D are respectively

the horizontal, vertical and diagonal arrows of d. Let dy, = H + V. Similarly, we write

d=H+V'+D andd,, =H + V.

Since (C,d)/(uwv) = (C,d")/(uv), we have d, = d.,, by Proposition 4.3.1.

The splitting of Theorem 4.3.3 is realized by a change of basis P such that (C, PdP~1) is
a direct sum as in the statement of Theorem 4.3.3 (see proofs of (Popovié¢, 2025b, Lemmas
4.12, 4.13 and 4.14)). Restricting d to dy,, we have that (C, Pd,,P~!) is a direct sum of
a standard complex of thickness at most one and local systems from £ with the diagonal

arrows removed.

Thus, by Proposition 4.3.1, both (C, PdP~')/(uv) and (C,Pd'P~')/(uv) are isomorphic
to the same direct sum Ly /(uv)@...® Ly /(uwv) & S/(uv), k > 0, where L; € L,i=1,...,k,
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and S is an F[u, v]-standard complex of thickness at most one.

By (Popovié¢, 2025a, Algorithm 3.12), the quotiented standard complex S/(uv) has a unique
lift over F[u,v]. Applying Proposition 4.3.4 inductively on the number & of local systems
in the direct sum, we obtain the isomorphism (C, PdP~1) = (C, Pd'P~1). Performing the
change of basis P~! yields the isomorphism (C,d) = (C,d’) as desired. O]

4.4 Finding a lift: an overview

In this section, we give an overview of our method to find a lift of CF Ky, .)(K)/(uv) for
knots of thickness one, which we will detail in the following two sections. By Theorem
4.3.2, this leads to an algorithm that determines the full knot Floer complex of knots of
thickness one. For computational reasons, we pass to the setting of CFK*(K) over the

ring F[U, U 1], for which we only need to consider a single formal variable U.

Algorithm 4.4.1 CFK*(K) for knots of thickness <1
Input: Knot K with th(K) <1

Output: Filtered homotopy representative of CFK*(K)

The main goal is to construct a chain complex C = (C,d) over F[U,U~!] such that
03 1(C)/(uv) ~ CFER, J(K)/(uv) for all s € Z. Here ;! are the isomorphisms from

the discussion following Proposition 4.2.1. We say that such a complex C is a lift of

CFKIF[u,v] (K)/(UU)

Since the F[U,U~!]-module C' and the vertical and horizontal arrows of the differential d
are known from Ozsvath and Szabd’s algorithm, we only need to find the diagonal arrows

of d.

The first main step is to encode the differential map as a matrix. We construct a matrix
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dyar that contains the data of the known vertical and horizontal arrows, along with entries
consisting of unknown variables for possible diagonal arrows, considering constraints given
by the Alexander and Maslov gradings. This step does not depend on the thickness of the

knot and is described in Section 4.5.

The second main step is to determine a value in F[U, U] for each unknown variable in
the matrix dyq- such that the condition d?,, = 0 of a chain complex is satisfied. We thus
rewrite d2,, = 0 as a set of equations to be solved. By construction of dyq, a solution
to these equations will yield a chain complex C = (C,d) that respects the filtration and
degree constraints expected for a knot Floer complex. The complex C also has the same
data of horizontal and vertical arrows as a reduced representative of CF Ky, (K)/(uv),
making it a lift of C'F Ky, . (K)/(uv). A key point for the computational feasibility of our
algorithm is that, for thickness one knots, the equations coming from d?,, = 0 are always

linear. This is demonstrated in Section 4.6. A solution is then obtained by basic linear

algebra, giving the desired lift of C'F Ky, ,(K)/(uv).

4.5 Matricial representation

Our first main step is to encode the differential map d as a matrix with placeholders for
the unknown entries. The F[U, U~ !]-module underlying CFK>(K) is generated by the
generators xg, T1,...,ZTn_1 of I-TFT((K) over F[U,U~1]. Thus, d can be represented by an
n x n matrix with values in F[U, U~!]: the (4, 7) entry of this matrix is the coefficient a; ;
in d(z;) = 2?2_01 a; jz;. In fact, since d respects the filtration, all entries a; ; take values in

F[U]. From now on, we will denote both the differential and its matrix by d.
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4.5.1 Entries for horizontal and vertical arrows

We decompose d into d = H +V + D, where H,V and D are respectively the horizontal,

vertical and diagonal arrows of the differential.

We recover the matrix H + V using the output from Ozsvath and Szabd’s algorithm for
computing CF K, ,)(K)/(uv). It provides us with the generators zg,z1,...,7,-1 and
their Maslov and Alexander gradings, and tells us if H + V has an arrow from z; to
Ukx; for some power k > 0. Since the differential lowers the Maslov grading by 1 and

multiplication by U lowers the Maslov grading by 2, we have
M(U*z;) = M(x;) — 2k = M(z;) — 1.

Therefore, if Ozsvath and Szabd’s algorithm indicates that there is an arrow from a x; to

Uk x; for some power k > 0, we set the (4,7) entry of the matrix H + V to be

aij = U M(zi)=M(z;j)+1)/2

4.5.2 Entries for possible diagonal arrows

Next, we find pairs of generators of CF K°°(K) that may be connected by a diagonal arrow.

We consider how a differential map affects the Maslov and Alexander gradings.

A diagonal arrow from x; to U kg for some power k > 1 must meet the conditions

M(U*z;) — M(zj) = —1 and A(z;) — A(zj) < k. Thus, for every (i, j) such that

(D1) (M (x;) — M(zj)+1)/2>1 and

(D2) (M(xi) — M(x;) +1)/2 > Az:) — A(x),

there could be a diagonal arrow from z; to U kai,j, where
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(D3) k= (M(x;) — M(z;)+1)/2.

We construct a placeholder matrix D,q, in the following way. If (i,j) satisfies both (D1)
and (D2), then the (i,7) entry of Dygp is U kam, where a; ; is an unknown variable with
values in F and k is as in (D3). Otherwise, the entry is zero. We then form the matrix
dyar = H +V + Dyq, with entries in F[U][{a;; | (4,7) verify (D1) and (D2)}]. We now
want to find the values of a; j for which dyq, is a differential map for the F[U, U ~1-module

underlying CFK*(K).

4.6 Solving for d*> =0

Setting d7,, = 0, we obtain equations [d2,]r; = 0, for each (k,I) € {0,...,n — 1},
where the variables a;; are the unknowns. Finding these solutions is in general compu-
tationally challenging as the equations may involve degree-two polynomials in the ring
Fl{a;; | (i,j) verify (D1) and (D2)}], with a number of variables a;; that can be quite
large. However, it turns out that for knots of thickness one, the system [d2,.]x; = 0

consists only of linear equations, which can be solved easily with basic linear algebra.

4.6.1 Consecutive diagonal arrows

While the methods of Section 4.5 can be applied to any knot, we now restrict our study to
knots with low thickness to obtain further constraints on the possible diagonal arrows. The
goal of this subsection is to show that given certain degree conditions on HFK (K), there

cannot be consecutive diagonal arrows in a reduced chain complex representing CF K*°(K).

Proposition 4.6.1. Suppose K is a knot of thickness at most two such that @(K, a)
1s supported in at most 2 degrees for all a € Z. Then dygr = H +V + Dyar as constructed

above is such that D2 . = 0.

var
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Note that, by the definition of thickness, knots of thickness at most one verify the condition
of Proposition 4.6.1. Although Algorithm 4.4.1 focuses on this case only, the more general

statement of Proposition 4.6.1 will be applied in later sections.

Under the condition that the thickness is at most two, we obtain the next three lemmas
concerning the Alexander and Maslov gradings of generators connected by a diagonal arrow.

We will then use the condition on the support of OFK (K) to prove Proposition 4.6.1.

Lemma 4.6.2. Suppose K is a knot of thickness at most two and let Ukai,j be a non-zero

entry in Dyqr. Then |A(x;) — A(x;)] < 1.

Proof. Suppose A(x;) — A(z;) > 2. Then (D3) and (D2) yield

M(z;) — A(xi)

M(zj) + 2k — 1 — A(x;)

v

M(x;) + 2(A(xi) — Azj) +1) — 1 — A(;)
M(zj) -

v

A(xj)+3

which implies that K has thickness at least three.

Suppose A(zj) — A(z;) > 2. Similarly to the argument above, we obtain
M(x;) — A(zy) = (M(zj) + 2k — 1) — A(zy)
> M(zj)+1— A(zj) + 2

> M(z;) — A(z;) + 3. O

Lemma 4.6.3. Suppose K is a knot of thickness at most two and let Ukai,j be a non-zero
entry in Dyqr. Let n = A(z;) — A(zj). Then n € {—1,0,1} by Lemma 4.6.2 and k = 1

when n=—1 or0, and k =2 whenn = 1.

Proof. We have M (x;)—A(x;) = M(x;)+2k—1—A(x;)—n, which implies that 2k—1—n < 2,
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hence k < (3+mn)/2. Since k > 1, replacing the value of n with —1,0 or 1 in k& < (3+17)/2
gives the result. O

Lemma 4.6.4. Suppose K is a knot of thickness at most two and let Ukai,j be a non-
zero entry in Dyqr. Then M(xz;) — A(x;) = M(xj) — A(xj) + 2 when n =1 or —1, and
M (z;) — A(z;) = M(xj) — A(zj) + 1 when n = 0.

Proof. Replace k and n in M (x;) — A(z;) = (M(x) + 2k + 1) — (A(z;) + n) by the pairs

given by Lemma 4.6.3. 0

Proof of Proposition 4.6.1. Suppose that D2, # 0. This means that there are non-zero
entries Uklaj’k and Uk2am- in D4, that contribute Uk1+k2ai7jaj,k. to a non-zero entry of
Do, # 0.

If A(xp) # A(xj) or A(zj) # A(x;), then by Lemma 4.6.4, (A(xy) — M(x)) — (A(z) —
M(x:)) = (Alwx) — M(xx)) — (Ala;) — M(a)) + (Alay) — M(ay)) — (Ala) - M(zy)) > 3,

which contradicts the thickness of K being at most 2.

If A(zy) = A(z;) = A(z;), then by (D3) we have M (x;) = M(x;) +2ky — 1 = M(x;) + 1
and M(z;) = M(x) +2k1 — 1 = M(xy) + 1. Hence, the knot Floer homology of K in
Alexander grading A(zy) = A(x;) = A(x;) is supported in at least 3 distinct degrees, a

contradiction. O

4.6.2 Linear system of equations

We now return to the setting of dyq, and translate the problem of finding lifts of CF' Ky, ) (K)/(uv)

into a system of linear equations.
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Proposition 4.6.5. Suppose K is a knot of thickness at most two such that ITF?((K, a)

2

Sar GT€ polynomials of

is supported in at most 2 degrees for all a € Z. Then the entries of d

degree at most one in the variables a; ; over F[U].

Proof. By Proposition 4.6.1,

d?}ar - (H ‘l‘ V + Dva'r‘)2
= (H +V)?*+ (H + V)Dyar + Dyor(H + V) + D2,

= (H+V)?+ (H + V)Dyar + Dyar(H + V).

The result follows from the fact that (H + V) has entries in F[U], for which the variables
a;; have degree zero, and D, has entries of the form U kam, where the variables a; ; have

degree one. O

2

We may view the entries of dj,,

as polynomials in U with coefficients in F({a;;}). By

2
var

setting dZ,,. = 0, we must have that each coefficient ) a;, j, of a power of U is equal to
zero. We thus obtain a linear system of equations £ = {}_ a;, j, = 0} over F where the
variables a;; are the unknowns. This system can be represented by a matrix equation

Aa = b where a is the vector of variables a; ; to solve for.

Given a solution a = ag, we replace its values into the corresponding entries of D, to
obtain a matrix Dy = Dygr(ag). We then build the differential complex Cy = (C,dy = H +
V +Dy), where C = HFEK (K)®F[U, U] is the F[U, U~!]-module underlying CFK*(K).
By Theorem 4.3.2 and Proposition 4.2.1, the complex Cy is a representative of CF K> (K)

if K has thickness at most one.
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4.7 Implementation

The previous discussion has been implemented in SageMath, utilizing SnapPy (Culler et al.,
2024) as an imported package. SnapPy is used to input the data of a knot, via its integrated
census or a planar diagram, and for calling upon the method knot_floer_homology, an

implementation of Ozsvith and Szab¢’s algorithm, to obtain the data of CF Ky ,)/(uv).

SageMath can generate polynomial rings and handle symbolic computations over them.
This allows us to extract the equations to be solved over the ring F[U], as described in

Section 4.6.2, and to translate them into a matrix equation Aa = b over F.

To obtain a solution to the matrix equation Aa = b, we use SageMath’s matrix equation

solver solve_right which implements Gaussian elimination over F.
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Algorithm 4.4.1 CFK*(K) for knots of thickness <1

Input: Knot K with th(K) <1

Output: Filtered homotopy representative of CFK*(K)

1:

Obtain CF Ky ,)/(uv) and HFEK via the knot_floer_homology (complex=True)
method

. Let {zg,...,2n—1} be the generators of HFEK

Generate the matrix H +V € M, (F[U]) of horizontal and vertical arrows from
CF K/ (w0)
Initiate a zero n x n matrix D,,- and populate it
fori,j €{0,...,n—1} do
if (i,7) satisfies (D1) and (D2) then set [Dyar]i; = U*a; ;, where k is as in (D3)
end if
end for

Generate the matrix equation Aa = b

e Obtain a set of expressions E from the F({a; ;}) coefficients of non-zero entries of

the matrix (H + V + Dyg,)?

e Let A be the matrix with each row consisting of the F coefficients of the a; ; for

an entry in B
e Let b be the vector of constant terms for each element in £
e Let a be the vector of unknown variables a; ;

Find a solution ag via solve_right
Get a matrix Doy = Dyar(ao)
Construct a chain complex Cy = (C,dy = H +V + Dy), where C = HFK Q@ F[U,UY.

return Cg
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4.8 Finiteness of non-integral non-characterizing slopes: an overview

As an application of Algorithm 4.4.1, we investigate the set of characterizing slopes for knots
in S3. A Dehn surgery slope is said to be characterizing for a knot K if the orientation-
preserving homeomorphism type of its p/g-Dehn surgery S3(p/q) determines K up to
isotopy. That is, if there is some knot K’ such that S3.(p/q) = S3-(p/q) via an orientation-
preserving homeomorphism, then K’ = K. Baker and Motegi asked whether a non-integral
slope p/q is characterizing for a hyperbolic knot when |p| + |g| is sufficiently large (Baker
et Motegi, 2018, Question 5.6). This naturally leads to the question of whether the same
holds for any knot in S3.

Conjecture 4.8.1. (McCoy, 2025, Conjecture 1.1) Let K be a knot in S3. Then all but

finitely many non-integral slopes are characterizing for K.

Conjecture 4.8.1 has been shown to hold for thickness-zero knots, L-space knots (McCoy,
2025, Corollary 1.4) and composite knots (Sorya, 2024, Theorem 2). In this paper, we
restrict our attention to prime knots of thickness one and two, and show the conjecture to

be true for the vast majority of prime knots with at most 17 crossings.

Theorem 4.1.2. Qut of the 9 755 329 prime knots with at most 17 crossings, at least

95.79% admit only finitely many non-integral non-characterizing Dehn surgeries.

4.8.1 Property SpliFf

A key result towards Theorem 4.1.2 is a sufficient condition on the knot Floer complex
CFK*(K) formulated by McCoy, which guarantees that the conjecture holds for a given
knot K. Let Cf;>0v;>k) be the quotient complex of CF' K *°(K) represented by homogenous
elements with Z @ Z filtration satisfying ¢ > 0 or j > k, and denote its homology by A;.

Let Fy denote an F summand supported in grading d.
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Definition 4.8.1. (McCoy, 2025, Definition 1.5) A knot K has property SpliFf if for all
k € Z, the graded F[U]-module A} admits a direct sum decomposition of the form

Al =AeF;) @Fy, (4.1)
where ny,n1 > 0, dy is odd, ds is even and the F[U]-module A" does not contain a summand

whose elements are all killed by the U-action.

Theorem 4.8.2. (McCoy, 2025, Theorem 1.2, Theorem 1.3) Let K be a knot in S® such
that both K and its mirror have property SpliFf. Then all but finitely many non-integral

slopes are characterizing for K.

Recall that A;; admits a decomposition A" = T_ov, @ Azed for some integer Vi > 0, where
T4 = F[U,U1]/UF[U] and 1 has grading d. Since T_oy, contains elements that are not
killed by U, and since there is an even grading shift Azed = Aiekd [—2k], showing that Azed

decomposes as in (4.1) for all k& > 0 is equivalent to saying that K has property SpliFf.

Theorem 4.1.2 is thus obtained by computing the complexes A};ed, k > 0, for knots and
their mirrors, and verifying whether they satisfy property SpliFf, i.e. they decompose as
in (4.1).

4.8.2 Summary of results

4.8.2.1 Thickness-one knots

We  applied  Algorithm 4.4.1 to all knots obtained from  SnapPy’s
NonalternatingKnotExteriors iterator for prime knots with up to 16 crossings and most

knots in Regina’s database (Burton, 2020) of prime knots with 17 crossings.

Combining the output of Algorithm 4.4.1 and McCoy’s work on the structure of the modules
A,j of thickness-one knots (McCoy, 2025, Section 3.3), we determine whether property
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SpliF'f is satisfied for each of the 437 982 prime thickness-one knots with at most 16 crossings
and their mirrors, and for 2 367 449 of the 2 516 641 prime thickness-one knots with 17
crossings and their mirrors. We found that 2 196 093 pairs of such knots and their mirrors
have property SpliFf, thus verifying the conjecture for 87.9% of prime thickness-one knots
with at most 17 crossings. In particular, Conjecture 4.8.1 is solved for all prime knots up
to 11 crossings, and all but 6 prime knots with 12 crossings, listed in Table 4.1 along with
their A};ed module which fails to have property SpliFf.

Knot k A};Ed

12n67 0 FooF3
mi2n89 0 FyoF3
mi2n134 0 Fo®F3
mi2n229 0 Fo®F3
mi2n244 1 Fy @ Ty
mi2n639 0 Fo® F3

Tableau 4.1: Knots with 12 crossings for which Conjecture 4.8.1 remains unresolved

4.8.2.2 Thickness-two knots

We also extended the strategy of Algorithm 4.4.1 to thicker knots and check whether prop-
erty SpliFf is satisfied for certain knots of thickness two. To do this, we first establish
thickness-two analogues of McCoy’s results on the structure of the modules AZF. In par-
ticular, Proposition 4.1.3 gives a condition on the knot Floer homology HFK (K) of a
thickness-two knot K that guarantees that it has property SpliFf.

We then apply the extended algorithm to all thickness-two knots with up to 16 crossings
and certain thickness-two knots with 17 crossings. Table 4.2 provides a breakdown of the

number of thickness-two knots up to 16 crossings according to whether both the knot and
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its mirror satisfy property SpliFf, or whether at least one of them does not.

Crossings | K and mK SpliFf K or mK non-SpliFf
13 3 0
14 32 9
15 256 193
16 2058 2578

Tableau 4.2: Thickness-two knots up to 16 crossings and property SpliFf

For knots with 17 crossings, 1489 of the 1634 thickness-two knots for which we were able
to compute the structure of the modules A; verified property SpliFf. The large number of
complexes to generate prevented us from carrying out the computation for the remaining
49 675 thickness-two knots with 17 crossings. This computational limitation, along with
the empirical observation that the proportion of knots satisfying property SpliFf decreases
as the number of crossings increases, suggest that another strategy must be considered to

solve Conjecture 4.8.1 for an arbitrary knot.

Combining all this with the fact that thickness-zero knots always have property SpliFf
(McCoy, 2025, Proposition 1.6) and that all but 7 knots with at most 17 crossings have

thickness at most two, we obtain the computational result stated as Theorem 4.1.2.

4.8.3 Organization towards Theorem 4.1.2

Sections 4.9 and 4.10 detail the theoretical results and computational methods required
to establish Theorem 4.1.2. Their content is organized as follows. We first explain our
strategy to compute Azed for knots of thickness one in Section 4.9. We then develop the
case of thickness-two knots in Section 4.10. We analyze the structure of their modules Az

in Subsection 4.10.1, and in Subsection 4.10.2, we prove Proposition 4.1.3. In Subsection
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4.10.3, we explain how Algorithm 4.4.1 was extended to compute the modules Azed for

certain thickness-two knots, and thus obtain the statement of Theorem 4.1.2.

4.9 Finiteness of non-integral non-characterizing slopes: thickness one

4.9.1 Computing A;

Recall that T; = F[U,U '] /UF[U] where 1 has grading d. Let T;-|<4+ denote the submod-

d=—dt+e)/2 ;
)

ule of T;- generated by U ie.

To-l<a+ ={0,1, U, U2, .. Ul —dT /2y

where € = 0 if d* is even and 1 if d* is odd. If d* < d~, then T;-|<4+ = 0. Otherwise,
the element 1 has degree d~ and U4~ —dT+)/2 hag degree d™ — €. In other words, it is the

truncation of the tower 7 = F[U, U~!] with lowest degree d~ and highest degree d* — e.

Our main object of interest, the F[U]-module A;:, is the homology group of the complex
Cli>ovj>k}, represented by homogeneous elements of C'F'K°°(K') whose Z&Z filtration level
(i,7) satisfies ¢ > 0 or j > k. This complex has has infinitely many generators when seen
as an F-module, which makes it unpractical for computational manipulation. To address
this, we consider instead the quotient complex Cy;cgnj>k}, represented by homogenous
elements of CFK*°(K) whose Z & Z filtration level (7, j) satisfies ¢ < 0 and j > k. This has
finitely many generators as an F-module, so it is well suited for computational encoding.
Its homology is related to A; by an F[U]-module isomorphism (see the proof of (Gainullin,
2017, Lemma 29) or (Ni et Zhang, 2014, Lemma 3.2(i)))

Hy(Cpiconjzry) = Toavy|<—2 ® A% (4.2)

We do not know a priori which components of the F[U]-module H.(C{j<onj>k}) are mapped

to A7°? under this (non-canonical) isomorphism.
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The following structural lemma will allow us to recover enough information about Az from

H.(C{iconj>ky) to conclude whether A} has property SpliFf.

Lemma 4.9.1. (McCoy, 2025, Lemma 3.14) Let K be a knot of thickness one. Let p
be an integer such that for all s, the group Iﬁ’?{d(K, s) is non-zero only for gradings
de{s+p,s+p—1}. Then for all k > 0, there exist integers a,b > 0 such that A;‘ takes

the following form

+ a b
Ak - Tmin(O,k—i—p—l:I:s) D Bk|§k+p—2in D Fker,l 7 Fk+p727

where € = 0 if k + p — 1 is even and 1 otherwise, and n = 0 if k + p — 2 is even and 1

otherwise.

Corollary 4.9.2. Let K be a knot of thickness one and p,e,n be as in Lemma 4.9.1. Then

H,(Cliconjzky) = Tmin(0,k+p—146) <=2 ® Takl <hap—oin OFf, | ®Fh, o

for all k € Z and K has property SpliFf if and only if H.(C{iconj>p—3}) has property
SpliFY.

Proof. The isomorphism is a direct consequence of combining (4.2) and Lemma 4.9.1.

Next, we observe that if the even number among k+p—1 and k+ p— 2 is greater than zero,
then a component of H.(Cfi<orj>k}) is mapped by (4.2) into Azed unless it is supported

in negative even degrees.

By (McCoy, 2025, Lemma 3.15), K may fail to have property SpliFf only if p > 3 and
A;_?) does not have property SpliFf. In this case, k+p—1=2p—4 and thus k+p—2 =
2p — 5 are always greater than zero, 80 Tiin(0,k+p—1+¢)l<—2 = To|<—2 is trivial. Therefore,
H. (Cliconjzp-3y) = A;e_dg, and K has property SpliFf if and only if H.(Cfi<onj>p—3}) has
property SpliFf. O

138



4.9.2 Implementation in SageMath

The complex Cf;<opj>k) 1S generated in the following way. Recall that Algorithm 4.4.1
outputs a matrix for the differential of C F K (K) in the basis given by that of OFK (K).
The basis for Cyyconjspy is given by B = {U ™'z |A(z) +i > k,i < 0,2 € ]?F?((K)}
We index the elements of B by by, ...,bn_1. An element b; = U’z is implemented as an
object with attributes recording the index [ € {0,...,m — 1}, the power —i of U and the
generator = € Fﬁ((K)

We then construct the matrix d € M,,(F) of the differential of Cfjcopj>) in this basis,
according to the output of Algorithm 4.4.1. To obtain the homology group H.(Cficonj>k});
we use SageMath’s built-in kernel and image methods. Next, we use SageMath’s basis
and 1ift methods to obtain representatives of the basis elements of H.(Cyj<on;j>k}) in the
coordinates by, . .., by,—1. We then extract the Maslov index of the (homogeneous) element

YierU kig; corresponding to a representative > jed b; via the associated object parameters.

Finally, to check for property SpliFf according to Corollary 4.9.2, we need to understand
the F[U]-module structure of H.(Cfj<onj>p—3})- The latter may fail to have property SpliFf
only if there are elements in both gradings 2p — 4 and 2p — 6. In this situation, we consider
a subset B’ C B consisting of a representative for each element in grading 2p — 4. We have
that H.(C{i<onj>p—3}); and thus K, has property SpliFf if and only if UB’ is not entirely
contained in the image of d. This condition is verified by iterating through the elements

b € B', stopping if Ub is not in the image of d.
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4.10 Finiteness of non-integral non-characterizing slopes: thickness two

4.10.1 Structure of A; for thickness-two knots

The aim of this section is to describe the general algebraic structure of the modules Ag for

knots of thickness two by establishing the following analogue of Lemma 4.9.1.

Lemma 4.10.1. Let K be a knot of thickness two. Let p be an integer such that for all s,
the group I—ﬁ'?(d(K, s) is non-zero only for gradings d € {s+p,s+p—1,s+p—2}. Then

for all k > 0, there exist integers r,a,b,c > 0 such that A; takes the following form

+ r a b c
Ay = Tain(0k+p—n+1) D Tokl<krp—241 © (Trp-3l<hip-1)" © Frypp 1 ®Fp, s O Fp,, 3,

where n =1 if k+ p is even and 2 if k + p is odd.

Proof. The proof is modelled on the proofs of (McCoy, 2025, Lemma 3.14) and (Ozsvath
et Szabo, 2003b, Theorem 1.4).

Denote by Cyry the quotient of CF K> (K ) represented by homogenous elements whose
Z @ 7 filtration levels (i, j) satisfy the constraint F.

For a Z-graded module M = @,y Ms, let M|>p = Dyop Ms, Ml<k = Dy, Ms and
M|, = M.

We have a short exact sequence of complexes

0 = Clizovjzk} = Cpizoy © Cizry = Czong=ky — 0.

By definition of p, elements of Cf;>grj>k) have degree at least k + p — 2. Therefore,

HS(C{iZOAjZk}) =0 for all s < k+ p — 3 and the induced long exact sequence in homology
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gives isomorphisms

Hs—1(Clizovjzky) = Hs—1(Clizoy) © Hs—1(Cj>iy)
for all s —1 < k4 p — 4. Thus, we obtain a commutative diagram

H., (Cpisovjzsi)|<hip—a — (Ho(Clizop) & Hu(Clysp))l<hip—a

:i F

Al <krpa > Tol<ktp—a ® Tok|<kip—a

In grading k + p — 3, we have a surjection

Al ks p3 — Tolkrp—3 ® Taklktp-s (4.3)

Hence, A} |<kip—3 surjects onto To|<k+p—3 & Tok|<k+p—3. In particular, Tov; |<p+p—3 C
Az|§k+p—3 maps onto To|<gtp—3. Indeed, if T oy, |<kip—3 # 0, then its lowest-degree
element must be mapped to the lowest-degree element of either 7o or 7T5x. Therefore,

-2V =0 or =2V, = 2k > 0. But V;, > 0, so we must have —2V;, = 0.

It follows that A7°? contains To|<k4p—3. If (4.3) is not an isomorphism, then A also
contains a component [Fy o3 for some ¢ > 1, or an element of degree k + p — 3 that is the

image by multiplication by U of an element of degree k + p — 1.

Similarly, we can consider the short exact sequence

0— C{ig—l/\jgk—l} — CFKOO(K) — C{ZZOV]ZIC} — 0.

By definition of p, elements of Cj<_1pj<k—1) have degree at most k + p — 2. Therefore,
Hs(Cri<—ipj<k—13) = 0 for all s > k + p — 1 and the induced long exact sequence in

homology gives isomorphisms
Hs 1 (CFK™(K)) 2 Hs1(Clizovjzky)
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for all s +1 > k + p. Thus, we obtain a commutative diagram

H*(CFKOO(K))|2k+p % H*(C{iEOijk})’Zk—H’

% l:

HE>®(S%)|2ktp 2 Tlakrp ——— Aflzkep
whose bottom row implies that the elements of A,‘l‘ of degree at least k + p are precisely
those in the tower T_ay;, .
In grading k + p — 1, we have an injection
Tletp—1 — Al lktp-1, (4.4)
If (4.4) is not an isomorphism, then A; contains a component F¢ +p—1 for some a > 1, or

an element of degree k + p — 1 that is not killed by U.

Since the argument so far says nothing about elements in grading k + p — 2, they may
appear in an extra component FZ Hp—2 of Azed for some b > 1, or at an end of a truncated

tower if k + p is even.

Combining all this, we have that T oy, C Ag is of the form

Tinin(0,k+p—141)  if K+ p is even,
Tmin(0k+p—2+1) i k4 pis odd,
and Azed C Aﬁ is of the form
Tkl <ktp—361 ® (Thtp—sl<wtp—1)" ® Fy, 1 @ IE*‘ZJFP_Q GF;,, 3 ifk+piseven,
Tokl<krp—241 © (Thrp-sl<ktp1) ® Fp,  OF,  , ®F;,, 5 if k+pisodd,

for some r,a,c > 0. O
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4.10.2 Property SpliFf for thickness-two knots
Lemma 4.10.1 says that A};‘"d is of the form

T a b C
Tokl<k+p—2+e B (Thrp-3l<kip-1)" & Fipp1 ®Fpp, 2 ©Fiy, s,

where ¢ = +1. We now examine each possibility for €, a,b, ¢ and verify whether A: has
property SpliFf, i.e. it admits a decomposition as in (4.1). Note that we can ignore r since
U-le Th+p—3|<ktp—1 is not killed by the U-action. If both a and ¢ are non-zero, then A;“

does not have property SpliFf. We may thus assume that at least one of a or c is zero.

First, suppose k + p is odd. Elements of odd degree may only appear in Fz 4p—2, SO We are

interested only in the values of €, a and c.

e If a =c=0, then AZ has property SpliFf.

e If a # 0 and ¢ = 0, then A; does not have property SpliFf if and only if Tor|<rip—2+e
is generated by a unique element of degree k + p — 3. This happens if and only if
k=p—3and e=—1.

e I[fa=0and ¢ # 0, then A; does not have property SpliFf if and only if Tox|<k+p—2+c
is generated by a unique element of degree k + p — 1. This happens if and only if
k=p—1ande=+1.

Suppose now that k + p is even. Elements of odd degree may only appear in one of Fy -1

or F¢

ftp_3> SO We are interested only in the values of € and b.

e If b =0, then A; has property SpliFf.

143



e If b# 0 and e = 41, then A,Jg has property SpliFf because the even elements of Azed
that are not in Fz +p—o Must appear in Tok|<k+p—2, which has non-zero U-action or is

supported in degree k + p — 2 if it is non-trivial.

e If b# 0 and e = —1, then AZ,' fails to have property SpliFf if and only if Tox|<x1p—4
is supported only in degree k + p — 4. This happens if and only if k = p — 4.

This is summarized in Table 4.3.

k + p odd k 4 p even
(a,c)
€e=+1 e=—1 b=0|e=4+1,0#£0 | e=—-1,b#0
(1,0) || yes yes iff k£ p—3 | yes yes yes iff k£ p—4
(0,1) || yesiff k#p—1 | yes yes yes yesiff k £ p—4
(0,0) || yes yes yes yes yes iff k # p—4
(1,1) || no no no no no

Tableau 4.3: Structure of A,j and satisfac-

tion of property SpliFf for knots of thickness two

Using the maps (4.3) and (4.4), we can guarantee that A has property SpliFf given certain
conditions on ]—TFT((K)

Lemma 4.10.2. Let K be a knot of thickness two. Let p be an integer such that for all
s, the group fTF?(d(K, s) is non-zero only for gradings d € {s+ p,s+p— 1,5+ p — 2}.

Suppose k > 0.

(i) If k+ p is odd, then A} has property SpliFf if ]ﬁ?ﬁ'kﬂ)(K, k) =0.

(i) If k+ p is odd and k # p — 3, then A;: has property SpliFf if ﬁk+p_2(K, k) =0.
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(i1i) If k + p is even and k # p — 4, then A: has property SpliFf if at least one of the
groups I—Tﬁ(k+p(K, k) or ﬁﬁ(k+p,2(K, k) is trivial.

Proof. If ﬁ?(k+p(Ka k) = 0, then Cf<_jpj<kp—1} does not contain elements of degree
k+ p — 2, so neither does its homology group. Hence, the injection (4.4) is an isomorphim

and Azed is of the form
b
Tok|<krp—3 O Fryp o ®Ff 5.

This corresponds to columns 3 to 6 of the (0,1) row of Table 4.3. Hence, A;: fails to have

property SpliFf only if k£ 4 p is even and k = p — 4.

If ]?ﬁ(ker_g(K, k) = 0, then C{;>op;j>k} does not contain elements of degree k + p — 2,
so neither does its homology group. Hence, the surjection (4.3) is an isomorphim and Afd

is of the form
Tok|<k+p—241 O Fpyp 1 @ Fzﬂ,_g.

This corresponds to the (1,0) row of Table 4.3. Hence, A; fails to have property SpliFf

only if k = p — 3 when k + p is odd, and only if £ = p — 4 when k 4+ p is even. O

We now turn to the proof of Proposition 4.1.3.

Proposition 4.1.3. Let K be a knot of thickness two. Let p be an integer such that
for all s, the knot Floer homology group ITFT(d(K, s) 1is non-zero only for gradings d €
{s+p,s+p—1,s+p—2}.

Suppose p € {0,1,2}. If for each k > 0, at least one of the groups ]ﬁ’?(kﬂ,(f(, k) or
]—TFT(IH,J_Q(K, k) is trivial, then K and its mirror both satisfy property SpliFf. Therefore,

K admits only finitely many non-integral non-characterizing Dehn surgeries.
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We first show a slightly more general statement for K.

Lemma 4.10.3. Let K be a knot of thickness two. Let p be an integer such that for all s,
the knot Floer homology group ﬁﬁ(d(K, s) is mon-zero only for gradings d € {s + p,s +
p—1,s+p—2}

Suppose p < 2. If for each k > 0, at least one of the groups ITFT(;CJFP(K, k) or I’T-F_\K]H_p_g(K, k)

1s trivial, then K has property SpliFf.

Proof. We have p—3,p—4<0,s0k # p—3,p—4 for all £ > 0. By Lemma 4.10.2, AZ‘
has property SpliFf for all £ > 0. Hence, K has property SpliFf. O

Proof of Proposition 4.1.3. The statement for K follows from Lemma 4.10.3, so we need
to show that mK also has property SpliFf. Recall the symmetry properties of knot Floer
homology (Ozsvath et Szabo, 2004)

(S1) HFK 4(K,s) = HFK_4(mK, —s) and

(82) HFK 4(K,s) 2 HFK 4_o5(K, —5).

Let pp, denote the integer such that for all s, the group HFK (mK, s) is non-zero only for
gradings d € {s + pm,s + pm — 1,5 + pm — 2}. By (S1), we have p,, =2 — p € {0,1,2}.
Further, by (S1) and (S2), we have isomorphisms ﬁﬁ(kﬂ)m,?(m[(, k) = ﬁﬁ(ker(K, k)
and HF Ky, (mK, k) = HFEK o (K, k).

Therefore, mK satisfies the hypotheses of Lemma 4.10.3 and thus has property SpliFf. It
follows from Theorem 4.8.2 that any knot of thickness two that satisfies the assumptions

of Proposition 4.1.3 verifies Conjecture 4.8.1. O
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4.10.3 Computations for thickness-two knots

To verify if Conjecture 4.8.1 holds for a knot of thickness two, we need to compute the
structure of its modules A,Jg for all £ > 0 that do not satisfy the conditions of Lemma
4.10.2. To achieve this, one may first compute CF K> (K), following the approach used for
thickness-one knots. However, two main issues arise when dealing with knots of thickness

greater than one.

4.10.3.1 Computing lifts

First, it is difficult in general to find a lift of CF Ky, ,(K)/(uv), in the sense of Section 4.4.
We can still exploit the computational effectiveness of solving linear systems, as was done
in the case of thickness-one knots, to reduce the number of possibilities for diagonal arrows.
Recall that we encode the unknown differential map acting on the underlying F[U, U 1]

module C' of CF Ky, (K)/(uv) as a matrix dygr = H +V 4 Dygr. As in Algorithm 4.4.1,

2

we obtain a system of equations E by setting d,,

= 0, but it may contain non-linear
equations if Proposition 4.6.5 is not satisfied. By considering the maximal subsystem of
linear equations E’ of E, we obtain a matrix equation Aa = b with an initial solution a = ag
and whose set of solutions is ag + ker A. If £’ # E, we need to determine which elements
of ag + ker A are solutions of the full system E. Indexing the elements of ag + ker A by
a;, 1 =0,...,24dmker4_1 we obtain maps dj = H+V + Dyar(a7) = dyar(ap). I d? =0, then
ay is a solution to £ and the differential complex C; = (C, d;) is a lift of CF Kpyy, ) (K)/(uv).
Note that this approach is computationally manageable only when the dimension of ker A

is relatively small, or when Proposition 4.6.5 is satisfied, in which case the set of lifts is

{Cl | a; € ag + ker A}.
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4.10.3.2 Equivalence of lifts

Second, the computed lifts may not be filtered chain homotopy equivalent to one an-
other. For knots with up to 16 crossings, Hanselman showed that C'FKpy,,)(K) splits as
in Theorem 4.3.3 (Hanselman, 2023, Corollary 12.6; Hanselman, 2025); therefore, any lift
of CF Ky (K)/(uv) is a genuine representative of the full knot Floer complex. It then
suffices to verify property SpliFf for the modules A;r of any lift obtained by the method de-
scribed previously. This is done by using Lemma 4.10.2 and adapting the method described

in Section 4.9.2 to thickness-two knots, according to Lemma 4.10.1.

For knots with at least 17 crossings, we may not have such an equivalence between lifts.
However, for our application at hand, we are interested only in the modules A;, which are
the homology groups of quotients of C FK*°(K). Our strategy thus consists in computing
all possible lifts of CF Ky, ,(K)/(uv) by considering each element in the set ag + ker A.
We then check that the modules AZ of each of these lifts — which may belong to different
homotopy equivalence classes —, verify property SpliFf. Table 4.4 summarizes the results of
our computation for knots with 17 crossings, carried our for knots and their mirrors whose
maximal linear subsystems have kernel of dimension at most 12. For each dimension, the
table indicates the number of knots with both the knot and its mirror satisfying property

SpliFf, and the number with either the knot or its mirror not satisfying property SpliFf.

In all computed cases, every lift for a given knot yielded the same outcome for the presence
or absence of property SpliFf. We did not verify whether the different lifts were chain
homotopy equivalent, but inspection of the relevant groups A;: for some of these knots
revealed that they have the same graded F[U]-module structure across all lifts. Therefore,
for these cases, the quotient complex CF Ky, (K )/(uv) appears to fully determine the
homology groups A; This observation suggests that this, or the stronger statement of

Theorem 4.1.1, may hold not only for thickness-one knots, but also for thicker knots whose
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quotient complex C'F Ky, ) (K)/(uv) is sufficiently simple. It remains unclear what precise
algebraic conditions would convey this simplicity, or whether such conditions exist at all

beyond thickness one.

dimker A | K and mK SpliFf K or mK non-SpliFf
0 498 0
2 174 6
4 155 20
6 153 21
8 117 39
10 95 26
12 135 31

Tableau 4.4: Thickness-two knots with 17 crossings and property SpliFf
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CONCLUSION

Dans cette thése, nous avons exploré la question de caractérisation des noeuds dans la sphére
de dimension trois via leurs chirurgies de Dehn. Notre travail a apporté des contributions
significatives a la compréhension de ’ensemble des pentes p/q caractérisantes d’un nceud.
En établissant ’existence d’une borne inférieure sur le dénominateur |g| garantissant qu’une
pente p/q soit caractérisante, et en la construisant explicitement & partir de la géométrie des
piéces JSJ et leurs recollements, nous révélons le role structurel de la longitude d’un nceud
dans la détermination de sa classe d’isotopie. En effet, on obtient qu’en recollant le tore de
chirurgie en parcourant la longitude assez de fois, I'information de la topologie du noeud
initial est complétement préservée. Lorsque le noeud est hyperbolique, cette heuristique
est quantifiée en faisant de ’ame du tore de chirurgie la géodésique la plus courte dans
la nouvelle variété; le résultat général et sa démonstration font de I’Ame de chirurgie une

courbe distinguée de la variété résultante.

Nos résultats précisent les connaissances de I’ensemble exact de pentes caractérisantes d’un
neeud. En particulier, nous avons établi ’ensemble exact de ces pentes pour une infinité de
nceuds composés: ce sont les seuls exemples connus & ce jour ayant un ensemble de pentes
non caractérisantes non vide. De plus, pour la vaste majorité des noeuds avec au plus 17
croisements, cet ensemble restreint aux pentes non entiéres est maintenant connu comme
étant fini, grace au développement dans cette thése d’un algorithme calculant le complexe
de Floer de neeud de noeuds d’épaisseur un. Outre I'étude de chirurgies caractérisantes,
cet algorithme pourra étre utile a lextraction d’invariants de concordance (Hom et Wu,
2016; Ozsvath et al., 2017) et & la construction potentielles de variétés exotiques (Levine
et al., 2023), menant & des perspectives vers une réfutation de la conjecture de Poincaré

lisse en dimension quatre.
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Plusieurs aspects de la caractérisation des noeuds via leurs chirurgies de Dehn restent ou-
verts. D’abord, un objectif naturel serait de construire explicitement une borne pour le
numérateur |p| réalisant la finitude des pentes non caractérisantes non entiéres, en ex-
ploitant les idées menant a la borne effective pour le dénominateur |g|. Ensuite, nous
avons exposé les limitations de 'homologie de Heegaard Floer dans I’étude de 'effet du
paramétre |p|. En effet, pour des nceuds ayant un complexe de Floer de nceud algébrique-
ment compliqué, nous ne parvenons pas a obstruer la possibilité d’avoir une infinité de
pentes demi-entiéres non caractérisantes. De plus, les pentes entiéres p/1 caractérisantes
demeurent mystérieuses; les noeuds de Baker-Motegi fournissent des exemples pour lesquels
tous les entiers ne sont pas caractérisants, suggérant que le méridien n’est pas aussi robuste
que la longitude dans la détermination d’un nceud via chirurgie de Dehn. Ainsi, des straté-
gies alternatives doivent étre explorées pour I’étude des pentes entiéres et demi-entiéres. La
combinaison d’idées de topologie géométrique s’inspirant de nos travaux sur les nceuds com-
posés, et de nouvelles structures comme celles émanant de la topologie de contact (Baldwin

et al., 2025), constitue une avenue d’exploration pour des travaux futurs.
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