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RÉSUMÉ

Dans cette thèse, on établit plusieurs nouveaux résultats en géométrie algébrique complexe. La thèse est
divisée en cinq chapitres.

Dans le Chapitre 1, nous présentons une revue de la littérature sur les travaux de Xiao concernant la géo-
graphie des surfaces fibrées, l’application canonique des surfaces de type général, la théorie de l’annulation
générique, les problèmes de génération globale, ainsi que quelques notions liées au programme minimal
de Mori.

Le Chapitre 2 explore en détail la méthode de la pente pour les surfaces fibrées. Elle est introduite par Xiao
(108) pour démontrer sa célèbre inégalité pour une surface fibrée relativement minimale f : S → C, avec
g(F ) ≥ 2 :

K2
S/C ≥ 4

g − 1

g
deg f∗ωS/C .

Plus précisément, soit f : S −→ C un morphisme surjectif à fibres connexes d’une surface projective
lisse complexe S vers une courbe projective lisse C, avec fibre générale F . Dans notre article (9), nous
développons une version plus générale de l’inégalité de la pente pour des données (D,F), où D est un
diviseur relativement effectif arbitraire surS, etF est un sous-faisceau localement libre de f∗OS(D). Nous
analysons comment la spécialité deD, restreinte à la fibre générale, influence les résultats. De plus, nous
calculons des exemples naturels et proposons des applications.

Le Chapitre 3 porte sur la conjecture de Xiao concernant les surfaces canoniquement fibrées (Conjecture
1.2.5). L’auteur résout cette conjecture lorsque la base est une courbe elliptique (Théorème 3.1.2). Plus
précisément, nous prouvons qu’il n’existe pas de surfaces de type général canoniquement fibrées f : S →

C, avec fibre généraleF de genre g(F ) = 5 et g(C) = 1. Dans la section 3.2, nous proposons uneméthode
pour résoudre la conjecture et formulons une nouvelle conjecture (Conjecture 3.2.5) pour surmonter une
difficulté technique. Cette dernière a récemment été résolue dans un article en collaboration (10) avec Chen
et Grieve.

Dans le Chapitre 4, nous utilisons des techniques issues de la théorie de l’annulation pour obtenir des résul-
tats de génération globale. Nous montrons comment prouver la génération globale des systèmes linéaires
adjoints sur des variétés irrégulières de manière inductive. Par exemple, nous prouvons que la conjecture
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de Fujita 1.3.1 est valide pour les variétés irrégulières de dimension n avec un fibré anticanonique nef, en
supposant qu’elle est vraie pour les variétés de dimension inférieure et sous des hypothèses modérées. Ces
résultats proviennent d’un article (pré-publication) de l’auteur (7).

Enfin, dans le dernier chapitre, nous établissons certains résultats de positivité. Plus précisément, en ap-
pliquant la décomposition de Chen-Jiang, nous démontrons que la Conjecture 5.1.1 de non-annulation est
vraie pour une paire lc (X,∆), où X est une variété irrégulière, à condition qu’elle soit valide pour des
variétés de dimension inférieure. De plus, nous étendons la décomposition de Catanese-Fujita-Kawamata
au cas klt (X,∆), ce qui conduit à l’existence de sections deKX +∆ dans certaines situations. Ce travail
est effectué dans notre pré-publication (8).
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ABSTRACT

In this thesis, we prove several new results in complex algebraic geometry. The thesis is divided into fivechapters.
In Chapter 1, we provide a literature review of Xiao’s work on the geography of fibered surfaces, the canon-ical map of surfaces of general type, generic vanishing theory, global generation problems, and some ter-minology related to Mori’s minimal model program.
Chapter 2 explores in detail the slopemethod for fibered surfaces introduced by Xiao (108), where he provedhis celebrated inequality for a relatively minimal fibered surface f : S → C, with g(F ) ≥ 2:

K2
S/C ≥ 4

g − 1

g
deg f∗ωS/C .

More precisely, let f : S −→ C be a surjective morphism with connected fibers from a smooth complexprojective surface S to a smooth complex projective curve C, with general fiber F . In our article (9), wedevelop a more general version of the slope inequality for datum (D,F), whereD is an arbitrary relativelyeffective divisor on S, and F is a locally free subsheaf of f∗OS(D). We see how the speciality of D, re-stricted to the general fiber, plays a role in the results. Furthermore, we compute natural examples andprovide applications.
Chapter 3 is about Xiao’s Conjecture on canonically fibered surfaces (Conjecture 1.2.5). The author settlesthe conjecture when the base is an elliptic curve (Theorem 3.1.2). More precisely, we prove that there areno canonically fibered surfaces of general type f : S → C with general fiber F of g(F ) = 5 and g(C) = 1.In Section 3.2, we provide an approach to settle the conjecture and present a new conjecture (Conjecture3.2.5) to address a technical difficulty. This conjecture has recently been resolved in a joint work (10) withChen and Grieve.
In Chapter 4, we use the techniques from vanishing theory to obtain some global generations results. Weshow how to prove the global generation of adjoint linear systems on irregular varieties inductively. Forinstance, we prove that Fujita’s conjecture 1.3.1 holds for irregular varieties of dimension n with nef anti-canonical bundle, assuming it holds for lower-dimensional varieties and under mild conditions, the resultsare from the author’s preprint article (7).
In the last chapter, we prove certain positivity results. more precisely, by applying the Chen-Jiang decompo-sition, we prove that the non-vanishing Conjecture 5.1.1 holds for an lc pair (X,∆), whereX is an irregularvariety, provided it holds for lower-dimensional varieties. Furthermore, we extend the Catanese-Fujita-Kawamata decomposition to the klt case (X,∆), which leads to the existence of sections of KX + ∆ incertain situations. This work is done in our preprint (8).
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INTRODUCTION

Throughout this thesis, we work over the field of complex numbers C.

The first chapter gives a detailed review of the literature, explaining the main ideas, summarizing earlier
results, and pointing out open problems to prepare for the following chapters. Chapters 2, 3, 4, and 5 are
written to be independent of one another, allowing each to be read and understood separately. While the
overarching theme of the thesis ties these chapters together, each one addresses a distinct problem or topic
and develops its own framework, results, and conclusions. Consequently, readers can engage with any of
these chapters without requiring prior knowledge of the others.

In the second chapter, we explore slope inequalities for an arbitrary relatively effective divisor D on a
surface S. Let f : S → C be a surjective morphism from a smooth complex projective surface S to a
smooth complex projective curve C with connected fibers. We call the morphism f a fibration or a fibered
surface. We consider the sheaf E = f∗OS(D), which is torsion free because C is a curve. Since a torsion
free sheaf on curve is always a locally free sheaf, E is locally free and its rank is h0(F,D|F ), where F is a
general fiber of f of genus g(F ) = g.

The fibration f is called smooth if all its fibers are smooth, isotrivial if all its smooth fibers are isomorphic to
one another, and locally trivial if it is both smooth and isotrivial. Let ωS (respectivelyKS) be the canonical
sheaf (respectively a canonical divisor) of S and ωS/C = ωS ⊗ f∗ω∨

C (respectivelyKS/C = KS − f∗KC)

be the relative canonical sheaf (respectively a relative canonical divisor), where ωC (respectivelyKC ) is the
canonical sheaf of C (respectively a canonical divisor). In particular, if D = KS/C , then E is a nef vector
bundle of rank g (41, Theorem 0.6) and degree:

deg(E) := deg(f∗ωS/C) = χ(OS)− χ(OF ).χ(OC)

= χ(OS)− (g − 1)(b− 1),
for b := g(C). By the Leray spectral sequence, we note that

h0(C, (f∗ωS/C)
∨) = h0(C,R1f∗OS) = q(S)− b,

where q(S) := h1(S,OS) is the irregularity of the surface S.
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In (108), Xiao wrote a fundamental paper on fibered surfaces over curves. He discussed the geometry of
fibrations where f is relatively minimal and g(F ) ≥ 2. He proved that if f is relatively minimal and not
locally trivial, that is deg f∗ωS/C ̸= 0, then

K2
S/C ≥ 4

g − 1

g
deg f∗ωS/C .

The last result is a key ingredient in Pardini’s proof (87) of the Severi conjecture (36), (95).

We call such an inequality a slope inequality for the relative canonical divisor. Recall that KS/C is a nef
divisor (86, Theorem 1.4).

Independently, Cornalba and Harris (31) proved the above inequality for semi-stable fibrations (that is, fi-
brations where all the fibers are semi-stable curves in the sense of Deligne and Mumford). Later Stoppino
(101) showed that a generalization of the Cornalba-Harris approach gives a full proof of the slope inequality
in which all fibrations are treated by the samemethod. Also, we recall that Yuan and Zhang (115) gave a new
approach to prove the slope inequality by giving a sense to the relative Noether inequality using Frobe-
nius iteration techniques. Moreover, there has been interest in giving a bound related to other geometric
invariants such as the relative irregularity and the unitary rank of the fibered surface f : S → C. These
points have been discussed in several papers, for instance in (79) and (97). Konno, in (70), describedK2

S/C

as a sum of two parts under some conditions on the fibration f . More precisely, the first part is related to
deg f∗ωS/C and the second one is described by the Horikawa index (57).

Since we apply Fujita’s decompositions in this chapter (see Example 2.4.4) we recall them.

Theorem 0.0.1 (First Fujita decomposition for fibered surfaces (41, Theorem 3.1)) Let f : S → C be a fi-
bration from a smooth complex projective surface S to a smooth projective curve C. Then

f∗ωS/C = Oq(S)−b
C ⊕N ,

whereN is a nef vector sub-bundle and h0(C,N∨) = 0.

We remark that in the conclusion of Theorem 0.0.1, the trivial part comes from the nonzero global sections
of the dual of f∗ωS/C . In other words, it comes fromH0(C,R1f∗OS).
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Theorem 0.0.2 (Second Fujita decomposition for fibered surface (21), (22), (23, Theorem 1.1), (42)) Let f :

S → C be a fibration as above. Then
f∗ωS/C = A⊕ U ,

whereA is an ample vector sub-bundle and U is a unitary flat vector sub-bundle.

In the situation of Theorem 0.0.2, we denote by uf the rank of U , and call it the unitary rank of the fibered
surface f : S → C. A proof of the second Fujita decomposition is given by Catanese and Dettweiler, (21),
(22), (23). In Theorem 2.4.11 and Theorem 2.4.12, we discuss the first and the second Fujita decompositions
for the adjoint cases.

Let f : S → C be a fibered surface, and letD be a relatively effective divisor on S with a general fiber F .
Consider the datum (D,F) where F ⊆ f∗OS(D). The goal is to give a lower bound for D2 in terms of
degF , even ifD is not positive, for instance not nef. We explain how the negative part ofD appears in the
lower bound ofD2. The method used is due to Xiao (108).

Now,wedescribe briefly the process of themain results. We start by defining theMiyaoka divisors (Ni)1≤i≤k

of a datum (D,F), where k is the length of the Harder-Narasimhan filtration (Fi)1≤i≤k of F (Definition
2.2.4). We realize that this sequence of divisors can be divided into two sub-sequences.

The first is a sequence of special Miyaoka divisors, and the second is a sequence of nonspecial Miyaoka
divisors. We thus define an important number, n̂(D,F), which tells us the index of the last divisor in the first
sequence (Proposition 2.2.10). It is natural to study the sequence of rational numbers(︃

di
h0(Ni|F )− 1

)︃
1≤i≤k

,
where di = Ni.F . In Theorem 2.2.17, we give a uniform lower bound for this sequence.

Clearly, by Clifford’s Theorem, the number 2 is a lower bound of the sub-sequence(︃
di

h0(Ni|F )− 1

)︃
1≤i≤n̂(D,F)

,
and we prove that the number

βD := 1 +
g(F )

h0(F,D|F )− 1

3



is a lower bound of the sub-sequence(︃
di

h0(Ni|F )− 1

)︃
n̂(D,F)+1≤i≤k

,

for a fixedD, and any F ⊆ f∗OS(D).Moreover, we will see that this sub-sequence decreases. Following
the Modified Xiao Lemma (Lemma 2.3.1), we observe that we need to find a constant α(D,F) for the datum
(D,F) such that

di ≥ α(D,F)(h
0(F,Ni|F )− 1) ≥ α(D,F)(ri − 1)

(here ri := rkFi) with the aim that degF appears. Thus, naturally Definition 2.3.6 follows. Themain result
of Chapter 2 is the following theorem.

Theorem 0.0.3 (= Theorem 2.3.9) Let f : S → C be a fibered surface. Consider the datum (D,F), where
D is a relatively effective divisor and F ⊆ f∗OS(D) is a locally free sub-sheaf on C. Assume that F is not
semi-stable. Here, we set:

t(D,F) :=

⎧⎨⎩ max{i|µi ≥ 0} if µ1 ≥ 0

−∞ otherwise.

(1). If t(D,F) = 1, then
D2 ≥ 2d1

r1
degF1 + 2ϵ∗D.Z1 − Z2

1 ≥ 2d1
r1

degF + 2ϵ∗D.Z1 − Z2
1 .

(2). If 1 < t(D,F) ≤ k, then
D2 ≥

2α(D,Ft(D,F)
)dt(D,F)

dt(D,F)
+ α(D,Ft(D,F)

)
degFt(D,F)

+ 2ϵ∗D.Zt(D,F)
− Z2

t(D,F)

≥
2α(D,Ft(D,F)

)dt(D,F)

dt(D,F)
+ α(D,Ft(D,F)

)
degF + 2ϵ∗D.Zt(D,F)

− Z2
t(D,F)

.
(3). If t(D,F) = −∞, set:

C(D,F) :=

⎧⎨⎩
2α(D,F)dk

−α(D,F)+2α(D,F)rk−dk
if α(D,F) − 2α(D,F)rk + 2dk ≤ 0

3α(D,F) + 2dk − 2α(D,F)rk otherwise.
Then

D2 ≥ C(D,F). degF + 2ϵ∗D.Zk − Z2
k .

4



In addition, if dk = α(D,F)(rk − 1), then we have the following inequality which is independent of t(D,F):
D2 ≥ 2dk

rk
degF + 2ϵ∗D.Zk − Z2

k .

We make some remarks about the notations introduced in the previous theorem.

The map ϵ : ˆ︁S → S is an iterated blow-up constructed in Proposition 2.2.3. By definition, the divisor Zi onˆ︁S is a fixed part of Fi,∀i; 1 ≤ i ≤ k (Definition 2.2.4). The number µi := µ(Fi/Fi−1) is the slope of the
quotient Fi/Fi−1 (Proposition 2.2.1) of the Harder-Narasimhan filtration of F .

We interpret the result of Theorem 0.0.3 (= Theorem 2.3.9) as follows. If we consider the datum (D,F),
we estimate the lower bound ofD2 by a sum of two parts. The first one is related to the degree of the sub-
bundle Ft(D,F)

⊆ F and the geometry of the Miyaoka divisors (Ni)1≤i≤t(D,F)
. The second part captures

the negativity ofD whenD is not positive. The case where F is semi-stable is discussed in Remark 2.3.8.
As an application, we apply the previous theorem to the datum (D, f∗OS(D)) whenD is relatively nef to
obtain Corollary 2.3.12.

This new result pertains to the way in which the constant α(D,f∗OS(D)), defined in Definition 2.3.6, arises in
lower bounds forD2. Moreover, the last paragraph in Corollary 2.3.12 extends the result in (102, Theorem
5), see Example 2.3.14 and Theorem 2.3.15. The form of Corollary 2.3.17 can be compared to (97, Theorem
3.20).

Among other results, our contribution is to give an explicit description of the constant α that arises there.
This is achieved by the constant α(D,F) (which is defined in Definition 2.3.6).

Recently, in (30, Theorem E), the authors proved a slope inequality for the datum (D, f∗OX(D)) whereD
is a relatively effective divisor on a variety X of dimension n ≥ 2 equipped with a fibration f : X → C

over a curve, under the assumption that D and f∗OX(D) are both nef. If we apply their result to fibered
surfaces, we can see that our result is sharper. More precisely, in (30, Theorem E), they proved that ifD|F

is nef, big, and nonspecial, then
D2 ≥ 2

D.F

D.F + 1
deg f∗OS(D).

However, if we apply Corollary 2.3.17 for the datum (D, f∗OS(D)) where D and f∗OS(D) are both nef,
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andD|F is nonspecial, then we have
D2 ≥

2α(D,f∗OS(D))D.F

D.F + α(D,f∗OS(D))
deg f∗OS(D).

Since α(D,f∗OS(D)) > 1 for g(F ) ̸= 0, we see that the constant α(D,f∗OS(D))D.F

D.F+α(D,f∗OS(D))
is strictly bigger than

D.F
D.F+1 in general.

In the third chapter, we study the following conjecture by Xiao.

Conjecture 0.0.4 (= Conjecture 1.2.5 (111, Problem 6)) There exists a positive integerN such that if ϕ|KS | :

S ‧‧➡ C is a canonically fibered surface of general typewith general fiber of genus g(F ) = 5, thenPg < N .

The conjecture has been solved in some cases, we refer to Section 1.2 for a literature review. We resolve
the conjecture in the following case:

Theorem 0.0.5 (= Theorem 3.1.2) There is no canonically fibered general type surface f : S → C with
general fiber F of genus g(F ) = 5 and g(C) = 1.

For the remaining case, we conjecture the following statement, which automatically implies Xiao’s conjec-
ture.

Conjecture 0.0.6 (= Conjecture 3.2.5) Let f : S → C be a canonically fibered surface with nonhyperelliptic
general fiber F of genus g(F ) = 5, and

KS = 8Γ + V + f∗D,
where 8Γ + V is the fixed part ofKS (Γ is a section, V is the vertical part), and f∗D is the moving part of
KS with degD := Pg + g(C)− 1. Then

1. If h0(OF (4p)) = 1, then the map ϕ : S ‧‧➡ PC(f∗(5Γ)) defined by the linear system |5Γ + f∗A| for
a sufficiently ample divisor A is regular.

2. If h0(OF (4p)) = 2, then the map ϕ : S ‧‧➡ PC(f∗(4Γ)) defined by the linear system |4Γ + f∗A| is
regular.
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Remark 0.0.7 In the joint work (10) with Chen and Grieve, we recently settle Conjecture 0.0.6 above. The
following theorem then follows.

Theorem 0.0.8 (= Theorem 3.2.9) There is no canonically fibered general type surface f : S ‧‧➡ C such
that the general fiber F is a nonhyperelleptic genus 5 curve with

KS = 8Γ + V + f∗D

if g(C) = 1 or Pg > 56.

Remark 0.0.9 Applying the log Miyaoka-Yau (82) for (KS ,Γ), we can improve the lower bound of Pg. In
other words, we can prove that there is no such canonically fibered surface if Pg > 50. This is a joint work
with Chen and Grieve (10).

In the fourth chapter, we present some results on Fujita’s Conjecture 0.0.10 below. Let D be a positive
divisor on a smooth complex projective irregular varietyX of dimension n. We shall use the Albanese map
to prove that the global generation problem for the adjoint linear system |KX + cD|, where c ∈ N∗, can
be reduced to lower-dimensional cases.

For motivation, let us recall Fujita’s conjecture (44) on the global generation of adjoint linear systems.

Conjecture 0.0.10 (= Conjecture 1.3.1 (44, page 167)) LetX be a smooth projective variety of dimension n
andD an ample divisor onX . Then the linear system, |KX +mD| is basepoint-free ∀m ≥ n+ 1.

This conjecture is trivial in dimension 1 and was proved by Reider (96, Theorem 1) in dimension 2. For
dimX = 3 or 4, it was proved by Ein-Lazarsfeld (37, Corollary 2*) and Kawamata (65, Theorem 4.1), re-
spectively. Recently, the conjecture was settled in dimension 5 by Ye and Zhu, see (114, Page 3). In higher
dimensions, there exist some partial results. For instance, Demailly in (32, Page 324) and (33, Theorem
0.2) established certain results using analytic techniques and Monge–Ampère equations, he showed that
2KX +mD is very ample ifm ≥ 2+

(︁
3n+1
n

)︁ for every ample divisorD onX . In (1, Corollary 0.2), Angehrn
and Siu achieved an important result by utilizing multiplier ideal sheaves, Nadel’s vanishing theorem, and
the Ohsawa–Takegoshi extension theorem. Specifically, they proved that |KX+mD| is basepoint-free ifD
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is ample andm ≥ n(n+1)
2 . Later, Heier (54, Theorem 1.4) improved this bound toO(n

4
3 ). Some logarithmic

boundswere obtained by Ghidelli and Lacini (45, Theorem 1.1). Notably, Helmke (55) and (56, Page 3) proved
Conjecture 0.0.10 under stronger numerical conditions onD.

Recall that by the classical Castelnuovo-Mumford regularity theorem, ifD is ample and globally generated,
then Conjecture 0.0.10 holds.

In Chapter 4, wemainly study Fujita’s Conjecture for irregular varieties. Wefirstmention that, in (88, Section
5), Pareschi and Popa, for instance, obtained some basepoint-freeness results on varieties whose Albanese
morphism is finite. We present new inductive results on Fujita’s Conjecture for irregular varieties. The main
results are as follows:

Theorem 0.0.11 (= Theorem 4.1.5) LetX be an irregular variety of dimension n ≥ 2 with Albanese dimen-
sion 1 ≤ α(X) < n. LetX f−→ Z

u−→ alb(X) ⊆ Alb(X) be the Stein factorization of the Albanesemorphism
alb, and let F be a general fiber of the morphism f . LetD be an ample divisor onX .

If Conjecture 0.0.10 holds in dimension < n, then |KX +mD + alb∗ p| has no basepoint supported on F
for allm ≥ n− α(X) + 1 and for a general p ∈ Pic0(Alb(X)).

Additionally, if the following condition is satisfied:

(∗) There exists an integer r with 1 ≤ r ≤ α(X) such that |rD|F | is basepoint-free and rD −KX is nef
and big.

Then |KX +mD| has no basepoint supported on F for allm ≥ n+ 1.

We can include the case ofX of maximal Albanese dimension in the theorem above. However, we decided
to separate this case from the inductive case (in other words, from the case in which the image of the
Albanese map of X is of smaller dimension than X). Theorem 4.3.1 covers the case of maximal Albanese
dimension.

In some special situations, such as in the case of varieties with−KX nef, we can prove Fujita’s Conjecture
8



by induction under mild conditions. Recall that projective varieties with −KX nef are a larger class than
Fano varieties. One of the methods to study these varieties is to analyze their Albanese map if they are
irregular. In (18, Theorem 1.2), Cao proved that for an irregular varietyX with−KX nef, the Albanese map
alb : X → Alb(X) is a locally trivial fibration. This result was conjectured in (35, Page 221), many authors
contributed to solving the problem and proved partial results, for instance, in (77) and (116).

Further, Cao and Höring (19, Theorem 1.4) proved a decomposition structure theorem for varieties with
−KX nef. They showed that the universal cover ˜︁X ofX decomposes as the following product:

˜︁X ≃ Cd ×
∏︂

Yj ×
∏︂

Sk × Z,

where Yj are irreducible projective Calabi-Yau varieties, Sk are irreducible projective hyperkähler varieties,
and Z is a projective rationally connected variety with −KZ nef. Now, we state the following theorem for
these type of varieties under extra conditions.

Theorem 0.0.12 (= Theorem 4.1.10) Let X be an irregular variety of dimension n ≥ 2 with −KX nef. Let
alb : X → Alb(X) be the Albanese map, and letD be an ample divisor onX . If Conjecture 0.0.10 holds
in dimension < n and there exists an integer r with 1 ≤ r ≤ α(X) such that |rD|F | is basepoint-free for
every fiber F of alb, then Conjecture 0.0.10 holds forX .

In the fifth chapter, we study the non-vanishing conjecture for irregular varieties, and the structure of the
direct image sheaf of a log relative pluricanonical bundle. In (12, Theorem 1.2), the authors proved that if
(X,B) is a klt pair and f : X → Y is amap onto a normal variety Y such thatKX+B is f -big, then (X,B)

has a relatively goodminimal model. In other words, there exists a klt birational pair ( ˜︁X, ˜︁B) of (X,B) such
thatK ˜︁X + ˜︁B is f -nef, and moreover,K ˜︁X + ˜︁B is f -semi-ample. In another significant higher-dimensional
result, Fujino (39, Theorem 1.1) proved that if (X,B) is a klt pair andX has maximal Albanese dimension,
then (X,B) has a goodminimalmodel. In this result, it is noteworthy that the existence of aminimalmodel
is trivial. In (13, Theorem 1.3), Birkar and Chen generalized the results in (12) and (39). They proved that if
(X,B) is a klt pair and f : X → Y is a surjective morphism such that Y is of maximal Albanese dimension
and KX + B is f -big, then (X,B) has a good minimal model. Later, in (59), the author generalized the
work in (13) to the log canonical case by applying the canonical bundle formula (40) and its generalization
(51, Theorem 2.1). Furthermore, the condition that KX + B be f -big was relaxed to the condition that
KX + B have a good minimal model over Y , and more generally to KX + B being f -abundant. In the
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same article (59), the author also proved certain forms of semi-ampleness in the context of generalized
polarized pairs, which were introduced in (15). In this chapter, we initiate a program for studying irregular
varieties to advance Mori’s minimal model theory in this context. We prove several theorems, some of
which we state below.

Conjecture 0.0.13 (= Conjecture 5.1.1) Let (X,∆) be a lc pair. If D ∼Q m(KX + ∆) is Cartier pseudo-
effective withm ∈ N, then κ(D) ≥ 0.

Theorem 0.0.14 (= Theorem 5.1.2) Let (X,∆) be a klt pair such that q(X) > 0, and letD ∼Q m(KX+∆)

be a Cartier pseudo-effective divisor. If Conjecture 0.0.13 holds for lower-dimensional klt pairs, then it also
holds for (X,∆).

Corollary 0.0.15 (= Corollary 5.1.3) Let (X,∆) be an lc pair such thatD ∼Q m(KX+∆) is a Cartier pseudo-
effective divisor, with q(X) > 0. If Conjecture 0.0.13 holds for lower-dimensional varieties, then it also holds
for (X,∆).

As another notable result, we generalize Fujita’s decomposition to the klt case.

Theorem 0.0.16 (= Theorem 5.1.5) Let f : X → Y be a surjective morphism, and let (X,∆) be a klt pair
such that D ∼Q m(KX/Y + ∆) is Cartier. Then, for every positive integer N that is sufficiently large and
divisible such that f∗OX(ND) ̸= 0, the sheaf f∗OX(ND) is torsion-free, it has a singular metric with
semi-positive curvature, satisfies the minimal extension property, and admits a Catanese-Fujita-Kawamata
decomposition

f∗OX(ND) = AN ⊕ UN ,
whereAN is a generically ample sheaf and UN is flat.
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CHAPTER 1

LITERATURE REVIEW

1.1 Xiao’s work on the geography of fibered surfaces
In this section, we review some of Xiao’s work on geography of fibered surfaces. In (108), he addressed
Severi’s problem for fibered surfaces and proved the celebrated slope inequality.

Theorem 1.1.1 (108, Theorem 2) Let f : S → C be a relatively minimal fibration, not locally trivial, with
g ≥ 2. Then

12 ≥
K2
S/C

deg f∗ωS/C
≥ 4

g − 1

g
. (1.1)

Further:

1. K2
S/C = 12deg f∗ωS/C if every fiber of f is smooth and reduced.

2. IfK2
S/C = 4g−1

g deg f∗ωS/C , then either f∗ωS/C is semi-stable, or f is hyperelliptic, and f∗ωS/C is a
regular ladder: there are an integerm > 0 and a total filtration:

0 = F0 ⊊ F1 ⊊ ... ⊊ Fk−1 ⊊ Fk = f∗ωS/C ,
such that rkFi = i, and

µi(Fi/Fi−1)− µi+1(Fi+1/Fi) = m

for i = 1, . . . , k − 1.

Furthermore, in the same article (108), the author conjectured that if the slope is minimal, then f is hyper-
elliptic. In other words, he proposed the following conjecture.

Conjecture 1.1.2 (108, Conjecture 1) IfK2
S/C = 4g−1

g deg f∗ωS/C , then f is hyperelliptic.

This last conjecture was proved in (68, Proposition 2.6). One of the powerful consequences of the slope
inequality is that it provides an upper bound for the relative irregularity:

q(f) := q(S)− g(C)
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of a fixed fibered surface f : S → C. Recall that Xiao, in (108) proved the following (non-sharp) corollary.

Corollary 1.1.3 (108, Corollary 3) If the fibration f : S → C is not trivial, then
q(f) ≤ 5g + 1

6
. (1.2)

We note that f is trivial if and only if q(f) = g. The previous inequality (1.2) is a direct consequence of the
slope inequality (1.1). It is known that this upper bound in not sharp. Finding a sharp upper bound for the
relative irregularity is currently an active area of research. We expect a bound similar to the one proved by
Xiao in (109) for surfaces with a linear pencil, that is fibered surfaces with C = CP1:

Theorem 1.1.4 (109, Theorem 1) If the fibration f : S → CP1 is not trivial, then
q(f) = q(S) ≤ g + 1

2
. (1.3)

Xiao asked whether the same upper bound (1.3) holds for any fibered surface f : S → C. The answer is no,
as proven in (91, Theorem 2). The modified version of Xiao’s conjecture is stated as follows.

Conjecture 1.1.5 (Modified Xiao’s conjecture (3, Conjecture 1.1)) If f : S → C is not trivial with general
fiber of genus g. Then:

q(f) ≤ ⌈g + 1

2
⌉.

Let us summarize the main known results regarding this conjecture.

(1) First, we note that g+1
2 differs from ⌈g+1

2 ⌉ only when g is even.
(2) As stated in Theorem 1.1.4, Xiao, in (109, Theorem 1), proved that q(f) = q(S) ≤ g+1

2 when the base
C = CP1.

(3) Serrano, in (99, Page 63), proved Conjecture 1.1.5 when f is isotrivial but not trivial.
(4) If f is non-isotrivial and the general fiber is either hyperelliptic or bielliptic, the same bound

q(f) ≤ g + 1

2

holds, as shown by Cai in (17, Theorem 0.1).
12



(5) In (3, Theorem 1.2), the authors tackled the general non-isotrivial case. They proved that if f is non-
isotrivial, then

q(f) ≤ g − c(f), (1.4)
where c(f) is the Clifford index of the general fiber F .

(6) In (38, Theorem 1.1), the authors improved upon the result in (3). They proved that if the general fiber
F of the fibered surface f : S → C is a smooth plane curve of degree d ≥ 5, then

q(f) ≤ g − c(f)− 1.
(7) In private communication,Martin (80, Corollary 1.3) informed the author that he proved the last open

case for g = 5, namely that q(f) ≤ 3 for fibered surfaces by trigonal curves with g = 5.

In general, Konno, in (69), proved the sharpest known upper bound for the relative irregularity. His idea
was to explore how positive the intersection number of KS/C and the fixed part of f∗ωS/C is, and then
improve the slope inequality. In other words, we have the following theorem:

Theorem 1.1.6 (69, Proposition 2.8) Let f : S → C is a relatively minimal fibration of genus g ≥ 2 which is
not locally trivial. Then

q(f) ≤ g
5g − 2

3(2g − 1)
. (1.5)

Our paper (9) points out that, if we fix any relatively effective divisor D, then understanding the intersec-
tion of D with the fixed part of f∗OS(D) is crucial for obtaining a sharp slope inequality for the datum
(D, f∗OS(D)).

One naturalmethod to attack Conjecture 1.1.5 is to improve certain forms of the slope inequality. We believe
that a good understanding of the fixed part Z of f∗KS/C (Definition 2.2.4 below) is crucial for making
progress. In particular, we hope to gain a deeper understanding of the positive number KS/C · Z when
KS/C is relatively nef.

1.2 Canonical maps of general type surfaces
We are interested in the linear system |mKS | for a general type varieties and in particular for surfaces of
general type. By the celebrated works of Bombieri (16, Page 449) (Sakai’s article (98) for the log case), we
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understand the geometry of |mKS | for m ≥ 3. More precisely, for minimal surfaces of general type S,
Bombieri proved that the linear system |mKS | is birational form ≥ 3, except for some explicitly described
cases.

For the bicanonical map, we have by the celebrated result of Xiao (106) the following theorem.

Theorem 1.2.1 (106, Theorem 1) Let S be a minimal projective surface of general type. Then the bicanonical
map ϕ|2KS | of S is generically finite if and only if p2(S) > 2.

We recall that Xiao’s proof relies on the study of genus-2 fibrations over curves and on Horikawa’s classifica-
tion of possible degenerations. Another interesting proof was provided by Chen and Viehweg (28, Theorem
0.1), who applied the Q-divisor method commonly used for problems in higher-dimensional birational ge-
ometry, particularly in the context of the minimal model program (MMP).

In (4), Beauville first studied the canonical map |KS | systematically.

Here we are mainly interested in the case when the image of the canonical map is a curve, in which case
we say that S admits a canonical fibration or S is a canonically fibered surface or |KS | is composed with a
pencil.

Let us recall the existing results. We recall that we are interested in canonically fibered general type surface.
One interesting boundedness result is the following theorem by Beauville (4).

Theorem 1.2.2 (4, Proposition 2.1) Let ϕ|KS | : S ‧‧➡ C be a canonically fibered general type surface with
general fiber F . If the geometric genus Pg of S is very large, that is Pg >> 0, then 2 ≤ g(F ) ≤ 5.

Remark 1.2.3 The proof of the previous theorem is based on the celebrated Miyaoka-Yau inequality (83),
(112), (113) (see (75), (76), and (82) for developments). We mention that, in that proof, the understanding of
the positive numberKS · Z, where Z is the fixed part of |KS | is overlooked.

In general, we recall that it is straightforward to obtain g(F ) ≤ 36. In (107), Xiao proved the following:
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Theorem 1.2.4 (107, Page 251) For such surfaces, There are two possible situations: q(S) = g(C) = 1 or
0 ≤ q(S) ≤ 2 and C is a projective line CP1.

In (4, Example 2) Beauville constructs such unbounded families with g(F ) = 2, 3, and recently in (78,
Theorem 1.3), the author constructed an unbounded family of canonically fibered general type surface with
g(F ) = 4, we precise that this last example is for canonically fibered general type surfaces of g(F ) = 4

over CP1

One interesting problem is the following boundness conjecture by Xiao (110).

Conjecture 1.2.5 (110, Problem 6) There exists a positive integerN such that if ϕ|KS | : S ‧‧➡ C is a canon-
ically fibered surface of general type with general fiber of genus g(F ) = 5, then Pg < N .

This last conjecture was proved by Sun (103) if the general fiber is hyperelliptic and by Chen if the general
fiber is nonhyperelliptic and nontrigonal (29). More precisely, they proved the following theorems.

Theorem 1.2.6 (103, Corollary 1) There is no canonically fibered general type surface ϕ|KS | : S ‧‧➡ C with
hyperelliptic general fiber of g(F ) = 5 if g(C) = 1 or Pg > 53− 15q(S).

Theorem 1.2.7 (29, Theorem 1.2) There is no canonically fibered general type surface ϕ|KS | : S ‧‧➡ C such
that the general fiber F is a nontrigonal genus 5 curve if g(C) = 1 or Pg > 863.

In Chapter 3, we give a full proof of Conjecture 1.2.5 if the base is an elliptic curve. Furthermore, we develop
a method to completely resolve the problem. The crucial part of this method is in a joint article with Chen
and Grieve (10).

1.3 Generic vanishing theory and global generation problems
Independently of Section 1.1 and Section 1.2, we are interested in effective global generation problems, such
as Fujita’s conjecture below.
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Conjecture 1.3.1 (44, Page 167) LetX be a smooth complex projective variety of dimension n, and letD be
an ample divisor onX . Then, the linear system |KX +mD| is base point free ∀m ≥ n+ 1.

One natural method to attack Conjecture 1.3.1 is to use techniques from generic vanishing theory.

We briefly recall some basic definitions, we refer to (26), (46), (47), (89) and (90) for more details.

Definition 1.3.2 (89, Definition 2.3) A coherent sheaf F on an abelian variety Y with dimY = g satisfies
IT with index 0 if

H i(Y,F ⊗ p) = 0, ∀p ∈ Pic0(Y ), ∀i > 0.

Definition 1.3.3 (89, Definition 3.5) Let X be an irregular variety and F be a coherent sheaf on X . We
say that F is continuously globally generated if for any non-empty open subset U ⊆ Pic0(X), the sum of
evaluation maps: ⨁︂

p∈U
H0(X,F ⊗ p)⊗ p∨ → F

is surjective.

We recall the Fourier-Mukai setting, we refer to Mukai (84) for more details. We denote by P the Poincaré
line bundle on Y × Pic0(Y ), and Y is an abelian variety as before. For any coherent sheaf F on Y , we
can associate the sheaf p2∗(p∗1F ⊗ P) on Pic0(Y ) where p1 and p2 are the natural projections on Y and
Pic0(Y ), respectively. This correspondence gives a functor

ˆ︁S : Coh(Y ) → Coh(Pic0(Y )).

If we denote by D(Y ) and D(Pic0(Y )) the bounded derived categories of Coh(Y ) and Coh(Pic0(Y )),
then the derived functor

Rˆ︁S : D(Y ) → D(Pic0(Y ))

is defined and called the Fourier-Mukai functor. Similarly, we consider
RS : D(Pic0(Y )) → D(Y )
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in a similar way. According to the celebrated result of Mukai (84), the Fourier-Mukai functor induces an
equivalence of categories between the two derived categories D(Y ) and D(Pic0(Y )). More precisely, we
have

RS ◦ Rˆ︁S ≃ (−1Y )
∗[−g]

and
Rˆ︁S ◦ RS ≃ (−1Pic0(Y ))

∗[−g]

where [−g] is a shift operation for a complex g places to the right.

Now, we define the cohomology support locus (46).

Definition 1.3.4 (46, Page 389) Let F be a coherent sheaf on an abelian variety Y . The set V i(F) is the
cohomology support locus and defined as the following:

V i(F) := {p ∈ Pic0(Y )|H i(Y,F ⊗ p) ̸= 0}.

The cohomology support locus are studied very carefully in (46) and (100). There the authors proved a
foundational generic vanishing theorem.

Remark 1.3.5 By base change, there is always the following inclusion Supp(Ri ˆ︁S(F)) ⊆ V i(F).

Definition 1.3.6 (89, Definition 3.1) A coherent sheaf F on Y is calledM-regular if
codimPic0(Y )(Supp(Ri ˆ︁S(F))) > i, ∀i ≥ 1.

A coherent sheaf F on Y is called a generic vanishing sheaf or a GV-sheaf if its cohomology support locus
V i(F) satisfies the following inequality

codimPic0(Y )(V
i(F)) ≥ i, ∀i ≥ 1.

We remark thatM -regularity is achieved if in particular
codimPic0(Y )(V

i(F)) > i, ∀i ≥ 1.
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Remark 1.3.7 If F is anM -regular sheaf on an abelian variety Y , then F is a GV -sheaf. Furthermore, if
F satisfies IT with index 0, then it is clearly M -regular. In the following proposition, we recall that the
M -regular property is stronger than the notion of being continuously globally generated.

Proposition 1.3.8 (88, Proposition 2.13) EveryM -regular coherent sheaf F on an abelian variety Y is con-
tinuously globally generated sheaf.

Definition 1.3.9 (26, Definition 2.2) A coherent sheafF on an irregular varietyX is said to have an essential
base point at x if there exist a surjective map F → C(x) such that ∀p ∈ Pic0(X), the induced map
H0(X,F ⊗ p) → H0(X,C(x)) is zero.

In (26), the authors proved the next proposition.

Proposition 1.3.10 (26, Proposition 2.3) If F is a coherent sheaf on an abelian variety Y satisfying IT with
index 0 condition, then F has no essential base points.

We are interested in comparing Definition 1.3.3 and Definition 1.3.9, these are new observations.

Proposition 1.3.11 Let F be a coherent sheaf on an irregular varietyX . If F is continuously globally gener-
ated, then F has no essential base points.

Proof. If F is continuously globally generated, then for any non-empty open subset U ⊆ Pic0(X), the
following sum of evaluation maps is surjective:⨁︂

p∈U
H0(X,F ⊗ p)⊗ p∨ → F .

Now, fix a point x ∈ X and suppose we are given a surjective mapF → C(x). Thus, we have the following
commutative diagram: ⨁︂

p∈U
H0(X,F ⊗ p)⊗ p∨ F

C(x).
ϕ
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However, the induced map ϕ defined by composition is surjective and hence not zero. In particular, there
exist p ∈ U such that the map

H0(X,F ⊗ p)⊗ p∨ → H0(X,C(x)) ≃ C(x)

is not zero, and hence the map
H0(X,F ⊗ p) → C(x)

is not zero. Thus F has no essential base points as claimed. □

Example 1.3.12 It is clear that every ample line bundle L on an abelian variety Y satisfies IT with index 0
condition, and thus is continuously globally generated. Furthermore, by Proposition 1.3.10 we also see that
L has no essential base points. On the other hand, the converse of Proposition 1.3.11 is not true. Indeed, for
an irregular varietyX ,OX ∈ Pic0(X) has no essential base points, however, it is not continuously globally
generated.

In the next proposition, we provide a sufficient condition for Definition 1.3.3 and Definition 1.3.9 to be equiv-
alent in the case of line bundles.

Proposition 1.3.13 LetX be an irregular variety, and letD be a divisor onX such that h0(X,OX(D)⊗p) is
constant for all p ∈ Pic0(X). Then,OX(D) has no essential basepoints if and only ifOX(D) is continuously
globally generated.

Proof. Assume thatOX(D) has no essential basepoints, then for all x ∈ X and for any surjective map
ψ : OX(D) → C(x),

we can find px ∈ Pic0(X) (Definition 1.3.9) such that the induced map
H0(X,OX(D)⊗ px) → H0(X,C(x))

is surjective. Thus
h0(X,Kerψ ⊗ px) = h0(X,OX(D)⊗ px)− 1.

By the upper semi-continuity of h0(X,Kerψ ⊗ p) as p varies in Pic0(X), we deduce that
h0(X,Kerψ ⊗ px) = h0(X,Kerψ ⊗ p)
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for general p ∈ Pic0(X). By assumption, h0(X,OX(D) ⊗ p) is constant for all p ∈ Pic0(X). Therefore,
we conclude that the map

H0(X,OX(D)⊗ p) → H0(X,C(x)) ≃ C(x) (1.6)
is surjective for a general p ∈ Pic0(X).

Now, using the surjectivity of the map (1.6) for a general p ∈ Pic0(X), we will prove thatD is continuously
globally generated. In other words, we will prove for x ∈ X and for all U ⊆ Pic0(X) nonempty open
subset, the sum of evaluation maps⨁︂

p∈U
H0(X,OX(D)⊗ p)⊗ p∨ → OX(D)|x ≃ C(x) (1.7)

is surjective. Indeed, the map (1.6) is surjective for a general p ∈ Pic0(X), in particular for some pU ∈ U .
Thus, twisting the map (1.6) by p∨U and then the following map

H0(X,OX(D)⊗ pU )⊗ p∨U → C(x)

is surjective. Finally, we conclude that the sum of evaluationmaps (1.7) is surjective as desired. The converse
is proved in Proposition 1.3.11. □

Example 1.3.14 As in Example 1.3.12, ifL is an ample line bundle on an abelian variety Y , then h0(Y, L⊗p)
is constant for all p ∈ Pic0(Y ) sinceχ(Y, L⊗p) is constant for all p ∈ Pic0(Y ). Moreover, it has no essential
basepoints and is continuously globally generated. Hence, Proposition 1.3.13 is not empty.

However, for an irregular varietyX , it can happen that there exists a divisorD such that h0(X,OX(D)⊗p)

is constant for all p ∈ Pic0(X), but OX(D) is not continuously globally generated. Indeed, for instance,
take X = CP1 × C with C an elliptic curve, and let p2 be the second projection. Let D = KX + B,
where B is a section of p2. Thus, B is p2-ample and hence, by the relative Kodaira vanishing theorem,
R1(p2)∗(OX(D)) = 0. Also, (p2)∗(OX(D)) = 0 because

h0(CP1,OX(D)|CP1 ) = h0(CP1,OCP1(−1)) = 0.

It follows that hi(X,OX(D) ⊗ p) = 0, for all i with 0 ≤ i ≤ 2 and for all p ∈ Pic0(X). In particular,
OX(D) is not continuously globally generated.
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We recall the definition of Albanese dimension.

Definition 1.3.15 We define the Albanese dimension α(X) of an irregular varietyX by
α(X) := dimalb(X).

Here, alb(X) is the image of the Albanese map alb : X → alb(X) ⊆ Alb(X), where Alb(X) is the
Albanese variety.

In Chapter 4, we denote the Stein factorizationX f−→ Z
u−→ alb(X) of alb, where f is a surjectivemorphism

f with connected fibers. We denote a general fiber of f by F . Thus, we have the following diagram:
X Z

alb(X)

f

alb
u (1.8)

where u : Z → alb(X) is a finite morphism.

1.4 Terminology on the Mori minimal model program
We refer to (12) and (67) for the notation and terminology introduced below.

Fix f : X → Y a proper morphism of normal projective varieties. We say that X is Q-factorial if every
Weil divisor isQ-Cartier. We say that aQ-divisorD isQ-Cartier if some integral multiple is Cartier. We say
that two Q-divisors D1, D2 on X are Q-linearly equivalent (over Y ), that is D1 ∼Q D2 (D1 ∼Q,f D2) if
their difference is an Q-linear combination of principal divisors (and an Q-Cartier divisor pulled back from
Y ). D1 and D2 are numerically equivalent (over Y ), denoted D1 ≡ D2 (D1 ≡f D2), if their difference is
anQ-Cartier divisor such that (D1−D2).C = 0 for any curveC (contracted by f ). AQ-Cartier divisorD is
semi-ample over Y , or f -semi-ample, ifD is aQ-linearly equivalent to the pullback of an ampleQ-divisor
over Y . Equivalently, f∗f∗OX(mD) → OX(mD) is surjective form ≫ 0. We say that Q-divisorD is big
over Y , or f -big, if

lim supm→∞
h0(F,OF (⌞mD⌟))

mdimF
> 0

for the fibre F over any generic point of Y . EquivalentlyD is f -big ifD ∼Q,f M + E , whereM is ample
and E effective. We define the Kodaira dimension of aQ-divisorQ-Cartier by

κ(D) := κ(mD)
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for some natural numberm such thatmD is Cartier.

By a pair (X,∆), we mean a normal varietyX associated with Q-divisor∆ :=
∑︁
ai∆i, which is a formal

sum of distinct prime divisors∆i with ai ∈ [0, 1] such thatKX +∆ isQ-cartier.

By a klt polarized pair (X,∆ + L), we mean a klt pair (X,∆) and L is a nef Q-divisor (see (14, Paragraph
2.2)).

We recall the definition of singularities of pairs, we refer to (67) for more details.

Definition 1.4.1 (67, Definition 2.3.4) Let (X,∆) be a pair, we say that:

• (X,∆) is terminal if a(E,X,∆) > 0 for every exceptional divisor E.
• (X,∆) is canonical if a(E,X,∆) ≥ 0 for every exceptional divisor E.
• (X,∆) is Kawamata log terminal (or. klt) if a(E,X,∆) > −1 for every divisor E.
• (X,∆) is purely log terminal (or. plt) if a(E,X,∆) > −1 for every exceptional divisor E.
• (X,∆) is divisorial log terminal (or. dlt) if a(E,X,∆) > −1 if centerX(E) ⊂ non-snc(X,∆).
• (X,∆) is log canonical (or. lc) if a(E,X,∆) ≥ −1 for every divisor E.

Here by a(E,X,∆), we mean a log discrepancy of E.

Definition 1.4.2 (13, Page 210) Let f : X → Y be a proper morphism of normal projective varieties andD
be aQ-cartier divisor onX . A normal variety Z with the following commutative diagram:

X Z

Y

ϕ

f
g (1.9)

is called a minimal model ofD over Y if:

• The inverse of ϕ does not contract any divisor.
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• DZ := ϕ∗D is g-nef.
• There exist a common resolution p : W → X and h : W → Z such that E := p∗D − h∗DZ is
effective and Supp p∗E contains all the exceptional divisors of ϕ.

Further, we say that Z is a relatively good minimal model ifDZ is g-semi-ample.

We recall certain forms of the canonical bundle formula, originally introduced by Fujino and Mori ((40)).

Theorem 1.4.3 [(51, Theorem 2.1), (59, Theorem 3.1)] Let f : (X,∆) → Y be a projective morphism from
an lc pair to a normal variety Y , such that N(KX +∆) is Cartier and f∗OX(N(KX +∆)) ̸= 0 for some
integerN > 0. Then, there exists a commutative diagram:

˜︁X X

˜︁Y Y

ψ

˜︁f f

ϕ

with the following properties:

(1) ψ is a birational morphism, ˜︁X is smooth and ˜︁f is an algebraic fiber space.
(2) There exist aQ-divisor ˜︁∆ such that ( ˜︁X, ˜︁∆) is aQ-factorial dlt pair, and

ψ∗O ˜︁X(N(K ˜︁X + ˜︁∆)) = N(KX +∆).

(3) There exist aQ-factorial dlt polarized pair (˜︁Y ,∆˜︁Y + L˜︁Y ) pair such thatK˜︁Y +∆˜︁Y + L˜︁Y is big /Y .
(4) There exist an effectiveQ- divisorR on ˜︁X such that ˜︁f∗O ˜︁X(mR) = O˜︁Y for allm ≥ 0,

K ˜︁X + ˜︁∆ ∼Q ˜︁f∗(K˜︁Y +∆˜︁Y + L˜︁Y ) +R,
and ˜︁f∗O ˜︁X(N(K ˜︁X + ˜︁∆)) = N(K˜︁Y +∆˜︁Y + L˜︁Y ).

(5) each component of ⌊∆˜︁Y ⌋ is dominated by a vertical component of ⌊˜︁∆⌋.
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CHAPTER 2

SLOPE INEQUALITY FOR AN ARBITRARY DIVISOR

In this Chapter, f : S → C is a fibered surface from a smooth complex projective surface S to a smooth
complex projective curveC, andD is a relatively effective divisor onS. Also, throughout this chapter, unless
stated otherwise, all locally free sheaves are assumed to be nonzero.

2.1 Rational map to a projective bundle
Let f : S → C be a fibered surface and D be a relatively effective divisor on S. Let F ⊆ f∗OS(D) be a
locally free sub-sheaf of rank rF . There exist always the following commutative diagrams:

S PC(f∗OS(D))

C

ψ

f
π

and
S PC(F)

C.

ψF

f
πF

In the above, PC(f∗OS(D)) (respectively PC(F)) is the projective bundle of one dimensional quotients
(Grothendieck’s notations) of f∗OS(D) (respectively of F ) and π (respectively πF ) is the projective mor-
phism from PC(f∗OS(D)) to C (respectively from PC(F) to C). The maps ψ and ψF are rational and
defined by the following evaluation maps:

f∗f∗OS(D) −→ OS(D),
(respectively)

f∗F −→ OS(D).

Remark 2.1.1 • If we assumeD is f -globally generated in the sense that
f∗f∗OS(D) −→ OS(D)

is surjective, then ψ is a morphism by (53, Proposition II.7.12).
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• If the map
f∗F −→ OS(D)

is surjective, then ψF is also a morphism by (53, Proposition II.7.12).

Take a sufficiently very ample divisor A on C such that f∗OS(D) ⊗ O(A) is a very ample vector bundle.
Then the rank of f∗OS(D)⊗O(A) is

r = H0(F,D|F ),
and

deg(f∗OS(D)⊗O(A)) = deg f∗OS(D) + r deg(A).

Now, PC(f∗OS(D)⊗O(A)) and PC(f∗OS(D)) are isomorphic by an isomorphism s, ((53, Lemma 7.9)).

The rational map
ϕ : S ‧‧➡ PC(f∗OS(D)⊗O(A)),

defined by
f∗(f∗OS(D)⊗O(A)) −→ OS(D)⊗ f∗O(A)

is the rational map given by the linear system |D + f∗A|, and restricted to the general fiber F of f , ϕ|F is
the map defined by |D|F |.

The line bundleOPC(f∗OS(D)⊗O(A))(1) onPC(f∗OS(D)⊗O(A)) is very ample. Then it gives an embedding
of this last projective bundle to a projective space CPN for some N > 0. We thus have the following
commutative diagram:

S PC(f∗OS(D)⊗O(A)) ⊆ CPN

C

ϕ

f
πA

where πA is the projection map, again we have ψ = s ◦ ϕ, the rational map ϕ is defined by the complete
linear system |D + f∗A|. If it has no nontrivial fixed part, then its image is contained in any hyperplane.

We assume that there is a fixed part Z of |D+ f∗A|. Thus, the linear system |D−Z + f∗A| factorizes the
map ϕ defined by |D + f∗A| and the following properties are satisfied:
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(1). The fixed part Z of |D + f∗A|, restricted to F , is just the fixed part of the complete linear system
|D|F |.

(2). The system |D − Z + f∗A| has no fixed part, so it has only a finite number of base points.
(3). The fixed part Z is a divisor such that the morphism:

f∗(f∗OS(D)⊗O(A)) −→ OS(D − Z)⊗ f∗O(A),
is surjective in codimension 1.

(4). We can assume that Z has no horizontal components because A is sufficiently ample.

Theorem 2.1.2 There exist a series of blow ups ϵ : ˜︁S → S and a morphism
λA : ˜︁S −→ PC(f∗OS(D)⊗O(A))

such that the following diagram is commutative:
˜︁S
S PC(f∗OS(D)⊗O(A)) ⊆ CPN

C

ϵ

λA

ϕ

f
πA

ϕ ◦ ϵ = λA and
(λA)

∗OPC(f∗OS(D)⊗O(A))(1) = ϵ∗(O(D − Z)⊗ f∗O(A))⊗O(−E),
where E is the exceptional divisor of ϵ.

Remark 2.1.3 ϵ∗(O(D − Z)⊗ f∗O(A))⊗O(−E) is globally generated.

Proof of Theorem 2.1.2. The linear system |D−Z+f∗A| has at worst finitely many base points. If there are
none,ϕ is amorphismand there is nothing to prove. We suppose that there is a base pointx in |D−Z+f∗A|.
We take the blow-up in x defined by ϵ1, so |(ϵ1)∗(D−Z+ f∗A)| has a fixed part k1E1 with k1 ∈ Z, k1 ≥ 1

and |D1| = |(ϵ1)∗(D − Z + f∗A)− k1E1| has no fixed part. Hence, it defines a rational map, λ1 : S1 ‧‧➡
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PC(f∗OS(D)⊗O(A)) which is identical to ϕ ◦ ϵ1. If λ1 is a morphism, then we are done; if not, we repeat
the process. Thus, we get by induction a sequence ϵi : Si −→ Si−1 of blow-ups and a linear system |Di|

with no fixed part, whereDi = (ϵi)∗Di−1 − kiEi for i ≥ 1.

In other words, we arrive at a systemDn with no base points, which defines a morphism:
ϵ = ϵ1 ◦ ... ◦ ϵn : ˜︁S −→ S.

We conclude that |ϵ∗(D − Z + f∗A)− E| defines a morphism
˜︁S λA−→ PC(f∗OS(D)⊗O(A))

such that
ϵ∗(O(D − Z)⊗ f∗O(A))⊗O(−E) = (λA)

∗OPC(f∗OS(D)⊗O(A))(1)

where E =
∑︁i=n

i=1 kiEi is the exceptional divisor. □

The last proof is inspired by the proof of (5, Theorem 2.7).

Corollary 2.1.4 There exists a morphism λ : ˜︁S → PC(f∗OS(D)) such that the following diagram is com-
mutative: ˜︁S

S PC(f∗OS(D))

C.

λ

ϵ

ψ

f
π

Moreover, we have
λ∗(OPC(f∗OS(D))(1)) = ϵ∗(O(D − Z))⊗O(−E).

Proof. By Theorem 2.1.2, there exists a morphism
λA : ˜︁S −→ PC(f∗OS(D)⊗O(A))

which has the following property:
(λA)

∗OPC(f∗OS(D)⊗O(A))(1) = ϵ∗(O(D − Z)⊗ f∗O(A))⊗O(−E).
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But there exists an isomorphism
s : PC(f∗OS(D)⊗O(A)) −→ PC(f∗OS(D))

such that
OPC(f∗OS(D)⊗O(A))(1) = s∗OPC(f∗OS(D))(1)⊗ π∗AO(A).

Therefore,
(s ◦ λA)∗OPC(f∗OS(D))(1)⊗ (πA ◦ λA)∗O(A) = ϵ∗(O(D − Z))⊗ (f ◦ ϵ)∗O(A)⊗O(−E)

implies
(s ◦ λA)∗OPC(f∗OS(D))(1) = ϵ∗(O(D − Z))⊗O(−E).

We take
λ = s ◦ λA.

□

Remark 2.1.5 More generally, for F ⊆ f∗OS(D) a locally free sub-sheaf, we take a sufficiently very ample
divisor A on C such that F ⊗ O(A) is very ample. Let LF be the linear sub-system of |D + f∗A| which
corresponds to the sections of H0(F ⊗ O(A)). Let ZF be the fixed part of LF , so LF − ZF has no fixed
part and it corresponds to a rational map from S to a projective sub-variety of PC(F ⊗O(A)). By the same
arguments as above, ∃ ˜︁SF ϵF−→ S which is a chain of blow ups and ∃λF : ˜︁SF −→ PC(F) such that the
following diagram is commutative:

˜︁SF
S PC(F)

C

λF

ϵF

ψF

f
πF

and
(λF )

∗(OPC(F)(1)) = ϵ∗F (O(D − ZF ))⊗O(−EF ),
where EF is the exceptional divisor of ϵF .
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2.2 Harder-Narasimhan filtration
In this section, we study the Harder-Narasimhan filtration within the context of fibered surfaces.

Proposition 2.2.1 (52) Let F be a vector bundle over a smooth projective curve C. There exists a unique
sequence of vector sub-bundles of F :

0 = F0 ⊊ F1 ⊊ ... ⊊ Fk−1 ⊊ Fk = F ,
that satisfies the following conditions:

(1). For i = 1, ..., k, Fi/Fi−1 is a semi-stable vector bundle.
(2). For any i = 1, ..., k, setting µi := µ(Fi/Fi−1) =

deg(Fi/Fi−1)
rk(Fi/Fi−1)

, we have:
µ1 > µ2 > ... > µk.

In the context of Proposition 2.2.1 above, the filtration is called the Harder-Narasimhan filtration of F . We
set µf = µk and call it the final slope of F . The following elementary lemma is important in what follows.

Lemma 2.2.2 Let ri be the rank of Fi. Then
degF =

k−1∑︂
i=1

ri(µi − µi+1) + rkµk.

Proof. Indeed, we consider the exact sequence:
0 −→ Fk−1 −→ Fk −→ Fk/Fk−1 −→ 0.

From the additivity of degree, we have
degFk = degFk−1 + degFk/Fk−1.

Similarly, we have
degFk−1 = degFk−2 + degFk−1/Fk−2.
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And so, by induction, we can conclude that
degFk =

k∑︂
i=1

degFi/Fi−1.
From the definition of slope, for every i = 1, .., k we have:

degFi/Fi−1 = µi(ri − ri−1).
Thus, we obtain the desired formula. □

Consider now a fibered surface f : S → C. LetF be its general fiber, letD be a relatively effective divisor on
S, and let (Fi)0≤i≤k be the Harder-Narasimhan filtration ofF ⊆ E = f∗OS(D). By a repeated application
of Remark 2.1.5 to each of the Fi’s, we have the following proposition.

Proposition 2.2.3 There exists a suitable smooth projective surface ˆ︁S and a birational morphism ϵ : ˆ︁S → S

such that the following diagram is commutative ∀i; 1 ≤ i ≤ k:
ˆ︁S
˜︁SFi

S PC(Fi)

C

λi
ϵi

ϵ

λFi
ϵFi

ψFi

f
πi

where ϵFi is a blow-up morphism along a finite number of points {xi1 , . . . , ximi
}, 1 ≤ i ≤ k, as defined in

the proof of Theorem 2.1.2 and Remark 2.1.5.

Proof. Set ⋃︁1≤i≤k{xi1 , . . . , ximi
} = {q1, . . . , qm} and let ˆ︁S = BLq1,...,qm(S) be the blowing up of S at

q1, . . . , qm. Then there exists a blowing up morphism ϵi along {q1, ..., qm}\{xi1 , . . . , ximi
} which fits into

the diagram above and ϵ = ϵi ◦ ϵFi :
ˆ︁S → S. As before, we fix a sufficiently ample divisor A on C. Define

the map
λi : ˆ︁S → PC(Fi)

by the linear system |ϵ∗(D − ZFi)− E|, and furthermore we have
λi = λFi ◦ ϵi.
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Moreover, for any Fi in the filtration, we have
λ∗i (OPC(Fi)(1)) = ϵ∗(O(D − ZFi))⊗O(−E).

Where ZFi is the fixed part of LFi ⊆ |D + f∗A| which correspond to sections ofH0(Fi ⊗O(A)). Here E
is the exceptional divisor of ϵ. □

In what follows, we study the fibered surface f̂ := f ◦ ϵ : ˆ︁S → C and we denote by F its general fiber.

Definition 2.2.4 (Compare with (97, Definition 3.11)) In the setting above, we define the following divisors
on ˆ︁S:

• Zi := ϵ∗ZFi + E, the fixed part of the vector sub-bundle Fi,∀i; 1 ≤ i ≤ k.
• Mi := λ∗i (OPC(Fi)(1)), themoving part of the vector sub-bundle Fi,∀i; 1 ≤ i ≤ k.
• SetNi :=Mi − µiF,∀i; 1 ≤ i ≤ k. We call this the ith Miyaoka divisor.

Applying, (83), (85) and (71, Proposition 6.4.11), we prove the following Lemma 2.2.6 using the language of
Q-twisted vector bundles. First, we recall the definition of aQ-twisted vector bundle.

Definition 2.2.5 (See (71, Definition 6.2.1)). A Q-twisted vector bundle E⟨δ⟩ on a projective varietyX con-
sists of a vector bundle E defined up to isomorphism, and a Q-numerical equivalence class δ ∈ N1

Q(X).
If D is a Q-divisor, we write E⟨D⟩ for the twist E by the numerical equivalence class of D. We define Q-
isomorphism of Q-twisted bundles to be the equivalence relation generated by saying that E⟨A + D⟩ is
equivalent to (E ⊗ O(A))⟨D⟩ for all integral divisors A andQ-divisorsD.

Lemma 2.2.6 (Compare with (85, Corollary IV.3.8)) ∀i; 1 ≤ i ≤ k, Ni are nef divisors on ˆ︁S.
Proof. Fix i; 1 ≤ i ≤ k, let us see that theQ-twisted vector bundle Fi⟨− c1(Fi/Fi−1)

rk(Fi/Fk−1)
⟩ is nef.

We define the following quotient bundles andQ-divisors:⎧⎨⎩ Gi = Fi/Fi−1

δi =
c1(Gi)
rk(Gi)

.
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However, Gi⟨−δi⟩ is a nef vector bundle by (71, Proposition 6.4.11). Furthermore, deg δi = µi. Thus
− deg δ1 < − deg δ2 < ... < − deg δk.

Using the following exact sequence of vector bundles:
0 −→ Fi−1 −→ Fi −→ Gi −→ 0,

we next prove that Fi⟨−δi⟩ is nef by induction, ∀i; 1 ≤ i ≤ k. For i = 1, F1⟨−δ1⟩ = G1⟨−δ1⟩ which is
nef. Now, assume that Fi−1⟨−δi−1⟩ is a nef bundle. Then Fi−1⟨−δi⟩ is Q-ample. Using the above exact
sequence and since Fi−1⟨−δi⟩ and Gi⟨−δi⟩ are nef, we see that Fi⟨−δi⟩ is a nef bundle.

Thus, OPC(Fi⟨−δi⟩)(1) is a nef line bundle. So OPC(Fi)(1)) ⊗ π∗iO(−δi) is nef, then by the remarks that
λ∗iOPC(Fi)(1) =Mi and λ∗i (π∗iO(−δi)) = O(−µiF ), we conclude thatNi is nef, ∀i; 1 ≤ i ≤ k. □

Remark 2.2.7 It is noted that the above lemma can be proven by the original Xiao’s argument, leveraging
the Miyaoka-Nakayama result (85, Corollary IV.3.8). The argument presented in the lemma above serves as
an alternative proof using the language ofQ-twisted vector bundles.

Lemma 2.2.8 ∀i; 1 ≤ i ≤ k, ri = rkFi ≤ h0(F,Ni|F ).

Proof. Let πi be the projection from PC(Fi) to C. Then,
(πi ◦ λi)∗(Mi) = (πi)∗((λi)∗Mi)

= (πi)∗(OPC(Fi)(1)⊗ (λi)∗Oˆ︁S) ⊇ (πi)∗(OPC(Fi)(1)) = Fi.
Thus,

ri ≤ h0(F,Mi|F ),
which implies

ri ≤ h0(F,Ni|F ).

□

Proposition 2.2.9 Let di = deg(Ni|F ) = Ni.F such that 1 ≤ i ≤ k. Then,
dk ≥ dk−1 ≥ ... ≥ d1 ≥ 0.
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Proof. Since F is a fiber, F 2 = 0. Then,
di = Ni.F = (Mi − µiF ).F =Mi.F

= λ∗i (OPC(Fi)(1)).F = (ϵ∗(D − ZFi)− E).F

= ϵ∗(D − ZFi).F = (D − ZFi).F ≥ 0.

But
ZFi ≥ ZFi+1 .

Thus,
D − ZFi+1 = D − ZFi + (ZFi − ZFi+1).

Therefore,
di+1 ≥ di.

□

Proposition 2.2.10 Continuing with the setting as above, we define the following constant for the datum
(D,F):

n̂(D,F) :=

⎧⎨⎩ max{i| Ni|F is special}
−∞ otherwise.

If n̂(D,F) ̸= −∞, thenNj |F is special for 1 ≤ j ≤ n̂(D,F) andNj |F is nonspecial for n̂(D,F) + 1 ≤ j ≤ k.
Otherwise,Nj |F is nonspecial, ∀j; 1 ≤ j ≤ k.

Proof. Recall that
ZF1 ≥ ... ≥ ZFk

.

Also, we identified the general fiber of S with the general fiber of ˆ︁S. Let n̂(D,F) + 1 ≤ j ≤ k − 1, thus
Nj |F = ϵ∗(D − ZFj )|F

= (D − ZFj )|F
≤ (D − ZFj+1)|F

= Nj+1|F .

Consider the following short exact sequence:
0 −→ Nj |F −→ Nj+1|F −→ Nj+1|F /Nj |F −→ 0

which induces a long exact sequence in cohomology:
· · · −→ H0(F,Nj+1|F /Nj |F ) −→ H1(F,Nj |F ) −→ H1(F,Nj+1|F ) −→ 0.
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So, if h1(F,Nj |F ) = 0, then h1(F,Nj+1|F ) = 0. □

To illustrate the above proposition, we consider the following examples.

Example 2.2.11 LetD = KS/C , g ≥ 1, andF = f∗ωS/C . Then we haveNk |F ≃ KF , thusH1(F,KF ) = 1.
Hence, Nk |F is special. Furthermore, it follows that Ni|F is special ∀i; 1 ≤ i ≤ k and n̂(KS/C ,f∗ωS/C) = k.
Conversely, for an arbitrary relatively effective divisorD, if n̂(D,F) = k, then degD|F ≤ 2g − 2.

Example 2.2.12 Now, letD = KS/C +∆, g ≥ 1, F = f∗OS(KS/C +∆), and∆ is an effective divisor on
S with∆.F > 0. Then Nk |F ≃ KF +∆|F , thusH1(F,KF +∆|F ) = 0 since the degree ofKF +∆|F is
strictly greater than 2g − 2. So we conclude that n̂(KS/C+∆,f∗OS(KS/C+∆)) < k.

Example 2.2.13 As in Example 2.2.12, letD = KS/C +∆ and∆ is an effective divisor on S with∆.F > 0.
Assume that f∗OS(D) is semi-stable. Then k = 1 and n̂(KS/C+∆,f∗OS(KS/C+∆)) = −∞.

Example 2.2.14 We give another example such that n̂(D,F) = −∞. Let E = OCP1 ⊕ OCP1(1) and S =

PCP1(E). Then we define a natural fibration f : S → CP1. S has only one negative curve E ≃ CP1

such that E2 = −1 and E = OS(1) − F in Pic(S). By construction, the trivial part OCP1 corresponds
to a 0-dimensional linear sub-system L0 of |OS(1)| generated by the effective divisor E + F , and the bun-
dle OCP1(1) to the 1-dimensional linear sub-system L1 generated by the two effective divisor of |OS(1)|

different from E + F . Moreover,
0 ⊊ OCP1(1) ⊊ E

is the Harder-Narasimhan filtration of E . SinceL1 has no fixed part, thenN1 = OS(1)−F andN2 = OS(1).
Thus,N1|F andN2|F are nonspecial divisors and n̂(O1(S),E) = −∞.

Example 2.2.15 More generally than Example 2.2.14, every fibered surface f : S → C with g(F ) = 0 has
n̂(D,F) = −∞ for every relatively effective divisorD andF ⊆ f∗OS(D), since there are no special divisors
on CP1.

Now, it is natural to ask for some information about the sequence ( di
h0(F,Ni|F )−1

)i∈{1,...k}. For instance, is it
an increasing finite sequence? Is it decreasing? Is it bounded from below by a strictly positive number?

34



Lemma 2.2.16 ∀i; 2 ≤ i ≤ k, we have h0(F,Ni|F ) > 1.

Proof. We have h0(F,Ni|F ) ≥ rk(Fi). So if h0(F,Ni|F ) = 1, then the only possibility is i = 1. In this case,
the degree is d1 = g(F )− h1(F,N1|F ). □

In the following theorem, we assume that rkF ≥ 2.

Theorem 2.2.17 Let f : S → C be a fibered surface with general fiberF , andD a relatively effective divisor
on S. Consider the Harder-Narasimhan filtration (Fi) of F ⊆ f∗OS(D) such that rkF ≥ 2. Define:

ˆ︁S(D,F) :=

⎧⎨⎩ 1 if h0(F,N1|F ) > 1

2 otherwise
and

βD := 1 +
g(F )

h0(F,D|F )− 1
.

Then, the following result hold:

(1). If n̂(D,F) = −∞, thenNi|F is nonspecial ∀i; 1 ≤ i ≤ k, and
βD ≤ dk

h0(Nk |F )− 1
≤ ... ≤ di+1

h0(Ni+1|F )− 1
≤

di
h0(Ni|F )− 1

≤ ... ≤
dˆ︁S(D,F)

h0(Nˆ︁S(D,F) |F
)− 1

.

(2). Otherwise:
– ∀i; n̂(D,F) + 1 ≤ i ≤ k:

βD ≤ dk
h0(Nk |F )− 1

≤ ... ≤ di+1

h0(Ni+1|F )− 1
≤

di
h0(Ni|F )− 1

≤ ... ≤
dn̂(D,F)+1

h0(Nn̂(D,F)+1|F
)− 1

.

– ∀i; ˆ︁S(D,F) ≤ i ≤ n̂(D,F):
di

h0(Ni|F )− 1
≥ 2.

35



Proof. For (1), if n̂(D,F) = −∞, then by definition of n̂(D,F), Ni|F is nonspecial ∀i; 1 ≤ i ≤ k. Thus, by
applying the Riemann-Roch formula:

h0(Ni|F ) = di + 1− g(F ).
Since

h0(Ni+1|F ) = h0(Ni|F ) + di+1 − di,
it follows that ∀i; ˆ︁S(D,F) ≤ i ≤ k − 1:

di+1

h0(Ni+1|F )− 1
=

di + di+1 − di
h0(Ni|F ) + di+1 − di − 1

≤ di
h0(Ni|F )− 1

.
Moreover,D|F is nonspecial, and then by the Riemann-Roch formula we have

h0(F,D|F ) = D.F + 1− g(F ).
Thus,

h0(F,D|F ) = h0(F,Ni|F ) +D.F − di, ∀i; 1 ≤ i ≤ k.
Then, we deduce the desired lower bound:

di
h0(Ni|F )− 1

≥ 1 +
g(F )

h0(F,D|F )− 1
, ∀i; ˆ︁S(D,F) ≤ i ≤ k.

This proves (1).
For (2), if n̂(D,F)+1 ≤ i ≤ k, then argue as in (1). Suppose now thatNi|F is special, that is ˆ︁S(D,F) ≤ i ≤ n̂.
Then by Clifford Theorem (2), we have

di ≥ 2(h0(Ni|F )− 1)

which implies
di

h0(Ni|F )− 1
≥ 2.

□

Remark 2.2.18 If we compare Proposition 2.2.9 and Theorem 2.2.17, then we deduce that ∀i; ˆ︁S(D,F) ≤ i ≤

k:
dk ≥ dk−1 ≥ ... ≥ dˆ︁S ≥ 1.
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2.3 Slope inequalities
Now, we are ready to present the technical lemma in the method, we called it the Modified Xiao Lemma.
Note that it is a more general form of Xiao (108, Lemma 2).

Lemma 2.3.1 (Modified Xiao Lemma) Let f̂ : ˆ︁S → C be a fibered surface with F its general fiber, D̂ be a
divisor on ˆ︁S, and suppose that there exist a sequence of effective divisors:

Z1 ≥ Z2 ≥ ... ≥ Zj ,
and a sequence of rational numbers:

µ1 ≥ µ2 ≥ ... ≥ µj ,
such that for every i ∈ {1, ..., j}, we have

Ni := D̂ −Zi − µiF

are nefQ-divisors. Then,
D̂

2 ≥
j−1∑︂
i=1

(di + di+1)(µi − µi+1) + 2D̂.Zj −Z2
j + 2µjdj ,

where di = Ni.F .

Proof. First, observe thatN 2
1 ≥ 0 by nefness. However,
N 2
i = Ni(Ni−1 + (Zi−1 −Zi) + (µi−1 − µi)F )

≥ Ni(Ni−1 + (µi−1 − µi)F )

≥ (Ni−1 + (Zi−1 −Zi) + (µi−1 − µi)F )(Ni−1 + (µi−1 − µi)F )

≥ N 2
i−1 + (µi−1 − µi)(2Ni−1F + (Zi−1 −Zi)F )

= N 2
i−1 + (µi−1 − µi)(di−1 + di).

So, by induction we have
N 2
j ≥

j−1∑︂
i=1

(di + di+1)(µi − µi+1).
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Hence,
(D̂ −Zj − µjF )

2 ≥
j−1∑︂
i=1

(di + di+1)(µi − µi+1).
But,

(D̂ −Zj − µjF )
2 = (D̂ −Zj)2 − 2µj(D̂ −Zj)F

= D̂
2 − 2D̂.Zj + Z2

j − 2µjdj .
Thus,

D̂
2 ≥

j−1∑︂
i=1

(di + di+1)(µi − µi+1) + 2D̂.Zj −Z2
j + 2µjdj .

□

Remark 2.3.2 The term 2D̂.Zj −Z2
j + 2µjdj describes the negativity of D̂.

Example 2.3.3 In the setting of Lemma 2.3.1, suppose that j = k, D̂ is nef, and µk ≥ 0. Set Zk+1 = 0 and
µk+1 = 0. Then apply Lemma 2.3.1 to the sequence of effective divisors:

Z1 ≥ Z2 ≥ ... ≥ Zk+1 = 0,
and a sequence of rational numbers:

µ1 ≥ µ2 ≥ ... ≥ µk+1 = 0.
So, we conclude the original result of Xiao (108, Lemma 2):

D̂
2 ≥

k∑︂
i=1

(di + di+1)(µi − µi+1).

Prior to stating the main results, we apply Lemma 2.3.1 to the datum (D,F) where F ⊆ f∗OS(D). Let
(Fi)0≤i≤k be the Harder-Narasimhan filtration of F , and (Zi,Mi, Ni)1≤i≤k be the triple of fixed parts,
moving parts, and the Miyaoka divisors respectively (Definition 2.2.4). Then, we deduce the following in-
equalities.

Theorem 2.3.4 Let f : S → C be a fibered surface with general fiber F . Consider the datum (D,F)where
D is a relatively effective divisor on S and F ⊆ f∗OS(D) is a locally free sub-sheaf on C with rkF ≥ 2.
Then we have the following three cases:
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(1). If n̂(D,F) = −∞, then
D2 ≥ 2βD degF − βDµ1 + (βD − 2βDrk + 2dk)µk + 2ϵ∗D.Zk − Z2

k .
(2). If n̂(D,F) = k, then

D2 ≥ 4 degF − 2µ1 + 2(1− 2rk + dk)µk + 2ϵ∗D.Zk − Z2
k .

(3). If 1 ≤ n̂(D,F) < k, then

D2 ≥ 4

n̂(D,F)−1∑︂
i=1

ri(µi − µi+1) + 2βD

k−1∑︂
i=n̂(D,F)+1

ri(µi − µi+1)

−2(µ1 − µn̂(D,F)+1)− βD(µn̂(D,F)+1 − µk) + (βD + 2)rn̂(D,F)
(µn̂(D,F)

− µn̂(D,F)+1)

+2ϵ∗D.Zk − Z2
k + 2µkdk.

Here ϵ is constructed as in Proposition 2.2.3 and βD is as in Theorem 2.2.17.

Proof. Recall that f̂ = f ◦ϵ : ˆ︁S → C is a fibered surface withF its general fiber and D̂ := ϵ∗D is a relatively
effective divisor on ˆ︁S. Consider (Fi)0≤i≤k the Harder-Narasimhan filtration of F , let (µ1, . . . , µk) be the
sequence of slopes and (Zi,Mi, Ni)1≤i≤k the triple of fixed parts, moving parts, and the Miyaoka divisors
respectively, recall also that D̂ = Zi +Mi,∀i; 1 ≤ i ≤ k, and

Z1 ≥ Z2 ≥ · · · ≥ Zk ≥ 0,

µ1 > µ2 > · · · > µk.
Therefore, Ni are Q-nef divisors on ˆ︁S, where di = Ni.F . Now, by Lemma 2.3.1, we have the following
inequality:

D̂
2 ≥

k−1∑︂
i=1

(di + di+1)(µi − µi+1) + 2D̂.Zk − Z2
k + 2µkdk. (2.1)

Recall that ϵ : ˆ︁S → S is a proper birational morphism, hence D̂2
= D2. By Theorem 2.2.17, we have the

following natural three cases:

(1). If n̂(D,F) = −∞, thenNi|F is nonspecial ∀i; 1 ≤ i ≤ k, and
di ≥ βD(h

0(Ni|F )− 1) ≥ βD(ri − 1).
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The right hand side inequality follows from Lemma 2.2.8, where ri = rk(Fi),∀i; 1 ≤ i ≤ k, we also
recall that ri+1 ≥ ri − 1,∀i; 1 ≤ i ≤ k − 1, hence

di+1 ≥ βDri.
We substitule all these information into (2.1):

D2 ≥ 2βD

k−1∑︂
i=1

ri(µi − µi+1)− βD(µ1 − µk) + 2ϵ∗D.Zk − Z2
k + 2µkdk.

By Lemma 2.2.2, we deduce the desired inequality:
D2 ≥ 2βD degF − βDµ1 + (βD − 2βDrk + 2dk)µk + 2ϵ∗D.Zk − Z2

k .
(2). If n̂(D,F) = k, thenNi|F is special ∀i; 1 ≤ i ≤ k and

di ≥ 2(h0(Ni|F )− 1) ≥ 2(ri − 1),
however

di+1 ≥ 2ri.
This implies

D2 ≥ 4 degF − 2µ1 + 2(1− 2rk + dk)µk + 2ϵ∗D.Zk − Z2
k .

(3). If 1 ≤ n̂(D,F) < k, then
∀i; n̂(D,F) + 1 ≤ i ≤ k, di ≥ βD(h

0(Ni|F )− 1) ≥ βD(ri − 1),
and

∀i; 1 ≤ i ≤ n̂(D,F), di ≥ 2(h0(Ni|F )− 1) ≥ 2(ri − 1).
So, we decompose the right hand side of (2.1) into three parts:

D2 ≥
n̂(D,F)−1∑︂

i=1

(di + di+1)(µi − µi+1) +

k−1∑︂
i=n̂(D,F)+1

(di + di+1)(µi − µi+1)

+(dn̂(D,F)
+ dn̂(D,F)+1)(µn̂(D,F)

− µn̂(D,F)+1)

+2D̂.Zk − Z2
k + 2µkdk.

Which implies
D2 ≥ 4

n̂(D,F)−1∑︂
i=1

ri(µi − µi+1) + 2βD

k−1∑︂
i=n̂(D,F)+1

ri(µi − µi+1)
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−2(µ1 − µn̂(D,F)
)− βD(µn̂(D,F)+1 − µk) + (βD + 2)rn̂(D,F)

(µn̂(D,F)
− µn̂(D,F)+1)

+2D̂.Zk − Z2
k + 2µkdk,

since
dn̂(D,F)

≥ 2(rn̂(D,F)
− 1), and dn̂(D,F)+1 ≥ βD(rn̂(D,F)+1 − 1) ≥ βD(rn̂(D,F)

).

□

Remark 2.3.5 The lower bound that we obtain for D2 in Theorem 2.3.4 for 1 ≤ n̂(D,F) < k is given by a
sum of three parts. The first part,

4

n̂(D,F)−1∑︂
i=1

ri(µi − µi+1)

describes the effect of special Miyaoka divisors. The second part,
2βD

k−1∑︂
i=n̂(D,F)+1

ri(µi − µi+1)

explains the impact of the nonspecial Miyaoka divisors in the sequence (Ni)1≤i≤k. The third part is a tran-
sition from special to nonspecial Miyaoka divisors. In general, we could give a lower bound forD2 by

4 degFn̂(D,F)
, 2βD degF/Fn̂(D,F)

and other terms, but to formulate the slope inequality for the datum (D,F), it turns out that we should
first start by takingmin(2, βD) and write, for instance,

di ≥ min(2, βD)(ri − 1).
Following this set-up, we will obtain in the next corollary a lower bound forD2 by

2min(2, βD) degF

and other terms that we will explore in the upcoming paragraphs.

Definition 2.3.6 Let f : S → C be a fibered surface, F its general fiber. Consider the datum (D,F) as
before, whereD is a relatively effective divisor on S andF ⊆ f∗OS(D)with rkF ≥ 2. Then we define the
following number:

α(D,F) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βD if n̂(D,F) = −∞

2 if n̂(D,F) = k

min(2, βD) if 1 ≤ n̂(D,F) < k.
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Corollary 2.3.7 Let f : S → C be a fibered surface with general fiber F . Consider the datum (D,F)where
D is a relatively effective divisor on S and F ⊆ f∗OS(D) is a locally free sub-sheaf on C.

(1). If rkF ≥ 2, then
D2 ≥ 2α(D,F) degF − α(D,F)µ1 + (α(D,F) − 2α(D,F)rk + 2dk)µk + 2ϵ∗D.Zk − Z2

k .
Again, here ϵ is constructed as in Proposition 2.2.3.

(2). Else, if rkF = 1, then
D2 ≥ 2d1 degF + 2ϵ∗D.Z1 − Z2

1 .

Proof. First, assuming that rkF ≥ 2, for the cases n̂(D,F) = −∞, k, the inequality is proved in Theorem
2.3.4.

We only need to prove the case 1 ≤ n̂(D,F) < k. By Theorem 2.2.17 and Lemma 2.2.8, we have
di ≥ α(D,F)(h

0(Ni|F )− 1) ∀i; 1 ≤ i ≤ k.
Putting this last inequality into inequality (2.1), we obtain:

D2 ≥ 2α(D,F)

k−1∑︂
i=1

ri(µi − µi+1)− α(D,F)(µ1 − µk) + 2ϵ∗D.Zk − Z2
k + 2µkdk.

By Lemma 2.2.2, we deduce the desired inequality:
D2 ≥ 2α(D,F) degF − α(D,F)µ1 + (α(D,F) − 2α(D,F)rk + 2dk)µk + 2ϵ∗D.Zk − Z2

k .
Now, if rkF = 1, then F is a locally free sheaf of rank 1, k = 1, and µk = µ1. Therefore,

h0(N1|F ) = r1 = 1, dk = d1 = g(F )− h1(N1|F ).
By the inequality (2.1), which is a consequence of Lemma 2.3.1 and does not require the assumption that F
has rank at least 2, we have

D2 ≥ 2d1 degF + 2ϵ∗D.Z1 − Z2
1 .

□
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Remark 2.3.8 IfF is a semi-stable locally free sheaf, then by Corollary 2.3.7, we have the following inequal-
ity:

D2 ≥ 2
d1
r1

degF + 2ϵ∗D.Z1 − Z2
1 .

Now, the goal is to discuss the first point in Corollary 2.3.7 with respect to µ1 and µk. Without loss of
generality, we assume that F is not a semi-stable locally free sheaf in the next theorem.

Theorem 2.3.9 Let f : S → C be a fibered surface. Consider the datum (D,F), where D is a relatively
effective divisor andF ⊆ f∗OS(D) is a locally free sub-sheaf onC. Assume thatF is not semi-stable. Here,
we set:

t(D,F) :=

⎧⎨⎩ max{i|µi ≥ 0} if µ1 ≥ 0

−∞ otherwise.

(1). If t(D,F) = 1, then
D2 ≥ 2d1

r1
degF1 + 2ϵ∗D.Z1 − Z2

1 ≥ 2d1
r1

degF + 2ϵ∗D.Z1 − Z2
1 .

(2). If 1 < t(D,F) ≤ k, then
D2 ≥

2α(D,Ft(D,F)
)dt(D,F)

dt(D,F)
+ α(D,Ft(D,F)

)
degFt(D,F)

+ 2ϵ∗D.Zt(D,F)
− Z2

t(D,F)

≥
2α(D,Ft(D,F)

)dt(D,F)

dt(D,F)
+ α(D,Ft(D,F)

)
degF + 2ϵ∗D.Zt(D,F)

− Z2
t(D,F)

.
(3). If t(D,F) = −∞, set:

C(D,F) :=

⎧⎨⎩
2α(D,F)dk

−α(D,F)+2α(D,F)rk−dk
if α(D,F) − 2α(D,F)rk + 2dk ≤ 0

3α(D,F) + 2dk − 2α(D,F)rk otherwise.
Then

D2 ≥ C(D,F). degF + 2ϵ∗D.Zk − Z2
k .

In addition, if dk = α(D,F)(rk − 1), then we have the following inequality which is independent of t(D,F):
D2 ≥ 2dk

rk
degF + 2ϵ∗D.Zk − Z2

k .
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Proof. We recall that (Fi)1≤i≤k is the sequence of Harder-Narasimhan filtration of F . If we take an integer
m such that 1 ≤ m ≤ k, then (Fi)1≤i≤m is the sequence of Harder-Narasimhan filtration of Fm. By
Corollary 2.3.7, we have the following inequality for the datum (D,Fm) such that rk(Fm) ≥ 2:
D2 ≥ 2α(D,Fm) degFm − α(D,Fm)µ1 + (α(D,Fm) − 2α(D,Fm)rm + 2dm)µm + 2ϵ∗D.Zm − Z2

m. (2.2)

(1). If t(D,F) = 1, we have µ1 ≥ 0 and starting from i = 2, µi < 0. Thus, we apply Remark 2.3.8 for F1:
D2 ≥ 2d1

r1
degF1 + 2ϵ∗D.Z1 − Z2

1 ≥ 2d1
r1

degF + 2ϵ∗D.Z1 − Z2
1 .

(2). If t(D,F) > 1, we have µ1, . . . , µt(D,F)
≥ 0. Therefore, by considering that

α(D,Ft(D,F)
) − 2α(D,Ft(D,F)

)rt(D,F)
+ 2dt(D,F)

≥ −α(D,Ft(D,F)
),

and using inequality (2.2), we deduce the following inequality form = t(D,F):
D2 ≥ 2α(D,Ft(D,F)

) degFt(D,F)
− α(D,Ft(D,F)

)(µ1 + µt(D,F)
) + 2ϵ∗D.Zt(D,F)

− Z2
t(D,F)

. (2.3)
Now, we apply Lemma 2.3.1 to the sequences {Z1, Zt(D,F)

} and {µ1, µt(D,F)
}. Thus,

D2 ≥ dt(D,F)
(µ1 + µt(D,F)

) + d1(µ1 − µt(D,F)
) + 2ϵ∗D.Zt(D,F)

− Z2
t(D,F)

. (2.4)
Since d1(µ1−µt(D,F)

) ≥ 0, and by Remark 2.2.18, we have dt(D,F)
≥ 1. Then we can divide by dt(D,F)

,
thus the following inequality follows:
−α(D,Ft(D,F)

)(µ1+µt(D,F)
) ≥

−α(D,Ft(D,F)
)

dt(D,F)

D2+2
α(D,Ft(D,F)

)

dt(D,F)

ϵ∗D.Zt(D,F)
−
α(D,Ft(D,F)

)

dt(D,F)

Z2
t(D,F)

.
Combining this last inequality and the inequality (2.3), we deduce the desired result:

D2 ≥
2α(D,Ft(D,F)

)dt(D,F)

dt(D,F)
+ α(D,Ft(D,F)

)
degFt(D,F)

+ 2ϵ∗D.Zt(D,F)
− Z2

t(D,F)

≥
2α(D,Ft(D,F)

)dt(D,F)

dt(D,F)
+ α(D,Ft(D,F)

)
degF + 2ϵ∗D.Zt(D,F)

− Z2
t(D,F)

.
(3). If t(D,F) = −∞, so both µ1, µk < 0. By the fact that

α(D,F) − 2α(D,F)rk + 2dk ≥ −α(D,F),
we conclude that

(α(D,F) − 2α(D,F)rk + 2dk)µ1 ≤ −α(D,F)µ1.
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We replace this last inequality in (2.2) for the datum (D,F), thus
D2 ≥ 2α(D,F) degF + (α(D,F) − 2α(D,F)rk + 2dk)(µ1 + µk) + 2ϵ∗D.Zk − Z2

k .
We set

A := α(D,F) − 2α(D,F)rk + 2dk.
To obtain the desired result, we discuss the above inequality depending on whetherA ≤ 0 orA > 0.
(a). If A ≤ 0, then we apply Lemma 2.3.1 to the sequences {Z1, Zk} and {µ1, µk}:

D2 ≥ dk(µ1 + µk) + 2ϵ∗D.Zk − Z2
k . (2.5)

Combining the two last inequalities above, we deduce
D2 ≥

2α(D,F)dk

−α(D,F) + 2α(D,F)rk − dk
degF + 2ϵ∗D.Zk − Z2

k .
(b). If A > 0, we note that

degF ≤ µ1 + µk.
Then,

D2 ≥ (3α(D,F) + 2dk − 2α(D,F)rk) degF + 2ϵ∗D.Zk − Z2
k .

Now, we prove the last point of the theorem. If dk = α(D,F)(rk − 1), we apply inequality (2.2) form = k:
D2 ≥ 2α(D,F) degF − α(D,F)(µ1 + µk) + 2ϵ∗D.Zk − Z2

k .
Combining this last inequality and inequality (2.5), we deduce the desired result:

D2 ≥ 2dk
rk

degF + 2ϵ∗D.Zk − Z2
k .

□

Proposition 2.3.10 Let f : S → C be a fibered surface, and letD be a relatively effective and relatively nef
divisor on S. Consider the datum (D, f∗OS(D)). Then the following number is nonnegative:

ϵ∗D.Zk ≥ 0.
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Proof. We recall that Zk = ϵ∗ZFk
+E, where ZFk

is the fixed part of |D+ f∗A| andA is a sufficiently very
ample divisor onC. Thus, ZFk

is an effective divisor supported on fibers. By assumption,D is relatively nef,
then we conclude the desired nonnegativity:

ϵ∗D.Zk = ϵ∗D.(ϵ∗ZFk
+ E) = ϵ∗D.ϵ∗ZFk

= D.ZFk
≥ 0.

□

Proposition 2.3.11 Let f : S → C be a fibered surface andD be a relatively effective divisor. Consider the
datum (D, f∗OS(D)). Then Z2

k ≤ 0.

Proof. Our aim is to prove that Z2
Fk

≤ 0. By contradiction, we assume that Z2
Fk

> 0. Then by the Hodge
index theorem, either

lim
n→∞

h0(nZFk
) = +∞ or lim

n→∞
h0(KS − nZFk

) = +∞.
However, the divisorKS −nZFk

is never effective if ZFk
is not zero and n≫ 0. Thus, the only possibility is

lim
n→∞

h0(nZFk
) = +∞.

This contradicts the fact that ZFk
is not movable. Therefore, we deduce Z2

Fk
≤ 0. Consequently, by the

definition of Zk:
Zk = ϵ∗ZFk

+ E,
we conclude the nonpositivity of Z2

k ; in other words, Z2
k ≤ 0. □

Corollary 2.3.12 Let f : S → C be a fibered surface andD be a relatively effective and relatively nef divisor
on S. Consider the datum (D, f∗OS(D)).

(1). If f∗OS(D) is semi-stable, then:
D2 ≥ 2

D.F

h0(F,D|F )
deg f∗OS(D).

(2). If f∗OS(D) is not semi-stable, we have the following cases:
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(a). If t(D,f∗OS(D)) = k: D is nef and
D2 ≥

2α(D,f∗OS(D))D.F

D.F + α(D,f∗OS(D))
deg f∗OS(D).

(b). If t(D,f∗OS(D)) = 1:
D2 ≥ 2d1

r1
deg f∗OS(D) + 2ϵ∗D.Z1 − Z2

1 .
(c). If 1 < t(D,f∗OS(D)) < k:

D2 ≥
2α(D,Ft(D,f∗OS(D))

)dt(D,f∗OS(D))

dt(D,f∗OS(D))
+ α(D,Ft(D,f∗OS(D))

)
deg f∗OS(D) + 2ϵ∗D.Zt(D,f∗OS(D))

− Z2
t(D,f∗OS(D))

.

(d). If t(D,f∗OS(D)) = −∞:
D2 ≥ C(D,f∗OS(D)). deg f∗OS(D).

In addition, ifD.F = α(D,f∗OS(D))(h
0(F,D|F )− 1), then independently of t(D,f∗OS(D)) we have:
D2 ≥ 2

D.F

h0(F,D|F )
deg f∗OS(D).

Proof. First, if f∗OS(D) is semi-stable, then by Remark 2.3.8 we have:
D2 ≥ 2

d1
r1

deg f∗OS(D) + 2ϵ∗D.Z1 − Z2
1 .

Since 2ϵ∗D.Z1−Z2
1 ≥ 0by Proposition 2.3.10 andProposition 2.3.11, whered1 = D.F and r1 = rk(f∗OS(D)) =

h0(F,D|F ), we deduce the desired inequality:
D2 ≥ 2

D.F

h0(F,D|F )
deg f∗OS(D).

Now, if f∗OS(D) is not semi-stable, then we apply Theorem 2.3.9 and we have the following cases:

(a). If t(D,f∗OS(D)) = k:
D2 ≥

2α(D,f∗OS(D))dk

dk + α(D,f∗OS(D))
deg f∗OS(D) + 2ϵ∗D.Zk − Z2

k .

(b). If t(D,f∗OS(S)) = 1:
D2 ≥ 2d1

r1
deg f∗OS(D) + 2ϵ∗D.Z1 − Z2

1 .
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(c). If 1 < t(D,f∗OS(D)) < k:

D2 ≥
2α(D,Ft(D,f∗OS(D))

)dt(D,f∗OS(D))

dt(D,f∗OS(D))
+ α(D,Ft(D,f∗OS(D))

)
deg f∗OS(D) + 2ϵ∗D.Zt(D,f∗OS(D))

− Z2
t(D,f∗OS(D))

.

(d). If t(D,f∗OS(D)) = −∞:
D2 ≥ C(D,f∗OS(D)). deg f∗OS(D) + 2ϵ∗D.Zk − Z2

k .

By Proposition 2.3.10 and Proposition 2.3.11, we have that 2ϵ∗D.Zk −Z2
k ≥ 0. Furthermore, dk = D.F . So

we deduce the desired result:

• If t(D,f∗OS(D)) = k, equivalently µk ≥ 0, then we have
D2 ≥

2α(D,f∗OS(D))D.F

D.F + α(D,f∗OS(D))
deg f∗OS(D).

• If t(D,f∗OS(D)) = −∞, it is equivalent to µ1 < 0. Then
D2 ≥ C(D,f∗OS(D)). deg f∗OS(D).

Also, if µk ≥ 0, then f∗OS(D) is nef on C, soMk is nef on ˆ︁S. Since
D̂ = Zk +Mk,

ZFk
is supported in the fibers, and by assumptionD is relatively nef, thus we deduce thatD is nef. □

Remark 2.3.13 In general, ifD is nef, we do not necessarily have µk ≥ 0.

Example 2.3.14 In (102, Theorem 5), the authors proved that if D is a relatively nef divisor on S such that
D|F is generated by global sections on a general fiber F of f ,D|F is a special divisor on F , and

2h0(F,D|F )−D.F − 1 > 0, (P)
then

D2 ≥ 2
D.F

h0(F,D|F )
deg f∗OS(D).
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First, we remark that the condition (P) is equivalent to
2h0(F,D|F )−D.F − 1 = 1,

since by Clifford’s Theorem:
D.F ≥ 2(h0(F,D|F )− 1).

Thus, we can assume D|F has a section and is not necessarily generated by global sections since we can
always eliminate the horizontal fixed part of D. By Corollary 2.3.12, we see that whether D|F is special or
nonspecial, we proved the same inequality:

D2 ≥ 2
D.F

h0(F,D|F )
deg f∗OS(D),

if the following more general condition holds:
D.F = α(D,f∗OS(D))(h

0(F,D|F )− 1). (Q)

Theorem 2.3.15 let f : S → C be a fibered surface and F its general fiber. IfD is a relatively effective and
relatively nef divisor,D|F is nonspecial with h0(F,D|F ) > g, then

D2 ≥ 2
D.F

h0(F,D|F )
deg f∗OS(D).

Proof. By assumption, D|F is nonspecial and h0(F,D|F ) > g. Thus, we have βD ≤ 2 and α(D,f∗OS(D)) =

βD. Then the condition (Q) is satisfied:
D.F = α(D,f∗OS(D))(h

0(F,D|F )− 1).
Finally, the desired inequality follows from Example 2.3.14. □

Proposition 2.3.16 Let f : S → C be a fibered surface and D be a nef divisor on S. Consider the datum
(D,F). Then, if t(D,F) ≥ 1:

2ϵ∗D.Zi − Z2
i ≥ 0, ∀i; 1 ≤ i ≤ t(D,F).

Proof. Recall that ϵ∗D = Mi + Zi, thus 2ϵ∗D.Zi − Z2
i = (ϵ∗D +Mi)Zi. However,Mi and ϵ∗D are nef,

∀i; 1 ≤ i ≤ t(D,F). So, we deduce the nonnegativity of 2ϵ∗D.Zi − Z2
i . □
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Corollary 2.3.17 (Compare with (97, Theorem 3.20)) Let f : S → C be a fibered surface and D be a nef
divisor on S. Consider the datum (D,F) where F ⊆ f∗OS(D). Then

(1). If F is semi-stable or t(D,F) = 1, then
D2 ≥ 2

d1
r1

degF1 ≥ 2
d1
r1

degF .
(2). If 1 < t(D,F) ≤ k, then

D2 ≥
2α(D,Ft(D,F)

)dt(D,F)

dt(D,F)
+ α(D,Ft(D,F)

)
degFt(D,F)

≥
2α(D,Ft(D,F)

)dt(D,F)

dt(D,F)
+ α(D,Ft(D,F)

)
degF .

Proof. Apply Proposition 2.3.16 and Theorem 2.3.9. □

2.4 Examples and applications
Example 2.4.1 LetD = KS/C be the relative canonical divisor of a fibered surface f : S → C with g(F ) ≥
2. Thus, by (41), f∗ωS/C is a nef vector bundle on C. Also, n̂(KS/C ,f∗ωS/C) = k sinceD|F = KF is a special
divisor on F . This implies α(KS/C ,f∗ωS/C) = 2. We also have t(KS/C ,f∗ωS/C) = k, where k is the length of
the Harder-Narasimhan filtration of f∗ωS/C , and dk = 2g− 2where g = g(F ). Then, by Remark 2.3.8 and
Theorem 2.3.9, we have:

K2
S/C ≥ 4

g − 1

g
deg f∗ωS/C + 2ϵ∗KS/C .Zk − Z2

k .
Recall that

2ϵ∗KS/C .Zk − Z2
k = 2KS/C .ZFk

− Z2
Fk

− E2,
where E is the exceptional divisor of ϵ (Proposition 2.2.3). Here Fk = F = f∗ωS/C . In (?, Example 2.1), the
authors considered the case where f is a relatively minimal nodal fibration. They calculate the term

2KS/C .ZFk
− Z2

Fk
− E2,

and prove that if n ≥ 1 is the total number of disconnecting nodes contained in the fibres, we have
2KS/C .ZFk

− Z2
Fk

− E2 ≥ n.
Therefore,

K2
S/C ≥ 4

g − 1

g
deg f∗ωS/C + n.
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This implies if f is relatively minimal and
K2
S/C = 4

g − 1

g
deg f∗ωS/C ,

then f is never a relatively minimal nodal fibration with at least 1 disconnected node.

Furthermore, we remark that if f is relatively minimal, then by Corollary 2.3.12,KS/C is nef and therefore
2KS/C .ZFk

− Z2
Fk

− E2 ≥ 0.
Moreover, to have

K2
S/C = 4

g − 1

g
deg f∗ωS/C ,

it must be that
2KS/C .ZFk

− Z2
Fk

− E2 = 0.
Then |KS/C + f∗O(A)| has no fixed part and is base point free for a sufficiently ample divisor on C.

In general, if f is relatively minimal, we always have the original Xiao’s result (108):
K2
S/C ≥ 4

g − 1

g
deg f∗ωS/C .

Example 2.4.2 LetD = mKS/C be the relative pluricanonical divisor of a fibered surface f : S → C, with
g = g(F ) ≥ 2, andm ≥ 2. It is well known that f∗ω⊗m

S/C is a nef vector bundle onC, see (105, Theorem 1.3)
for instance. IfKS/C is relatively nef, then by Corollary 2.3.12, we have the following cases:

• If f∗ω⊗m
S/C is semi-stable:

m2K2
S/C ≥ 4m

2m− 1
deg f∗ω

⊗m
S/C ,

since
rk(f∗ω

⊗m
S/C) = (2m− 1)(g − 1).

Therefore,
K2
S/C ≥ 4

m(2m− 1)
deg f∗ω

⊗m
S/C .

• If f∗ω⊗m
S/C is not semi-stable, then using the fact thatmKF is a nonspecial divisor, we see that

n̂(mKS/C ,f∗ω
⊗m
S/C

) < k,
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and
α(mKS/C ,f∗ω

⊗m
S/C

) = 1 +
g

h0(F,mKF )− 1
,

since
h0(F,mKF ) > g.

Moreover,
t(mKS/C ,f∗ω

⊗m
S/C

) = k,
because f∗ω⊗m

S/C is a nef vector bundle on C. Then,

m2KS/C ≥
2α(mKS/C ,f∗ω

⊗m
S/C

)dk

dk + α(mKS/C ,f∗ω
⊗m
S/C

)

deg f∗ω
⊗m
S/C .

Recall that dk = 2m(g − 1) and h0(F,mKF ) = (2m− 1)(g − 1), thus
2α(mKS/C ,f∗ω

⊗m
S/C

)dk

m2(dk + α(mKS/C ,f∗ω
⊗m
S/C

))
=

4

m(2m− 1)
.

Therefore,
K2
S/C ≥ 4

m(2m− 1)
deg f∗ω

⊗m
S/C .

In this computations, we see that whether f∗ω⊗m
S/C is semi-stable or not, we have the same lower bound.

The reason is that
dk = α(mKS/C ,f∗ω

⊗m
S/C

).(rk − 1),
as explained in the last itemof Corollary 2.3.12. However, in general, for datum (D,F)whereF ⊊ f∗OS(D),
the constant 2α(D,F)dk

dk+α(D,F)
is different from 2dk

rk
because the inequality dk > α(D,F)(rk − 1) can well happen.

Example 2.4.3 Now, let f : S → C be a fibered surface and F its general fiber with g(F ) ≥ 2. We take
D = KS/C + L such that L is nef and relatively big with L.F > 1. We know that f∗OS(D) is a nef vector
bundle on C with

rk(f∗OS(D)) = g − 1 + L.F ̸= 0.
IfD is a relatively nef divisor, then by Corollary 2.3.12, we have the following lower bound for (KS/C +L)2:

(KS/C + L)2 ≥ 2

(︃
1 +

g − 1

g − 1 + L.F

)︃
deg f∗(ωS/C ⊗O(L)),
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because we know the following information for the datum (D, f∗OS(D)):
dk = α(D,f∗OS(D))(rk − 1), n̂(D,f∗OS(D)) < k, α(D,f∗OS(D)) = 1 +

g

g − 2 + L.F
,

also the quantity t(D,f∗OS(D)) is maximal, this means t(D,f∗OS(D)) = k.

Example 2.4.4 We give a trivial example in which we can see that t(D,f∗OS(D)) = −∞ can happen. Let
f : S → C be a fibered surface and F its general fiber with g(F ) = 2. Assume thatKS/C is a nef divisor
and the second Fujita decomposition (Theorem 0.0.2) of f∗ωS/C is not trivial. Then there exists an ample
line bundleA on C and a flat line bundle U such that

f∗ωS/C = A⊕ U .
Now, letD = KS/C + f∗M for a sufficiently negative divisorM on C such that deg(A⊗O(M)) < 0. In
this case,D is a relatively nef divisor on S such thatD|F = KF and the bundle f∗OS(D) decomposes into
two parts:

f∗OS(D) = A⊗M⊕U ⊗M.
The Harder-Narasimhan filtration of f∗OS(D) is the following:

0 ⊊ A⊗M ⊊ f∗OS(D).
We consider the datum (D, f∗OS(D)). Since D|F = KF , we see that D|F is special, n̂(D,f∗OS(D)) = 2,
and α(D,f∗OS(D)) = 2. Since g(F ) = 2, then we have d2 = 2. Also, clearly, we have t(D,f∗OS(D)) = −∞.
Applying Corollary 2.3.12, we deduce the following inequality:

D2 ≥ C(D,f∗OS(D)) deg f∗OS(D).
We know that C(D,f∗OS(D)) = 2, so we replace C(D,f∗OS(D)) by 2 in the above inequality:

D2 ≥ 2 deg f∗OS(D).
Additionally, we remark that dk = α(D,f∗OS(D))(rk − 1). Thus, again by Corollary 2.3.12 or Example 2.3.14,
we deduce the same lower bound.

Proposition 2.4.5 Let f : S → C be a fibered surface and F its general fiber with g(F ) ≥ 2. Then
K2
S/C =

2

m(m− 1)

(︂
deg f∗ω

⊗m
S/C − deg f∗ωS/C

)︂
, ∀m ≥ 2.
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Remark 2.4.6 In the setting of Proposition 2.4.5, in particular:
K2
S/C = deg f∗ω

⊗2
S/C − deg f∗ωS/C .

Proof. Recall that if S → C is a fibered surface, then for any line bundle L = OS(L) on S, we have the
following Grothendieck-Riemann-Roch formula (2, page 333):

deg f!L = deg f∗L − degR1f∗L =
L(L−KS/C)

2
+ deg f∗ωS/C .

In particular, we apply the above formula to the relative pluricanonical bundle ω⊗m
S/C , thus we obtain

deg f∗ω
⊗m
S/C − degR1f∗ω

⊗m
S/C =

m(m− 1)K2
S/C

2
+ deg f∗ωS/C .

ButR1f∗ω
⊗m
S/C = 0 becauseR1f∗ω

⊗m
S/C is known to be torsion free and

rkR1f∗ω
⊗m
S/C = h1(F, ω⊗m

F ) = h0(F, ω
⊗(1−m)
F ) = 0,

since g(F ) ≥ 2 by assumption. Thus, we obtain the desired formula:
K2
S/C =

2

m(m− 1)

(︂
deg f∗ω

⊗m
S/C − deg f∗ωS/C

)︂
, ∀m ≥ 2.

□

Remark 2.4.7 Using Noether’s Formula, Xiao (108, Theorem 2) remarked that
K2
S/C ≤ 12 deg f∗ωS/C .

Proposition 2.4.8 Let f : S → C be a fibered surface and F its general fiber with g(F ) ≥ 2. Then
K2
S/C ≤ 12

6m(m− 1) + 1
deg f∗ω

⊗m
S/C , ∀m ≥ 2.

Proof. We recall that in Proposition 2.4.5, we proved that
K2
S/C =

2

m(m− 1)

(︂
deg f∗ω

⊗m
S/C − deg f∗ωS/C

)︂
, ∀m ≥ 2

which implies
m(m− 1)

2
K2
S/C = deg f∗ω

⊗m
S/C − deg f∗ωS/C , ∀m ≥ 2.
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Thus,
deg f∗ωS/C = deg f∗ω

⊗m
S/C − m(m− 1)

2
K2
S/C , ∀m ≥ 2. (2.6)

Now, by Remark 2.4.7, we have
K2
S/C ≤ 12 deg f∗ωS/C .

Combining this inequality with equality (2.6), it follows that
K2
S/C ≤ 12

(︃
deg f∗ω

⊗m
S/C − m(m− 1)

2
K2
S/C

)︃
, ∀m ≥ 2,

which implies
K2
S/C ≤ 12 deg f∗ω

⊗m
S/C − 6m(m− 1)K2

S/C , ∀m ≥ 2.
Therefore,

(6m(m− 1) + 1)K2
S/C ≤ 12 deg f∗ω

⊗m
S/C , ∀m ≥ 2,

which further simplifies to the desired inequality:
K2
S/C ≤ 12

6m(m− 1) + 1
deg f∗ω

⊗m
S/C , ∀m ≥ 2.

□

Remark 2.4.9 IfK2
S/C > 0 and g(F ) ≥ 2, then deg f∗ω⊗m

S/C > 0, ∀m ≥ 2 .

Lemma 2.4.10 Let f : S → C be a fibered surface, F its general fiber with g(F ) ≥ 2, and F ⊆ f∗ω
⊗m
S/C

with degF ≥ 0,m ≥ 2. Then
µ(F) ≤ 6m

(6m(m− 1) + 1)(g − 1)
deg f∗ω

⊗m
S/C ,

where µ(F) = degF
rkF .

Proof. We consider the datum (mKS/C ,F) and letF ′ be the maximal destabilizing vector sub-bundle ofF .
We apply Lemma 2.3.1 to the sequences {Z(F ′

), 0} and (µ(F ′
), 0). Then, we have

K2
S/C ≥ 2

m
(g − 1)µ(F ′

).
Here,Z(F ′

) is the fixed part of the sub-bundleF ′ andµ(F ′
) = degF ′

rkF ′ . SinceF ′ is themaximal destabilizing
vector sub-bundle of F , we have

µ(F ′
) ≥ µ(F).
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Combining the last two inequalities and Proposition 2.4.8, we deduce the desired inequality:
µ(F) ≤ 6m

(6m(m− 1) + 1)(g − 1)
deg f∗ω

⊗m
S/C .

□

Now, we state the First Fujita decomposition for the relative pluricanonical bundle and adjoint canonical
bundle in the case of a fibered surface.

Theorem 2.4.11 Let f : S → C be a fibered surface and F its general fiber, let L be a semi-ample line
bundle on S. Then

f∗ω
⊗m
S/C = Nm ⊕O⊕pm

C , ∀m ≥ 2, and f∗(ωS/C ⊗ L) = NL ⊕O⊕pL
C .

Here,H0(C,N∨
m) = 0 andH0(C,N∨

L ) = 0.

Proof. Note pm := h0(C, (f∗ω
⊗m
S/C)

∨) = h0(C,R1f∗ω
⊗(1−m)
S/C ), since (f∗ω

⊗m
S/C)

∨ ≃ R1f∗ω
⊗(1−m)
S/C . We

take {s1, . . . , spm} as a basis ofH0(C,R1f∗ω
⊗(1−m)
S/C ) ≃ Hom(OC ,R1f∗ω

⊗(1−m)
S/C ). Then s1 ⊕ · · · ⊕ spm

defines a map:
s1 ⊕ · · · ⊕ spm : O⊕pm

C −→ R1f∗ω
⊗(1−m)
S/C

which yields the following short exact sequence:
0 −→ O⊕pm

C −→ R1f∗ω
⊗(1−m)
S/C −→ Qm −→ 0

whereQm is the quotient bundle. By duality, we have
0 −→ Q∨

m −→ f∗ω
⊗m
S/C −→ O⊕pm

C −→ 0.
We deduce from (49, Theorem 26.4) that the last exact sequence splits since the bundle f∗ω⊗m

S/C admits a
singular hermitian metric with semi-positive curvature and verifies the minimal extension property, see (49)
for more details. Hence, the first Fujita decomposition follows:

f∗ω
⊗m
S/C = Nm ⊕O⊕pm

C

Here,Nm = Q∨
m. and h0(C,Qm) = 0.
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For the adjoint case, we note pL := h0(C, (f∗(ωS/C ⊗ L))∨), the proof is the same as in the relative
pluricanonical case, since L admits a smooth hermitian metric h with semi-positive curvature and a trivial
multiplier ideal sheaf. Thus, f∗(ωS/C ⊗ L) admits a singular hermitian metric with semi-positive curvature
and verifies the minimal extension property. □

In (73), the authors proved that the vector bundles f∗ω⊗m
S/C and f∗(ωS/C ⊗L), whereL is a semi-ample line

bundle on S, admit a Catanese-Fujita-Kawamata decomposition, ∀m ≥ 2. We state the result in the case
of fibered surfaces.

Theorem 2.4.12 (73, Theorem 2) Let f : S → C be a fibered surface and F its general fiber. Let L be a
semi-ample line bundle on S. Then,

f∗ω
⊗m
S/C = Am ⊕ Um, ∀m ≥ 2, and f∗(ωS/C ⊗ L) = AL ⊕ UL.

Here,Am andAL are ample vector sub-bundles of f∗ω⊗m
S/C and f∗(ωS/C ⊗ L) respectively, Um and UL are

hermitian flat vector sub-bundles of f∗ω⊗m
S/C and f∗(ωS/C ⊗ L) respectively.

In the following paragraphs, we derive some explicit consequences for the direct image of relative pluri-
canonical bundles.

Example 2.4.13 If f is not isotrivial, it is known that f∗ω⊗m
S/C is ample if not zero ∀m ≥ 2. This implies that

the trivial part in the First Fujita decomposition is zero, and the flat part in the Catanese-Fujita-Kawamata
decomposition is zero.

Example 2.4.14 If L is an ample line bundle on S, it is well known that f∗(ωS/C ⊗ L) is an ample vector
bundle on C. Equivalently, the trivial part in the First Fujita decomposition is zero, and the flat part in the
Catanese-Fujita-Kawamata decomposition is zero.

Recall an important result on the direct image of pluricanonical sheaf over a curve due to Viehweg (105,
Theorem 1.3) and (105, Proposition 4.6). We restrict ourselves to a fibered surface case.
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Proposition 2.4.15 Let f : S → C be a fibered surface and F be its general fiber. The following conditions
are equivalent:

(1). For allm ≥ 2, the vector bundle f∗ω⊗m
S/C is ample if not zero.

(2). There exist somem ≥ 1 such that f∗ω⊗m
S/C contains an ample sub-sheaf.

(3). There exist somem ≥ 1 such that deg f∗ω⊗m
S/C > 0.

Moreover, if f is semi-stable, then the conditions (1), (2), and (3) are equivalent to

(4). f is not isotrivial.

Corollary 2.4.16 (Compare with (73, Corollary 5.2)) Let f : S → C be a fibered surface. Then, either
f∗ω

⊗m
S/C is ample, ∀m ≥ 2 when f∗ω⊗m

S/C ̸= 0, or f∗ω⊗m
S/C is hermitian flat ∀m ≥ 2.

Proof. Apply Proposition 2.4.15 and Theorem 2.4.12. □

Remark 2.4.17 If f is semi-stable, then f∗ω⊗m
S/C being hermitian flat ∀m ≥ 2 is equivalent to f being isotriv-

ial.

Remark 2.4.18 By Corollary 2.4.16, we observe that f∗ω⊗m
S/C is ample ∀m ≥ 2when f∗ω⊗m

S/C ̸= 0 or f∗ω⊗m
S/C

is hermitian flat ∀m ≥ 2. According to Proposition 2.4.15, if f∗ω⊗m
S/C is flat ∀m ≥ 2, then f∗ωS/C is flat.

Conversely, if f∗ω⊗m
S/C is ample ∀m ≥ 2, g(F ) ≥ 2, and KS/C is nef, then f∗ωS/C is not flat by Example

2.4.2.

In this last paragraph, we will explore the relationship between deg f∗ωS/C and deg f∗ω
⊗m
S/C in the case

where f∗ω⊗m
S/C is ample ∀m ≥ 2.

Corollary 2.4.19 Let f : S → C be a fibered surface and F its general fiber with g(F ) ≥ 2. Then:
deg f∗ωS/C ≤ 6mg

(6m(m− 1) + 1)(g − 1)
deg f∗ω

⊗m
S/C , ∀m ≥ 2.
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In particular, if g > 6m(m− 1) + 1, then:
deg f∗ωS/C <

1

m− 1
deg f∗ω

⊗m
S/C , ∀m ≥ 2.

Proof. Apply Lemma 2.4.10. □

Example 2.4.20 Ifm = 2 and g > 13, then 12g
13(g−1) < 1, and

deg f∗ωS/C ≤ 12g

13(g − 1)
deg f∗ω

⊗2
S/C .

Ifm = 3, then
deg f∗ωS/C ≤ 18g

37(g − 1)
deg f∗ω

⊗3
S/C .

In particular, if g > 37, we deduce that 18g
37(g−1) <

1
2 and

deg f∗ωS/C <
1

2
deg f∗ω

⊗3
S/C .

Ifm = 4, then
deg f∗ωS/C ≤ 24g

73(g − 1)
deg f∗ω

⊗4
S/C .

Furthermore, if g > 73, then 24g
73(g−1) <

1
3 and

deg f∗ωS/C <
1

3
deg f∗ω

⊗4
S/C .
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CHAPTER 3

XIAO’S CONJECTURE ON CANONICALLY FIBERED SURFACES

3.1 Proof of the conjecture if the base is an elliptic curve
To prove Conjecture 1.2.5, we may assume that such fibrations exist, and we will find contradictions.

Let f : S ‧‧➡ C be a canonically fibered general type surface of geometric genus Pg and with general
fiber F of g(F ) = 5, by resolving the indeterminacy locus we can assume that f is regular and alsoKS is
relatively nef since we can replace the surface S by one of its birational models.

By assumption the canonical bundleKS is composed with pencil, thus it decomposes as a sum of fixed part
N and a moving partM coming from the base, that is:

KS = N +M = N + f∗D

such that
degD = Pg + g(C)− 1.

To prove the conjecture, it is enough to assume that
KS = 8Γ + V + f∗D

with Γ is a section, V is the vertical part of N , and degD := Pg + g(C) − 1 (see (29, Theorem 2.3)). We
know the following decomposition of f∗ωS :

f∗ωS = OC(D)⊕F ,
here F is a rank 4 vector bundle on C with h0(C,F) = 0. It implies that

f∗(8Γ + V ) = OC ⊕F ⊗OC(−D).

Remark 3.1.1 In case of C is an elliptic curve, the sheaf F is a flat bundle of rank 4.

As mentioned in Section 1.2, for any nontrivial fibered surface f : S → C with general fiber F of genus
g := g(F ), Xiao predicted a sharp upper bound for the relative irregularity

q(f) := q(S)− g(C).
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Specifically, he conjectured that q(f) ≤ g+1
2 . However, this conjecture was disproved by Pirola (91) through

a series of counterexamples for g(F ) = 4. The modified conjecture states that q(f) ≤ g
2 + 1 (Conjecture

1.1.5). This conjecture has been proven for g(F ) ≤ 5 (see (3)), except when the general fiber is trigonal with
g(F ) = 5. Fortunately, this case was recently settled by Martin (80). In other words, it is now known that
for any nontrivial fibered surface f : S → C with general fiber F of genus g(F ) = 5, we have q(f) ≤ 3.

Theorem 3.1.2 There is no canonically fibered general type surface f : S → C with general fiber F of
g(F ) = 5 and g(C) = 1.

Proof. By contradiction, assume that there exists a canonically fibered surface f : S → C with general fiber
F of genus g(F ) = 5 and g(C) = 1. We know that

f∗ωS = OC(D)⊕F ,

where D is ample on C with degD = Pg, and F is a unitary flat vector bundle of rank 4. We know that
f∗ωS is semi-ample. The flat part is decomposed asF =

⨁︁
Li, whereLi are torsion line bundles with finite

orders. This follows from the so-called Chen-Jiang decomposition (27), (72). Take an isogeny σ : ˜︁C → C

such that after this base change, the pullback ofF becomes trivial; in other words, ˜︁F := σ∗F = O⊕4˜︁C . This
base change is described by the following commutative diagram:

˜︁S S

˜︁C C.

ψ

˜︁f f

σ

The pullback nontrivial fibered surface ˜︁f : ˜︁S → ˜︁C with general fiber ˜︁F of g( ˜︁F ) = 5 satisfies the following
˜︁f∗ω˜︁S = L ⊕O⊕4˜︁C .

Here L is an ample line bundle on ˜︁C and q( ˜︁f) = 4. This is clearly a contradiction. □

3.2 Xiao’s conjecture if the base is CP1

In this section, we explain the method for addressing the open case of Conjecture 1.2.5. Note that this is a
joint work with Chen and Grieve. First, we announce the following Proposition.
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Proposition 3.2.1 Let C be a smooth projective curve of genus 5, If there exists a point p ∈ C such that
OC(8p) = KC , then h0(OC(3p)) = 1 and h0(OC(5p)) = 2.

Proof. IfC is nontrigonal, then by definition h0(OC(3p)) = 1. So without loss of generality, we can assume
that C is trigonal. If h0(OC(3p)) > 1, then |OC(3p)| is the unique g13 on C. Since C is not hyperelliptic, C
can be canonically embedded into P4 as C ↪→ P4 with a hyperplane Λ ⊂ P4 satisfying Λ.C = 8p.

The base locus of |IC(2)| is a rational normal scrollR ⊂ P4. We know that C ⊂ R ∼= F1 is a smooth curve
in |3A + 5F |, where A and F are the effective generators of Pic(R) with A2 = −1, F 2 = 0 and AF = 1.
And Λ ∩R = D ∈ |A+ 2F |.

Since OC(3p) is the unique g13 , OC(3p) = OC(F ). So there exists a curve in |F |, which we still denote by
F , such that F.C = 3p onR. On the other hand,D.C = 8p onR.

Suppose thatD = D1 +D2, whereD1 ∈ |A+mF | is irreducible for some 0 ≤ m ≤ 2. Then

• D1.C = (3m+ 2)p,
• F.C = 3p.
• D1 and F meet transversely at p, and
• C is smooth at p.

This is clearly impossible. So h0(OC(3p)) = 1.

It follows by an easy application of Riemann-Roch Theorem on curves that h0(OC(5p)) = 2. □

Remark 3.2.2 We inform the reader that the proof of Proposition 3.2.1 is due to Xi Chen in a private com-
munication.

Recall that for f : S → C a canonically fibered general type surface of geometric genusPg andwith general
fiber F of g(F ) = 5, we have

KS = 8Γ + V + f∗D
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Theorem 3.2.3 Let f : S → C be a canonically fibered surface with nonhyperelliptic general fiber F of
g(F ) = 5, and

KS = 8Γ + V + f∗D.
Then

1. If h0(OF (4p)) = 1, then we have the following commutative diagram:
S PC(f∗(5Γ))

C

ϕ

f
pr (3.1)

ϕ is a rational map regular on the general fiber F and PC(f∗(5Γ)) is a ruled surface.
2. If h0(OF (4p)) = 2, then we have the following commutative diagram:

S PC(f∗(4Γ))

C

ϕ

f
pr (3.2)

in this case ϕ also is a rational map regular on the general fiber F and PC(f∗(4Γ)) is a ruled surface.

Here p := Γ.F

Proof. The proof easily follows by Proposition 3.2.1. □

Remark 3.2.4 We guess that in Proposition 3.2.3, the map ϕ should be regular. So, we state the following
conjecture.

Conjecture 3.2.5 Let f : S → C be a canonically fibered surface with nonhyperelliptic general fiber F of
g(F ) = 5, and

KS = 8Γ + V + f∗D.
Then
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1. If h0(OF (4p)) = 1, then the map ϕ : S ‧‧➡ PC(f∗(5Γ)) defined by the linear system |5Γ + f∗A| for
a sufficiently ample divisor A is regular.

2. If h0(OF (4p)) = 2, then the map ϕ : S ‧‧➡ PC(f∗(4Γ)) defined by the linear system |4Γ + f∗A| for
a sufficiently ample divisor A is regular.

As we mentioned in the introduction, we settle Conjecture 3.2.5 in the joint paper with Chen and Grieve
(10). Thus, we present the method to completely prove Xiao’s Conjecture 1.2.5. This provides another proof
of Chen’s result (29).

Theorem 3.2.6 Let f : S → C be a canonically fibered surface with geometric genus Pg, and nonhyperel-
liptic general fiber F with g(F ) = 5, and

KS = 8Γ + V + f∗D.

1. If h0(OF (4p)) = 1, then
Γ2 ≤ −1

5
Pg.

2. If h0(OF (4p)) = 2, then
Γ2 ≤ −1

4
Pg.

Proof. It is sufficient to prove the first case, as the proof of the second follows exactly the same steps. Let us
assume that h0(OF (4p)) = 1. Thus, we have the following diagram:

S PC(f∗(5Γ))

C

ϕ

f
pr (3.3)

with ϕ is a generically finite morphism of degree 5. We define the section T := ϕ(Γ). Then 5Γ = ϕ∗(T )

(because p = Γ|F is the total ramification point of ϕ|F ), and of course
Γ2 =

1

5
T 2. (3.4)

We define the divisor R := T + pr∗D (recall that degD := OC(Pg + g(C)− 1)). Then T is the fixed part
of |R| and

h0(PC(f∗(5Γ)), R) = h0(PC(f∗(5Γ)), pr∗D) = h0(C,D) = Pg. (3.5)
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By the Riemann-Roch theorem, we have:
χ(PC(f∗(5Γ)), R) = h0(PC(f∗(5Γ)), R)− h1(PC(f∗(5Γ)), R) + h2(PC(f∗(5Γ)), R)

= χ(OPC(f∗(5Γ))) +
1

2
(R2 −R.KPC(f∗(5Γ))). (3.6)

By Serre’s duality, we have:
h2(PC(f∗(5Γ)), R) = h0(PC(f∗(5Γ)),KPC(f∗(5Γ)) −R).

However, we write the class ofKPC(f∗(5Γ)) as the following:
KPC(f∗(5Γ)) = −2OPC(f∗(5Γ))(1) + (2g(C)− 2 + deg f∗(5Γ))Q,

hereQ is a fiber of pr. Thus clearly :
h2(PC(f∗(5Γ)), R) = h0(PC(f∗(5Γ)),KPC(f∗(5Γ)) −R) = 0. (3.7)

Now, by (3.6) and (3.7) we deduce that
h0(PC(f∗(5Γ)), R) ≥ χ(OPC(f∗(5Γ))) +

1

2
(R2 −R.KPC(f∗(5Γ))).

But it is clear that
χ(OPC(f∗(5Γ))) = 1− g(C)

(since h1(PC(f∗(5Γ)),OPC(f∗(5Γ))) = h1(C,OC) = g(C)). Then we bound the dimension of the set of
sections ofR by:

h0(PC(f∗(5Γ)), R) ≥ 1− g(C) +
1

2
(R2 −R.KPC(f∗(5Γ))). (3.8)

By the equality (3.5) and the inequality (3.8) above, we deduce that
Pg ≥ 1− g(C) +

1

2
(R2 −R.KPC(f∗(5Γ))). (3.9)

We develop the numberR2 −R.KPC(f∗(5Γ)) :

R2 −R.KPC(f∗(5Γ)) = T 2 + 2(Pg + g(C)− 1)−KPC(f∗(5Γ)).T −KPC(f∗(5Γ)).pr
∗D. (3.10)

We apply the adjunction formula to explore the equality above:
2g(C)− 2 = 2g(T )− 2 = KPC(f∗(5Γ)).T + T 2. (3.11)

By (3.10) and (3.11), we deduce that
R2 −R.KPC(f∗(5Γ)) = 2T 2 + 4(Pg + g(C)− 1)− 2(g(C)− 1) = 2(T 2 + 2Pg + g(C)− 1). (3.12)
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By (3.9) and (3.12), we have that
Pg ≥ T 2 + 2Pg, (3.13)

and thus
T 2 ≤ −Pg. (3.14)

Finally, by (3.4) and (3.14) we deduce the desired result:
Γ2 ≤ −1

5
Pg.

□

Remark 3.2.7 This last geometric Theorem 3.2.6 is important for completing the proof of the conjecture.
We interpret it as follows: If there exist such canonically fibered surface f : S → C, then Γ2 is too negative
when the geometric genus Pg is too large.

The next Corollary explain the contribution ofKS .Γ if such S exist.

Corollary 3.2.8 Let f : S → C be a canonically fibered surface with geometric genus Pg, and nonhyper-
elleptic general fiber F of g(F ) = 5, and

KS = 8Γ + V + f∗D.

1. If h0(OF (4p)) = 1, then
KS .Γ ≥ 1

5
Pg + 2(g(C)− 1).

2. If h0(OF (4p)) = 2, then
KS .Γ ≥ 1

4
Pg + 2(g(C)− 1).

Proof. It is sufficient to prove the first case. In Theorem 5.1.4, we proved the following inequality:
Γ2 ≤ −1

5
Pg.

By adjunction, we have:
KS .Γ = 2g(C)− 2− Γ2.
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Thus
KS .Γ ≥ 1

5
Pg + 2(g(C)− 1)

as desired. □

Theorem 3.2.9 There is no canonically fibered general type surface f : S ‧‧➡ C such that the general fiber
F is a nonhyperelleptic genus 5 curve with

KS = 8Γ + V + f∗D

if g(C) = 1 or Pg > 56.

Proof. We have
K2
S = KS .(8Γ + V + f∗D)

≥ 8KS .Γ +KS .f
∗D

= 8KS .Γ + 8(Pg + g(C)− 1). (3.15)
Furthermore, in Corollary 3.2.8, we proved a lower bound for the positive intersectionKS .Γ. In other words:

KS .Γ ≥ 1

5
Pg + 2(g(C)− 1). (3.16)

By (3.15) and (3.16) we deduce:
K2
S ≥ 8

5
Pg + 16(g(C)− 1) + 8(Pg + g(C)− 1).

Therefore
K2
S ≥ 48

5
Pg + 24(g(C)− 1). (3.17)

However, by the Miyaoka-Yau inequality, we have:
9(Pg + 1− q(S)) = 9χ(OS) ≥ K2

S . (3.18)
Combining the inequality (3.17) and inequality (3.18), and then

9(Pg + 1− q(S)) ≥ 48

5
Pg + 24(g(C)− 1).

We deduce
Pg ≤ 15(1− q(S))− 40(g(C)− 1). (3.19)

Finally, we conclude that
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1. If g(C) = q(S) = 1, then by the inequality (3.19) we have
Pg ≤ 0 (Contradiction).

2. If g(C) = 0 and 0 ≤ q(S) ≤ 2, then
Pg ≤ 55.

□
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CHAPTER 4

GLOBAL GENERATION PROBLEMS AND FUJITA’S CONJECTURE

4.1 Fujita’s freeness conjecture on irregular varieties
In this section we present some results in the direction of Conjecture 1.3.1, all of these results can be found
in our article preprint (7). In what follows, unless otherwise specified, X is a smooth complex projective
irregular variety of dimension n ≥ 2, Y is an abelian variety of dimension g, and F is a nonzero coherent
sheaf.

We first establish some auxiliary lemmas that will be used in the subsequent proofs. These preliminary
results serve as key technical ingredients and help clarify the arguments that follow.

Lemma 4.1.1 Let X be an irregular variety of dimension n ≥ 2 with h : X → Y be a morphism to an
Abelian variety Y . Let X f−→ Z

u−→ Y be the Stein factorization of h, and let F be a general fiber of f .
Let N be a divisor on X . If |N|F | is basepoint-free and f∗OX(N) is continuously globally generated, then
|N + h∗p| has no basepoints supported on F for a general p ∈ Pic0(Y ).

Proof. Indeed, take a point x ∈ F such that z = f(x). By assumption, f∗OX(N) is continuously globally
generated, that is for every nonempty open subset U ⊂ Pic0(Z), the following direct sum of evaluation
maps ⨁︂

p∈U
H0(Z, f∗OX(N)⊗ p)⊗ p∨ → f∗OX(N)|z (4.1)

is surjective. Since Pic0(Y ) ↪→ Pic0(Z), we have in particular that for every nonempty open subset U ⊂

Pic0(Y ), the direct sum of evaluation maps
⨁︂
p∈U

H0(Z, f∗OX(N)⊗ u∗p)⊗ u∗p∨ → f∗OX(N)|z (4.2)
is surjective. Furthermore,

f∗OX(N)|z = H0(F,OF (N)) (4.3)
and

H0(Z, f∗OX(N)⊗ u∗p) ≃ H0(X,OX(N)⊗ h∗p). (4.4)
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Combining (4.4) with (4.3) and (4.2), we obtain that the following sum of maps⨁︂
p∈U

H0(X,OX(N)⊗ h∗p)⊗ h∗p∨ → H0(F,OF (N)) (4.5)
is surjective. By hypothesis, |N|F | is basepoint-free. Together with (4.5), this implies that for every nonempty
open subset U ⊂ Pic0(Y ), the following direct sum of evaluation maps⨁︂

p∈U
H0(X,OX(N)⊗ h∗p)⊗ h∗p∨ → OX(N)|x (4.6)

is surjective. In particular, for some pU ∈ U , the map
H0(X,OX(N)⊗ h∗pU )⊗ h∗p∨U → OX(N)|x (4.7)

is surjective. Thus, twisting (4.7) by h∗pU , we deduce that
H0(X,OX(N)⊗ h∗pU ) → OX(N)|x (4.8)

is surjective. Hence, the linear system
|N + h∗pU |

has no basepoints supported on F . Now, we define the following subset S ⊆ Pic0(Y ) by
S :=

{︁
p ∈ Pic0(Y )

⃓⃓
|N + h∗p| has no basepoints supported on F}︁ .

We claim that S is dense. Indeed, for any nonempty open subset U ⊆ Pic0(Y ), one can find an element
pU ∈ U such that |N + h∗pU | has no basepoints supported on F , as proved. Therefore, S ∩ U ̸= ∅ for
every nonempty open subset U ⊆ Pic0(Y ). Hence, S is dense. Finally, we conclude that

|N + h∗p|

has no basepoints supported on F for general p ∈ Pic0(Y ). □

Lemma 4.1.2 Let Y and Z be irregular varieties and u : Z → Y be a finite morphism. Let F be a coherent
sheaf on Z.

1) If H1(Y, u∗F ⊗ p) = 0 for all p ∈ Pic0(Y ) and u∗F has no essential basepoints, then F has no
essential basepoints.

2) If u∗F is continuously globally generated, then F is continuously globally generated.
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Proof. Assuming thatH1(Y, u∗F ⊗ p) = 0 for all p ∈ Pic0(Y ) and that u∗F has no essential basepoints,
we will prove that F has no essential basepoints. Indeed, we fix z ∈ Z, y = u(z) ∈ Y , and assume that
there exists the following exact sequence:

0 → K → F → C(z) → 0. (4.9)
By applying u∗ to this exact sequence, we obtain:

0 → u∗K → u∗F → u∗C(z) → R1u∗K → · · · (4.10)
Since the map u is finite, we have R1u∗K = 0. Moreover, it is clear that u∗C(z) = C(y), so the previous
sequence reduces to a short exact sequence of sheaves:

0 → u∗K → u∗F → C(y) → 0. (4.11)
Since u∗F has no essential basepoints, there exists py ∈ Pic0(Y ) such that the map

H0(Y, u∗F ⊗ py) → C(y) (4.12)
is surjective. Twisting the sequence (4.11) by py and passing to the associated long exact sequence in coho-
mology, we obtain:

0 → H0(Y, u∗K ⊗ py) → H0(Y, u∗F ⊗ py) → C(y)

→ H1(Y, u∗K ⊗ py) → H1(Y, u∗F ⊗ py) → 0.
From the assumption that

H1(Y, u∗F ⊗ py) = 0

and the surjectivity of the map in (4.12), it follows that
H1(Y, u∗K ⊗ py) = 0,

which in turn implies
H1(Z,K ⊗ u∗py) = 0.

We now twist the sequence (4.9) by u∗py and pass to the associated long exact sequence in cohomology,
obtaining:

0 → H0(Z,K ⊗ u∗py) → H0(Z,F ⊗ u∗py) → C(z) → 0.
It follows that the map

H0(Z,F ⊗ u∗py) → C(z)
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is surjective. We conclude that F has no essential basepoints.

Now, assume that u∗F is continuously globally generated. That is, for every y ∈ Y and for every nonempty
open subset U ⊂ Pic0(Y ), the following direct sum of evaluation maps

⨁︂
p∈U

H0(Y, u∗F ⊗ p)⊗ p∨ → u∗F|y (4.13)
is surjective. Our goal is to prove that F is continuously globally generated. Indeed, consider a nonzero
element v ∈ F|z ≃ u∗(F|z)|y where the isomorphism holds because u is finite. This implies that v ∈ u∗F|y .
Then, by the surjectivity of themap in (4.13), we can find elements (pi)1≤i≤t inPic0(Y ) and section (si)1≤i≤t
inH0(Y, u∗F ⊗ pi) such that si(y) ̸= 0 for all i with 1 ≤ i ≤ t. By the isomorphism

H0(Y, u∗F ⊗ pi) ≃ H0(Z,F ⊗ u∗pi)

which holds for all i with 1 ≤ i ≤ t, we can find nonzero sections (ui)1≤i≤t ofH0(Z,F ⊗ u∗pi) such that
v has a preimage under the following sum of evaluation map defined by (ui)1≤i≤t:⨁︂

p∈U
H0(Z,F ⊗ u∗p)⊗ u∗p∨ → F|z . (4.14)

Thus, we conclude that F is continuously globally generated. □

Lemma 4.1.3 LetX be an irregular variety, and h : X → Y be a morphism to an Abelian variety Y . LetD
be a nef and big divisor onX . If h∗OX(KX +D) ̸= 0, then h∗OX(KX +D) satisfies IT with index 0.

Proof. Applying Kawamata-Viehweg’s vanishing theorem (63, Theorem 1), we have
H i(X,OX(KX +D)⊗ h∗p) = 0 for all i ≥ 1 and for all p ∈ Pic0(Y ).

Furthermore, by the relative Kawamata-Viehweg’s vanishing theorem (6, Theorem 2.2.1):
Rih∗(OX(KX +D)⊗ h∗p) = 0 for all i ≥ 1 and for all p ∈ Pic0(Y ).

Thus, it follows from Leray’s spectral sequence argument that
H i(Y, h∗OX(KX +D)⊗ p) = 0 for all i ≥ 1 and for all p ∈ Pic0(Y ).

Consequently, h∗OX(KX +D) satisfies IT with index 0. □
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Proposition 4.1.4 Let X be an irregular variety, and h : X → Y be a morphism to an Abelian variety Y .
LetN andM be divisors onX . If a point x ∈ X is not a basepoint of |N + h∗p| for a general p ∈ Pic0(Y ),
and x is not a basepoint of |M + h∗p| for a general p ∈ Pic0(Y ), then x is not a base point of |N +M |.

Proof. By assumption, x ∈ X is not a base point of |M + h∗p| for a general p ∈ Pic0(Y ). Since the map
p ↦→ p∨ is an automorphism of Pic0(Y ), the image of a general point under this map is again a general
point. Therefore, x is not a base point of |M + h∗p∨| for all general p ∈ Pic0(Y ). Hence, x is not a base
point of |N +M |. □

Theorem 4.1.5 LetX be an irregular variety of dimension n ≥ 2 with Albanese dimension 1 ≤ α(X) < n.
LetX f−→ Z

u−→ alb(X) ⊆ Alb(X) be the Stein factorization of the Albanese morphism alb, and let F be a
general fiber of the morphism f . LetD be an ample divisor onX .

If Conjecture 1.3.1 holds in dimension< n, then |KX +mD + alb∗ p| has no basepoint supported on F for
allm ≥ n− α(X) + 1 and for all general p ∈ Pic0(Alb(X)).

Additionally, if the following condition is satisfied:

(∗) There exists an integer r with 1 ≤ r ≤ α(X) such that |rD|F | is basepoint-free and rD −KX is nef
and big,

then |KX +mD| has no basepoint supported on F for allm ≥ n+ 1.

Proof. From the hypothesis, Conjecture 1.3.1 holds for lower-dimensional varieties, meaning that |KF +

mD|F | is basepoint-free for allm ≥ n− α(X) + 1. In particular,
h0(F, ωF ⊗OF (mD)) ̸= 0 for allm ≥ n− α(X) + 1,

since (KX + mD)|F = KF + mD|F . Thus, f∗OX(KX + mD) is a nonzero coherent sheaf on Z for all
m ≥ n−α(X)+1. Therefore, alb∗OX(KX+mD) is a nonzero coherent sheaf for allm ≥ n−α(X)+1,
as the map u is finite.
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Applying Lemma 4.1.3, it follows that alb∗OX(KX +mD) satisfies IT with index 0. By Remark 1.3.7 and
Proposition 1.3.8, we deduce that alb∗OX(KX +mD) is continuously globally generated.
Applying Lemma 4.1.2, we conclude that f∗OX(KX +mD) is continuously globally generated. Again, by
assumption, we know that |KF +mD|F | is basepoint-free for allm ≥ n−α(X)+1. Then, applying Lemma
4.1.1, we deduce that |KX +mD+alb∗ p| has no basepoint supported on F for allm ≥ n−α(X)+1 and
for all general p ∈ Pic0(Alb(X)). This proves the first statement.

Now, suppose that condition (∗) is satisfied. In particular, |rD|F | is basepoint-free, and
h0(F,OF (rD)) ̸= 0.

Therefore, f∗OX(rD) is a nonzero sheaf on Z, and so is alb∗OX(rD). We observe that
rD = KX + rD −KX .

Thus, applying Lemma4.1.3, weobtain that alb∗OX(rD) satisfies IT with index 0, and therefore, alb∗OX(rD)

is continuously globally generated. Applying Lemma 4.1.2, we deduce that f∗OX(D) is continuously glob-
ally generated.
Again, by assumption, we know that |rD|F | is basepoint-free. Then, applying Lemma 4.1.1, we conclude that

|rD + alb∗ p|

has no basepoint supported on a general fiber F for all general p ∈ Pic0(Alb(X)).

Finally, applying Proposition 4.1.4 to |KX +mD + alb∗ p| and |rD + alb∗ p|, we deduce that
|KX +m

′
D|

has no basepoints supported on F for allm′ ≥ n+ r − α(X) + 1, and in particular, for allm′ ≥ n+ 1. □

Remark 4.1.6 In Theorem 4.1.5, the condition that rD −KX is nef and big for some r with 1 ≤ r ≤ α(X)

is always satisfied ifX is an irregular variety with a nef anticanonical bundle.

The following basic example in dimension 2 illustrates that Condition (∗) in Theorem 4.1.5 can be weaker
than requiringD to be globally generated.
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Example 4.1.7 Let E be a rank 2-vector bundle on elliptic curveC given by the following non-split short exact
sequence:

0 → OC → E → OC → 0. (4.15)
We take the ruled surface X = P(E) f−→ C, where F is a fiber. We know that the canonical line bundle
ωX = OX(−2), which means ω∨

X = OX(2) is nef. Additionally, as another feature of this example, it turns
out that the tangent bundle TX is nef. Furthermore, the irregularity q(X) = α(X) = 1 since h1(X,OX) =

h1(C,OC) = 1. Let D be a divisor such that OX(D) := OX(1) ⊗ OX(F ), and we observe that D is
ample. However, we claim that it is not basepoint-free. Proof. [Proof of the claim] SinceH0(X,OX(D)) =

H0(C, f∗OX(D)) = H0(C, E⊗OC(x)) (where x is a point onC), and by twisting the short exact sequence
(4.15) byOC(x), we obtain the following long exact sequence of cohomology:

0 → H0(C,OC(x)) → H0(C, E ⊗ OC(x)) → H0(C,OC(x)) → H1(C,OC(x)) → . . .

But sinceH1(C,OC(x)) = 0, we conclude that h0(C, E ⊗ OC(x)) = 2. Now, let B be a divisor such that
OX(B) = OX(1). Then, we have the following short exact sequence:

0 → OX(F ) → OX(D) → OB(D) → 0,

which induces the following long exact sequence on cohomology groups:
0 → H0(X,OX(F )) → H0(X,OX(D)) → H0(B,OB(D)) → H1(X,OX(F )) → . . . (4.16)

By the Kodaira vanishing theorem, we see that
h1(X,OX(F )) = h1(X,OX(KX + 2B + F )) = 0

since 2B + F is ample. Also, we have
h0(X,OX(F )) = h0(B,OB(D)) = 1.

The previous sequence (4.16) becomes a short exact sequence:
0 → H0(X,OX(F )) → H0(X,OX(D)) → H0(B,OB(D)) → 0

Finally, we fix two linearly independent sections ofH0(X,OX(D)) and restrict them to B. These sections
induce a nonzero section s, which vanishes onD|B . Therefore,D is not basepoint-free. □
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We remark thatD satisfies the condition (∗) in Theorem 4.1.5. Indeed, OF (α(X)D) = OCP1(1), which is
ample and globally generated. Also,

OX(α(X)D −KX) = OX(3B + F )

is ample on X . This example shows that there exists a divisor D satisfying condition (∗) in Theorem 4.1.5
and not necessarily globally generated. Furthermore,

KX +mD = (m− 2)B +mF

is globally generated, for allm ≥ 3.

Corollary 4.1.8 LetX be an irregular variety of dimension n ≥ 3 with Albanese dimension 1 ≤ α(X) < n

andKX is ample. LetX f−→ Z
u−→ alb(X) ⊆ Alb(X) be the Stein factorization of the Albanese morphism

alb, and let F be a general fiber of the morphism f . If both |mKF | and |rKF | are basepoint-free for all
m ≥ n + 2 − α(X) and for some r with 1 < r ≤ α(X), then |mKX | has no basepoints supported on F
for allm ≥ n+ 2.

Proof. Apply Theorem 4.1.5 forD = KX . □

Remark 4.1.9 If r ≥ n + 2 − α(X) in Corollary 4.1.8, then it suffices to assume the basepoint-freeness of
|mKF | for allm ≥ n+ 2− α(X).

An interesting situation arises when the Albanese map is a locally trivial fibration. In this case, we can
simplify the setting of Theorem4.1.5. For instance, the Stein factorization is trivial, and under the assumption
of condition (∗) in Theorem 4.1.5, we conclude that the linear system |KX +mD| is basepoint-free for all
m ≥ n+ 1. As an example of this situation, we state the following theorem.

Theorem 4.1.10 LetX be an irregular variety of dimension n ≥ 2 with −KX nef. Let alb : X → Alb(X)

be the Albanese map, and let D be an ample divisor on X . If Conjecture 1.3.1 holds in dimension < n and
there exists an integer r with 1 ≤ r ≤ α(X) such that |rD|F | is basepoint-free for every fiber F of alb, then
Conjecture 1.3.1 holds forX .
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Proof. If−KX is nef, then, by (18, Theorem 1.2), the Albanese map alb is a locally trivial fibration. Hence, all
the fibers are isomorphic.

Note that we may assume the fibers of alb have positive dimension, that is, α(X) < n. Indeed, if −KX

is nef and α(X) = n for a variety X , then X is an abelian variety. In that case, KX = 0 and |2D| is
basepoint-free.

By assumption, Conjecture 1.3.1 holds in low-dimensions. Then, the linear system
|KF +mD|F |

is basepoint-free for allm ≥ n− α(X) + 1 and for every fiber F . In particular,
h0(F, ωF ⊗OF (mD)) ̸= 0 for allm ≥ n− α(X) + 1.

Thus, alb∗OX(KX +mD) is a nonzero coherent sheaf for allm ≥ n− α(X) + 1.
Furthermore, alb∗OX(KX + mD) satisfies IT with index 0, by Lemma 4.1.3. Consequently, by Remark
1.3.7 and Proposition 1.3.8, it is continuously globally generated. Applying Lemma 4.1.1, we deduce that

|KX +mD + alb∗ p|

is basepoint-free for all general p ∈ Pic0(Alb(X)) and for allm ≥ n− α(X) + 1.

Since −KX is nef by assumption, the divisor rD − KX is ample. Moreover, by assumption, |rD|F | is
basepoint-free for some r with 1 ≤ r ≤ α(X). By the base change theorem, this implies that alb∗OX(rD)

is a nonzero locally free sheaf. Furthermore, it satisfies IT with index 0, by Lemma 4.1.3.
Therefore, by Remark 1.3.7 and Proposition 1.3.8, alb∗OX(rD) is continuously globally generated. Applying
Lemma 4.1.1 again, we deduce that

|rD + alb∗ p|

is basepoint-free for all general p ∈ Pic0(Alb(X)). Thus, applying Proposition 4.1.4 to |KX+mD+alb∗ p|

and |rD + alb∗ p|, we conclude that Conjecture 1.3.1 holds forX . □

Example 4.1.11 Since Fujita’s Freeness Conjecture 1.3.1 holds for varieties of dimension 5 by (114), then by
applying Theorem 4.1.10, it follows that the conjecture holds for irregular varieties of dimension 6 with
−KX nef, provided that |rD|F | is basepoint-free for some r satisfying 1 ≤ r ≤ α(X). Here, F denotes a
fiber of alb.
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Example 4.1.12 More generally than in Example 4.1.11, ifX is an irregular variety of dimension nwith−KX

nef, α(X) ≥ n − 5, and if |rD|F | is basepoint-free for some r such that 1 ≤ r ≤ α(X), then Conjecture
1.3.1 holds forX .

Example 4.1.13 Example 4.1.7 is also an instance of Theorem 4.1.10.

Remark 4.1.14 In Theorem 4.1.10, the condition that |rD|F | is basepoint-free for some r satisfying 1 ≤ r ≤

α(X) is equivalent to the induction hypothesis if α(X) ≥ n+1
2 and the fiber F of alb : X → Alb(X) is a

K-trivial variety (KF = 0). Indeed, take r := n− α(X) + 1, and note that
(n− α(X) + 1)D|F = KF + (n− α(X) + 1)(D|F ).

4.2 Basepoint-freeness of adjoint series for varieties fibered over Abelian varieties
In the following proposition, we consider the base to be an abelian variety, not necessarily the Albanese
variety. We are interested in studying the linear system defined by the canonical sheaf twisted by an ample
line bundle from the base, under the assumption that the morphism is an algebraic fiber space and that a
general fiber has a basepoint-free canonical bundle.

Proposition 4.2.1 Let h : X → Y be a surjective morphism with connected fibers onto an abelian variety
Y of dimension g, and let F be a general fiber of h. If |KF | is basepoint-free and Θ is an ample divisor on
Y , then |KX + 2h∗Θ| has no basepoints supported on F .

Proof. From the hypothesis, |KF | is basepoint-free. In particular,
h0(F, ωF ) ̸= 0.

Thus, h∗OX(KX) is a nonzero coherent sheaf.

By Kollár’s vanishing theorem (66, Theorem 2.1), we have
H i(Y, h∗OX(KX)⊗OY (Θ)⊗ p) = 0 for all i ≥ 1 and for all p ∈ Pic0(Y ).
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Thus, h∗OX(KX) ⊗ OY (Θ) is a nonzero coherent sheaf satisfies IT with index 0. Therefore, it is contin-
uously globally generated. By assumption, |KF | is basepoint-free. Thus, applying Lemma 4.1.1, we deduce
that

|KX + h∗Θ+ h∗p|

has no basepoint supported on F for all general p ∈ Pic0(Y ).

Moreover, since Θ is an ample divisor on Y , it satisfies IT with index 0. Furthermore, h∗Θ is trivial when
restricted to any fiber. Thus, applying Lemma 4.1.1 again, we deduce that

|h∗(Θ + p)|

is basepoint-free for all general p ∈ Pic0(Y ).

Finally, applying Proposition 4.1.4 to |KX + h∗Θ+ h∗p| and |h∗(Θ + p)|, we conclude that
|KX + 2h∗Θ|

has no basepoints supported on F . □

In the next theorem, we consider the Albanese map and remove condition (∗) from Theorem 4.1.5. We
observe that if we assume the adjoint linear system of a general fiber is basepoint-free, then the linear
system defined by the adjoint canonical bundle twisted with an ample line bundle from the base has no
basepoints supported on a general fiber.

Theorem 4.2.2 Assume that the Albanesemap alb : X → Alb(X) is a surjectivemorphismwith connected
fibers, and let F be a general fiber. LetD be a nef and big divisor onX , andΘ an ample divisor onAlb(X).
If there exists an integer c > 0 such that |KF +mD|F | is basepoint-free on F for allm ≥ c, then |KX +

mD + alb∗Θ| has no basepoints supported on a general fiber F for allm ≥ c.

Proof. From the hypothesis, |KF +mD|F | is basepoint-free for allm ≥ c. In particular,
h0(F, ωF ⊗OF (mD)) ̸= 0 for allm ≥ c.

Thus, alb∗OX(KX +mD) is a nonzero coherent sheaf for allm ≥ c.
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Applying Lemma 4.1.3, it follows that alb∗OX(KX +mD) satisfies IT with index 0. By Remark 1.3.7 and
Proposition 1.3.8, we deduce that alb∗OX(KX +mD) is continuously globally generated. Thus, applying
Lemma 4.1.1, we conclude that

|KX +mD + alb∗ p|

has no basepoint supported on F for allm ≥ c and for all general p ∈ Pic0(Alb(X)).

Applying Lemma 4.1.1 to alb∗(Θ), we obtain that
| alb∗(Θ + p)|

is basepoint-free for all general p ∈ Pic0(Alb(X)).

Finally, applying Proposition 4.1.4, we conclude that
|KX +mD + alb∗Θ|

has no basepoints supported on F for allm ≥ c. □

4.3 Basepoint-freeness of adjoint series for varieties of maximal Albanese dimension
In what follows, we present some results on the basepoint-freeness of linear series, assuming thatX is an
irregular variety of dimension n with maximal Albanese dimension, that is, α(X) = n. Related results
on basepoint-freeness, in the setting of varieties whose Albanese morphism is finite, were obtained in (88,
Theorem 5.1).

Theorem 4.3.1 LetX be an irregular variety of maximal Albanese dimension, that is α(X) = n, and letD
be a nef and big divisor onX such that nD−KX is nef and big, or nD is continuously globally generated.
Then |KX +mD| is basepoint-free outside the exceptional set of alb for allm ≥ n+ 1.

Proof. Since X is a variety of maximal Albanese dimension, the Albanese map is generically finite. We
take the Stein factorization X f−→ Z

u−→ alb(X) ⊆ Alb(X) of alb, where f is a birational map. Thus,
f∗OX(KX + D) is nonzero, and consequently, so is alb∗OX(KX + D). Thus, alb∗OX(KX + D) is a
nonzero coherent sheaf that satisfies IT with index 0, by Lemma 4.1.3. Therefore, it is continuously globally
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generated. By Lemma 4.1.2, this implies that
|KX +D + alb∗ p|

has no basepoints outside the exceptional set of alb for all general p ∈ Pic0(Alb(X)).

By assumption nD − KX is nef and big. Then, applying Lemma 4.1.3, we deduce that alb∗OX(mD) is
a nonzero coherent sheaf that satisfies IT with index 0 for all m ≥ n. Hence, it is continuously globally
generated. Thus,

|mD + alb∗ p|

is basepoint-free outside the exceptional set of alb for all p ∈ Pic0(Alb(X)) and for allm ≥ n, by Lemma
4.1.2.

Finally, applying Proposition 4.1.4, we conclude that |KX +m
′
D| is basepoint-free outside the exceptional

set of alb for allm′ ≥ n+ 1. □

Remark 4.3.2 If we assume that the Albanese map is finite in Theorem 4.3.1, under the same conditions on
D and nD −KX , then |KX +mD| is basepoint-free onX for allm ≥ n+ 1.

Corollary 4.3.3 LetX be a minimal variety of general type with maximal Albanese dimension, α(X) = n.
Then, |4KX | is basepoint-free outside the exceptional set of alb.

Proof. We take the Stein factorization X f−→ Z
u−→ alb(X) ⊆ Alb(X) of alb, where f is a birational map.

Thus, f∗OX(2KX) is nonzero, and consequently, so is alb∗OX(2KX).

SinceKX is nef and big, we apply Lemma 4.1.3 to obtain that alb∗OX(2KX) is a nonzero coherent sheaf
that satisfies IT with index 0. Consequently, it is continuously globally generated. Thus,

|2KX + alb∗ p|

is basepoint-free outside the exceptional set of alb for all p ∈ Pic0(Alb(X)). Using this fact twice, we
conclude that |4KX | is basepoint-free outside the exceptional set of alb by Proposition 4.1.4. □
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Remark 4.3.4 This last corollary is not sharp. Indeed, in (61), the authors proved that |3KX | is birational
under the assumption thatX is an irregular variety of general type and of maximal Albanese dimension.

The next proposition is an analogue of Proposition 4.2.1 for varieties admitting a finite morphism to an
abelian variety.

Proposition 4.3.5 Let h : X → Y be a surjective finite morphism fromX to an abelian variety Y . LetΘ be
an ample divisor on Y . Then |KX + 2h∗(Θ)| is basepoint-free onX .

Proof. By Kollár’s vanishing theorem (66, Theorem 2.1), we have
H i(Y, h∗OX(KX)⊗OY (Θ)⊗ p) = 0 for all i ≥ 1 and for all p ∈ Pic0(Y ).

Thus, h∗OX(KX) ⊗ OY (Θ) is a nonzero coherent sheaf that satisfies IT with index 0. Therefore, it is
continuously globally generated. By Lemma 4.1.2, it follows that

|KX + h∗Θ+ h∗p|

is basepoint-free for all general p ∈ Pic0(Y ).

SinceΘ is an ample divisor on Y , it satisfies IT with index 0. Thus,
|h∗(Θ + p)|

is basepoint-free for all general p ∈ Pic0(Y ), by Lemma 4.1.2. Applying Proposition 4.1.4, we conclude that
|KX + 2h∗Θ|

is basepoint-free. □
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CHAPTER 5

THE DIRECT IMAGE SHEAF OF LOGARITHMIC PLURICANONICAL BUNDLES AND THE NON-VANISHING

CONJECTURE

The results on this section are contained in the preprint (8).

5.1 Main results
One crucial step in Mori’s MMP program is to prove the Non-Vanishing Conjecture. Indeed, it is the first step
towards proving the abundance conjecture.

Conjecture 5.1.1 Let (X,∆) be a lc pair. IfD ∼Q m(KX +∆) is Cartier pseudo-effective, then κ(D) ≥ 0.

Thanks to recent advances in techniques for Generic Vanishing Theory, developed by many authors (50),
(88), (89), (90) and originally introduced in (46) and (100), we have gained significant insights into irregular
varieties. These advances have also deepened our understanding of the structure of the pushforward of
logarithmic pluricanonical bundles under a map from an irregular variety to an abelian variety.

The following theorem and corollary could be deduced using the results and methods from (12), (13), (50),
(59). In this note, a simple and short proof is provided.

Theorem 5.1.2 Let (X,∆) be a klt pair such that q(X) > 0, and letD ∼Q m(KX+∆) be a Cartier pseudo-
effective divisor. If Conjecture 5.1.1 holds for lower-dimensional klt pairs, then it also holds for (X,∆).

By an easy application of certain forms of the canonical bundle formula (51) due to (40), we obtain the
following corollary.

Corollary 5.1.3 Let (X,∆) be an lc pair such that q(X) > 0, and letD ∼Q m(KX+∆) be a Cartier pseudo-
effective divisor. If Conjecture 5.1.1 holds for lower-dimensional varieties, then it also holds for (X,∆).
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A crucial step in proving the results announced above is the application of the so-called Chen-Jiang decom-
position. More precisely, given a morphism f : X → A, where A is an abelian variety, the following
decomposition is provided by (27) and (72):

f∗ω
⊗m
X =

⨁︂
i∈I

(αi ⊗ p∗iFi).

The morphisms pi : A → Ai are algebraic fiber spaces, where Ai are abelian varieties, Fi are nonzero
M-regular coherent sheaves on Ai, and αi ∈ Pic0(A) are torsion line bundles. Later, in (60) and (81), a
Chen-Jiang decomposition is generalized to a klt pair (X,∆). In these articles, the authors proved that if
D ∼Q m(KX +∆) is Cartier, then for every positive integerN such that f∗OX(ND) ̸= 0, we have

f∗OX(ND) =
⨁︂
i∈I

(αi ⊗ p∗iFi).
In the same articles (60) and (81), the authors asked whether the previous decomposition is still satisfied for
an lc pair. Here, we remark that using a canonical bundle formula from (51), we can find a subsheaf that
admits a Chen-Jiang decomposition. More precisely, we have the following theorem.

Theorem 5.1.4 Let (X,∆) be an lc pair such that D ∼Q m(KX + ∆) is Cartier, and let f : X → A

be a morphism to an abelian variety. If κ(D|F ) ≥ 0, where F is the general fiber of f , then for every
positive integer N that is sufficiently large and divisible such that f∗OX(ND) ̸= 0, there exists a torsion-
free subsheaf F of f∗OX(ND) such that F admits a Chen-Jiang decomposition.

From the above, we observe that MMP problems are more manageable for irregular varieties due to the
extensive development of techniques in this setting. The most challenging aspect, however, lies in working
with varieties that have no irregularity, as we cannot use morphisms to abelian varieties. In such cases, it is
necessary to explore alternatives, using the so-called Catanese-Fujita-Kawamata decomposition particularly
relevant from our perspective.

We know by (24), (25), (43), (48), (74) that if f : X → Y is a surjective morphism withX and Y are smooth
varieties, then f∗OX(mKX/Y ) is a torsion free sheaf, it has a singular metric with semi-positive curva-
ture, satisfies the minimal extention property (74, Definition 2.1), and admits a Catanese-Fujita-Kawamata
decomposition, that is

f∗OX(mKX/Y ) = Am ⊕ Um,
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where Am is a generically ample sheaf and Um is flat. This decomposition holds in the singular case, that
is, it holds provided that (X,∆) is klt.

Theorem 5.1.5 Let f : X → Y be a surjective morphism, and let (X,∆) be a klt pair such that D ∼Q

m(KX/Y +∆) is Cartier. Then, for every positive integerN that is sufficiently large and divisible such that
f∗OX(ND) ̸= 0, the sheaf f∗OX(ND) is torsion-free, it has a singularmetricwith semi-positive curvature,
satisfies the minimal extension property, and admits a Catanese-Fujita-Kawamata decomposition

f∗OX(ND) = AN ⊕ UN .

Klt polarized pairs are important for the minimal model program, and thus we have the following easy
corollary.

Corollary 5.1.6 Let f : X → Y be a surjective morphism, and let (X,∆ + L) be a klt polarized pair such
thatD ∼Q m(KX/Y +∆+L) is Cartier and f -big. Then for every positive integerN which is sufficiently big
and divisible such that f∗OX(ND) ̸= 0, the sheaf f∗OX(ND) is torsion free, it has a singular metric with
semi-positive curvature, satisfies the minimal extention property, and admits a Catanese-Fujita-Kawamata
decomposition.

f∗OX(ND) = AN ⊕ UN .

Theorem 5.1.7 Let f : X → Y be a flat algebraic fiber space of relative dimension p, and let (X,∆) be a
klt pair such thatD ∼Q m(KX/Y +∆) is Cartier. LetN be a positive integer that is sufficiently large and
divisible such that f∗OX(ND) ̸= 0, and assume that hp(F, (1−Nm)KF −Nm∆F ) ̸= 0 is constant for
every fiber F , with PN := h0(Rpf∗((1−Nm)KX/Y −Nm∆)) > 0. ThenO⊕PN

Y is a direct summand of
f∗OX(ND).

This last theorem shows that we can produce sections forKX/Y +∆. Moreover, under an additional posi-
tivity condition for Y , we can produce a section forKX +∆. This leads to the following corollary.

Corollary 5.1.8 Assume the same assumptions of Theorem 5.1.7, and κ(Y ) ≥ 0. Then κ(KX + ∆) ≥ 0.
Furthermore, if PN > 1, then κ(KX +∆) ≥ 1.
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Recall that if f : X → A is amorphism to anAbelian variety, then for a klt pair (X,∆), we have a Chen-Jiang
decomposition of f∗OX(Nm(KX+∆))whereNm(KX+∆) ∼ ND. It is natural to ask the same question
for a Catanese-Fujita-Kawamata decomposition under any surjective morphism f : X → Y . Of course, we
cannot make such a base change since it is known that f∗OX(Nm(KX/Y + ∆)) is not necessarily semi-
ample, and the flat part depends on themonodromy group. However, we still have the following proposition.

Proposition 5.1.9 Let f : X → Y be a surjective morphismwith q(Y ) ≥ 1, and let (X,∆) be a klt pair such
thatD ∼Q m(KX +∆) is Cartier. Then, for every positive integerN that is sufficiently large and divisible
such that f∗OX(ND) ̸= 0, there exist finite maps p : ˜︁X → X , q : ˜︁Y → Y , and ϕ : ˜︁A → Alb(Y ) with
a Cartier divisor ˜︁D = p∗D, and a surjective morphism ˜︁f : ˜︁X → ˜︁Y such that (g ◦ ˜︁f)∗O ˜︁X(N ˜︁D) is globally
generated, where g : ˜︁Y → ˜︁A.
In Section 5.5, we revisit some ideas introduced by Viehweg and explore how they can be used to alge-
braically derive the existence of a Catanese-Fujita-Kawamata decomposition for a klt pair, assuming we al-
ready know the result for the smooth case. For instance, we have Theorem 5.4.1 and Theorem 5.4.3, which
are key observations in this context.

5.2 Non-vanishing and the Chen-Jiang decomposition
In the last section, we highlighted that the Albanese map and certain generic vanishing techniques can
be used to produce sections of log pluricanonical bundles for irregular varieties. The key element is the
application of a Chen-Jiang decomposition.

Proof of Theorem 5.1.2. We consider the Albanese morphism alb : X → Alb(X). If α(X) = n, then the
morphism alb is generically finite, and thus alb∗(D) ̸= 0. If α(X) < n, we take the Stein factorization
f : X → Y of alb and denote its general fiber by F . Clearly, the lower-dimensional pair (F,∆|F ) is
klt, and Nm(KF + ∆|F ) has a section for every positive integer N which is sufficiently big and divisible
by hypothesis. Thus, f∗OX(Nm(KX + ∆)) ̸= 0, which implies alb∗OX(Nm(KX + ∆)) ̸= 0. By the
decomposition results of (60) and (81), we have

alb∗OX(ND) =
⨁︂
i∈I

(αi ⊗ p∗iFi)

Themorphisms pi : Alb(X) → Ai are algebraic fiber spaces, whereAi are abelian varieties,Fi are nonzero
M-regular coherent sheaves onAi, andαi ∈ Pic0(Alb(X)) are torsion line bundles of finite orders. Choose
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any αj in the decomposition, then
alb∗OX(ND)⊗ α−1

j = p∗jFj
⨁︂

i∈I−{j}

(αi ⊗ α−1
j ⊗ p∗iFi).

It is clear that anyM -regular sheaf has a nonzero section. Indeed, by (88), we know that anyM -regular
sheaf is continuously globally generated, which implies h0(Aj ,Fj⊗α) ̸= 0 for general α ∈ Pic0(Alb(X)).
By semi-continuity, we then have h0(Aj ,Fj) ̸= 0.

Now, since pj is an algebraic fiber space, it follows from the projection formula that h0(Alb(X), p∗jFj) ̸= 0.
Thus,

h0(Alb(X), alb∗OX(ND)⊗ α−1
j ) ̸= 0,

which implies h0(X,ND ⊗ p∗jα
−1
j ) ̸= 0.

Assume that the order of α−1
j is k. Then, h0(X, kND) ̸= 0, which completes the proof of the theorem. □

Remark 5.2.1 If∆ = 0, then by (20), we know that the Cn,m conjecture is true for an algebraic fiber space
over a variety with maximal Albanese dimension, and of course, we can deduce Theorem 5.1.2. Also, for
a klt pair (X,∆), the Cn,m conjecture for the same algebraic fiber space is satisfied by the work of Birkar
and Chen (13), but the proof involves many reduction steps, and we should use some technical extension
theorems as given in (34).

Proof of Corollary 5.1.3. We apply Theorem 1.4.3 to obtain the following commutative diagram
˜︁X X

˜︁Y Y = Alb(X)

ψ

˜︁f f=alb

ϕ

such that the properties (1), . . . , (5) are satisfied. Denote by P the vertical component of ⌊˜︁∆⌋. Since each
component of ⌊∆˜︁Y ⌋ is dominated by P , it is clear that we can find a klt polarized pair (˜︁Y ,∆′

+ L
′
) and a

Q-Cartier divisorR′ such thatK˜︁Y +∆
′
+ L

′ is big /Y and for some sufficiently small ϵ
K ˜︁X + ˜︁∆− ϵP ∼Q ˜︁f(K˜︁Y +∆

′
+ L

′
) +R

′ ,
and ˜︁f∗O ˜︁X(Nm(K ˜︁X + ˜︁∆− ϵP )) = O˜︁Y (Nm(K˜︁Y +∆

′
+ L

′
)).
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(Without loss of generality, assume Nm(K ˜︁X + ˜︁∆ − ϵP ) and Nm(K˜︁Y + ∆
′
+ L

′
) are Cartier). Since

K˜︁Y +∆
′
+ L

′ is big /Y , we have
K˜︁Y +∆

′
+ L

′ ∼Q,ϕ M + E,

whereM is an ample Q-divisor on ˜︁Y , and E is effective. Then, for some δ > 0, we can find ∆δ such that
(˜︁Y ,∆δ) is klt and

K˜︁Y +∆δ ∼Q,ϕ K˜︁Y +∆
′
+ L

′
+ δE + δM ∼Q,ϕ (1 + δ)(K˜︁Y +∆

′
+ L

′
). (5.1)

HereK˜︁Y +∆δ is big /Y , and for someN which is sufficiently big and divisible,Nm(K˜︁Y +∆δ) is Cartier.
By Theorem 5.1.2, κ(K˜︁Y + ∆δ) ≥ 0, hence κ(K˜︁Y + ∆

′
+ L

′
) ≥ 0. Thus ˜︁f∗O ˜︁X(Nm(K ˜︁X + ˜︁∆ − ϵP ))

has a nonzero section, which implies that Nm(K ˜︁X + ˜︁∆ − ϵP ) has a section. Finally Nm(K ˜︁X + ˜︁∆) and
Nm(KX +∆) have a section. □

Remark 5.2.2 We do not know if a Chen-Jiang decomposition holds for a lc pair (X,∆) since we miss a
semi-positivity result for the pushforward of the log pluricanonical bundle. Otherwise, Corollary 5.1.3 would
follow automatically without the use of any form of the canonical bundle formula. As we mentioned in the
introduction, in (60) and (81), the authors asked if a Chen-Jiang decomposition is satisfied for the pushfoward
of a lc pairs. We remark that, by using the canonical bundle formula, we can see that f∗OX(Nm(KX+∆))

contains a subsheaf that admits a Chen-Jiang decomposition for every positive integerN that is sufficiently
large and divisible such that f∗OX(ND) ̸= 0.

Proof of Theorem 5.1.4. By assumption, κ(KF + ∆|F ) ≥ 0. Thus, we apply Theorem 1.4.3 to the pair
(X,∆), obtaining the following diagram:

˜︁X X

˜︁Y Y = A

ψ

˜︁f f

ϕ

such that the properties (1), . . . , (5) are satisfied. By following the same steps as in the proof of Corollary
5.1.3, we find that for some δ > 0, there exists ∆δ such that (˜︁Y ,∆δ) is klt. Without loss of generality, we
assume that the divisorsNm(K˜︁Y +∆δ),Nm(1+ δ)(K˜︁Y +∆′+L′), andNm(K ˜︁X + ˜︁∆− ϵP ) are Cartier.
It is clear that the following torsion free sheaf is nonzero and admits a Chen-Jiang decomposition:

(ϕ ◦ ˜︁f)∗O ˜︁X(Nm(K ˜︁X + ˜︁∆− ϵP )) = ϕ∗O˜︁Y (Nm(K˜︁Y +∆δ)) ̸= 0,
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We know that the diagram above is commutative, thus
F := (f ◦ ψ)∗O ˜︁X(Nm(K ˜︁X + ˜︁∆− ϵP )) ̸= 0,

andadmits a Chen-Jiang decomposition. Note that the sheafF is a torsion-free subsheaf of f∗OX(Nm(KX+

∆)). □

5.3 Catanese-Fujita-Kawamata decomposition
Asmentioned in Section 5.1, it is not clear how to produce sections ofKX+∆, evenwhen there exist sections
forKF+∆|F . In the casewhere themorphism is to an abelian variety, this follows from the discussion above
and is alsowell known to experts. However, if the base variety is not an abelian variety, it becomes difficult to
ensure the existence of sections forKX +∆. Exploring a Catanese–Fujita–Kawamata-type decomposition
is therefore relevant to our purpose.

Definition 5.3.1 (74, Definition 1.1) A torsion-free coherent sheaf F admits a Catanese–
Fujita–Kawamata decomposition if it decomposes in the following form

F ∼= U ⊕A,

where U is a Hermitian flat bundle, andA is either a generically ample sheaf or the zero sheaf.

Recall the following theorem proven in (74).

Theorem 5.3.2 (74, Theorem 1.3) Let F be a torsion-free coherent sheaf on a smooth projective variety Y ,
endowedwith a singular Hermitianmetricwith semi-positive curvature and satisfying theminimal extension
property. Then F admits a Catanese–Fujita–Kawamata decomposition.

As an example for the previous theorem, in (74) the authors deduced the decomposition theorem (Definition
5.3.1) for f∗OX(m(KX/Y )) where f : X → Y is a surjective morphism between smooth varieties. We
remark that the decomposition is satisfied for the klt case.

Proof of Theorem 5.1.5. The proof is classical, we refer to (94) for details. Indeed, Nm∆ is Cartier, and by
assumption we have f∗OX(Nm(KX/Y +∆)) ̸= 0. Then define the divisor

DN := (Nm− 1)KX/Y +Nm∆.
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By (94), the divisor above admits a singular hermitianmetric with semi-positive curvature, and the following
inclusion is generically an isomorphism

f∗
(︁
OX(KX/Y +DN )⊗ I(hN )

)︁
↪→ f∗OX(KX/Y +DN ) = f∗OX(Nm(KX/Y +∆)).

Here hN is the metric associated to DN and I(hN ) is the multiplier ideal sheaf associated to hN . We
know by the famous result of (94) (see also (11), (48), (58), (93)) that f∗(︁OX(KX/Y + DN ) ⊗ I(hN )

)︁
admits a singular hermitian metric with semi-positive curvature and satisfies the minimal extention prop-
erty. The inclusion above is generically an isomorphism. Thus, by (74, Proposition 2.2), the torsion free
sheaf f∗OX(KX/Y +DN ) = f∗OX(Nm(KX/Y +∆)) is endowed with a singular hermitian metric with
semi-positive curvature and satisfies the minimal extention property. Then we can apply Theorem 5.3.2 to
conclude. □

Proof of Corollary 5.1.6. By assumptionKX/Y +∆+ L is big /Y . Then we have
KX/Y +∆+ L ∼Q,f M + E,

whereM is an ample Q-divisor on Y , and E is effective. Then, for some δ > 0, we can find ∆δ such that
(X,∆δ) is klt and

KX/Y +∆δ ∼Q,f KX/Y +∆+ L+ δE + δM ∼Q,f (1 + δ)(KX/Y +∆+ L). (5.2)
Then we apply Theorem 5.1.5 to deduce the decomposition. □

It is natural to ask whether the flat part or the generically ample part have a section. The author believes
that a deeper understanding of a Catanese-Fujita-Kawamata decomposition is crucial for making progress
on positivity problems.

Proof of Theorem 5.1.7. By assumption, hp(F, (1 − Nm)KF − Nm∆F ) ̸= 0 is constant for every fiber
F , and the algebraic fiber space is flat. Then, by Grauert’s theorem, we deduce that the coherent sheaf
Rpf∗OX((1−Nm)KX/Y −Nm∆) is locally free. Note

PN := h0(Y,Rpf∗OX((1−Nm)KX/Y −Nm∆)) = h0(Y, f∗OX(Nm(KX/Y +∆))∨),

since
f∗OX(Nm(KX/Y +∆))∨ ≃ Rpf∗OX((1−Nm)KX/Y −Nm∆).
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Consider a basis {s1, . . . , sPN
} of

H0(Y,Rpf∗OX((1−Nm)KX/Y −Nm∆)) ≃ Hom(OY ,Rpf∗OX((1−Nm)KX/Y −Nm∆)).

Then s1 ⊕ · · · ⊕ sPN
defines a map

s1 ⊕ · · · ⊕ sPN
: O⊕PN

Y −→ Rpf∗OX((1−Nm)KX/Y −Nm∆),

which yields the following short exact sequence
0 −→ O⊕PN

Y −→ Rpf∗OX((1−Nm)KX/Y −Nm∆) −→ QN −→ 0,

whereQN is the quotient sheaf. By duality, we have
0 −→ Q∨

N −→ f∗OX(Nm(KX/Y +∆)) −→ O⊕PN
Y −→ 0.

We deduce from (48, Theorem26.4) that the last exact sequence splits since the bundle f∗OX(Nm(KX/Y +

∆)) admits a singular hermitian metric with semi-positive curvature and satisfies the minimal extension
property □

Proof of Corollary 5.1.8. By assumption κ(Y ) ≥ 0, then for some positive integer N which is sufficiently
big and divisible, we have NmKY is effective. By Theorem 5.1.7, we know that O⊕PN

Y is a sub-sheaf of
f∗OX(Nm(KX/Y +∆)). Now, by the following multplication map

H0(Y, f∗OX(Nm(KX/Y +∆)))×H0(Y,NmKY ) → H0(Y, f∗OX(Nm(KX +∆))),
we produce sections for the torsion free sheaf f∗OX(Nm(KX+∆)), and of course for the divisorNm(KX+

∆)). Thus, we deduce that κ(KX +∆) ≥ 0. The second assertion is clear. □

Proof of Corollary 5.1.9. By hypothesis q(Y ) ≥ 1, thus (alb ◦f)∗OX(Nm(KX +∆)) has a Chen-Jiang de-
composition if it is not zero. Furthermore, we canfindan isogenyϕ : ˜︁A→ Alb(Y ) such thatϕ∗((alb ◦f)∗OX(m(KX+

∆))) is globally generated, and we have the following diagram
˜︁X X

˜︁Y Y

˜︁A Alb(Y ).

p

˜︁f f

q

g alb

ϕ

The maps p : ˜︁X → X , q : ˜︁Y → Y and ϕ : ˜︁A → Alb(Y ) are finites. The morphism ˜︁f : ˜︁X → ˜︁Y is a
surjective morphism. Clearly, the pair ( ˜︁X, ˜︁∆) is klt such thatK ˜︁X + ˜︁∆ := p∗(KX +∆). Hence we deduce
the result from the commutativity of the diagram above. □
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5.4 Viehweg’s trick machinery
In this section, we review some techniques introduced by Viehweg, commonly referred to as Viehweg’s trick
machinery (104) (see also (64)). He developed these techniques to make significant progress in studying the
positivity of the direct image sheaf of the pluricanonical bundle, which has direct applications to the Cn,m
conjecture. For instance, this conjecture was resolved by Cao and Păun (20) in the important case where the
variety is fibered over an Abelian variety. They reduced the problem, à la Kawamata (62), to the case where
the variety has trivial Kodaira dimension over an Abelian variety. In this setting, they established a crucial
positivity result for f∗OX(mKX) ((20)).

We are inspired from (72), (81), (92), (104) to prove the followings.

Theorem 5.4.1 Let f : X → Y be a surjective morphism, and let (X,∆) be a klt pair such that D ∼Q

(KX/Y +∆) is Cartier. Then there exist a smooth variety Z with a generically finite map h : Z → X such
that f∗OX(D) is a direct summand of g∗ωZ/Y := (f ◦ h)∗ωZ/Y .

Proof. It is enough to assume that (X,∆) is a klt log smooth pair. Indeed, take a log resolution of (X,∆),
µ : ˜︁X → X such that

K ˜︁X/Y +∆ ˜︁X ∼Q µ
∗(KX/Y +∆) + E,

where∆ ˜︁X and E are effective SNC and have no common components, E is the exceptional divisor. There-
fore, we have

K ˜︁X/Y +∆ ˜︁X + ⌈E⌉ − E ∼Q µ
∗(KX/Y +∆) + ⌈E⌉.

We put∆′˜︁X := ∆ ˜︁X + ⌈E⌉ − E, then the pair ( ˜︁X,∆′˜︁X) is klt log smooth.

Furthermore
(f ◦ µ)∗O ˜︁X(K ˜︁X/Y +∆

′˜︁X) = (f ◦ µ)∗O ˜︁X(µ∗D + ⌈E⌉) = f∗OX(D).
Thus, we canworkwith the log smooth klt pair ( ˜︁X,∆′˜︁X), and therefore assume that (X,∆) is klt log smooth.

Now, we takeN such that
N(D −KX/Y ) ∼ N∆.
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Hence, we see that the Cartier divisorN(D−KX/Y ) is divisible. Then, we can take a finitemaph′ : Z ′ → X

ramified along N∆. By resolving the singularities of Z ′, we obtain a generically finite map h : Z → X ,
with Z smooth, such that

h∗ωZ = OX(KX + (N − 1)(D −KX/Y ))⊗OX(−⌊(N − 1)∆⌋)
⨁︂

. . .

= OX((D −KX/Y +KX))⊗OX((N − 2)(D −KX/Y ))⊗OX(−⌊(N − 1)∆⌋)
⨁︂

. . .

But
OX((N − 2)(D −KX/Y ))⊗OX(−⌊(N − 1)∆⌋) = OX .

Thus
h∗ωZ = OX((D −KX/Y +KX))

⨁︂
. . .

Hence
h∗ωZ/Y = OX(D)

⨁︂
. . .

Finally, we have
g∗ωZ/Y := (f ◦ h)∗ωZ/Y = f∗OX(D)

⨁︂
. . .

as required. □

Corollary 5.4.2 Let f : X → Y be a surjective morphism, and let (X,∆) be a klt pair such that D ∼Q

(KX/Y +∆) is Cartier. Then f∗OX(D) admits a Catanese-Fujita-Kawamata decomposition.

Theorem 5.4.3 Let f : X → Y be a surjective morphism, and let (X,∆) be a klt pair such that D ∼Q

m(KX/Y + ∆) is Cartier for some m > 1. If f∗OX(D) is globally generated, then there exist a smooth
variety Z with a generically finite map h : Z → X such that f∗OX(D) is a direct summand of g∗ωZ/Y :=

(f ◦ h)∗ωZ/Y .

Proof. We have the following evaluation map
f∗f∗OX(D) → OX(D),

and the image isD ⊗ I, where I is the relative base ideal ofD. We take a log resolution of (X,∆) and I ,
µ : ˜︁X → X such that

K ˜︁X/Y +∆ ˜︁X ∼Q µ
∗(KX/Y +∆) + E,
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where∆ ˜︁X andE are effective SNC and have no common components, E is the exceptional divisor. We put
D ˜︁X := µ∗D, and k := f ◦ µ. Then the image of the following evaluation map

k∗k∗O ˜︁X(D ˜︁X) → O ˜︁X(D ˜︁X)
is of the formO ˜︁X(D ˜︁X − F ) for some effective SNC divisor F . Hence, we define the new boundary divisor

∆
′˜︁X := ∆ ˜︁X +

⌈mE⌉
m

− E,

and clearly the pair ( ˜︁X,∆′˜︁X) is klt log smooth. Therefore
m(K ˜︁X/Y +∆

′˜︁X) ∼Q µ
∗(m(KX/Y +∆)) + ⌈mE⌉ ∼Q µ

∗D + ⌈mE⌉.
PutG := µ∗D + ⌈mE⌉. Then k∗O ˜︁X(G) = f∗OX(D), and k∗O ˜︁X(G) is globally generated. By above, the
image of the following evaluation map

k∗k∗O ˜︁X(G) → O ˜︁X(G)

is O ˜︁X(G − F − ⌈mE⌉). We define the divisor G′
:= F + ⌈mE⌉, and as it pointed in (81), we have

k∗(O ˜︁X(G−G”)) = k∗(O ˜︁X(G)), for any effective divisorG” ≤ G
′ .

Since k∗O ˜︁X(G) is globally generated, then O ˜︁X(G − G
′
) is globally generated, and by Bertini’s theorem

we can take an effective divisor H ∼Q G − G
′ , H and ∆

′˜︁X + G
′ have no comments components, with

H +∆
′˜︁X +G

′ is SNC.

Now, the goal is to reduce to the structure as in Theorem 5.4.1, we can find a new divisor T ≤ G
′ and a klt

pair ( ˜︁X,M) such that
G− T ∼Q K ˜︁X/Y +M,

T andM are given by
T := ⌊∆′˜︁X +

m− 1

m
G

′⌋,
and

M :=
m− 1

m
H +∆

′˜︁X +
m− 1

m
G

′ − T

as proven in (81). The last step is to find a smooth variety Z and a generically finite map h : Z → X such
that f∗OX(D) is a direct summand of g∗ωZ/Y := (f ◦ h)∗ωZ/Y . The details are the same as in the proof
of Theorem 5.4.1, so we will leave them to the reader. □
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Remark 5.4.4 In Theorem 5.4.3, if f∗OX(D) is not globally generated, we can twist the bundle with a
sufficiently ample line bundle L on Y to ensure that f∗OX(D)⊗L is globally generated on Y . In this case,
we can prove a similar statement to Theorem 5.4.3; that is, we can find a smooth varietyZ and a generically
finite map Z → X such that f∗OX(D)⊗ L is a direct summand of g∗ωZ/Y := (f ◦ h)∗ωZ/Y . All of these
observations provide a way to obtain a Catanese-Fujita-Kawamata decomposition in the logarithmic case.
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CONCLUSION

The author developed some intuition following the work done in this thesis across all these independent
subjects. First, looking at Chapter 2 and Chapter 3 of the thesis (or our articles (9) and (10)), we ask the
question of sharpness of the slope inequality we obtained. This is always a good question and an active
area of research, as it can provide better boundedness results for families of curves. We know that a good
slope inequality gives good control over the relative irregularity of a family of curves f : S → C, yet this
remains an open problem. We also notice that to obtain some results on Xiao’s canonically fibered surfaces,
we should first establish an interesting lower bound forK2

S (in some sense, a strong slope inequality).

In Chapter 4, we study Fujita’s Conjecture. The author found some interesting results for irregular varieties by
induction on dimension, assuming certain conditions. Following this, a natural next step is to try to remove
these conditions and extend the results beyond the general fibers, incorporating an analysis of singular
fibers.

In the last chapter, the author begins a program to study minimal model theory for irregular varieties. We
can easily see that the nonvanishing conjecture can be derived inductively using the Chen–Jiang decomposi-
tion and the canonical bundle formula. When the variety is regular but still fibered over some other variety,
we have an alternative approach using the Catanese–Fujita–Kawamata decomposition. The first question
is: can we produce sections downstairs? In other words, in which cases can the flat or ample part admit a
section? An answer to this question could lead to a general proof of the nonvanishing conjecture. The au-
thor plans to explore the geometry of this decomposition further. We will continue to develop this program,
investigating questions such as: does a minimal model exist for an irregular variety? Is there termination of
flips? What about the abundance conjecture?
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