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RÉSUMÉ

Les communautésmicrobiennes environnementales figurent parmi les plus complexes de la planète.En consommant la matière organique dissoute (MOD), les microbes hétérotrophes constituent labase des réseaux trophiques aquatiques et contribuent de manière significative aux émissionsde gaz à effet de serre des écosystèmes aquatiques. Malgré leur importance pour les cyclesbiogéochimiques, notre compréhension de l’assemblagedes communautésmicrobiennes, de leursinteractions avec la MOD et de leurs liens avec les processus métaboliques dans l’ensemble duréseau aquatique reste limitée. Cette th‘ese propose une étude approfondie du réseau aquatiquedu bassin versant de la rivière La Romaine, situé dans la région boréale du Québec, Canada, etvise à relever plusieurs défis dans le domaine de l’écologie des communautés microbiennes lo-calisées le long du continuum terrestre-aquatique. Premièrement, nous avons cherché à décrirel’assemblage des communautés microbiennes dans les réseaux aquatiques (chapitre 1). Deux-ièmement, nous avons tenté d’identifier les unités les plus réactives au sein des assemblages demicrobes et de MOD, et d’évaluer leurs interactions (chapitre 2). Enfin, nous avons mesuré dif-férents aspects dumétabolismemicrobien et identifié comment leurs variations sont liées à cellesde l’environnement, de l’hydrologie, de la composition des assemblages microbiens et de la MODdans différents milieux aquatiques (chapitre 3).
Dans le chapitre 1, nous avons étudié l’assemblage des communautés microbiennes le long d’uncontinuum intégrant le milieu terrestre, les milieux d’eau douce et l’estuaire, en mesurant où etquand, le long de ce continuum, les communautés basées sur l’ADN et l’ARN divergeaient ou con-vergeaient. Ce système dynamique nous a permis de proposer une approche novatrice pour éval-uer à quel moment les communautés étaient plutôt dominées par des effets de masse ou sélec-tionnées par l’environnement. Les résultats ont montré que les effets de masse étaient toujoursprésents, mais que la saisonalité modulait l’importance de la sélection environnementale dans lesdifférentes sections du continuum. Les taxons provenaient de la totalité de la courbe d’abondancepar rang, indiquant que les taxons abondants et les taxons rares jouent tous deux un rôle majeurdans la formation des communautés microbiennes actives. La portion active des communautésmicrobiennes provenait surtout des taxons d’origine terrestre, tandis qu’une grande fraction desmicrobes inactifs des eaux douces se retrouvait passivement transportée le long du cours d’eau,héritages des processus à l’oeuvre en amont.
Dans le chapitre 2, nous avons développé une approche novatrice pour modéliser les patrons spa-tiaux individuels des formulesmoléculaires de laMODet des unités taxonomiques opérationnellesmicrobiennes le long d’un gradient d’âge de l’eau pondéré par le débit, incluant sols, ruisseaux,rivières, réservoirs et lacs. Nous avons identifié qu’environ 44% des formules de la MOD et seule-ment 7.5% des taxons microbiens semblaient réactifs aux changements environnementaux. Laréactivité de la MOD était variable selon les saisons et les années, contrairement aux fractions mi-crobiennes, qui restaient relativement stables, suggérant que le pool stable/persistant de la MODest plus variable qu’on ne le pensait auparavant. Nous avons ensuite établi des corrélations entreles fractions réactives extraites de laMOD et les unitésmicrobiennes afin d’évaluer les potentiellesrelations de cause à effet. Après avoir éliminé les corrélations suspectes ou douteuses, nous avonsextrait les corrélations significatives entre les deux ensembles, révélant des variations saisonnières
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dans les interactions MOD-microbes : les composés aromatiques et frais de la MOD semblaientconsommés au printemps, tandis que les composés partiellement dégradés étaient préférentielle-ment utilisés en été. En outre, les groupes de composés ayant un état de dégradation similairemais des tailles moléculaires variées semblaient sélectionner des phylums microbiens spécifiquesdans les eaux plus vieilles, suggérant que les processus de sélection varient selon la saison et ladisponibilité des ressources.
Enfin, le chapitre 3 explore les facteurs qui gouvernent les différents aspects du métabolisme mi-crobien le long du continuum aquatique. Nous avons mesuré plusieurs indicateurs métaboliques,tels que la respiration bactérienne, la production bactérienne et les profils d’utilisation du carbone(BIOLOG EcoPlates). Des analyses multivariées des facteurs environnementaux et hydrologiques,de la structure des communautés microbiennes globale (ADN) et actives (ARN), ainsi que de lacomposition totale et chimiquement détaillée de la MOD, nous ont permis d’extraire leurs gradi-ents saisonniers et spatiaux respectifs et de les relier aux variations du métabolisme bactérien.Cette approche a montré que les changements dans la production bactérienne sont associés àdes modifications saisonnières de la composition des communautés microbiennes actives et glob-ale. Les taux de respiration spécifiques étaient liés aux variations des facteurs environnementauxet de la composition de la MOD, en particulier aux variations de deux pools relativement frais,de taille moyenne et à faible teneur en azote. Ces résultats suggèrent que les changements decomposition des communautés microbiennes et de la MOD le long des gradients hydrologiquesinfluencent divers aspects du métabolisme bactérien.
En résumé, ces résultats révèlent l’influence déterminante de la connectivité hydrologique et dela saisonnalité sur l’assemblage des communautés microbiennes, les interactions MOD-microbeset le métabolismemicrobien dans les systèmes aquatiques. Cette thèse éclaire des aspects fonda-mentaux de l’écologie et du métabolisme des communautés microbiennes discernables unique-ment par la prise en compte de la connectivité intrinsèque des réseaux aquatiques et de leursdynamiques saisonnières. Ainsi, ces résultats fournissent un cadre contextuel hydrologique etsaisonnier aux nombreuses études à venir qui seront limitées à un écosystème isolé. De plus, cettethèse propose plusieurs cadres conceptuels et approches novateurs pour faire progresser notrecompréhension de l’interconnexion naturelle des communautésmicrobiennes et des assemblagesde la MOD le long des gradients hydrologiques et saisonniers.
Mots-clés: assemblagedes communautésmicrobiennes,matière organiquedissoute,métabolismemicrobien, connectivité hydrologique, écologie des bassins versants, continuum terrestre-aquatique
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ABSTRACT

Environmental microbial communities are among the most complex on Earth. By consuming dis-solved organic matter (DOM), heterotrophic microbes form the base of aquatic food webs andsignificantly contribute to aquatic greenhouse gas emissions. Despite their importance in biogeo-chemical cycling, our understanding of howmicrobial communities assemble, interact with DOM,and link to metabolic processes across the entire aquatic network remains limited. This thesisprovides a comprehensive aquatic network study of La Romaine River watershed located in borealQuébec, Canada, and we aimed to address multiple challenges in microbial community ecologyalong the terrestrial-aquatic continuum. Firstly, we sought to uncover microbial community as-sembly within aquatic networks (Chapter 1). Secondly, we attempted to discern the most reactiveunits of both microbial and DOM assemblages and evaluate their interactions (Chapter 2). Finally,we measured various dimensions of microbial metabolism and identified how their shifts relateto environmental, hydrological, microbial and DOM compositional shifts across multiple aquatichabitats (Chapter 3).
In chapter 1, we focused on understanding microbial community assembly along a terrestrial-freshwater-estuarine continuum by measuring when and where along the continuum, DNA andRNA-based communities diverged or converged. This dynamic framework enabled us to provide anovel approach to evaluate when communities are dominated by mass effects or environmentalselection. The results showed that mass effects are always present, however, where in the aquaticcontinuum environmental selection becomes strongest was modulated by seasonality. Taxa wererecruited across the entire rank abundance curve, indicating that not only abundant but also raretaxa play a major role in forming the active microbial community. Furthermore, the active portionof microbial communities was mostly traced back to terrestrially derived taxa, whereas a largefraction of inactive freshwater microbes was carried downstream, encompassing the legacy ofupstream assembly processes.
In chapter 2, we developed a novel framework to model individual spatial patterns of both DOMmolecular formulae and microbial operational taxonomic units along a flow-weighted water agegradient, from soils, streams, rivers to reservoirs and lakes. We identified that approximately44% of DOM formulae and only 7.5% of microbial taxa appeared to be reactive to environmen-tal changes. DOM reactivity varied significantly with seasons and years, unlike microbial fractions,which remained relatively stable, implying that the stable/persistent DOM pool is more variablethan previously thought. We subsequently correlated the extracted reactive DOM and microbialmoieties against each other to evaluate which relationships may potentially be causal. After re-moval of many suspect spurious correlations, we were able to extract a small set of meaningfulcorrelations between the two assemblages, which revealed seasonal shifts in DOM-microbe in-teractions: fresh, aromatic DOM compounds appeared to be consumed in spring, while partiallydecomposed compounds appeared to be preferentially utilised in summer. Additionally, DOMclusters of similar degradation state but varying molecular size appeared to select for distinct mi-crobial phyla in systems with older water ages, suggesting selective processes that vary by seasonand resource availability.
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Finally, chapter 3 explores how various dimensions of microbial metabolism are governed alongthe aquatic continuum. To do so, we measured multiple metabolism metrics that included bacte-rial respiration, production, and carbon utilisation profiles (BIOLOG EcoPlates). Multivariate analy-ses of environmental and hydrological factors, bulk (DNA) and active (RNA) community structure,and bulk and chemically distinct DOM cluster compositions, allowed us to extract their individ-ual seasonal and habitat gradients and relate them to changes in bacterial metabolism. This ap-proach showed that shifts in bacterial production occur with seasonal changes in bulk and activemicrobial community composition. Whereas specific respiration rates linked to changes in envi-ronmental factors and DOM composition, particularly to two relatively fresh, mid-sized and lownitrogen DOM clusters. These results imply that microbial and DOM compositional changes alonghydrological gradients influence distinct aspects of bacterial metabolism.
Taken together, these findings reveal the strong influence of hydrological connectivity and sea-sonality onmicrobial community assembly, DOM-microbe interactions, andmicrobial metabolismin aquatic systems. This thesis elucidates crucial aspects of microbial community ecology andmetabolism that only emergewhen the inherent connectedness of aquatic networks and their sea-sonal dynamics are considered. Hence, the collective results provide hydrological, and seasonalcontext to many future single-ecosystem studies. Additionally, this thesis provides several novelconceptual frameworks and approaches to advance our understanding of the interconnected na-ture of microbial communities and dissolved organic matter assemblages along hydrological andseasonal gradients.
Keywords: microbial community assembly, dissolved organic matter, microbial metabolism, hy-drological connectivity, watershed ecology, terrestrial-aquatic continuum
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INTRODUCTION

0.1 Context
0.1.1 Microorganisms and their role in freshwater carbon cycling
In the era of human-induced climate change (IPCC Core Writing Team, 2023), efforts to evalu-
ate global carbon (C) budgets and unravel the mechanisms driving their dynamics have intensi-
fied (Cole et al., 2007; Battin et al., 2009; Tranvik et al., 2009). Traditionally, streams and rivers
were viewedas passive conduits, transporting primarily ’recalcitrant’ carbon from terrestrial ecosys-
tems to the oceans (e.g., Moran et al. (1991); Smith and Hollibaugh (1993)). However, this perspec-
tive has been re-examined, as inland waters are now recognised to transfer approximately 0.9 Pg
C annually (Drake et al., 2018), while simultaneously mineralising, transforming, and storing a sig-
nificant fraction of this carbon during downstream movement (Regnier et al., 2013; Drake et al.,
2018). Microbial communities play a crucial role in the transformation, consumption, and produc-
tion of such organic carbon (Lennon and Pfaff, 2005; Guillemette and del Giorgio, 2012), however,
the DOMpool also influences whatmicrobial taxamay thrive (Judd et al., 2006; Zhou et al., 2024).
This bi-directional relation of microbial community composition, their metabolism and dissolved
organicmatter (DOM) has been difficult to unravel over decades of studies (Tanentzap et al., 2019).

Freshwater systems encompass a hydrological continuum that flows from upland sources through
streams, rivers, and lakes before eventually reaching the ocean. Along this journey, extended wa-
ter retention times influence the biochemical characteristics of DOM (Massicotte and Frenette,
2011; Casas-Ruiz et al., 2020), as well as the structure, function, and abundance of microbial com-
munities (Lindström et al., 2006; Crump et al., 2007; Besemer et al., 2013). Variations in catch-
ment characteristics, hydrology, environmental factors, and biological interactions all influence
DOM (Kothawala et al., 2015; Orlova et al., 2024) and microbial community composition (Niño-
García et al., 2016a; Kraemer et al., 2020) across the entire aquatic network. Variations in seasons
additionally add complexity to understanding whole network dynamics (Crump et al., 2003; Singh
et al., 2014; Paruch et al., 2020). However, studies that examine microbial community assem-
bly, DOM dynamics and microbial metabolism across large spatial and temporal gradients remain
limited.
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0.1.2 Microbial community assembly
0.1.2.1 Deterministic and stochastic processes
Since the concept of ’everything is everywhere, but the environment selects’ was coined (Becking,
1934; deWit andBouvier, 2006), niche-theory based selection such as environmental filtering (i.e.,
deterministic processes) has been commonly assumed to be the main driver of microbial commu-
nity assembly. However, recent evidence suggests a combination of deterministic and stochastic
processes (Hanson et al., 2012; Zhou and Ning, 2017) governing how communities come to be.
Which of these processes is proportionally more important will also largely depend on the physi-
cal characteristics of the system studied (Zhou et al., 2014), and there have been increasing efforts
to attribute relative contributions of these contrasting processes to observed community patterns
(Stegen et al., 2013, 2015).

Microbial community assembly has been defined into four fundamental processes – selection, dis-
persal, diversification and drift – by adopting concepts from population genetics and community
ecology (Vellend, 2010; Hanson et al., 2012; Vellend, 2016). These four processes can be charac-
terised by their degree of determinism and stochasticity, which harbour multiple facets of pro-
cesses within themselves (Zhou and Ning, 2017). Although many approaches have been utilised
to study deterministic and stochastic processes such as multivariate approaches and variance par-
titioning, these mostly fail to quantify their individual contribution (Zhou and Ning, 2017). An
increasingly popular approach to quantify the partitioning of all four processes is to combine met-
rics derived from taxonomic and phylogenetic diversity (Stegen et al., 2013, 2015; Zhou and Ning,
2017; Jia et al., 2018). By testing observed phylogenetic diversity patterns against a null model,
the βNTI (β nearest-taxon index) indicates whether a community shows tendencies of phyloge-
netic clustering (i.e., homogeneous selection such as environmental filtering) or overdispersion
(i.e., heterogeneous selection such as competitive exclusion). The fraction that has been identi-
fied as random by the βNTI can be further partitioned by the β-diversity metric RCBray (modified
Raup-Crick index) into homogenising dispersal and dispersal limitation. Other fractions that were
not classified as any of the above processes are considered as ’weak’ selection, dispersal, diversi-
fication and/or drift processes (Stegen et al., 2013, 2015; Zhou and Ning, 2017).
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Although this approach is the first to enable quantification of these ecological processes, it is un-
derlain by major assumptions. Partitioning of selection processes based on phylogenetic diversity
assumes niche conservatism, meaning that species relatedness correlates with their functional
traits. Recently, many microbial traits have been shown to be phylogenetically conserved (Mar-
tiny et al., 2015) but it was also noted that more complex traits encoded by many genes are more
likely to be conserved and simpler traits that involve fewer genes are rather phylogenetically dis-
persed (Martiny et al., 2013). Simultaneously, horizontal gene transfer (Rainey and Travisano, 1998;
Ochman et al., 2000; Papke and Gogarten, 2012) can mask phylogenetic signals (Doolittle, 1999)
and phylogenetic distance estimations can be prone to a variety of methodological uncertainties
such as sequencing errors and differing tree construction approaches (Martin, 2013). Addition-
ally, the increasing literature on potential ’ecotypes’ within a single species that show intraspecies
niche-segregation can blur patterns based on phylogenetic conservatism (Hahn and Pöckl, 2005;
Achtman and Wagner, 2008; Ackermann, 2015; Chase et al., 2018). Finally, recent evidence sug-
gests that subsets of microbial communities can underlie differing assembly processes, which is
completely neglected in a whole-community approach (Niño-García et al., 2016b; Monard et al.,
2016). However, instead of applying thesemetrics on thewhole-community, there is a great poten-
tial in applying this framework to subsets of microbial communities (e.g., reactive vs. unreactive).

0.1.2.2 Spatio-temporal patterns in microbial communities
With increasing availability of molecular techniques to microbial ecology, several studies have
been investigating spatial and more rarely temporal patterns. Similarly to many macro-biological
observations, microbial communities in freshwaters exhibit a distance-decay distribution of com-
munity similarity and a taxa-area relationship (Green et al., 2004; Martiny et al., 2006; Soininen
et al., 2011). While spatial structuring of microbial communities in freshwaters seems to be less
influenced by dispersal limitation (Crump et al., 2007; der Gucht et al., 2007; Jones and McMa-
hon, 2009; Nelson et al., 2009) including boreal systems (Niño-García et al., 2016a), a fine-scale
horizontal lake study has shown that spatial structuring is also not necessarily habitat specific (i.e.,
littoral vs pelagic). It was rather a true distance-decay relationship where compositional similarity
halves across 4 km (Jones et al., 2012). The authors concluded that the rates of biological and eco-
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logical interactions drive assembly more rapidly than rates of water movement and turbulence
in lakes, while other authors suggest that spatio-temporal microbial turnover is driven by both
intrinsic (e.g., body size, dispersal rate) and extrinsic (e.g., ecosystem size, isolation) factors (Soini-
nen, 2010). However, a true distance-decay could result solely from a common source of these
microorganisms (e.g., terrestrial advection; Ruiz-González et al. (2015b)) that are gradually diluted
and passively transported along the continuum rather than being environmentally selected (Niño-
García et al., 2017). Indeed, a gradual decline of soil-derived taxa has been found along a river
continuum (Savio et al., 2015). Furthermore, functional changes in communities resulted from a
gradual microbial succession along the river continuum that is mainly driven by water residence
time (Reed et al., 2014).

Overall, the observed spatio-temporal patterns in microbial composition are to a large extent
driven by dynamicswithin the reactivemembers that are especially sensitive to physical and chem-
ical changes in the environment (Niño-García et al., 2017; Nelson et al., 2009), whereas stochastic
or even chaotic patterns (Fernández et al., 1999) in the passive fraction of microbes adds noise to
compositional changes. Whether determinismor stochasticity drivesmicrobial assembly and com-
munity composition will largely depend on the hydrological conditions given in a certain location
at a certain time (Niño-García et al., 2016a). To understand the high spatio-temporal variation of
microbial communities, the vast differences in physical conditions that can affect residence time,
light availability and consequently changing food-web dynamics have to be accounted for.

0.1.2.3 Death and dormancy
The inability of DNA based approaches to assess the activity of microorganisms is a matter of
concern in the scientific community given the presence of dormant and deadmicrobes in environ-
mental communities (Jones and Lennon, 2010; Lennon and Jones, 2011). Hence, several methods
to gain insight into microbial activity have been proposed (Singer et al., 2017). Although under-
standing of activity is often essential for certain scientific questions, most approaches involve in-
tensive laboratorywork such as incubation experimentswith labelled substrate amendments (e.g.,
DNA-Stable Isotope probing) and/or marking microbes with fluorescent stains taken up by active
members of the community for microscopy or flow cytometry analyses (e.g., 5-cyano-2,3-ditolyl
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tetrazolium chloride (CTC), Fluorescence In-Situ Hybridisation).

At the same time, the only ambient whole-community approach that allows to extract also the
species identity of microbes is to sequence the 16S rRNA transcription as complementary DNA
(cDNA, hereafter RNA). RNA was found to correlate with microbial growth rates, thus RNA:DNA
ratios have been utilised to measure the potential level of activity of microbial members within
a natural sample. The major advantage of RNA-based approaches is the potential of carrying out
parallel DNA and RNA extractions from the same environmental sample, and therefore provides
an idea of the potential degree of activity on all the taxa within the community without need for
further intervention. As any method, RNA:DNA ratios have been criticised for potential caveats
that arise from evidence indicating that different microbes can harbour differing numbers of rRNA
copies (Klappenbach et al., 2000), and the fact that some dormant microorganisms may accumu-
late rRNA as a strategy to quickly respond to environmental changes (Sukenik et al., 2012). Never-
theless, it was also demonstrated that RNA:DNA ratios perform worse in classifying the dormant
rather than the active fraction ofmicrobial communities (Steven et al., 2017). Still, few approaches
can investigate the potential of activity or - to bemore conservative - protein synthesis on a whole
community level of environmental samples (Blazewicz et al., 2013). Recently, a soil study found
similar patterns when comparing CTC staining, a marker for respiratory activity, and RNA:DNA ra-
tios as activity metrics. They also reported a low correlation of ribosomal operon number to the
measured RNA:DNA ratios (Bowsher et al., 2019).

Accordingly, evidence is ambivalent and a further debate is expected to continue revolving the ap-
plicability of RNA as a measure of activity. Indeed, as a non quantitative measure, RNA:DNA ratios
cannot be used to infer actual rates of metabolism and thus a direct linkage to rates of ecosys-
tem processes is impossible (Blazewicz et al., 2013). Nevertheless, consideration of RNA will cer-
tainly provide a more dynamic perspective on microbial communities compared to solely DNA ap-
proaches, which include for example relic DNA (Carini et al., 2016; Lennon et al., 2018). RNA:DNA
ratios will be especially meaningful when applied within a spatio-temporal framework. For exam-
ple, a marine study found that the rare microbial fraction had a significantly higher RNA:DNA ratio
compared to the abundant fraction suggesting a higher activity potential that challenges our con-
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ventional understanding that abundant members are mainly responsible for ecosystem dynamics
and functioning (Campbell et al., 2011; Wilhelm et al., 2014; Morrissey et al., 2016). RNA:DNA
ratios encompass past, present and future activity and thus emerging spatio-temporal patterns
accompanied with environmental fluctuations provide valuable insights into differing bacterial life
strategies that are widely unexplored.

0.1.3 Assembly of dissolved organic matter
DOM is defined as the fraction of dissolved compounds that pass through a 0.7 µm or 0.2 µm
filter (varies between studies). It not only contains C but other essential elements such as ni-
trogen (N), phosphorous (P) and sulfur (S). Natural DOM is considered one of the most complex
chemical mixtures and thus represent a major challenge in analytical chemistry. Much of the in-
sight into DOM has been achieved through bulk measurements of DOC and DON. Although bulk
measurements give valuable results for numerical models, it does not decipher fine-scale changes
that may interact with their heterotrophic consumers (Repeta, 2015). To understand DOM com-
position, freshwater studies have largely characterised the chromophoric fraction of DOM with
absorbance and fluorescence approaches, however, in recent years high-resolution approaches
such as fourier-transform ion cyclotron mass spectrometry (FT-ICR MS) have become more acces-
sible to biogeochemists and ecologists.

With the advent of FT-ICR MS, ecological concepts, such as the notion of DOM assembly have re-
cently been applied within the field of DOM research (Danczak et al., 2020; Stadler et al., 2023).
The afore mentioned assembly metrics used in microbial ecology could potentially be applied to
DOM molecules, which essentially share similar assembly processes as microorganisms. Certain
DOMmolecules underlie selection as of being selectively consumed or produced in specific habi-
tats by biological and photochemical processes (Medeiros et al., 2017; Seidel et al., 2015). Differ-
ing molecules disperse along landscapes with the movement of water (dispersal; Hutchins et al.
(2017)) and can form new structures by microbial and/or photochemical transformation (diver-
sification; Osterholz et al. (2015); Cory and Kling (2018); Noriega-Ortega et al. (2019)). Finally,
processes such as drift may occur through random chemical reactions (Chin et al., 1998). This
indeed very ecological approach to study DOM in a spatio-temporal manner has interpretational
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challenges but it nevertheless provides an opportunity to employ and explore the detailed data
obtained from fine-scale DOM approaches.

0.1.3.1 Persistence
From early DOCmeasurements, studies have been inspired by the relatively stablemanner of DOC
across ecosystems. Especially in the light of climate change, understanding not only the formation
but the maintenance of this pool has become of major interest. FT-ICR MS approaches revealed
a fraction in molecular formulae that were stable across the Atlantic and Southern Ocean, which
was termed the ’island of stability’ (IOS) due to its location in the commonly depicted Van-Krevelen
space (Lechtenfeld et al., 2014). The island describes compounds that are less saturated andmore
oxygenated as the most resistant to degradation, however, they do overlap substantially with the
compounds classified as CRAM. Additionally, they are characterised with low N and no S and thus
are thought to be of low nutritive value for microorganisms.

The river continuum concept (Vannote et al., 1980) described how DOM diversity decreases from
small streams to higher stream-order rivers. Degradation along the continuum leaves only refrac-
tory material behind that persists subsequently. Independently of high resolution molecular ap-
proaches, fluorescence and parallel-factor analyses (PARAFAC) have shown re-occuring PARAFAC
components characterised as more humic-like components across environments (Ishii and Boyer,
2012). Since, Kellerman et al. (2015) has described a link between the molecular elemental com-
position and structural features to persistence within lakes. The authors describe a potential re-
activity continuum from aromatic to aliphatic and from a high to low nominal oxidation state of
carbon (NOSC). Although reactivity may be first driven by extrinsic factors such as availability of
light, sorption to mineral particles and hydraulic retention time (Catalán et al., 2016), the major
control of degradation may switch to intrinsic properties of DOM. Recently, more evident results
were found through a comprehensive study using FT-ICR MS analysis for 37 sites sampled along
the aquatic continuum and the ocean (Kellerman et al., 2018). The authors were able to show the
existence of the IOS across the aquatic realm. However, they were also able to show that two au-
tochthonous end-members (Antarctic lake, Pacific Ocean) were distinct from each other in terms
of age, percentage of N and degradation state. Thus, they conclude that time is the major driving
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force of DOM diversity and degradation state, which is also in agreement to what Catalán et al.

(2016) have proposed on DOM decay rates.

While the IOS pre-dominantly describes stable compounds of low molecular weight, Repeta et al.
(2002) showed via NMR that there is a persistent fraction across freshwater and marine sam-
ples within the high-molecular weight pool characterised by seven neutral sugars (i.e., glucose,
galactose, mannose, xylose, arabinose, fucose, rhamnose), acylheteropolysaccharides (APS) and
aminosugars (Aluwihare et al., 1997; Repeta et al., 2002). While the authors argue that both fresh-
water and marine microbiomes seem to be capable of producing this universal pool of HMW
molecules, it is interesting how HMW molecules persist across aquatic ecosystems despite the
size-reactivity continuum concept that postulates a correlation of size to its degradability (Benner
and Amon, 2015). Recently, size fractionation approaches have shown that HMW has an aged sig-
nature of 135 - 2,700 years, while LMW hydrophilic and hydrophobic compounds were even older
with 2,850 - 15,000 years and 2,470 - 6,680 years, respectively (Zigah et al., 2017). They were also
able to show that the major neutral sugars described by (Repeta et al., 2002) had similar∆14C val-
ues to the dissolved inorganic carbon (DIC) pool, thus even though showing ubiquitous behaviour,
these compounds may be preferentially metabolised. The HMW mixture was described as 90%
semi-labile and 10% ’refractory’ humic carbon. However, evidence also suggests that a significant
fraction of the humic substances is relatively young (Zigah et al., 2017).

0.1.4 Interactions between bacterioplankton and dissolved organic matter
Hydrology mainly influences the release and production of DOM (Fasching et al., 2016; Butturini
et al., 2016; Casas-Ruiz et al., 2017), which leads to varying DOM composition, ultimately also af-
fecting the dominant source and degradation pathways from streams to the ocean (Lapierre and
Giorgio, 2014; Jones et al., 2016; Massicotte et al., 2017; Hutchins et al., 2017; Cory and Kling,
2018; Kellerman et al., 2018). Especially in streams and rivers, substantial amounts of terrestrial
OM characterised by a dominance of humic and fulvic acids enters the aquatic environment. It is
suggested that terrestrial chromophoric DOM is more prone to photolysis (Cory and Kling, 2018),
although terrestrial DOM has also been reported to be available for biodegradation in the pelagic
(Fasching et al., 2014) and sediments (Freixa et al., 2016) of fluvial systems. With increasing light
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availability and residence time in lakes, in-system primary production generates fresh DOM that is
commonly assumed to be more labile and readily available for microorganisms (Cole et al., 1982;
Fogg, 1983; Baines and Pace, 1991). Furthermore, partial photodegradation of coloured DOMmay
enhance the mineralisation of terrestrial DOM by microorganisms (Cory and Kling, 2018) and fur-
ther evidence suggests a higher biodegradability of fresh terrestrial DOM than previously believed
(Fasching et al., 2014).

Although microbial-DOM interactions have been intensively studied, linkages between the quan-
tity and quality of DOM and composition of bacterial communities have been difficult to establish.
Some empirical evidence has suggested a connection between the quantity and quality of DOM
with bacterial taxonomic community composition (e.g., Crump et al. (2003); Logue and Lindström
(2008); Muscarella et al. (2019)), additionally an association with the functional composition was
found in boreal systems (Ruiz-González et al., 2015b). On the search for causal interactions, vari-
ous incubation experiments found different bacterial groups to exhibit preferences in quantitative
and/or qualitative DOMproperties (Cottrell and Kirchman, 2000; Alonso and Pernthaler, 2006; At-
termeyer et al., 2014; Amaral et al., 2016). Utilisation of lowmolecular weight compounds (LMWC)
seemed to be a rather common functional trait among diverse microbes, whereas various high
molecular weight compounds (HMWC) were degraded only by certain groups of microbes (Logue
et al., 2016). Similarly, it was also observed that more labile DOM could be removed by a single
strain of bacteria, in contrary to degradation of less available compounds, which was only ob-
served when various microbes were present (Pedler et al., 2014). Interestingly, degradation of
complex molecules does not seem to be phylogenetically conserved (Logue et al., 2016), but was
distributed across the microbial phylogenetic tree, hinting towards a potential of micro-diversity
(Zimmerman et al., 2013). Thus, DOM degradability is not solely a property of DOM itself (Nelson
and Wear, 2014), but also a function of what microbes are present, how they are arranged and
what their activity is (Osterholz et al., 2016).

Advances in the resolution of technical approaches in both molecular and DOM research were ar-
gued to finally enable us to entangle this intertwined relationship (Herlemann et al., 2014; Logue
et al., 2016). Yet, similar to the increasing resolution of molecular technologies, enhanced reso-
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lution of DOM mixtures comes with computational and analytical challenges. DOM technologies
providing information on a molecular level may not yield apparent correlation patterns because
the DOM pool as a whole may comprise both reactive and non-reactive moieties that potentially
form a universal background (Herlemann et al., 2014; Kellerman et al., 2015; Zark and Dittmar,
2018; Kellerman et al., 2018). Using different levels of resolution between DOM and microbial
communities can provide valuable insights (Amaral et al., 2016), however, it has been shown that
broad scale patterns between different DOM resolutions (e.g., fluorescence and absorbance anal-
ysis vs. FT-ICR MS) remain similar (Kellerman et al., 2015). The true value in high-resolution data
should not lie in whole mixture approaches that solely visualise differences among samples (e.g.,
Van Krevelen diagrams) but in finding dynamic partitions and subsets of molecules within the bulk
DOM to link it with shifts in the microbial community composition. As a first step, aggregating
high-resolution DOM data using diversity indices (Mentges et al., 2017) and/or functional cluster-
ing (Ide et al., 2017) rather than using individual molecular data should provide useful metrics to
study DOM molecule assembly. Investigation of microbial and DOM co-variation should provide
valuable insights into the complex relationship of microorganisms and their resource.

0.1.5 Emergent properties: Microbial community metabolism
Heterotrophic microbial community metabolism can be examined using various metrics that each
provide a different dimension on how communities respond to differences in environmental fac-
tors (Hall and Cotner, 2007; Berggren et al., 2007), resource conditions (Hall and Cotner, 2007;
Berggren and del Giorgio, 2015), nutrient stoichiometry (Smith and Prairie, 2004; Berggren et al.,
2023) and biological constrains (Pradeep Ram et al., 2016). In essence, the balance between bac-
terial respiration (BR) and bacterial production (BP) determines howmuch of the available organic
carbon is channelled through the aquatic food-web or respired as CO2 into the environment.

Linking microbial community composition to the processes and functions these communities me-
diate has been a constant challenge (Hall et al., 2018). Most studies attempting to link microbial
community composition to their function involve building mathematical models in experimen-
tal systems (Widder et al., 2016). However, the applicability of results from short-term experi-
ments to natural conditions is often limited (i.e., bottle effects), especially when single strains are
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used instead of natural communities (Staley and Konopka, 1985). Furthermore, most microbial
metabolism metrics as well as functional processes are often not a sum of individual microbial
populations but rather an emergent property of complex communities (Hall et al., 2018).

Metabolism such as bacterial production as been linked to quantity andquality of dissolvedorganic
matter in aquatic systems (Judd et al., 2006; Berggren et al., 2009), however, little is known how
metabolism changes across the entire aquatic network. Most metabolism studies focus on sin-
gle ecosystem types and do not examine the entire range of hydrological scenarios present in our
landscapes. Additionally, anthropogenic alterations such as damming that modify residence times
along a river continuummay also affect community composition and consequently also microbial
carbon processing (Ruiz-González et al., 2013; Proia et al., 2016; Maavara et al., 2017). Hence,
differences in community processes between two sites or times may still be related to rates of
community restructuring between the investigated two points in space and time (Comte and del
Giorgio, 2009, 2010). The lack of successful establishment betweenmicrobial community compo-
sition and community-level metabolism (Langenheder et al., 2005; Fonte et al., 2013), may be due
to limited environmental gradients sampled in previous studies that did not allow the microbial
community composition to change enough to find links to shifts in metabolism.

A recent analysis showed that the explanatory power of empirical models especially of carbon pro-
cessingwithin soil systemswas significantly improvedwhen environmental andmicrobial (biomass
and composition) data sets were combined (Graham et al., 2016). Given that this evidence is based
on a whole community approach, it is expected that the explanatory power will further improve
if we can find and incorporate a clearer correlation between community composition, dissolved
organic matter and community processing.

0.2 Thesis objectives
The overarching objective of this thesis is to advance our understanding of microbial and DOM
assembly across awatershed scale. This thesis aims to provide both computational and conceptual
insights into the intricate relationship between these two complex assemblages. By leveraging
natural environmental gradients that emerge along aquatic continua - encompassing habitats such
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as streams, rivers, lakes, and reservoirs - I seek to quantify and explore shifts inmicrobial assembly
and links to DOM assembly. Moreover, this work endeavours to link variousmicrobial processes to
a comprehensive set of environmental, hydrological, and biogeochemical variables, enriching our
understanding of how microbial community composition and availability of resources influence
microbial metabolism.

The general aim is addressed through three main objectives, each explored in a dedicated chapter
(Fig. 0.1):

1. Examine shifts in bacterial community structure along a terrestrial-aquatic continuum, as-
sess how the balance between mass effects and species selection changes, and determine
which taxa contribute to the reactive fraction within microbial assemblages.

2. Identify spatially reactive components within microbial and DOM assemblages and investi-
gate their associations as well as analogies along a continuous hydrological gradient.

3. Investigate shifts in microbial metabolism along the aquatic continuum, focusing on iden-
tifying the environmental, hydrological, and biogeochemical drivers associated with these
processes.

Figure 0.1: Conceptual diagram visualising the structure of this thesis.
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0.3 General approach
To address the overall objectives of this thesis, a watershed-scale spatial and temporal survey was
needed that consistently sampled both the microbial as well as DOM assemblage across multi-
ple inter-connected aquatic habitats. The La Romaine project part of the CarBBAS industrial re-
search chair had already kicked-off before the thesis’ objectives were conceived. However, the
unique sampling design of following the construction and damming of three reservoirs over three
years starting in 2015, which was complemented with vast sampling of the entire watershed rep-
resented an optimal opportunity to address this thesis’ objectives in a semi-pristine hydrological
continuum. Although seasonal sampling was not consistent for all datasets (i.e., spring, summer,
autumn), all seasons were sampled in the course of the project. Hence, the existing DNA, RNA
and DOM samples between 2015-2017 where complemented with another full seasonal sampling
design (spring, summer, autumn) and addition of laboratory incubations to measure microbial
metabolism in 2018.

In chapter 1, microbial assembly along the entire continuumwas examined using a dataset includ-
ing the years 2015-2017 to cover the entire terrestrial-land-ocean continuum as denoted in the
sampled habitats: soil, soilwaters, streams, rivers, reservoirs and the estuary. It provided a three
year DNAdataset, and two year RNAdataset to address the question of howDNAandRNA samples
diverge along the hydrological continuum. Bacterioplankton community composition was charac-
terised using DNA and RNA via Illumina sequencing of the 16S rRNA gene, where RNA represents
the potentially active microbial members. Detailed bioinformatic processing is outlined in thema-
terial and methods of Chapter 1, and the same approach was used for all subsequent chapters.
The chapter introduces a novel approach to examine the balance between assembly processes,
namely environmental selection and mass effects, by calculating the divergence of DNA and RNA
samples within multivariate space. Inferences on assembly process shifts were based on the de-
gree of divergence along the continuum.

In chapter 2, a smaller subset of samples was used covering years 2015-2016 spring and sum-
mer and focusing on all land and freshwater samples obtained. In addition to sequencing of DNA
and RNA of microbial 16S rRNA, DOMwas characterised using a high-resolution techinque (FT-ICR
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MS). To model spatial patterns of individual DOM and microbial moieties in relation to hydrology,
extensive hydrological estimation was conducted using empirically-derived discharge and veloc-
ity models. ArcGIS and custom programming in R was used to calculate the average time water
spends to reach any point within the aquatic network by taking into account slower travel times
through lakes (i.e., flow-weightedwater age). Using high-resolution analyses for both assemblages
we were able to model individual spatial patterns of microbial taxa and DOMmolecular formulae
and classify them by their general spatial behaviour. The spatial patterns were further categorised
into reactive and unreactive components by using the model significance and assessing whether
slopes obtained were above bootstrapped slopes. By correlating the individual reactive moieties
of DOM and microbial communities, we were able to interpret their correlational patterns and
attempt to discern mere correlational from causal relationships.

Finally, in chapter 3, measurements of microbial metabolism were added to the sampling cam-
paigns in 2018. This chapter focuses on changes in microbial metabolism solely within aquatic
habitats were streams and rivers ranging Strahler orders 1-7, lakes, reservoirs and reservoir hy-
polimnions were compared in how the changes in microbial processes relate to shifts in micro-
bial community composition (DNA, RNA), DOM composition (FT-ICRMS), environmental variables
and hydrological estimates. A range of environmental variables were measured in situ including
temperature, dissolved oxygen, pH, conductivity; and others were measured in the laboratory:
alkalinity, cholorphyll a (Chl a), DOC, dissolved inorganic carbon (DIC), total nitrogen (TN), ammo-
nium concentration (NH4), and total phosphorous (TP). In addition, we extracted and calculated
the same hydrological variables as in chapter 2, namely catchment area, Strahler order, discharge,
velocity, flow-weighted water age, and water residence time. As an in-situ metric of hydrology
the degree of evaporation was estimated using d-excess, which can be calculated using isotope
measurements of oxygen and deuterium. Multivariate analyses were conducted on each dataset
(i.e., DNA, RNA, DOM, environment, hydrology) and the resulting axes were correlated to each
microbial process measured to evaluate whether shifts in each microbial process are related to
any of the biological, chemical and environmental matrices.
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TERRESTRIAL CONNECTIVITY, UPSTREAM AQUATIC HISTORY AND SEASONALITY SHAPE

BACTERIAL COMMUNITY ASSEMBLY WITHIN A LARGE BOREAL AQUATIC NETWORK

Masumi Stadler1 and Paul A. del Giorgio1

1 GroupedeRecherche Interuniversitaire en Limnologie, Département des Sciences Biologiques,
Université du Québec à Montréal, Montréal, QC, Canada.

Published in The ISME Journal (2022) DOI: 10.1038/s41396-021-01146-y

Keywords:
Microbial community assembly, land-freshwater-estuary continuum, upstream history, mass
effects, species selection, DNA-RNA divergence, 16S rRNA gene sequencing, boreal watershed

N.B. References cited in this chapter are presented at the end of the thesis.

15



1.1 Abstract
During transit from soils to the ocean, microbial communities are modified and re-assembled,
generating complex patterns of ecological succession. The potential effect of upstream assem-
bly on downstream microbial community composition is seldom considered within aquatic net-
works. Here, we reconstructed the microbial succession along a land-freshwater-estuary contin-
uum within La Romaine river watershed in Northeastern Canada. We captured hydrological sea-
sonality and differentiated the total and reactive community by sequencing both 16S rRNA genes
and transcripts. By examining how DNA- and RNA-based assemblages diverge and converge along
the continuum, we inferred temporal shifts in the relative importance of assembly processes, with
mass effects dominant in spring, and species selection becoming stronger in summer. The loca-
tion of strongest selection within the network differed between seasons, suggesting that selection
hotspots shift depending on hydrological conditions. The unreactive fraction (no/minor RNA con-
tribution) was composed of taxa with diverse potential origins along the whole aquatic network,
while the majority of the reactive pool (major RNA contribution) could be traced to soil/soilwater-
derived taxa, which were distributed along the entire rank-abundance curve. Overall, our find-
ings highlight the importance of considering upstream history, hydrological seasonality and the
reactive microbial fraction to fully understand microbial community assembly on a network scale.

1.2 Introduction
Microbial communities across ecosystems are characterised by rank abundance distributions that
vary in shape, yet we still know relatively little about how these structures come to be. Distri-
bution shapes are thought to provide insight on community assembly (McGill et al., 2007), with
dominant and rare taxa assumed to be locally successful and transient, respectively (Magurran and
Henderson, 2003; Nakadai et al., 2020), but these interpretations have seldombeen explicitly con-
firmed. Inherited from macroecology, microbial assembly processes have been defined into four
fundamental categories - selection, dispersal, diversification, and drift - (Vellend, 2010), which vary
in their degree of determinism and stochasticity (Zhou and Ning, 2017). Whereas diversification
and drift usually manifest on longer, evolutionary, time scales, selection as well as dispersal are
more relevant on ecological time scales. Regardless, there is always a historical aspect to commu-
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nity assembly as local microbial communities reflect the balance between selection and dispersal
processes that have occurred locally and in connected habitats in the past (Fukami, 2004). Hence,
accounting for community history is vital to understand community assembly and the shape of the
rank abundance distribution. Studies that investigated the relevance of historymainly followedmi-
crobes across timewithin an ecosystem (Shade andGilbert, 2015; Comte et al., 2017). Temporal his-
tory does shape local communities (i.e., legacy effects; Fukami (2015)), however, within an aquatic
network, the uni-directional flow of water links temporal and spatial histories. Hydrology is a ma-
jor driver of aquatic microbial community composition (Niño-García et al., 2016a; Ruiz-González
et al., 2017b), as evidenced by soil microbes being flushed into and representing large proportions
of aquatic communities (Ruiz-González et al., 2015a; Crump et al., 2012; Besemer et al., 2013; Wis-
noski et al., 2020). As such, community structure at any given site within a hydrological network
is the net result of upstream assembly processes (Nelson et al., 2009), and network connectiv-
ity is further modulated by seasonal hydrological fluctuations (de Melo et al., 2019; Caillon et al.,
2021). Therefore, spatial history is particularly relevant in highly interconnected freshwater net-
works (Vass and Langenheder, 2017), and there have been various studies that investigated the
spatial context of aquatic microbial community assembly. Stegen et al. (2013) quantified major
assembly processes based on spatial patterns of phylogenetic as well as taxonomic dispersion,
which assumes that phylogenetically related organisms have similar niche requirements. Others
have used spatial numerical distributions to infer the relative importance of selection versus pas-
sive transport across separate watersheds (Niño-García et al., 2016a). While the importance of
mixing and interacting communities between different ecosystems is now amply recognised (i.e.,
community coalescence; Mansour et al. (2018)), few studies consider interfaces between mul-
tiple ecosystems or ecosystem domains (e.g., terrestrial-aquatic; Nemergut et al. (2011); Shade
et al. (2013)). A spatially connected, true aquatic continuum has mostly been evaluated on lo-
cal scales within lakes (Logue and Lindström, 2010; Adams et al., 2014; Langenheder et al., 2017),
along a single river mainstem (Winter et al., 2007; Savio et al., 2015; Hauptmann et al., 2016; Do-
herty et al., 2017; Gweon et al., 2020) or on interconnected upstream networks (Besemer et al.,
2013; Nelson et al., 2009; Widder et al., 2014; Read et al., 2015; Hassell et al., 2018; Wisnoski and
Lennon, 2021) and rarely have surrounding terrestrial ecosystems been considered as potential
sources (Ruiz-González et al., 2015a; Crump et al., 2012; Wisnoski et al., 2020). Moreover, active
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and passive assembly processes are difficult to resolve as cell death and dormancy blur interpre-
tations based on DNA patterns alone (Cole, 1999; Jones and Lennon, 2010). Indicative of recent
protein synthesis, RNA sequencing has helped to disentangle active from unreactive microbial
members (Bowsher et al., 2019), however, only few freshwater studies have included both (Wis-
noski et al., 2020; Logue and Lindström, 2010; Székely et al., 2013; Aanderud et al., 2016; Denef
et al., 2016; Muscarella et al., 2019; Peter et al., 2018). All of these studies have separately yielded
useful insight onmicrobial community assembly in freshwater systems, and they collectively point
to the challenges ahead. The processes shaping community assembly are dynamic; selection and
mass effects will vary in relative importance along complex aquatic networks as a function of the
degree of connectivity to surrounding ecosystems, and upstream history. In order to capture the
shifting balance of assembly processes and link those to the underlying rank abundance struc-
ture, we first need to examine a true hydrologic continuum that includes source communities and
exchanges between various aquatic as well as terrestrial habitats as potential sources. Secondly,
seasonality needs to be accounted for as the degree of connectivity depends largely on various
hydrological scenarios in these networks. And lastly, DNA has to be accompanied by some indi-
cation of reactivity as selection and passive dispersal cannot be fully distinguished otherwise. In
this study, we attempted a more holistic approach to aquatic microbial community assembly by
addressing the three aforementioned critical dimensions.

1.2.1 Conceptual framework
Our overall aim was to follow shifts in bacterial community structure along a terrestrial-aquatic
continuumandassess how the relative importance ofmass effects versus species selection changes
as communities traverse through varying environmental conditions and degrees of connectivity to
the surrounding catchment. We carried out this study within La Romaine river watershed in the
Northeastern region of boreal Québec, Canada, over several years and seasons. Starting from
upstream sources such as soils, soilwaters, and headwater streams, we continued to follow the
extant river orders (Strahler order 0–7) up to the estuarine plume. In addition, three reservoirs
have been consecutively flooded mid-river over the sampling period. The sampling design cov-
ers various interfaces (terrestrial-aquatic, stream-river, river-reservoir, freshwater-estuary), and
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other ecosystems within the watershed (e.g., headwater ponds, tributaries, lakes) that provide a
furthermeta-community context. We first assess how the 16S rRNA gene (DNA-based) assemblage
structure shifts along the terrestrial-freshwater-estuary continuum; we determine the general pat-
terns of the spatial succession and its relation to different hydrologic seasonality. Furthermore,
we differentiate the reactive from the total bacterial assemblage by additionally examining the
16S ribosomal RNA patterns relative to DNA. In this regard, RNA is not being used as an indication
of absolute activity (Blazewicz et al., 2013), rather we interpret the patterns of convergence and
divergence between assemblage structures based on DNA and RNA (hereafter, DNA-RNA-based
assemblage structures) along the continuum to infer shifts in the relative importance of species
selection versus mass effects. To quantify divergence between DNA-RNA-based assemblage struc-
tures, we computed the distance between each DNA and RNA pair withinmultivariate space based
on either incidence (presence-absence) or abundance dissimilarities. In a null scenariowhere DNA
and RNA follow the exact same patterns, DNA-RNA-based assemblage structures remain equidis-
tant, which would indicate no influx of unreactive bacteria (i.e., only detectable in DNA), and no
changes in the reactivity of taxa within the community (no inactivation and activation of active
and dormant taxa, respectively).

Local divergence in DNA-RNA-based assemblage structures in the continuum, on the other hand,
may result from an influx of bacteria unreactive to local conditions (low RNA detectability), which
would strongly influence the incidence-based distance, or from local shifts in the reactivity of
specific taxa within the community (local activation/inactivation of taxa), influencing mostly the
abundance-based distance. Shifts in how the incidence- and abundance-based metrics relate to
each other across space and time, enabled us to gain insight into when and where selection or
mass effects outweigh the other along the continuum. Finally, we explore where taxa potentially
originated along the continuum andwhat fractionwithin the rank abundance curve the unreactive
and reactive taxa commonly occupy.
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1.3 Material and methods
1.3.1 Catchment characteristics and sampling
To follow the movement of microbial communities within a watershed, samples were taken along
La Romaine river (Strahler order 7, Côte-Nord region, Québec, Canada) (Fig. S1.1a-b) from 2015-
2017. La Romaine catchment belongs to the eastern black spruce-moss bioclimatic domain and
has an area of 14,500 km2. For detailed catchment characteristics refer to the supplementary
methods (hereafter, SM) (SM 1.8.1, Fig. S1.1). In brief, the mainstem of the river (main trunk of
riverine network) flows through a series of large, shallow lakes (hereafter, riverine lakes), emerging
as Strahler order 6, and is subsequently dammed in a series of three hydroelectric reservoirs that
were consecutively built in 2015 (RO2), 2016 (RO1), and 2017 (RO3). We refer to the river sections
before and after the reservoir complex as upriver and downriver, respectively. The river has a total
distance from the northern headwaters to the river mouth of 475 km.

In order to follow a terrestrial-aquatic continuum, various habitat types were sampled (Table S1.1).
To capture a headwater network with soils, soilwaters, streams and ponds, we sampled the Petite
Romaine sub-catchment (PR, A: 310.73 km2, elevation: 580masl, Strahler orders 0–4, Fig. 1.1c) due
to the remoteness and inaccessibility of the northernmost headwaters. By sampling this headwa-
ter sub-catchment, we were able to follow a true continuum from an example headwater stream
to the mainstem river into the estuarine plume. In addition, we sampled the reservoirs that are
located along the mainstem. Other sites such as groundwaters, tributaries (Strahler orders 1–5),
lakes and sediments in the catchment were sampled for a meta-community context. Tributaries
refer to streams and rivers that were sampled at the confluence of the mainstem, in contrast to
streams within the PR sub-catchment that represent a headwater network. Overall, 389 samples
were collected for DNA (D) and 201 for RNA (R), covering spring (156-D, 66-R), summer (199- D,
101-R) and autumn (34-D,34-R) (Table S1.1). RNA samples were collected from 2016 onwards.

For detailed sampling procedures and sample preparation for each sample type refer to SM 1.8.2.
In brief, all water samples were filtered onto a 0.22µmpolycarbonate filter with a peristaltic pump
and homogenised soil and sediments were stored in aliquots. RNA samples were submerged in
RNAlater and Lifeguard Soil Preservation Solution (QIAGEN, Hilden, Germany) for water and non-
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water samples, respectively. RNA samples were stored at 4°C overnight to allow stabilisation
and were subsequently frozen. All DNA and RNA samples were frozen at -20°C at the field sta-
tion and further stored at -80°C at the university laboratory until extraction. DNeasy and RNeasy
PowerWater and PowerSoil kits (QIAGEN, Hilden, Germany) were used following the manufac-
turer’s instructions. RNA extracts were reversely transcribed to cDNA with a high capacity cDNA
Reverse Transcription Kit (Applied Biosystems™, Foster City, CA, USA) and all samples were sent
to Génome Québec Innovation Center (Montréal, QC, Canada) for paired-end sequencing of the
16S rRNA V4 region using the primers 515 F (5’-GTGCCAGCMGCCGCGGTAA-3’) and 806 R (5’GGAC-
TACHVGGGTWTCTAAT-3’) on a MiSeq platform (PE250, Illumina, San Diego, CA, USA; details in
SM 1.8.2).
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Figure 1.1: Location and overview of the La Romaine catchment. a) Scale and overview of the whole La
Romaine catchment. Samples are represented as points. b) Location of the catchment within Canada and
Québec. c) Focus on all built reservoirs RO1 (2015), RO2 (2014) and RO3 (2017) and the headwater stream
sub-catchment Petite Romaine (PR).
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1.3.2 Bioinformatic analysis
A detailed description of the bioinformatic treatment can be found in SM 1.8.3. In brief, primers
were removed from 16S rRNA DNA and cDNA (hereafter, RNA) reads using cutadapt (v1.18; Mar-
tin (2013)). To identify amplicon sequence variants (ASVs), 16S rRNA amplicon reads were anal-
ysed through the DADA2 (Divisive Amplicon Denoising Algorithm 2) pipeline (v1.14.1; Callahan et al.
(2017)). Taxonomy was assigned with the DECIPHER package (v2.14.0; Wright (2016)) implement-
ing the IDTAXA algorithm (Murali et al., 2018) and the GTDB database (Release 95; Parks et al.
(2018)). To account for slight differences that may have emerged between DNA and RNA ASVs and
potential differences among 16S rRNA copies within a single genome, ASVsweremerged into OTUs
by a 99% similarity threshold (Větrovský and Baldrian, 2013) with the DECIPHER package (Wright,
2016). OTUs only found in RNA (’phantom’ taxa) were corrected for by replacing all observations
with RNA>0 and DNA=0 with DNA=1 (Bowsher et al., 2019). An observation (i.e., read count of
an OTU within a sample) that only appeared in a single sample within each habitat type, season
and nucleic acid type combination (i.e., singleton within a factorial combination) was considered
unreliable if the singleton OTU had less than 10 reads within the sample. This approach not only
removes singletons across the whole database but also singletons within each sampling campaign
that had too few reads to be considered reliable. Furthermore,metagenomeSeqwas used to trans-
form and stabilise variation in library sizes with cumulative sum scaling (CSS; Paulson et al. (2013))
(hereafter: CSS reads). CSS results were compared with results achieved with various rarefaction
thresholds and no substantial differences were observed (Fig. S1.2). A few minor differences are
discussed in SM 1.8.4.

1.3.3 Data exploration and statistical analysis
A detailed version of this section is included in SM 1.8.5. To explore differences in microbial com-
munity composition across habitat types and seasons, a Principal Coordinates Analysis (PCoA) was
conducted with Bray-Curtis dissimilarities (DBC) (Bray and Curtis, 1957; Legendre and Legendre,
1998) based on all DNA samples with the function pcoa in the ape package (Paradis and Schliep,
2018)(n = 389, 16,322 OTUs). To evaluate statistical differences in habitat type and season a PER-
MANOVA was computed with 9,999 permutations with the adonis function. Multivariate homo-
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geneity was tested for with betadisper and permutest (vegan package; Oksanen et al. (2019)). For
all statistical analyses, an α level of 0.05 was chosen prior to analysis. To further evaluate whether
sampled RNA-based assemblages were different from the DNA-based assemblages, we performed
a second PCoA with both DNA and RNA samples (withDBC , n = 590, 16,322 OTUs). Again, statis-
tically different groups were investigated with a PERMANOVA (9,999 permutations), where habi-
tat type, season and nucleic acid type (DNA versus RNA) formed the groups. To quantify how
different DNA-RNA-based assemblages of the same sample are, the Bray-Curtis distance (mBC) of
each DNA-RNA sample pair within the PCoA ordination space was computed across n-dimensional
space (Tabak, 2004); a similar approach to other studies that extracted the magnitude of change
in multivariate space between two samples of interest (Muscarella et al., 2019; Brown, 2003):

m(p, q) =
√︁

(| p1 − q1 |)2 + (| p2 − q2 |)2 + · · ·+ (| pn − qn |)2

where p and q represent DNA and RNA site scores, respectively, of each sample and n is the used
maximum number of dimensions. We focused on the first axes that cumulatively explain 75%
of the variation for each ordination (n75%), similar to Osterholz et al. (2016). This approach was
implemented as it was evident from the PCoA that essential variation within non-aquatic samples
was captured outside the first three axes and to exclude noise that may be captured when using
all dimensions (Fig. 1.3).

To gain further insight into the processes shaping assemblage dissimilarities, we computed a PCoA
with the Sørensen dissimilarity (DS), which is the incidence-based equivalent of DBC (Legendre
and Legendre, 1998; Sørensen, 1948) (Fig. S1.4). By comparing incidence- and relative abundance-
based dissimilarities, we can further distinguish in which samples DNA-RNA-based assemblages
diverge primarily due to different present taxa or their abundances, respectively. We further ap-
plied the same framework of calculating the distance among DNA and RNA pairs across n75% axes
resulting in the Sørensen-based distance (mS) (Fig. S1.4). In order to examine where shifts in the
relative importance between incidence- and relative abundance-based distances were happening
along the continuum, we calculated the difference between mBC and mS (∆-distance). To explore

24



the interpretability of the∆-distance approach, we simulated theoretical communities and com-
puted ∆-distances for this mock dataset (details in SM 1.8.6). In brief, four species abundance
distributions (SADs) with various levels of evenness were created and randomly sampled to gen-
erate DNA assemblages. We hypothesised that these various SADs represent a gradient frommass
effects to selection, where less even communities are linked to stronger selection. Subsequently,
DNA assemblages were duplicated for each site to create a base for the corresponding RNA assem-
blage. We hypothesised that the higher the number of OTUs in DNA without RNA, the stronger
the mass effect. To create an additional range of mass effects, different numbers of OTUs were
removed from the RNA assemblage. Results indicated that lower∆-distance values correspond to
strongermass effects as indicatedby higher replacement andhigher evenness. Inversely, higher∆-
distance values indicate stronger selection with lower replacement and lower evenness (Fig. S1.5,
Fig. S1.6). Results obtained during our rarefaction test (SM 1.8.4) showed that absolute numbers
of ∆-distances varied across rarefaction thresholds, while relative patterns across seasons and
habitat types remained consistent. Hence, absolute values in ∆-distances are likely to hold lit-
tle meaning, and it is rather the relative change in ∆-distances and the resulting pattern across
gradients or between habitats that is informative and comparable across studies.

1.3.4 Abundance groups
In order to explorewherewithin a rank abundance curve community reshuffling is occurring, abun-
dance groups (e.g., abundant, moderate, rare) were defined based on the shape of rank abun-
dance curves per habitat type. Abundance thresholds are defined as the first and secondmoment
of maximum acceleration along the rank abundance curve (Fig. S1.7). This approach classified all
OTUs with >= 72 CSS reads as abundant, <72 and >= 10 CSS reads as moderate, and <10 CSS reads
as rare (details in SM 1.8.7). This classification method was implemented as abundance thresholds
commonly used are rather inconsistent across the literature, with little confidence in whether a
particular abundance threshold is suitable for a given dataset. The implemented approach is not
different from common fixed relative abundance thresholds (e.g., 1%), the only difference lies in
the fact that the abundance threshold is derived empirically from the species abundance distribu-
tions of the studied dataset.
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1.3.5 Classification of OTU origin and potential reactivity
OTUs were classified by the habitat in which they were first detected along the terrestrial-aquatic
continuum (regardless of season) to have a proxy of origin for each OTU (hereafter, potential ori-
gin) (Ruiz-González et al., 2015a; Crump et al., 2012). The classification followed the order of soil,
soilwater, stream, upriver, reservoirs, downriver, and finally, the estuary. To further explore pat-
terns in the OTUs’ DNA and RNA relationship, we correlated the contribution of individual OTUs
to each local DNA and RNA pool (e.g., a local pool was defined for each season and habitat). The
OTU contributions to each local pool were first averaged for each potential origin, abundance
group and four RNA contribution categories (<25% confidence interval (CI), < median, > median
and >75% CI) to enhance visibility. On first attempt, all OTUs falling in the <25% CI and < me-
dian categories showed striking invariability, while >75% CI and > median categories followed a
linear relationship between an OTU’s contribution to the DNA and RNA pools. This pattern was
observed across most local pools, and hence, the contribution categories were reduced to two
groups (>median and <median). This categorisation threshold is referred to as the ’potential re-
activity threshold’ (hereafter PRT, median: 0.067%), based on the apparent decoupling of DNA
and RNA of OTUs below the median. We infer that the absence of a relationship between DNA
and RNA likely reflects that these taxa below the PRT are present but may be generally unreactive
to the environment, given that their numerical abundance is largely unrelated to their apparent
potential activity. Hence, we categorised the taxa below the PRT together with taxa that did not
have any RNA as ’unreactive’. It is important to note here that the PRTwas applied for each habitat
and season, hence, an OTU classified as reactive within for example soils, may become unreactive
or stay reactive in subsequent habitats or seasons. All analyses have been conducted in R v3.4.2 (R
Core Team, 2024) and RStudio v1.3.1073 (RStudio Team, 2024)(package details in SM 1.8.8).

1.4 Results
Sampled sites covered a large range of habitat types from soils, soilwater, over streams, the main
river, lakes, reservoirs and the estuary. We recovered 51,901,843 quality filtered reads, with 119,109
identified ASVs. After 99% similarity OTU clustering, there were 35,995 unclassified OTUs that
were removed in the downstream analyses. After sub-sampling only bacteria, 48,927,604 reads
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and 16,322 OTUs were retained. The smallest and largest library size were found in a sample of
riverine lakes and soilwater with 1,470 and 81,716 reads, respectively. On average, the lowest li-
brary sizes were found in sediment, soil, soilwater and estuary with less than 20,000 reads. In
contrast, most freshwater samples had a library size larger than 20,000 reads (Fig. S1.8). There
were 56 phyla, 130 classes, 316 orders, 571 families, and 1,027 genera represented in the dataset.
Relative abundances of phyla varied across habitat types (Fig. S1.8) but on average, the meta-
community across all ecosystems was composed of Proteobacteria (38.4%), Verrucomicrobiota
(9.6%), Patescibacteria (7.9%), Acidobacteriota (5.3%),Myxococcota (5.2%), Actinobacteriota (5.2%),
Bac- teroidota (4.5%), Bdellovibrionota (3.8%), Planctomycetota (3.2%) and Cyanobacteria (2.7%).

1.4.1 Gradual change of assemblage structures along the terrestrial-aquatic continuum
We observed a clear directional pattern in community composition based on DNA, from the most
terrestrially-influenced habitats such as soil, soilwater and sediment to the mainstem river and
reservoir sites and the estuary, which was captured in the first PCoA axis (Fig. 1.2) and statistically
supported by a PERMANOVA analysis (Table 1.1). Groundwaters, streams, tributaries, headwater
ponds, and lakes were clearly aligned between the two endpoint clusters formed by terrestrial and
riverine/reservoir samples (Fig. 1.2).
Table 1.1: PERMANOVA and PERMDISP results based on DNA alone and DNA and RNA community matri-

ces.

PERMANOVA PERMDISP
Dataset Group df F-statistic R2 p-value df F-statistic p-value
DNA Habitat 12 17.5 0.35 < 0.0001 12 38.87 < 0.0001

Season 2 12.05 0.04 < 0.0001 2 58.36 < 0.0001
Combined 27 20.72 < 0.0001

DNA and RNA Habitat 12 19.98 0.28 < 0.0001 12 28.88 < 0.0001
Season 2 15.64 0.04 < 0.0001 2 62.03 < 0.0001
Nucleic Acid Type 1 25.64 0.03 < 0.0001 1 1.20 0.27
Combined 49 9.60 < 0.0001
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The directional trajectory along the terrestrial-aquatic continuum had a striking seasonality that
was especially marked for the downstream river and reservoir sites, with a clear separation be-
tween spring and summer/autumn samples along the second PCoA axis (Table 1.1). Soil, sediment,
soilwater and groundwater sites, however, did not exhibit a clear seasonality (Fig. 1.2) and sea-
sonality did not emerge as a strong driver even within a PCoA performed only with terrestrially-
influenced samples (Fig. S1.9). Although PERMANOVA results strongly supported habitat type and
seasonal clustering, the results could be affected by different dispersion of datawithinmultivariate
space, which interferes with a straight forward interpretation of the results as a PERMANOVA can-
not distinguish among-group from within-group variation if data dispersion is variable (Anderson
and Walsh, 2013). Differences in dispersion were found by habitat type alone, solely season and
both habitat and season combined (Table 1.1). While dispersion between spring and summer was
not statistically different (Tukey’s HSD: p > 0.05), dispersion was always different when comparing
autumnwith other seasons (Tukey’s HSD: p < 0.0001). The average distance of samples within the
autumn cluster to itsmedianwas smaller compared to other seasons (0.46 vs 0.63/0.62) likely due
to a smaller sample size in autumn (nautumn = 34 versus nspring = 156, nsummer = 199). Among habitat
types, dispersion was larger in terrestrially-influenced sites such as soil (Distance tomedian: 0.61),
soilwater (0.63), stream (0.63) and tributary (0.62) samples, compared to riverine (0.51), reservoir
(0.52) and estuary (0.52) samples. The observed differences in the heterogeneity within habitat
types likely reflects inherent characteristics of these ecosystems, with sites of stronger terrestrial
influence exhibiting stronger spatial variance.
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Figure 1.2: Microbial community composition gradually changes along a terrestrial-hydrological contin-

uum and diverges between seasons. Overall PCoA analysis of DNA samples. The PCoA reveals micro-
bial community shifts from terrestrial to freshwater samples. Habitat types ranged from soils, soilwaters,
streams and headwater ponds (sampled in headwater streamnetwork, Stahler orders 0-4), tributaries (sam-
pled at the confluence to the mainstem, Strahler orders 1–5), riverine lakes (northernmost lakes through
which the Romaine river flows), reservoirs, sections along the mainstem (Strahler order 6–7) upstream and
downstream of the reservoir complex (upriver and downriver, respectively), and the estuary. Spring and
summer/autumn show distinct paths in multivariate space. Percentage of variance explained are given in
brackets for the first and second axes.

1.4.2 Patterns in RNA and DNA divergence
When DNA and RNA samples were combined in a second PCoA analysis, the three main axes of
variation were habitat type (PC1), nucleic acid type (PC2) and seasons (PC3), and these three first
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axes captured in summary 18.9% of the dissimilarity variance (Fig. 1.3). Strong DNA-RNA diver-
gence emerged as soon as the continuum enters the upstream aquatic sites (i.e., streams) and
amplified along the continuum (Fig. 1.3a). Seasonality was most pronounced in aquatic sites in
both DNA and RNA (Fig. 1.3b) and was the second-strongest driver after the spatial continuum in
a PCoA only with RNA samples (Fig. S1.10). There was no clear seasonality and differentiation be-
tween nucleic acid types in terrestrially-influenced samples (Figs. 1.3b, S1.10). However, it is note-
worthy that visual inspection indicated that much of the terrestrially-influenced site dissimilarity
was split upon additional axes (data not shown). Overall, PERMANOVA analysis indicated signifi-
cant clustering by habitat type, season and nucleic acid type (Table 1.1). Similar to the DNA only
PCoA, homogeneity of dispersion was mostly not fulfilled (Anderson and Walsh, 2013). According
to PERMDISP, dispersion differed by all factorial combinations, habitat type and season, however,
not for nucleic acid type alone (Table 1.1). Dispersion patterns among seasons and habitats were
similar to the DNA only PERMDISP results, where dispersion was smaller in autumn compared to
spring and summer and terrestrially influenced sites generally had a larger dispersion.
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Figure 1.3: RNA assemblages diverge from DNA within aquatic habitats, less so in terrestrially-influenced

habitats. PCoA analysis including RNA samples. a) Visualisation of first and second axes of PCoA, differen-
tiating habitat type and nucleic acid type, respectively. b) Different view on PCoA analysis using the second
and third axes, differentiating nucleic acid type and seasons, respectively. The distribution of DNA and RNA
samples are highlighted with polygons. Percentage of variance explained by the corresponding axes are
given in brackets.

1.4.3 Inferring assembly dynamics from DNA-RNA pair-wise distance patterns along the con-tinuum
To further explore the patterns in DNA-RNA-based assemblage structure differences along the
continuum, we calculated the distance in PCoA ordination space between DNA and RNA of each
sample based on abundance (mBC) and incidence (mS) along the number of axes capturing 75%
of variance (n75%) as the depicted first three axes in Fig. 1.3 only captured a limited fraction of the
total DNA-RNA divergence (n75%) axes: Sørensen = 204, Bray-Curtis = 192. Based on the incidence
metric mS, the largest average distances between DNA and RNA were found in spring (0.43 ±

0.29 (mean± standard deviation)) especially in soilwaters (0.63± 0.33). In contrast, summer mS
distances were in general lower (0.18 ± 0.12) and more similar among habitat types (Fig. 1.4a).
The abundance-based distance (mBC) was in general very similar among seasons with spring be-
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ing slightly higher (0.61 ± 0.20) than summer (0.53 ± 0.15) and autumn (0.50 ± 0.06). Lowest
mBC distances were found in soil (0.34) and sediment (0.30) samples. Overall, mBC values were
always larger than mS, as mBC captures both abundance and incidence differences and hence, add
abundance-based differences to the distance observed with mS.

To investigate relative changes between incidence and abundance-based distances, we computed
the difference betweenmBC andmS (∆-distance)(Fig. 1.4b). The∆-distance can theoretically range
between 1 and -1, both exemplifying extreme cases where mBC = 1 and mS = 0 and vice versa. In
general, lower (or even negative)∆-values indicate comparably higher incidence-based distances,
where dissimilarity is largely driven by the occurrence of different taxa between DNA and RNA
suggesting prevalence of mass effects (SM 1.8.6). On the other hand, higher ∆-values indicate
relatively low incidence-based and high abundance-based distance, representing selection-driven
dissimilarity with more taxa common between DNA and RNA but rather large numerical differ-
ences (SM 1.8.6). Hence, we interpret positive shifts in∆-distances as transition frommass effects
to selection dominated habitats and vice versa. Overall, there were different trajectories among
seasons in∆-distances, with lower values in spring remaining relatively stable around 0.17± 0.17,
and higher average values in summer (0.35 ± 0.16), suggesting relatively higher overall mass ef-
fects in spring and selection in summer. In addition, there was a clear spatial pattern in∆-distance
in summer along the continuum, with an increase in∆-distance from terrestrially-influenced sites
(i.e., soils, soilwaters, streams) towards the river followed by a sharp decline downstream of the
reservoir, suggesting increasing mass effects downstream of the reservoir. In autumn, selection
gradually increases along the mainstem from the upstream river over reservoirs to the down-
stream river sites. Coinciding with these patterns, other sampled high residence time habitats
within the watershed (i.e., riverine lakes, lakes) also had a higher average∆-distance compared to
tributaries (Fig. 1.4b), suggesting strong selection especially in summer. Whereas lakes remained
relatively stable across seasons, riverine lakes had a distinct pattern comparable to tributaries with
relatively low∆-distances in spring indicative of high mass effects.
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Figure 1.4: Patterns between abundance and incidence-based distance reveal seasonal shifts in assembly

processes. a) Distances between DNA and RNA of the same sample within ordination space were aver-
aged by habitat type and season. Abundance-based (coloured points, mBC) and incidence-based distance
(hollow points, mS) indicate spatio-seasonal trends in strong mass effects, especially in spring with high
incidence-based distances. b)∆-distances between mBC and mS indicate shifts in the relative contribution
of incidence- versus abundance-based distances along the continuum, with high ∆-distances indicating
stronger selective forces. Habitats sampled outside the direct continuum are given as an additional meta-
community context.

1.4.4 Taxa across the rank abundance curve contribute to the reactive pool
In the previous sections we have established that there were patterns of divergence and conver-
gence of DNA-RNA-based assemblage structure that were spatially and temporally structured. To
further explore what fractions within the community contribute to mass effects and selection, re-
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spectively, we classified OTUs by the habitat in which theywere first detected along the terrestrial-
aquatic continuum, from soils to the estuary. In particular, by focusing on taxa that were only de-
tected in DNA (termed unreactive) and thus strongly contribute to the observed mass effects, it
became evident that a relatively large proportion potentially originated in the upstream habitats
such as soils, soilwaters and streams. Yet new unreactive taxa were also gained along the entire
continuum (Fig. 1.5a).

In order to understand the coherence between DNA and RNA patterns of reactive taxa that con-
tribute to the observed patterns in selection, we examined the relative contribution of individual
taxa to the DNA and RNA sequence pools for each habitat and season (Fig. 1.5b). For this, we
also grouped OTUs according to where they were first detected in DNA along the continuum to
identify subsets of taxa that activated and developed locally. To simplify the analysis, we further
classified OTUs based on their mean DNA habitat abundance into locally abundant, moderate
and rare taxa (see ’Methods’). Inspection of the various plots in Fig. 1.5b revealed a recurrent
pattern in most habitats with a subset of taxa present across all DNA abundance groups, which
nevertheless contributed negligibly to the local RNA pool (between 0.00005 and 0.0067% of se-
quences) and whose RNA contribution was decoupled from their contribution to the DNA pool.
In contrast, there was another subset of taxa with a consistently higher contribution to %RNA se-
quences (above 0.0067% sequences, hereafter termed reactive) and whose contribution to RNA
and DNA pools appeared to be linearly coupled. Although we classify these two groups as ’re-
active’ and ’unreactive’ out of simplicity, we do not know why some taxa have a decoupled DNA
and RNA relationship. We acknowledge that taxa within the ’unreactive’ fractionmay be taxa with
disproportionately low rRNA albeit being still active. Reactive taxa were represented across DNA
abundance groups, and in most habitats the overall relationship between %DNA and %RNA con-
tribution averaged around a log-log slope of 1.18, suggesting a roughly proportional contribution
(Fig. 1.5b), except for upriver spring samples where numerically rare taxa appeared to have dis-
proportionately high RNA. On the other hand, taxa that were unreactive had a striking invariance,
hovering around 0.0025% RNA contribution which may indicate a lower activity threshold. These
taxa may be somewhat analogous to taxa that were entirely not detected in RNA and only in DNA.
Taxa without a single detected RNA copy can have RNA in the environment, however, their RNA
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content may be too low to be captured with our sequencing depth. The reactive and unreactive
taxa were both distributed across the entire range of %DNA contribution. The former indicates
that there are locally reactive OTUs across the entire rank abundance curve, including rare taxa.
Likewise, there were unreactive taxa across the entire rank abundance curve that may be numer-
ically important in DNA. Furthermore, reactive taxa occupy on average 45.9% of the OTU pool in
each habitat, whereas the unreactive taxa (<0.0067% contribution (22.7%) and RNA = 0 (31.4%))
together comprise 54.1% (Fig. S1.11).

Within the reactive fraction, OTUs that were first detected in soil had the largest overall contribu-
tions to the local RNA pool of reactive taxa across all habitats and seasons (overall mean of 0.97%)
followedby soilwater-derivedOTUs (0.22%), butOTUs thatwere first detected in a given local habi-
tat were found within the reactive fraction of all DNA abundance groups (Fig. 1.5b). Soilwater and
soil-derived taxa were less prevalent in the estuary, where riverine and estuarine-derived taxa be-
come numerically more important in RNA. The overwhelming majority (>90%) of DNA sequences
of reactive taxa along the entire continuum (except for estuarine sites) could be retraced to OTUs
that were first detected in soils and soilwaters (Fig. 1.5c, top panel). In contrast, a relatively large
proportion of DNA sequences of unreactive taxa were contributed by a more diverse pool of OTUs
that originated in various habitats along the continuum (Fig. 1.5c, bottom panel), a pattern similar
to that of OTUs undetected in RNA (Fig. 1.5a). The latter would suggest a high level of influx and
persistence of OTUs along the continuum that were seemingly unreactive. Interestingly, there was
not a single OTU that remained abundant or moderately abundant along the entire continuum,
suggesting that the soil/soilwater-derived taxa, which consistently dominate the reactive fraction,
nevertheless shift along the rank abundance curve along the continuum.

1.5 Discussion
In this study, we attempted to address three major challenges identified in understanding micro-
bial community assembly within aquatic networks: First, to incorporate the upstream history of
local communities, secondly, to capture a variety of hydrological scenarios and thirdly, to capture
any indication of reactivity to changing environmental conditions. Here, we followed an inter-
connected, large scale continuum that extended from upstream soils into the estuary and sam-
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pled across seasons to address shifts in assembly processes linked to hydrological fluctuations.
In addition, we accompanied DNA with RNA sequencing to distinguish numerical responses that
could be linked to passive transport of dormant or inactive bacteria from those associated to re-
active taxa (Jones and Lennon, 2010; Wilhelm et al., 2014). In this regard, we are not using RNA or
RNA/DNA ratios as an index of absolute activity (Wilhelm et al., 2014; Campbell et al., 2011), but
rather utilise spatial patterns in the degree of coupling between DNA-RNA-based assemblages to
identify taxa that appear to react to local conditions, and distinguish where selection was most
dominant along the network. We further classified OTUs by their habitat in which they were first
observed to assess whether taxa from upstream habitats persist along the continuum (i.e., up-
stream history) and to further examine how unreactive and reactive taxa are distributed along the
rank abundance curves.

1.5.1 Terrestrial influx and aquatic legacy shape reactive and unreactive fractions of bacterio-plankton communities
The high connectivity and unidirectional flowwithin aquatic networks have often been neglected,
and the effect of upstream selection history and dispersal among aquatic water bodies as well as
from the surrounding terrestrial habitats has rarely been studied together at a whole watershed
scale. Based on DNA observations, previous studies that linked terrestrial to aquatic ecosystems
have converged to report large contributions of terrestrially-derived taxa within aquatic microbial
assemblages (Ruiz-González et al., 2015a), especially in systems with short residence times and
higher connectivity to the surrounding terrestrial milieu (Crump et al., 2012; Besemer et al., 2013;
Ruiz-González et al., 2015a). Based solely on the analysis of DNA, we similarly observed a high
prevalence of terrestrially-derived taxa along the entire aquatic continuum, but also a clear diver-
gence in community structure between terrestrially-influenced (soil, soilwaters, groundwater) and
larger aquatic water bodies (river, reservoirs) along this continuum. Streams, headwater ponds,
tributaries and small lakes represented intermediate states between the two endpoint commu-
nity structures. Notably, community structure of lakes was extremely heterogeneous and possibly
reflected variations in the combination of network position (Carrara et al., 2013) and residence
time (Logue and Lindström, 2010). Clustering of reservoirs with riverine lakes and some larger
lakes may indicate that residence time is likely a strong driver of community structure (Lindström
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et al., 2006; Ruiz-González et al., 2015a; Niño-García et al., 2016a).

DNA alone, however, only provides a partial view of the underlying assembly processes as it has
been unclear whether the observed strong terrestrial signature in aquatic systems (Ruiz-González
et al., 2015a) represents passive transport or active selection. After combining DNA-RNA-patterns,
we observed that this strong terrestrial imprint is not limited to the unreactive fraction but was
even more pronounced in the reactive taxa that we identified along the whole continuum. These
terrestrially-derived taxa are likely amixture of true terrestrial taxa and aquatic taxa thatwere once
dispersed into and subsequently persisted in soils (i.e., seeds) (Ruiz-González et al., 2015a, 2017b).
The only aquatic habitat where the terrestrially-derived taxa did not overwhelmingly dominate
the reactive pool was the estuary, where local estuarine taxa became more relevant. Although
most reactive taxa could be retraced to soils and soilwaters in all habitats, there were neverthe-
less taxa that were locally recruited along the aquatic continuum that contributed to the reactive
portion, and some taxa first appearing in streams, rivers and reservoirs became reactive down-
stream, including in the estuary. The comparably small but still relevant contribution of these
potentially aquatic taxa to the reactive portion became more evident during our rarefaction test
(details not shown, SM 1.8.4). We observed a larger proportion of stream and upriver taxa (10 -
25%) in the reactive fraction with lower rarefaction thresholds, indicating that many of the ter-
restrial taxa are indeed very rare and drop out of the analysis with low rarefaction thresholds.
Remarkably, recruitment into the reactive fraction in each habitat occurred across the rank abun-
dance curve, indicating that rare taxa may be highly responsive to the environment and therefore
contribute to local ecosystemprocesses (Jones and Lennon, 2010; Campbell et al., 2011; Hausmann
et al., 2019). Overall, the vast majority of taxa that showed local increases in abundance along the
aquatic continuum mostly remained unreactive, indicating that mass effects are not only limited
to terrestrially-derived taxa but apply similarly to other taxa first detected in aquatic habitats that
are carried along the network as a historical imprint (Hauptmann et al., 2016). These other taxa
may not necessarily be strictly aquatic but could be taxa recruited from other source habitats that
were not sampled within this study such as aeolian dispersed, wetlands, biofilms, and/or host-
associatedmicroorganisms. These taxa collectively form the historical imprint, which grows as the
water traverses through various habitats along the flow path, and hence at any time within the
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network a fraction of the bulk community embodies previous migration and selection that has
happened in upstream habitats.

1.5.2 Spatial and seasonal shifts in dominant assembly processes
DNA- and RNA-based community structures were generally coherent, showing both seasonal as
well as spatial gradients in almost a mirroring pattern within the PCoA, which has been observed
previously (Logue and Lindström, 2010; Wilhelm et al., 2014), however, their degree of similarity
varied greatly in both time and space. As observed in our incidence and abundance-based dissim-
ilarity comparison (Fig. 1.4), there is a very strong seasonal pattern and a clear spatial structure
along the continuum in how DNA and RNA community structures relate to each other. Together
with the pattern in reactive versus unreactive taxa, we observed a clear shift in the overall domi-
nant assembly process at the whole network scale between seasons (Fig. 1.6). Dominance of mass
effects in spring and increases in species selection in summer/autumn were likely driven by sea-
sonality in hydrology (e.g., seasonal shifts in discharge (Figs. S1.12, S1.13) and reservoir residence
time (Table S1.2; Luo et al. (2020)), temperature and other environmental factors (Paruch et al.,
2020). Where within the network species selection was most prominent, however, also differed
between seasons, as evidenced in the network patterns of dissimilarity between DNA and RNA
community structure and in the distribution of reactive and unreactive taxa (Fig. 1.6). In particu-
lar, we observed that reservoirs and subsequent downstream habitats were sites of more intense
selection in spring, whereas upstream riverine sites became selection hotspots in summer, albeit
selection continued to occur in downstream habitats (Fig. 1.6). Increasing selective pressure along
a riverine residence time gradient has been hypothesised before (Read et al., 2015), however, we
have shown that the location of strongest selection shifts depending on the hydrological condi-
tions. As such, high flow conditions push selection hotspots downstream, while low flow pulls
selection upstream within the network. This seasonally moving window of selection hotspots is
likely driven by a balance between the time a water parcel travels along the network and the time
a taxon needs to react and grow, which is itself related to temperature and other environmental
factors (Ruiz-González et al., 2017b).
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Figure 1.6: Conceptual figure of seasonally dominant assembly processes along the terrestrial-aquatic

continuum. Pie charts visualise the proportion of bacterial OTUs (%) that were identified as reactive and
unreactive, respectively (Fig. S1.11).
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The only exception from this strong seasonal and shifting spatial patternwere small order streams,
which are largely influenced by inputs from the surrounding catchment, as has been shown be-
fore (Crump et al., 2012; Besemer et al., 2013; Ruiz-González et al., 2015a; Caillon et al., 2021).
Yet, streams were also found to be sites of strong selection independent of season, with con-
sistently high proportions of reactive taxa relative to the connected soilwater communities and
relatively large divergence between DNA-RNA-based community structure. Higher growth rates
of stream bacterioplankton have been observed previously compared to higher residence time
habitats (Stadler, 2021), and low order streams have been shown to be sites of intense processing
of terrestrially-derived dissolved organic carbon (Hutchins et al., 2017). The shallow environment
with a plethora of fresh dissolved organic matter, likely provides unique niches that favor growth
and selection of taxa that are washed in from the soil. Stream biofilms may help explain the rel-
atively high selection despite low residence time as they are known to adapt their structures de-
pending on the force of flow (Besemer et al., 2007) and create microhabitats of enhanced micro-
bial growth and biogeochemical processing (Battin et al., 2003). It is outside the scope of this study
to evaluate biofilms as an additional source for bacterioplankton communities (McDougald et al.,
2011), however, biofilms may similarly recruit terrestrial taxa (Besemer et al., 2012). Our results
suggest that the selection processes within these streams likely operates mostly by reshuffling
terrestrially-derived taxa rather than selectively recruiting freshwater taxa, as we have observed
an overwhelming proportion of terrestrially-derived taxa within the reactive fraction. This stream-
filtered, terrestrially-derived community is what becomes the core of the aquatic historical imprint
that will be transported throughout the network, representing the basis of dispersal and mass ef-
fect to the downstream habitats. This historical imprint is also a source of recruitment along the
continuum, thus shaping the whole network scale community all the way into the estuary.

Together, our results suggest a framework wherein low order streams are sites of both intense
mass effects and selection across seasons, while further hotspots of selection downstream are
modulated by seasonality. As such, high flow conditions only allow for selection hotspots to occur
once the network enters longer residence time habitats (i.e., larger reservoirs, lakes) and selection
continues to prevail in subsequent downstream habitats such as the river. In contrast, low flow
scenarios, which often correspond to higher temperatures and other environmental conditions
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that favour growth (except under winter low flow conditions, not covered in this study), allow se-
lection hotspots to occur earlier (i.e., upstream river) as travel time decreases. This framework
suggests that mass effects are present at all times - regardless of high or low flow - within the
network, resulting from both influx of bacteria from the surrounding terrestrial soils and a fluvial
carry-over of aquatic bacteria that encompasses the legacy of upstream assembly processes. It
is rather the degree and location of selection that can vary significantly in magnitude within the
network depending on seasonality. The resulting recruitment of taxa occurs across the rank abun-
dance curve, contradicting the common assumption that only the most abundant bacteria are
reactive to the environment and contribute to ecosystem processes. Given the large role that the
historical imprint plays in shaping microbial communities within the network, it is not surprising
that the various attempts to link microbial processes to the bulk community composition often
yield indecisive results (Hall et al., 2018). In conclusion, our study highlights the importance of
conceptually and empirically considering the potential downstream effect of upstream habitats
and the seasonality of these influences when examining the assembly of aquatic microbial com-
munities and the ecological underpinnings of the rank abundance structures observed in aquatic
habitats.
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1.7 Data availability
The raw 16S rRNA gene sequences, both DNA and cDNA are available at the public NCBI Se-
quence ReadArchive (SRA) as part of the BioProject PRJNA693020. The code is available onGithub
(https://github.com/CarBBAS/Paper_Stadler-delGiorgio_ISMEJ_2021) andboth code and
processed microbial data were separately archived on Zenodo (Stadler, 2021; Stadler et al., 2021).

1.8 Supplementary Information
1.8.1 Catchment characteristics
The river springs between the Atlantic and Saint Lawrence watersheds (52°52’20"N 63°36’55"W;
elevation: 702 masl), and consequently flows through a series of lakes (hereafter riverine lakes)
including the biggest lake in the catchment – Lake Brûlé (A: 127.11 km2, elevation: 470 masl). The
river mainly flows towards the South with a maximum distance from the northern headwaters to
the river mouth expanding to approximately 475.1 km.

The catchment was glaciated 7,000 – 10,000 years ago and left mostly a till blanket and veneer
as surficial material. It is mainly dominated by acid rocks (e.g., granodiorite, granite, quart dior-
ite) with granitised sedimentary and volcanic rock, and has isolated patches of permafrost (0 -
10%)(Natural Resources Canada). The soil is composed of roughly 61.4% sand, 31.9% silt, 6.7%
clay and stores approximately 140.4 t ha-1 of organic carbon (in top 5 cm; given are catchment
averages) (Lehner and Grill, 2013; Hengl et al., 2014).

The northern part of the catchment is characterised by a flat open black spruce (Picea mariana)-
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lichen forest with shrubs and moss-lichen (Fig. S1.1a). As one follows the river downstream, the
relief changes drastically to a steepmountainous stretch that forms sections of canyons (Fig. S1.1b).
The river looses 330 m of elevation from the mountainous section until it makes a sharp turn to
the west into the lower coastal plain. The coastal plain is characterised by peatland areas with
swamps and shallow waters that are completely permafrost free (Fig. S1.1c). There are two larger
tributaries in the coastal plain that flow through the lakes Puyjalon (A: 13.10 km2) and Allard (A:
19.24 km2). Nearly half of the catchment is covered by coniferous forests (P. mariana-moss), with
mixed forests being rather minor (11%) and deciduous stands with white birch (Betula papyrifera)
and trembling aspen (Populus tremuloides) are evenmore rare (2%) (Bureaud’audiences publiques
sur l’environnement and Canadian Environmental Assessment Agency, 2009).

The Romaine river was dammed during the sampling period, forming a reservoir cascade complex
with 4 reservoirs by 2020 after the sampling period. The reservoirs Romaine 2 (RO2, A: 81.15 km2,
mean depth: 61 m), Romaine 1 (RO1, A: 13.22 km2, mean depth: 22 m) and Romaine 3 (RO3, A:
35.18 km2, mean depth: 66 m) were flooded in the years 2014 (winter), 2015 (winter), and 2017
(spring), respectively.

A weather station located in the lower coastal plain (50° 16’55.000" N, 63° 36’41.000" W, Havre-
Saint-Pierre Airport, Natural Resources Canada) recorded an annual precipitation of 810.77± 35.25
mm and 1.18 ± 0.73°C, -32.63 ± 1.36°C, and 25.8 ± 0.66°C for mean, minimum and maximum
temperature over the sampled years.
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Figure S1.1: Landscape within the Romaine catchment. a) Northern area with shrubs and moss-lichen,
b) Mountainous section close to Reservoir 3, c) Lower coastal plain with peatland areas, d) Example of a
sampled stream.

1.8.2 Sample processing and sequencing
Surface water samples were directly collected into a pre-rinsed carboy bottle at a depth of 0.5 m,
close to the shore for stream samples and diverse locations within the river and reservoirs. Surface
soil samples were collected by mixing three randomly selected cores (30 cm) that were taken in
proximity of installed piezometers to sample soilwater. The upper 5 cm including surface vegeta-
tion were removed before the soil was transferred into a sterile plastic bag. Three piezometers
were randomly installed in proximity (30 - 100 cm) to a sampled stream with an average depth
of 50± 20 cm. However, if the piezometers were installed too close to the stream main channel,
hyporheic water was sampled instead. Piezometers were emptied 3 times (1 - 2 h) with a peri-
staltic pump before sample water was collected. The water from the piezometers was pooled for
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each site. Groundwater was directly collected from constructed wells with submersible pumps.
Lake sediment samples were collected with sediment cores (1 - 2 m depth), and the upper 10 cm
were collected andmixed for subsequent processing. All samples were stored in cooler boxes until
return to the laboratory (maximum duration 7h), and were subsequently stored at 4°C upon ar-
rival at the laboratory until further processing on the same day of sampling. A minimum of 25 mL
and 250 mL of soil-/hyporheic-water and surface water, respectively, were filtered through 0.22
µm polycarbonate membrane filters (Merck Millipore, Darmstadt, Germany). Homogenised soil
and sediment samples were transferred to aliquots of 0.25 g. After filtration, samples for RNA
extraction were submerged in RNAlater and LifeGuard Soil Preservation solution (QIAGEN, Hilden,
Germany) for water and humic samples (soil, soilwater, hyporheic water), respectively. To allow
stabilisation in the buffer, samples were left at 4°C overnight andwere subsequently stored frozen.
All DNA and RNA samples were frozen at -20°C at the field station and further stored at -80°C at
the university laboratory until extraction.

For extractions, PowerWater and PowerSoil DNA and RNA extraction kits (MoBio, Carlsbad, CA,
USA) were used to extract water and soil/soil-/hyporheic-water/sediment samples, respectively.
In 2017, the equivalent DNeasy and RNeasy PowerWater Kits (QIAGEN, Hilden, Germany) were
used for DNA and RNA samples, respectively, due to discontinuation of the MoBio kit series.

Prior to cDNA reverse transcription, RNA extracts were checked for DNA contamination with a
negative PCR test. Subsequently, cDNA was synthesised with a high capacity cDNA Reverse Tran-
scription Kit (Applied Biosystems, Foster City, CA, USA). Successful DNA extraction and cDNA syn-
thesis was evaluated via PCR amplification of the 515F-806R primers (IDT Technologies, Coralville,
IA, USA) and DNA concentration was measured with a NanoDrop 2000c (Thermo Fisher Scientific
Inc., Waltham, MA, USA).

1.8.3 Bioinformatic analysis
Primers were removed from 16S rRNA DNA and cDNA (hereafter RNA) data sets using the soft-
ware cutadapt (v1.18, Martin (2013)), which allows for the removal of the primer sequence and
its variants in their true and complement orientations. Additionally, all reads shorter than 125
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nucleotides were removed as they cannot achieve a minimum overlap necessary for paired-end
merging in downstream processing.

To identify amplicon sequence variants (ASVs), 16S rRNA amplicon reads were analysed through
the DADA2 (Divisive Amplicon Denoising Algorithm 2) pipeline (v1.14.1, Callahan et al. (2017)) in R
(v3.6.3, R Core Team (2024)). Read qualities were evaluated for each sequencing plate separately
and read lengthwas trimmed according to their quality scores. Samples were pooled by plate, sea-
son and sequencing depth for learning the error rates. DADA2 runs on a sample by sample basis,
and thus removes observed singletons by sample to avoid inclusion of false-positive sequencing
errors. To retain more rare taxa within a sampling campaign (year-season combinations) along the
continuum, samples were ’pseudo’-pooled for the dada() step. This step enables the removal of
singletons by pool but retains singletons within a sample. Paired-ends were merged after success-
ful inference of amplicon variants. Chimeras were removed (removeBimeraDenovo() function)
and, finally, taxonomy was assigned with the DECIPHER package (v2.14.0, Wright (2016)) imple-
menting the increased accuracy IDTAXA algorithm (Murali et al., 2018) and the provided trained
classifier of the GTDB database (Release 95, Parks et al. (2018)). Only ASVs that were classified
as Bacteria and not as Mitochondria or Chloroplast were evaluated in this study. Several ASVs
were found to be highly abundant only in RNA. To account for slight differences that may have
emerged between DNA and RNA ASVs and also to merge potential differences among 16S rRNA
copies within a single genome, ASVs were merged into OTUs by a 99% similarity threshold (Větro-
vský and Baldrian, 2013) with the DECIPHER package (AlignSeqs(), DistanceMatrix(), IdClusters()

functions, Wright (2016)). The sequence of the most abundant ASV within a OTU cluster was kept
as a reference sequence if it was classified as at least at the domain level as ’Bacteria’. If the most
abundant ASV within a cluster did not have any taxonomic classification, the ASV that had a taxo-
nomic classification was chosen to represent the OTU cluster.

1.8.4 Effects of rarefaction
Cumulative sum scaling (CSS) results were compared with results achieved with various rarefac-
tion thresholds. There were no substantial differences in the results between CSS and various
rarefaction thresholds on α diversity estimates, which is believed to be most susceptible to library
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size differences (Fig. S1.2).

We further re-run all analyses in the manuscript with the examined rarefaction thresholds. Both
PCoAs showed negligible differences while the patterns in Sørensen and Bray-Curtis distances
showed variation across rarefaction thresholds. Depending on the rarefaction threshold used, we
observed different patterns inwhen incidence andwhen abundance-based distanceswere greater
than the other, which was likely introduced by the random sampling procedure imposed by rar-
efaction affecting both incidences as well as abundances. As the threshold becomes higher (e.g.,
10,000), all patterns in the absolute numbers of Sørensen and Bray-Curtis distances approach our
originally observed patterns with CSS. We mainly use the ∆-distances to interpret shifts in mass
effects and selection, andwhile the absolute numbers in∆-distances changed, the patterns across
habitat types and seasons remained fairly consistent across rarefaction thresholdswith the highest
rarefaction threshold resembling the original results the most. Hence, these results showed that
the absolute numbers in∆-distances do not holdmeaning per se; it is the spatio-temporal relative
change that gives our analysis meaning. Rarefaction does change the DNA-RNA distances them-
selves likely due to the loss of rare taxa and making abundance differences among OTUs smaller,
however, the final interpretations remain the same.

Finally, we explored the effects of rarefaction on how reactive and unreactive OTUs were iden-
tified. Across all rarefaction thresholds, we could observe a clear differentiation between OTUs
that were classified within each habitat as ’unreactive’. Firstly, due to their absence in any RNA
and secondly, by the absence in a DNA to RNA contribution relationship. OTUs that were cate-
gorised by these two ’unreactive’ categories were clearly different from those that were named
’reactive’ due to the presence of a linear relationship in their DNA and RNA contribution. Within
each rarefaction threshold, unreactive OTUs were characterised by diverse origins, and reactive
taxa were mainly dominated by soil and soilwater taxa. We could also observe that with lower
rarefaction thresholds (e.g., 1,470), more taxa from ’aquatic’ habitats seemed to be reactive (i.e.,
taxa first detected in streams and upriver), however, as the rarefaction threshold increases, their
proportion reduces (e.g., 10,000). These results point to the fact that rare taxa are important con-
tributors to our observed patterns, and hencewe strongly believe that rarefaction does rather bias
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our observations by removing taxa essential to natural processes in microbial assembly (e.g., seed
banks; Lennon and Jones (2011)). Rarefaction does not affect our observation that there were taxa
that have a decoupled DNA-RNA relationship (below potential activity threshold), and those that
do (above potential activity threshold). Consequently, CSS results were used for our manuscript.

1.8.5 Data exploration and statistical analyses
To explore differences in microbial community composition across habitat types and seasons, a
Principal Coordinates Analysis (PCoA) was conducted with Bray-Curtis dissimilarities (DBC) (Bray
and Curtis, 1957; Legendre and Legendre, 1998) based on all DNA samples with the function pcoa
in the ape package (Paradis and Schliep, 2018). The community matrix was Hellinger transformed
to resolve a horse-shoe effect (Legendre and Gallagher, 2001). To correct any negative eigenvalues
problematic for PERMANOVA analysis, theDBC matrix was square-root transformed to Euclidean
distance (Legendre and Legendre, 1998; Borcard et al., 2011). To evaluate statistical differences
in habitat type and season a PERMANOVA was computed with 9,999 permutations with the ado-
nis function. A PERMANOVA cannot distinguish among-group from within-group variation if data
dispersion is variable among groups (Anderson and Walsh, 2013), therefore, an analysis of multi-
variate homogeneity was computed with betadisper. Using permutest, we finally tested whether
dispersion differs between groups.

Secondly, to evaluate whether sampled RNA-based assemblages were different from the DNA-
based assemblages, we performed a second PCoA (DBC with square-root transformation) with
both DNA and RNA samples. Again, statistically different groups were investigated with a PER-
MANOVA (9,999 permutations), where habitat type, season and nucleic acid type (DNA versus
RNA) formed the groups. The same framework explained above to check for dispersions was
applied. To quantify how different DNA-/RNA-based assemblages of the same sample are, the
Bray-Curtis distance (mBC) of each DNA-RNA sample pair within the PCoA ordination space was
computed across n-dimensional space (Tabak, 2004):

m(p, q) =
√︁

(| p1 − q1 |)2 + (| p2 − q2 |)2 + · · ·+ (| pn − qn |)2
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Figure S1.2: Comparing the effect of rarefaction on α diversity patterns. Three different α diversity in-
dices were investigated: Shannon-Wiener index (H’), Simpson’s index (λ) and Pielou’s evenness (J). CSS =
cumulative sum scaling. Rarefied datasets with the applied minimum library size threshold are indicated as
’Lib[threshold]’.
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where p and q represent DNA and RNA site scores, respectively, of each sample and n is the used
maximum number of dimensions. We focused on the first axes that cumulatively explain 75%
of the variation for each ordination (n75%), similar to Osterholz et al. (2016). This approach was
implemented as it was evident from the PCoA that essential variation within non-aquatic samples
was captured outside the first three axes. The distance across all PCoA axes equals the initial
pair-wise dissimilarity on which the PCoA is based on (Fig. S1.3). As such, the distance across
n75% axes extracts the proportion of the initial pair-wise dissimilarity that is captured by the axes
cumulatively explaining 75% of the PCoA.

Figure S1.3: Distance along all PCoA axes equal pair-wise dissimilarity. As a proof of concept, the computed
distance (e.g., mBC) extracts a proportion of the individual pair-wise dissimilarities, summation of the dis-
tances across all PCoA dimensions equals the initial pair-wise Bray-Curtis dissimilarities, which is the input
matrix into the PCoA. Thus, computing the pair-wise distance among a sub-selection of axes of the PCoA
captures a proportion of the overall pair-wise dissimilarity that is explained by the variation and drivers of
the selected axes.

To gain further insight into the processes shaping assemblage dissimilarities, we computed a PCoA
with the Sørensen dissimilarity (DS), which is the incidence based equivalent of DBC (square-

51



root transformed to achieve Euclidean space) (Legendre and Legendre, 1998; Sørensen, 1948)
(Fig. S1.4). By comparing incidence and abundance based dissimilarities, we can further distin-
guish in which samples DNA-/RNA-based assemblages diverge primarily due to different present
taxa or their abundances, respectively. We further applied the same framework of calculating the
distance among DNA and RNA pairs across n75% axes resulting the Sørensen-based distance (mS).

Figure S1.4: Schematic representation of n-distance calculation.

1.8.6 Simulation of theoretical communities to understand underlying patterns of∆-distances
In order to support our approach to examine assembly processes using the∆-distances approach
between Sørensen and Bray-Curtis dissimilarity based PCoAs, we simulated different scenarios and
calculated the∆-distances on these theoretical communities.

We used four different species abundance distributions (SADs) of varying evenness (Pielou’s J)
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to mimic the DNA assemblages of different habitat types. We hypothesised that the degree of
selection increaseswith lower evenness (higher∆-distance), as only a few taxa are selected for and
dominate the community. Each SAD was composed of 10,000 OTUs (Lennon et al., 2018), which
is close to our overall OTU pool of 16,322 OTUs found across the dataset. We used log-normal
distributions to create SADs andmodified the evenness by changing the scale parameter between
0.9 and 2.7. The higher the parameter is, the steeper and less even the community becomes.
To create the DNA assemblages, we randomly sampled 25,000 times from each SAD, which was
based on our average library size across the dataset (mean: 24,687.21).

As a second step, we duplicated the randomly sampled DNA assemblages to retrieve a base com-
munity for the corresponding RNA assemblages. To introduce additional mass effects, we imple-
mented a gradient of OTU removal from the created DNA assemblages. The number of OTUs
removed from the RNA assemblages were either 1/2, 1/3, 1/6 or 1/9 of all sampled OTUs in a site
(hereafter, replacement). We hypothesised that the higher the replacement, the stronger the
mass effect will be (lower ∆-distance). The number of reads that were removed as a result of
the random OTU removal were re-sampled from the OTUs that were not present in the DNA as-
semblage of a particular site, leading to equal library sizes across sites. We further corrected for
phantom taxa (RNA > 0, DNA = 0) with DNA = 1, following the analysis of our empirical dataset.
Overall, we implemented 4 SAD and 4 replacement treatments that were run 9 times to avoid
random sampling biases and compute standard deviations of the resulting metrics (overall n =
288).

Once the OTUmatrix with all sites were set-up, we re-ran our analysis by calculating the PCoAs for
both Sørensen and Bray-Curtis based dissimilarities, extracted the axes that cumulatively explain
75% of the variation and calculated the ∆-distances. Furthermore, two metrics were calculated
for each site: 1) the number of OTUs that do not have any RNA, which were classified as ’unreac-
tive’ taxa in our study, and 2) the mean read difference between individual OTU’s DNA and RNA,
which indicates the discrepancy between the DNA and RNA. We hypothesised that higher DNA-
RNA discrepancies indicate stronger selection.
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Figure S1.5: Simulated ∆-distances. Points represent the arithmetic mean of 9 independent simulations
of SAD and replacement categorical combinations. Error bars indicate the standard deviation from the
arithmetic mean.

Our simulation results indicate that there is indeed a clear trend in our evenness and replacement
treatment on ∆-distances with lower ∆-distances observed in even communities (i.e., stronger
mass effect) and higher ∆-distances in uneven communities (i.e., stronger selection) (Fig. S1.5).
Additionally, higher replacement values lower the ∆-distances within each SAD treatment indi-
cating stronger mass effects.
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Wealso regressed the two abovementionedmetricswith the∆-distances (Fig. S1.6), andwe found
a negative relationship of the number of ’unreactive’ OTUs with ∆-distances in line with our in-
terpretation of mass effects and its dependency on a higher proportion of unreactive taxa. Fur-
thermore, mean abundance differences were positively related to∆-distances indicating stronger
selection with higher abundance differences between DNA and RNA. Although our empirical re-
lationships (Fig. S1.6c-d) are less stronger than the simulation based estimates (Fig. S1.6a-b), the
overall trends are the same.

We would like to end this simulation section by highlighting that the absolute number of ∆-
distances is likely to hold little meaning. Absolute∆-distance values are not interpretable on their
own, it is the comparison across habitats or gradients that create patterns and gives this approach
room for interpretation.

1.8.7 Abundance classification
Traditionally, abundance groups (AGs) such as ’abundant’ and ’rare’ have been defined by various
relative abundance thresholds ranging from 0.1 to 1% within the literature. While inconsisten-
cies hinder comparisons among studies, we additionally are working with variance stabilised read
numbers, thus traditional thresholds based on relative abundances are not applicable. In order
to classify OTUs into AGs, we developed a new framework to classify OTUs into AGs based on the
shape of rank abundance curves of each habitat. We initiate the framework by calculating the
mean abundance of each OTU by habitat type. Subsequently, for each habitat type a smoothed
rank abundance curve was generated with the function smooth.splinewith the smoothing param-
eter set to 0.7 in R (stats package; R Core Team (2024); Fig. S1.7). Ranks that correspond to mo-
ments of acceleration along the curve were identified by taking the second derivative of the log(x
+ 1) transformed abundance curve (Fig. S1.7c). All OTUs ranked below the second maximum accel-
eration were defined as rare. OTUs falling above the first maximum acceleration were defined as
abundant, while the section in between the two maxima represents moderately abundant OTUs
(Fig. S1.7a). The CSS reads corresponding to the ranks identified for the AGs were extracted for
each habitat type separately. Subsequently, the average CSS reads for each abundance threshold
was calculated. This approach classified all OTUs with >= 72 CSS reads as abundant, < 72 and >=
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10 CSS reads as moderate, and < 10 CSS reads as rare.

Figure S1.7: Classification of abundance groups. Schematic representation of the used approach to classify
abundance groups based on derivative approximation of the log-transformed rank abundance curve by
habitat type, where a) represents the original rank abundance curve and b) the log-transformed equivalent
to derive points of maximum and minimum acceleration. The blue point represents the first minimum of
the second derivative, red points are the first and second maxima of the second derivative. Pink, green and
blue ranges visualise abundant, medium and rare classifications, respectively.

1.8.8 Software details
The packages phyloseq, tidyverse, plyr and data.table were used for data wrangling and transfor-
mation (McMurdie and Holmes, 2013; Wickham et al., 2019; Wickham, 2011; Barrett et al., 2024),
and doMC and parallel enabled parallel processing (Revolution Analytics andWeston, 2019; R Core
Team, 2024). ggplot2, ggpubr, ggnewscale and cowplot were used to visualise the results (Wick-
ham, 2016; Kassambara, 2020a; Campitelli, 2020; Wilke, 2019). For statistical analyses, vegan and
rstatix were used (Oksanen et al., 2019; Kassambara, 2020b).

Maps were created with QGIS (v3.12) and a digital elevation model provided by Natural Resources
Canada. Watersheds were delineated with ArcMap (v10.5.1, ESRI Inc., Redland, CA) and the Spatial
Analyst Toolbox.

57



1.8.9 Additional supplementary figures
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Figure S1.9: No clear seasonal clustering within terrestrial samples. PCoA analysis with square rooted
Bray-Curtis dissimilarity on Hellinger transformed community matrix with only terrestrial samples (n = 156,
11,047 OTUs). Habitat types are distinguished by colour, seasons are indicated by shapes and nucleic acid
type are visualised by different line colour.
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Figure S1.10: Habitat type and seasonal separation of RNA. PCoA analysis with square rooted Bray-Curtis
dissimilarity on Hellinger transformed community matrix of all RNA samples (n = 201, 7 549 OTUs). Habitat
types are distinguished by colour and seasons are indicated by shapes.
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Figure S1.11: Unreactive and reactive fractions of OTUs. Proportion of bacterial OTUs (%) within each habi-
tat type and season that can be attributed to the unreactive (RNA = 0 and <Median) and reactive (>Median)
fraction.
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Figure S1.12: Modelled and measured discharge across the watershed. Discharge was continuously mea-
sured at point locations at various stream orders by Hydro-Québec. A model was created to model the
discharge of all streams and rivers within the watershed using mean monthly air temperatures (weather
station at Havre-Saint-Pierre airport), monthly difference in snow melt (retrieved from Brown and Brasnett
(2010)) and flow accumulation (derived via GIS). This model is part of a separate manuscript in preparation,
hence, the script and data are not available on Github.
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Figure S1.13: Seasonal differences in discharge across the watershed. Given are predicted discharges of
all lotic systems within the watershed for the years 2015-2017. Spring, Summer and Autumn correspond to
the months June, August and October, during which the field campaigns were carried out. Lines represent
polynomial linear regressions. These results are part of a separate manuscript in preparation, hence, the
script and data are not available on Github.
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1.8.10 Supplementary tables
Table S1.1: Number of samples per habitat type.
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DNA 29 22 56 4 33 8 17 10 16 22 50 102 20 389
RNA 8 4 26 0 18 5 8 0 11 12 21 84 4 201

Table S1.2: Estimated seasonal variation in water residence time (d) across reservoirs. Water residence
time is given in days. Water residence timewas estimated from reservoir volume and continouslymeasured
discharge data at the reservoir outflow by Hydro-Québec. Monthly reservoir volume was estimated from
a water level to volume relationship derived by Hydro-Québec. The underlying data are part of a separate
manuscript in preparation, hence, the script and data are not available on Github.

Reservoir Spring Summer Autumn
RO1 3.9 6.5 7.4
RO2 90.8 144.2 190.5
RO3 43.8 86.4 115.6
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CHAPTER 2
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2.1 Abstract
Aquatic microbial communities and dissolved organicmatter (DOM) exhibit complex, bidirectional
interactions within hydrological networks. Despite advances in high-resolution characterisation
techniques, disentangling active versus seemingly passive components in these assemblages re-
mains an on-going challenge. Here, we followed individual spatial patterns of microbial and DOM
units along a large interconnected boreal watershed (∼14,500 km2) across two years and two
seasons. We developed a novel framework using flow-weighted water age (FWWA) to model
the movement of microbial and DOM components along a hydrological continuum encompassing
soils, streams, rivers, reservoirs, and lakes. Our findings reveal distinct spatial units of microbial
and DOM moieties that either increase, consistently decline, or exhibit local peaks in abundance
with increasing water age. Overall, approximately 7.5% and 44% of microbial and DOM assem-
blages, respectively, were found to be statistically reactive within the watershed. Correlations
between the reactive members in both DOM and microbial assemblages allowed us to identify
a few potentially causal relationships, where fresh terrestrial compounds and mid-decomposed
DOMwere consumed in spring and summer, respectively. At the same time, decomposed DOM of
different chemical signatures seemed to select for two distinct pools of microbial phyla in higher
water age systems among the two seasons examined. This study provides new insights into the
dynamic co-assembly of microbes and DOM, offering a framework for future research to better
understand the underlying processes governing these interactions on a watershed scale.

2.2 Introduction
Heterotrophic microbes are both consumers, transformers and producers of dissolved organic
matter (Guillemette and del Giorgio, 2012). This results in a complex, bi-directional relationship
between aquatic microbial communities and dissolved organic matter, which has been the target
of studies over several decades (Azam et al., 1983; del Giorgio and Cole, 1998). Thousands of mi-
crobial taxa inhabit the world’s aquatic ecosystems (Thompson et al., 2017) and co-exist with an
ever-changing DOM pool composed of thousands of molecules. It is thought that heterotrophic
microorganisms have shared substrate preferences (Mou et al., 2008), but individual taxa may
also have unique preferences for certain DOM substrates (Lauro et al., 2009). Therefore, the am-
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bient DOM composition may directly influence which taxa within the microbial community can
grow at a certain time and location (Muscarella et al., 2019). At the same time, molecules are
broken down and transformed by microorganisms, where by-products of degradation are often
less degradable than their precursors (Jiao et al., 2010) and persist in the DOM pool (Kellerman
et al., 2018; Zark and Dittmar, 2018). This constant processing and transforming of the DOM pool
leads to molecular diversification and renders natural dissolved organic matter one of the most
complex chemical mixtures on Earth. Hence, understanding the inherently complex relationship
of microbes and DOM remains an ongoing challenge (Nelson and Wear, 2014).

High-resolution approaches held much promise to help resolve this intertwined relationship be-
tween microbes and DOM (Herlemann et al., 2014; Logue et al., 2016), and there is an increasing
number of studies that attempt to link microbes and DOM using high-resolution approaches to
characterise both assemblages. Yet, biogeochemists and microbial ecologists find themselves fac-
ing similar computational and conceptual challenges (Zinger et al., 2012). An increased resolution
does not necessarily provide more insights, particularly if we capture a large fraction of either
passive or unreactive units. For example, it has been shown that a large fraction of microbial com-
munities in soils and aquatic systems is not active, but rather dormant or dead (Lennon and Jones,
2011; Stadler and del Giorgio, 2022). Similarly, a large pool of molecules within ambient DOM has
been observed to be remarkably persistent in time and space, and seemingly unreactive (Herle-
mann et al., 2014; Kellerman et al., 2015; Zark and Dittmar, 2018). This implies that within both
assemblages, there is a substantial fraction that may not contribute to local microbe-DOM inter-
actions. Most studies assessing microbe-DOM interactions have focused on linking bulk diversity
patterns (Muscarella et al., 2019; Tanentzap et al., 2019; Kajan et al., 2023), and only a handful
of studies have considered assessing whether there are different associations between the bulk
versus the active microbial fractions with the DOM pool (Osterholz et al., 2016; Muscarella et al.,
2019). To date, however, none considered parsing out the reactive fractions in both microbial
and DOM assemblages. It is therefore unsurprising that findings are often ambiguous and even
contradictory, when the entirety of the two assemblages is used to explore interactions between
microbes and DOM (Hall et al., 2018).
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In addition to the methodological and conceptual challenges of parsing out reactive moieties
within both assemblages, one must consider the inherent connectivity of inland waters. Con-
nectivity across realms (e.g. terrestrial versus aquatic) and within aquatic networks has been
highlighted as a major driver of microbial (Mansour et al., 2018; Ruiz-González et al., 2015a) and
DOM (Kothawala et al., 2021) assembly. Ample evidence has been gathering that hydrology is a
key driver of diversity and composition patterns of both DOM (Lynch et al., 2019; Casas-Ruiz et al.,
2020; Ryan et al., 2024) and microbial communities (Read et al., 2015; Niño-García et al., 2016b),
and of DOMdegradation potential (Catalán et al., 2016; Attermeyer et al., 2018; Peter et al., 2020).
There have been some studies following DOM (Hutchins et al., 2017; Casas-Ruiz et al., 2020; Pe-
ter et al., 2020) and microbial communities (Savio et al., 2015; Gweon et al., 2020; Stadler and
del Giorgio, 2022) along interconnected hydrologic networks at the watershed scale, but these
have been carried out separately. High-resolution DOM and microbial data have been assessed
together at the headwater portion of terrestrial-aquatic continua (Freeman et al., 2024), and sec-
tions of large rivers (Kamjunke et al., 2022) but never at a whole watershed scale. It is crucial
to place these two complex assemblages within a framework that considers their co-movement
along the entire hydrologic continuum, from soils, headwaters to downstream portions of the net-
work in order characterise their spatial behaviours, identify passive versus reactive components,
and unravel potential links that exist between them.

In this regard, it has been shown that a significant fraction of aquaticmicrobes, andDOMmolecules
are of allochthonous (terrestrial) origin (Boyer et al., 1996; Crump et al., 2012), and these al-
lochthonous moieties are most prevalent in small order streams, where soil-to-water exchanges
are most intense (Creed et al., 2015; Ruiz-González et al., 2015a). As these terrestrial sources de-
cline or shift along the aquatic continuum, these allochthonousmoietiesmay be degraded, diluted
or simply persist in the case of DOM (McLaughlin and Kaplan, 2013; Creed et al., 2015; Casas-Ruiz
et al., 2020), and inactivate, die or grow in the case of microbes (Ruiz-González et al., 2015a;
Stadler and del Giorgio, 2022). As the streams become larger rivers or even merge into lakes,
water residence time consequently increases, favouring the selection and growth of aquatic or-
ganisms and the production of autochthonous organic material contributing to the emergence of
novel molecules (Battin et al., 2008; Sleighter and Hatcher, 2008; Casas-Ruiz et al., 2020). All
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these processes generate spatial patterns of microbes and molecules along the aquatic contin-
uum, which can be characterised, quantified and linked. Some of these spatial patterns between
microbial and DOMmoieties may be causal. For example, some microbes consume a certain pool
of DOM along the continuum, and hence, are being locally selected for as a function of the DOM
pool that may be consumed (Findlay, 2003; Docherty et al., 2006; Bambakidis et al., 2024). Other
relationships may not be causal, for example, microbes and DOMmolecules may simply be corre-
lated because they share the same source (e.g. terrestrial), or because they are merely travelling
and being diluted together. The co-occurring spatial patterns of microbes and DOM molecules
along complex aquatic landscapes have yet to be explored, despite the fundamental insights these
patterns could provide into microbe and DOM co-assembly and interactions.

Here we present the spatial patterns of microbial and DOM molecular assembly along an inter-
connected aquatic network within a large boreal watershed (∼14,500 km2), encompassing soils,
headwater streams, rivers, lakes and reservoirs, across multiple seasons and years. To address the
challenge of integrating high-resolution DOM and microbial data, we developed a framework to
model spatial patterns of microbes and molecules along a direct hydrologic continuum within the
same watershed. To represent the hydrologic continuum in our modelling exercise, we computed
flow-weighted water age (FWWA, adapted from flow-weighted travel time in Peter et al. (2020))
to approximate the average duration amolecule or microbe spent in the watershed to reach a cer-
tain point in the network. This modelling approach allowed us to distinguish between unreactive
moieties and those showing significant shifts (positive or negative) in abundance along the con-
tinuum. We classified them into spatial units that increase (growth or production), consistently
decline (death, degradation or dilution) with increasing water age, or exhibit local peaks or no dis-
cernible spatial pattern. We hypothesised that the microorganisms and molecules that fall within
each of these spatial categories reflect similar ecological and biogeochemical properties, respec-
tively. Additionally, we aimed to link microbial and DOM molecular spatial patterns to uncover
potential relationships that might be overlooked when analysing bulk assemblages.
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2.3 Material and methods
2.3.1 Study area and sampling
To follow the movement of bacteria and molecules along a terrestrial-aquatic continuum, a head-
water stream network to reservoir continuum within La Romaine River watershed (Côte-Nord re-
gion, Québec, Canada) was sampled. Details of the catchment and network characteristics can be
found in Stadler and del Giorgio (2022). In brief, La Romaine catchment is dominated by boreal
coniferous forest, and the main river itself expands to approximately 475 km. The studied contin-
uum starts in a sub-watershed of La Romaine River, where soil waters and streams were sampled
(ranging Strahler orders 1-3). The headwater stream network merges into the main channel of the
river, which subsequently flows into a reservoir (Romaine 2, storage reservoir, area (A) = 85.8 km2,
mean depth = 61 m, mean water residence time (WRT) = 141 d) which was flooded late 2014. A
second reservoir downstream of Romaine 2 was flooded early 2016 (Romaine 1, run-of-the-river
reservoir, A = 12.6 km2, mean depth = 22 m, mean WRT = 6 d) (Rust et al., 2022). Sampled lakes
within the catchment had a surface area ranging from 0.1 km2 to 19.2 km2 and WRT from 113 d
to 1601 d (Messager et al., 2016). The main channel of La Romaine and multiple tributaries were
sampled (Strahler orders 4-7). Field campaigns were conducted in 2015-2016 in two seasons each
(June and August representing spring and summer and high and low flow, respectively) to cap-
ture variations in hydrology. Overall, 285 samples were collected for DNA, 125 for RNA and 172 for
FT-ICR MS over the entire sampling period (Fig. 2.1a).

In a previous paper we provided details of the sampling procedures and general sample prepara-
tion for each sample type (soil / soil water versus stream / lake / reservoir) (Stadler and del Giorgio,
2022). In brief, DNA and RNAwater samples were filtered onto a 0.22 µmpolycarbonate filter and
homogenised soils were stored in aliquots. RNA samples were submerged in RNAlater and Life-
guard Soil Preservation Solution (QIAGEN, Hilden, Germany) for water and non-water samples,
respectively. RNA samples were stabilised overnight and were subsequently frozen. For Fourier-
transform ion cyclotron resonance mass spectrometry (FT-ICR MS) samples, water was filtered
through a 0.45 µm polyethersulfone syringe filter (Sarstedt, Germany) and stored in 125 mL poly-
carbonate bottles. Bottles were frozen at -20°C immediately after filtration and were stored at the
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same temperature until extraction.

Figure 2.1: Estimated flowweightedwater age along themain channel. a) Sampled locations for molecular
and microbial samples within the watershed (Inserted figure: watershed location within Québec, Canada).
b) Flowweightedwater age estimated in August 2016 along themain river channel – La Romaine. Rectangles
highlight reservoir positions within the watershed.
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2.3.2 Sample processing
To determine bacterial abundance, samples were preserved on the same day of collection by
adding para-formaldehyde (PFA) to a final concentration of 1% and glutaraldehyde (G) to 0.05%,
then stored at -80°C until they were ready for analysis (del Giorgio et al., 1996). Before analysis,
the samples were thawed and stainedwith SYTO 13 (diluted in dimethyl sulfoxide (DMSO), 2.5 µM;
Invitrogen, Waltham, MA, USA) at 0.025% of the sample volume. The stained samples were then
analysed using an Accuri C6 flow cytometer (BD Bioscience, San José, CA, USA) at a flow rate of 14
L min-1, utilising side scatter and green fluorescence (FL1-H) detection.

PowerWater and PowerSoil DNA and RNA extraction kits (MoBio, Carlsbad, CA, USA) were used
to extract water and soil water samples, respectively. Subsequently, cDNA was synthesised with a
high-capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA). All sam-
ples were sent to Génome Québec Innovation Centre (Montréal, QC, Canada) for paired-end se-
quencing of the 16S rRNA V4 region using the primers 515F (5’-GTGCCAGCMGCCGCGGTAA-3’) and
806R (5’GGACTACHVGGGTWTCTAAT-3’) on aMiSeq platform (PE250, Illumina, San Diego, CA, USA;
details in Stadler and del Giorgio (2022).

For FT-ICR MS analyses, samples were acidified to pH 2 with HCl, and subsequently solid-phase
extracted with 50 mL Bond Elut PPL columns (Agilent Technologies, Santa Clara, CA, USA; Dittmar
et al. (2008)). Columns were rinsed with 0.01 N HCl three times the cartridge volume (3 mL) and
dried with N2 before DOM was eluted using methanol (final concentration 50 mg C L-1). Extracts
were stored at -20°C in amber glass vials (acid-washed, pre-combusted at 550°C for 5h) until anal-
ysis. Samples were analysed in a randomised order with a custom-built 9.4 tesla FT-ICR MS to
measure ions produced in negative-ion mode by electrospray ionisation (ESI) at the National High
Magnetic Field Laboratory (Tallahassee, FL, USA; Blakney et al. (2011); Kaiser et al. (2011).
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2.3.3 Data processing
2.3.3.1 Bioinformatic processing
A detailed version of the bioinformatic treatment can be found in the supplementary material
of Stadler and del Giorgio (2022). In brief, primers were removed from 16S rRNA DNA and cDNA
(hereafter, RNA) reads using cutadapt (v1.18, Martin (2013)). Operational taxonomic units (OTUs)
were identified by first processing the reads through the DADA2 pipeline to retrieve amplicon se-
quence variants (100% similarity; v1.14.1, Callahan et al. (2017). Paired ends were merged, chimera
removed, and taxonomy was assigned using the IDTAXA algorithm (Murali et al., 2018) and the
provided trained classifier of the GTDB database (Release 95, Parks et al. (2018)) in the DECIPHER
package (Wright, 2016). ASVs that were identified as anything else than bacteria were removed
from subsequent analyses. Due to slight differences that may have emerged between DNA and
RNA, and potential differences between 16S rRNA copies (Větrovský and Baldrian, 2013), ASVs
were further merged into OTUs by a 99% similarity threshold. All bioinformatic processing was
conducted in R (v3.6.3, R Core Team (2024)) and RStudio (RStudio Team, 2024). A phylogenetic
tree was constructed for the entire La Romaine database (2015-2018) and was trimmed down to
the subset used in this manuscript. First, each OTU was matched to 10 relatives using a 95% min-
imum identity threshold using the SINA software (v1.7.2, Pruesse et al. (2012)). Relatives with a
100% goodness of fit were kept for subsequent tree construction. 9,303 unique relatives were
retained and used to construct a tree with RAxML-NG (v1.0.1, Kozlov et al. (2019)) using the GTR+G
model. Sample sequences were aligned to the relatives’ sequences using PaPaRa (v2.5, Berger
and Stamatakis (2011)), aligned to the relative tree using EPA-NG (v0.3.8, Barbera et al. (2019))
and finally placed on the tree using GAPPA (v0.7.1, Czech et al. (2020)). Estimated 16S rRNA copy
numbers for each OTU were retrieved from the rrnDB database (Stoddard et al., 2017). Estimates
were assigned based on their best match in their taxonomic identification.

2.3.3.2 FT-ICR MS processing
Samples from 2015 and 2016 were measured in separate runs, and hence, were analysed inde-
pendently. Signals with magnitudes greater than 6σ of the root mean square baseline noise were
assigned molecular formulas using an in-house software (EnviroOrg©™, Corilo (2015)) created at
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the National High Magnetic Field Laboratory. The software applied an internal ’walking’ calibra-
tion for each mass spectrum, following the approach by Savory et al. (2011). Only formulae with
elemental compositions within the ranges C1-45H1-92N0-4O1-25S0-2 were considered for assignment,
with a mass error capped at 200 ppb. The modified aromaticity index (AImod) was computed to
evaluate the degree of unsaturation based on the molecular formula (Koch and Dittmar, 2006).
The nominal oxidation state of carbon (NOSC) was computed to assess the degree of energy that
can be yielded from oxidising a C unit (Riedel et al., 2012).

We aggregatedmolecular formulae into groups based on their chemical similarity relative to 8 core
structural and chemical metrics, using a hierarchical clustering approach similar to Danczak et al.
(2020). These metrics included mass (mz), number of C, H, O, N, and S atoms, AImod and NOSC
that were extracted for each molecular formula. The metrics were scaled and used to calculate
a distance matrix using Euclidean distances (dist() function, stats package, R Core Team (2024))
and subsequently used in hierarchical clustering (hclust() function, stats package, R Core Team
(2024)). Five optimal clusters were retained after evaluation with the fviz_nbclust() function (fac-
toextrapackage, Kassambara andMundt (2020)), and by examining the characteristic distributions
and visualising the categorisation in Van Krevelen space. The cluster order was re-categorised by
descending median NOSC values. The cluster groups derived from hierarchical clustering were vi-
sually compared with traditional molecular formulae classification following Hawkes et al. (2020)
in Van Krevelen space (Fig. 2.2).
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Figure 2.2: Comparison of molecular formulae categorisation methods in Van-Krevelen space. a) Five
molecular formulae clusters emerged fromhierarchical clustering on chemical attributes (i.e., mass, number
of C, H, O, N, S atoms, AImod and NOSC). b) Molecular formulae were categorised into broad compound
classes using the following criteria: aliphatics (H/C≥ 1.5), low oxygen (O) unsaturated (H/C < 1.5, O/C < 0.5,
AImod < 0.5) and high O unsaturated compounds (HC < 1.5, O/C ≥ 0.5, AImod < 0.5), polyphenols (0.5 <
AImod < 0.67) and condensed aromatics (AImod ≥ 0.67) (Hawkes et al., 2020). Broad classes were chosen to
avoid over-interpretation of the limited structural resolution of the FT-ICR MS approach.

2.3.4 Flow-weighted water age
To visualise and study the spatial behaviours of microbes and molecules along a true hydrologic
continuum, flow-weighted water age (FWWA) was estimated for the studied watershed. FWWA
represents the average time water has travelled to arrive at any given point in the hydrologic net-
work. A detailed description of how FWWA estimates were derived can be found in the supple-
mentary methods (SM 2.8).

While flow-weighted travel time within stream networks have been estimated before (Peter et al.,
2020; Hosen et al., 2021), lentic systems have been represented in a separatemetric (i.e. upstream
lake volume; Hosen et al. (2021)). To our knowledge there are no attempts to integrate the im-
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pact of lentic systems on travel time. To derive a single metric that captures both lentic and lotic
systems within a hydrologic network, we computed flow-weighted water age by first identifying
which pixels were lentic or lotic systems by overlaying the HydroLAKES (Messager et al., 2016) and
reservoir (Hydro-Québec) polygons to the stream network (Fig. S2.1).

Water residence time in each pixel (WRTpx) of lotic systemswas estimated by 1) estimating velocity
by flow condition (high versus low; Spring versus Summer) using catchment area (km2) and 2)
dividing the length of the pixel by the estimated velocity in each pixel. The lotic velocity model
was built on measured data from velocity measurements ranging Strahler orders 1-7. Although
the R2 was not particularly high (n = 103, R2 = 0.46, Fig. S2.2b), the magnitude of the measured
velocity as well as the relationship of velocity among Strahler orders found in the empirical data
was captured with this model (Fig. S2.3). WRTpx within the reservoir were derived by 1) averaging
daily WRT estimates for the entire reservoir for each month and 2) dividing the overall WRT by
the number of pixels along the main channel of the reservoir. Similarly to reservoir estimates,
the overall WRT in the lakes was divided by the number of pixels along the main channel flowing
through the lake to estimateWRTpx (data retrieved fromHydroLakes;Messager et al. (2016)). Both
fluvial and reservoir WRTpx estimates reflect hydrologic changes in seasons, and only reservoir
WRTpx additionally reflects changes by year. Additionally, discharge was modelled as a function of
catchment area, using the same empirical dataset that was used to derive the velocity model (n =
103, R2 = 0.88, estimated by flow condition, Fig. S2.2a). Details can be found in the supplementary
material (SM 2.8).

A modified version of Peter et al. (2020) was implemented to compute flow-weighted water age
(FWWA) along the stream network. FWWA within the same reach was calculated as follows:

FWWAi = FWWAi−1 +WRTi ×
(1− (Qi −Qi−1))

Qi

where i indicates each pixel along a reach, i-1 is the pixel that flows into i, WRT the estimatedwater
residence time in the pixel in minutes, Q is the modeled discharge in m3 s-1. First order streams
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were first tracked downstream until a confluence was reached. Once a confluence was reached,
FWWA was computed as follows:

FWWAc =

∑︁n
i=1 FWWAi ×Qi∑︁n

i Qi

where c indicates each confluence, n the number of reaches merging into the confluence pixel,
FWWA represents flow-weighted water age in minutes, Q is modeled discharge in m3 s-1 and WRT
is water residence time in the confluence pixel in minutes. Given the complexity of the stream
network, an iterative loop was utilised to track down and calculate FWWA by Strahler order. A
confluence was only processed once all merging reaches had a calculated FWWA.

Water age for soil and soil water samples was difficult to estimate and hence were assigned a
value of -50 d. A negative value was selected to represent our conceptual view that aquatic con-
tinua start with surface water run-off and groundwater flowing from the surrounding terrestrial
landscape into aquatic networks. Estimated water ages reflect differences by flow condition (high
versus low flow), seasonal changes in reservoir WRT and the number of reservoirs present each
year. Whole network FWWA at the river mouth in the St. Lawrence estuary was estimated at 752
and 755 days in spring and summer 2015, and as 756 and 819 days in spring and summer of 2016
(Fig. 2.1b, example of 2016 summer).

2.3.5 Modelling and classifying spatial patterns
A detailed version of the modelling exercise can be found in the supplementary material (SM 2.8).
Prior to the modelling exercise, observations were filtered and z-scaled by campaign and binned
and averaged at a 50-day interval along the water age gradient. To allow various dynamic patterns
to be modelled, we established a decision tree that selects the best model for individual molec-
ular formulae (MF) and operational taxonomic units (OTUs) along the FWWA gradient (illustrated
in Fig. S2.4). The decision tree selects the best fitting model for each spatial behaviour from lin-
ear, and non-linear (polynomial versus GAM) options based on the smallest Akaike Information
Criterion (AIC). Once the best model was selected, model statistics such as p-value and R2 were
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extracted. The slope of the initially fit linear model was extracted regardless of which model type
was selected to aid in spatial pattern classification and null model comparison described below.
For all non-linear models, the 2nd derivative was utilised to find peak locations along the FWWA
gradient.

All linear models that had a positive slope were classified as ’increase’, while all linear models with
negative slopes were identified as ’decrease’. All non-linear models were first classified by their
number of peaks. Models with a single peak were classified by where their peak was located (i.e.,
left, centre, right of FWWA gradient). If a peak was located within the centre area, the model was
classified as ’unimodal’. All other single-peak models were classified as ’non-linear decrease’ if
their peak was located below the centre (right) and models with their peak located higher than
the centre were classified as ’non-linear increase’ (left). Any non-linear models with more than
one peak were classified as multimodal increase and decrease when their linear model slope was
positive and negative, respectively. Single-peak and multimodal spatial patterns were merged
for all subsequent analyses. All models that had a slope of 0 or did not return a p-value due to
insufficient sample size, were removed from downstream analyses.

2.3.6 Identifying reactive moieties
Most multiple comparison p-value correction methods focus on removing false positives (Type I
error; Jafari and Ansari-Pour (2019)) but potentially increase the false negative rate (Type II error)
and tend to exacerbate the removal of potentially valid observations (Lee, 2010). For this reason,
we utilised a bootstrapping approach to evaluate whichmodel results can be considered true pos-
itive and therefore reactive rather than relying on p-value correction methods. In theory, model
outputswith a higher slope than slopes generated by a random reshuffling of observations indicate
whether the spatial pattern is indeed distinct from random. Hence, for each OTU/MF, abundance
values (reads and peak intensity, respectively) were shuffled over FWWA point observations 999
times per campaign (without replacement) and linear models were constructed for each randomi-
sation. From the randommodels, linear slopes were extracted, and a 95% confidence interval was
computed. To compare the randomisation model output to the empirical models, regardless of
which model (linear versus non-linear) was selected as the best fit to the spatial pattern, the slope
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from the first fitted linear model was always used. If an empirical model had a higher or smaller
slope than the upper and lower limit of the randomisation confidence interval, respectively, it was
deemed a true reactive pattern. To avoid any over-interpretation, we decided on a conservative
method where only models that passed both the randomisation filter and were statistically signif-
icant (p-value < 0.05) were considered as ’reactive’ spatial patterns.

2.3.7 Statistical analyses
To explore phylogenetic signals across the bulk and reactivity pools (reactive versus unreactive),
UniFrac distances were computed on OTUmatrices that were transformed into presence-absence
data (distance() function, phyloseq package, McMurdie and Holmes (2013)). The sites were rep-
resented by combining the observations of OTUs by year, season and spatial pattern for the bulk
pool (e.g., ’2015 - Spring - decrease’), while the reactivity group (i.e., reactive versus unreactive)
was added when additionally testing for phylogenetic differences among type of reactivity (e.g.,
’2015 - Spring - decrease - reactive’). A non-metric dimensional scaling (NMDS) was computed (k
= 2) for the bulk dataset and when reactivity types were separated. An additional Principal Coor-
dinates Analysis (PCoA) was computed on the reactivity type dataset alone (ordinate() function,
phyloseq package, McMurdie and Holmes (2013)). To evaluate statistical differences in phyloge-
netic signal by spatial pattern, year, season and reactivity type, PERMANOVAswere computedwith
9,999 permutations with the adonis2() function. PERMANOVA assumptions were tested with the
betadisper() and anova() functions (vegan package, Oksanen et al. (2019)).

To further explore how the phylogenetic and chemical similarity signal was manifested within spa-
tial patterns, the nearest taxon index (NTI) and net relatedness index (NRI) were computed us-
ing ses.mntd() and ses.mpd() functions, respectively, using the picante package (Kembel et al.,
2010). As a phylogenetic tree equivalent for DOM, the hierarchical clustering dendrogram was
transformed into a tree (as.phylo() function; ape package, Paradis and Schliep (2018)). Both met-
rics are standardised against a null model. NTI is more sensitive to phylogenetic clustering or
overdispersion occurring closer to the tips of a tree while NRI represents an overall pattern of
phylogenetic structuring across the entire tree. Computations were conducted on OTU/MF ma-
trices where year, season, spatial pattern and reactivity type combinations were treated as sites.
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Statistical differences among phylogenetic and/or functional signals in spatial patterns were eval-
uated using Kruskal-Wallis Rank Sum tests (kruskal.test() function) and pair-wise differences were
evaluated using Dunn’s test (dunn_test() function, rstatix package; Kassambara (2020b)). An α

level of 0.05 was chosen for all statistical analyses.

All analyseswere conducted in R (v4.3.3, R Core Team (2024)) and RStudio (v4.2.764, RStudio Team
(2024)). tidyversewas used for data cleaning, and unifying (Wickham et al., 2019). data.tablewas
used for data wrangling (Barrett et al., 2024) and plyr, foreach and doMCwere used to enable par-
allel processing (Wickham, 2011; Microsoft and Weston, 2022; Revolution Analytics and Weston,
2019). ggplot2, ggpubr, plotly and iTOL were used to visualise results (Wickham, 2016; Kassam-
bara, 2020a; Sievert, 2020; Letunic and Bork, 2006). The map was created with QGIS (v3.28).

2.4 Results
Dissolved organic carbon (DOC) concentrations in La Romane river, Romaine 1 and 2 reservoirs
and in the lakes within the watershed ranged from 5.5 to 7 mg C L-1, and where higher in some of
the tributaries, up to 10 mg C L-1 (Barbosa et al., 2023). Bacterial abundance (ml-1) was highest in
soilwaters (4.7 x107 ± 8.6 x107; means± standard deviation), followed by streams Strahler order 2
(1.6 x106 ± 1.1 x106). Rivers of orders 6 and 7, lakes and reservoirs had similar bacterial abundances
between 1.4 x106 and 1.5 x106. Abundance in streams of orders 1 to 5 ranged between 1.0 and 1.2
x106. Bacterial density in aquatic samples were generally higher in summer (1.6 x106 ± 9.4 x105)
over spring (1.3 x106 ± 5.5 x105).

The modelled flow-weighted water age (FWWA) represents the average time water spends from
headwaters until it reaches any given point in the watershed, and it integrates the water age of
the hydrologic elements (e.g., size and steepness of streams, depth, size, and number of lakes)
that make up the sub-catchments. The FWWA ranged between 0.002 and 1,355 and 0.004 and
2,114 days for the sampled sites within the watershed in spring and summer, respectively. Stream
FWWA increased along the Strahler order gradient with lowest FWWA in orders 1 (0.002 - 35.8
d), 2 (0.06 - 287.0 d), 3 (71.6 - 172.9 d), and higher values found in orders 4 (166.7 - 1,104.8 d), 5
(457.4 - 1,355.9 d), 6 (La Romaine upstream of reservoir cascade, 518.4 - 978.8 d) and 7 (La Romaine
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downstream of reservoirs, 523.0 - 820.1 d). Systems with long water residence time, such as lakes
and reservoirs, led to increased FWWA, with reservoir FWWA ranging between 522.5 and 726.3
days, and lake FWWAbetween 3.0 and 2,114.3 days. These patterns emerge due to the lowerwater
velocities within lakes and reservoirs. The outlet of a lake and reservoir always reflects this longer
water age through the system, yet as streams and rivers with low FWWAmerge into these outlets
further downstream, the FWWA starts to decrease once again. Hence, depending on the upstream
history of each stream and river, streams of the same order can have very different FWWA.

Across the entire dataset 13,251 molecular formulae (MF) and 3,333 OTUs remained after cleaning
and filtering procedures. We did not observe a clear seasonal pattern in the number of examined
entities (richness) for each assemblage. For the microbial community, there were in general more
OTUs in 2015 (2,135± 35) than 2016 (1,532± 25). Across sampling campaigns, the number of OTUs
was mostly stable within years with no seasonal differences. In contrast, the DOM assemblage
exhibited seasonal and inter-annual differences in the number of MF. While the MF count was
stable within the year 2015 (7,375± 21), 2016 exhibited in general a higher number of MF (10,616
± 3,469) and an exceptionally high number of MF in summer (∼13,000). The number of unique
OTUs andMFwithin each campaign followed in general the same trend as the overall number and
ranged between 176 - 482 for OTUs, and 0 - 4,030 for MF (Table S2.1).

2.4.1 Characterisation of reactive microbial and DOM fractions
Overall, 12,386 spatial models were built for the microbial community with 9,259 and 3,126 DNA
and RNA models, respectively. Out of these, 1,924 DNA and 466 RNA models were removed since
they either did not report a p-value or their standard deviation was zero. We built 36,193 spatial
models based for the ensemble of DOMmolecular formulae, with only 211 models being removed
due to the lack of a p-value.

Models that passed our slope randomisation filter and were significant (p < 0.05) were considered
as ’reactive’ spatial patterns. All other models that were not different from the randomisation
slope or were not significant were categorised as ’unreactive’ spatial patterns. Hence, the mod-
elling exercise allowed us to apportion each assemblage, DOM as well as microbial, into reactive
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and unreactive fractions. We first evaluated the proportion of the reactive pool within each as-
semblage. For the microbial community, there was no clear seasonal nor inter-annual pattern in
the proportion of reactivemoieties, which comprised between 13% to 17% of the total community.
The proportion of reactive moieties within the RNA assemblage was similar at ∼13%. The DOM
assemblage exhibited no clear seasonal trend of molecular reactive moieties, however, there was
a clear inter-annual difference. Reactive MF consistently comprised ∼36% in spring, but there
were substantial differences among the two years in summer, with reactive MF comprising 16%
and 70% in 2015 and 2016, respectively. Across all years and seasons, the reactive fraction within
microbial and DOM assemblages averaged 7.5± 1.8% and 44± 22.5%, respectively (Fig. 2.3a).

We then categorised and apportioned spatial patterns within the reactive pool. All models were
categorised by their general spatial behaviour into increasing (linear or non-linear), unimodal, and
decreasing (linear or non-linear) OTUs and MF (Fig. 2.3b). Within the reactive microbial fraction,
there were proportionally more microbes that exhibited increasing (65.9 ± 3.1%) than decreas-
ing patterns (28.5 ± 4.6%, Fig. 2.3c). There were no seasonal nor inter-annual differences, with
proportions being remarkably stable. Likewise, there was no consistent seasonal DOM pattern
in reactive pools, yet there were major inter-annual differences in these DOM spatial patterns:
2015 was dominated by decreasing MF (54.9 ± 11.0%), whereas 2016 was strongly dominated by
increasing MF (75.1± 11.5%, Fig. 2.3c).

We examinedwhether the two studied years were different in their spatial range along the contin-
uum to explore reasons underlying the observed differences in inter-annual patterns of MF spatial
patterns. The spatial patterns in OTUs and MF that we identified were not constrained spatially
and could occur in portions anywhere along the hydrological continuum. Hence, it is important to
understand when and where along the network the spatial patterns preferentially occurred, and
the network source of the moieties involved. We identified where the OTUs andMF first emerged
(i.e., soil versus stream), and where they were last detected along the FWWA continuum (i.e., La
Romaine river mouth versus lakes) by season and year. Larger lakes represent the endpoint of our
hydrological water age continuum, since water age is reduced in fluvial systems beyond the lake
outlet due to influx of smaller streams and rivers. Most spatial patterns of MF spanned the entire
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continuum from soils to lakes, except for Summer 2015 and Spring 2016 as no soil and soil wa-
ter samples were retained after initial quality filtration (Fig. S2.5). Given that the spatial pattern
distribution is very dissimilar between Summer 2015 and Spring 2016, with higher proportions of
decreasing MF and increasing MF, respectively (Fig. 2.3c), it is unlikely that the absence of ter-
restrial samples in both campaigns is contributing to the observed trends. Overall, the majority
(>90%) of MF could be retraced to soils in both spring and summer, and the majority of these
MF were detected along the entire range of FWWA (95% in summer and 77% in spring), such that
most of the spatial patterns ranged from soils to larger lakes (Fig. S2.5). For the microbial assem-
blage the spatial range was very consistent between years, with 75% - 97% of DNA and RNA spatial
ranges originating in soils regardless of season and year, yet the endpoint of detection within the
network varied greatly. A greater proportion of OTUs (∼60%) were only found until the river
mouth especially in summer, indicating that not all OTUs are present in lakes. These results col-
lectively indicate that microbes are patchier in their spatial distribution, while molecular formulae
are more continuous along the network. Regardless, both assemblages could be overwhelmingly
traced back to soils.

2.4.2 Phylogenetic and functional underpinning of microbial spatial patterns
To evaluate whether there was a phylogenetic signal underlying the spatial patterns, a heatmap
representing the reactive spatial patterns (i.e., increase, unimodal, and decrease)was plotted onto
the microbial phylogenetic tree (Fig. 2.4). It was visually evident that many microbial OTUs had
very few reactive representatives (empty spaces), however, those that were identified as reactive,
generally seemed to have the same spatial pattern across campaigns and between DNA and RNA.
To directly test whether there is phylogenetic signal in the distribution of spatial patterns, UniFrac
distances were computed within two OTU matrices: bulk relatedness and the relatedness among
reactivity groups (i.e., reactive versus non-reactive). Within the bulk pool, a strong phylogenetic
signal among spatial patterns was found (Fig. S2.6a), which was statistically supported by a PER-
MANOVA analysis (F6 = 2.03, R2 = 0.37, p < 0.0001). However, there was no phylogenetic signal
by season or year (p > 0.8). Decreasing and increasing linear OTUs were closely related, while
non-linear spatial patterns started to exhibit phylogenetic divergence with unimodal OTUs being
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most phylogenetically dispersed. Whenwe considered the reactive and non-reactive fractions in a
separate analysis, it was also found that there was a phylogenetic signal between spatial patterns
(F6 = 1.75, R2 = 0.16, p < 0.0001) and that they also differed by reactivity groups (F1 = 5.53, R2 = 0.09,
p < 0.0001). Similarly to the bulk pool, no seasonal or annual pattern was found (p > 0.7) (visually
represented in a NMDS and PCoA in Fig. S2.6b-c, respectively). Within the phylogenetic multivari-
ate space, linear patterns of the unreactive fraction were clustered, and the unreactive non-linear
patterns were phylogenetically similar to the linear reactive spatial patterns. There was a general
trend across the reactive fraction, where increasing spatial patterns were more phylogenetically
similar to each other, while decreasing patterns were more dispersed in multivariate space (Fig.
S2.6b). Phylogenetic clustering of unreactive non-linear patterns with reactive patterns may indi-
cate that our modelling and filtering approach used to determine the reactive fractions may be
conservative. Non-linear models may not be statistically significant due to their highly dynamic
nature, and hence, a greater sample size and deeper sequencing depth may be needed to detect
more reads for these OTUs to achieve ’reactiveness’ as defined in our approach.

We computed indices of phylogenetic relatedness by spatial pattern to assess whether some spa-
tial groups are more phylogenetically constrained than others. Tests were carried on the nearest
taxon index (NTI) and net relatedness index (NRI) for both the bulk and reactive pool separately,
to examine whether parsing out the reactive portion helps in identifying a phylogenetic signal
(Kruskal-Wallis Rank Sum Test). Only NRI was significantly different among spatial patterns within
the reactive pool (NRI: d.f. = 2, χ2 = 7.42, p < 0.05; NTI: d.f. = 2, χ2 = 5.69, p = 0.058). Dunn’s test
revealed that decreasers were statistically more over-dispersed than increasers and unimodals (p
< 0.05, adjusted via Benjamini-Hochberg). In contrast, there were no phylogenetic differences
among spatial patterns within the bulk pool (NTI: d.f. = 2, χ2 = 2, p = 0.37; NRI: d.f. = 2, χ2 = 3.5, p
= 0.17) (Fig. 2.5a, data of NTI not shown). These results suggest that identification of the reactive
pool on the basis of spatial patterns enhances our insight or understanding of the ecological and
phylogenetic basis of microbial community assembly, which is not forthcoming from the analysis
of the bulk community.

Furthermore, we focused on one specific functional trait - the estimated number of 16S rRNA copy
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number for each OTU – to examine whether the observed phylogenetic clustering coincided with
functional differences among the same spatial groups and pools. However, no statistical differ-
ences were found among spatial patterns either within the reactive (d.f. = 2, χ2 = 2.98, p = 0.22)
or bulk pools (d.f. = 2, χ2 = 1.17, p = 0.56) (Fig. 2.5b). These results indicate that the capacity of
a given OTU to grow and/or accumulate or persist along the continuum does not depend on the
number of 16S rRNA copy numbers.
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Figure 2.5: Differences in microbial phylogeny, molecular similarity and functional characteristics be-

tween spatial groups. a) Differences in the Nearest relative index (NRI) for microbial communities between
spatial patterns of the reactive and bulk pool. b) Differences in 16S copy number among spatial patterns. c)
Nearest Taxon Index (NTI) for molecular DOM assemblages based on a hierarchical clustering dendrogram.
Positive NRI and NTI indicate phylogenetic clustering of OTUs andMF on the tree, while negative values rep-
resent overdispersion. NTI is more sensitive to patterns closer to the tips of the tree, while NRI represents
structuring across the entire branches. d) Differences in nominal oxidation state of carbon (NOSC) across
spatial patterns and pools. NOSC values above 0 indicate higher energy yield when a molecule is broken
down, while low values indicate the need of additional energy to degrade a compound. The number of
asterisks increase with lower p-values (* = p < 0.05, ** = p < 0.01, *** = p < 0.001) according to pair-wise
comparisons with Dunn’s tests. Statistical tests were only conducted to test differences between spatial
patterns within the same pool (i.e. reactive and bulk).
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2.4.3 Chemical and functional similarity underlying molecular spatial patterns
We used chemical similarity of DOM formulae to build a hierarchical clustering of MF, as an analo-
gous analysis of microbial phylogenetic similarity. The unsupervised clustering technique revealed
five functional groups thatwere characterised by differentmass, aromaticity (AImod) andmetabolic
potential (NOSC). In essence, the clustering order (1-5) represents an ascending gradient for H/C
and descending gradient for O/C, AImod and NOSC (Fig. S2.7, Table S2.2). All clusters were signifi-
cantly different from each other in median H/C, O/C, C/N, AImod, NOSC and in the number of C, H,
O atoms. Clusters 1 and 5, and cluster 2 and 4 were not different from each other in mass. Clus-
ters 1 and 2 had no statistical difference in the number of N. The retrieved chemical dendrogram
from the hierarchical clustering approach was plotted together with the reactive spatial pattern
heatmap (Fig. 2.4) to visualise the distribution of MF spatial patterns by chemical similarity. In
contrast to the microbial heatmap, many more MF exhibited a reactive spatial pattern, yet the
direction of the pattern was often not consistent for a given MF and varied mostly by year.

To similarly test whether spatial patterns in MF were associated to chemical similarity, we applied
the samephylogenetic indices (NTI andNRI) to the chemical dendrogramand testedwhether there
was a difference by spatial pattern within bulk and reactive pools (Kruskal-Wallis Rank Sum test).
No difference was found in how the spatial patterns were spread across the dendrogram within
the bulk pool (NTI: d.f. = 2, χ2 = 4.9, p = 0.09; NRI: d.f. = 2, χ2 = 3.5, p = 0.17). However, within
the reactive pool a statistical difference was found for NTI (d.f. = 2, χ2 = 8.0, p < 0.05) but not for
NRI (d.f. = 2, χ2 = 1.0, p = 0.59). For NTI, Dunn’s test revealed that increasers were more clustered
than unimodal patterns (p < 0.05, adjusted via Benjamini-Hochberg) (Fig. 2.5c). It is noteworthy
that in general all spatial groups were clustered (NTI > 0) rather than overdispersed, with the least
clustering observed in unimodal MF.

We further testedwhether the spatial patternswere associatedwith functional differences in their
nominal oxidation state of carbon (NOSC) and aromaticity index. There were statistical differences
in both metrics among spatial patterns (KW-test, bulk: d.f. = 2, χ2 = 355.58, p < 0.0001; reactive:
d.f. = 2, χ2 = 114.1, p < 0.0001) regardless of the examined pool (p < 0.0001, Fig. 2.5d). NOSC
increased from decreasing (0.02 ± 0.48, mean ± SD), to increasing (0.08 ± 0.48) to unimodal
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MF (0.23 ± 0.39). The spatial patterns were also significantly different in their aromaticity re-
gardless of the reactivity pool (p < 0.0001), with AImod increasing from decreasing (0.28 ± 0.18),
to increasing (0.32 ± 0.20) to unimodal (0.39 ± 0.20) MF. These results indicate that there are
strong functional differences among spatial patterns even when the bulk pool is considered.

2.4.4 Linking spatial patterns in DOMmolecular formulae and microbial OTUs
To evaluate individual spatial relationships of DOM MF and microbial OTUs, Spearman’s correla-
tion analyses were conducted along the FWWA continuum. Microbial OTU cumulative-sum scaled
reads and molecular formulae peak intensities were z-scaled, observations were binned in a 50-
day interval along the water age gradient and averaged before correlation analysis was carried
out by campaign. Overall, 101,280,418 correlations were returned across the 4 campaigns. Cor-
relations were filtered by whether a p-value was returned (no p-value was returned when there
were not enough observations) and correlation coefficients of 0 or 1 were removed. A final dataset
with 54,472,074 correlations was used for downstream analyses. p-values were not corrected for
multiple comparisons since a correction only left correlations with extremely high correlation co-
efficients (|ρ > 0.9|), likely resulting in the exclusion of many valid cases. Of the 4,265,211 and
11,979,127 correlations that were retained in Spring and Summer 2015, only 4.9% and 5.6% re-
spectively were significant (p < 0.05). Likewise, of the 13,084,715 and 25,143,021 correlations re-
tained for Spring and Summer 2016, only 4.6% and 7.8% respectively were significant. In theory, all
correlations between increasing OTUs and MF, and decreasing OTUs and MF should be positive.
Likewise, all correlations between decreasing MF and increasing OTUs and vice versa should be
negative. We further assessed whether the sign of the individual correlation coefficients aligned
with the direction of the spatial patterns of theOTU andMF involved in the correlation, by identify-
ing howmany positive and negative significant correlations were observed for each spatial pattern
combination of OTU and MF across the bulk and reactive dataset (Fig. S2.8).

Overall, we found coherence in the sign of the correlation and the combination of OTU and MF
spatial pattern, with over 68% (bulk) and 80% (reactive) of coefficients having the expected sign
(Fig. S2.8). The combinations that involved linear patterns of OTU and MF yielded consistently
higher proportions of coherent correlations than the non-linear spatial patterns, particularly those

91



involving non-linearly increasing MF. This would suggest that a higher proportion of these non-
linear spatial patterns may be less informative. Incoherent relationships may arise when MF and
OTUs only coincide within limited portions along the continuum. For example, a non-linearly in-
creasing MF may be negatively correlated to an increasing OTU when they only match within the
range where the non-linear pattern is temporarily declining. Importantly, the reactive pools of
both OTUs and MF yielded correlations that were consistently more coherent with the expected
sign than the bulk pools, with proportions of expected signs among linear combinations exceed-
ing 90% and with an improvement in the proportion of correct relationships in 19 out of 25 spatial
pattern combinations (Fig. S2.8).

2.4.5 DOM properties underlying the spatial correlation between DOM formulae and micro-bial OTUs
In the previous section we showed that defining and extracting the most reactive microbial and
molecular moieties results in the reduction of spurious patterns and in an improvement in our
capacity to distinguish coherent relationships between DOMMF andmicrobial assemblages. Four
correlation categories were identified: increasing OTU x increasing MF (correlation category 1),
increasing OTU x decreasing MF (correlation category 2), decreasing OTU x increasing MF (corre-
lation category 3), decreasing OTU x decreasing MF (correlation category 4). We further explored
if the correlations among reactive moieties showed any biogeochemically coherent patterns in
terms of distribution of DOM properties (Fig. 2.6). We calculated the proportion of significant cor-
relations within each correlation category that involved MF in each of the 5 DOM clusters that we
had previously defined. To simplify this analysis, we removed any correlations involving unimodal
patterns, and those correlations that did not match our expected correlation signs, and we only
focused on statistically significant correlations.

Unlike the proportion in spatial patterns, which did not show any clear seasonality (Fig. 2.2c), the
relative contribution of DOM clusters to the total number of significant correlations by correla-
tion category did (Fig. 2.6). The four correlation categories between MF and OTUs appear to be
preferentially associated to specific DOM clusters, but these associations varied seasonally and
inter-annually. Overall, the patterns of association were different between spring and summer,
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and inter-annual differences were especially evident in spring. In spring 2015, an overwhelming
dominance of Cluster 1 on all four correlation categories was observed (∼66%), however, over-
all dominance shifted to Cluster 2 in 2016 (∼42%). This pattern of dominance of a few clusters
in spring was systematically different from the pattern observed in summer. There is remarkable
consistency in the summer patterns across years, where contributions of Clusters 2, 3 and 4 are
much higher in correlation categories involving declining MF. In contrast, correlation categories
involving increasing MF showed larger contributions of Cluster 1, 2 and depending on the year,
cluster 4. Despite the observed consistency in the patterns of contribution of specific clusters
across seasons, it is also clear that the microbial-DOM links were very dynamic – and there were
inter-annual shifts in the contribution of certain clusters. For example, cluster 2 and 4 are almost
non-existent in spring 2015, however, they contribute largely to the correlation categories in spring
2016 (42 and 36%, respectively). These results indicate that there are seasonal consistencies as
well as inter-annual differences in the pools involved in microbial-DOM interactions that may be
linked to hydrology, climate and watershed shifts (i.e., number/age of reservoirs in watershed).
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Figure 2.6: Proportion of significant correlations attributed to DOM clusters by correlation category. Pro-
portions were computed only for significant correlations between reactive MF and OTUs. Unimodal spatial
patterns and correlation relationships not consistent with our theoretical interpretation were excluded.
Non-linear and linear patterns were merged. Colours represent DOM clusters identified via hierarchical
clustering.

2.4.6 Beyond correlations: Using phyla-DOM associations to interpret the spatial correlationsbetween DOM compounds and microbial OTUs
After having quantified the contribution of each DOM cluster to the four correlation categories
across seasons, we further evaluated whether the observed contributions were shared across all
phyla or whether there were disproportionately stronger relations between specific phyla and
DOM clusters within certain correlation categories and seasons. To do this, we extracted the num-
ber of significant correlations for each phylumwithin each correlation category (and for the differ-
ent sampling periods) and computed the proportion of these correlations attributable to each of
the five DOM clusters (Fig. 2.7). As described in the previous section, we excluded OTUs and MF
that had an unimodal spatial pattern, kept only significant correlations that matched the expected
sign, and focused only on the reactive pool. We then computed a bootstrapped average and con-
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fidence interval for the contribution of each DOM cluster to the ensemble of phyla across the four
correlation categories. We used deviations from these confidence intervals to identify significantly
higher contributions of DOM clusters to correlations with specific phyla within the four correla-
tion categories (Fig. 2.7). Additionally, we identified whether these disproportional contributions
occurred in spring or summer.

Figure 2.7 can be read horizontally as well as vertically, and both directions provide different per-
spectives on the relationship between phyla, DOM clusters and correlation categories. Horizon-
tally, the figure provides similar information to what we extracted in figure 2.6, however, it ad-
ditionally provides insights into which phyla are disproportionality related to each DOM cluster
within each correlation category. Vertically, each column identifies significantly stronger relations
between a DOM cluster and specific phyla, and how these relationships vary between correlation
categories. Contrasting the contribution of each DOM cluster across each correlation category
where above-average links were observed, enabled us to infer which DOM compounds are po-
tentially merely correlated to microbes due to shared hydrology and origins, versus which groups
were more strongly aligned to potential causal relationships such as microbial degradation as well
as microbial production.

When the figure is examined vertically, it is clear that there are very different contribution pat-
terns across DOM clusters to each of the four correlation categories. At one extreme, cluster 2
contributes abundantly to correlation category 4 (declining MF and OTUs) in spring but barely
contributes to any other correlation category. This correlation category does not have a straight-
forward causal interpretation, unless it reflects the loss of microbially-mediated production of the
DOM compounds involved. Yet, this cluster does not contribute to correlation category 1 (increas-
ing DOM and OTUs), which would have supported the previous result’s theory that the DOM is
being produced by microbes. Together, these results suggest that this cluster is unlikely to be pro-
duced by microbes but is rather merely correlating to phyla that have a similar pattern of decay
along the flow path, without any casual underpinnings.

Cluster 4 contributes mostly to correlation categories 1 and 3, both of which involve increasing

95



spatial patterns of MF, albeit with slightly different phyla. This pattern could be interpreted as this
DOM pool positively selecting for specific phyla or being produced by the phyla that are increasing
(correlation category 1). It also may indicate that the same DOM cluster is involved in correlations
where the MF are being produced by phyla that are decaying along the continuum (correlation
category 3). In both cases, there is the possibility of a causal underpinning.

Cluster 3 contributes abundantly to correlation category 2 (declining MF and increasing OTUs)
with links to a wide range of phyla, and this would suggest that this DOM component might be
consumed by a wide range of microbes and contribute to their growth along the continuum. This
cluster secondarily contributes to correlation category 4 (declining MF and OTUs) with links to
a subset of phyla that decline along the continuum, suggesting that this subset of relationships
of cluster 3 with declining microbes might be mostly correlational as was the case for cluster 2.
It is important to note that both cluster 3 and 4 contributed to correlations mostly in summer,
suggesting that these DOM components are associated to DOM present at higher temperatures
and low flow conditions.

Cluster 5 contributes to all correlation categories in spring but more noticeably to categories 1
and 4, which always involve co-directional spatial patterns in MF and OTUs (increasing MF and
OTU; decreasing MF and OTU). Yet, across the two correlation categories the phyla involved are
mostly different. If the phyla involved across the two correlation categories were the same, it may
have indicated that these MF are produced by microbes as they increase with microbial growth
and decline when the corresponding microbes disappear. Since the phyla involved are different,
it may imply that the MF involved in correlation category 1 lead to the positive selection of the
related phyla, whereas the links in category 4 are likely correlational co-decay relationships.

Cluster 1 contributed the most, and to all four correlation categories, with above-average links to
many phyla regardless of the correlation category. Additionally, those links appear always in the
same season (i.e., spring). This indicates that cluster 1 contributes to both declining and increasing
DOMpatterns in spring, yet the phyla involved in each correlation category are different, and these
differences suggest fundamentally different mechanisms. The phyla that are related to cluster 1
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are shared between correlation categories 1 and 2 and are different from those that are related
with correlation categories 3 and 4, and the two phyla groups have opposing microbial spatial
behaviours. When examined closely, the phyla involved in correlation categories 1 and 2 are not
identical but clearly overlap and are related, since they appear closely along the phyla axis, which
is ordered by their phylogenetic relatedness. With the highest number of above-average links in
correlation category 2 (which may represent potential microbial consumption of DOM), these re-
sults may collectively indicate that cluster 1 represents a pool of compounds that is ubiquitous in
spring, and where a fraction is potentially biodegradable and linked to microbial growth. In gen-
eral, there was a strong seasonality in these above-average DOM/microbial relationships. Clusters
1, 2, and 5 contributed to correlations mostly in spring, whereas clusters 3 and 4 dominated cor-
relations in summer. These results collectively indicate that different DOM clusters are associated
with distinct correlation categories regardless of the phylogeny of the microbes involved. In ad-
dition, there is evidence that within correlation categories and seasons, specific phyla appear to
be more related or reactive to specific DOM clusters than others. Overall, we infer that clusters 1
and 3 are potentially involved in microbially mediated degradation in spring and summer, respec-
tively, whereas cluster 2 is only correlated to decaying microbes perhaps because they share the
same origin (i.e., terrestrial). Increases in Cluster 4 and 5 are likely associated to the growth of
certain microbial groups in summer and spring, respectively whereas cluster 4 may additionally
be produced by a specific set of decaying microbes.
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Figure 2.7: Proportion of significant correlations attributed to DOM clusters by phylum and correlation

category. Each point represents correlations of phyla by season and year. Phyla subdivisions (e.g., Verru-
comicrobiota A and B) are visualised in the same phyla row, however, were treated as separate phyla in
the analysis. Phyla were sorted by phylogenetic relatedness according to the GTDB tree. Vertical line de-
notes bootstrappedmean by DOM cluster (R = 1,000) and grey area denotes lower and upper bootstrapped
confidence interval (95%). Unimodal spatial patterns and correlation relationships not consistent with our
theoretical interpretation were excluded. Non-linear and linear patterns were merged.
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2.5 Discussion
In this study, we used spatial patterns of dissolved organic matter (DOM)molecular formulae (MF)
and microbial operational taxonomic units (OTUs) along a flow-weighted water age (FWWA) gra-
dient in a complex aquatic network as an index of reactivity. Reactivity here refers to indicators
of change, distinct from traditional definitions tied to DOM degradability or microbial activity. By
categorising MF and OTUs into increasing, unimodal, or decreasing trends, we identified the most
reactive fractions of both assemblages, those presumably responding to environmental changes
along the aquatic continuum and across seasons and years. This approach allowed us to extract
ecologically relevant relationships by filtering out spurious correlations that were abundant when
linking bulk assemblages and which obscured DOM-microbe interactions.
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Figure 2.8: Conceptual diagram contrasting correlational and causal relationships between microbes and

DOM. Dashed, and solid lines represent microbial and molecular spatial patterns, respectively. Listed po-
tential relationships are hypothetical interpretations and not based on data.

For decades, it has been known that a portion of microbial assemblages are unreactive, either
dead or dormant (Lennon and Jones, 2011). Hence, it has been hypothesised that indecisive find-
ings between microbial and DOM assemblages may potentially arise due to the presence of a vast
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pool of taxa that are not contributing to local processes (Hall et al., 2018). Previous estimates
suggest that around 30% of planktonic OTUs in freshwaters may be inactive (Lennon and Jones,
2011), however, our findings of 93% unreactive OTUs based on their spatial patterns of abundance
are notably higher. Nevertheless, these estimates approximate previously modelled ranges for
highly selective environments (Cole, 1999). These differences may arise from both conceptual and
methodological factors. Our approach was conservative - defining reactivity through statistically
significant spatial patterns - likely overestimated unreactiveOTUs, whereas earlier estimates relied
on fluorescence staining techniques to differentiate between live and inactive or dead cells (Gasol
et al., 2008). Our conservative threshold may be difficult to meet, particularly when spatial pat-
terns are subtle, or sample sizes are insufficient, hence the lack of a significant spatial relationship
does not necessarily imply inactivity or death. For microbial sequencing, detection limits add an-
other layer of sampling effects (Smith and Peay, 2014). Especially for moderately abundant and
rare microbes, more sampling points or deeper sequencing may be needed to achieve statistical
significance in our spatialmodelling framework (Pedrós-Alió, 2012). Thismethodological limitation
was also reflected in our RNA analysis. We found that the reactive RNA fraction was comparable
to that of DNA, although we had expected a higher proportion since RNA is often considered to
represent recently active microbes (Stadler and del Giorgio, 2022). On the one hand, these results
may indicate that our approach extracts the most evident spatial patterns, which naturally are re-
flected in the same OTUs being extracted as reactive moieties in both DNA and RNA. On the other
hand, the short half-life of RNA (Steiner et al., 2019) may reduce the sampling effort and hence
prevent the successful modelling of spatial patterns, leading to an underestimation of the reactive
RNA moieties. To avoid any over-interpretation, we decided to focus on the DNA spatial patterns
in all analyses since sampling effects are likely smaller compared to RNA.

Similar to the unreactive pool of microbes, there is a fraction within DOM assemblages that is
seemingly persistent across environmental changes (Kellerman et al., 2015), whereas othermolecules
are available for photo- and biodegradation (Cory and Kling, 2018). Persistence within DOM as-
semblages is yet another facet of microbial-DOM interactions that may prevent the successful
establishment of meaningful links between the two. Only a few studies have examined the pro-
portion of reactive DOMmolecular formulae. While not directly comparable, one study estimated
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that approximately 11% of DOMMFwere ubiquitous acrossmultiple North American rivers (Stadler
et al., 2023), while approximately 21% of compounds were shared between soilwaters and head-
water streams (Freeman et al., 2024). Similarly, another study found that 47% of MF in lakes
co-occurred with multiple marine environments (Zark and Dittmar, 2018). Our approach identi-
fied an average of 56% of molecular formulae as unreactive to environmental changes. Unlike
co-occurrence-based approaches, our method captures MF that exhibit dynamic changes in peak
intensities along a hydrologic continuum, rather than simply identifying common MF - a key dis-
tinction from previous studies. Unlike the static core pool described in earlier studies (Kellerman
et al., 2015; Freeman et al., 2024), our results suggest that the unreactive fraction is dynamic, in-
fluenced by inter-annual and seasonal variations. For example, summer proportions were vastly
different among years by almost 50%. Since there were no clear hydrological differences between
the two years, these results may be the consequence of the flooding of a newly constructed reser-
voir in 2016. The reservoir had a larger proportion of flooded peatland compared to the pre-
viously flooded reservoir (2014; Rust et al. (2022)), which may have introduced fresh terrestrial
compounds, altering DOM composition (Larson et al., 2014). Such findings underscore the role of
large-scalewatershed disturbances, like damming orwildfires, in shaping DOMdynamics (Lambert
et al., 2016; Xenopoulos et al., 2021).

The interplay between intrinsic factors (e.g., microbial adaptability (Ruiz-González et al., 2017b;
Savio et al., 2015), DOM degradability (Catalán et al., 2021; Cory and Kling, 2018)) and extrin-
sic drivers (e.g., hydrology, temperature (Niño-García et al., 2016a; Read et al., 2015; Massicotte
et al., 2017; Lambert et al., 2016)) determines the fate of microbes and DOM. Our data revealed
that microbes with increasing trends along the continuum tended to dominate in aquatic systems,
suggesting a consistent capacity for growth, despite seasonal shifts in taxa. Previous findings in
the same watershed highlighted that environmental selection processes become stronger in high
water residence time systems (Stadler and del Giorgio, 2022). Together, our findings indicate that
even when there are vastly different hydrologic conditions, a large fraction of microbes can grow
at least at some point within the continuum as evidenced from the many microbes following non-
linearly increasing spatial patterns. Phylogenetic analysis showed that increasing taxa were more
closely related among each other than decreasing taxa, hinting at shared traits among aquatic-
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adapted microbes. Interestingly, these phylogenetic signals were only found in deeper levels of
the tree rather than the tips. These findingsmay suggest that there are general preferences among
phyla for growing in aquatic systems (Schmidt et al., 2016), however, there may also be ecotypes
within the same phyla, where highly related taxa can occupy very different niches to avoid com-
petition (Pernthaler, 2017). In contrast, microbes that declined were widely spread across the
phylogenetic tree, indicating that failure to establish in any freshwater ecosystem is likely not a
preserved trait. It is unclear from our study what functions manifest in the ability to grow along
the aquatic landscape since we did not measure functional genes, however, it clearly did not de-
pend on the potential growth rate (16S gene copy number). Other functional traits may be more
important for aquatic growth such as biofilm- and algae-associations (Dow et al., 2020; Graham
et al., 2015) and/or nutrient-uptake efficiencies of limiting nutrients in freshwaters (Currie and Kalf,
1984).

Unlike the microbial community, the DOM assemblage showed alternation in the dominance of
spatial patterns, however, this variation was inter-annual and not seasonal. As discussed earlier,
the discrepancy between the two years is likely a result of the flooding of a new reservoir in early
2016. The damming of rivers is known to change DOM composition through the flooding and re-
lease of terrestrial material (Wang et al., 2020) and increased algal biomass (Oliver et al., 2016).
There were no algal blooms observed in the sampled years; hence, it is likely that the plethora
of observed non-linear spikes of compounds is attributable to larger terrestrial contributions of
fresh, highly oxidised compounds with low nitrogen (N) content (cluster 2 derived from FT-ICR MS
hierarchical clustering, Fig. 2.2). In contrast, the previous year exhibited a larger proportion of
MF declining along the continuum attributable to large, olefinic, and degraded compounds with
low N content (cluster 4). Unlike microbes, DOM assemblages exhibited greater functional coher-
ence within spatial categories, emphasising the role of intrinsic molecular properties in shaping
their fate within the network (Kellerman et al., 2015). Compounds were most functionally alike
among increasing MF, with relatively high aromaticity and NOSC values representing thermody-
namically favourable compounds. Compounds that decreased were also relatively similar to each
other, and tended to have lower aromaticity and NOSC values. Compounds that were the most
thermodynamically favourable and aromatic were found within the unimodal pool, which likely
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reflects that these compounds are the most available in terms of photo- and biodegradability. Dif-
ferences among spatial patterns in these chemical metrics were also evident when analysing the
bulk pool. These findings contrast results of a recent study showing that compounds with higher
NOSC values were preferentially removed along a stream network in summer (Peter et al., 2020).
Additionally, it has also been shown that aromaticity and photo-reactivity decreasewith increasing
water residence time (Kellerman et al., 2014; Grasset et al., 2024), while aliphatics were positively
correlated to water residence time. Patterns similarly opposing previous literature were found in
a boreal soil-stream-river continuum (Hutchins et al., 2017), and it was argued that the results are
not necessarily contradictory as the studies cover different portions of the continuum. A similar
scenario can be envisioned here, and it seems that the inclusion of terrestrial ecosystems in the
continuum is a key element that explains these seemingly contradictory patterns to studies that
have only sampled aquatic ecosystems (Kellerman et al., 2014; Peter et al., 2020; Grasset et al.,
2024). Additionally, we evaluated changes along a water age continuum, which integrates both
water residence time as well as an aspect of water history in the watershed. It is difficult to in-
terpret mere DOM spatial patterns when there are no microbial data associated to the patterns.
Hence, our dataset represents a unique opportunity to inch a step closer to answer why certain
DOMmolecules exhibit the spatial patterns we observe along a terrestrial-aquatic continuum.

When microbes and dissolved organic matter interactions are evaluated in empirical settings, it
is extremely difficult to distinguish correlational patterns from causal interactions. DOM that has
been characterised via absorbance, fluorescence or high-resolution approaches have been de-
scribed to governmicrobial community composition or diversity patternsmany times before (Crump
et al., 2003; Jones andMcMahon, 2009; Ruiz-González et al., 2015b; Muscarella et al., 2019; Ávila
et al., 2019), however, their complex bi-directional relationship has not often been addressed (Hu
et al., 2022). When put together in a conceptual framework, it becomes apparent that vastly dif-
ferent correlational and causal scenarios may result in the same relationships between microbes
and DOM molecular formula along hydrological gradients (Fig. 2.8). Microbial growth-mediated
DOMproduction (i.e., DOM transformation, degradation by-products)may be less labile than their
precursor (Koch et al., 2014) and would consequently accumulate as water ages (Fig. 2.8, correla-
tion category 1). Yet, the same patterns may emerge simply due to co-travel and constant influx
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of terrestrially sourced persistent microbes (Crump et al., 2012) and less labile DOM (Massicotte
et al., 2017), or unrelated production and growth of MF and OTUs, respectively, in high FWWA sys-
tems (i.e., MF produced in lakes (Stedmon andMarkager, 2005; Liu et al., 2020), OTUs adapted to
lakes (Comte et al., 2017)). DOM degradation by microbes (Fig. 2.8, correlation category 2) is the
most assumed causal relationship between heterotrophicmicroorganisms andDOM (Wiegner and
Seitzinger, 2001; Fasching et al., 2014), however, along a hydrologic continuum, the same nega-
tive relationshipmay emerge due to unrelated loss ofMF (e.g., photodegradation of allochthonous
DOM (Grasset et al., 2024), or dilution of terrestrially derivedDOMsourced at specific points inwa-
tershed), and OTU influx or growth in high FWWA systems (i.e., highWRT adaptedmicrobes; Niño-
García et al. (2016a)). The reverse scenario of opposing sources results in another negative rela-
tionship, when autochthonous MF and allochthonous OTUs are correlated (Fig. 2.8, correlation
category 3). Yet, in a causal relationship, we might be dealing with cell death mediated release of
less-labile DOM that may accumulate with water age (Kawasaki and Benner, 2006). Finally, the
least plausible causal scenario is when specific microbes produce certain MF and they may conse-
quently produce synchronously declining patterns as the microbial producer disappears (Fig. 2.8,
correlation category 4; Kawasaki and Benner (2006)). This relationship is the most likely to have
more purely correlational underpinnings such as joint dilution away from a common (likely ter-
restrial) source (i.e., allochthonous; Ruiz-González et al. (2015a)), or unrelated DOM production
in and microbial adaptation to low FWWA systems (Zeglin, 2015; Boodoo et al., 2020). It may
also potentially indicate shared photosensitive characteristics of specific DOM and microbes as
UV stress increases in high WRT systems (Herndl et al., 1999; Grasset et al., 2024). Among the
potential causal relationships, some patterns are driven by bacteria (i.e., bacterial consumption of
DOM, Fig. 2.8, correlation category 2, Kamjunke et al. (2020); Freeman et al. (2024)), while others
are driven more by the DOM compounds (i.e., DOM selecting for certain bacterial composition,
Fig. 2.8, correlation category 1 and 4, Findlay (2003); Docherty et al. (2006); Bambakidis et al.
(2024)).

In our analyses, we first identified ecologically and statistically meaningful relations between reac-
tivemicrobes andDOMMFalong the sampled FWWAgradient out of the vast numbers of potential
correlations that exist between allMF andOTUs across thewatershed (Fig. S2.8). We subsequently
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attempted to parse out which of these meaningful relationships were potentially causal patterns
versus merely correlational (Fig. 2.7). Many spurious relationships were filtered out by our conser-
vative modelling approach and correlation filtration step that removed relationships that did not
have the same relationship sign as would be expected (e.g., increasing OTU x increasingMF = posi-
tive relationship). Although these conservative filtration steps were put in place, it is impossible to
completely remove significant relationships that emerge due to strong spatial or seasonal patterns
observed along a gradient in both MF and OTUs. For example, when a MF has a strong positive
trend along the FWWA gradient and is correlated against ubiquitous microbial OTUs that have a
slight downward or upward trend, significant correlations will be found by virtue of strong spatial
gradients. At the same time, many causal relationships may not be captured due to the transient
nature of highly reactive compounds (Cory and Kaplan, 2012; Pollard, 2013). What we are able to
measure in the environment are likely products of partial-degradation (i.e., by-products or left-
overs, Tranvik (1992); Fasching et al. (2014); Cory and Kling (2018)). Hence, we are more likely to
identify mere correlational patterns over true causal relationships. The correlational patterns that
we often examine using nodes and links in network analyses (Zhou et al., 2021; Hu et al., 2022),
cannot distinguish between such nuanced DOM-microbial relationships.

By examining in detail the above-average contributions between correlations of various DOM clus-
ters and microbial phyla, we were able to gain some insight on which relationships that we iden-
tified could be potentially causal versus correlational. The clearest observation we made from
our analysis is that seasonality plays a major role in determining the nature of the links that exist
between microbes and DOM compounds. In spring, we found that some microbial phyla were
potentially degrading fresh, aromatic DOM with high N content and small molecular size (cluster
1), especially in high water age systems generating a causal pattern typical of microbial degra-
dation (Fig. 2.8, panel 2). Although terrestrial DOM has long been thought to be mostly recalci-
trant (Moran et al., 1991; Smith and Hollibaugh, 1993), our results add to evidence that suggests
widespread microbial consumption of terrestrial DOM (McLaughlin and Kaplan, 2013; Wiegner
et al., 2015; Fitch et al., 2018), especially of small molecular size (Berggren et al., 2010). These
terrestrial inputs have been shown to be elevated during the spring freshet (Spencer et al., 2008;
Berggren et al., 2010). It is noteworthy, however, that DOM cluster 1 contributed to all correlation
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categories. These results may indicate that only some compounds within cluster 1 are available
for microbial degradation, whereas others evade degradation for reasons unclear in our study
and may be continuously loaded, therefore generating correlational patterns with microbes that
both increase or decline along the continuum (Fig. 2.8, panels 1 and 3). DOM cluster 2 was also
only associated to microbes in spring, and its appearance in only one correlation category may
imply that this large molecular weight, low N, fresh and phenolic/highly oxygenated pool likely
degrades as non-aquatic microbes decay along the water age gradient. These compounds may be
diluted or photo-degraded along the water age continuum (Cory and Kling, 2018; Grasset et al.,
2024), generating likely a correlational pattern (Fig. 2.8, panel 4). Lastly, DOM cluster 5, charac-
terised by high N, small molecular size, aliphatic-like and decomposed nature was found to select
for certain microbial phyla (Fig. 2.8, panel 1), implying that these compounds may not be avail-
able to a wide array of microbial taxa (Gómez-Consarnau et al., 2012; Logue et al., 2016). Given
that they increase synchronously along the water age gradient, it may also represent the endpoint
of a DOM degradation state (Hutchins et al., 2017; Kellerman et al., 2018) that corresponds to a
spatial succession of microbial communities (Read et al., 2015; Hassell et al., 2018; Wisnoski and
Lennon, 2021) associated to the DOM processing state in spring, where succession senescence oc-
curs in high WRT systems with the accumulation of more decomposed DOM (Hosen et al., 2021).
Regardless, these potential relations would represent a causal relationship (Fig. 2.8, panel 1). In
contrast to spring, summer DOM correlations were clearly dominated by clusters 3 and 4. Our re-
sults suggest degradation of cluster 3 by multiple phyla, indicating that these medium sized, high
N, high NOSC, olefinic andmid-decomposed compoundsmay stimulatemicrobial growth, and this
underlies what we interpret as a potentially causal relationship (Fig. 2.8, panel 2). The lack of cor-
relations with fresher, less decomposed matter in summer may indicate that such compounds are
muchmore rapidly taken up and transformed (Pollard, 2013), hence, we are only able to observe a
DOM-microbial degradation relationship with mildly decomposed material that may have already
undergone bio- and photo-degradation (Lapierre and Giorgio, 2014; Cory and Kling, 2018). Lastly,
DOM cluster 4 (large molecular mass, olefinic-like, mildly decomposed, low NOSC) seems to se-
lect for certain microbial taxa in summer (Fig. 2.8, panel 1), similar to how cluster 5 acted in spring.
However, since the phyla involved in correlation category 1 (potentially DOM selection of taxa) for
cluster 4 and 5 are completely different, these DOMpools appear to be operating on a different set
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of phyla (Gómez-Consarnau et al., 2012; Logue et al., 2016). Both DOM clusters are decomposed,
stable, thermodynamically unfavourable compounds, however, they differ in their molecular size
and tendency to contain N. These results indicate that DOM of varying size may select for distinct
portions of the microbial community as has been described before in marine systems (Amon and
Benner, 1996; Varela et al., 2020). Additionally, cluster 4 may also be produced via microbial cell
death due to its positive correlation with the decline of some phyla (Fig. 2.8, panel 4). This finding
adds to evidence of compounds producedwithmicrobial cell death, such as amino acids (Kawasaki
and Benner, 2006) or humic-like compounds (Stadler et al., 2020). These compounds that may be
related to cell death are rather stable (low O/C) and thermodynamically unfavourable (low NOSC),
and hence may be rather recalcitrant as previously proposed (Nagata and Kirchman, 1999; Ogawa
et al., 2001).

Together, our results shed light on the intertwined nature of dissolved organic matter and micro-
bial community composition and address the conceptual difficulties of deciphering their interac-
tions along a hydrological continuum. By extracting the most reactive units within both assem-
blages and examining their interactions along a water age gradient, we were able to discern a few
potential causal relationships between portions of the DOM pool with various microbial phyla.
It seems that the high influx of fresh terrestrial organic matter in spring, allowed us to identify
microbial-DOM degradation dynamics involving fresh, highly available compounds, while the re-
maining decomposed, stable compounds selected for a specific community composition in high
water age and WRT systems. In summer, however, no direct link of fresh DOM was found with
microbes, but rather with mid-sized, partially decomposed compounds. These results may imply
that higher temperatures, lower flow rates and longer periods since a last pulse of fresh terres-
trial DOM (Raymond et al., 2016) may have exhausted the fresh terrestrial DOM pool, whereas
fresh autochthonous primary production is too quickly processed to be detectable in our sam-
pling timescales (Pollard, 2013). Hence, degradation correlations found in summer likely repre-
sent transformation products of the most degradable DOM compounds, that are still accessible
to microbial metabolism. Our comprehensive, watershed-scale study exemplifies how individual
relationships between high-resolution microbial and DOM assemblages can be extracted and in-
terpreted, when put together into a holistic conceptual framework that accounts for ecological,
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and hydrological dynamics in both DOM and microbial assemblages.
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2.8 Supplementary Information
2.8.1 Hydrological estimates
To visualise and study the spatial patterns of microbes and molecules along a true hydrological
continuum, flow-weighted water age (FWWA) was estimated for the studied watershed. FWWA
represents the average time water takes to arrive at any given point in the hydrological network.
A digital elevation model (18 x 18 m) was obtained from GeoGratis Canada (Natural Resources
Canada, 2017) to delineate the watershed and calculate metrics such as flow accumulation, flow
length, and pixel area using the Spatial Analyst Toolbox in ArcMap (v10.7.1, ESRI Inc., Redland, CA,
USA). A flow accumulation threshold of 3,000 pixels was used to identify the stream network.
Flow accumulation was converted to catchment area by multiplying it by the pixel area

2.8.1.1 Reconstruction of a true hydrological network
To our knowledge there are no attempts to estimate FWWA within a watershed by considering
the various ecosystems (i.e., lentic versus lotic systems) within a hydrological network, and they
commonly assume that there are no lentic systems. To reconstruct a ’true’ hydrological network,
we first identified which pixels were lentic or lotic systems by overlaying the HydroLAKES (Mes-
sager et al., 2016) and reservoir (Hydro-Québec) polygons to the stream network and applied a
buffer of 0.004 degrees. To identify the downstream pixel for each pixel in the watershed, we
sorted the stream network by flow length (Flow length tool in ArcMap) within unique reach IDs
assigned to stream vertices (Stream to Feature tool in ArcMap). To identify downstream pixels
at confluences, unique node connection IDs that connect two stream reaches were utilised (ex-
tracted from Stream to Feature tool in ArcMap). Once the ecosystems along the stream network
and the flow path were identified, tributaries into lakes and reservoirs were identified by finding
pixels of ecosystem shifts (e.g., fluvial to lake) along the stream network. The lake/reservoir main
inlet was identified as the tributary with the longest flow length. Similarly, the lake/reservoir out-
let was identified as the pixel within the lake/reservoir with the longest flow length. The main
channel for each lake and reservoir was subsequently identified by tracking the inlet reach down-
stream until the outlet. Other reaches that flow within lentic systems were not considered for
subsequent water age calculations, and hence the identified tributaries’ confluence was moved
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onto the main channel of the lentic system (Fig. S2.2). Hydrological network sorting, and identify-
ing the flow paths, tributaries, lake inlets and outlets were programmed in R (v.4.3.1, R Core Team
(2024)).

2.8.1.2 Fluvial discharge, velocity and residence time
Discharge and velocity were measured in a few streams ranging Strahler orders 1-4 within two
headwater sub-watersheds (Petite Romaine and Bernard) in 2015/2016 and 2021/2022, respec-
tively, using a 2-D Acoustic Doppler Velocimeter (FlowTracker, Sontek, San Diego, CA, USA). Addi-
tionally, a few hydrological stations located at Strahler orders 5-7 were periodically measured for
discharge and velocity using a vessel mounted Acoustic Doppler current profiler (data provided
by Hydro-Québec, Montréal, QC, Canada). All May/June measurements were categorised as high
flow, while all other months were identified as low flow conditions. Combining these datasets
spanning over the years 2010-2022 and Strahler orders 1-7 (n = 103), we identified a model to
estimate discharge (Q) using catchment area (km2) by flow condition (Fig. S2.3a):

log Qhigh = 0.26 + 14.03× log CA− 1.96× log CA2

log Qlow = 0.26 + 14.03− 0.28× log CA− 1.96× log CA2

where CA is catchment area in km2 and Q is discharge in m3 s-1 (R2 = 0.88). Discharge and catch-
ment area were log-transformed to fulfil model assumptions. Velocity was also estimated using
catchment area and flow condition as follows (Fig. S2.3b):

log vhigh = −0.49 + 3.22× log CA− 2.17× log CA2

log vlow = −0.49 + 3.22− 0.29× log CA− 2.17× log CA2

where CA is catchment area in km2 and v is velocity in m s-1. Although the R2 was not particularly
high (R2 = 0.46), the magnitude of the measured velocity as well as the relationship of velocity
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among Strahler orders found in the empirical data was captured with this model (Fig. S2.4). These
twomodels were themost accurate and parsimonious solutions in comparison to directly calculat-
ing velocity from estimated channel cross-sectional area and discharge. WRT in each fluvial pixel
(WRTpx) was estimated by dividing the pixel length by the estimated local velocity.

2.8.1.3 Reservoir water residence time
To estimate WRTpx within the reservoir, the overall water residence time within the reservoir was
calculated for each month. Daily water level measurements for the reservoir were transformed
into volume estimates using a conversion key provided by Hydro-Québec. The conversion key was
implemented using a general additive model (GAM) approach as the relationship between water
level and volume was not linear (data not provided). Discharge stations located at the turbine
and overflow (water not used for electricity production) of the reservoir were used to calculate
the daily outflow from the reservoir. Daily estimates were averaged by month and monthly water
residence time was computed as:

WRTReservoir =
V

Qout

where V represents reservoir volume in m3 and Qout the discharge at the outflow in m3 s-1. Subse-
quently, the monthly reservoir WRT was divided by the number of pixels along the main channel
of the reservoir to estimate the WRTpx along the main channel.

2.8.1.4 Lake water residence time
Due to the lack of data for remote lakes sampled in the watershed, WRT estimates were taken
from the HydroLAKES dataset (Messager et al., 2016). Similarly to reservoir estimates, the overall
WRT in the lakes was divided by the number of pixels along the main channel flowing through the
lake to estimate WRTpx.
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2.8.2 Modelling and classifying spatial patterns
Before modelling spatial patterns, the dataset was filtered by each sampling campaign. Extreme
outlier observations of an operational taxonomic unit (OTU) or molecular formula (MF) were re-
moved (values above or below 3 times the interquartile range), MF and OTUs with less than 8 and
7 observations, respectively, within a campaign were removed (based on histogram observations).
Observations were z-scaled for each OTU and MF per campaign.

Prior to the modelling exercise, observations were binned and averaged at a 50-day interval along
the water age gradient. A MF and OTU was only considered for modelling if more than 3 bins
recorded an actual observation. To allow various dynamic patterns to bemodelled, we established
a decision tree that selects the best model for individual MF and OTUs along the FWWA gradient
(illustrated in Fig. S2.5). The decision tree starts with first fitting a linearmodel and then comparing
it to polynomial (2nd and 3rd order) andGAMmodels usingmaximum likelihood estimation (gam()

function; mgcv package; Wood (2011)). Each bin was weighed by its corresponding number of
observations. The best model was selected based on the smallest Akaike Information Criterion
(AIC). If the model with the smallest AIC was a non-linear model, non-linearity was justified by
testing it against the linear model using a χ2-test (anova();mgcv package; Wood (2011)). Once the
best model was selected, model statistics such as p-value and R2 were extracted. The slope of the
initially fit linearmodel was extracted regardless of whichmodel typewas selected to aid in spatial
pattern classification described below. For all non-linear models, the 2nd derivative was utilised to
find peak locations along the FWWA gradient.

All linear models that had a positive slope were classified as ’increase’, while all linear models with
negative slopes were identified as ’decrease’. All non-linear models were first classified by their
number of peaks. Models with a single peak were classified by where their peak was located. For
each model, the centre along their respective water age range was identified. Subsequently, a
buffer area was defined around the centre by adding and subtracting 1/6 of the FWWA range to
the centre. If a peak was located within the buffer area, the model was classified as ’unimodal’. All
other one-peakmodels were classified as ’non-linear decrease’ if their peakwas located below the
FWWA range centre and models with their peak located higher than the FWWA range centre was
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classified as ’non-linear increase’. Any non-linear models with more than one peak were classified
as multimodal increase and decrease when their linear model slope was positive and negative,
respectively. Non-linear and multimodal spatial patterns were merged depending on the analysis.
All models that had a slope of 0 or did not return a p-value were removed from downstream
analyses.

2.8.3 Supplementary figures

Figure S2.1: Schematic representation of flow-weighted water age calculation. Stream colours represent
Strahler order. Within lakes only the coloured channel was considered when calculating flow-weighted
water age (= main channel). The white channels’ pixels were skipped during the cumulative calculation.
Hence, the FWWA until the confluence to the lake (yellow arrow) was summed to the main channel where
the side channel merges into the main channel (yellow point).
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Figure S2.2: Hydrological models used to estimate water age in the watershed. a) Log-transformed dis-
charge as a function of log catchment area in km2. Model equations by flow condition are given in blue
for high and brown for low flow. b) Log-transformed velocity as a function of log catchment area. Model
equations are likewise given by flow condition. Various point shapes indicate the source of empirical mea-
surements used to construct models. Petite Romaine and Bernard are sub-watersheds of La Romaine wa-
tershed, representing small headwater watersheds. Hydro-Québec data capture larger rivers within the
watershed.
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Figure S2.3: Measured versus estimated discharge and velocity by Strahler order. Diamonds indicate
the median estimated value for each Strahler order and flow condition using the models presented in fig-
ure S2.2. Boxplots represent the measured discharge (a) and velocity (b) within the watershed. Blue and
brown colours indicate high and low flow, respectively. The boxplot middle line represents the median,
lower and upper hinges correspond to the 25th and 75th percentiles. Upper and lower whiskers expand to
the largest and smallest value, respectively, no further than 1.5 times the inter-quartile range (IQR) from the
hinge. Outliers are depicted as points.
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Figure S2.4: Flow chart illustrating decision tree utilised in modelling framework. Steps in the depicted
decision tree were followed to find the best fitting model to characterise the spatial pattern for each oper-
ational taxonomic unit (OTU) and molecular formulae (MF) for each season and year. Grey boxes indicate
steps involving decisions based on statistical information.
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Figure S2.5: Distribution by ecosystem range for all spatial patterns. Soil includes soilwater and ground-
water sites. Lake indicates any MF/OTU observed beyond the flow-weighted water age at the river mouth.
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Figure S2.6: Unweighted UniFrac phylogenetic distance among spatial patterns in bulk and reactivity

pools of microbial dataset. Non-metric multidimensional scaling (NMDS) of unweighted UniFrac distance
on presence-absence transformed community matrix of microbial OTUs. Spatial patterns are distinguished
by colour, reactivity pools (unreactive versus reactive) are depicted as different sizes in points as well as
surrounded by polygons.
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Figure S2.7: Chemical metrics used in hierarchical clustering analysis and their distribution among iden-

tified clusters. Given are chemical metrics such as the number of elements within a molecular formula (C
= carbon, H = hydrogen, O = oxygen, N = nitrogen), mass (inmz), elemental ratios (H/C, O/C, C/N) and indi-
cators of aromaticity (AImod) as well as nominal oxidation state of carbon (NOSC). Middle lines of boxplots
represent the median, while the upper and lower hinges represent the 25th and 75th percentiles. Upper
and lower whiskers expand to the largest and smallest value, respectively, no further than 1.5 times the
inter-quartile range (IQR) from the hinge. Outliers are depicted as points. Clusters are identified as colours.
The distribution of data is additionally depicted in the cluster colours around the boxplots.
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Figure S2.8: Proportion of significant positive and negative relationships between microbial and molecu-

lar spatial patterns. Percentages are given for the total number of correlations by pool (bulk versus reactive)
and spatial pattern combinations.
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2.8.4 Supplementary tables
Table S2.1: Number of overall (n) and uniquemicrobial OTUs and DOMmolecular formulae per campaign.

Microbial DOM
Year Season n unique n unique
2015 Spring 2,110 447 7,390 66
2015 Summer 2,160 482 7,360 92
2016 Spring 1,515 176 8,163 0
2016 Summer 1,550 238 13,069 4,030

Table S2.2: Averages and standard deviations of chemical indices for identified molecular formulae clus-

ters.

Cluster Mass (m/z) H/C O/C C/N AImod NOSC
1 392.6± 86.5 0.9± 0.3 0.6± 0.2 16.5± 5.1 0.5± 0.2 0.5± 0.4
2 691.9± 102.7 0.9± 0.2 0.6± 0.1 30.5± 4.9 0.4± 0.2 0.4± 0.3
3 556.2± 95.3 1.1± 0.2 0.6± 0.2 20.5± 7.1 0.2± 0.2 0.3± 0.3
4 693.0± 136.8 1.3± 0.2 0.5± 0.1 33.4± 6.6 0.2± 0.1 -0.5± 0.4
5 402.7± 79.7 1.5± 0.2 0.5± 0.2 18.6± 3.6 0.1± 0.1 -0.5± 0.4
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3.1 Abstract
Microbial metabolism is a key driver of global carbon cycles, yet its regulation across aquatic net-
works remains poorly understood. Here, we explore links between microbial metabolism, com-
munity composition, and dissolved organic matter (DOM) across streams, rivers, lakes, and reser-
voirs in a boreal watershed over three seasons. Results reveal that various dimensions of micro-
bial metabolism are differently modulated by environmental and hydrological changes, as well
as microbial community composition, with weakest associations found to DOM composition. The
whole aquatic network was characterised by generally higher bacterial respiration (BR), extremely
low bacterial production (BP) and consequently low bacterial growth efficiency (BGE) in spring.
In contrast, summer and autumn exhibited elevated BP and BGE, particularly in fluvial and lake
ecosystems, while BR remained stable in these systems across all seasons. Mid-molecular sized,
highly oxygenated DOM compounds were associated with higher respiration and BGE, whereas
bulk and active microbial community composition linked to BP. Substrate utilisation patterns (Bi-
olog EcoPlates) varied across habitats and seasons, with lake and reservoir communities generally
favouring slower, sustained consumption, whereas streams and rivers showed rapid utilisation of
many substrates. These patterns correlated with seasonal shifts in microbial community structure
and terrestrial DOM composition. Collectively, our findings emphasise the interconnected roles of
microbial communities, DOM composition, and environmental drivers in shaping metabolic pro-
cesses across the entire aquatic network, providing insights for biogeochemical modelling.

3.2 Introduction
Each year, approximately 5.4 petagrams of carbon (C) enter inland waters, mostly transported
from land to aquatic ecosystems (Drake et al., 2018). Through transformation, degradation, utili-
sation and trophic transfer, the microbial communities that inhabit these aquatic ecosystems col-
lectively influence the processing and fate of this carbon and hence play a key role in the C bud-
get on a global scale (Tranvik, 1992; Battin et al., 2009). Often referred to as engines of ecosys-
tems (Falkowski et al., 2008), heterotrophic bacteria have yet to be effectively represented in earth
systemmodels despite major advances in molecular approaches (American Society for Microbiol-
ogy, 2023; Lennon et al., 2024). Microbial gene abundances (Rocca et al., 2015) and community
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composition (Bier et al., 2015) often fail to predict biogeochemical processes better than environ-
mental factors alone (Hall et al., 2018). Whereas efforts to documentmicrobial diversity (Locey and
Lennon, 2016; Thompson et al., 2017) or reconstruct genomes (Garner et al., 2023; Borton et al.,
2025) across temporal and spatial scales have expanded greatly, there has beenmuch less focus on
quantifying heterotrophic microbial metabolism and its underlying drivers in recent years. Studies
that have attempted to link microbial community composition metrics to process rates have had
the tendency to focus on microbial processes that are tied to specific functional taxa (i.e., phylo-
genetic conservatism; Schimel et al. (2005)). For instance, methanogenesis and methanotrophy
are primarily performed by narrow phylogenetic groups, enabling direct linkage of process rates
to the presence and abundance of the specific microbial taxa involved (e.g., Reis et al. (2020);
Bertolet et al. (2019). However, predicting broader metabolic processes that are shared among
most microbial taxa using genomic data has proven a major challenge (Langenheder et al., 2005;
Severin et al., 2014).

Bacterial respiration (BR) and biomass production (BP) are among the most fundamental micro-
bial processes in all aquatic ecosystems. Both are key components of the C cycle, the former
contributing to CO2 emissions that are relevant on a global scale (Berggren et al., 2012), and the
latter building the basis of aquatic food-webs (Cole et al., 1988). In turn these two processes repre-
sent different fates of the total organic matter consumed by aquatic microbial communities (often
referred to as bacterial C demand, or BCD), and which represents a direct link between bacterial
metabolism and organic carbon cycling in aquatic ecosystems. This is a complex and bi-directional
link: microbes influence the organic matter pools in aquatic ecosystems through their selective
consumption and subsequent transformation (Guillemette et al., 2016; Logue et al., 2016), and
production of new substrates (Berggren et al., 2019; Bello et al., 2021). Yet, the size and nature of
the ambient DOM pools influence microbial C consumption (Eiler et al., 2003; Logue et al., 2016;
Casas-Ruiz et al., 2016; Catalán et al., 2021), community composition (Docherty et al., 2006; Mus-
carella et al., 2019) and various other aspects of microbial metabolism (Lennon and Pfaff, 2005;
Fasching et al., 2020; Rodibaugh et al., 2020). Since DOM source and composition may also influ-
ence bacterial structure (Judd et al., 2006; Kritzberg et al., 2006), it is possible that the link found
between microbial metabolism and DOM may be mediated rather by shifts in community com-
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position. The links between the three (i.e., bacterial metabolism, community composition and
DOM), however, may emerge only at levels that resolve their complexity in more detail. For exam-
ple, most studies that link DOM composition to bacterial metabolism and community structures
use either bulk (i.e., total DOC; Findlay et al. (1998); Eiler et al. (2003); Maranger et al. (2005);
Jansson et al. (2008)) or coarse measurements of DOM quality (i.e., allochthonous versus au-
tochthonous; Kritzberg et al. (2005); Attermeyer et al. (2013); Rodibaugh et al. (2020); Berggren
et al. (2023); Mao et al. (2025)). Many studies that link microbial structure to metabolism have
recently incorporated high-resolution approaches (Roiha et al., 2016; Mao et al., 2025) compared
to traditionally used coarse genomic methods (Eiler et al., 2003; Kritzberg et al., 2006). However,
very few have distinguished between the bulk and active community composition (Severin et al.,
2014). To our knowledge, there are no studies that have attempted to link the three components
using high-resolution approaches to answer if a more detailed understanding of microbial com-
munity and DOM composition can explain variations in microbial metabolism.

Another often overlooked aspect of microbial metabolism are the various dimensions associated
to it. Beyond BP, BR and BCD, the performance of aquatic microbial communities can be charac-
terised by community-level physiological and bioenergetic properties such as substrate utilisation
capabilities, bacterial growth efficiency (BGE) and bacterial growth rates, which provide additional
information on how communities utilise and channel organic C resources (Comte and del Giorgio,
2011). Some of these metrics are measured from ambient samples, and hence, represent realised
rates and properties in the environment. Other properties assess the community’s potential to
grow and produce biomass when ecological constraints such as predation and within-community
competition for resources are reduced (i.e., increases in biomass and changes in protein synthesis
as measured in filtered or diluted incubations). Many studies to date only look at one metabolism
metric (Cole et al., 1988; Judd et al., 2006; Lindström et al., 2010), or one C pathway (i.e., pro-
duction metrics; Berger et al. (1995); Gasol et al. (2002)) at a time. Studies that have assessed
BGE and BCD, on the other hand, have generally measured both BP and BR (Kritzberg et al., 2006;
Hall and Cotner, 2007; Lennon and Cottingham, 2008; Berggren et al., 2009), yet very few stud-
ies evaluate multiple metabolism metrics beyond these classic variables (Comte and del Giorgio,
2009; del Giorgio et al., 2011). The ensemble of metabolic properties provides additional infor-
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mation on how communities utilise and allocate organic C resources, and these multiple aspects
of microbial metabolism and physiology are not necessarily regulated by the same factors (del
Giorgio et al., 2011). Each metabolic component may link to microbial community composition,
DOM and environmental factors differently, along environmental gradients, and the coupling or
de-coupling of these metabolic dimensions to each other and to the various drivers provide in-
sight on community-level constraints, and survival, resource acquisition, and bioenergetic strate-
gies (Gasol et al., 2008).

The various dimensions of microbial metabolism often do not vary drastically within the same
ecosystem (Tranvik andHöfle, 1987; Kroer, 1993). Hence, it is oftennecessary to evaluatemetabolism
across large spatial (Benner et al., 1995; Biddanda et al., 2001; del Giorgio et al., 2006) and/or tem-
poral gradients (Roland and Cole, 2000; Baña et al., 2020) or compare multiple types of ecosys-
tems (del Giorgio and Cole, 1998), to establish how changes in metabolism may link to microbial
community or DOM composition. Previous attempts that did not find strong links between micro-
bial metabolism and DOM (Berggren et al., 2023) or microbial composition (Comte and del Gior-
gio, 2011; Fonte et al., 2013; Becker et al., 2017) may simply have lacked sufficient environmental
breadth and therefore large enough changes in metabolism to detect any such links. Intercon-
nected streams, rivers and lakes represent very different hydrological, environmental and ecolog-
ical scenarios for microbial communities, and often present large DOM gradients (Raymond et al.,
2016; Hosen et al., 2021), and therefore, likely result in large shifts in bacterial metabolism as well.
Hence, aquatic networks within watersheds at a regional scale represent an effective unit to ex-
amine shifts in bacterial metabolism due to their large environmental and hydrological gradients,
and their coverage of multiple ecosystem types (i.e., lotic versus lentic). To date, comprehensive
studies evaluating changes in the various dimensions of microbial metabolism across a diverse set
of interconnected aquatic ecosystems and seasons are scarce (Comte and del Giorgio, 2009). To
gain a holistic understanding of heterotrophic microbial metabolism in aquatic ecosystems and its
potential links to DOM and microbial community composition, it is crucial to examine how the
various aspects of microbial metabolism change across multiple hydrological, environmental, and
biological conditions.
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Here we present the results of an integrated, watershed-scale study of how the various aspects of
aquatic heterotrophicmicrobialmetabolism (i.e., bacterioplanktonproduction, respiration, growth
efficiency, growth rates, among others) relate to changes in environment, hydrology, DOM and
microbial community composition along an entire aquatic network. The sampling design covered
streams and rivers of Strahler orders 1-7 and lentic systems including lakes and reservoirs, and
sampling was carried out over three seasons. To characterise microbial community composition,
we sequenced DNA and RNA taxonomic markers to evaluate shifts in both bulk and active com-
munities. A high-resolution approachwas additionally utilised to examine DOMcomposition using
Fourier-transform ion cyclotron mass spectrometry (FT-ICR MS). DOM and microbial composition
analyses were complemented with measurements of microbial consumption patterns of various
carbon substrates (Biolog EcoPlates). Our comprehensive study culminated in seven data matri-
ces, namely environmental factors, hydrology, DNA, RNA, DOM molecular composition, carbon
utilisation profile (CUP) andmicrobial metabolismmetrics. Multivariate analyses allowed us to re-
late shifts across habitats and seasons within each matrix to the various dimensions of microbial
metabolism and elucidated that the various dimensions of microbial metabolism link to microbial
community, and DOM composition differently.

3.3 Material and methods
3.3.1 Sampling and environmental characterisation
Samples were taken within La Romaine river watershed (Côte-Nord, QC, Canada) in 2018 3.1. For
detailed catchment characteristics refer to Stadler and del Giorgio (2022). In brief, the catchment
has an area of ∼14,500 km2, the main river extends to 475 km and is part of the boreal black
spruce-moss bioclimatic domain. The river emerges as a Strahler order 6 from the largest lake
in the northern part of the catchment and flows through a series of recently commissioned hy-
droelectric reservoirs, RO3, RO2 and RO1 (ordered from most upstream to downstream). In 2018,
RO2, RO1 and RO3 were three, two and one year old, respectively. The river turns into a Strahler
order 7 during its passage through RO3. Several smaller streams ranging Strahler orders 1-5 were
sampled before their confluence into the main river. Three seasonal campaigns were conducted
yielding in 48, 55 and 55 samples taken for DOM, DNA and RNA in spring, summer and autumn,
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respectively (total n = 158; 3.1). A subset of 102 samples was used to determine respiration, 150 for
bacterial production, 131 for carbon substrate utilisation, 84 for DOM biodegradability, and 77 for
DOMphotodegradability assays. Detailed processing and incubation protocols are outlined within
the microbial methods section.
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Figure 3.1: Map of La Romaine watershed with samples taken in 2018. Colours indicate habitat types and
point size represents how many datasets were collected for each site. The datasets were: Environment,
DNA, RNA, DOM, carbon utilisation profile and microbial metabolism processes.
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Surface water temperature (°C), conductivity (µS cm-1), pH, and dissolved oxygen (O2) satura-
tion (%) were measured at each sampling site using a multiparameter probe (600XLV2-M, Yellow
Springs Instruments, OH, USA). Air temperature (°C), wind speed (m s-1), relative humidity (%) and
atmospheric pressure (Mb), measured at 1 metre above the water surface, were recorded with a
handheld weather meter (Kestrel Meter 4000, PA, USA). Additionally, surface water samples were
collected at each site in 5-litre polypropylene bottles for all downstream water analyses. These
samples were processed on the same day and stored under refrigeration until analysis. Alkalinity
(mEq L-1) was determined via titration with HCl within two days of sampling. All other chemical
analyseswere conducted at the analytical laboratory of theGroupe de recherche interuniversitaire
en limnologie (GRIL) at Université du Québec à Montréal, Montréal, Québec, Canada. For chloro-
phyll a (Chla; µg L-1) analysis, 1L of water was filtered in duplicates using GF/F filters (Whatman,
Kent, UK), stored at –20°C and extracted with 90% ethanol, and quantified by spectrophotometry
following acidification (measured at 665 and 750 nm, Ultrospec 2100 pro, Thermo Fisher Scientific
Inc., Waltham, MA, USA; Lorenzen (1967)). Total phosphorus (TP; µg L-1) and total nitrogen (TN;
mg L-1) concentrations were analysed in duplicates and determined through spectrophotometric
methods after digestionwith potassiumpersulfate (Ultrospec 2100pro, BiochromLtd., Cambridge,
UK; Wetzel and Likens (2000)) and alkaline persulfate (Flow Solution 3100, OI Analytical, College
Station, TX, USA); Patton and Kryskalla (2003)), respectively. Ammonium (NH4; µg L-1) samples
were analysed using a chloramine reaction with salicylate to form indophenol blue dye (Flow So-
lution 3100, OI Analytical, College Station, TX, USA; EPA Method 350.1). Dissolved organic carbon
(DOC; mg L-1) and dissolved inorganic carbon (DIC; mg L-1) samples were filtered through 0.45 µm
polyethersulfone cartridges (Sarstedt AG & Co., Germany), stored at 4°C in the dark, and analysed
via high-temperature persulfate oxidation using a total carbon analyzer (TOC1010, OI Analytical,
USA). Additionally, the water was analyzed for the isotopes 18O and 2H using a laser spectroscopic
technique designed for liquid water analysis at the Light stable isotope geochemistry laboratory
of the GEOTOP at the Université du Québec à Montréal (LGR DT-100 Liquid Water Stable Isotope
Analyser, Los Gatos Research Inc., Mountain View, CA, USA).
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3.3.2 Hydrological characterisation
To separate environmental drivers from hydrology, several hydrologic metrics were extracted or
estimated for the watershed. A digital elevation model (18 x 18 m resolution) was retrieved from
GeoGratis Canada (Natural Resources Canada, 2017) to define thewatershed boundaries and com-
putemetrics such as flow accumulation, flow length, Strahler order and pixel area using the Spatial
Analyst Toolbox in ArcMap (v10.7.1, ESRI Inc., Redland, CA, USA). The stream network was delin-
eated using a flow accumulation threshold of 3,000 pixels. To derive catchment area (CA), flow
accumulation values were multiplied by the pixel area.

Discharge and velocity measurements were collected from streams of Strahler orders 1-4 within
two headwater sub-watersheds (Petite Romaine and Bernard) during the years 2015/2016 and
2021/2022, using a 2-D Acoustic Doppler Velocimeter (FlowTracker, Sontek, San Diego, CA, USA).
Additional hydrological measurements at stations located in rivers of Strahler orders 5-7 were per-
formed periodically using a vessel-mounted Acoustic Doppler current profiler, with data provided
by Hydro-Québec (Montréal, QC, Canada). High flow conditions were assigned to measurements
taken in May and June, while measurements from other months were categorised as low flow
conditions. By integrating data from 2010 to 2022 across Strahler orders 1-7 (n = 103), a model was
developed to estimate discharge (Q) based on catchment area (km2) under different flow condi-
tions (log Qhigh = 0.26 + 14.03× log CA− 1.96× log CA2; log Qlow = 0.26 + 14.03− 0.28×

log CA − 1.96 × log CA2; R2 = 0.88). Velocity (v) was also modelled using the same dataset us-
ing catchment area and flow conditions (log vhigh = −0.49 + 3.22 × log CA − 2.17 × log CA2;
log vlow = −0.49 + 3.22 − 0.29 × log CA − 2.17 × log CA2; R2 = 0.46). For details refer to
supplementary material in chapter 2 (SM 2.8).

Flow-weighted water age (FWWA) was calculated by adapting Peter et al. (2020) to incorporate
both lentic and lotic systems into the concept of flow-weighted travel time. Theprocedure involved
distinguishing lentic and lotic systems along the river network, estimating water residence time
(WRT) for each ecosystem separately, cumulatively summing the residence time along the flow
path and weighing the FWWA at each stream confluence by the discharge of the merging streams
(details in supplementary material of chapter 2; SM 2.8). WRT for lakes was retrieved from the Hy-
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droLakes database (Messager et al., 2016) and was calculated for reservoirs using daily water level
data (Hydro-Québec, Montréal, Canada). The overall ecosystem WRT was divided by the number
of pixels along the main channel to retrieve WRT within each pixel (WRTpx). To estimate FWWA
in lotic systems, WRTpx was calculated by estimating velocity by catchment area (see models in
chapter 2), and dividing the length of the pixel by the modelled velocity in each pixel. The velocity,
WRT and FWWA reflect seasonal changes, as well as local ecosystems (i.e., lentic versus lotic). To
evaluate the average age of water in each ecosystem and sampling point, an isotopic approach
using oxygen and hydrogen was implemented. The delta (δ) values for isotopic composition were
calculated using the formula:

δ18O or δ2H = (
Rsample −Rstandard

Rstandard

)× 10, 000

Here, Rsample and Rstandard represent the ratio of heavy to light isotopes (18O:16O or 2H:1H) in the
samples and standards (Vienna StandardMeanOceanWater – VSMOW), respectively. The isotopic
composition of the water was then used to calculate the deuterium excess (d-excess; Dansgaard
(1964)):

d− excess = δ2H − 8× δ18O

D-excess serves as an index for water evaporation, with higher d-excess indicating less evaporated
water, which is characteristic ofmore recent precipitation (Turner et al., 2014). During evaporation,
water becomes enriched in deuterium (resulting in low d-excess) compared to precipitation, which
is less enriched in deuterium (resulting in high d-excess).

3.3.3 DOM characterisation using FT-ICR MS
For high-resolution characterisation of theDOMpool, sampleswere filteredusing0.45µmpolyether-
sulfone filters (Sarstedt, Germany) and subsequently stored in 125 mL polypropylene bottles at
-20°C until they were ready for solid-phase extraction. The volume of the sample processed
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through the PPL cartridges was adjusted based on the DOC concentration to ensure that 40 µg
of carbon could be extracted. The extraction process involved rinsing the cartridges with Milli-Q
water at pH 2 (acidified with concentrated HCl) and conditioning them with methanol overnight.
A series of methanol and acidified Milli-Q water steps followed, concluding with the elution of
DOM using methanol into pre-combusted amber glass vials (Dittmar et al., 2008). The vials were
then stored at -20°C in the dark until the DOM solid-phase extracts could be analysed at the Wa-
ter Quality Centre at Trent University (Peterborough, Canada), using a 7 tesla Bruker SolariX XR
Fourier transform-ion cyclotron resonance mass spectrometer (FT-ICR MS, Billerica, MA, USA).

External calibration was performed daily before analysis, employing electrospray ionisation (ESI)
and sodium trifluoroacetate (NaTFA, 0.1 mg mL-1 in methanol) in negative ion modes. Data acqui-
sition was controlled with Bruker ftms Control software (v2.1.0) across a mass range of m/z 200 to
1,000, and the data were exported using the Bruker Compass DataAnalysis software (v5.0). Each
sample was injected at a flow rate of 120 µl h-1 to acquire 300 spectra scans. Molecular formulae
were assigned to quality-inspected masses using the protocols outlined by the ICBM-OCEAN tool,
a platform for processing DOMmass spectra (Merder et al., 2020). Only molecular formulae listed
in the theoretical molecular formulae list ranging the elemental composition of C4-100, H4-200, O1-70,
N0-4, S0–2, P0-1 were considered. All samples were analysed using the same equipment, following
the same protocol, within the same month. To ensure the quality of our samples, we excluded
samples with sum intensities below 50 and summed peak intensities of isotopic isomers. Molec-
ular formulae with O/C ≤ 1.2 and H/C ≤ 2.2 (Hawkes et al., 2020), and double bond equivalents
minus oxygen (DBE-O) ≤ 10 (Herzsprung et al., 2014) were kept for downstream analyses. The
contribution of each formula to the total composition of a sample was determined by rescaling all
formula peak intensities so that the sum of peak intensities equalled 1.

To assess the degree of unsaturation in the samples, the modified aromaticity index (AImod) was
calculated based on themolecular formulae (Koch and Dittmar, 2006). Themetric aids in identify-
ing aromatic structures (AImod > 0.5) or condensed aromatic structures (AImod≥0.67). Additionally,
the nominal oxidation state of carbon (NOSC) was determined, where higher values signify com-
pounds that are more oxidised and thermodynamically favourable (Riedel et al., 2012).
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Molecular formulae were grouped into clusters according to their chemical similarities across nine
core structural and chemical metrics using unsupervised machine learning (i.e., hierarchical clus-
tering). These metrics included mass (mz), the number of carbon (C), hydrogen (H), oxygen (O),
nitrogen (N), sulfur (S) and phosphorous (P) atoms, as well as AImod and NOSC, which were ex-
tracted for each formula. The data were scaled, a distance matrix was computed using Euclidean
distances (dist() function, stats package (R Core Team, 2024)) and was then used for hierarchi-
cal clustering (hclust() function, stats package (R Core Team, 2024)). After evaluating the clusters
with the fviz_nbclust() function (factoextra package, Kassambara and Mundt (2020)) and exam-
ining the characteristic distributions (Fig. S3.1), four optimal clusters were selected. The clusters
were reorganised based on descending median NOSC values.

In addition, we conducted standardised biological and photochemical degradation experiments to
determine a concentration of degradable DOC that was independent of varying incubation condi-
tions, ensuring comparability across ecosystems and over time (Lapierre et al., 2013). The exper-
iments started on the same day as the sample collection. For biological degradation, water was
filtered through pre-combusted 2.7 µm pore-size GF/D filters (Whatman) to preserve the natural
bacterial community and used to fill a 500 mL acid washed glass bottle in duplicates. The water
samples were then incubated in the dark for 16 days at a constant temperature of 20°C, in the
dark, and samples were taken every 2 days and fixed with concentrated sulfuric acid (5N). DOC
lability was estimated as the average slope of the change in DOC concentration as a function of
the replicate incubations (mg C L-1 d-1). A portion of the filtered water was used for photochem-
ical degradation experiments, conducted in a solar simulator (Qsun XE1-BC, Qlab, FL, USA) under
a standardised light dose in 24 mm diameter quartz glass tubes arranged horizontally. It is as-
sumed that the intense UV exposure inhibited most bacterial growth and DOM utilisation within
the tubes. The exposure time (24 hours) and temperature (24°C) were consistent across all exper-
iments (Lapierre et al., 2013). Photodegradability is presented as the rate of DOC removed in one
day under these conditions (mg C L-1 d-1).
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3.3.4 Microbial community characterisation
Samples to enumerate bacterial abundance were fixed on the same day of sampling to a final
concentration of 1% Paraformaldehyde (PFA) and 0.05% Glutaraldehyde (G) and stored at -80°C
until analysis (del Giorgio et al., 1996). Prior to analysis, samples were thawed and stained with
SYTO 13 (Invitrogen, Waltham,MA, USA) diluted in dimethyl sulfoxide (DMSO; Stock concentration
2.5 µM). Samples were stained by adding 0.025% of the sample volume as SYTO 13 stock solution,
and subsequently vortexed and incubated in the dark at room temperature for 10 min (del Giorgio
et al., 1996). Stained samples were analysed on an Accuri C6 flow cytometer (BD Bioscience, San
Jose, CA, USA) with a sample flow rate of 14µLmin-1 using side scatter and green fluorescence (FL1-
H). If a sample exceeded the event counts of 800 s-1, the sample was diluted. Any measurement
above 700 on the FL1-H channel was considered as background noise.

For DNA and RNA community characterisation, water samples were filtered using a 0.22 µm poly-
carbonate filter and a peristaltic pump. RNA filters were submerged in RNAlater (Qiagen, Hilden,
Germany) and allowed to stabilise overnight at room temperature. All DNA and RNA samples were
initially frozen at -20°C at the field station, then transferred to -80°C storage at the university lab-
oratory until extraction. DNA and RNA were extracted using DNeasy and RNeasy PowerWater kits
(Qiagen, Hilden, Germany) according to the manufacturer’s protocols. RNA extracts were con-
verted to cDNA using a high-capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster
City, CA, USA). Subsequently, all samples were sent to the Génome Québec Innovation Center
(Montréal, QC, Canada) for paired-end sequencing of the 16S rRNA V4 region. Sequencing was
performed on a MiSeq platform (PE250, Illumina, San Diego, CA, USA) using primers 515F (5’-
GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’-GGACTACHVGGGTWTCTAAT-3’).

Detailed bioinformatic processing steps are described in Stadler and del Giorgio (2022). Briefly,
primers were removed from the 16S rRNA DNA and cDNA (referred to as RNA) sequences using
cutadapt (v1.18, Martin (2013)). Amplicon sequence variants (ASVs) were identified by processing
the 16S rRNA amplicon sequences through the DADA2 pipeline (v1.14.1, Callahan et al. (2016)). Tax-
onomic classification was carried out using the DECIPHER package (v2.14.0, Wright (2016)), which
applies the IDTAXA algorithm (Murali et al., 2018) and utilises theGTDBdatabase (Release 95, Parks
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et al. (2018)). To address anyminor discrepancies between DNA and RNA ASVs, as well as potential
differences in 16S rRNA gene copies within a single genome (Větrovský and Baldrian, 2013), ASVs
were clustered into operational taxonomic units (OTUs) based on a 99% similarity threshold. Any
OTUs present only in RNA (referred to as ’phantom’ taxa) were adjusted by replacing all instances
where RNA > 0 and DNA = 0 with DNA = 1 (Bowsher et al., 2019).

Observations, defined as the read count of an OTU within a sample, that were present in only
a single sample across each habitat type, season, and nucleic acid type combination (i.e., single-
tonswithin a factorial combination)were deemedunreliable if they contained fewer than 10 reads.
This method not only filters out singletons across the entire dataset but also removes those within
each sampling campaign that had insufficient read counts to be considered reliable. Additionally,
metagenomeSeq was employed to normalise and stabilise variations in library sizes using cumu-
lative sum scaling (CSS) (Paulson et al., 2013), resulting in what is referred to here as CSS reads.

3.3.5 Bacterial community metabolism
Respiration was measured for a subset of samples for which DNA and RNA had been extracted.
Water from each site was incubated in 500 mL Erlenmeyer flasks sealed with silicone stoppers,
parafilm and electronic tape to prevent gas exchange. For each site, five flasks were prepared,
two to measure total respiration (unfiltered), two for bacterial respiration (filtered) and one to
sample water for bacterial abundance and production. Water to measure bacterial respiration
was filtered by 1 µm Pall A/E glass-fibre filters (VWR, Radnor, PA, USA, pre-combusted at 450°C for
4h) using a peristaltic pump. The respiration flasks were immersed in temperature controlled dark
water baths. The temperature was kept constant with circulating water at mean ambient epilim-
netic temperatures. O2 concentration was measured with an optode system in a dark chamber,
where oxygen-sensitive optical sensors are placed within the Erlenmeyer flasks and read by a fiber
optic meter (Fibox 3, PreSens, Regensburg, Germany). Per reading point, a minimum of 10 consec-
utivemeasurementswere recorded to ensure a stable value, while avoiding any temperature shifts
during measurements. Temperature was measured within a separate Erlenmeyer flask incubated
in the same bath and treated the same way as the samples prior to O2 readings and which served
as a control to correct the readings for variations in temperature due to manipulation (Marchand
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et al., 2009). O2 concentration in the flasks was measured twice a day, once in the morning, and a
second time after 6h. An incubation was terminated as soon as a significant slope in the O2 versus
time relationship was observed (min = 4, max = 12 time-points). A respiratory quotient (RQ) of 1.2
was applied to convert O2 consumption to CO2 production (Berggren et al., 2012) as follows:

R = (βO2 ×−1)× (1/MO2)×RQ×MCO2

where βO2 is the slope of measured oxygen consumption in µg O2 L-1 d-1, M is the molar mass of
O2 and CO2, respectively. Water was sampled during incubations at least once per day to measure
bacterial abundance and production, as described below.

Bacterial biomass production (BP) was measured as rates of [3H]-leucine incorporation follow-
ing the protocol described in Kirchman (1993). Ambient samples as well as samples during the
incubation were used to measure BP. Triplicate samples were exposed to [3H]-leucine concentra-
tions between 30 and 70 nmol L-1 during 1h at measured surface water or incubation temperature.
Killed controls were pre-treated with 5% w/v of TCA (trichloroacetic acid). Leucine incorporation
into protein was determined by precipitationwith TCA followed by centrifugation, and scintillation
counting (Beckman LS6500, Beckman Coulter, Brea, CA, USA). Leucine uptake (average, control-
corrected) was integrated over time by dividing the incubation time and was converted to carbon
production rates by using a leucine to C conversion factor of 3.1 (Kirchman, 1993). Whenever BP
was measured, samples to measure bacterial abundances (BA) were taken as well.

We determined several other metabolic metrics: Bacterial growth efficiency (BGE) was computed
asBGE = BP/(BP+BR) (del Giorgio andCole, 1998), and bacterial carbondemand (BCD) com-
puted as BCD = BP + BR, where BP is the average bacterial production measured in the successive
time points of the bacterial respiration incubations. Two metrics representing physiological traits
of the community were additionally computed: 1) Specific production rate (SPR; µ) and 2) Specific
respiration rate (SRR), where ambient (bulk) BP and BR determined in incubations were divided
by bacterial density in ambient waters (BA), respectively. These metrics provide a perspective of
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two key dimensions of cellular activity (biosynthesis and catabolism) at the community level.

Two alternative growth rates were also quantified from the incubations: 1) Growth potential (GP),
and 2) Growth rate (GR). GP was estimated as the slope of the relationship between the leucine
uptake (BP) at various time points as a function of time during the bacterial respiration incuba-
tions, and it represents the potential for growth of the community (del Giorgio et al., 2011). GR
was similarly estimated by regressing the change in BA (ln-transformed) during the incubation pe-
riod and represents net population growth within the incubations (del Giorgio et al., 2011). These
two metrics reflect the response of the community to reduction in both bacterial abundance (i.e.,
dilution and reduction of competition) and in the abundance of bacterial predators (i.e., reduction
in predation) resulting from the filtration of the samples prior to the respiration incubations (del
Giorgio et al., 2011).

3.3.6 Carbon substrate utilisation
Carbon substrate utilisation patternsweremeasuredwith Biolog EcoPlates (Hayward, CA,USA;Gar-
land and Mills (1991)). These plates contain 31 different carbon sources in triplicates. 125 µL of
unfiltered water were directly inoculated into the wells. Substrate use was measured as colour
development from a tetrazolium dye that reacts to the CO2 produced by bacterial respiration. The
development of the dye was measured as absorbance at 595 nm with a microplate reader (Tecan
GENios, Männedorf, Germany). One plate per sample was incubated in the dark at room tempera-
ture and the blank-corrected overall plate colour development (average well colour development,
AWCD) was monitored two to three times a day after inoculation. The mean colour development
of each compoundwas calculated as the blank-correctedmean absorbance of each substratemea-
sured at the time when the AWCD was closest to 0.5 (Garland et al., 2001). An AWCD of 0.5 was
usually reached within 2-5 days, after which daily measurements were reduced to once per day
until the AWCD stabilised and reached the maximum average rate of substrate utilisation.

In addition to the traditional way of extracting one-single value per plate by choosing an AWCD
closest to 0.5 (Berggren and del Giorgio, 2015; Garland et al., 2001; Ruiz-González et al., 2017a),
several additional parameters were extracted by fitting a logistic regression to the change in AWCD
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over the time of incubation. The package drc (Ritz et al., 2015) was used to fit a logistic regression
with the equation:

c+
d− c

1 + eb×(x−f)

where b is the slope at the inflection point, c the minimum (lower asymptote), d the maximum
(higher asymptote), and f the ’dose’ at the time of half response. Estimates for coefficients were
obtained with the self-starting function L.4() (drc package, Ritz et al. (2015)). A four-parameter
model was chosen to keep the model fit simple and assuming that the curve is symmetric around
the inflection point. The second derivative was taken to find the point where C consumption
started and ended, respectively.

c+
d− c

ebx−fb + 1

Four metrics were selected to describe the community’s response to each substrate: 1) Slope at
inflection point (IPS) indicating the speed of substrate consumption. 2) Response time (RT) repre-
senting how long the community took to start consuming the substrate. 3) Utilisation time (UT)
indicating the length of substrate consumption period, and 4) maximum absorbance (MA) which
describes howmuch of the substrate was transformed into CO2. These four metrics were retained
after a correlation matrix revealed a lack of correlation among them, ensuring that each metric
represents a different aspect of the community in terms of substrate affinity and consumption ca-
pacity. To simplify the result interpretations, the 31 substrates were grouped into Alcohols (alc),
Amines (ami), Esters (est), hydrophilic amino acids (aa+), hydrophobic amino acids (aa-), lipids
(lip), organic acids with a respiratory quotient (RQ) > 1 (oa^), organic acids with a RQ ≤ 1 (oa_),
polymers (poly), proteins (prot), and sugars (sug) following Berggren et al. (2012).
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3.3.7 Statistical analyses
To simplify the sampling design, habitat categories were merged based on a principal coordinates
analysis (PCoA) on the DNA of the microbial community composition. Initially, all stream, river
and lake samples were categorised by their respective Strahler orders. Each reservoir had both
surface and hypolimnion categories. A PERMANOVA analysis was conducted on the PCoA and
statistical differences among habitats were evaluated. All streams/rivers of Strahler orders 1-5 as
well as Strahler orders 6-7 weremerged into two categories, since the orders within each category
were not statistically significant from each other (Table S1). Only one lake category was retained,
as there was no statistical difference by lake order. Reservoir hypolimnion categories were also
merged, since they were not statistically different from each other.

Once habitat categories were established, we examined the similarities between habitats and sea-
son in 1) environmental variables (e.g., pH, DO,DOC, TN, TP, andothers ) and 2) hydrologicalmetrics
(e.g. catchment area (CA), velocity (v), discharge (Q) and others) using a principal component anal-
ysis (PCA; prcomp() function; stats package (R Core Team, 2024)). Only relevant and non-highly
correlated variables were retained for the final analyses. Variables were z-scaled before conduct-
ing the PCAs. Furthermore, habitat and seasonal differences in microbial community composition
(DNA and RNA), DOM composition as well as the composition of the four individual DOM clusters
identified via hierarchical clustering were evaluated using principal coordinates analyses (PCoA)
with Bray-Curtis distances (cmdscale() function; stats package (R Core Team, 2024)). The DNA
and RNA abundances were Hellinger-transformed prior to analyses (decostand() function in ve-

gan package (Oksanen et al., 2019)). Finally, differences in carbon utilisation profile (CUP) and
microbial metabolism metrics among seasons and habitats were evaluated using two separate
PCAs. Both matrices were separately z-scaled before PCA analyses.

These analyses resulted in a total of 11 multivariate output matrices. For each multivariate analy-
sis, habitat-season combination centroids in multivariate space were calculated by computing the
averages of site scores along the first two axes for all samples in each habitat-season category.
Each multivariate output was tested for habitat and seasonal differences using PERMANOVA anal-
yses (adonis2() function in the vegan package (Oksanen et al., 2019)) and tested for multivariate
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dispersions (betadisper() and anova() function in vegan package (Oksanen et al., 2019)). Both tests
were run with 9,999 permutations and parallelised with the parallel package (R Core Team, 2024).

To further explore the relation of CUP to the DOM and microbial composition, the first two CUP
axes were correlated to the first two axes of bulk DOM, individual DOM clusters, DNA and RNA
PCoAs (Spearman’s correlations; cor.test() function in stats package (R Core Team, 2024)). Ad-
ditionally, the first two axes of PCoAs on bulk DOM, DOM clusters, DNA, RNA and CUP were
correlated with habitat-season averaged lability and photodegradability measurements to assess
whether DOMand/ormicrobial compositional changes are associated to shifts in DOMphoto- and
biodegradability.

Finally, in order to test the relation among various microbial metabolism metrics to all the various
dimensions (i.e., environment, hydrology, resource, microbial community) that may affect these
metrics, we correlated the first two axes of themicrobialmetabolism PCA to the first two axes of all
the 10 othermultivariate analyses. Additionally, we correlated the individualmicrobialmetabolism
metrics (i.e., BR, BP, BGE and others) to the same first two axes extracted from the 10 multivariate
analyses to evaluate how the individual metabolism metrics relate to the various environmental
and biological components.

For all the above-mentioned analyses, only significant correlations were evaluated and visualised.
An α level of 0.05 was selected prior to all statistical analyses. All analyses were conducted in R
(v4.4.2, R Core Team (2024)) and RStudio (v9.1.394, RStudio Team (2024)). For data cleaning and
wrangling, data.table and tidyversewere used (Barrett et al., 2024;Wickham et al., 2019). plyrwas
used to parallelise the workflow (Wickham, 2011). ggplot2 and patchwork were used to visualise
the results (Wickham, 2016; Pedersen, 2024). The map was created with QGIS (v3.28).

3.4 Results
3.4.1 Environmental and hydrological gradients within the watershed
Principal component analysis (PCA) of environmental variables resulted in clear seasonal and cross-
habitat patterns within La Romaine watershed (Fig. 3.2a). The first principal component (PC1),
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accounting for 17.5% of the variation, clearly separated spring from summer samples, with au-
tumn positioned in between (supported by PERMANOVA; Table S3.2). Spring stood out with its
fast winds and high dissolved oxygen saturation, whereas summer was characterised by warmer
air temperatures, higher nitrogen concentrations (TN, NH4), and a surge in dissolved organic car-
bon (DOC) and chlorophyll a. In contrast, PC2, capturing 15.6% of the variation, revealed stronger
habitat differences (supported by PERMANOVA; Table S3.2). Ecosystems with longer water resi-
dence times, such as lakes and reservoirs, were linked to warmer surface water temperatures ,
whereas streams and rivers were characterised by higher conductivity and total phosphorus (TP)
levels. Although spring samples seemed to cluster closely together regardless of habitat, disper-
sions inmultivariate space were not significantly different among seasons (Table S3.2). In contrast,
there were significant differences in dispersions in multivariate space among habitats. In partic-
ular, streams and rivers were more dispersed in multivariate space in comparison to the surface
reservoir sites, which were more clustered.

In contrast to the environmental variables, hydrological variables weremore closely tied to habitat
than to season, with an almost 40% difference in the variance explained between the two cate-
gories (Fig. 3.2b; PERMANOVA results Table S3.2). PERMANOVA results, however, did reveal both
habitat and seasons to be significantly affecting hydrological differences. PC1 (40%) distinctly sepa-
rated streams and lakes from reservoirs and larger rivers. Reservoirs and high-order rivers (Strahler
order 6-7) were associated with large catchment areas (CA) and high discharge (Q), whereas the
second axis (17.4%) distinguished lakes with their higher water residence times (WRT) from low-
order, fast-flowing streams (Strahler orders 1-5). It is important to note here that seasonal differ-
ences are only reflected between spring and summer/autumn samples for the metrics discharge,
velocity and water residence time because themodels used to estimate these variables were built
to only separately predict low and high flow (low flow including both summer and autumn). Vari-
ables that potentially were able to reflect differences across all seasons were only d-excess, and
water residence time estimates of reservoirs. WRT of lakes were estimated on an annual scale and
hence did not reflect any seasonality. These methodological constraints could explain the tight
clustering of summer and autumn samples in the hydrological dataset, highlighting its limitations
in capturing finer seasonal nuances.
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Figure 3.2: Habitat and seasonal differences in environmental variables, hydrology andmicrobial commu-

nity composition. PCA analyses revealing environmental (a) and hydrological (b) differences among habitats
across seasons. Bray-Curtis dissimilarity based PCoAs reveal clear differences between DNA (c) and RNA (d)
community composition across habitats and seasons. Percentage of variance explained by the correspond-
ing axes are given in the axis titles.

3.4.2 DNA and RNA seasonal successions along the aquatic continuum
The analysis of DNA composition, using Bray-Curtis dissimilarity and principal coordinates anal-
ysis (PCoA), revealed a distinct gradient of microbial succession across various aquatic habitats
and seasons (Fig. 3.2c). The first axis, which accounted for 25.3% of the variation, shows a clear
a progression from smaller streams to lakes, and ultimately to larger rivers and reservoirs. Mir-
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roring the seasonal shifts in the environmental dataset, the second axis distinguished between
spring and the combined seasons of summer and autumn, suggesting that the microbial taxa driv-
ing this succession change across seasons. This seasonal and habitat succession was statistically
supported by a PERMANOVA analysis (Table S3.2).Notably, succession pathways varied by season.
During spring, reservoirs more closely resembled smaller streams and lakes, with the progression
culminating in higher Strahler order rivers and hypolimnetic reservoir samples. In contrast, during
summer and autumn, succession concluded with reservoir samples, whereas larger rivers showed
greater similarity to lakes and streams.

Similarly, RNA composition displayedminor habitat-related butmuch stronger seasonal variations,
in relation to what was observed for DNA (PERMANOVA; Table S3.2),. Seasonal differences ap-
peared across both axes, with the first axis (explaining 32.4% of the variation) separating spring
from summer and autumn. The second axis (11%) further distinguished between summer and au-
tumn samples, with the exception of lake and hypolimnion autumn samples, which clustered with
other summer samples. The most pronounced distinctions occurred between spring and sum-
mer/autumn reservoir samples, except for RO1 spring samples, which aligned more closely with
higher-order river samples (Strahler orders 6-7).

Together, these results suggest thatmicrobial communities in both the bulk (DNA) and active (RNA)
fractions undergo seasonal successions along the aquatic continuum, with RNA reflecting stronger
seasonality and DNA showing stronger habitat differentiation. Although these patterns were sup-
ported by PERMANOVAs, multivariate dispersions differed significantly in DNA habitats and RNA
seasons, complicating the distinction between among-group and within-group variation. Among
DNA habitats, smaller streams and lakes showed the largest dispersions, indicating high microbial
community heterogeneity within these habitat types. For RNA seasons, spring samples exhib-
ited broader dispersions, suggesting that the active microbial community is more heterogeneous
across habitats in spring, whereas summer and autumn samples generally had more similar active
taxa across habitats.
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3.4.3 Patterns in DOM composition among seasons and along the continuum
The dissolved organic matter (DOM) pool was categorised using hierarchical clustering, an unsu-
pervisedmachine learning approach. Metrics representing the chemical composition (e.g., atomic
number of elements) and character of each molecular formula (e.g., aromaticity and nominal ox-
idation state of carbon (NOSC)) were used to classify the molecular formulae into clusters. This
process identified four statistically distinct clusters within the dataset, which represent an ascend-
ing order in mass, H/C, and C/N, and a descending order in aromaticity and NOSC (Fig. S3.1). The
O/C ratio followed a descending order across clusters 2, 1, 3, and 4, with cluster 4 exhibiting the
lowest O/C ratios. Each cluster also displayed unique distribution patterns in Van Krevelen space
(Fig. 3.3a).

The overall DOM composition did not show a clear seasonal trend; rather, it was separated pri-
marily by habitat type (Fig. 3.3b; PERMANOVA, Table S3.2). The first DOM axis (21.9%) separated
RO3 and lower-order stream samples from all other habitats. While no strong seasonality was
apparent across the entire multivariate space, a subtle pattern emerged in which summer and
autumn RO3 samples were separated from spring RO3 and all lower-order stream samples along
axis 2 (12.9%). This suggests that the spring DOM composition in RO3 was similar to that in small
streams. The habitat differentiation observed in the bulk DOM composition seems to be mostly
driven by clusters 2 and 3 (Fig. 3.3d-e), both of which have high oxygen content and moderate
mass. Clusters 1 and 4, in contrast, had patterns that were distinct from bulk DOM and clusters 2
and 3 (Fig. 3.3b-f).

Clusters 2 and 3 showed minor seasonal variation within the majority of habitats. In lakes and
higher-order rivers, spring and summer samples were more similar to each other in the composi-
tion of cluster 3 (Fig. 3.3e). Conversely, in reservoir samples, spring and autumn samples appeared
more similar in cluster 3 composition. Within cluster 2, a more pronounced seasonal separation
was evident in multivariate space: spring samples clustered together, whereas summer and au-
tumn samples also formed a separate grouping, with the exception of lakes (Fig. 3.3d). Despite
these visual trends, seasonal differences were not statistically significant in the bulk DOM and in
clusters 1, 2, and 3, likely due to only a subset of habitats exhibiting seasonality while the statistical
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test evaluates the entire dataset.

Clusters 1 and 4 showed the lowest variance explained among all clusters, with no clear visual dif-
ferentiation by habitat or season. In cluster 1, the only samples diverging from the central trend
were autumn lower-order stream samples and spring samples from lakes, RO2, and hypolimnion
samples along axis 1 (14.8%). However, these differences were not statistically significant (PER-
MANOVA; Table S3.2). Interestingly, cluster 4, despite low explained variance, was the only DOM
pool with statistically significant seasonal and habitat clustering (PERMANOVA; Table S3.2). Clus-
ter 4 comprises high-mass, aliphatic-like molecules that are highly decomposed and less energeti-
cally favourable. These results suggest that while some DOM pools are influenced by habitat (e.g.,
clusters 2, 3, and 4) and season (e.g., cluster 4), one pool appears to be remarkably stable across
ecosystems and seasons (i.e., cluster 1).

To evaluate if the bulk DOM molecular composition, the composition of individual DOM clusters,
and microbial community composition (DNA, RNA) related to bio- and photodegradation rates,
we extracted the scores of the first two axes from the PCoAs conducted on each of the matrices,
and correlated these to the corresponding habitat-averaged lability and photodegradability rates
(Fig. S3.2). Habitat lability was significantly correlated to shifts in cluster 1, 2 and 3 (Cluster 3 PCoA2
is not shown; ρ = 0.48, p value < 0.05), DOM, and DNA composition. Habitat photodegradability
was significantly correlated to compositional changes in cluster 1, 2, and 4, and also to DNA. It is
noteworthy, however, that these correlations were mostly driven by shifts in lower-order stream
DOM and DNA composition, coupled with very low lability and high photodegradability rates in
those sites. The only relationships that remained significant after removing lower-order stream
samples were cluster 2 (ρ = 0.5), DOM (ρ = 0.53) and DNA (ρ = 0.65) with lability. However, only
DNA remained significant when RO3 was additionally removed (ρ = 0.71). Overall, the results in-
dicate that cluster 2, DOM and DNA shifts are most likely to be linked with DOM lability, whereas
photodegradability is likely related to cluster 2 and 4 to some degree and undergo similar shifts as
DNA along the continuum.
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3.4.4 Seasonal and habitat specific shifts in microbial carbon utilisation profile
Carbon Utilisation Profile (CUP) enables us to evaluate the capacity of local microbial communi-
ties to degrade a fixed panel of substrates that are ecologically relevant. This yields a substrate
utilisation profile for each community that reflects both a community capacity and the poten-
tial influence of ambient DOM on selecting these community functionalities. To understand how
this carbon utilisation profile differs between habitats and seasons, we conducted a multivariate
analysis on consumption metrics derived from the Biolog EcoPlates incubations. Specifically, we
examined four primary metrics, all based on the colorimetric determination of the reduction of
tetrazolium salts as an index of respiration (i.e., substrate utilisation) within each well: 1) the slope
at the inflection point (IPS) of the consumption curve, which represents the rate of consump-
tion; 2) response time (RT), which marks the onset of substrate consumption; and 3) utilisation
time (UT), which indicates the duration of consumption for each substrate, and 4) maximum ab-
sorbance (MA), which was used as an indicator of the overall amount of substrate consumed. Our
results indicate that CUPmetrics capture both seasonal and habitat-specific variations inmicrobial
substrate utilisation profiles (Fig. 3.4a), explaining 40.6% of the overall variation along the first two
axes (PERMANOVA; Table S3.2). In spring, reservoirs, and higher-order rivers cluster together on
both axes, while the summer and autumn samples of the same habitats cluster on the opposing
diagonal side, indicating strong seasonal differences in their carbon utilisation profiles. Addition-
ally, lakes and hypolimnetic reservoir samples show strong seasonal trends, where the seasons
spread in opposing directions across the first two axes. In contrast, smaller-order streams cluster
together along the first axis, indicating lower seasonal differences.

These habitat and seasonal differences in CUP are underlain by differences inwhich and how these
substrates are consumed. Figure 3.4b shows how the individual consumptionmetrics drive the ob-
served habitat and seasonal distribution of C utilisation profiles. Axis 1, which explained 30.8% of
the variation, suggests that communitieswith high response times (RT), tended to sustain high util-
isation times (UT) but overall lower consumption rates (IPS). In contrast, Axis 2, explaining 9.8% of
the variation, capturedmostly differences in the amount and type of substrate consumed (MA). As
an example, alcohols were preferentially consumed in summer and autumn whereas amino acids,
polymers and proteins were preferentially consumed in spring. Likewise, this axis distinguished
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between habitat selectivity, with amino acids, proteins and polymers preferentially consumed in
the hypolimnion of reservoirs, and little or no preference in small order streams.

These results suggest trade-offs inmicrobial consumption dynamics. Interestingly, these observed
trade-offs between consumption rate, maximum substrate consumption, response time, and util-
isation time were significantly correlated with specific components of DOM and to microbial com-
munity composition (Fig. 3.5). PCoA2 of bulk DOM (from Fig. 3.5b) and of DOM cluster 3 (from
Fig. 3.5e) as well as PCoA1 of cluster 2 (from Fig. 3.5d), were associated with consumption trade-
offs linked to habitat differences captured in PC1 of CUP (Fig. 3.5a-c). This suggests that DOM
Cluster 2 and 3 (high O, low N, andmediummass) may be influencing the carbon utilisation strate-
gies of the microbial communities. Furthermore, CUP PC2 was significantly correlated with PCoA2
of the community DNA (Fig. 3.2c), which captured seasonal distinctions between spring and sum-
mer/autumn communities (Fig. 3.5d). These findings imply that observed substrate preferences
may be linked to microbial community composition, with spring communities being capable of
consuming the largest amounts of any substrate.

3.4.5 Microbial metabolism and drivers along the continuum
Microbial metabolism provides a glimpse into multiple facets of microbial functioning across vari-
ous environments. These processes are regulated by different combinations of microbial commu-
nity assembly, microbial composition, environmental conditions, resource and nutrient availability
and ecological processes such as competition and predation relationships. Hence, most microbial
processes cannot be predicted by who is present and are therefore often referred to as ’emergent’
community properties (Hall et al., 2018). Variables that can be measured to characterise micro-
bial communities can be broadly categorised in four major groups: metrics that capture microbial
C pools (e.g., bacterial biomass); metrics that capture how much carbon is incorporated within
the community (e.g., growth rate, bacterial production), and others that quantify how much car-
bon is released (e.g., respiration rate). The fourth category includes metrics that integrate both
processes (i.e., bacterial carbon demand, bacterial growth efficiency) (Table 3.1).
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Table 3.1: Microbial metabolism metrics and their ranges in boreal aquatic networks.

Bacterial abundance BA Cells L-1 Ambient bacterial population 1.2×109 ± 3.9×108

Bacterial production BP µg C L-1 d-1 Estimation of protein synthesis 6.2± 5.5

Specific production rate SPR µg C cell-1 d-1 Growth normalised by
ambient population size 5.6×10-9 ± 4.6×10-9

Bacterial respiration BR µg C L-1 d-1 Respiration attributable to bacteria 48.7± 29.7

Specific respiration rate SRR µg C cell-1 d-1 Respiration normalised by
ambient population size 4.5×10-8 ± 3.2×10-8

Bacterial carbon demand BCD µg C L-1 d-1 Total uptake and
processing of carbon 54.9± 29.7

Bacterial growth efficiency BGE % Balance in community
respiration and production 23± 18

Growth rate GR µ d-1 Abundance growth
during incubations 0.10± 0.22

Growth potential GP µg C L-1 d-1 d-1 Change in protein synthesis
during incubations 5.3± 9.2

Total respiration TR µg C L-1 d-1 Planktonic respiration 63.1± 32.6

Metric Abbr. Unit Description Range

A multivariate analysis on the entire dataset of microbial metabolic processes across the aquatic
continuum reveals both habitat as well as seasonal patterns on how these communities’ func-
tion (Fig. 3.6). There seems to be a slightly stronger effect of seasons (PERMANOVA: R2 = 0.18,
Table S3.2), with clustering of spring samples along the first PC axis capturing 40.5% of variation.
Overall, spring samples showed higher growth rates, growth potential and higher specific respi-
ration rates in comparison to summer and autumn samples. Whereas autumn samples had still
relatively high growth potential, they were additionally characterised by higher BGE. Additionally,
lake and low-order stream samples had high specific production rates, and bacterial production

153



in autumn. In contrast, summer was characterised by high respiration rates and bacterial carbon
demand (BCD), and lower BGE.

Habitat effects were statistically significant as evaluated via a PERMANOVA (Table S3.2), however,
patternsweremore difficult to evaluate visually. Overall, reservoir samples seem to be slightly sep-
arated from stream, river and lake samples along the second principal component. Most reservoir
samples were characterised by higher growth rates and growth potentials (PC2 > 0), while the
majority of stream, river and lake samples were on the opposing side in multivariate space and
characterised by higher bacterial abundance, and higher production rates.

It seems that the two principal component axes capture two distinct microbial trade-offs: the first
axis describes a trade-off between respiration/BCD and BGE, indicating that when microbial (and
total plankton) respiration rates andmicrobial carbon demand are high, growth efficiency tends to
be low. Low BGE coincides not only with high total bacterial respiration, but also with high specific
respiration rates, perhaps linking to scenarios of high maintenance costs or to the use of specific
DOM pools.

Axis 2 (18.8%) contrasts the realised bacterial production and growth in ambient waters (BP and
SPR) with the growth response of these same communities during incubations of filtered sample
(GR and GP), which represents a form of community reset. Axis 2 suggests that habitats where am-
bient bacterial production and growthwere high,measured the lowest potential growth responses
(GR and GP) during in-vitro filtered incubation. In contrast, habitats with strong environmental or
biological constraints to ambient bacterial growth (low ambient production and growth rate), had
the strongest responses to the dilution and removal of predators generated during the incubation
set-up. Overall, it appears that variations in BGE play a relatively minor role in determining BP
and growth rates in these habitats. BGE is very orthogonal to BP, and BP does not appear to be a
function of BCD either.
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Figure 3.6: Habitat and seasonal differences in microbial metabolism. PCA analysis on all microbial
metabolismmetricsmeasured, where coloured points represent centroids of each habitat per season. Used
metrics are bacterial abundance (BA), bacterial production (BP), specific production rate (SPR), bacterial
respiration (BR), specific respiration rate (SRR), bacterial carbon demand (BCD), bacterial growth efficiency
(BGE), growth rate (GR), growth potential (GP), and total respiration (TR).

These two dimensions of microbial metabolism captured by the two PCA axes represent emergent
metrics of the microbial community. To evaluate whether these two dimensions were correlated
to other habitat-season shifts in environment, hydrology, DOM and microbial community com-
position Pearson’s correlations were conducted between the two microbial metabolism axes and
all other multivariate analyses previously conducted. Axis 1, representing the BR/BCD-BGE trade-
off was positively correlated to DNA PCoA2 and negatively correlated to the environmental PC2
(Fig. S3.4a-b), whereas axis 2, reflecting ambient and incubation differences in growth was pos-
itively correlated to DNA PCoA2 and RNA PCoA1 (Fig. S3.4c-d). These results indicate that the
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emergent trade-offs captured in the microbial metabolism PCA, were significantly related to shifts
in microbial community composition, and to the environment to a certain degree, but no clear
correlation was found with DOM, hydrology or CUP.

To evaluate potential drivers influencing the individual microbial metabolic processes, we corre-
lated the individual metabolic metrics to the previously described shifts (represented as scores in
multivariate analyses) in environment, hydrology, DNA, RNA, DOMand CUP along the hydrological
continuum and between seasons (Fig. 3.7). Bacterial abundance was only correlated with shifts
in hydrology, indicating that bacterial density in a specific habitat may be linked to gradients in
WRT (HYD2) as observed in lower-order streams and it gradually declines towards lakes. BP and
SPR were high in smaller-order streams in spring and autumn, and low in summer. These two
growth metrics were most strongly linked to seasonal shifts in DNA (DNA2) and RNA (RNA1), as
well as network position as captured in (HYD1). SPR was further linked with ENV2, which captured
habitat differences involving multiple environmental variables. These correlations collectively in-
dicate that ambient bacterial abundance, production and growth (BP, SPR) reflect a combination
of hydrology, network position and environmental conditions, and are linked to seasonal shifts
in community composition and activity, as reflected in the patterns in community DNA and RNA,
respectively. Bacterial respiration was not strongly related to any of the potential drivers. BR only
related to ENV1, which reflects habitat differences in environmental conditions (mostly linked to
conductivity and TP), whereas SRR was additionally linked to habitat shifts in DOM composition
driven by changes from rivers/lakes/RO1-2 to streams/RO3. SRR additionally related slightly with
shifts in DOM clusters 2 and 3, both of which showed a habitat/seasonal progression with the end-
points being summer RO3 and spring lake sites. These results suggest that microbial respiration is
unrelated to microbial community composition but likely linked to substrates and nutrients that
may be available for microbial consumption. In this regard, Bacterial carbon demand (BCD) fol-
lowed the same patterns as bacterial respiration, and was related to a gradient of cluster 2 from
streams/lakes to rivers/reservoirs, and it was further linked to habitat differences in conductivity
and TP. These patterns suggest that the overall carbon demand of microbial metabolism is associ-
ated to resource availability, and DOM cluster 2 may play a major role in this regard. BGE, on the
other hand, was strongly related to both DNA and RNA, and to a lesser extent to shifts in DOM
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cluster 1 and CUP. These results suggest that BGE may be at least partly driven by seasonal shifts
in microbial community composition, and reflecting shifts in the nature of the organic substrates
consumed. The latter is further supported by the positive link that was found between BGE and
CUP.

The metrics of growth in-vitro showed very different links to those that were found with in-situ

measurements. Growth rate was linked to seasonal differences in the environment (ENV1), habi-
tat shifts in RNA (RNA2) and DOM cluster 4 (Cl4_1), and most strongly associated to hydrology,
which was strongly driven by network position and discharge (HYD1). Growth potential was only
correlated to seasonal differences in environmental conditions (ENV1), habitat shifts in cluster 4
(Cl4_1) and to sites where substrate consumption slopes were high (CUP1). These metrics of mi-
crobial metabolism associated to in-vitro conditions appear to be strongly related to ambient en-
vironmental conditions and resource availability, which may reflect constraints in terms of growth
limitation and carrying capacity. Finally, total plankton respiration, which we have added here to
provide a more general context, was related to environmental and WRT conditions.

157



Figure 3.7: Correlation heatmap for each microbial metabolism metric to environmental, hydrological,

microbial, dissolved organic matter, and carbon utilisation potential PCA or PCoA axes. Points are only
visualised for significant differences in Spearman correlations (p < 0.05). If necessary, the direction of axes
was inverted to represent an aquatic continuum from small order streams, large order rivers, lakes, reser-
voirs and hypolimnion. A unified direction of habitats across all axes enabled a clearer interpretation of
correlation results. Axes that never showed a significant correlation to any metabolic variables are not
shown.

3.5 Discussion
This study provides a comprehensive view intomultiple aspects of microbial metabolism and their
linkage to microbial and DOM composition across a wide range of aquatic ecosystems. By examin-
ing a wide range of ecosystems along the aquatic continuum, including small headwater streams,
larger rivers, lakes and reservoirs, we observed that changes in microbial metabolism were most
strongly associated to seasonal shifts in environment, hydrology and microbial community com-
position. We show how metabolism trade-offs measured in ambient waters and ecological con-
straints captured in in-vitro incubations emerge when the different microbial metabolism metrics
are evaluated together. Although changes in the bulk DOM composition barely related to any
metabolism metrics, shifts in specific portions of the DOM pool were associated to changes in
specific respiration rates, bacterial growth efficiency, and growth potentials.
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Along our extensive habitat and seasonal gradients, we observed a clear differentiation in micro-
bial community composition by habitat and season in both bulk (DNA-based) and active (RNA-
based) composition, respectively. Habitat differences were largest within bulk communities likely
a result of varying assembly dynamics along the hydrological continuum (Stadler and del Giorgio,
2022), with smaller streams and lakes showing the largest variation in microbial community com-
position within the same ecosystem. Streams are likely influenced by strong terrestrial influx of
microbes (Crump et al., 2012; Besemer et al., 2013) and wide hydrological shifts strongly shape
biofilm- and planktonic-based bacteria depending on the season (Olapade and Leff, 2005; Bese-
mer et al., 2012; Battin et al., 2016). Variations in microbial communities among lakes are likely
a reflection of lake trophic state (Kolmonen et al., 2011; Kraemer et al., 2020), DOM composi-
tion (Crump et al., 2003; Kritzberg et al., 2006) and network connectivity (Yannarell and Triplett,
2004; Lindström et al., 2006; Crump et al., 2007) and position (Nelson et al., 2009). Seasonality,
however, influenced the active portion of microbial communities more than the bulk community.
The active fraction of these communities across habitats was most different in spring, likely indi-
cating stronger selection processes acting on the active fractions (Wisnoski et al., 2020) in each
habitat, whereas the active fractions were more alike in summer and autumn across habitats.
These results highlight the dynamic changes of both bulk and active microbial communities across
habitats (Crevecoeur et al., 2022) and seasons (Stadler and del Giorgio, 2022) within the same
aquatic network.

Contrary to the clear habitat and seasonal shifts in microbial community composition, bulk DOM
composition did not show clear seasonal differences but rather differed by habitats. Lower or-
der streams and a newly flooded reservoir (RO3) were most alike in their bulk DOM composition,
likely indicating an influx of terrestrial material shared between these ecosystems (Planas et al.,
2005). This habitat differentiation was also reflected in two of the DOM clusters that we iden-
tified, namely clusters 2 and 3, which were characterised as olefinic, mid-molecular sized, lower
N content, and higher oxygenation. These molecular formulae likely represent relatively fresh
compounds that are mildly energetically favourable for microbial consumption. It is interesting to
note that we observed amajor shift in composition within clusters 2 and 3 from low order streams
and RO3, which are heavily influenced by terrestrial inputs to rivers and lakes. Neither of these
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pools was characterised as highly aromatic but rather partially overlap with compound groups
commonly categorised as polyphenolic and unsaturated compounds with high (cluster 3) and low
oxygen (cluster 2) (Hawkes et al., 2020). On the one hand, these two clusters might represent
mostly terrestrially derived compounds that are bio- and photodegraded or transformed (Kujaw-
inski et al., 2004; Hutchins et al., 2017) along the aquatic continuum but maintaining their overall
chemical similarity. Another possibility is that these pools are derived from multiple sources, in-
cluding terrestrial and various aquatic that differ in chemical characteristics but whose leftover
compounds tend to converge towards a common, mildly decomposed state, and thus their chem-
ical fingerprint may become similar after partial degradation (Zark and Dittmar, 2018; Freeman
et al., 2024), which resulted in these compounds being clustered in the hierarchical clustering ap-
proach. Compositional shifts in clusters 2 and 3 correlated with DOM lability rates, with lability
being generally higher in streams than in downstream habitats, suggesting that these pools are
indeed terrestrially derived and tend to be both decomposed and transformed along the aquatic
continuum, rather than generated within aquatic habitats. Shifts in cluster 2 also coincided with
changes in photodegradability rates, which were also highest in streams, implying that cluster 2
additionally may be more susceptible to transformations via UV (Kujawinski et al., 2004) and may
contribute to photo-decay induced CO2 emissions (Hutchins et al., 2017). These results imply that
shifts in these two pools coincide with an exhaustion of labile and photoreactive fractions of the
DOM, suggesting the selective removal and transformation of a highly reactive pool of terrestrial
compounds. Cluster 1 did not have clearly discernible spatial or temporal patterns either visually
nor statistically, and despite this cluster being highly energetically favourable, and aromatic, this
pool seems to remain remarkably uninfluenced by seasons and habitats. As such, this pool may
represent DOMcompounds that are either persistent in the aquatic environment (Kellerman et al.,
2018; Zark and Dittmar, 2018) or ubiquitously present due to an high influx (Wilkinson et al., 2013).
Lastly, cluster 4 exhibited both seasonal and habitat differentiation, indicating that the highly de-
composed, large molecular mass, and energetically unfavourable pool seems to mainly separate
between streams/reservoirs and rivers/lakes. Given that higher order river summer centroid was
the most separated point from all other centroids, it may indicate that higher chlorophyll a con-
centration may coincide with shifts in this DOM compound pool. Higher primary production may
imply higher degradation of such material on shorter timescales (Tranvik, 1998), and compounds

160



of Cluster 4 may be the less degradable leftovers (Zark and Dittmar, 2018).

Quantifying carbon utilisation profiles is an accessible way to obtain functional information of
microbial communities (Miki et al., 2018). However, the functional capacity of microbial com-
munities may be determined by both, what community is present (Ruiz-González et al., 2017b;
D’Andrilli et al., 2019) and what substrates the community has been exposed to (Berggren and del
Giorgio, 2015). By capturing various community responses to the diverse substrates offered (i.e.,
consumption slope, response time, maximum absorbance), we were able to parse out how mi-
crobial community and DOM composition may affect their carbon utilisation capacities. Overall, it
seemed that lakes in every season, and reservoirs, and higher order rivers in spring were charac-
terised by microbial communities that responded slowly and consumed substrates for prolonged
periods of time, whereas summer/autumn communities in reservoir and higher order rivers as
well as in streams in any season responded and consumed substrates quickly. These differences in
response and consumption time may be influenced by the ambient DOM composition as the axes
capturing the utilisation differences mainly correlated to habitat shifts in DOM composition, in
particular shifts in clusters 2 and 3. Differences in how long communities consumed varying DOM
sources have been shown before, with algal DOM resulting in rapid consumption, whereas terres-
trial DOM is consumed for longer (Pérez and Sommaruga, 2006). Howmuch of each substrate was
consumed in the CUP approach, and general substrate preferencesmainly differed between spring
and hypolimnion samples and all other surface samples, whichwas correlatedwith seasonal differ-
ences in microbial community composition. As such, the spring freshet may introduce a diversity
of microbes (Crump et al., 2012; Comte et al., 2018; Caillon et al., 2021) and DOM (Nelson et al.,
2009; Voss et al., 2015; Kellerman et al., 2014) and increase bacterial abundances (Battin et al.,
2004; Caillon and Schelker, 2020) in the aquatic network, which enables the utilisation of specific
compounds and overall higher consumption of all substrates. In contrast, summer and autumnmi-
crobial communities may be less plastic than previously described (Comte et al., 2013), and prefer-
entially consume carbon substratesmost similar to their resource in the environment (Battin et al.,
1999; Findlay, 2003). Furthermore, their generally lower bacterial abundances may have resulted
in less substrate consumed compared to spring. Together, our functional profile results indicate
that a detailed examination of substrate consumption dynamics can provide emergent properties
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of community-level microbial C processing, beyond the traditional metric that captures an overall
capacity of substrate utilisation (i.e., AWCD; Garland et al. (2001); Comte and del Giorgio (2010);
Ruiz-González et al. (2017a)). These emergent properties were captured by the two PC axes, re-
flecting differing influences of past DOMselection processes and underlying community structures
on the communities’ capability to consume C substrates of various availability and complexity.

Microbial metabolism metrics provide insight into the intricate relationships between nutrient
limitation (Smith and Prairie, 2004) and carbon allocation (Jansson et al., 2006; Berggren et al.,
2007; Hall and Cotner, 2007) of microbial communities in the environment. When we examined
the various microbial metabolism metrics together, we observed a clear pattern by season and
habitat. In general, spring microbial communities had higher respiration rates and carbon de-
mands, which resulted in lower BGE. Compared to many other studies where BGE was mainly
modulated by BP (Kritzberg et al., 2005; Berggren et al., 2007; Amado et al., 2013), their overall
relation was relatively weak in our dataset and a relationship was only observed in spring or when
individual habitat types were considered (Table S3.3 and S3.4). Across the entire dataset, BGE
was rather strongly negatively correlated with BR, where increased BR led to lower BGE. This neg-
ative relationship was present in every season; however, it was strongest in spring (Table S3.4).
These results indicate that relatively higher input of terrestrial material increases bacterial res-
piration rates, carbon demand and specific respiration rates, in spite of lower temperatures. In
contrast, higher temperatures, TN, and Chla concentrations may increase bacterial growth effi-
ciencies and bacterial production to a certain degree. Previous studies observed a tendency for
microbial communities to allocate the consumed carbon towards respiration when there is phos-
phorous limitation (Smith and Prairie, 2004; Jansson et al., 2006; Godwin and Cotner, 2015), or
when primarily autochthonous dissolved organic matter was consumed (Guillemette et al., 2016).
Neither of these factors are likely to contribute to the higher respiration found in our study, as
TP concentrations and terrestrial DOM contributions were highest in spring. Interestingly, BR was
relatively similar across streams and there was no relationship with BGE (Berggren et al., 2007),
hence, the strong association between BR and BGE was only found due to the various ecosystems
sampled. BGE was similarly regulated by variations in BR in two network-scale studies (Becker
et al., 2017; Rodibaugh et al., 2020), where higher temperatures and increased DOM allochthony
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were found to be the main drivers, respectively. These studies were conducted in very different
climatic regions (sub-tropical and arid), and the drivers underlying the same BR-BGE patterns may
not necessarily be the same. Although our potential temperature effects on BR do not align with
previous findings of higher BR at elevated temperatures (Jansson et al., 2008; Hall and Cotner,
2007; Becker et al., 2017), positive relations between allochthonous DOM inputs and BR (Lennon
and Pfaff, 2005; Rodibaugh et al., 2020) coincide with our findings in boreal regions. Increased
BP rates were found to correlate with Chla concentration (Rodibaugh et al., 2020), which are in
line with our results. Increased phytoplankton production links to bacterioplankton through the
production of fresh autochthonous DOM (Crump et al., 2003), however, such positive correlation
and consequent bottom-up effect on microbial metabolismmay depend on the nutrient availabil-
ity such as nitrogen (Le et al., 1994).

Although shifts in BP, BR and BGE have often been linked to changes in DOC quality (Findlay
et al., 1998; Crump et al., 2003; Judd et al., 2006; Jansson et al., 2008; Lennon and Cottingham,
2008; Berggren and del Giorgio, 2015), we did not find any strong link between the ensemble of
metabolism metrics with DOM. Our results from correlating the microbial metabolism PCA axes
with othermultivariate axes indicate that the relationships betweenmicrobial metabolismmetrics
are not directly influenced by DOMcomposition, but rather by the environment (i.e., temperature,
TP, TN, Chla) and microbial community composition. However, from the correlation analyses of
individual metabolismmetrics, we observed that changes in the DOM components likely of terres-
trial origin did significantly but weakly link to specific respiration rates. In contrast, BP and specific
production rates correlated with shifts in hydrology and both bulk and active microbial commu-
nity composition. Together, these results imply variation in the regulation of different metabolic
dimensions, where higher BR is modulated by shifts in terrestrial DOM, higher nutrient availability
and DOC concentrations (i.e., seasonal variations), and BP linked to shifts in ecosystem proper-
ties such as network position, as well as habitat and seasonal shifts in bulk and active microbial
community composition, respectively. This may imply that during the spring freshet, the entire
aquatic network receives higher nutrient loadings, DOC concentrations and fresh terrestrial dis-
solved organic matter (Voss et al., 2015; Burd et al., 2018) that is rapidly consumed and respired by
the microbial community, leading to reduced growth efficiencies (i.e., bacterial splurging). Once
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the nutrient and fresh DOM supply becomes depleted, however, bacteria become more conser-
vative in their carbon allocation (Jansson et al., 2006), retaining more of the carbon consumed
in bacterial biomass than respiration. This shift towards higher BP and BGE may potentially re-
sult from the community composition shifting towards microbial taxa (Eiler et al., 2003) that have
lower maintenance costs and are able to allocate more C towards biomass (Ramin and Allison,
2019; Muscarella et al., 2020). The highest specific growth rates were found in streams and lakes
in summer and autumn, and most samples of both habitats were located relatively early in the
aquatic network. These results may indicate that headwater habitats have large influxes of a di-
verse pool of microbes (Crump et al., 2012; Besemer et al., 2013) that allow for the selection of
taxa that are able tomaximise the utilisation and consumption of available DOM resources, rather
than the actual allocation of this C to biomass, since there was no relationship between growth
rate and BGE in these habitats.

Finally, measurements of changes in growth rates and protein synthesis (i.e., GR and GP), addition-
ally provided us with insights into how communities respond when diluted, and predators are re-
duced (Pomeroy et al., 1994). Interestingly, in-vitro growthwasmost strongly upregulated in spring
and autumn samples of reservoirs, in particular within the deeper hypolimnetic sites. These find-
ings contrast previous results that found increased BGE with growth potentials (del Giorgio et al.,
2011). Increases in in-vitro growth related to shifts in the active microbial community composition
and DOM composition of a relatively decomposed, energetically unfavourable pool, for reasons
that are unclear. These results may also indicate that ambient reservoir microbial community pro-
duction and growth is constrained by top-down effects such as predation (Pradeep Ram et al.,
2024).

In summary, our results highlight the variation of microbial metabolism that emerges when the
entire aquatic network is considered. Although BGE has often been found to be modulated by
variations in BP within single ecosystems, when examined across multiple habitats and seasons, it
became clear that variations in BR influence BGE at the network scale. BR was mainly linked to en-
hanced nutrient and carbon loadings in spring, whereas specific respiration rate was additionally
linked to shifts in DOM composition, in particular with DOM of terrestrial origin. Although BGE
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was also weakly linked to shifts in terrestrial DOM, it was more strongly linked with shifts in bulk
and active microbial community structure, which was most evidently reflected in the link of mi-
crobial community composition to production rates (BP, SPR). Similarly, carbon utilisation profiles
were linked to both shifts in community composition as well as ambient terrestrial DOM composi-
tion, indicating how both resource and consumer structure can determine substrate affinities and
the speed, duration and amount of substrate consumption patterns. Our study elucidates how
varying bacterial metabolism metrics are differently modulated by DOM and microbial commu-
nity composition. Given the recent scarcity of literature evaluating microbial metabolism, we are
in need of more studies examining variations and drivers of the multiple dimensions of microbial
metabolism across inland waters.
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3.7 Data availability
The raw 16S rRNA gene sequences, both DNA and cDNA will be made available at the public NCBI
Sequence Read Archive (SRA) as part of the BioProject PRJNA693020. The code will be made
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available on Github after successful publication and both code and processed microbial data will
be separately archived on Zenodo.

3.8 Supplementary Information
3.8.1 Supplementary figures

Figure S3.1: Chemical metrics used in hierarchical clustering analysis and their distribution among identi-

fied clusters. Given are chemical metrics such as the number of elements within a molecular formula (C =
carbon, H = hydrogen, O = oxygen, N = nitrogen, S = sulfur, P = phosphorous), mass (inmz), elemental ratios
(H/C, O/C, C/N) and indicators of aromaticity (AImod) as well as nominal oxidation state of carbon (NOSC).
Middle lines of boxplots represent the median, while the upper and lower hinges represent the 25th and
75th percentiles. Upper and lower whiskers expand to the largest and smallest value, respectively, no fur-
ther than 1.5 times the inter-quartile range (IQR) from the hinge. Outliers are depicted as points. Clusters
are identified as colours. The distribution of data is additionally depicted in the cluster colours around the
boxplots.
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Figure S3.3: Substrate and CUP metric distribution in CUP PCA. Species distribution of PCA conducted
on CUP metrics (Fig. 3.4). CUP metrics were averaged by substrate groups of alcohols (alc), amines (ami),
esters (est), hydrophilic amino acids (aa+), hydrophobic amino acids (aa-), lipids (lip), organic acids with a
respiratory quotient (RQ) > 1 (oa^), organic acids with a RQ≤ 1 (oa_), polymers (poly), proteins (prot), and
sugars (sug).
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3.8.2 Supplementary tables
Table S3.1: PERMDISP analyses on DNA PCoAs to simplify habitat categories. Three PCoAs were
computed for habitat categories identified as either fluvial (FL), lakes (L) and reservoirs (RO). After
PERMDISP model was calculated, Tukey’s HSD test was conducted to evaluate habitat by habitat
differences. The number of asterisks increase with lower p-values (* = p < 0.05, ** = p < 0.01, ***
= p < 0.001) according to pair-wise comparisons with Tukey’s HSD test.

Lake L Order 2 L Order 1 -0.022 -0.268 0.225 0.998
L Order 4 L Order 2 0.068 -0.208 0.344 0.914
L Order 4 L Order 1 0.047 -0.229 0.322 0.977
L Order 5 L Order 4 -0.073 -0.375 0.230 0.922
L Order 5 L Order 1 -0.026 -0.302 0.250 0.997
L Order 5 L Order 2 -0.004 -0.280 0.271 1.000
L Order 6 L Order 4 -0.211 -0.472 0.051 0.130
L Order 6 L Order 1 -0.164 -0.395 0.067 0.202
L Order 6 L Order 2 -0.143 -0.373 0.088 0.306
L Order 6 L Order 5 -0.138 -0.400 0.123 0.440

Reservoir RO1 Deep RO1 -0.052 -0.182 0.078 0.857
RO2 RO3 Deep -0.096 -0.239 0.047 0.385
RO2 RO1 -0.036 -0.092 0.021 0.446
RO2 RO3 0.034 -0.041 0.110 0.776
RO2 RO1 Deep 0.016 -0.113 0.145 0.999

RO2 Deep RO3 0.145 0.032 0.258 0.004 **
RO2 Deep RO2 0.110 0.011 0.210 0.021 *
RO2 Deep RO1 Deep 0.127 -0.027 0.281 0.171

Habitat Group 1 Group 2 Pair-wise difference Lower Upper Adj. p Significance

Continued on next page
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RO2 Deep RO1 0.075 -0.026 0.175 0.273
RO2 Deep RO3 Deep 0.015 -0.151 0.180 1.000

RO3 RO1 -0.070 -0.147 0.007 0.095
RO3 RO1 Deep -0.018 -0.158 0.121 0.999

RO3 Deep RO3 0.130 -0.022 0.283 0.140
RO3 Deep RO1 Deep 0.112 -0.073 0.297 0.501
RO3 Deep RO1 0.060 -0.084 0.204 0.832

Stream FL Order 2 FL Order 1 -0.009 -0.204 0.187 1.000
FL Order 3 FL Order 1 -0.004 -0.157 0.149 1.000
FL Order 3 FL Order 2 0.005 -0.205 0.215 1.000
FL Order 4 FL Order 1 -0.017 -0.193 0.158 1.000
FL Order 4 FL Order 3 -0.013 -0.205 0.178 1.000
FL Order 4 FL Order 2 -0.009 -0.235 0.218 1.000
FL Order 5 FL Order 1 -0.055 -0.201 0.092 0.914
FL Order 5 FL Order 3 -0.051 -0.216 0.114 0.965
FL Order 5 FL Order 2 -0.046 -0.251 0.159 0.993
FL Order 5 FL Order 4 -0.037 -0.223 0.149 0.996
FL Order 6 FL Order 1 -0.204 -0.329 -0.080 0.000 ***
FL Order 6 FL Order 3 -0.201 -0.347 -0.054 0.002 **
FL Order 6 FL Order 4 -0.187 -0.357 -0.018 0.021 *
FL Order 6 FL Order 5 -0.150 -0.289 -0.011 0.027 *
FL Order 6 FL Order 2 -0.196 -0.386 -0.006 0.039 *
FL Order 7 FL Order 1 -0.179 -0.291 -0.067 0.000 ***

Habitat Group 1 Group 2 Pair-wise difference Lower Upper Adj. p Significance

Continued on next page
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FL Order 7 FL Order 3 -0.175 -0.311 -0.040 0.004 **
FL Order 7 FL Order 4 -0.162 -0.322 -0.002 0.046 *
FL Order 7 FL Order 5 -0.125 -0.252 0.003 0.060
FL Order 7 FL Order 2 -0.170 -0.352 0.011 0.080
FL Order 7 FL Order 6 0.025 -0.077 0.128 0.988

Habitat Group 1 Group 2 Pair-wise difference Lower Upper Adj. p Significance

Table S3.2: PERMANOVA and PERMDISP results for each multivariate analysis con-

ducted. Significant groups as revealed by PERMANOVA are highlighted in bold.

Environment
Habitat 6 5.24 0.15 < 0.0001 6 5.07 < 0.0001
Season 2 20.46 0.19 < 0.0001 2 0.09 = 0.92

Combined 8 9.05 0.34 < 0.0001 20 3.10 < 0.0001

Hydrology
Habitat 6 23.10 0.46 < 0.0001 6 36.39 < 0.0001
Season 2 10.97 0.07 < 0.0001 2 2.60 = 0.08

Combined 8 20.06 0.53 < 0.0001 20 14.81 < 0.0001

DNA
Habitat 6 8.84 0.23 < 0.0001 6 18.42 < 0.0001
Season 2 19.18 0.17 < 0.0001 2 0.88 = 0.42

Combined 8 11.43 0.40 < 0.0001 20 8.78 < 0.0001

RNA
Habitat 6 1.68 0.06 < 0.01 6 0.63 = 0.7
Season 2 21.00 0.23 < 0.0001 2 30.95 < 0.0001

Combined 8 6.51 0.28 < 0.0001 20 1.51 = 0.09

PERMANOVA PERMDISP
Dataset Group df F-statistic R2 p value df F-statistic p value

Continued on next page
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DOM
Habitat 6 6.64 0.20 < 0.0001 6 11.32 < 0.0001
Season 2 1.14 0.01 = 0.248 2 0.57 = 0.56

Combined 8 5.27 0.21 < 0.0001 18 3.52 < 0.0001

Cluster 1
Habitat 6 1.18 0.04 = 0.09 6 2.13 = 0.05
Season 2 0.84 0.01 = 0.76 2 0.73 = 0.48

Combined 8 1.09 0.05 = 0.20 17 1.18 = 0.29

Cluster 2
Habitat 6 5.03 0.16 < 0.0001 6 7.37 < 0.0001
Season 2 1.07 0.01 = 0.332 2 0.34 = 0.71

Combined 8 4.04 0.17 < 0.0001 18 2.58 < 0.001

Cluster 3
Habitat 6 7.40 0.22 < 0.0001 6 12.57 < 0.0001
Season 2 1.16 0.01 = 0.2443 2 0.61 = 0.54

Combined 8 5.84 0.23 < 0.0001 18 3.86 < 0.0001

Cluster 4
Habitat 6 2.19 0.08 < 0.0001 6 5.83 < 0.0001
Season 2 1.41 0.02 < 0.01 2 1.73 = 0.18

Combined 8 2.00 0.09 < 0.0001 18 2.82 < 0.001

CUP
Habitat 6 3.14 0.14 < 0.0001 6 2.87 < 0.05
Season 2 8.38 0.12 < 0.0001 2 1.40 = 0.25

Combined 8 4.45 0.26 < 0.0001 20 1.73 < 0.05

Microbial
metabolism

Habitat 6 3.76 0.11 < 0.0001 6 2.39 < 0.05
Season 2 18.43 0.18 < 0.0001 2 7.77 < 0.001

Combined 8 7.43 0.29 < 0.0001 20 2.87 < 0.001

PERMANOVA PERMDISP
Dataset Group df F-statistic R2 p value df F-statistic p value
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Table S3.3: Spearman correlation results between BP, BR and BGE

by habitat. Significant correlation coefficients are highlighted in bold.

FL Order 1-5 0.11 0.31 0.10 -0.32 0.68 -0.08
FL Order 6-7 < 0.05 0.48 < 0.001 -0.69 0.97 0.01

Lake 0.13 0.47 < 0.01 -0.73 0.80 0.08
RO1 < 0.0001 0.63 < 0.0001 -0.70 < 0.05 -0.39

RO2 < 0.001 0.60 < 0.0001 -0.94 < 0.001 -0.57

RO3 < 0.05 0.71 < 0.05 -0.63 < 0.05 -0.63

RO Hypo 0.46 0.31 0.18 -0.53 0.51 0.28

Habitat BP vs. BGE BR vs. BGE BP vs. BR
p-value ρ p-value ρ p-value ρ

Table S3.4: Spearman correlation results between BP, BR and

BGE by season. Significant correlation coefficients are high-
lighted in bold.

Spring < 0.01 0.39 < 0.0001 -0.70 < 0.05 -0.32

Summer 0.89 0.02 < 0.0001 -0.67 0.83 0.03
Autumn 0.81 0.03 < 0.0001 -0.70 0.14 -0.20

Season BP vs. BGE BR vs. BGE BP vs. BR
p-value ρ p-value ρ p-value ρ
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CONCLUSION

The core of this thesis lies in understanding spatial and temporal patterns of microbial community
assembly and functioning across an entire aquatic continuum. To do so, we investigated how mi-
crobial communities come togetherwithin an aquatic network, how they relate to spatio-temporal
patterns in dissolved organic matter (DOM), and how their shifts potentially associate to changes
in microbial metabolism. We have explored the relationships of microbial communities with DOM
and microbial metabolism at an unprecedented spatio-temporal scale and complexity by examin-
ing a diverse array of ecosystems (e.g., streams, rivers, lakes, reservoirs), observing patterns across
years and seasons, and distinguishing more reactive fractions within both microbial and DOM as-
semblages. The thesis not only provides an invaluable comprehensive dataset to the literature,
which includes high-resolution measurements of DNA, RNA, DOM and microbial metabolism, but
it also aimed to further our understanding of core principles in microbial ecology.

In chapter 1 we demonstrated that microbial community assembly within boreal aquatic networks
was strongly influenced by terrestrial connectivity, upstream aquatic history, and seasonal vari-
ations. We observed that terrestrially-derived microorganisms dominated both, DNA- and RNA-
based communities in every season. In contrast, microbes first detected in aquatic ecosystems
were carried downstream within the DNA pool; representing assembly processes that had oc-
curred in the past. These differences in microbial origin were a result of the variation in the pre-
dominant assembly process along the aquatic network. Mass effects were present at all times due
to the unidirectional flow of water favouring the dispersal of terrestrial microbes and aquatic mi-
crobes in upstream ecosystems. However, environmental selection was also strong in lower-order
streams. Furthermore, environmental selection became stronger again when the continuum ar-
rived in higher-order rivers and reservoirs in spring and summer, respectively. The location of the
strongest environmental selection across the aquatic continuumwas determined by seasonal vari-
ation in hydrology and environmental factors. These assembly processes and recruitment of taxa
into the active community occurred across the entire rank abundance curve, implying that the rare
biosphere plays a vital role in microbial community functioning. These findings highlight the im-
portance of considering the upstream aquatic network and seasonality when examining microbial
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community dynamics within inland waters.

Chapter 2 advanced our understanding of microbial and DOM assemblages by identifying micro-
bial taxa and DOMmolecular formulae that are reactive to environmental changes. This approach
enabled us to extract the most dynamic fractions within both assemblages across the hydrolog-
ical continuum, which revealed that the majority of microbial communities and approximately
half of the DOM pool do not exhibit statistically significant spatial patterns with flow-weighted
water age. Although most microbes tended to increase, the DOM assemblage was dominated
by either increasing or decreasing units depending on the examined year; variation that can be
attributed to the creation and flooding of a new reservoir. Despite the lack of an apparent sea-
sonality, a clear seasonality emerged when the reactive units of both microorganisms and DOM
were correlated to each other. Influx of fresh terrestrially-derived DOM in spring led to many cor-
relations indicative of microbial consumption along the water age gradient, whereas mid-sized,
partially decomposed molecular formulae were seemingly consumed in summer. These findings
may imply that the supply of fresh terrestrial DOM is too high for rapid consumption during the
spring freshet, which enabled us to observe degradation dynamics of microbes with fresh DOM.
In contrast, concentrations of fresh autochthonous DOM may not be high enough and its quick
degradation and transformation led us to observe causal interactions only with partially degraded
DOM molecular formulae. At the same time, different sets of microbial phyla in high water resi-
dence time systems in spring and summer were likely selected by decomposed DOM of low and
high molecular size, respectively. The findings of this chapter highlighted the inherent complexity
of microbe-DOM interactions, making it extremely difficult to discern any meaningful patterns.
Only after multiple quality filters and statistical thresholds were put in place, a core set of rela-
tionships could be extracted and interpreted when put in a comprehensive ecological framework.
The developed conceptual framework provides perspective to the scientific literature by highlight-
ing the importance of considering ecological and hydrological dynamics when using correlational
analyses.

In Chapter 3, we delved into microbial metabolism, illustrating how metabolic metrics vary and
link tomicrobial community and DOM composition across habitats and seasons within the aquatic
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network. Across the aquatic network microbial respiration rates and carbon demands peaked in
spring. In particular, specific respiration rates were linked to shifts in terrestrial DOM pools. Bacte-
rial production generally increased in summer and autumn, and was highest in streams and lakes
that were located early within the aquatic network. Bacterial growth efficiency was rather mod-
ulated by variations in bacterial respiration rather than bacterial production, and linked to shifts
in microbial community composition. Assays for evaluating the functional capacity of the micro-
bial community to consume a variety of carbon substrates revealed that spring and lake commu-
nities have general substrate preferences and consume substrates slowly. Conversely, streams
(all seasons) and reservoirs (summer and autumn) consumed a diverse set of substrates very
quickly. Studies that evaluate the variation and drivers of microbial metabolism are lacking in
recent years. This chapter emphasises the importance of examining microbial metabolism across
spatio-temporal gradients to understand how metabolism responds to hydrological, environmen-
tal, DOM and microbial community shifts. In order for the scientific community to find coherent
links to drivers and ultimately incorporate heterotrophic metabolism to earth system models in
the future, more studies are encouraged to explore links of metabolism across large gradients.

The collective results of the three chapters paint a picture of microbial community ecology across
the aquatic network with strong seasonal influences. During the spring freshet, both microbial
OTUs and fresh DOM molecular formulae are carried from the terrestrial surroundings into the
aquatic network (Crump et al., 2012; Ruiz-González et al., 2015c). Despite terrestrial microbes un-
dergoing strong selective pressure, a large fraction of terrestrial microbes continue to thrive along
the aquatic continuum. Influx of fresh terrestrial DOM and high bacterial abundances result in
enhanced bacterial respiration, and lower bacterial growth efficiencies across the entire aquatic
network. However, as the fresh DOM pool gets consumed and transformed into more degraded
compounds, a pool of less available DOM accumulates and starts to act as a selective force on
who remains active within the microbial community in higher residence time systems. In summer,
terrestrial DOM supply becomes scarce, except for lower-order streams where terrestrial-aquatic
exchanges remain strong. Hence, streams do not show large variations in community assembly nor
respiration across seasons. However, their bacterial production and growth efficiency increases in
summer likely due to the increase of available nutrients (Voss et al., 2015; Burd et al., 2018). With
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warmer temperatures and nutrient supplies, DOM shifts to more autochthonous material, but
the fresh material is too quickly consumed and transformed, allowing us to only measure DOM
degradation links to microbes with mildly decomposed matter. Less available DOM accumulates
with water age regardless of the season, affecting microbial community composition, which likely
leads to the upstream legacy of microbes that cease to be active along the continuum. Shifts in
the decomposedDOMpoolsmay have resulted in the stronger selection effects observed in higher
water residence time systems, allowing for terrestrial microbes to continue to thrive, while many
aquatic microbes may lack in the functional capacity to degrade more decomposed matter. By ex-
amining microbial community assembly, DOM interactions and microbial metabolism within the
same aquatic network across seasons, this thesis represents a novel contribution to the field of
microbial ecology andbiogeochemistry. The collective insights highlight the importance of evaluat-
ing these interdependent components of the aquatic carbon cycle together, in order to gain novel
insights on how microbial ecology influences biogeochemical patterns across the entire aquatic
network.

In summary, this thesis provides spatio-temporal insights into the intertwined nature of microbial
communities, dissolved organicmatter composition and bacterialmetabolism. The results provide
examples and raise attention on how connectivity and seasonality are crucial components into
understanding aquatic biogeochemical processes within inland waters.
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