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RÉSUMÉ 

L’algorithme de Weisfeiler-Lehman prend pour entrée une paire de graphes ayant le même 
nombre de sommets et soit permet de déterminer que ces derniers ne sont pas isomorphes, soit 
ne peut rien conclure. Le but de ce mémoire est d’éclaircir le résultat original de Kiefer et 
Schweitzer donnant une borne supérieure pour la complexité algorithmique de la version 
bidimensionnelle de cet algorithme. En plus de présenter la preuve en détails, des concepts et 
des étapes intermédiaires sont ajoutés pour rendre le raisonnement plus explicite. Le mémoire 
présente donc tout d’abord les notions de graphes colorés et de raffinements sur ces derniers. 
L’algorithme bidimensionnel de Weisfeiler-Lehman est alors reformulé comme étant une 
succession de raffinements sur des graphes colorés. Borner la complexité temporelle de 
l’algorithme revient alors à borner le nombre de raffinements effectués jusqu’à ce que ces 
derniers se stabilisent. Pour cela, les auteurs conçoivent un jeu où deux joueurs raffinent tour à 
tour un graphe coloré. À une partie de ce jeu est alors associé un coût. Puis, l’objectif du premier 
joueur est le maximiser et du deuxième joueur de le minimiser. Il est alors démontré que le 
nombre de raffinements qu’il est possible d’effectuer lors de l’exécution de l’algorithme 
bidimensionnel de Weisfeiler-Lehman est borné supérieurement par le coût associé à une partie 
où les deux joueurs jouent optimalement. Ce nombre est ensuite borné par l’usage d’arguments 
combinatoires utilisant les concepts de grandes et petites classes de couleurs et de graphes 
auxiliaires. Des conséquences de ce résultat en logique sont ensuite traitées. 

 

Mots-clés de l’auteur : isomorphismes de graphes, algorithme de Weisfeiler-Lehman, graphe 
coloré, raffinement de graphe coloré, jeu de Kiefer-Schweitzer, grandes et petites classes de 
couleurs, graphe auxiliaire 
 

 



INTRODUCTION

En algorithmique ou en informatique théorique, connaître la complexité temporelle

du problème de l'isomorphisme de graphes, c.-à-d. déterminer le nombre d'étapes

de calcul nécessaire pour savoir si deux graphes donnés sont isomorphes ou pas

en fonction de leur taille, est l'une des grandes questions non résolues.

Notamment, encore à ce jour, nous n'avons ni établi un algorithme qui résout

ce problème en temps polynomial, ni démontré qu'il s'agit d'un problème NP-

complet 1.

Vis-à-vis ce problème, l'algorithme de Weisfeiler-Lehman, notons-le WL, est un

test de complexité polynomiale pour déterminer si deux graphes donnés avec le

même nombre de sommets sont isomorphes (Pikhurko et Verbitsky, 2011). Toute-

fois, ce dernier est faillible, dans le sens où il peut soit détecter que deux graphes

donnés ne sont pas isomorphes, soit être incapable de conclure. L'algorithme WL

se décline en une in�nité dénombrable de versions, soit celle de dimension 1, celle

de dimension 2, etc. L'algorithme WL de dimension k fonctionne essentiellement

en associant une coloration à l'union des deux graphes d'entrée, soit une fonction

attribuant une couleur à chaque k-uplet de sommets d'un graphe et à chaque k-

uplet de sommets de l'autre, et en itérant une règle qui ra�ne la coloration jusqu'à

ce que cette dernière se stabilise.

1. Un problème est NP-complet si tout problème résoluble en temps polynomial par un

algorithme non déterministe peut s'y ramener par réduction polynomiale (Garey et Johnson,

1990).
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Il est pertinent de noter que, pour des naturels k et l tels que k < l, l'algorithme

WL de dimension l est au moins aussi �able que l'algorithme WL de dimension

k dans le sens où, pour deux graphes donnés, si l'algorithme WL de dimension

k peut établir que ces derniers ne sont pas isomorphes, alors il en est de même

pour celui de dimension l. Toutefois, une dimension plus élevée pour l'algorithme

implique une complexité de calcul plus élevée également. Plus précisément, on

peut montrer que l'algorithme WL de dimension k a une complexité de calcul de

O(nk) 2 où n est le nombre de sommets des graphes données 3.

Ce mémoire a pour objectif de présenter et d'éclaircir le résultat de Sandra Kiefer

et Pascal Schweitzer (2016). Ceux-ci démontrent que WL de dimension 2 a une

complexité de calcul de O(n2/log(n)), ce qui constitue une amélioration de la

borne O(n2), qui était la meilleure connue jusque là.

Puisque la démonstration de l'article de Kiefer et Schweitzer est très ardue à

suivre, notamment à cause de la densité de son écriture, l'objectif de ce mémoire est

d'expliciter les étapes de cette démonstration et de mettre en valeur les techniques

et les mécanismes utilisés ainsi que les concepts introduits, tout en présentant les

notions de base nécessaires.

Ce mémoire est structuré de la façon suivante. Le chapitre 1 introduit le pro-

blème de l'isomorphisme des graphes, incluant ses répercussions en théorie de la

complexité algorithmique. Au chapitre 2, on présente l'algorithme de Weisfeiler-

Lehman, ses propriétés et ses applications.

2. La notation O est dé�nie dans (Cormen et al., 2009) comme étant

O(g(n)) ∶= {f(n) ∣ il existe c, n0 ∈ N tels que 0 ≤ f(n) ≤ cg(n) pour tout n ≥ n0}.

3. Cela est démontré au début de la section 2.6.
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La notion de graphe coloré joue un rôle central dans la preuve de Kiefer et Schweit-

zer. Comme on le verra, un graphe coloré est un graphe orienté, �ni et complet où

une couleur est associée à chacune de ses arêtes. Au chapitre 3, on présente donc

une formalisation de l'algorithme de Weisfeiler-Lehman de dimension 2 utilisant

le concept de graphe coloré et un certain type de ra�nement de ces derniers. Au

chapitre 4, on présente des concepts reliés aux graphes colorés et on démontre des

propriétés élémentaires de ces derniers.

Dans leur article, Kiefer et Schweitzer introduisent un jeu où deux joueurs ra�nent

à leurs tours un graphe coloré, qui est l'une des idées fondamentales de leur dé-

monstration. Ce jeu est introduit au chapitre 5 et quelques résultats élémentaires

sur ce dernier sont démontrés.

Les chapitres 6, 7 et 8 introduisent des concepts reliés aux graphes colorés, puis

présentent des résultats sur leur sujet qui sont utilisés dans la démonstration

principale de l'article.

Le chapitre 6 présente des conditions qui sont respectées par le graphe initial du

jeu et qui sont préservées par les ra�nements qui se produisent lors de ce dernier.

Le chapitre 7 présente les notions de petites et de grandes classes de couleur. Par

dé�nition, toutes les arêtes d'un graphe coloré ayant une même couleur forment

une classe de couleur de ce dernier. Puis, toujours par dé�nition, une classe de

couleur est grande ou petite si sa cardinalité est plus grande ou plus petite qu'un

certain seuil qui est �xé dans la démonstration.

Le chapitre 8 présente la notion de graphe auxiliaire, soit un graphe �ni non orienté

construit à partir d'un graphe coloré. Un résultat sur ce dernier qui s'avère utile

pour la démonstration principale de l'article est que, si un premier graphe coloré

est un ra�nement d'un deuxième, alors le graphe auxiliaire construit à partir du
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deuxième est inclus dans le graphe auxiliaire construit à partir du premier.

Toutes les étapes fondamentales étant établies, la démonstration du théorème

principal est �nalement présentée au chapitre 9.

La conclusion traite des répercussions de la borne établie par Kiefer et Schweit-

zer en logique, tout particulièrement sur les structures �nies, des apports de ce

mémoire sur l'article source et des avenues futures qui pourraient être envisagées.



CHAPITRE I

LE PROBLÈME DE L'ISOMORPHISME DES GRAPHES

Ce chapitre a pour but d'introduire le problème de l'isomorphisme des graphes,

en plus d'aborder la question de sa complexité algorithmique ainsi que ses divers

applications.

1.1 Description

Avant d'introduire le problème de l'isomorphisme des graphes, il convient tout

d'abord de dé�nir ce qu'est un graphe, plus spéci�quement ce qu'est un graphe

simple �ni.

Dé�nition 1.1.1. Un graphe simple �ni est un couple (V,E) où V est un en-

semble �ni et E ⊆ V 2 est une relation irré�exive, c.-à-d. qui ne contient aucun élé-

ment de la forme (a, a), et symétrique, c.-à-d. (a, b) ∈ E si et seulement si (b, a) ∈
E.

L'ensemble V représente les sommets du graphe (V,E) et lorsqu'un couple (a, b) ∈
E, on dit que les deux sommets a et b sont reliés par une arête.

Pour un graphe donné, le degré d'un de ses sommets consiste au nombre d'autres

sommets du graphe auxquels ce dernier est relié. Plus précisément, pour une arête

v ∈ V ,



6

A B

C

D E

Figure 1.1 Graphe G

A1 B1

C1 D1

E1

Figure 1.2 Graphe G1

deg(v) ∶= ∣{u ∈ V ∣ (v, u) ∈ E}∣.

Dé�nition 1.1.2. Soit G = (V,E) et G′ = (V ′,E′), deux graphes. On dit que G

est un sous-graphe de G′, et on écrit G ⊆ G′, si V ⊆ V ′ et E ⊆ E′.

Dé�nition 1.1.3. Soit deux graphes G = (V,E) et G′ = (V ′,E′). Un isomor-

phisme de graphes entre G et G′ est une fonction bijective f ∶ V → V ′ telle que

pour tout (u, v) ∈ V 2, (u, v) ∈ E si et seulement si (f(u), f(v)) ∈ E′.

Deux graphes G et H sont dit isomorphes s'il existe un isomorphisme de graphes

entre les deux. On écrit alors G ≃H.

Par exemple, les deux graphes des �gures 1.1 et 1.2 sont isomorphes.

La bijection f ∶ G→ G1, dé�nie par le tableau 1.1, est d'ailleurs un isomorphisme

entre ces deux graphes.

Par exemple, on peut véri�er que B et C sont reliés par une arête dans G et il en
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u f(u)

A D1

B C1

C E1

D B1

E A1

Tableau 1.1 Isomorphisme f entre les graphes G1 et G2

est de même pour f(B) = C1 et f(C) = E1 dans G1.

Le problème de l'isomorphisme des graphes, ou IG, consiste alors à déterminer un

algorithme e�cace pour véri�er si deux graphes donnés sont isomorphes.

Comme un isomorphisme de graphes est forcément une bijection, on en déduit que

deux graphes ne sont pas isomorphes s'ils n'ont pas le même nombre de sommets.

Donc, pour le reste de ce mémoire, on suppose qu'on teste l'isomorphisme entre

deux graphes ayant le même nombre de sommets n.

1.2 Complexité

Soit deux graphes simples �nis G = (V,E) et G′ = (V ′,E′) tels que ∣V ∣ = ∣V ′∣.
Il existe alors n! bijections entre leurs sommets, où n = ∣V ∣. Déterminer si l'une

d'entre elles est un isomorphisme demande alors de véri�er pour chacune des n2

paires de sommets (u, v) de ∣V ∣ que (u, v) ∈ E si et seulement si (f(u), f(v)) ∈ E′.
La résolution de IG par énumération exhaustive a alors une complexité de calcul

de O(n2n!).

Nous allons maintenant présenter quelques rudiments de la théorie de la com-

plexité algorithmique nécessaires pour justi�er l'importance du problème de l'iso-
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morphisme des graphes. Pour des dé�nitions complètes et formelles, on peut

consulter un texte standard sur le sujet, par exemple (Papadimitriou, 1994).

Un algorithme est dit non déterministe s'il permet à au moins une étape un

choix entre plusieurs opérations. Il y a donc alors plusieurs exécutions possibles,

pour la même entrée. La classe de complexité NP consiste alors en l'ensemble des

problèmes tels qu'il existe, pour chaque entrée, au moins une exécution qui prend

un temps polynomial, en fonction de la taille de l'entrée. Pour IG, un algorithme

non déterministe peut donc générer une fonction f ∶ V → V ′ en temps O(n), puis
véri�er en temps O(n2) qu'il s'agit d'un isomorphisme de graphes. IG est donc

dans la classe NP.

On ne sait toujours pas si IG est dans P (classe de problèmes résolubles en temps

polynomial) ou s'il est NP-complet. Notons que montrer que ce problème n'est

pas dans P aurait pour conséquence que P ≠ NP . Déterminer alors précisément sa

classe de complexité est un problème mentionné par Karp, dans son célèbre article

où il démontre que le problème SAT est NP-complet (1972). Cette question est

aussi mentionnée par Garey et Johnson (1900b). IG est d'ailleurs l'une des grandes

questions ouvertes en théorie de la complexité algorithmique.

Il reste que pour les graphes planaires, Hopcroft et Trajan ont trouvé un algo-

rithme en temps O(n log(n)) (1972).

Un indice pouvant indiquer que ce problème n'est pas NP-complet est qu'il possède

une propriété que les autres problèmes de cette classe ne possèdent pas (Grohe

et Schweitzer, 2020). En e�et, compter le nombre d'isomorphismes entre deux

graphes a la même complexité algorithmique que de déterminer l'existence d'un

isomorphisme (Mathon, 1979). Aussi, pour deux graphes choisis au hasard, selon

une distribution uniforme, ceux-ci peuvent, en moyenne, être facilement distingués

à isomorphisme près par un algorithme (Babai et al., 1980).
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L'introduction de techniques provenant de la théorie des groupes par Babai (1979)

et Luks (1982) a jeté une nouvelle lumière sur le problème IG. Luks a montré en

particulier que pour une classe de graphes pour lesquels les degrés admis pour

leurs sommets sont bornés, il existe alors un algorithme polynomial pour tester

l'isomorphisme des graphes. Ce résultat est basé sur l'utilisation de la technique

diviser pour régner. Cette approche, combinée avec des idées de Zemlyachenko, a

amené Babai et Luks à construire un algorithme modérément exponentiel pour IG,

c.-à-d. en1/2+o(1) (1983). Puis, la borne supérieure 2O(
√
n∗log(n) a été établie (Babai

et al., 1983).

L'une des grandes avancées des dernières années vis-à-vis le problème IG est le

résultat de Babai, qui démontre que ce problème est au moins de complexité

quasi-polynomiale, c.-à-d. O(2log(n)c) pour c > 0 (2015). Le problème est alors dit

presque e�cacement résoluble.

1.3 Applications

Une des premières traces écrites mentionnant les isomorphismes de graphes se

concentre sur un problème de chimie. Il s'agit de comparer des graphes de mo-

lécules dans le but d'en sélectionner une seule par classe d'équivalence selon la

relation d'isomorphisme, ce qui réduit la mémoire utilisée pour des bases de don-

nées de molécules (Ray et Kirsch, 1957).

Il est fréquent en optimisation combinatoire que l'espace de recherche soit im-

mense et requiert d'être réduit. Il est alors naturel de véri�er une propriété sur

un seul représentant de sa classe d'équivalence selon la relation d'isomorphisme.

Un algorithme d'isomorphisme des graphes permet donc de comparer des graphes

dans le but de former des classes d'équivalences de ceux-ci.

D'autres applications existent en génération de structures combinatoires, en calcul
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de formes normales, en apprentissage automatique, en véri�cation de logiciels,

en programmation mathématique, en infographie, en vision par ordinateur, en

logique, en théorie des groupes algorithmique et en programmation quantique

(Grohe et Schweitzer, 2020).



CHAPITRE II

L'ALGORITHME DE WEISFEILER-LEHMAN

A�n d'aborder le résultat de l'article de Kiefer et Schweitzer, il est nécessaire

d'introduire ce qu'est l'algorithme de Weisfeiler-Lehman. Ce dernier résout le pro-

blème de l'isomorphisme des graphes en temps polynomial, mais le fait de manière

faillible, dans le sens où il peut soit déterminer que les deux graphes d'entrée ne

sont pas isomorphes, soit ne rien pouvoir conclure.

2.1 Quelques préalables

Dé�nissons la notion de multiensemble, qui est utile dans la description de l'algo-

rithme WL.

Un multiensemble est une structure similaire à un ensemble mais pouvant contenir

le même élément plusieurs fois. Chaque élément d'un multiensemble y est donc

présent avec une certaine multiplicité qui est un nombre entier strictement positif.

Formellement, on peut dé�nir un multiensemble comme un couple (E,f) où E

est un ensemble et f ∶ E → N+ est une fonction de E vers l'ensemble des entiers

strictement positifs. La fonction f associe donc à chaque élément sa multiplicité,

soit le nombre de fois que cet élément apparaît dans le multiensemble.

Notons que seuls les multiensembles �nis, c'est-à-dire ayant un nombre �ni d'élé-
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ments, sont utilisés dans ce mémoire.

Par convention, un multiensemble est noté avec des doubles accolades et ses élé-

ments sont énumérés dans un ordre quelconque. Par exemple, {{1,1,2,3,3,3}}.

Deux multiensembles sont égaux s'ils contiennent les mêmes éléments avec les

mêmes multiplicités. Ainsi, {{1,1,2,3,3,3}} ≠ {{1,2,3}}, car 1 et 3 n'apparaissent

pas le même nombre de fois dans chacun.

2.2 Approche intuitive

Intéressons-nous tout d'abord à des propriétés que deux graphes isomorphes doivent

avoir. Cette approche nous amène à formaliser l'algorithme de Weisfeiler-Lehman

de dimension 1.

On a par exemple la remarque suivante.

Remarque 2.2.1. Pour que deux sommets de graphes di�érents puissent être

reliés par un isomorphisme, ils doivent avoir le même nombre de sommets reliés,

soit le même degré, puisqu'il s'agit de graphes simples.

Cette approche qui consiste à véri�er des propriétés nécessaires aux isomorphismes

explique pourquoi l'algorithme peut distinguer deux graphes non isomorphes mais

ne peut pas garantir avec certitude l'isomorphisme de deux graphes.

Soit les graphes des �gures 2.1 et 2.2. Il ne peut y avoir d'isomorphisme entre les

deux. En e�et, une telle bijection devrait associer le sommet A′ de G′, de degré

4, à un sommet du graphe G de même degré. Or, il n'y a aucun tel candidat.

L'idée est alors de comparer les distributions des degrés des graphes. Pour cela,

on construit un multiensemble associé à chaque graphe contenant les degrés de

chacun de leurs sommets.
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A B

C

D E

Figure 2.1 Graphe G

A′

B′ C ′ D′

E′

Figure 2.2 Graphe G′

Par exemple, pour le graphe G de la �gure 2.1, on obtient {{1,1,1,2,3}} et pour
le graphe G′ de la �gure 2.2, on a plutôt {{1,1,1,1,4}}.

Maintenant, de la remarque 2.2.1, on déduit que deux graphes isomorphes doivent

être associés au même multiensemble. Autrement dit, avoir le même multien-

semble associé est une condition nécessaire pour que deux graphes puissent être

isomorphes. Ainsi, pour les �gures ci-dessus, G ne peut pas être isomorphe à G′.

Notons par contre que cela n'est pas un critère su�sant : deux graphes ayant le

même multiensemble associé peuvent ne pas être isomorphes. Par exemple, les

graphes H1 et H2 des �gures 2.3 et 2.4 ont le même multiensemble associé, c.-à-d.

{{1,1,2,2,2}}, mais ne sont pas isomorphes, car le premier est connexe alors que

l'autre ne l'est pas.

En fait, la méthode décrite ci-dessus, qui permet d'établir si deux graphes ne

sont pas isomorphes en comparant la distribution des degrés de leurs sommets,

peut même être généralisée de la façon suivante. En partant d'un sommet d'un
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A1

B1

C1

D1

E1

Figure 2.3 Graphe H1

A2

B2

C2

D2

E2

Figure 2.4 Graphe H2

graphe, au lieu de simplement noter son degré, on lui associe un multiensemble

correspondant aux degrés de chacun de ses sommets reliés. Puis, en prenant pour

éléments les multiensembles associés à chaque sommet du graphe, on construit un

nouveau multiensemble associé à ce dernier.

Prenons par exemple le sommet A1 du graphe H1 de la �gure 2.3. Ce sommet a

deux sommets reliés, soit B1 et C1. Chacun est de degré 2, donc le multiensemble

associé à A1 est {{2,2}}. De même, les sommets B1 et C1 ont pour multiensemble

associé {{1,2}}, puis D1 et E1 ont {{2}} d'associé.

Cela permet d'associer au graphe H1 le multiensemble

{{{{2,2}},{{1,2}},{{1,2}},{{2}},{{2}}}}.
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Pour le graphe H2, on obtient plutôt

{{{{2,2}},{{2,2}},{{2,2}},{{1}},{{1}}}}.

Comme ces deux multiensembles ne sont pas égaux, on en déduit que les graphes

H1 et H2 ne sont pas isomorphes.

Toutefois, comme avant, ce critère n'est toujours pas su�sant pour montrer que

deux graphes sont bien isomorphes. Il est au moins aussi puissant que le critère

précédent, car il permet d'identi�er comme non isomorphes toutes les paires de

graphes que le premier critère identi�erait également comme non isomorphes.

La justi�cation est laissée au lecteur. Il est d'ailleurs strictement plus puissant

puisqu'il distingue H1 et H2, ce qui n'était pas le cas avec le critère précédent.

On remarque qu'il est facile d'itérer ce processus de construction de multiensemble

et que, en fait, le critère devient ainsi de plus en plus puissant.

2.3 Formalisation du cas de dimension 1

Comme le montre l'exemple précédent, bien que les opérations sont naturelles,

l'itération de multiensembles peut devenir lourde en terme de notation et di�cile à

suivre. Pour rendre ce processus plus clair, la méthode usuelle consiste à considérer

des colorations de graphe.

Une coloration d'un ensemble A est une fonction χ ∶ A→ C, où C est un ensemble

quelconque dont les éléments sont appelés couleurs .

Dé�nition 2.3.1. Soit un ensemble A et soit χ et χ′, deux colorations de A. Les

deux colorations sont alors dites équivalentes si pour tous u, v ∈ A, χ(u) = χ(v) si
et seulement si χ′(u) = χ′(v).

Par exemple, l'ensemble A peut être l'ensemble des sommets d'un graphe. À H1



16

dé�ni plus tôt à la �gure 2.3, on peut associer les colorations χ et χ′ dé�nies par

le tableau 2.1.

u χ(u) χ′(u)

A1 rouge vert

B1 rouge vert

C1 orange bleu

D1 orange bleu

E1 vert violet

Tableau 2.1 Colorations χ et χ′ sur les sommets du graphe H1

Il est alors évident que ces deux colorations sont équivalentes, c.-à-d. que deux

sommets de même (ou di�érente) couleur pour une coloration sont alors de même

(ou di�érente) couleur pour l'autre coloration également.

Avec ces dé�nitions, on peut en�n formaliser l'algorithme WL de dimension 1

ou WL1. Ce dernier est aussi appelé l'étiquetage canonique ou l'algorithme de

ra�nement de couleurs. Nous suivons ici la présentation faite par (Pikhurko et

Verbitsky, 2011).

L'algorithme WL1 a pour entrées G1,G2, deux graphes �nis simples à n sommets.

Sa sortie nous indique soit que G1, G2 sont non isomorphes, soit qu'on peut rien

conclure. L'algorithme WL1 dé�nit des colorations de VG1 ∪VG2 qui seront notées

χi pour i ∈ N, avec pour ensemble de départ VG1 ∪ VG2 . Les couleurs sont des

multiensembles et les multiensembles de couleurs considérés sont dé�nis récursi-

vement.

Pour débuter, χ0 est dé�nie pour tout u ∈ VG1 ∪ VG2 par χ0(u) ∶= ∅, où ∅ est le

multiensemble vide.
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De façon générale, pour t ∈ {1,2} et u ∈ VGt , la coloration χi+1 est dé�nie par

χi+1(u) ∶= (χi(u),{{χi(v) ∣ (u, v) ∈ E(Gt)}})

La coloration limite est notée χ, où χ ∶= limi→∞χi.

On peut prouver qu'il existe un nombre f inférieur ou égal à 2n tel que χf est

équivalent à χf+1. En e�et, chaque itération de l'algorithme augmente le nombre

de couleurs des colorations et il ne peut y avoir plus de 2n couleurs pour une

coloration χi étant donné que ∣VG1 ∪ VG2 ∣ = 2n. On dit alors que l'algorithme se

stabilise à la f -ième itération. On en déduit que χ = χf .

Pour terminer, s'il existe, pour la coloration χ, une couleur associée à un nombre

di�érent de sommets de G1 que de G2, alors les deux graphes sont non isomorphes

et l'algorithme retourne cela en sortie. Autrement, il retourne inconnu.

Cela conclut la description de l'algorithme.

Notons que la deuxième composante de χi+1(u), soit {{χi(v) ∣ (u, v) ∈ E(Gt)}},
assure que des sommets ayant pour au moins une couleur de χi des nombres

di�érents de voisins de cette couleur sont de couleurs di�érentes pour la coloration

χi+1.

Il est alors utile de voir le couple χi+1(u) comme donnant une description du

voisinage du sommet u ∈ VGt . Notons aussi que, plus il y a d'itérations, plus le

voisinage décrit est grand.

L'algorithme se termine par la véri�cation que les deux multiensembles de couleurs

de sommets des graphes ne sont pas égaux, c.-à-d. {{χ(u) ∣ u ∈ VG1}} ≠ {{χ(u) ∣ u ∈
VG2}}, ce qui permet d'inférer que les deux graphes ne sont pas isomorphes.



18

Utilisons cet algorithme pour distinguer les graphes H1 et H2, dé�nis plus tôt aux

�gures 2.3 et 2.4.

Pour abréger l'écriture, on va réécrire les couples par des symboles αn de manière

à ce que deux couples aient le même symbole si et seulement s'ils sont égaux.

Cette réécriture préserve su�samment d'information pour pouvoir dire si deux

colorations sont équivalentes ou pas.

En dé�nissant χ0(u) ∶= ∅ pour tout sommet u ∈ VH1 ∪ VH2 , on trouve pour A1

que χ1(A1) = (χ0(A1),{{χ0(B1), χ0(C1)}}) = (∅,{{∅,∅}}) qu'on dénote par α1 par

souci de concision. Le tableau 2.2, illustre le processus de ra�nements itérés sur

la coloration χ0. On constate que χ4 est équivalent à χ3. On a donc χ ∶= χ3.

u χ0(u) χ1(u) χ2(u) χ3(u)

A1 ∅ (∅,{{∅,∅}}) =∶ α1 (α1,{{α1, α1}}) =∶ α2 (α2,{{β2, β2}}) =∶ α3

B1 ∅ (∅,{{∅,∅}}) =∶ α1 (α1,{{α1, β1}}) =∶ β2 (β2,{{α2, γ2}}) =∶ β3

C1 ∅ (∅,{{∅,∅}}) =∶ α1 (α1,{{α1, β1}}) =∶ β2 (β2,{{α2, γ2}}) =∶ β3

D1 ∅ (∅,{{∅}}) =∶ β1 (β1,{{α1}}) =∶ γ2 (γ2,{{β2}}) =∶ γ3
E1 ∅ (∅,{{∅}}) =∶ β1 (β1,{{α1}}) =∶ γ2 (γ2,{{β2}}) =∶ γ3

A2 ∅ (∅,{{∅,∅}}) =∶ α1 (α1,{{α1, α1}}) =∶ α2 (α2,{{α2, α2}}) =∶ δ3
B2 ∅ (∅,{{∅,∅}}) =∶ α1 (α1,{{α1, α1}}) =∶ α2 (α2,{{α2, α2}}) =∶ δ3
C2 ∅ (∅,{{∅,∅}}) =∶ α1 (α1,{{α1, α1}}) =∶ α2 (α2,{{α2, α2}}) =∶ δ3
D2 ∅ (∅,{{∅}}) =∶ β1 (β1,{{β1}}) =∶ δ2 (δ2,{{δ2}}) =∶ ϵ3
E2 ∅ (∅,{{∅}}) =∶ β1 (β1,{{β1}}) =∶ δ2 (δ2,{{δ2}}) =∶ ϵ3

Tableau 2.2 Itérations de WL pour les graphes H1 et H2
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Comparons maintenant les deux multiensembles de couleurs des sommets de chaque

graphe :

{{χ3(u) ∣ u ∈ VH1}} = {{α3, β3, β3, γ3, γ3}}

{{χ3(u) ∣ u ∈ VH2}} = {{δ2, δ2, δ2, ϵ2, ϵ2}}

Ces derniers ne sont pas égaux. En e�et, par exemple, la couleur α3 apparait une

fois dans le premier multiensemble et aucune fois dans le deuxième. Cela nous

permet de conclure que les deux graphes H1 et H2 ne sont pas isomorphes.

Même si l'algorithme de Weisfeiler-Lehman de dimension 1, dans le cas où il

nous retourne deux multiensembles non égaux, nous permet de conclure que les

deux graphes d'entrée ne sont pas isomorphes, il ne permet pas de déterminer

avec certitude que deux graphes sont isomorphes. De fait, si l'algorithme retourne

deux multiensembles égaux, on ne peut alors rien conclure.

Notons qu'une variante de l'algorithme consiste à comparer les multiensembles des

couleurs des sommets des deux graphes à chaque itération et à s'arrêter dès que

ceux-ci di�èrent. Ci-dessus, nous n'aurions alors pas à calculer χ3 et χ4. Notons

qu'il faut tout de même véri�er l'inéquivalence des colorations successives, car

autrement, l'algorithme pourrait durer éternellement (c.-à-d. rentrer dans une

boucle in�nie).

Présentons maintenant un exemple où l'algorithme retourne deux multiensembles

égaux pour deux graphes non isomorphes. Considérons les graphes Hex et Tri

des �gures 2.5 et 2.6.

En analysant le tableau 2.3 qui présente le résultat du calcul de χ0 et χ1, on voit

que χ0 et χ1 sont équivalents et on a donc que χ ∶= χ0.
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A1

B1

C1

D1

E1

F1

Figure 2.5 Graphe Hex

A2

B2

C2

D2

E2

F2

Figure 2.6 Graphe Tri

u χ0(u) χ1(u)

A1 ∅ (∅,{{∅,∅}}) =∶ α1

B1 ∅ (∅,{{∅,∅}}) =∶ α1

C1 ∅ (∅,{{∅,∅}}) =∶ α1

D1 ∅ (∅,{{∅,∅}}) =∶ α1

E1 ∅ (∅,{{∅,∅}}) =∶ α1

A2 ∅ (∅,{{∅,∅}}) =∶ α1

B2 ∅ (∅,{{∅,∅}}) =∶ α1

C2 ∅ (∅,{{∅,∅}}) =∶ α1

D2 ∅ (∅,{{∅,∅}}) =∶ α1

E2 ∅ (∅,{{∅,∅}}) =∶ α1

Tableau 2.3 Itérations de WL pour les graphes Hex et Tri
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Ainsi,

{{χ(u) ∣ u ∈ VHex}} = {{∅,∅,∅,∅,∅}}

{{χ(u) ∣ u ∈ VTri}} = {{∅,∅,∅,∅,∅}}

On a donc que les deux multiensembles sont égaux. En e�et, leurs couleurs ont

autant de représentants dans un multiensemble que dans l'autre. Pourtant, les

deux graphes ne sont pas isomorphes, l'un étant connexe et l'autre non.

2.4 Formalisation du cas de dimension k

Il est possible de modi�er cet algorithme a�n qu'il puisse distinguer des graphes

que la version originale ne peut distinguer. L'idée est alors de considérer des k-

uplets de sommets plutôt que des simples sommets. En contrepartie, l'algorithme

augmente en complexité temporelle.

Dé�nissons l'algorithme de Weisfeiler-Lehman de dimension k ou WLk, où k est

un entier positif.

L'algorithme WLk a pour entrées G1,G2, deux graphes �nis simples à n sommets.

Sa sortie nous indique soit que G1, G2 sont non isomorphes, soit qu'on ne peut

conclure.

L'algorithme WLk dé�nit des colorations de V k
G1
∪V k

G2
qui sont notées χi pour i ∈ N,

avec pour ensemble de départ V k
G1
∪V k

G2
où, par exemple, VG1

k désigne l'ensemble

des k-uplets à valeurs dans l'ensemble VG1 . Les couleurs sont des multiensembles

et les multiensembles de couleurs considérés sont dé�nis récursivement.

Pour débuter, χ0 attribue à chaque k-uplet un couple d'ensembles. Formellement,

pour t ∈ {1,2} et pour tout ū = (u1, ..., uk) ∈ V k
Gt
, alors

χ0(ū) ∶= ({(i, j) ∈ {1, ..., k}2 ∣ ui = uj},{(i, j) ∈ {1, ..., k}2 ∣ (ui, uj) ∈ E(Gt))})



22

Dénotons par ūl,v le k-uplet ū dans lequel on remplace la l-ième coordonnée ul

par la variable v.

De façon générale, pour t ∈ {1,2} et u ∈ VGt , la coloration χi+1 est dé�nie par

χi+1(ū) ∶= (χi(ū),{{(χi(ū1,v), ..., χi(ūk,v)) ∣ v ∈ V k
Gt
}})

On peut prouver qu'il existe un nombre f inférieur ou égal à 2nk tel que χf est

équivalent à χf+1. En e�et, chaque itération de l'algorithme augmente le nombre

de couleurs des colorations et il ne peut y avoir plus de 2nk couleurs pour une

coloration χi étant donné que ∣V k
G1
∪ V k

G2
∣ = 2nk.

On dit alors que l'algorithme se stabilise à la f -ième itération. La coloration limite

χf est tout simplement notée χ.

Pour terminer, s'il existe, pour la coloration χ, une couleur associée à un nombre

di�érent de k-uplets de sommets de G1 que de G2, alors les deux graphes sont non

isomorphes et l'algorithme retourne cela comme sortie. Autrement, ce dernier

retourne inconnu.

Cela conclut la description de l'algorithme.

Ici, χ0(ū) nous donne une description complète de l'allure du k-uplet ū.

L'algorithme se termine par la véri�cation que les deux multiensembles de couleurs

de k-uplets de sommets des graphes ne sont pas égaux, c.-à-d. {{χ(ū) ∣ ū ∈ V k
G1
}} ≠

{{χ(ū) ∣ ū ∈ V k
G2
}}, ce qui impliquerait alors alors les deux graphes ne sont pas

isomorphes.

Nous allons nous attarder sur le cas k = 2, tout d'abord pour nous aider à saisir

ce langage plutôt lourd, puis parce que ce mémoire se concentre sur ce cas précis.

Soit deux graphes G1 et G2. En appliquant la version de l'algorithme pour k = 2,
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nous obtenons, pour ū = (u1, u2) ∈ G2
1 (analogue pour ū ∈ G2

2),

χ0(ū) ∶= ({(i, j) ∈ {1,2}2 ∣ ui = uj},{(i, j) ∈ {1,2}2 ∣ (ui, uj) ∈ E(G1)}).

Nous observons alors seulement trois possibilités :

χ0(u1, u2) ∶= ({(1,1), (2,2)},{}), donc u1 ≠ u2 et ils ne sont pas reliés.

χ0(u1, u2) ∶= ({(1,1), (2,2)},{(1,2), (2,1)}), donc u1 ≠ u2 et ils sont reliés.

χ0(u1, u2) ∶= ({(1,1), (2,2), (1,2), (2,1)},{}), donc u1 = u2 (forcément non reliés,

car E est antiré�exive).

Pour ū = (u1, u2) ∈ G2
1 (analogue pour ū ∈ G2

2), nous obtenons ensuite

χi+1(u1, u2) ∶= (χi(u1, u2),{{(χi(v, u2), χi(u1, v)) ∣ v ∈ VG1}})

L'article de Kiefer et Schweitzer étudie la complexité algorithmique de cet algo-

rithme et pour ce faire introduit plusieurs autres objets mathématiques comme

nous allons le voir. Entre autres, cet article présente la notion de graphes colorés,

qui uni�e en un seul concept les graphes et les colorations. De plus, le ra�ne-

ment de couleur se fait sur chaque graphe individuellement plutôt que sur l'union

disjointe des deux, ce qui nécessite de modi�er le critère �nal de l'algorithme.

2.5 Fiabilité

Formellement, il a été démontré que la version unidimensionnelle de cet algorithme

décide asymptotiquement presque toujours correctement si deux graphes sont iso-

morphes ou pas (Babai et al., 1980). Ce test est connu entre autres pour échouer

à distinguer deux graphes lorsque ceux-ci sont de même taille et sont réguliers,

c'est-à-dire qu'ils ont des sommets de même degré. Les �gures 2.5 et 2.6, présentés

plus tôt, montrent un exemple.
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On a par la suite démontré que la version bidimensionnelle de l'algorithme de

Weisfeiler-Lehman, lorsqu'appliquée à des paires de graphes réguliers, décide asymp-

totiquement presque toujours correctement si ces derniers sont isomorphes ou pas

(Kucera, 1987).

On sait aussi que pour toutes classes de graphes avec mineurs interdits (c.-à-

d. lorsque la classe est caractérisée par le fait que la collection des mineurs des

graphes de cette dernière ne puisse contenir certains graphes spéci�és), il existe

un k tel que WLk distingue correctement tous ses éléments (Grohe, 2010). Ici

un mineur M d'un graphe G est obtenu de G par contraction des arêtes d'un

sous-graphe induit de G (Robertson et Seymour, 1983).

En revanche, peu importe la dimension, on a démontré qu'il existe toujours deux

graphes non isomorphes que WL ne peut distinguer (Cai et al., 1992).

2.6 Complexité

L'algorithme WLk se stabilise en temps O(nk+1log(n)) (Berkholz et al., 2017).

Remarquons que borner la complexité de WLk revient à borner le nombre d'itéra-

tions du pire cas du processus de ra�nement avant que ce dernier ne se stabilise.

Soit WLk(n), ce nombre, pour deux graphes à n sommets. La borne WLk(n) ≤
nk−1 se déduit alors du fait qu'un graphe à n sommets possède nk k-uplets et peut

donc avoir au plus nk couleurs di�érentes, et que chaque itération de l'algorithme

doit augmenter le nombre de couleurs du graphe.

Babai a démontré que pour deux graphes choisis au hasard, le nombre d'itérations

avant stabilisation est asymptotiquement presque toujours 2 (1980).

De plus, on considérant les chemins, on voit facilement que WL1(n) ≥ n/2 − 1.
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A B C D E F G H

Figure 2.7 Coloration χ0

A B C D E F G H

Figure 2.8 Coloration χ1

A B C D E F G H

Figure 2.9 Coloration χ2

Par exemple, considérons un graphe chemin comme dans la �gure 2.7. Dans cette

�gure, la coloration χ0 consiste à associer la couleur bleue aux sommets de degré 1

et verte à ceux de degré 2. À partir de χ2, soit la troisième coloration, le ra�nement

est déjà stabilisé. Notons que 8/2 − 1 = 3, donc la formule est respectée.

L'article (Krebs et Verbitsky, 2015) démontre qu'il est possible de trouver deux

graphes non isomorphes pour lesquels le nombre d'itérations avant stabilisation

est n −O(√n). Donc, WL1(n) ≥ n −O(
√
n), ce qui est une borne inférieure plus

grande que la dernière.

Pour k > 1, la meilleure borne inférieure connue a été découverte par Fürer (Orejas

et al., 2001) qui montra que WLk(n) ∈ Ω(n), 1 en s'inspirant des constructions

de l'article (Cai et al., 1992) de lui-même et de ses collègues Cai et Immerman.

Récemment, on a démontré qu'il existe des graphes à n sommets ne pouvant être

1. La notation Ω est dé�nie dans (Cormen et al., 2009) comme étant

Ω(g(n)) ∶={f(n) ∣ il existe c, n0 ∈ N tels que 0 ≤ cg(n) ≤ f(n) pour tout n ≤ n0}.
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distingués par no(k/logk) itérations de WLk, ce qui est une nouvelle borne inférieure,

mais elle est restreinte à k < n0.01 par (Berkholz et Nordström, 2016).

En ce qui concerne les bornes supérieures, la borne naïve O(nk) est la seule connue
jusqu'à présent. Non seulement cela, pour k = 1, WL1(n) est dominée et soumise

à n asymptotiquement, c.-à-d. WL1(n) ∈ Θ(n) 2. Ainsi, cette borne est impossible

à améliorer. Il est alors faux que WL1(n) = O(nt) pour t < 1.

Finalement, nous arrivons au point tournant : le résultat de Kiefer et Schweitzer

fut d'abaisser cette borne dans le cas de k = 2, en établissant que WL2(n) =
O(n2/log(n)). La démonstration de ce résultat consiste en la majeure partie de

ce mémoire. On a donc que WL2(n) ∈ Θ(n2) est faux. Cela falsi�e l'hypothèse

pessimiste comme quoi O(nk) n'est pas une borne améliorable pour toutes les

dimensions. Cela démontre aussi que pour k = 2, WL2(n) n'est pas dominée et

soumise asymptotiquement à no(k/logk).

Déterminer si WLk(n), pour toute dimension k > 1, a une borne supérieure infé-

rieure à O(nk) reste un problème ouvert.

2.7 Applications

Malgré que WL1 soit faillible, il est tout de même utilisé en pratique pour tester

l'isomorphisme de graphes, au minimum comme sous-routine à des algorithmes

plus complets comme ceux de Nauty et Traces (McKay et Piperno, 2014), de Bliss

(Junttila et Kaski, 2007) et de Saucy (Darga et al., 2004).

2. La notation Θ est dé�nie dans (Cormen et al., 2009) comme étant

Θ(g(n)) ∶={f(n) ∣ il existe c1, c2, n0 ∈ N tels que 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) pour tout n ≤ n0}.
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Le résultat de Babai cité à la section 1.2 utilise d'ailleurs une version de l'al-

gorithme de Weisfeiler-Lehman de dimension polylog(n) pour développer l'algo-
rithme le plus rapide connu à ce jour pour résoudre le problème de l'isomorphisme

des graphes, avec complexité de calcul quasi polynomiale (2015).

Cet algorithme est aussi utilisé dans l'application de noyau de sous-graphe en

apprentissage automatique (N. Shervashidze et Borgwardt, 2011) ou en analyse

statique de programme (Yang et al., 2021).

Il permet aussi la réduction e�ective de dimension en programmation linéaire

(Grohe et al., 2014).

De plus, la version bidimensionnelle de l'algorithme est reliée d'une certaine ma-

nière à la multiplication matricielle, surtout en ce qui concerne les con�gurations

cohérentes (un certain type de graphe construit à partir d'un groupe) (Babai,

1996). Ce parallèle se poursuit en réalisant qu'e�ectuer un certain nombre d'ité-

rations de WL2 est équivalente à e�ectuer le même nombre de produits matriciels

sur un certain type d'anneau (Babel et al., 2010). Cet anneau peut même être

celui des entiers, à l'aide de randomisation, ce qui donne à l'algorithme une com-

plexité de calcul de O(nω) (Schweitzer, 2009). Ici, ω < 3 consiste au coe�cient

de multiplication matricielle, tirée d'une dé�nition généralisée de cette opération

(Bläser, 2013).

L'algorithme de WL peut être décrit par certains jeux de Ehrenfeucht-Frassé (Cai

et al., 1992). Dans ce cas, une stratégie gagnante du Gâcheur minimisant le

nombre de coups joués, WLk(n) correspond au nombre maximum de coups joués.

Ce dernier est en conséquence inférieur ou égal aux bornes supérieures connues de

WLk(n).



CHAPITRE III

L'ALGORITHME DE WEISFEILER-LEHMAN DE DIMENSION 2 TEL QUE

FORMALISÉ PAR KIEFER ET SCHWEITZER

L'article de Sandra Kiefer et Pascal Schweitzer (Kiefer et Schweitzer, 2016) a pour

but de démontrer que la version de cet algorithme à 2 dimensions a une complexité

de calcul d'au plus O(n2/log(n)). Il s'agit de la meilleure borne connue jusqu'à

ce jour.

Dans leur formalisation de l'algorithme WL de dimension 2, les graphes simples

�nis d'entrée sont convertis en graphes colorés. Ces derniers sont introduits dans

la section suivante.

3.1 Graphes colorés

Les graphes colorés sont des objets qui uni�ent en un concept les graphes et les

colorations.

Dé�nition 3.1.1. (Kiefer et Schweitzer, 2016) Un graphe coloré est un couple

G = (V,χ) où V est un ensemble �ni non vide, χ ∶ V 2 → C, une fonction surjective,

et C, un ensemble quelconque.

Dé�nition 3.1.2. (Kiefer et Schweitzer, 2016) Soit G = (V,χ), un graphe coloré.

Un élément de V est dit un sommet de G.
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Un élément de V 2 est dit un sommet de G s'il appartient à l'ensemble

S ∶= {(u,u) ∣ u ∈ V }.

Un élément de V 2 est dit une arête de G s'il appartient à l'ensemble

A ∶= {(u, v) ∣ u, v ∈ V et u ≠ v}.

Nous spéci�erons sommet dans V ou sommet dans V 2 au besoin a�n d'éviter les

ambiguïtés.

Dé�nition 3.1.3. Soit V, un ensemble �ni non vide, alors ΓV est l'ensemble de

tous les graphes colorés ayant V pour ensemble de sommets.

Notons que pour un certain ensemble V , tous les graphes colorés de l'ensemble

ΓV ont le même ensemble de sommets V 2 et le même ensemble d'arêtes V 2. C'est

donc par leurs colorations qu'ils se distinguent.

Dé�nition 3.1.4. Soit V et V ′, des ensembles �nis non vides, et G ∈ ΓV , G′ ∈ ΓV ′ .

Un isomorphisme de graphes colorés est une fonction bijective f ∶ V → V ′ telle

que pour tout (u1, u2) ∈ V 2,

χG(u1, u2) = χG′(f(u1), f(u2)). Si une telle fonction f existe, les deux graphes

colorés sont dit isomorphes.

Dé�nition 3.1.5. Soit V un ensemble �ni non vide, et G,G′ ∈ ΓV .

1) On dit que G′ ra�ne G ou que G′ est un ra�nement de G et on note G ⪰ G′

si pour tous ū, v̄ ∈ V 2 tels que χG′(ū) = χG′(v̄), alors χG(ū) = χG(v̄).
2) On dit qu'ils sont équivalents et on note G ≡ G′ si G ⪰ G′ et G′ ⪰ G.
3) On dit que G′ ra�ne strictement ou est un ra�nement strict de G et on note

G ≻ G′ si G ⪰ G′ et G /≡ G′.
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G′

G

ū

ū

v̄

v̄

w̄

w̄

x̄

x̄

Figure 3.1 Illustration du ra�nement G ⪰ G′

G′

G

ū

ū

v̄

v̄

w̄

w̄

x̄

x̄

Figure 3.2 Illustration de l'équivalence G ≡ G′

Un ra�nement d'un graphe coloré consiste en un ra�nement de la partition in-

duite par la coloration du graphe.

Dans la �gure 3.1, chaque graphe coloré est représenté par une bande, qui contient

l'ensemble de ses sommets et de ses arêtes dans V 2 arrangées linéairement. Ainsi,

pour ū ∈ V 2 situé quelque part sur une bande, l'autre bande contient le même

élément à l'exact même position ou coordonnée horizontale. Puis, les rectangles

indiquent la couleur associée aux éléments à l'intérieur de ceux-ci.

Ainsi, pour la �gure 3.1, G′ ra�ne G, car on observe que si deux arêtes de V 2

ont la même couleur dans le graphe G′ (ū, v̄ par exemple), alors ils ont aussi la

même couleur dans G. La contraposée est également vraie : si deux arêtes ont

deux couleurs di�érentes dans G (w̄, x̄, par exemple), alors il en est de même dans

G′.

Dans la �gure 3.2, G′ et G sont équivalents dans ce cas-ci, car deux arêtes de V 2

ont la même couleur dans le graphe G′ (ū, v̄ par exemple) si et seulement s'il en

est de même pour G.

À partir de maintenant, on ne colore plus les représentations, car tout ce qui
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compte, c'est la partition induite par la coloration, indépendamment des couleurs

utilisées.

Soit les G,G′ et H tels que VG = VG′ = {a, b}, VH = {c, d}, et les colorations sont
dé�nies par le tableau 3.1.

ū χG(ū) χG′(ū) ū χH(ū)

(a, a) orange jaune (c,c) bleu

(a, b) orange jaune (c,d) rouge

(b, a) rouge vert (d,c) orange

(b, b) bleu rouge (d,d) orange

Tableau 3.1 Graphes colorés G, G′ et H

Ici, les deux graphes G et G′ sont équivalents, car deux couples de V ont la même

couleur dans un graphe coloré si et seulement s'ils ont la même couleur dans l'autre

graphe coloré. Remarquons que ces graphes doivent avoir le même ensemble de

sommets (soit V ), c.-à-d. {a, b}. Par contre, ils n'ont pas nécessairement le même

multiensemble de couleurs. En e�et, G a {{orange,orange, rouge,bleu}} et G′ a

{{jaune, jaune,vert, rouge}}.

D'autre part, les graphes G et H sont isomorphes. En e�et, on peut véri�er que

la fonction f ∶ VG → VH telle que f(a) = d et f(b) = c respecte la dé�nition

d'isomorphisme de graphes colorés. Remarquons que ces graphes n'ont pas le

même ensemble de sommets, c.-à-d. respectivement {a, b} et {c, d}. Par contre, ils
ont le même multiensemble de couleurs, soit {{orange,orange, rouge,bleu}} dans
chacun des cas.

La proposition suivante découle de la dé�nition 3.1.5.

Proposition 3.1.1. Soit V un ensemble �ni non vide. Alors la relation ⪰ est une
relation d'ordre partiel sur ΓV relative à la relation d'équivalence ≡. Donc, pour
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tous G,H, I ∈ ΓV , on a :

1) G ⪰ G (ré�exivité) ;

2) si G ⪰H et H ⪰ G, alors G ≡H (antisymétrie) et

3) si G ⪰H et H ⪰ I, alors H ⪰ I (transitivité).

3.2 La conversion en graphe coloré

La conversion d'un graphe simple �ni en graphe coloré se fait de la manière sui-

vante. Celle-ci est inspirée par la coloration χ0 de la section précédente, basée sur

le type d'isomorphisme.

Dé�nition 3.2.1. Soit G = (V,E), un graphe simple �ni. Alors son graphe coloré

associé est le couple (V,χ) avec χ ∶ V 2 → C dé�ni de la façon suivante. On pose

d'abord l'ensemble des couleurs C = {0,1,2}. Puis, on attribue la couleur 2 aux

sommets (dans V 2), 1 aux arêtes respectant la relation E, et 0 aux arêtes ne la

respectant pas.

Les termes sommet et arête utilisés ci-dessus correspondent à ceux de la dé�nition

3.1.2.

Remarque 3.2.1. Soit A, B et C, des ensembles �nis non vides, et f ∶ A→ C et

g ∶ B → C. Soit {{f(x) ∣ x ∈ A}} et {{g(x) ∣ x ∈ B}}, deux multiensembles. Ces deux

multiensembles sont égaux si et seulement s'il existe une bijection b ∶ A→ B telle

que pour tout x ∈ A, on a f(x) = g(b(x)).

Proposition 3.2.1. Soit V un ensemble �ni non vide, et G,G′ ∈ ΓV qui sont

isomorphes. Alors {{χG(ū) ∣ ū ∈ V 2}} = {{χG′(ū) ∣ ū ∈ V 2}}.

Preuve. Comme G et G′ sont isomorphes, il existe un isomorphisme f ∶ V → V

entre les deux graphes. Soit maintenant la fonction F ∶ V 2 → V 2 telle que pour
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tout (u1, u2) ∈ V 2, F (u1, u2) ∶= (f(u1), f(u2)). Cette fonction F possède un inverse

F −1(u1, u2) ∶= (f−1(u1), f−1(u2)) et est donc une bijection.

Ainsi, pour tout (u1, u2) ∈ V 2, χG(u1, u2) = χG′(F (u1, u2)) et par la remarque

3.2.1, le résultat est démontré.

Proposition 3.2.2. Soit G = (V,E) et G′ = (V ′,E′), deux graphes simples �-

nis. S'ils sont isomorphes, alors leurs graphes colorés associés sont également iso-

morphes.

Preuve. Supposons les deux graphes isomorphes. Alors il existe une bijection

f ∶ V → V ′ tel que pour tout (u1, u2) ∈ V, (u1, u2) ∈ E ⇐⇒ (f(u1), f(u2)) ∈ E′.

Nous allons montrer que f induit un isomorphisme entre les graphes colorés asso-

ciés et donc qu'on a bien que (u1, u2), (v1, v2) ∈ V 2, χG(u1, u2) = χG′(f(u1), f(u2)).

Il y a trois cas à considérer.

Si χG(u1, u2) = 0, alors par dé�nition du graphe coloré associé, on a que (u1, u2) /∈
E et u1 ≠ u2. Comme la fonction f est un isomorphisme de graphes, on a donc que

(f(u1), f(u2)) /∈ E′ et f(u1) ≠ f(u2) et on en conclut que χG′(f(u1), f(u2)) = 0.

De manière analogue, de χG(u1, u2) = 1, on déduit (u1, u2) ∈ E et u1 ≠ u2, puis

(f(u1), f(u2)) ∈ E′ et f(u1) ≠ f(u2), et �nalement χG′(f(u1), f(u2)) = 1.

De même, de χG(u1, u2) = 2, on infère u1 = u2, donc f(u1) = f(u2), ce qui permet

de conclure que χG′(f(u1), f(u2)) = 2.

3.3 Propriétés conservées par la conversion

Maintenant, considérons les deux propriétés suivantes des graphes colorés.

Dé�nition 3.3.1. Soit V un ensemble �ni non vide. Un graphe coloré G ∈ ΓV est

dit bien dissociant si l'ensemble des couleurs des sommets (dans V 2) et l'ensemble
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des couleurs des arêtes sont disjoints, c.-à-d.

{χG(u,u) ∣ u ∈ V } ∩ {χG(v,w) ∣ v,w ∈ V et v ≠ w} = ∅

Dé�nition 3.3.2. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non

vide. On dit que le graphe coloré G ∈ ΓV respecte l'équivalence contraire si pour

tous (u1, u2), (v1, v2) ∈ V 2, χG(u1, u2) = χG(v1, v2) si et seulement si χG(u2, u1) =
χG(v2, v1).

Démontrons une proposition importante sur les graphes ayant cette propriété :

Proposition 3.3.1. Soit V un ensemble �ni non vide, et G ∈ ΓV respectant

l'équivalence contraire. On a alors que pour toute couleur c ∈ CG, il existe une

couleur dite duale c̄ ∈ CG telle que pour tout (u, v) ∈ V , χG(u, v) = c si et seulement

si χG(v, u) = c̄.

Preuve. Soit c ∈ CG. Comme χG est surjective, il existe (u0, v0) ∈ V tel que

χG(u0, v0) = c. Posons alors c̄ ∶= χG(v0, u0).

L'opérateur c ↦ c̄ est bien dé�ni pour la raison suivante. Soit (u, v) ∈ V quel-

conque. Si χG(u, v) = c, alors χG(u, v) = χG(u0, v0) et on déduit par l'équivalence

contraire que χG(v, u) = χG(v0, u0) et donc χG(v, u) = c̄. On démontre de manière

analogue que χG(v, u) = c̄ implique que χG(u, v) = c.

On observe trivialement par l'analyse des dé�nitions 3.3.2 et 3.3.1 la proposition

suivante.

Proposition 3.3.2. Le graphe coloré (V,χG) associé au graphe simple �ni G =
(V,E) est bien dissociant et respecte l'équivalence contraire.

Preuve. Le fait que G soit bien dissociant découle de la dé�nition de graphe

coloré associé, qui assigne la couleur 2 aux sommets et les couleurs 0 ou 1 aux

arêtes.
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La deuxième partie de la proposition vient du fait que, puisque la relation E sur

le graphe simple initial est symétrique, la fonction χG l'est aussi. Donc le graphe

coloré associé respecte l'équivalence contraire.

Ainsi, pour le reste du mémoire, nous prenons pour acquis que nos graphes co-

lorés d'entrée pour l'algorithme de Weisfeiler-Lehman de dimension 2 sont bien

dissociants et respectent l'équivalence contraire.

3.4 Ra�nement bidimensionnel de Weisfeiler-Lehman

Notons qu'ici, contrairement à la formalisation de l'article (Pikhurko et Verbitsky,

2011), le ra�nement tel que formalisé par Kiefer et Schweitzer se fait individuelle-

ment sur chacun des graphes colorés. Cela ne pose pas de problème majeur, mais

il faut noter qu'on ne peut plus réétiqueter les couleurs à chaque itération. Ce pro-

cessus permettait une concision d'écriture, mais dans le contexte de ra�nement

individuel, il y a une perte d'information.

Dé�nition 3.4.1. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide,

et G ∈ ΓV . Alors le ra�nement bidimensionnel de Weisfeier-Lehman de G, ou

ra�nement de Weisfeiler-Lehman de G, est le graphe coloré noté Gr ∈ ΓV , dé�ni

par Cr ∶= χGr(V 2) et où, pour tout (u, v) ∈ V 2,

χGr(u, v) ∶= (χG(u, v),{{ (χG(w, v), χG(u,w)) ∣ w ∈ V }}).

La proposition suivante montre que le ra�nement de Weisfeiler-Lehman porte

bien son nom, dans le sens où ce dernier ra�ne le graphe.

Proposition 3.4.1. Soit V un ensemble �ni non vide. On a alors que G ⪰ Gr

pour tout G ∈ ΓV .
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Preuve. Soit (u1, u2), (v1, v2) ∈ V 2 tels que χGr(u1, u2) = χGr(v1, v2). De la dé�-

nition 3.4.1, on a que χG(u1, u2) = χG(v1, v2) et donc G ⪰ Gr par la dé�nition de

⪰ .

Notation 3.4.1. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide,

et G ∈ ΓV . Posons G(0) ∶= G et G(i) ∶= (G(i−1))r, où G(i) correspond à la ie itération

de l'algorithme WL2.

Corollaire 3.4.1. Soit V un ensemble �ni non vide, et G ∈ ΓV . Pour tous i, j ∈ N
tels que i ≤ j, on a alors que G(i) ⪰ G(j).

Maintenant, pour ne pas alourdir cette section, nous énonçons la proposition 4.3.9

et reportons sa démonstration à la section 4. Puisque la section 4 n'est pas une

continuité de cette section, mais plutôt une élaboration parallèle des propriétés

des graphes colorés, cela ne crée pas d'argument circulaire.

La proposition 4.3.9 stipule que, quelle que soit la suite {Gi}i≥0, décroissante (ou
croissante) de graphes colorés, c.-à-d. pour tous i, j ∈ N, i ≤ j implique Gi ⪰ Gj

(ou Gi ⪯ Gj), il existe alors un k ∈ N tel que Gk ≡ Gk+1. On a donc toujours deux

termes consécutifs équivalents dans une telle suite.

Proposition 3.4.2. L'algorithme de Weisfeiler-Lehman de dimension 2 se stabi-

lise. Autrement dit, soit V un ensemble �ni non vide, et G ∈ ΓV . Alors il existe

k ∈ N tel que pour tout l ∈ N, G(k) ≡ G(k+l).

Preuve. La suite {G(i)}i≥0 est décroissante pour la relation ⪰ par le corollaire

3.4.1. Par la proposition 4.3.9 avec E ∶= V 2, il existe k ∈ N tel que G(k) ≡ G(k+1).
G(k) ≡ G(k+l) pour tout l ∈ N se prouve alors aisément par induction sur l.

Dé�nition 3.4.2. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide, et

G ∈ ΓV . Soit k ∈ N, le nombre minimum tel que G(k) ≡ G(k+1). Alors la stabilisation
de G consiste en G̃ ∶= G(k). On dit que G est stable si G ≡ G̃.
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3.5 Description et justi�cation de l'algorithme

Nous sommes maintenant en mesure de décrire l'algorithme de Weisfeiler-Lehman

tel que formalisé par Kiefer et Schweitzer. Tout d'abord, à partir des deux graphes

d'entrée G et H, on calcule pour chacun leurs graphes colorés associés, qu'on note

encore G et H. Puis, on calcule G̃ et H̃ en itérant le ra�nement bidimensionnel de

Weisfeiler-Lehman jusqu'à ce qu'il se stabilise. En�n, on calcule les multiensembles

{{χG̃(ū) ∣ ū ∈ V 2
G}} et {{χH̃(ū) ∣ ū ∈ V 2

H}}. Si les deux multiensembles ne sont pas

égaux, alors les graphes originaux ne sont pas isomorphes. Sinon, on ne peut rien

conclure.

Avant de justi�er cet algorithme, démontrons les propositions suivantes.

Proposition 3.5.1. Soit G = (VG, χG) et H = (VH , χH), deux graphes colorés.

S'ils sont isomorphes, alors Gr et Hr sont également isomorphes.

Preuve. Comme G et H sont isomorphes, il existe une bijection f ∶ VG → VH telle

que pour tous u, v ∈ VG, alors χG(u, v) = χH(f(u), f(v)). Montrons alors que cette

fonction f est aussi un isomorphisme pour les graphes colorés Gr et Hr, c.-à-d.

pour tous u, v ∈ VG, alors χGr(u, v) = χHr(f(u), f(v)).

La dernière égalité est vraie si les composantes respectives des couples sont égales.

Tout d'abord, il faut que χG(u, v) = χH(f(u), f(v)), ce qui est déjà le cas par la

dé�nition de f ci-dessus. Puis, il faut aussi avoir l'égalité

{{(χG(w, v), χG(u,w)) ∣ w ∈ Vg}} = {{(χH(w,f(v)), χH(f(u),w)) ∣ w ∈ Vg}}.

Par la remarque 3.2.1, il su�t de démontrer l'existence d'une bijection

b ∶ VG → VH telle que (χG(w, v), χG(u,w)) = (χH(b(w), f(v)), χH(f(u), b(w)))
pour tout w ∈ V . Observons que nous n'avons qu'à poser b ∶= f et l'égalité est

véri�ée.
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Ainsi, f respecte la dé�nition d'isomorphisme entre Gr et Hr, qui sont donc iso-

morphes.

On peut maintenant déduire par induction le corollaire suivant.

Corollaire 3.5.1. Soit G = (VG, χG) et H = (VH , χH), deux graphes colorés. S'ils

sont isomorphes, alors :

1) G(k) et H(k) sont isomorphes pour tout k ∈ N∗, où G(k), H(k) sont comme à la

notation 3.4.1 et

2) G̃ et H̃ sont isomorphes.

Maintenant, tous les ingrédients sont réunis pour justi�er l'algorithme.

En partant de deux graphes G et H isomorphes, alors, par la proposition 3.2.2,

leurs graphes colorés associés G et H sont aussi isomorphes. Par le corollaire

3.5.1, il en est de même pour G̃ et H̃. Finalement, par la proposition 3.2.1, les

multiensembles {{χG̃(ū) ∣ ū ∈ V 2
G}} et {{χH̃(ū) ∣ ū ∈ V 2

H}} sont égaux.

Ainsi, en prenant la contraposée de cette chaîne d'implication, si les deux mul-

tiensembles ci-dessus ne sont pas égaux, alors les deux graphes G et H initiaux

ne sont pas isomorphes.

D'un point de vue computationnel, un algorithme peut trouver une couleur as-

sociée à un nombre di�érent d'éléments dans V 2
G que dans V 2

H , ce qui montre

l'inégalité des multiensembles et que les graphes ne sont pas isomorphes.

On en conclut que l'algorithme est correct.

Le reste de ce mémoire est consacré à déterminer la complexité de cet algorithme.
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3.6 Propriétés invariantes par le ra�nement

Montrons que les propriétés des dé�nitions 3.3.1 et 3.3.2 sont invariantes via les

itérations de l'algorithme de Weisfeiler-Lehman de dimension 2

Proposition 3.6.1. Soit V un ensemble �ni non vide, et G ∈ ΓV bien dissociant.

Pour tout G′ ∈ ΓV tel que G ⪰ G′, alors G′ est aussi bien dissociant.

Preuve. Posons G,G′ ∈ ΓV . Étant donné que G est bien dissociant, si on prend

un sommet et une arête quelconques dans V 2, alors il n'ont pas la même couleur

selon χG. Par contraposée de la dé�nition de G ⪰ G′, ils n'ont également pas la

même couleur selon χG′ .

La proposition 3.6.1 est très générale et est appliquée dans la suite de ce mémoire

à d'autres ra�nements. Pour les besoins actuels, par cette proposition et par le

corollaire 3.4.1, on a alors le corollaire suivant.

Corollaire 3.6.1. Soit V un ensemble �ni non vide, et G ∈ ΓV bien dissociant.

Alors pour tout i ∈ N, G(i) est aussi bien dissociant.

Proposition 3.6.2. Soit V un ensemble �ni non vide, et G ∈ ΓV respectant

l'équivalence contraire. Pour tout i ∈ N, G(i) respecte alors aussi l'équivalence

contraire.

Preuve. Supposons que G respecte l'équivalence contraire. Montrons que c'est le

cas pour Gr. On aura alors, par induction, que G(i) respecte l'équivalence contraire

pour tout i ∈ N.

Soit (u1, u2), (v1, v2) ∈ V 2. Supposons que

χGr(u1, u2) = χGr(v1, v2) (∗)

et montrons que

χGr(u2, u1) = χGr(v2, v1). (∗∗)
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La démonstration de la réciproque est analogue.

Démontrons d'abord l'égalité des premières composantes dans (∗∗). De (∗), on
déduit χG(u1, u2) = χG(v1, v2). Parce que G respecte l'équivalence contraire, on a

donc que χG(u2, u1) = χG(v2, v1), ce qui conclut cette partie.

Justi�ons �nalement l'égalité des deuxièmes composantes dans (∗∗). De (∗) on
a, en examinant les secondes composantes,

{{ (χG(w,u2), χG(u1,w)) ∣ w ∈ V }} = {{ (χG(w, v2), χG(v1,w)) ∣ w ∈ V }}.

Par la remarque 3.2.1, cette égalité signi�e qu'on peut établir une correspondance

bijective entre les éléments des deux multiensembles telle que chaque élément a la

même couleur que son associé. Plus formellement, il existe une bijection b ∶ V → V

tel que pour tout w ∈ V ,

(χG(w,u2), χG(u1,w)) = (χG(b(w), v2), χG(v1, b(w))).

Par l'équivalence contraire de G,

(χG(u2,w), χG(w,u1)) = (χG(v2, b(w)), χG(b(w), v1)).

Puis, en renversant ces couples, on obtient que

(χG(w,u1), χG(u2,w)) = (χG(b(w), v1), χG(v2, b(w))).

Le fait que la bijection b respecte l'équation ci-dessus nous permet d'en déduire

{{ (χG(w,u1), χG(u2,w)) ∣ w ∈ V }} = {{ (χG(w, v1), χG(v2,w)) ∣ w ∈ V }}.

Donc, les deuxièmes composantes dans (∗∗) sont égales.

3.7 Un résultat utile

Le résultat suivant illustre que le ra�nement de Weisfeiler-Lehman est une opé-

ration monotone selon la relation de ra�nement.
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Lemme 3.7.1. (Kiefer et Schweitzer, 2016)

Soit V un ensemble �ni non vide, et G,H ∈ ΓV , tels que G ⪰H. On a alors que

1a) G(i) ⪰H(i) pour tout i ∈ N,
1b) G̃ ⪰ H̃,

2a) si H ⪰ G̃, alors pour tout i ∈ N tel que G(i) ≡ G̃, on a que H(i) ≡ G̃,
2b) si H ⪰ G̃, alors G̃ ≡ H̃.

Preuve. 1a) Soit G,H ∈ ΓV . Supposons G ⪰ H et montrons que Gr ⪰ Hr. Le cas

général se fait alors par induction sur i.

Pour cela, prenons (u1, u2), (v1, v2) ∈ V 2 tels que

χHr(u1, u2) = χHr(v1, v2) (∗)

et montrons que

χGr(u1, u2) = χGr(v1, v2). (∗∗)

Tout d'abord, il faut prouver que les premières composantes de (∗∗) sont égales.
Par l'égalité des premières composantes de (∗), on obtient χH(u1, u2) = χH(v1, v2).
Puis, par la dé�nition de G ⪰H, on déduit χG(u1, u2) = χG(v1, v2), tel que voulu.

Puis, pour démontrer l'égalité des deuxièmes composantes de (∗∗), on utilise

l'égalité des deuxièmes composantes de (∗) qu'on exprime

{{ (χH(w,u2), χH(u1,w)) ∣ w ∈ V }} = {{ (χH(w, v2), χH(v1,w)) ∣ w ∈ V }}.

Par la remarque 3.2.1, l'égalité ci-dessus est équivalente à dire qu'il existe une

bijection b ∶ V → V telle que pour tout w ∈ V ,

(χH(w,u2), χH(u1,w)) = (χH(b(w), v2), χH(v1, b(w))).

Par G ⪰H, on obtient directement que

(χG(w,u2), χG(u1,w)) = (χG(b(w), v2), χG(v1, b(w))).
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Comme la bijection b respecte l'égalité ci-dessus, on peut en déduire

{{ (χG(w,u2), χG(u1,w)) ∣ w ∈ V }} = {{ (χG(w, v2), χG(v1,w)) ∣ w ∈ V }}.

Donc, les deuxièmes composantes dans (∗∗) sont égales.

1b) Supposons G ⪰ H. Soit i, j ∈ N tels que G(i) ≡ G̃ et H(j) ≡ H̃. Par 1a), on a

alors que G̃ ≡ G(max(i,j)) ⪰H(max(i,j)) ≡ H̃.

2a) Soit i ∈ N tel que G(i) ≡ G̃. Supposons G ⪰ H ⪰ G̃. Par 1a), on déduit

G(i) ⪰H(i) ⪰ G̃(i), ainsi G̃ ⪰H(i) ⪰ G̃ et donc H̃ ≡ G̃.

2b) Supposons G ⪰H ⪰ G̃. Par 1b), on déduit G̃ ⪰ H̃ ⪰ ˜̃G ≡ G̃. Ainsi, H̃ ≡ G̃.

Avant d'aborder la preuve de Kiefer et Schweitzer, il convient tout d'abord d'ac-

corder une section à certaines propriétés des graphes colorés.



CHAPITRE IV

DÉFINITIONS ET PROPRIÉTÉS SUR LES GRAPHES COLORÉS

La notion de graphe coloré est cruciale dans la preuve de l'article de Kiefer et

Schweitzer. Cette section présente donc les dé�nitions et propositions sur ce sujet

qui seront nécessaires pour la démonstration du résultat principal.

4.1 Classes et multiclasses de couleur

Dé�nition 4.1.1. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide,

et G ∈ ΓV . On dit d'un ensemble C ⊆ V 2 qu'il est une classe de couleur de G s'il

existe une couleur c ∈ CG telle que C = {ū ∈ V 2 ∣ χG(ū) = c}. L'ensemble C est

alors aussi appelé la classe de couleur de c et est notée CC(c).

Remarquons que, dans le cas d'un graphe bien dissociant, les classes contiennent

soit seulement des sommets (de V 2), soit seulement des arêtes. On parle alors de

classe de couleur de sommet et on utilise l'abréviation CCS. De même, on désigne

une classe de couleur d'arête par CCA.

Dé�nition 4.1.2. Soit V un ensemble �ni non vide, et G ∈ ΓV . Un ensemble

C ⊆ V 2 est dit une multiclasse de couleur de G s'il existe C′ ⊆ CG tel que C = {ū ∈
V 2 ∣ χG(ū) ∈ C′}. L'ensemble C est alors aussi appelé la multiclasse de couleur de
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C′ et est noté CC(C′). Si C n'est pas une classe de couleur, on dit alors qu'il est

une multiclasse stricte de couleur.

Pour un graphe coloré G ∈ ΓV et un ensemble de couleur C′ ⊆ CG, il est facile de
véri�er que χG(C) = C′ pour toute multiclasse de couleur C ∶= CC(C′).

Remarquons qu'une classe de couleur est aussi une multiclasse de couleur : il su�t

de prendre un singleton pour C′.

On note aussi qu'une multiclasse de couleur est une union disjointe de classes de

couleur. Soit V un ensemble �ni non vide, et G ∈ ΓV . Soit C′ ⊆ CG. Alors,

CC(C′) = {ū ∈ V 2 ∣ χG(ū) ∈ C′}

= {ū ∈ V 2 ∣ ⋁
c∈C′
(χG(ū) = c)}

= ⋃̇c∈C′{ū ∈ V 2 ∣ χG(ū) = c}

= ⋃̇c∈C′CC(c)

Notons qu'une multiclasse de couleur peut contenir à la fois des sommets et des

arêtes, et cela même si le graphe est bien dissociant. Dans le cas où une multi-

classe ne contient que des sommets, on parle de multiclasse de couleur de sommet

et on utilise l'abréviation MCCS. De manière analogue, on parle de multiclasse de

couleur d'arête qu'on désigne par MCCA.

Proposition 4.1.1. Soit V un ensemble �ni non vide, et G ∈ ΓV . Soit C′ ⊆ CG.
Alors G ∈ ΓV et C, une multiclasse de couleur de G. Pour ū, v̄ ∈ V 2 tels que ū ∈ C
et v̄ /∈ C, on a que χG(ū) ≠ χG(v̄).

Preuve. Par dé�nition de C, il existe C′ ⊆ CG tel que C = {w̄ ∈ V 2 ∣ χG(w̄) ∈ C′}.
Donc, pour w̄ ∈ V 2, on a w̄ ∈ C si et seulement si χG(w̄) ∈ C′. Ainsi, pour ū ∈ C et
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v̄ /∈ C de l'énoncé, on a que χG(ū) ∈ C′ et χG(v̄) /∈ C′. Il est donc impossible à ce

que χG(ū) = χG(v̄).

4.2 Incidence et voisinages

Dé�nition 4.2.1. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide,

et G ∈ ΓV . Soit S ⊆ V 2 et C, une CCS de G. On dit que S est incident de C si et

seulement s'il existe (u, v) ∈ S tel que (u,u) ∈ C ou (v, v) ∈ C.

S'il existe (u, v) ∈ S tel que (u,u) ∈ C, alors S est dit incident à gauche de C et

s'il existe (u, v) ∈ S tel que (v, v) ∈ C, alors S est dit incident à droite de C.

On dit également que S est incident uniquement de C lorsque, pour tout (u, v) ∈ S,
on a (u,u), (v, v) ∈ C.

Soit B, un ensemble ne contenant que des CCS de G. On dit alors que S est

incident (à gauche/à droite) de B s'il existe C ∈ B tel que S est incident (à

gauche/à droite) de C.

On dit aussi que S est incident uniquement de B si le fait que S soit incident à

une CCS C implique alors que C ∈ B.

Plus tard, comme exemple de B, nous utilisons les ensembles des grandes CCS et

des petites CCS, qui sont dé�nies au chapitre 7.

Notation 4.2.1. I(v) ∶= {(v,w) ∣ w ∈ V } et IE(v) ∶= {(v,w) ∣ w ∈ E}.

Par abus de notation, si C ⊆ V 2 est une CCS ou MCCS de G, alors

IC(v) ∶= {(v,w) ∣ (w,w) ∈ C} et IV −C(v) ∶= {(v,w) ∣ (w,w) /∈ C}.
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Remarquons que la notation ?? revient à sélectionner des arêtes reliées à v en

fonction de l'inclusion de leurs seconds sommets dans un certain ensemble (ce

dernier pouvant être une CCS, par exemple).

D'une façon similaire, dans la dé�nition suivante, pour un v ∈ V , on sélectionne

des sommets en fonction de la couleur des arêtes les reliant à v.

Dé�nition 4.2.2. (Kiefer et Schweitzer, 2016)

Soit V un ensemble �ni non vide, et G ∈ ΓV . Soit v ∈ V et un ensemble de couleurs

C′ ⊆ CG.

● Le voisinage interne de v, noté N−G,C′(v) ou N−C′(v) est dé�ni par

{u ∈ V ∣ χG(u, v) ∈ C′}.

● Le voisinage externe de v, noté N+G,C′(v) ou N+C′(v) est dé�nie par

{u ∈ V ∣ χG(v, u) ∈ C′}.

Dans le simple cas d'une couleur c ∈ CG, N−G,c(v) ∶= {u ∈ V ∣ χG(u, v) = c}. On a

aussi une dé�nition analogue pour N+c (v).

Si on utilise plutôt une CCA ou MCCA C, alors N−C(v) ∶= {u ∈ V ∣ (u, v) ∈ C}. On
a aussi une dé�nition analogue pour N+C(v).

4.3 Les relations ⪰ et ⪰E

La relation ⪰ et ses dérivées ≻ et ≡ ont été introduites dans le chapitre précédent,
mais il reste des propriétés utiles et intéressantes à présenter.

Proposition 4.3.1. Soit V , un ensemble �ni non vide.

1) Un ra�nement non strict est une équivalence. Plus précisément, pour G,G′ ∈
ΓV , (G ⪰ G′ et G /≻ G′) si et seulement si G ≡ G′.
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2) Un ra�nement est strict s'il n'est pas un ra�nement de l'autre sens. Formelle-

ment, pour G,G′ ∈ ΓV , (G ⪰ G′ et G′ /⪰ G) si et seulement si G ≻ G′.

La preuve se fait directement avec les dé�nitions.

Dé�nition 4.3.1. Soit V un ensemble �ni non vide, et G ∈ ΓV . On dit alors que

G a une coloration discrète si χG est injectif (et donc bijectif). Autrement dit,

aucune arête dans V 2 n'a la même couleur qu'une autre.

Proposition 4.3.2. Soit V un ensemble �ni non vide, et G,Gd ∈ ΓV . Si Gd a une

coloration discrète, alors G ⪰ Gd.

Preuve. Soit ū, v̄ ∈ V 2 tel que χGd
(ū) = χGd

(v̄). Comme χGd
est injectif, on a que

ū = v̄. On en déduit donc que χG(ū) = χG(v̄).

Corollaire 4.3.1. Soit V un ensemble �ni non vide. Tout graphe à coloration

discrète est un élément minimal de ΓV pour la relation d'ordre ⪰. Formellement,

soit Gd ∈ ΓV à coloration discrète, alors pour tout G ∈ ΓV , Gd ⪰ G implique Gd ≡ G.

Il est aussi pertinent d'introduire la notation ⪰E, qui est utile dans les circonstances
où le ra�nement est valide seulement pour un sous-ensemble des sommets et arêtes

des graphes colorés.

Dé�nition 4.3.2. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide,

et G,G′ ∈ ΓV . Soit E ⊆ V 2.

1) On dit que G′ est un ra�nement sur E de G et on note G ⪰E G′ si pour tous

ū, v̄ ∈ E tels que χG′(ū) = χG′(v̄), alors χG(ū) = χG(v̄).
2) On dit que G et G′ sont équivalents sur E et on écrit G ≡E G′ si G ⪰E G′ et

G′ ⪰E G.

3) On dit que G′ est un ra�nement strict sur E de G et on note G ≻E G′ si

G ⪰E G′ et G /≡E G′.
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Notons que G ⪰V 2 G′ est équivalent à G ⪰ G′. Aussi, la proposition 4.3.1 se

généralise à ⪰E.

Proposition 4.3.3. Soit V un ensemble �ni non vide, et G,G′ ∈ ΓV . Soit E ⊆
E′ ⊆ V 2.

1) Si G ⪰E′ G′, alors G ⪰E G′.

2) Si G ≡E′ G′, alors G ≡E G′.

Preuve. La preuve découle de la dé�nition 4.3.2.

De cette proposition, en prenant E′ ∶= V 2 et E ⊆ V 2, on a directement que G ⪰ G′

implique G ⪰E G′. Par contre, il est généralement faux que G ≻ G′ implique

G ≻E G′. Il faut rajouter une condition supplémentaire à cela et c'est ce que fait

la proposition 4.3.4.

Proposition 4.3.4.

Soit V un ensemble �ni non vide, et G,G′ ∈ ΓV . Soit E ⊆ E′ ⊆ V 2. Si G ⪰ G′ et
G ≻E G′, alors G ≻E′ G′.

Preuve. Par la proposition 4.3.1, G ≻E′ G′ est équivalent à G ⪰E′ G′ et G′ /⪰E′ G.
Montrons ces deux parties à part.

De G ⪰ G′, on déduit directement par la proposition 4.3.3 que G ⪰E′ G′.

De G ≻E G′, par la proposition 4.3.1, on infère que G′ /⪰E G. Cela veut dire

qu'il existe ū, v̄ ∈ E tels que χG(ū) = χG(v̄) et χG′(ū) ≠ χG′(v̄). Comme E ⊆ E′,
ū, v̄ ∈ E′, donc G′ /⪰E′ G par dé�nition.

Proposition 4.3.5. Soit V un ensemble �ni non vide, et G,G′ ∈ ΓV tels que

G ⪰ G′. Soit C, une multiclasse de couleur de G. C est alors une multiclasse de

couleur de G′.
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Preuve. Comme C est une multiclasse de couleur de G, alors il existe C′ ⊆ CG
tel que C = {v̄ ∈ V 2 ∣ χG(v̄) ∈ C′}. Donc, pour v̄ ∈ V 2, v̄ ∈ C si et seulement si

χG(v̄) ∈ C′.

Remarquons que χG′(C) ⊆ CG′ . Pour démontrer la proposition, prouvons que C =
{v̄ ∈ V 2 ∣ χG′(v̄) ∈ χG′(C)}. Cela est équivalent à montrer que pour tout v̄ ∈ V 2,

v̄ ∈ C si et seulement si χG′(v̄) ∈ χG′(C).

Comme χG′(v̄) ∈ χG′(C) pour tout v̄ ∈ C, il nous reste à démontrer la réciproque.

En supposant que χG′(v̄) ∈ χG′(C), alors il existe ū ∈ C tel que χG′(v̄) = χG′(ū).
Par G ⪰ G′, on infére de la dernière égalité que χG(v̄) = χG(ū) et donc χG(v̄) ∈
χG(C) = C′. Finalement, par le résultat du premier paragraphe, v̄ ∈ C.

Un cas spéci�que de la dernière proposition est de prendre pour C une classe de

couleur de G. Ainsi, si G ⪰ G′, une classe de couleur de G reste une classe de

couleur pour G′ ou alors elle devient une multiclasse stricte de couleur de G′.

Proposition 4.3.6. Soit V un ensemble �ni non vide, et G,G′ ∈ ΓV tels que

G ⪰ G′. Soit C une classe de couleur de G, telle que G ≡C G′. C est alors une

classe de couleur de G′.

Preuve. Soit ū ∈ C quelconque. Comme C est une classe de couleur de G, on a

que C = {v̄ ∈ V 2 ∣ χG(v̄) = χG(ū)}.

Montrons que C = {v̄ ∈ V 2 ∣ χG′(v̄) = χG′(ū)}, ce qui implique que C est une classe

de couleur de G′. Cela revient à montrer que pour tout v̄ ∈ V 2, χG′(v̄) = χG′(ū) si
et seulement si v̄ ∈ C.

Pour prouver l'implication directe, supposons χG′(v̄) = χG′(ū). Par G ⪰ G′, cela
implique que χG(v̄) = χG(ū), ce qui implique que v̄ ∈ C, par le premier paragraphe

de la démonstration.
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Pour prouver la réciproque, supposons v̄ ∈ C, ce qui implique comme plus haut

que χG(v̄) = χG(ū). Par G ≡C G′ et ū, v̄ ∈ C, on en déduit que χG′(v̄) = χG′(ū).

Proposition 4.3.7. Soit V un ensemble �ni non vide, et G,G′ ∈ ΓV . Soit E ⊆ V 2.

1) Si G ⪰E G′, alors ∣χG(E)∣ ≤ ∣χG′(E)∣.
2) Si G ≡E G′, alors ∣χG(E)∣ = ∣χG′(E)∣.
3) Si G ≻E G′, alors ∣χG(E)∣ < ∣χG′(E)∣.

Preuve. 1) Supposons G ⪰E G′.

On dé�nit alors l'application s ∶ χG′(E) → χG(E) telle que s(χG′(ū)) = χG(ū)
pour tout ū ∈ E. La �gure 4.1 est un exemple permettant de visualiser s.

G′ restreint à E

G restreint à E

ū

ū

v̄

v̄
s ∶

Figure 4.1 Illustration du ra�nement G ⪰E G′ et de la fonction s

Cette fonction est bien dé�nie. En e�et, quelque soit ū, v̄ ∈ E tels que χG′(ū) =
χG′(v̄), la dé�nition de G ⪰E G′ implique alors χG(ū) = χG(v̄). Ainsi, on a que

s(χG′(ū)) = s(χG′(v̄)).

La fonction s est aussi surjective, car tout élément χG(ū) ∈ χG(E) admet χG′(ū) ∈
χG′(E) comme préimage. On a donc que ∣χG′(E)∣ ≥ ∣χG(E)∣.

2) Supposons que G ≡E G′, ce qui équivaut à G ⪰E G′ et G′ ⪰E G. Par 1), on

obtient ∣χG(E)∣ ≤ ∣χG′(E)∣ et ∣χG′(E)∣ ≤ ∣χG(E)∣. Donc ∣χG(E)∣ = ∣χG′(E)∣.

3) Supposons G ≻E G′. De manière analogue à 1), on dé�nit une même fonction

s et on montre qu'elle est bien dé�nie et surjective. La �gure 4.2 illustre la fonction.
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G′ restreint à E

G restreint à E

ū

ū

v̄

v̄
s ∶

Donc s non injective

Figure 4.2 Illustration du ra�nement G ≻E G′ et de la fonction s

De ce dernier fait, on déduit

s(χG′(E)) = χG(E). (∗)

Pour ce cas, s n'est pas injectif. Pour montrer cela, remarquons que notre suppo-

sition G ≻E G′ implique que G′ /⪰E G, ce qui veut dire qu'on peut trouver deux

éléments ū, v̄ ∈ E tels qu'ils ne sont pas de la même couleur χG′ , mais tout de même

de la même couleur χG. Ainsi, χG′(ū) et χG′(v̄) sont deux éléments di�érents de

χG′(E) avec la même image par s.

Comme la fonction s est non injective et χG′(E) est �ni, on en déduit que

∣χG′(E)∣ > ∣s(χG′(E))∣. Avec cela et (∗), on conclut que ∣χG′(E)∣ > ∣χG(E)∣.

Proposition 4.3.8. Soit V un ensemble �ni non vide, et E ⊆ V 2. Soit G,G′ ∈ ΓV

tels que G ⪰E G′.

1) Si ∣χG(E)∣ = ∣χG′(E)∣, alors G ≡E G′.

2) Si ∣χG(E)∣ ≠ ∣χG′(E)∣, alors G ≻E G′.

Preuve. 1) Démontrons la contraposée. Avec G ⪰E G′ et en supposant G /≡E G′,

on déduit que G ≻E G′. En appliquant la proposition 4.3.7 partie 3), on obtient

∣χG(E)∣ ≠ ∣χG′(E)∣.

2) Toujours par contraposée, supposons queG ≻E G′ soit faux. À cause deG ⪰E G′,

il est alors nécessaire que G ≡E G′. Par la proposition 4.3.7 partie 2), on conclut

donc que ∣χG(E)∣ = ∣χG′(E)∣.
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Proposition 4.3.9. Soit V un ensemble �ni non vide, et E ⊆ V 2. Soit {Gi}i≥0,
une suite décroissante (respectivement croissante) pour E d'éléments de ΓV , c.-

à-d. pour tous i, j ∈ N tel que i ≤ j, nous avons que Gi ⪰E Gj (respectivement

Gj ⪰E Gi). On a alors qu'il existe k ∈ N tel que Gk ≡E Gk+1.

Preuve. Supposons le contraire, c'est-à-dire que pour tout i ∈ N, alors Gi /≡E Gi+1.

Comme {Gi}i≥0 est décroissant pour E, on en déduit que Gi ⪰E Gi+1 et donc que

Gi ≻E Gi+1. Avec ce résultat et par la proposition 4.3.7, on a que pour tout i ∈ N,
∣χGi
(E)∣ < ∣χGi+1

(E)∣.

Ainsi, {∣χGi
(E)∣}i≥0 est une suite strictement croissante d'entiers. Cela contredit

le fait que pour toute fonction χ avec domaine V 2, ∣χ(E)∣ ≤ ∣χ(V 2)∣ ≤ ∣V 2∣ ∈ N.

Dans le cas où la suite {Gi}i≥0 est croissante pour E, de manière analogue,

{∣χGi
(E)∣}i≥0 est alors une suite strictement décroissante de naturels, ce qui est

impossible.

4.4 Ra�nements atomiques et composés

De ce que nous avons vu, les ra�nements de graphes colorés se classi�ent en équi-

valences et en ra�nements stricts. Nous allons, de plus, distinguer deux types de

ra�nements stricts, soit les ra�nements atomiques et les ra�nements composés.

Dé�nition 4.4.1. Soit V un ensemble �ni non vide, et E ⊆ V 2. Soit G,G′ ∈ ΓV

tels que G ≻E G′. On dit que G′ est un ra�nement atomique pour E de G et on

le note G ≻∗E G′ s'il n'existe pas de G′′ ∈ ΓV tel que G ≻E G′′ ≻E G′. Autrement,

G′ est dit un ra�nement composé pour E de G et on le note G ≻#E G′.

Si E = V 2, on utilise simplement les termes ra�nement atomique et ra�nement

composé.

Pour le choix de notation, l'astérisque rappelle un atome, et le dièse fait penser à
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une construction en blocs.

Proposition 4.4.1. Soit V un ensemble �ni non vide, et E ⊆ V 2. Soit G,G′ ∈ ΓV

tels que G ≻E G′. G′ est un ra�nement atomique pour E de G si et seulement si

∣χG′(E)∣ = ∣χG(E)∣ + 1.

Il est assez intuitif de voir qu'un ra�nement G ≻ G′ qui augmente d'au moins

deux le nombre de classes de couleur ne peut être atomique. Il su�t de construire

un graphe de couleur G′′ qui unit deux classes de couleur distinctes de G′ inclus

dans la même classe de couleur de G. On a alors que G ≻ G′′ ≻ G′. Nous présentons
une preuve plus formelle de ce résultat.

Preuve. Pour démontrer l'implication directe, procédons par contraposée. Sup-

posons alors que ∣χG′(E)∣ ≠ ∣χG(E)∣ + 1. Remarquons que G ≻E G′ implique que

∣χG(E)∣ < ∣χG′(E)∣ par la proposition 4.3.7 partie 3). De tout cela, on déduit que

∣χG(E)∣ < ∣χG′(E)∣ − 1. (∗)

Construisons maintenant G′′ ∈ ΓV tel que G ≻E G′′ ≻E G′, ce qui permet de

démontrer l'implication directe.

De G ≻E G′, on en déduit que G′ /≻E G. Donc il existe ū, v̄ ∈ E tels que χG′(ū) ≠
χG′(v̄) et χG(ū) = χG(v̄). De là, on dé�nit la fonction χG′′ comme une coloration

similaire à χG′ , mais qui unit les classes de couleur de ū et v̄.

Formellement, soit w̄ ∈ V 2,

χG′′(w̄) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

χG′(ū) si χG′(w̄) ∈ {χG′(ū), χG′(v̄)}
χG′(w̄) sinon.

On remarque directement que χG′′(E) = χG′(E) − {χG′(v̄)}. Ainsi,

∣χG′′(E)∣ = ∣χG′(E)∣ − 1. (∗∗)
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Montrons que G′′ ≻E G′. Soit w̄1, w̄2 ∈ E tels que χG′(w̄1) = χG′(w̄2). Dans le cas
où χG′(w̄1), χG′(w̄2) ∈ {χG′(ū), χG′(v̄)}, alors χG′′(w̄1) = χG′(ū) = χG′′(w̄2). Dans
l'autre cas, alors χG′′(w̄1) = χG′(w̄1) = χG′(w̄2) = χG′′(w̄2). Ainsi, par dé�nition,
G′′ ⪰E G′. Puis, par (∗∗) et la proposition 4.3.8 partie 2), on déduit que G′′ ≻E G′.

Finalement, montrons G ≻E G′′. Soit w̄1, w̄2 ∈ E tels que χG′′(w̄1) = χG′′(w̄2).

Cas 1) χG′′(w̄1) ≠ χG′(ū) et χG′′(w̄2) ≠ χG′(ū) :
Par la dé�nition de χG′′ , χG′(w̄1) = χG′′(w̄1) et χG′(w̄2) = χG′′(w̄2). Des trois

dernières égalités, on déduit que χG′(w̄1) = χG′(w̄2). Puis, par G ⪰E G′, on conclut

que χG(w̄1) = χG(w̄2).

Cas 2) χG′′(w̄1) = χG′(ū) et χG′′(w̄2) = χG′(ū) :
Par la dé�nition de χG′′ , χG′(w̄1), χG′(w̄2) ∈ {χG′(ū), χG′(v̄)}. Si χG′(w̄1) = χG′(w̄2),
par G ⪰E G′, on déduit χG(w̄1) = χG(w̄2). Sinon, sans perte de généralité, on peut

supposer que χG′(w̄1) = χG′(ū) et χG′(w̄2) = χG′(v̄). Par G ⪰E G′, on trouve

χG(w̄1) = χG(ū) et χG(w̄2) = χG(v̄). Avec cela, en plus de l'égalité χG(ū) = χG(v̄),
posée plus haut, on infère χG(w̄1) = χG(w̄2).

En réunissant les 2 cas, on déduit que G ⪰E G′′. De (∗) et (∗∗), on a que ∣χG(E)∣ <
∣χG′′(E)∣. De ces résultats et de la proposition 4.3.8 partie 2), on obtient que

G ≻E G′′.

Cela conclut la preuve directe.

Pour la réciproque, supposons que ∣χG′(E)∣ = ∣χG(E)∣+ 1 et montrons par contra-

diction que G′ est un ra�nement atomique pour E de G. Ainsi, supposons l'exis-

tence de G′′ = (V,χG′′) ∈ ΓV tel que G ≻E G′′ ≻E G′.

Par le lemme 4.3.7, ∣χG(E)∣ < ∣χG′′(E)∣ < ∣χG′(E)∣. Puis, par l'implication directe

de notre proposition qu'on vient tout juste de montrer, et du fait que G′ est un
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ra�nement atomique pour E de G, on infère que ∣χG′(E)∣ = ∣χG(E)∣+1. On a alors
que ∣χG(E)∣ < ∣χG′′(E)∣ < ∣χG(E)∣+1. Cela implique que 0 < ∣χG′′(E)∣−∣χG(E)∣ < 1,
ce qui est absurde.

Proposition 4.4.2. Soit V un ensemble �ni non vide, et E ⊆ V 2. Soit G,G′ ∈ ΓV

tels que G ≻#E G′. Il existe alors G′′ ∈ ΓV tel que G ≻∗E G′′ ≻E G′.

Preuve. Supposons le contraire, qu'il existe G,G′ ∈ ΓV tels que G ≻#E G′, pour

lesquels il n'existe pas G′′ ∈ ΓV véri�ant G ≻∗E G′′ ≻E G′.

Par dé�nition, G ≻#E G′ veut dire qu'il existe G1 ∈ ΓV tel que G ≻E G1 ≻E G′.

Il est impossible que G ≻∗E G1, car l'inégalité ci-dessus serait un contre-exemple

de notre hypothèse initiale. On a donc que G ≻#E G1.

Par le même argument, pour tout Gk ∈ ΓV tel que G ≻#E Gk, on peut trouver

Gk+1 ∈ ΓV tel que G ≻#E Gk+1 ≻E Gk.

Ainsi, on construit une suite croissante {Gi}i≥0 avec G0 ∶= G′. La proposition 4.3.9

nous dit que deux éléments consécutifs de la suite doivent être équivalents, ce qui

est impossible, car tous les ra�nements sont stricts.

Proposition 4.4.3. Soit V un ensemble �ni non vide, et E ⊆ V 2. Soit G,G′ ∈ ΓV

tels que G ≻#E G′. Il existe alors G1, ...,Gf ∈ ΓV , où f est un entier positif, tels que

G ≻∗E G1 ≻∗E ... ≻∗E Gf ≻∗E G′.

Cette proposition nous indique qu'il est alors possible de décomposer un ra�ne-

ment strict de graphes colorés en une chaîne �nie de ra�nements atomiques.

Preuve. Supposons l'énoncé faux. Comme G ≻#E G′, par la proposition 4.4.2, il

existe G1 ∈ ΓV tel que G ≻∗E G1 ≻E G′. Il faut alors que G1 ≻#E G′, sinon cette

chaîne serait un exemple prouvant l'énoncé vrai.
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Par le même argument, pour une chaîne G ≻∗E G1 ≻∗E ... ≻∗E Gk ≻E G′, on peut

construire la chaîne G ≻∗E G1 ≻∗E ... ≻∗E Gk ≻∗E Gk+1 ≻E G′.

Ainsi, on construit une suite décroissante {Gi}i≥0 avec G0 ∶= G. La proposition

4.3.9 nous dit que deux éléments consécutifs de la suite doivent être équivalents,

ce qui est impossible, car tous les ra�nements sont stricts.

La proposition suivante, outre ses applications, nous permet de bien pouvoir vi-

sualiser en quoi consiste un ra�nement atomique.

Proposition 4.4.4. Soit V un ensemble �ni non vide et G,G′ ∈ ΓV . Soit E ⊆ V 2,

une multiclasse de couleur de G. Si G ≻∗E G′, alors il existe une et une seule classe

de couleur C de G incluse dans E qui n'est pas une classe de couleur de G′. De

plus, C est l'union disjointe de deux et seulement deux classes de couleur de G′.

Ainsi, pour E ∶= V 2, un ra�nement atomique ne fait que scinder une et une seule

classe de couleur en deux et seulement deux autres classes de couleur.

Preuve. Partie 1 : Supposons qu'il existe au moins deux classes de couleur C et

C ′ de G incluses dans E qui ne soit pas des classes de couleur de G′.

Par la proposition 4.3.5, C et C ′ doivent alors être des multiclasses strictes de

couleurs de G′ et donc des unions disjointes d'au moins deux classes de couleur

chacune.

Ainsi, il existe ū1, ū2 ∈ C et v̄1, v̄2 ∈ C ′ tels qu'ils soient tous de couleurs di�érentes
pour G′.
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Donc,

∣χG′(E)∣ = ∣χG′(C)∣ + ∣χG′(C ′)∣ + ∣χG′(E −C −C ′)∣

≥ ∣χG′({ū1, ū2})∣ + ∣χG′({v̄1, v̄2})∣ + ∣χG′(E −C −C ′)∣

= 2 + 2 + ∣χG′(E −C −C ′)∣

≥ 2 + 1 + 1 + ∣χG(E −C −C ′)∣ (par la proposition 4.3.7)

= 2 + ∣χG(C)∣ + ∣χG(C ′)∣ + ∣χG(E −C −C ′)∣

= 2 + ∣χG(E)∣

Ainsi, par la proposition 4.4.1, G /≻∗E G′.

Partie 2 : Supposons qu'il existe une classe de couleur C de G incluse dans E qui

est une union disjointe d'au moins trois classes de couleur de G′.

Ainsi, il existe ū1, ū2, ū3 ∈ C tels qu'il sont tous de couleurs di�érentes pour G′.

Donc,

∣χG′(E)∣ = ∣χG′(C)∣ + ∣χG′(E −C)∣

≥ ∣χG′({ū1, ū2, ū3})∣ + ∣χG′(E −C)∣

= 3 + ∣χG′(E −C)∣

≥ 2 + 1 + ∣χG(E −C)∣ (par la proposition 4.3.7)

= 2 + ∣χG(C)∣ + ∣χG(E −C)∣

= 2 + ∣χG(E)∣

Ainsi, par la proposition 4.4.1, G /≻∗E G′.

Cela fait le tour des propriétés élémentaires sur les graphes colorés.



CHAPITRE V

LE JEU DE KIEFER-SCHWEITZER

Quand vient le temps de calculer la complexité de WL2, la grande di�culté revient

à savoir après combien d'itérations au plus est-ce que le ra�nement de WL d'un

graphe coloré se stabilise.

Soit un graphe coloré G quelconque à n sommets. Dé�nissons alors WL2(G)
comme le nombre d'itérations de WL2 à partir du graphe G jusqu'à ce que le

graphe se stabilise. Le but de l'article de Kiefer et Schweitzer est alors de montrer

que WL2(G) = (O(n2/log(n)). Dans le but de démontrer cela, ils ont ont conçu

un jeu à deux joueurs. Dans ce mémoire, ce dernier est nommé en fonction des

auteurs, donc un jeu de Kiefer-Schweitzer.

Faisons une analogie très simple pour comprendre les motivations derrière la for-

mulation du jeu.

Considérons un rouleau de monnaie. Notons que plus une pièce de monnaie est

épaisse, moins il est possible d'en insérer à l'intérieur du rouleau avant que ce

dernier ne se remplisse. Si l'on peut insérer 20 exemplaires d'une pièce A et 15

exemplaires d'une pièce B, on sait alors que la pièce B est plus la épaisse des deux.

Prenons un autre exemple, soit un nombre quelconque, disons 40. De ce nombre,

on construit une chaîne d'inégalité où l'on soustrait toujours le même nombre
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successivement et on s'arrête juste avant d'atteindre les négatifs. Disons que la

chaîne a cinq éléments et s'arrête à 4. La question est alors de déterminer quel

nombre on soustrayait à chaque fois. Il est alors aisé de déduire qu'il s'agit de 9.

40 > 31 > 22 > 13 > 4

De cela, on tire l'intuition de l'épaisseur d'une opération : plus une opération est

épaisse, moins il est possible de l'itérer avant d'atteindre un minimum.

Maintenant, pour nos besoins, partons d'un graphe coloré quelconque G. Disons

que l'opération à laquelle on s'intéresse maintenant est G → G̃, le ra�nement

de Weisfeiler-Lehman (dé�nition 3.4.1). Notons que puisque cette opération est

idempotente, il n'est pas utile de l'itérer directement. Nous pouvons par contre

contourner ce problème en faisant un ra�nement atomique avant de réitérer l'opé-

ration.

On peut alors construire une chaîne de graphes colorés selon la relation de raf-

�nement. Une fois le graphe à coloration discrète atteint, soit le minimum selon

cette relation, la chaîne s'arrête.

La longueur de la chaîne, plus spéci�quement le nombre de fois qu'on applique

G → G̃ nous donne alors une idée de son épaisseur. Plus rigoureusement, cela

nous donne une idée sur WL2(n) c.-à-d. le nombre de ra�nements de Weisfeiler-

Lehman maximum que nous pouvons appliquer avant que le graphe ne se stabilise,

ce qui est ce que nous cherchons à borner.

Au niveau technique, le jeu de Kiefer-Schweitzer permet de réordonner certaines

des opérations e�ectuées dans les itérations de WL2 sans changer substantielle-

ment le nombre d'itérations. Cela permet alors de simpli�er l'analyse des opéra-

tions et ultimement d'arriver à la borne supérieure prévue.
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5.1 Formalisation

Le jeu de Kiefer-Schweitzer est dé�ni de la façon suivante. Il s'agit d'un jeu à

deux joueurs. Chacun des joueurs ra�ne individuellement tour à tour un graphe

coloré reçu en commençant par le joueur 1 jusqu'à ce que la coloration du graphe

soit discrète. Durant la partie, un coût associé au jeu s'accumule.

Le joueur 1, recevant un graphe G, doit retourner un ra�nement strict G′. Donc,

il faut que G ≻ G′. À chacun de ses tours, le ra�nement du joueur 1 a un coût

associé de 1 et on dit qu'il e�ectue 1 coup.

Le joueur 2, recevant un graphe G, doit retourner un ra�nement non nécessaire-

ment strict G′ tel que G ⪰ G′ ⪰ G̃. Le coût associé à son tour correspond au plus

petit k ∈ N tel que G′ ⪰ G(k), la k-ième itération de l'algorithme WL2. On dit alors

qu'il e�ectue k coups.

La partie s'arrête lorsque le graphe a une coloration discrète, ce qui est équivalent

à ce que ∣χ(V 2)∣ = ∣V 2∣ ou que χ soit une injection.

La dé�nition suivante décrit cela formellement.

Dé�nition 5.1.1. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide.

Une partie de Kiefer-Schweitzer consiste en un uplet

(G0,G1,G2, ...,Gt−1,Gt) ∈ Γt+1
V

respectant les propriétés suivantes :

1) Pour i ∈ N impair, Gi−1 ≻ Gi. En particulier, G0 ≻ G1.

2) Pour i ∈ N, i ≥ 2 et pair, Gi−1 ⪰ Gi ⪰ G̃i−1.

3) Gt a une coloration discrète.

Les graphes dans le uplet sont dits des graphes joués dans le jeu. G0 est dit le

graphe d'entrée/initial du jeu et Gt, le graphe terminal/�nal du jeu.
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Le coût associé à une partie du jeu de Kiefer-Schweitzer est dé�ni de manière

formelle ainsi.

Dé�nition 5.1.2. (Kiefer et Schweitzer, 2016) Soit une partie du jeu de Kiefer-

Schweitzer (G0,G1,G2, ...,Gt−1,Gt). Son coût associé est ⌈t/2⌉+∑2≤i≤t pair min({k ∈
N∣Gi ⪰ G(k)i−1}).

Ici, le premier terme est le nombre de tours e�ectués par le joueur 1, et donc le

coût que ce dernier ajoute au coût total. La sommation correspond à la somme

des coûts associés à chaque tour du joueur 2.

5.2 Propriétés

Intéressons-nous à démontrer quelques propriétés élémentaires sur le jeu de Kiefer-

Schweitzer. On cherche d'abord à établir une borne supérieure sur la longueur

d'une partie. Puis, on s'intéresse à démontrer l'existence de stratégies optimales

pour les deux joueurs.

Proposition 5.2.1. Soit V un ensemble �ni non vide. Soit une partie du jeu de

Kiefer-Schweitzer ayant G ∈ ΓV comme graphe initial. Sa longueur est alors �nie

et bornée par O(n2) où n = ∣V ∣.

Preuve. Supposons l'existence d'une partie (G0,G1,G2,G3,G4, ...,Gk) de lon-

gueur k. On construit alors la chaîne

G0 ≻ G1 ⪰ G2 ≻ G3 ⪰ G4 ≻ ... ≻ Gk.

Notons que le dernier ra�nement doit être strict, même pour k pair, sinon, en cas

d'équivalence, la partie serait considérée �nie dès la remise du graphe Gk−1 qui

serait à coloration discrète.
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De la chaîne, de la proposition 4.3.7 et du fait que ∣χG(V 2)∣ ≤ ∣V 2∣ pour tout

graphe coloré G ∈ ΓV , alors

0 < ∣χG0(V 2)∣ < ∣χG1(V 2)∣ < ∣χG3(V 2)∣ < ... < ∣χGk
(V 2)∣ ≤ n2.

Si k est pair, on infère l'existence de 1 + k/2 entiers strictement situés entre 0 et

n2. Il faut alors que k/2 < n2 et donc que k < 2n2. Autrement, si k est impair, on

infère l'existence de 1 + (k − 1)/2 entiers strictement situés entre 0 et n2. Il faut

alors que (k − 1)/2 < n2 et donc que k < n2/2 + 1.

Au niveau des objectifs, le joueur 1 cherche à maximiser le coût total du jeu, et

le joueur 2, à le minimiser. Chacun utilise pour cela une stratégie, qui consiste

en une fonction ayant pour entrée l'uplet contenant le graphe que le joueur reçoit

ainsi que tous les graphes joués précédemment, et pour sortie le graphe que le

joueur produit. Ainsi, une stratégie optimale pour le joueur 1 maximise le coût

du jeu, tandis qu'une stratégie optimale pour le joueur 2 le minimise.

Notons que pour chaque joueur, il existe alors une stratégie optimale ne dépendant

que du graphe reçu par le joueur et d'aucun autre graphe précédent.

Disons en e�et qu'un joueur joue optimalement. S'il reçoit à une certaine étape

un graphe Gk, comme il a toujours pour but de minimiser le coût total d'une

partie commençant par G0, il doit alors minimiser la somme des coûts précédents

ainsi que le coût d'une partie commençant par Gk. Comme ce premier terme est

constant, le joueur ne peut que minimiser le second. Il a alors seulement besoin de

Gk comme entrée pour décider de sa stratégie pour minimiser le coût d'une partie

commençant par Gk. Ainsi, à chaque étape, le joueur n'a besoin que de prendre

en compte le graphe reçu pour jouer optimalement.

Autrement dit, chaque joueur a une stratégie optimale Si ∶ ΓV → ΓV où le graphe

d'entrée est le graphe reçu par le joueur.
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Si le joueur i utilise la stratégie Si, alors val(G;S1, S2) est dé�ni comme étant le

coût résultant d'une telle partie.

Le jeu étant �ni (toute partie est de longueur �nie), déterministe, à somme nulle

et avec parfaite information, par le principe Maximin-Minimax (Zermelo, 1913),

on a alors que maxS1 minS2 val(G;S1, S2) =minS2 maxS1 val(G;S1, S2).

Lemme 5.2.1. Soit une partie du jeu de Kiefer-Schweitzer où le joueur 1 suit

une stratégie S′1 telle que, si G n'est pas stable, alors S′1(G) = G(1). Il existe alors
une stratégie optimale pour le joueur 2 telle que, s'il reçoit un graphe coloré G, il

retourne G̃.

Preuve. Supposons que le joueur 2 suive une stratégie optimale S2 et qu'il existe

une situation où il reçoit G et ne retourne pas G̃.

Construisons un arbre enraciné représentant toutes les parties possibles admettant

que le joueur 2 suive S2 et que le joueur 1 suive S′1.

Si la partie commence avec le graphe G0, ce dernier est la racine de notre arbre.

Si G0 est stable, comme nous n'avons pas précisé ce que la stratégie S′1 retourne

dans ce cas, les sommets de hauteur 1 sont formés de tous les ra�nements stricts

de G0. Autrement, G0 a pour unique �ls G(1)0 . Notons que le graphe à coloration

discrète est toujours une feuille, peu importe la hauteur. Puis, tout sommet H de

hauteur 1 qui n'est pas à coloration discrète a S2(H) pour �ls.

Puis, à partir de tous les sommets de hauteur 2 qui ne sont pas des feuilles, on

réitère ce processus. Éventuellement, par la proposition 5.2.1, la partie doit �nir

et donc chaque branche se termine par des feuilles.

Le fait qu'il existe des situations où le joueur 2 ne joue pas G̃ après avoir reçu G

implique qu'il existe dans cet arbre au moins un sommet G de hauteur impaire

(retourné par le joueur 1) ayant pour �ls G′ tel que G′ ≻ G̃ et pour lequel le sous-
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arbre commençant par G ne contient aucune autre fois cette situation. Nommons

cette situation (�).

Notons que dans cette situation,G se doit d'être non stable. En e�et, le joueur 2 est

obligé, en recevant un graphe G, de retourner un graphe G′ tel que G ⪰ G′ ⪰ G̃.
Or, si G était stable, on aurait alors que G ≡ G̃ et G′ ≻ G̃ serait impossible à

respecter.

Nous allons maintenant montrer que le joueur 2 aurait pu jouer G̃ dans cette

situation sans augmenter le coût.

Dans la situation (�), le joueur 2 joue alors le graphe G′ ≻ G̃ après avoir reçu le

graphe G. Soit un entier positif j, minimum tel que G′ ⪰ G(j). Jouer G′ a alors un
coût de j. Comme G est non stable et G′ ≻ G̃, G′ est alors également non stable

et le joueur 1 doit retourner G′(1) lorsqu'on lui présente G′, ce qui a un coût de 1.

Comme G a été choisi comme la dernière occurrence dans l'arbre d'un graphe tel

que S2(G) = G′ ≻ G̃, le joueur 2 doit jouer ˜(G′(1)) après que le joueur 1 ait joué

G′(1). Par le lemme 3.7.1 et le fait que G ⪰ G′(1) ⪰ G̃, on infère que ˜(G′(1)) ≡ G̃. Soit
un entier positif f , minimal, tel que G(f) ≡ G̃. Par le même lemme et G′ ⪰ G(j), on
déduit (G′(1))(f−j−1) ≡ (G′)(f−j) ⪰ (G(j))(f−j) ≡ G(f) ≡ G̃ ≡ ˜(G′(1)). Jouer ˜(G′(1)) a
donc un coût de f − j − 1. Ces 3 coups ont donc un coût total de f . La �gure 5.1

illustre la situation.

Par contre, notons que nous aurions pu nous rendre au même point si, une fois

donné le graphe G, le joueur 2 retournait directement G̃ ≡ G(f) et cela toujours

avec un coût de f . Modi�ons la stratégie S2 en posant S2(G) ∶= G̃, pour ce G

précis de l'arbre, c'est-à-dire pour la situation (�).

Modi�er S2 change alors l'arbre de jeu. En itérant l'argument, on peut se débar-

rasser de toutes les situations où S2(G) ≠ G̃, pour G quelconque. On construit
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G

G′

G′(1)

˜(G′(1))

non stable

Le joueur 2 joue avec un coût de j

⪰ G(j) ≻ G̃

Le joueur 1 joue avec un coût de 1

Le joueur 2 joue avec un coût de f − j − 1

≡ G̃

Figure 5.1 La situation (�)

ainsi une stratégie S2, optimale pour le joueur 2, dans le cas où le joueur 1 suit

S′1, tel que S2(G) ∶= G̃ pour tout graphe G du jeu. .

Dé�nissons alors c(G) ∶=minS2 maxS1 val(G;S1, S2) qui correspond à la valeur du

jeu, où G est son graphe d'entrée. Pour le reste de cette section, notre objectif est

de montrer que WL2(G) ≤ c(G).

Pour cela, remarquons en premier lieu que c(G) = maxS1 minS2 val(G;S1, S2) ≥
minS2 val(G;S′1, S2) où S′1 est une stratégie quelconque. Nous pouvons alors sans

problème faire des restrictions sur ce que peut être S′1. Supposons que siG n'est pas

stable (dé�nition 3.4.2), alors S′1(G) = G(1). Comme plusieurs stratégies obéissent

à cette restriction, S′1 a plusieurs valeurs possibles. Cette remarque est pertinente

pour le chapitre 9.

Dé�nissons alors la stratégie S′2 ∶ ΓV → ΓV telle que S′2(G) ∶= G̃ pour tout G ∈ ΓV .

Par le lemme 5.2.1, on a alors que S′2 est optimale pour le joueur 2 si le joueur 1

suit S′1. On en déduit que c(G) ≥minS2 val(G;S′1, S2) = val(G;S′1, S
′
2).
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Il nous reste alors à montrer que WL2(G) ≤ val(G,S′1, S
′
2). Cela n'est pas trop

di�cile. Remarquons que si G est stable, alors WL2(G) = 0. Autrement, s'il n'est

pas stable, considérons une partie commençant par le graphe G et où les joueurs

suivent S′1 et S
′
2. Le joueur 1 retourne alors en premier lieu G(1), pour un coût de

1, suivi de G̃ pour un coût de WL2(G) − 1. Le coût d'une partie après 2 coups

égale donc déjà WL2(G). On conclut de tout cela que WL2(G) ≤ c(G).

Les trois prochains chapitres introduisent des outils qui nous permettront ultime-

ment de borner supérieurement la valeur de c(G).



CHAPITRE VI

CONDITIONS SUR LES GRAPHES DURANT LE JEU

Lorsque le joueur 2 ra�ne le graphe durant une partie du jeu de Kiefer-Schweitzer,

il a toute la latitude lui permettant de respecter certaines conditions. Ces dernières

permettent alors d'appliquer certains théorèmes sur le graphe, qu'on démontre

plus tard et qui permettent ultimement d'établir la borne sur le coût du jeu.

En fait, il s'agit de déterminer des conditions, qui sont implicitement établies par

le ra�nement bidimensionnel de Weisfeiler-Lehman et qui permettent de simpli�er

son analyse, comme on le voit aux chapitres 7,8 et 9.

Ainsi, en recevant un graphe G, le joueur 2 peut le ra�ner en un graphe G′ tel

que G ⪰ G′ ⪰ G̃ et qu'il obéit à certaines conditions respectées par G̃.

6.1 Faire respecter la condition C1

Dé�nition 6.1.1. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non

vide, et G ∈ ΓV . On dit que G respecte la condition C1 ou respecte C1 si la

couleur d'une arête détermine la couleur de ses extrémités. Formellement, pour

tous (u, v), (u′, v′) ∈ V 2, si χG(u, v) = χG(u′, v′), alors χG(u,u) = χG(u′, u′) et
χG(v, v) = χG(v′, v′).

Comme un graphe ne respecte pas nécessairement C1, dé�nissons une méthode
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pour ra�ner un graphe coloré quelconque en un graphe coloré respectant C1.

Notation 6.1.1. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide,

et G ∈ ΓV . On dé�nit G(1) ∈ ΓV tel que pour tous u, v ∈ V où u ≠ v, on a

1) χG
(1)
(u,u) ∶= χG(u,u),

2) χG
(1)
(u, v) ∶= (χG(u, v), χG(u,u), χG(v, v)),

et CG
(1)
∶= χG

(1)
(V 2).

Autrement dit, pour chaque arête de V 2, on lui associe une nouvelle coloration

qui encode sa coloration ainsi que celle de ses extrémités.

Proposition 6.1.1. Soit V un ensemble �ni non vide, et G ∈ ΓV . Alors G(1)

respecte C1.

Preuve. Montrons que G(1) respecte la dé�nition.

Soit (u, v), (u′, v′) ∈ V 2 tels que χG
(1)
(u, v) = χG

(1)
(u′, v′). Si u = v, il est alors

trivial que χG
(1)
(u,u) = χG

(1)
(u′, u′) et χG

(1)
(v, v) = χG

(1)
(v′, v′). Sinon, en sub-

stituant dans l'hypothèse par la dé�nition de G(1), on obtient l'égalité de deux

triplets

(χG(u, v), χG(u,u), χG(v, v)) = (χG(u′, v′), χG(u′, u′), χG(v′, v′))

d'où χG(u,u) = χG(u′, u′) et χG(v, v) = χG(v′, v′). Par la dé�nition de G(1), on

conclut que χG
(1)
(u,u) = χG

(1)
(u′, u′) et χG

(1)
(v, v) = χG

(1)
(v′, v′).

Proposition 6.1.2. Soit V un ensemble �ni non vide, et G ∈ ΓV , alors G ⪰ G(1).
Si, de plus, G ne respecte pas C1, alors on a forcément que G ≻ G(1).

Preuve. Montrons que la dé�nition de ra�nement est respectée.

Cas 1) Soit (u,u), (v, v) ∈ V 2, tels que χG
(1)
(u,u) = χG

(1)
(v, v). En substituant

chaque côté selon la dé�nition de G(1) (soit la notation 6.1.1), on obtient directe-

ment χG(u,u) = χG(v, v).
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Cas 2) Soit (u, v), (u′, v′) ∈ V 2, tels que u ≠ v, u′ ≠ v′ et χG
(1)
(u, v) = χG

(1)
(u′, v′).

Selon la dé�nition de G(1), chaque côté correspond à un triplet. On en déduit alors

l'égalité de leurs premières coordonnées, ce qui correspond à χG(u, v) = χG(u′, v′).

Cela démontre la première partie de la proposition.

Si nous sommes dans une situation où G ≡ G(1), alors il faut forcément que

G respecte la condition C1. En e�et, en prenant (u, v), (u′, v′) ∈ V 2 tels que

χG(u, v) = χG(u′, v′), alors on déduit de l'équivalence des graphes que χG
(1)
(u, v) =

χG
(1)
(u′, v′). Puis, comme G(1) respecte C1 par la proposition précédente, on dé-

duit que χG
(1)
(u,u) = χG

(1)
(u′, u′) et χG

(1)
(v, v) = χG

(1)
(v′, v′) et on en conclut

que χG(u,u) = χG(u′, u′) et χG(v, v) = χG(v′, v′).

La deuxième partie de la proposition se déduit de la contraposée de l'énoncé du

dernier paragraphe.

Ra�ner a�n de faire respecter C1 conserve certaines propriétés du graphe. Par

exemple, la proposition 3.6.1 nous dit que, si G est bien dissociant, G(1) l'est égale-

ment. Le respect de l'équivalence contraire est également une propriété préservée.

Proposition 6.1.3. Soit V un ensemble �ni non vide, et G ∈ ΓV , tel qu'il respecte

l'équivalence contraire. Il en est alors de même pour G(1).

Preuve. Supposons que G = (V,χ) respecte l'équivalence contraire. Montrons que

G(1) = (V,χG
(1)
) le respecte aussi.

Soit (u, v), (u′, v′) ∈ V 2 tels que χG
(1)
(u, v) = χG

(1)
(u′, v′). On a alors que

(χ(u, v), χ(u,u), χ(v, v)) = (χ(u′, v′), χ(u′, u′), χ(v′, v′)). (∗)

De l'égalité des premières composantes dans (∗) et du fait que G respecte l'équi-

valence contraire, on peut déduire que χ(v, u) = χ(v′, u′). À partir de ce résultat,
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en plus de l'égalité des deuxièmes et troisièmes composantes de (∗), on peut inférer

l'égalité des triplets

(χ(v, u), χ(v, v), χ(u,u)) = (χ(v′, u′), χ(v′, v′), χ(u′, u′)).

On en conclut alors que χG
(1)
(v, u) = χG

(1)
(v′, u′).

Proposition 6.1.4. Soit V un ensemble �ni non vide, et G,H ∈ ΓV , tel que

G ⪰H et que G et H sont bien dissociants. Alors G(1) ⪰H(1), où l'on rappelle que

H(1) correspond à la première itération de l'algorithme de Weisfeiler-Lehman de

dimension 2.

Remarque 6.1.1. Comme G ⪰ G, on a comme conséquence directe de cette

proposition que G(1) ⪰ G(1). Cela veut donc dire que si le joueur 2 d'une partie

du jeu de Kiefer-Schweitzer ra�ne le graphe comme ci-dessus pour faire respecter

C1, alors le coût associé est d'au plus 1.

Preuve. Cas 1) Soit (u,u), (u′, u′) ∈ V 2 tels que χH(1)(u,u) = χH(1)(u′, u′). Par
H ⪰ H(1), on déduit que χH(u,u) = χH(u′, u′). Puis, par G ⪰ H, on infére

χG(u,u) = χG(u′, u′). Finalement, par la dé�nition deG(1), on obtient que χG
(1)
(u,u) =

χG
(1)
(u′, u′).

Cas 2) Soit (u, v), (u′, v′) ∈ V 2, tels que u ≠ v, u′ ≠ v′ et χH(1)(u, v) = χH(1)(u′, v′).
Cette équation correspond à une égalité de deux couples. L'égalité des premières

composantes s'exprime

χH(u, v) = χH(u′, v′). (∗)

Quant à l'égalité des deuxièmes composantes, elle s'écrit

{{(χH(w, v), χH(u,w))∣w ∈W}} = {{(χH(w, v′), χH(u′,w))∣w ∈W}}. (∗∗)

On remarque que le multiensemble écrit à gauche dans (∗∗) ne contient des cou-
leurs de sommets de V 2 que pour les couples (χH(u, v), χH(u,u)) et (χH(v, v), χH(u, v)).
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Quant au multiensemble de droite, la même remarque s'applique et on a que

(χH(u′, v′), χH(u′, u′)) et (χH(v′, v′), χH(u′, v′)) sont ses seuls éléments contenant

des sommets de V 2.

Comme les deux multiensembles sont égaux, chaque élément de l'un doit être égal

à un élément de l'autre. Ensuite, puisque les graphes sont bien dissociants, un

sommet de V 2 ne peut pas avoir une même couleur qu'une arête de V 2. Ainsi,

pour les couples ci-dessus, il est seulement possible que (χH(u, v), χH(u,u)) =
(χH(u′, v′), χH(u′, u′)) et (χH(v, v), χH(u, v)) = (χH(v′, v′), χH(u′, v′)). De cela,

on infère χH(u,u) = χH(u′, u′) et χH(v, v) = χH(v′, v′).

Puis, comme G ⪰ H, on déduit des dernières égalités et de (∗) que χG(u, v) =
χG(u′, v′), χG(u,u) = χG(u′, u′) et χG(v, v) = χG(v′, v′).

À partir de là, on peut inférer l'égalité des triplets

(χG(u, v), χG(u,u), χG(v, v)) = (χG(u′, v′), χG(u′, u′), χG(v′, v′)).

Puis, on peut déduire par la dé�nition de G(1) que χG
(1)
(u, v) = χG

(1)
(u′, v′).

6.2 Faire respecter la condition C2

En ra�nant son graphe reçu lors d'une partie, le joueur 2 vise à ce que celui-ci

respecte la propriété que deux sommets de même couleur aient des voisinages

similaires en terme de couleur. Énoncé plus précisément, le joueur 2 désire obtenir

un graphe dans lequel, pour une couleur de sommet quelconque s et une couleur

d'arête quelconque a, deux sommets de même couleur ont le même nombre de

sommets de couleur s reliés à eux par une arête de couleur a.

Dé�nition 6.2.1. (Kiefer et Schweitzer, 2016)

Soit V un ensemble �ni non vide, et G ∈ ΓV , bien dissociant. On dit qu'il respecte
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la condition C2 ou respecte C2 si la condition suivante est véri�ée. Soit C, une

CCA de G, et soit C1,C2, des CCS de G. On a alors que

1) pour tous v1, v2 ∈ C1,

∣N+C(v1) ∩C2∣ = ∣N+C(v2) ∩C2∣ et ∣N−C(v1) ∩C2∣ = ∣N−C(v2) ∩C2∣,

2) pour tous u1, u2 ∈ C2,

∣N+C(u1) ∩C1∣ = ∣N+C(u2) ∩C1∣ et ∣N−C(u1) ∩C1∣ = ∣N−C(u2) ∩C1∣.

Comme précédemment, trouvons une méthode de ra�nement du graphe pour faire

respecter C2.

Notation 6.2.1. Soit V un ensemble �ni non vide, et G ∈ ΓV . On dé�nit G(2) ∈ ΓV

tel que pour tous u, v ∈ V où u ≠ v,
1) χG

(2)
(u, v) ∶= χG(u, v)

2) χG
(2)
(u,u) ∶= (χG(u,u),{{(χG(w,u), χG(u,w)) ∣ w ∈ V }})

et CG
(2)
∶= χG

(2)
(V 2).

Il est facile de montrer que pour G ∈ ΓV , alors G ⪰ G(2). Ainsi, par la proposition

3.6.1, si G est bien dissociant, il en est de même pour G(2).

Notons qu'on peut montrer que G(2) respecte l'équivalence contraire si G la res-

pecte initialement, car ce ra�nement ne modi�e que les couleurs des sommets de

V 2.

Proposition 6.2.1. Soit V un ensemble �ni non vide, et G ∈ ΓV tel qu'il est bien

dissociant et respecte l'équivalence contraire. Si G respecte C1, alors G(2) respecte

C2.

Preuve. Soit C, une CCA de G(2), et soit C1,C2, des CCS de G(2). Prenons

v1, v2 ∈ C1. On a alors forcément que χG
(2)
(v1, v1) = χG

(2)
(v2, v2). L'égalité de
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couples impliquant l'égalité de leurs deuxièmes composantes, on a alors que

{{(χG(w, v1), χG(v1,w)) ∣ w ∈ V }} = {{(χG(w, v2), χG(v2,w)) ∣ w ∈ V }}.

L'égalité de deux multiensembles des couples de couleurs signi�e que chaque couple

de couleurs a autant de réprésentants dans un multiensemble que dans l'autre.

Ainsi, pour tout couple (c1, c2) de couleurs de G,

∣{w ∈ V ∣ (χG(v1,w), χG(w, v1)) = (c1, c2)}∣

= ∣{w ∈ V ∣ (χG(v2,w), χG(w, v2)) = (c1, c2)}∣. (∗)

Soit c la couleur de G associée à la classe de couleur C. Comme G respecte

l'équivalence contraire, par la proposition 3.3.1, il existe c̄ une couleur de G qui

correspond à la couleur duale de c.

Donc,

∣N+C(v1)∣ = ∣N+c (v1)∣

= ∣{w ∈ V ∣ χG(v1,w) = c}∣

= ∣{w ∈ V ∣ χG(v1,w) = c et χG(w, v1) = c̄}∣

= ∣{w ∈ V ∣ (χG(v1,w), χG(w, v1)) = (c, c̄)}∣

= ∣{w ∈ V ∣ (χG(v2,w), χG(w, v2)) = (c, c̄)}∣ en utilisant (∗)

= ∣{w ∈ V ∣ χG(v2,w) = c et χG(w, v2) = c̄}∣

= ∣{w ∈ V ∣ χG(v2,w) = c}∣

= ∣N+c (v2)∣

= ∣N+C(v2)∣

De manière analogue, on trouve que ∣N−C(v1)∣ = ∣N−C(v2)∣.

Comme G respecte C1, la couleur d'une arête détermine la couleur de ses sommets.

Prenons la convention d'écriture suivante. Si c ∶= χG(a, b), alors on écrit ←Ðc ∶=



74

χG(a, a) et Ð→c ∶= χG(b, b). De même, si C correspond à la classe de couleur de c,

alors
←Ð
C correspond de même pour ←Ðc et similairement pour

Ð→
C et Ð→c .

À partir de cela, remarquons :

N+C(v1) = N+c (v1)

= {w ∈ V ∣ χG(v1,w) = c}

= {w ∈ V ∣ χG(v1,w) = c et χG(w,w) =Ð→c }

= {w ∈ V ∣ χG(v1,w) = c} ∩ {w ∈ V ∣ χG(w,w) =Ð→c }

= N+c (v1) ∩
Ð→
C

= N+C(v1) ∩
Ð→
C

De même, on peut prouver que N−C(v1) = N−C(v1) ∩
←Ð
C .

Montrons �nalement que G(2) respecte C2. Pour cela, démontrons que la condition

C1) de la dé�nition est respectée, la deuxième se prouvant de la même manière

par symétrie.

Si C2 =
Ð→
C , alors ∣N+C(v1) ∩C2∣ = ∣N+C(v1)∣ = ∣N+C(v2)∣ = ∣N+C(v2) ∩C2∣.

Si C2 ≠
Ð→
C , alors

∣N+C(v1) ∩C2∣ = ∣(N+C(v1) ∩
Ð→
C ) ∩C2∣

= ∣N+C(v1) ∩ (
Ð→
C ∩C2)∣

= ∣N+C(v1) ∩ ∅∣

= ∣∅∣

= 0

Puis, de même, ∣N+C(v1) ∩C2∣ = 0, ainsi la condition est respectée dans ce cas.

La deuxième égalité de la condition C1 se prouve de manière analogue.
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En conséquence directe de cette proposition, si G ne respecte pas C2, alors G ≻
G(2). L'argument est analogue à celui pour C1.

Proposition 6.2.2. Soit V un ensemble �ni non vide, et G,H ∈ ΓV , tels que

G ⪰H et que G et H sont bien dissociants. Alors G(2) ⪰H(1).

Preuve. Soit (u, v), (u′, v′) ∈ V .

Si χH(1)(u, v) = χH(1)(u′, v′), alors

(χH(u, v),{{(χH(w, v), χH(u,w)) ∣ w ∈ V }})

= (χH(u′, v′),{{(χH(w′, v′), χH(u′,w′)) ∣ w′ ∈ V }}).

Cas 1) u ≠ v et u′ ≠ v′

Par l'égalité des premières composantes de l'équation ci-dessus, on a que χH(u, v) =
χH(u′, v′). Puis, on déduit χG(u, v) = χG(u′, v′) par G ⪰ H. En substituant avec

la notation 6.2.1, on conclut que χG
(2)
(u, v) = χG

(2)
(u′, v′).

Cas 2) u = v et u′ = v′

La même égalité ci-dessus devient alors

(χG(u,u),{{(χG(w,u), χG(u,w)) ∣ w ∈ V }})

= (χG(u′, u′),{{(χG(w′, u′), χG(u′,w′)) ∣ w′ ∈ V }}).

Par dé�nition, χG
(2)
(u,u) = χG

(2)
(u′, u′).

6.3 Faire respecter les deux conditions

Si le joueur 2 souhaite que son graphe respecte les deux conditions, une méthode

simple est d'itérer les ra�nements pour faire respecter C1 et C2, jusqu'à ce que
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ces deux dernières soient satisfaites. En e�et, le rétablissement de la propriété C1

peut faire en sorte que C2 ne soit plus véri�ée et vice-versa. Par la proposition

6.3.4, ce processus doit s'arrêter.

Dé�nition 6.3.1. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide,

et G ∈ ΓV . Un nettoyage de G, noté nett(G) consiste en un ra�nement de G dans

le but de faire respecter C1, puis, si nécessaire, en un autre a�n de faire respecter

C2. Formellement,

nett(G) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

G(1) si G(1) respecte C2

(G(1))(2) sinon

Proposition 6.3.1. Soit V un ensemble �ni non vide, et G,H ∈ ΓV , tels que

G ⪰H et que G et H sont bien dissociants. On a alors que nett(G) ⪰H(2).

Remarque 6.3.1. Comme G ⪰ G, on en déduit que nett(G) ⪰ G(2). Autrement

dit, le fait que le joueur 2 applique un nettoyage dans une partie du jeu de Kiefer-

Schweitzer a un coût d'au plus 2.

Preuve. Cas 1) nett(G) = G(1)
Par la proposition 6.1.4, on a que G(1) ⪰H(1) Dans ce cas. nett(G) = G(1) ⪰H(1) ⪰
H(2).

Cas 2) nett(G) = (G(1))(1)
Par la proposition 6.1.4, on a que G(1) ⪰H(1). Puis, par la proposition 3.6.1, G(1)

est alors bien dissociant. De ces deux résultats et de la proposition 6.2.2, on déduit

que (G(1))(2) ⪰ (H(1))(1) =H(2).

Le principal problème ici est qu'il est possible que le ra�nement a�n de faire

respecter C2 brise la condition C1. Par les prochains lemmes, nous allons montrer

qu'itérer des nettoyages sur le graphe va éventuellement faire respecter C1 et C2.

Proposition 6.3.2. Soit V un ensemble �ni non vide, et G,G′ ∈ ΓV tels que G

respecte C1 et G ⪰ G′. Alors G ≡S G′ implique que G′ respecte C1.
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Rappelons qu'ici S correspond à l'ensemble des sommets de V 2.

Preuve. Supposons G ≡S G′.

Soit (u, v), (u′, v′) ∈ V 2 tels que χG′(u, v) = χG′(u′, v′).
Par G ⪰ G′, on en déduit que χG(u, v) = χG(u′, v′).
Puis, commeG respecte C1, on infère χG(u,u) = χG(u′, u′) et χG(v, v) = χG(v′, v′).
Finalement, par G ≡S G′, on a que χG′(u,u) = χG′(u′, u′) et χG′(v, v) = χG′(v′, v′)
Donc, G′ respecte C1.

Proposition 6.3.3. Soit V un ensemble �ni non vide, et G ∈ ΓV , tel que nett(G)
ne respecte pas C1. Alors une classe de couleur de sommets a été scindée. Formel-

lement, G ≻S nett(G).

Preuve. Si nett(G) = G(1), alors nett(G) doit respecter C1. Il faut donc s'inté-
resser au cas où nett(G) = (G(1))(2).
Il est clair que G(1) ⪰ nett(G) et donc que

G(1) ⪰S nett(G) (∗)

Comme G(1) respecte C1, que G(1) ⪰ nett(G) et que nett(G) ne respecte pas C1,
alors par contraposée de la proposition 6.3.2, on a que G(1) ≢S nett(G).

Par ce dernier résutat et (∗), on obtientG(1) ≻S nett(G) et doncG ≻S nett(G).

Proposition 6.3.4. Soit V un ensemble �ni non vide, et G ∈ ΓV . Il existe alors

k ∈ N tel que k < ∣V ∣ et nettk(G) respecte C1.

Preuve. Supposons le contraire, soit qu'il n'existe pas de k strictement plus petit

que n ∶= ∣V ∣ tel que nettk(G) respecte C1.

Ainsi, pour i quelconque tel que 1 ≤ i ≤ n − 1, on a que netti(G) ne respecte pas
C1. On peut alors inférer netti−1(G) ≻S netti(G) par la proposition 6.3.3.
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On peut alors construire la chaîne

G ≻S nett(G) ≻S nett2(G) ≻S ⋅ ⋅ ⋅ ≻S nettn−1(G).

En appliquant la proposition 4.3.7 avec E = S, on déduit

0 < ∣χG(S)∣ < ∣χnett(G)(S)∣ < ⋅ ⋅ ⋅ < ∣χnettn−1(G)(S)∣ ≤ n.

On déduit donc l'existence de n entiers strictement situés entre 0 et n, ce qui est

absurde.

Dé�nition 6.3.2. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide,

et G ∈ ΓV . Soit k ∈ N, le minimum tel que nettk(G) respecte C1. On dit alors que

nettk(G) correspond au nettoyage complet de G, noté nettc(G).

Nous avons introduit la notion de nettoyage complet pour que le joueur 2 d'une

partie du jeu de Kiefer-Schweitzer puisse en e�ectuer sur les graphes qu'il reçoit.

Par contre, pour s'assurer que cela soit permis par les règles du jeu, nous avons

besoin de la proposition suivante. Il s'agit en fait de montrer que le coût supplé-

mentaire induit par les nettoyages complets est asymptotiquement négligeable en

comparaison de la borne visée, comme nous le détaillerons au chapitre 9.

Proposition 6.3.5. Soit V un ensemble �ni non vide, et G ∈ ΓV , bien dissociant.

On a alors que nettc(G) ⪰ G̃.

Remarque 6.3.2. Ce résultat a simplement pour but de montrer que le joueur 2 a

le droit d'e�ectuer un nettoyage complet sur son graphe, car, s'il reçoit un graphe

G, il doit selon les règles du jeu, retourner un graphe G′ tel que G ⪰ G′ ⪰ G̃. Ainsi,
si le joueur 2 e�ectue un nettoyage complet en premier lieu, on retrouve la chaîne

de ra�nement G ⪰ nettc(G) ⪰ G′ ⪰ G̃, ce qui est possible, car on aura prouvé que

nettc(G) ⪰ G̃ pour tout graphe coloré G.



79

Preuve. En itérant la proposition 6.3.1 en commençant par G ⪰ G, on ob-

tient nettn(G) ⪰ G(2n) pour n, un naturel quelconque. Puis, pour un certain k,

nettc(G) = nettk(G) ⪰ G(2k) ⪰ G̃.

Le lemme suivant est l'énoncé le plus important de cette section en préparation à

la démonstration du théorème principal.

Lemme 6.3.1. Soit une partie du jeu de Kiefer-Schweitzer avec un graphe initial

à n sommets. Le nombre de nettoyages scindant des CCS que le joueur 2 puisse

faire est alors au plus n.

Preuve. Soit G1,G2, . . . ,Gf , l'ensemble des graphes colorés d'une partie du jeu

de Kiefer-Schweitzer reçus par le joueur 2 tels que, pour chacun, leur e�ectuer un

nettoyage leur scinde une classe de couleur, c.-à-d. Gi ≻S nett(Gi).

Dans le cas où nett(Gi) = Gi(1), alors Gi ≡S nett(Gi), par simple analyse de la

notation 6.1.1. Comme, ici, aucune classe de couleur n'est scindée, il faut plutôt

s'intéresser à l'autre cas, soit nett(Gi) = (Gi(1))(2).

Ainsi, pour chaque graphe Gi, il existe ki, un entier strictement positif, tel que

Gi ≻S nett(Gi) ≻S nett2(Gi) ≻S ... ≻S nettki(Gi) = nettc(Gi).

Soit G′i, le graphe que le joueur 2 retourne lorsqu'il reçoit le graphe Gi. Comme

nous voulons maximiser le nombre de nettoyages scindant des CCS que celui-ci

e�ectue, il doit retourner un graphe G′i tel que Gi ⪰ nettc(Gi) ⪰ G′i. Puis, par les
règles du jeu, on a alors forcément que G′i ⪰ Gi+1. De tout cela, on en conclut que

nettc(Gi) ⪰ Gi+1.

Par les résultats des deux derniers paragraphes, on construit la chaîne de relation

nett(G1) ≻S ... ≻S nettk1(G1) ≻S nett(G2) ≻S ... ≻S nettk2(G2) ≻S ... ≻S nett(Gf) ≻S
... ≻S nettkf (Gf).
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Ainsi, le nombre total de nettoyages scindant des CCS que le joueur 2 peut e�ec-

tuer correspond à k1 + k2 + ... + kf .

En appliquant la proposition 4.3.7 à la chaîne de relation ci-dessus, avec E = S,
on déduit

0 < ∣χnett(G1)(S)∣ < ⋅ ⋅ ⋅ < ∣χnettk1(G1)(S)∣ < ∣χnett(G2)(S)∣ < ⋅ ⋅ ⋅ < ∣χnettk2(G2)(S)∣ < ⋅ ⋅ ⋅ <
∣χnett(Gf )(S)∣ < ⋅ ⋅ ⋅ < ∣χnett

kf (Gf )
(S)∣ ≤ n.

On en conclut qu'il faut que k1 + k2 + ... + kf ≤ n.

6.4 Propriétés induites par C1 et C2

La proposition suivante est utile a�n de bien comprendre les graphes colorés res-

pectant C1.

Proposition 6.4.1. Soit V un ensemble �ni non vide, et G ∈ ΓV , bien dissociant

et respectant C1. Pour C, une CCA non vide quelconque de G, il existe alors C1

et C2, des CCS de G, tels que C ⊆ C1 ×C2.

Ainsi, en prenant une CCA quelconque d'un graphe respectant C1, ses sommets

de gauche doivent être tous dans la même CCS, de même pour tous ses sommets

de droite.

Notons qu'il se peut qu'il existe plus d'une CCA dans un produit cartésien de

CCS. En fait, tout produit cartésien de deux CCS peut être exprimé comme une

union disjointe de CCA.

Preuve. Soit (u, v) ∈ C quelconque. Posons C1 comme la CCS de (u,u) et C2

comme la CCS de (v, v). Montrons que C ⊆ C1 ×C2 par la dé�nition du produit

cartésien.
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Soit (u′, v′) ∈ C quelconque. On a alors que χG(u, v) = χG(u′, v′). Comme G

respecte C1, on infère que χG(u,u) = χG(u′, u′) et que χG(v, v) = χG(v′, v′). On
a alors que u′ ∈ C1 et v′ ∈ C2. Ainsi, (u′, v′) ∈ C1 × C2 et on en conclut que

C ⊆ C1 ×C2.

Le lemme suivant a pour but d'être appliqué à un moment précis dans la preuve

du théorème principal, ce qui explique son aspect spéci�que.

Lemme 6.4.1. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide, et

G,G′ ∈ ΓV , bien dissociants et respectant C1 et C2. Soit B, un ensemble de CCS

de G. Supposons que G ≻C G′, où C est une CCA incidente à B. Supposons aussi

qu'aucune CCS appartenant à B n'est scindée dans ce ra�nement.

Soit C ′, une nouvelle CCS de G′ en laquelle C est scindée. (Par le lemme 6.4.1, il

existe C1 et C2, CCS de G, tels que C ⊆ C1 ×C2.) Si C est incident à gauche de

B, alors il existe v ∈ C1 tel que ∅ ⊂ N+C′(v) ⊂ N+C(v). Autrement, si C est incident

à droite de B, alors il existe v ∈ C2 tel que ∅ ⊂ N−C′(v) ⊂ N−C(v).

Ci-dessus, ⊂ désigne l'inclusion stricte.

Preuve. Par hypothèse, soit C1, soit C2 doit appartenir à B. Supposons que C

est incident à gauche de B, l'autre cas étant analogue. Il faut alors que C1 ∈ B.

Comme C ′ ⊂ C, alors pour tout v ∈ V , on a que ∅ ⊆ N+C′(v) ⊆ N+C . Il reste alors
à montrer qu'il existe v ∈ C1 tel que N+C′(v) ≠ ∅ et N+C′(v) ≠ N+C(v). Montrons-le

par l'absurde.

Supposons que pour tout v ∈ C1, N+C′(v) = ∅ ou N+C′(v) = N+C(v).

Cette proposition peut se séparer en trois cas. Montrons que chacune d'entre elles

mène à une contradiction.

Cas 1) Pour tout v ∈ C1, N+C′(v) = ∅.
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Cela est impossible, car, comme on suppose C ′ non nul, il existe (u1, u2) ∈ C ′ ⊆
C1 ×C2 et a donc u1 ∈ C1 tel que u2 ∈ N+C′(u1).

Cas 2) Pour tout v ∈ C1, N+C′(v) = N+C(v).

Notons que C ′ ⊂ C ⊆ C1 ×C2.

Soit u1 ∈ C1 et u2 ∈ C2. On a alors la chaîne d'équivalence suivante.

(u1, u2) ∈ C ′ ⇐⇒ u2 ∈ N+C′(u1) = N+C(u1) ⇐⇒ (u1, u2) ∈ C

On a donc par la dé�nition que C = C ′, ce qui est absurde.

Cas 3) Il existe v1, v2 ∈ C1 tels que N+C′(v1) = ∅ et N+C′(v2) = N+C(v2).

Comme G′ respecte la condition C2, on a alors que ∣N+C′(v1)∣ = ∣N+C′(v2)∣. Ainsi,
∣N+C(v2)∣ = ∣N+C′(v2)∣ = ∣N+C′(v1)∣ = ∣∅∣ = 0.

Puis, G respectant la condition C2, on déduit que pour tout v ∈ C1, ∣N+C(v)∣ =
∣N+C(v2)∣ = 0. Cela est absurde de manière analogue au cas 1).

Le lemme suivant énonce que, pour un graphe coloré bien dissociant respectant

C1, pour un sommet quelconque, deux sommets de couleurs di�érentes ne peuvent

alors pas être reliés à ce dernier par des arêtes de même couleur. Ici, voir la notation

4.2.1 pour rappel.

Lemme 6.4.2. Soit V un ensemble �ni non vide, et G ∈ ΓV , bien dissociant,

tel qu'il respecte C1. Soit C, une MCCS de G. Pour tout v ∈ V , on a alors que

χG(IC(v)) ∩ χG(IV 2−C(v)) = ∅.

Preuve. Montrer l'égalité ci-dessus est équivalent à montrer que pour tous (v,w) ∈
IC(v) et (v,w′) ∈ IV 2−C(v), alors χG(v,w) ≠ χG(v,w′).
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Supposons que (v,w) ∈ IC(v) et (v,w′) ∈ IV 2−C(v). Par la proposition 4.1.1, w ∈ C
et w′ /∈ C, on infère χG(w) ≠ χG(w′). Par la contraposée de la dé�nition comme

quoi G respecte C1, on en déduit χG(v,w) ≠ χG(v,w′).

Le lemme suivant utilise la notation 4.2.1 et sert à démontrer une manière équiva-

lente de formaliser la condition C2, qui est appliqué dans une preuve du chapitre

suivant.

Lemme 6.4.3. Soit V un ensemble �ni non vide, et G ∈ ΓV , bien dissociant et

qui respecte C2. On a alors que :

1) pour tous C1,C2, CCS de G, et pour tous v1, v2 ∈ C1, on a que χG(IC2(v1)) =
χG(IC2(v2)).

2) pour tout C1, CCS de G et C2, MCCS de G, et pour tous v1, v2 ∈ C1, on a que

χG(IC2(v1)) = χG(IC2(v2)).

Preuve. 1) Soit C1,C2, CCS de G.

Soit C, une CCA de G, et c ∈ CG, sa couleur associée. G respectant C2, on a alors

que pour tous v1, v2 ∈ C1, ∣N+c (v1) ∩C2∣ = ∣N+c (v2) ∩C2∣.

Notons que

∣N+c (v1) ∩C2∣ = ∣{u ∈ V ∶ χG(v1, u) = c} ∩C2∣

= ∣{u ∈ C2 ∶ χG(v1, u) = c}∣

= ∣{(v1, u) ∶ u ∈ C2 et χG(v1, u) = c}∣.

De même, ∣N+c (v2) ∩C2∣ = ∣{(v2, u′) ∶ u′ ∈ C2 et χG(v2, u′) = c}∣.

Des trois paragraphes ci-dessus, on infère

∣{(v1, u) ∶ u ∈ C2 et χG(v1, u) = c}∣ = ∣{(v2, u′) ∶ u′ ∈ C2 et χG(v2, u′) = c}∣.
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On en conclut que

{(v1, u) ∶ u ∈ C2 et χG(v1, u) = c} = ∅ ⇐⇒ {(v2, u′) ∶ u′ ∈ C2 et χG(v2, u′) = c} = ∅.
(∗)

Cela veut dire qu'un des ensembles ci-dessus est vide si et seulement si l'autre est

vide. Remarquons aussi que, soit l'ensemble est vide, soit il contient des éléments

d'une seule et même couleur c.

Démontrons que

{χG(v1, u) ∣ u ∈ C2 et χG(v1, u) = c} = {χG(v2, u′) ∣ u′ ∈ C2 et χG(v2, u′) = c}.
(∗∗)

Cas 1) Supposons que {(v1, u) ∣ u ∈ C2 et χG(v1, u) = c} ≠ ∅.
On a alors χG({(v1, u) ∣ u ∈ C2 et χG(v1, u) = c}) = {c}.

De notre supposition et de (∗), on déduit

{(v2, u′) ∣ u′ ∈ C2 et χG(v2, u′) = c} ≠ ∅.

Donc, de manière analogue, χG({(v2, u′) ∣ u′ ∈ C2 et χG(v2, u′) = c}) = {c}.

Ce qui démontre (∗∗) pour ce cas.

Cas 2) Supposons {(v1, u) ∣ u ∈ C2 et χG(v1, u) = c} = ∅.

Ainsi,

χG({(v1, u) ∣ u ∈ C2 et χG(v1, u) = c}) = χG(∅) = ∅.

De notre supposition et de (∗), on déduit

{(v2, u′) ∣ u′ ∈ C2 et χG(v2, u′) = c} = ∅.

Donc,

χG({(v2, u′) ∣ u′ ∈ C2 et χG(v2, u′) = c}) = χG(∅) = ∅.
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Ce qui démontre (∗∗) pour ce cas.

Nous avons ainsi tout ce qu'il faut pour prouver le lemme directement.

Remarquons que

χG(IC2(v1)) = {χG(v1, u) ∣ u ∈ C2}

= {χG(v1, u) ∣ u ∈ C2 et ⋁
c∈CG
(χG(v1, u) = c)} (en insérant une tautologie)

= ⋃
C∈C
{χG(v1, u) ∣ u ∈ C2 et χG(v1, u) = c}

De manière analogue,

chiG(IC2(v2)) = ⋃
C∈C
{χG(v2, u′) ∣ u′ ∈ C2 et χG(v2, u′) = C}

Des deux derniers paragraphes et de (∗∗), on conclut χG(IC2(v1)) = χG(IC2(v2)).

2) Comme C2 est un MCCS de G, il est donc la réunion disjointe de CCS de G.

Formellement, C2 = ⋃̇i∈ICi où les Ci sont des CCS de G.

χG(IC2(v1)) = χG({(v1,w) ∣ w ∈ C2})

= χG({(v1,w) ∣ w ∈ ⋃̇i∈ICi})

= χG({(v1,w) ∣⋁
i∈I

w ∈ Ci})

= χG(⋃̇i∈I{(v1,w) ∣ w ∈ Ci})

= χG(⋃̇i∈IICi
(v1))

=⋃
i∈I

χG(ICi
(v1))

De manière analogue,

χG(IC2(v2)) =⋃
i∈I

χG(ICi
(v2)).

Puisque les Ci sont des CCS de G, on peut appliquer la partie 1) de notre lemme

pour montrer que pour tout i ∈ I, χG(ICi
(v1)) = χG(ICi

(v2)).
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Par les 3 derniers paragraphes, on déduit χG(IC2(v1)) = χG(IC2(v2)).

Ainsi, nous avons démontré tous les résultats élémentaires concernant les condi-

tions C1 et C2 sur les graphes colorés dont nous nous servirons dans la preuve du

théorème principal.



CHAPITRE VII

LA CLASSIFICATION DES CLASSES DE COULEUR DE SOMMETS PAR

TAILLE

Dans leur article, Kiefer et Schweitzer introduisent des notions de grandes et pe-

tites classes de couleur que nous présentons maintenant. Cette division de struc-

tures par leur taille est une astuce combinatoire qui permet de séparer l'étude de

cas.

Comme nous le mentionnons au chapitre 9, les résultats de ce chapitre servent

à borner, pour une partie du jeu de Kiefer-Schweitzer, le nombre de coups scin-

dant de grandes CCS. Pour les petites, l'évaluation est plus di�cile et nécessite

des résultats sur le graphe auxiliaire qui sont présentés au chapitre 8, un graphe

auxiliaire étant un graphe �ni non orienté construit à partir d'un graphe coloré.

7.1 Fonction potentielle

La notion de fonction potentielle associe à un graphe coloré un nombre. L'intérêt

de ce dernier est mis en évidence par les propositions 7.1.1 et 7.1.2.

Dé�nition 7.1.1. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide.

La fonction potentielle sur ΓV est dé�nie par f ∶ ΓV → N, telle que f(G) ∶=
Σv∈V ∣χG(I(v))∣ où G ∈ ΓV et I(v) = {(v,w) ∣ w ∈ V }.
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Remarquons que la fonction potentielle sur ΓV est bornée supérieurement en fonc-

tion de la taille de V .

Proposition 7.1.1. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide

et soit f ∶ ΓV → N, une fonction potentielle sur ΓV , et G ∈ ΓV . On a alors que

f(G) ≤ ∣V ∣2.

Preuve. Notons que ∣E∣ ≥ ∣χG(E)∣ pour tout ensemble E ⊆ V 2. Donc,

f(G) ∶= Σv∈V ∣χG(I(v))∣ ≤ Σv∈V ∣I(v)∣ = Σv∈V ∣V ∣ = ∣V ∣2.

La proposition suivante nous permet de nous servir de la fonction potentielle sur

ΓV comme outil pour la démonstration de divers résultats sur les graphes colorés.

Proposition 7.1.2. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide.

Toute fonction potentielle f ∶ ΓV → N est strictement décroissante, c'est-à-dire que

si G,G′ ∈ ΓV et G ≻ G′, alors f(G) < f(G′).

Preuve. Soit v ∈ V . Comme G ≻ G′, en appliquant la proposition 4.3.7 partie 3)

et en posant E ∶= I(v), on obtient

∣χG(I(v))∣ < ∣χG′(I(v))∣.

Ainsi,

f(G) = Σv∈V ∣χG(I(v))∣ < Σv∈V ∣χG′(I(v))∣ = f(G′).

L'intérêt de la fonction potentielle peut se voir ainsi. Soit une chaîne de graphes

colorés selon la relation de ra�nement strict. On peut alors, par la proposition

7.1.2, en déduire une chaîne de leurs nombres associés par la fonction, tout cela

selon la relation <. Puis, par la proposition 7.1.1, cette dernière chaîne est alors

bornée en longueur, ce qui borne automatique la longueur de la chaîne initiale.
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7.2 Classes de couleur grandes et petites

Les notions de petite et de grande classe de couleur constituent probablement l'idée

clé de la preuve de Kiefer-Schweitzer, car elle permet de séparer en plusieurs cas.

Dé�nition 7.2.1. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide

et G ∈ ΓV . Soit une fonction t ∶ N → N∗, qu'on nomme fonction de seuil. Une

classe de couleur C ∈ C est dite grande ou grande selon la fonction t si ∣C ∣ ≥ t(∣V ∣).
De manière analogue, cette dernière est dite petite ou petite selon la fonction t si

∣C ∣ < t(∣V ∣).

La notation suivante est utilisée lors de la démonstration du lemme 7.2.1.

Notation 7.2.1. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide,

et G ∈ ΓV . On dénote chacune de ses grandes classes de couleur de sommets par

Bk. On note alors B ∶= ⋃̇kBk.

On utilise l'abréviation grandes CCS pour se référer aux grandes classes de couleur

de sommets.

Soit G ⪰ G′. Dire que G ≡B G′ est alors équivalent à dire que le ra�nement G′ ne

scinde pas les grandes CCS.

Le lemme suivant est utile pour la démonstration du théorème principal.

Lemme 7.2.1. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide,

et G ∈ ΓV bien dissociant et respectant C1 et C2. Soit t, une fonction de seuil.

Soit G∗ un ra�nement de G tel qu'il scinde une CCA incidente d'une grande

CCS. Supposons de plus que ce ra�nement et le nettoyage complet subséquent

ne scindent aucune grande CCS de G, alors f(nettc(G∗)) ≥ f(G) + t(n).

Preuve. Par simplicité, posons G′ ∶= nettc(G∗). Soit B l'ensemble des grandes

CCS de G.
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Par hypothèse, il existe alors C, une CCS incidente avec B telle que

G ≻C G∗ ⪰ G′, ce qui implique G ≻C G′. C est scindée en au moins deux classes,

où l'on note l'une d'entre elles C ′.

C respectant C1, par le lemme 6.4.1, il existe C1 et C2, des CCS de G, tels que

C ⊆ C1 ×C2. Puisque C est incidente avec B, alors au moins une des CCS C1 et

C2 est une grande classe de couleur. Sans perdre de généralité, supposons qu'il

s'agisse de C1. (Dans l'autre cas, on pourrait dé�nir I−E(v) ∶= {(u, v) ∣ u ∈ E} et
l'utiliser au lieu de IE(v) pour le reste de la preuve.)

Partie 1 : Montrons qu'il existe v ∈ C1 tel que G ≻IC2
(v) G′.

De G ⪰ G′, on infère facilement G ⪰IC2
(v) G′. Il reste alors à montrer que G /⪯IC2

(v)

G′.

En appliquant le lemme 6.4.1, on trouve alors qu'il existe v ∈ C1 tel que ∅ ⊂
N+C′(v) ⊂ N+C(v).

Cela signi�e qu'il existe u1, u2 ∈ V tels que u1 ∈ N+C′(v), u2 /∈ N+C′(v) et u1, u2 ∈
N+C(v). De cela, on infère (v, u1) ∈ C ′, (v, u2) /∈ C ′ et (v, u1), (v, u2) ∈ C.

De cette dernière relation et de C ⊆ C1×C2, on infère u1, u2 ∈ C2. Ainsi, (v, u1), (v, u2) ∈
IC2(v). On déduit aussi du paragraphe ci-dessus que χG(v, u1) = χG(v, u2) et
χG′(v, u1) ≠ χG′(v, u2).

Cela montre par dé�nition que G /⪯IC2
(v) G′.

Partie 2 : Montrons que pour tout u ∈ C1, ∣χG′(IC2(u))∣ ≥ ∣χG(IC2(u))∣ + 1.

De G ≻IC2
(v) G′ (le résultat de la partie 1) et la proposition 4.3.7, on déduit

∣χG(IC2(v))∣ < ∣χG′(IC2(v))∣ et donc ∣χG(IC2(v))∣ + 1 ≤ ∣χG′(IC2(v))∣.

Par hypothèse, G respecte C2. Appliquons le lemme 6.4.3 partie 2). Ainsi, pour
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tout u ∈ C1, comme v ∈ C1 aussi, on a que χG(IC2(u)) = χG(IC2(v)). Donc, pour
tout u ∈ C1, ∣χG(IC2(u))∣ = ∣χG(IC2(v))∣.

Comme C2 est une CCS de G, par la proposition 4.3.5, il est alors une MCCS

de G′. Puisque C1 est une grande CCS de G et vu l'hypothèse comme quoi le

ra�nement G ≻ G′ ne scinde aucune grande classe de couleur, C1 est alors aussi

une CCS de G′. De façon analogue, en utilisant le lemme 6.4.3 partie 2), on trouve

que pour tout u ∈ C1, ∣χG′(IC2(u))∣ = ∣χG′(IC2(v))∣.

Des derniers résultats des trois derniers paragraphes, on déduit facilement le ré-

sultat voulu pour cette partie.

Partie 3 : Montrons le lemme directement. Mais juste avant, écrivons quelques

résultats.

Résultat 1 (R1) :

Par le résultat de la partie 2,

∑
u∈C1

∣χG′(IC2(u))∣ ≥ ∑
u∈C1

(∣χG(IC2(u))∣ + 1)

= ∑
u∈C1

∣χG(IC2(u))∣ + ∣C1∣

≥ ∑
u∈C1

∣χG(IC2(u))∣ + t(n) (puisque C1 est grande)

Résultat 2 (R2) :

∣χG′(I(v))∣ = ∣χG′(IC2(v) ∪ IV −C2(v(v))∣

= ∣χG′(IC2(v))∪̇χG′(IV −C2(v))∣ (union disjointe par le lemme 6.4.2)

= ∣χG′(IC2(v))∣ + ∣χG′(IV −C2(v))∣ (aussi vrai pour χG notons)

Résultat 3 (R3) :



92

Par G ⪰ G′ et la proposition 4.3.7, alors pour tout u ∈ V 2,

∣χG′(I(u))∣ ≥ ∣χG(I(u))∣ et ∣χG′(IV −C2(u))∣ ≥ ∣χG(IV −C2(u))∣.

Finalement,

f(G′) = ∑
u∈V
∣χG′(I(u))∣

= ∑
u∈C1

∣χG′(I(u))∣ + ∑
u∈V −C1

∣χG′(I(u))∣

= ( ∑
u∈C1

∣χG′(IC2(u))∣ + ∑
u∈C1

∣χG′(IV −C2(u))∣) + ∑
u∈V −C1

∣χG′(IV (u))∣ (Par R2)

≥ ∑
u∈C1

∣χG(IC2(u))∣ + t(n) + ∑
u∈C1

∣χG(IV −C2(u))∣ + ∑
u∈V −C1

∣χG(IV (u))∣ (Par R1 et R3)

= f(G) + t(n) (en regroupant et en utilisant R2 avec χG).

Ceci clôt l'ensemble des résultats importants sur les conditions C1 et C2.



CHAPITRE VIII

LES GRAPHES AUXILIAIRES

Dans le but de prouver le théorème principal, nous allons associer à un graphe

coloré G et à une chaîne de ra�nements de graphes colorés se terminant par G

un graphe �ni non orienté dit graphe auxiliaire de G.

L'intérêt est que, pour une chaîne de ra�nements de graphes colorés, on peut

en déduire une chaîne d'inclusions de leurs graphes auxiliaires. Cela correspond

à la proposition 8.1.2. Comme la taille d'un graphe auxiliaire est bornée par la

proposition 8.1.1, cela borne la longueur de la chaîne d'inclusions, puis celle de la

chaîne de ra�nements.

8.1 Dé�nition et résultats élémentaires

Dé�nition 8.1.1. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide,

et t une fonction de seuil. Soit une chaîne de ra�nements de graphes colorés bien

dissociants dans ΓV , G0 ⪰ G1 ⪰ ... ⪰ Gl−1 ⪰ G. Soit

TG ∶= {C ⊆ V ∣ C est une petite CCS de G ou de Gi, pour i entre 0 et l − 1}.

Le graphe auxiliaire de G, notéAux(G), est alors dé�ni par le couple (VAux(G),EAux(G))
où :
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1) VAux(G) ∶= V0∪̇V1 où Vi ∶= {(C,M, i) ∣ C ∈ TG,M ⊆ C}. On dit alors que V0 est

l'ensemble des sommets du bas et V1, celui des sommets du haut.

2a) (C,M,1) ∈ V1 et (D,N,0) ∈ V0 respectent entre eux la relation symétrique

EAux(G) si et seulement s'il existe un ensemble C′ ⊆ C de couleurs de G tel que

pour tout v ∈ C
v ∈M ⇐⇒ N+G,C′(v) = N

2b) (C,M,1), (C ′,M ′,1) ∈ V1 respectent entre eux la relation symétrique EAux(G)

si et seulement s'il existe C′,C′′ ⊆ C tels que pour tout v ∈ C

v ∈M ⇐⇒ N+G,C′(v) =M ′

et pour tout v ∈ C ′

v ∈M ′ ⇐⇒ N+G,C′′(v) =M

2c) Aucune paire de sommets de V0 ne respecte la relation EAux(G).

Le graphe auxiliaire est non orienté, car E est une relation symétrique.

Aux(G) est un abus de notation, car la construction du graphe auxiliaire dé-

pend de la chaîne de ra�nements associée (à cause de la dé�nition de T ) et pas
seulement du graphe G. Son utilisation a pour but d'alléger l'écriture.

Notons que les graphes auxiliaires ont une taille bornée en fonction de la taille de

leur graphe coloré associé.

Proposition 8.1.1. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide,

et t une fonction de seuil. Soit une chaîne de ra�nements de graphes colorés bien

dissociants dans ΓV , G0 ⪰ G1 ⪰ ... ⪰ Gl−1 ⪰ G. Pour Aux(G) = (V0∪̇V1,EAux(G)),
on a alors que ∣V0∣ ≤ 2n ⋅ 2t(n) et ∣V1∣ ≤ 2n ⋅ 2t(n), où n ∶= ∣V ∣.
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Les expressions de ces bornes supérieures sont cruciales plus tard pour déduire la

formule de la borne de WL2(n) trouvée par Kiefer et Schweitzer.

Preuve. Construisons une chaîne de ra�nements commençant par le graphe G0,

puis prenant tous les graphes de la chaîne G0 ⪰ G1 ⪰ ... ⪰ Gl−1 ⪰ G qui résultent

d'un ra�nement scindant une CCS, on peut alors construire la chaîne

G0 ≻S G′1 ≻S ... ≻S G′k (∗)

où S ∶= {(v, v) ∣ v ∈ V }.

Notons que les graphes de cette chaîne contiennent toutes les CCS des graphes de

la chaîne G0 ⪰ G1 ⪰ ... ⪰ Gl−1 ⪰ G. En e�et, un graphe résultant d'un ra�nement

ne scindant pas de CCS n'a aucune nouvelle CCS comparé à son prédécesseur.

Notons que par la proposition 4.4.3, on peut décomposer tous les ra�nements

composés de la chaîne ci-dessus en ra�nements atomiques. Ainsi, en procédant à

un réétiquetage, on peut construire la chaîne suivante de ra�nements atomiques

G′′0 ≻∗S G′′1 ≻∗S ... ≻∗S G′′f . (∗∗)

Notons que G′′0 = G0 et G′′f = G′k.

Avec l'aide de la proposition 4.3.7, on infère que

0 < ∣χG′′0
(S)∣ < ∣χG′′1

(S)∣ < ... < ∣χG′′
f
(S)∣ ≤ n.

Cela veut dire que f < n, car autrement, il existerait au moins n entiers entre 0

et n exclusivement, ce qui est absurde.

Par la proposition 4.4.4, avec E ∶= S, pour i = 1, ..., f , G′′i−1 possède une et une

seule CCS qui n'est pas une CCS de G′′i . De cela et du fait que G′′f a ∣χG′′
f
(S)∣ ≤ n

CCS, on infère que la chaîne (∗∗) contient au plus n + f < 2n CCS.
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Comme la chaîne (∗) est incluse dans la chaîne (∗∗), cette première doit alors

également avoir au plus 2n CCS et donc au plus 2n petites CCS.

Ainsi, ∣TG∣ ≤ 2n.

Notons également qu'une petite classe de couleur a une taille d'au plus t(n) et a
donc au plus 2t(n) sous-ensembles.

De cela, on infère que ∣V0∣ ≤ 2n ⋅ 2t(n) et ∣V1∣ ≤ 2n ⋅ 2t(n) également.

Proposition 8.1.2. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non

vide, et t une fonction de seuil. Soit une chaîne de ra�nements de graphes colorés

bien dissociants dans ΓV , G0 ⪰ G1 ⪰ ... ⪰ Gl−1 ⪰ G ⪰ Gl+1 ⪰ ... ⪰ Gm−1 ⪰ G′. On a

alors que Aux(G) ⊆ Aux(G′).

Précisons que Aux(G) est construit à partir de la chaîne G0 ⪰ G1 ⪰ ... ⪰ Gl−1 ⪰ G et

Aux(G′) à partir de la chaîne ΓV , G0 ⪰ G1 ⪰ ... ⪰ Gl−1 ⪰ G ⪰ Gl+1 ⪰ ... ⪰ Gm−1 ⪰ G′.

Preuve. SoitG ∶= (V,E),G′ ∶= (V ′,E′),Aux(G) ∶= (VAux(G),EAux(G)) etAux(G′) ∶=
(VAux(G′),EAux(G′)). Pour montrer que Aux(G) ⊆ Aux(G′), il su�t de montrer que

VAux(G) ⊆ VAux(G′) et EAux(G) ⊆ EAux(G′).

A) VAux(G) ⊆ VAux(G′)

Pour construire les graphes auxiliaires, on construit d'abord les ensembles TG et

TG′ . Par analyse de leurs dé�nitions, on a que TG ⊆ TG′ .

Puis, on construit VAux(G) ∶= V0∪̇V1 et VAux(G′) ∶= V ′0 ∪̇V ′1 .

Prenons (C,M,0) ∈ V0 quelconque. Ainsi, C ∈ TG etM ⊆ C. Comme TG ⊆ TG′ , alors
C ∈ TG′ . Par respect des conditions, on a alors que (C,M,0) ∈ V ′0 . Cela montre

que V0 ⊆ V ′0 . De même, on montre que V1 ⊆ V ′1 , puis VAux(G) ⊆ VAux(G′).
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B) EAux(G) ⊆ EAux(G′)

Soit (C,M,1), (D,N,0), deux sommets dans VAux(G) ⊆ VAux(G′) respectant la re-

lation EAux(G). Montrons alors qu'ils respectent EAux(G′).

Le fait que les sommets respectent EAux(G) signi�e qu'il existe C′G ⊆ CG tel que

pour tout v ∈ C,
v ∈M ⇐⇒ N+G,C′G(v) = N.

Posons C′G′ = {χG′(w̄) ∈ V 2 ∣ χG(w̄) ∈ C′G} et montrons que pour tout v ∈ C,
v ∈M ⇐⇒ N+G,C′G′

(v) = N . Par le paragraphe ci-dessus, il su�t de montrer que

N+G,C′G(v) = N
+
G′,C′G′

(v).

Cette égalité est équivalente à {u ∈ V ∣ χG(v, u) ∈ C′G} = {u ∈ V ∣ χG′(v, u) ∈ C′G′},
puis à χG(v, u) ∈ C′G ⇐⇒ χG′(v, u) ∈ C′G. Cela est vrai par la dé�nition de C′G′ au
paragraphe ci-dessus.

Ainsi, la relation EAux(G′) est respectée pour les sommets donnés.

Dans le cas de paires de sommets de V1, la preuve est analogue, et pour les paires

de V0, elle est triviale. Ainsi EAux(G) ⊆ EAux(G′), puis Aux(G) ⊆ Aux(G′).

8.2 La clôture triangulaire

Dé�nissons maintenant la clôture triangulaire, qui est une opération dé�nie sur

les graphes �nis non orientés et qui a pour but de s'appliquer sur les graphes

auxiliaires dans le contexte de ce mémoire.

Dé�nition 8.2.1. (Kiefer et Schweitzer, 2016) SoitH = (V,E), un graphe �ni non
orienté comme ci-dessus où V est une union disjointe de V1 et V0, respectivement
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les sommets hauts et les sommets bas.

Puisque le graphe est non orienté, E est une relation symétrique et peut ainsi être

représentée comme un ensemble de paires de sommets, c.-à-d. E ⊆ {{u, v} ∣ u, v ∈
V }.

La clôture triangulaire de H est alors le graphe △H ∶= (V,E△) tel que :

1) Pour tous u, v ∈ V , si {u, v} ∈ E, alors {u, v} ∈ E△.

2) Pour tous u, v ∈ V1, s'il existe w ∈ V = V0∪̇V1 tel que {u,w},{v,w} ∈ E, alors
{u, v} ∈ E△.

3) Pour tous u ∈ V0 et v ∈ V1, s'il existe w ∈ V1 tel que {u,w},{v,w} ∈ E, alors
{u, v} ∈ E△.

4) Aucune autre paire de sommets de V ne respecte la relation E△.

Additionnellement à cela, on note i itérations de la clôture triangulaire d'un graphe

H par △i(H). H est dit clos si H =△(H).

Il découle directement de la dé�nition 8.2.1 que H ⊆△(H).

Il n'est pas di�cile de trouver des critères pour caractériser les graphes qui sont

clos. Tout d'abord, remarquons le fait suivant.

Proposition 8.2.1. Soit H = (V0∪̇V1,E), un graphe �ni non orienté comme ci-

dessus. La condition △(H) = H est alors équivalente aux trois conditions sui-

vantes :

1) Si u, v,w ∈ V1 et {u, v},{v,w} ∈ E, alors {u,w} ∈ E.
2) Si u ∈ V0, v,w ∈ V1 et {u, v},{v,w} ∈ E, alors {u,w} ∈ E.
3) Si u ∈ V0, v,w ∈ V1 et {u, v},{u,w} ∈ E, alors {v,w} ∈ E.



99

L'implication directe se démontre simplement par la contraposée : si une des deux

conditions est fausse, appliquer la clôture triangulaire rajouterait une arête et le

graphe serait ainsi non clos. En ce qui concerne la réciproque, on peut véri�er que

si un graphe respecte les trois conditions de la proposition 8.2.1, alors lui appliquer

la clôture triangulaire ne lui rajouterait aucune nouvelle arête.

Dé�nition 8.2.2. Soit H = (V0∪̇V1,E), un graphe �ni non orienté comme ci-

dessus, et v ∈ V1.

U(v) ∶= {u ∈ V1 ∣ {v, u} ∈ E}, soit l'ensemble des sommets hauts reliés à v.

L(v) ∶= {u ∈ V0 ∣ ∃w ∈ U(v) tel que {u,w} ∈ E} soit l'ensemble des sommets bas

reliés à U(v).

Les dé�nitions 8.2.3 et 8.2.4 ont pour but d'aider à la formalisation de la propo-

sition 8.2.2.

Dé�nition 8.2.3. Soit G = (V,E), un graphe �ni non orienté et soit A ⊆ V .
A est dit une clique si pour tous u, v ∈ A, alors {u, v} ∈ E.

Dé�nition 8.2.4. Soit G = (V,E), un graphe �ni non orienté et soit A,B ⊆ V .
A est dit biparti avec B si pour tout u ∈ A et pour tout v ∈ B, alors {u, v} ∈ E.

La proposition suivante caractérise alors entièrement les graphes clos.

Proposition 8.2.2. Soit H = (V0∪̇V1,E), un graphe �ni non orienté, tel que

V 2
0 ∩E = ∅. On a alors que H est clos (c.-à-d. △(H) =H) si et seulement si pour

tout v ∈ V1,

1) U(v) est une clique,
2) L(v) est biparti avec U(v),
3) U(v) ∪L(v) est une composante connexe du graphe.

Preuve. Implication directe : Supposons H clos et montrons les trois conditions.
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1) Soit w,w′ ∈ U(v) ⊆ V1. Par dé�nition de U(v), {v,w},{v,w′} ∈ E. Par la

condition C1) de la proposition 8.2.1, {u,w} ∈ E.

2) Soit u ∈ L(v) ⊆ V0 et w ∈ U(v) ⊆ V1, alors {u, v},{v,w} ∈ E. Par la condition

C2) de la proposition 8.2.1, {u,w} ∈ E.

3) Montrons d'abord que U(v) ∪ L(v) est un ensemble connexe. Tout d'abord,

pour tous u1, u2 ∈ U(v), ceux-ci sont connectés par les arêtes {u1, v} et {v, u2}.
Puis, pour tout u ∈ U(v) et pour tout l ∈ L(v), alors il existe u′ ∈ U(v) tel que les
sommets u et l sont connectés par les arêtes {u, v},{v, u′} et {u′, l}. Finalement,

pour tous l1, l2 ∈ L(v), alors il existe u,u′ ∈ U(v) tels que les sommets l1 et l2 sont

connectés par les arêtes {l1, u},{u, v},{v, u′} et {u′, l2}.

En supposant qu'un sommet de U(v) est relié à un autre sommet de V1, par la

proposition 8.2.1 1), ce nouveau sommet est relié à v et donc appartient à U(v).
De même, en supposant qu'un sommet de L(v) est relié à un autre sommet de V1,

par la proposition 8.2.1 3), ce nouveau sommet est relié à v et donc appartient à

U(v). Par dé�nition de L(v), on ne peut relier U(v) à aucun autre sommet de V0.

En�n, par le critère 6), aucun sommet de L(v) n'est relié à un autre sommet de

V0.

Réciproquement, supposons que le graphe respecte les trois conditions ci-dessus

et montrons que les trois conditions de la proposition 8.2.1 sont respectées.

1) Soit u, v,w ∈ V1, si {u, v},{v,w} ∈ E, alors u,w ∈ U(v). Comme on a supposé

que U(v) est une clique, on en conclut que {u,w} ∈ E.

2) Soit u ∈ V0 et v,w ∈ V1, si {u, v},{v,w}, ∈ E alors, u ∈ L(v) et w ∈ U(v).
Puisqu'on suppose que U(v) est biparti avec L(v), on en déduit que {u,w} ∈ E.

3) Soit u ∈ V0 et v,w ∈ V1, si {u, v},{u,w}, ∈ E, alors u ∈ L(v) et u ∈ L(w). On a
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donc que u appartient aux deux composantes connexes U(v)∪L(v) et U(w)∪L(w),
qui sont donc égales. Ainsi, U(v) = U(w) et L(v) = L(w). Comme U(v) = U(w)
est une clique, on en conclut {v,w} ∈ E.

8.3 Résultats utiles

Comme énoncé auparavant, le but des graphes auxiliaires est d'associer à une

chaîne de graphes colorés selon la relation de ra�nement une chaîne de leurs

graphes auxiliaires selon la relation d'inclusion. Le lemme suivant permet alors

de borner la longueur de cette nouvelle chaîne, ce qui borne en même temps la

longueur de la chaîne initiale.

Lemme 8.3.1. (Kiefer et Schweitzer, 2016) Soit H1, ...,Hk, une suite de graphes

�nis tels que, pour tout i ∈ {1, ..., k}, les propriétés suivantes sont véri�ées :
1) VHi = V i

0 ∪̇V i
1 .

2) ∣V i
0 ∣ = ∣V i

1 ∣ ≤m pour un certain m.

3) V i
0 ⊆ V i+1

0 et V i
1 ⊆ V i+1

1 .

4) △(H i) ⊆H i+1.

5) H i ≠H i+1.

6) Le graphe H i induit sur V i
0 est vide, c.-à-d. E(H i) ∩ (V i

0 )2 = ∅.
On a alors que k ∈ O(m).

Preuve. Par le fait que H i ⊆△(H i) et les conditions △(H i) ⊆H i+1 et H i ≠H i+1,

alorsH i ⊂H i+1. Avec ce résultat et le fait que les graphes sont �nis, avec un nombre

de sommets bornée par 2m et un nombre d'arêtes bornée par m(2m − 1) + 2m =
2m2 +m, toutes les suites respectant les conditions de l'énoncé sont �nies.

Soit H1, ...,Hk, une suite respectant les conditions qui est aussi la plus longue

possible (�nie par la dernière remarque). Si VHk = Vk0 ∪̇Vk1 , alors

∣Vk0 ∣ = ∣Vk1 ∣ =m. (∗)
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En e�et, autrement, on pourrait dé�nir Hk+1 simplement en ajoutant un autre

sommet à Vk0 ou Vk1 et les conditions de la suite seraient respectées, ce qui contredit
que notre suite est de longueur maximale.

Remarquons par la troisième condition que tous les V i0 (resp. V i1) sont sous-

ensembles de Vk0 (resp. Vk1 ). Pour la suite des choses, posons V0 ∶= Vk0 et V1 ∶= Vk1 .
Dé�nissons maintenant la suite H1, ...,Hk comme la dernière suite, mais simple-

ment en faisant en sorte que tous les ensembles de sommets soient déjà complets.

Formellement, on pose pour tout i, V i
0 ∶= V0 V i

1 ∶= V1, puis les arêtes ne changent

pas. Par (∗), on a que pour tout i, ∣V i
0 ∣ = ∣V i

1 ∣ =m. Remarquons que cette suite res-

pecte les conditions de l'énoncé et est donc un autre exemple de suite de longueur

maximale. Sans perte de généralité, bornons sa longueur asymptotiquement.

SoitH i, un graphe de la suite. Puisque la suite est de longueur maximale, le graphe

H i+1 est un graphe minimal (au sens de l'inclusion) respectant les conditions de

l'énoncé. La condition 4) △(H i) ⊆ H i+1 nous dit que parmi tous les potentiels

H i+1, △(H i) est le candidat minimal. Si H i ≠△(H i), alors △(H i) respecte toutes
les conditions et l'on peut déduire qu'il faut que H i+1 =△(H i).

Autrement, si H i = △(H i), le graphe minimal respectant les conditions possède

une seule arête supplémentaire, c.-à-d. ∣E(H i+1) − E(H i)∣ = 1. Notons toutefois

qu'on ne peut dire que l'arête est choisie arbitrairement.

Remarquons �nalement que le premier graphe doit être H1 = (V0 ∪ V1,∅). En
e�et, si l'on suppose que le premier graphe a au moins une arête, (V0 ∪ V1,∅)
pourrait lui servir d'antécédent respectant toutes les conditions, ce qui contredirait

la maximalité de la longueur de la suite.

Pour borner la longueur de la suite, nous prouvons l'énoncé suivant :

Lemme A : Soit j tel que △(Hj) =Hj. Il existe alors r ≤ 4 tel que △(Hj+r) =Hj+r.
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Preuve :

Dans le cas où△(Hj+1) =Hj+1, on a que r = 1 et l'énoncé est respecté. Intéressons-
nous alors au cas où △(Hj+1) ≠Hj+1.

Comme Hj est clos et la suite est minimale, on a que le graphe Hj+1 ne fait que

rajouter une seule arête à son prédécesseur. Par la contrainte 6) de la suite, aucun

sommet dans V0 n'est relié par une arête dans V0. Nous n'avons alors que deux

cas à traiter.

Cas 1 : Supposons que Hj+1 a une arête supplémentaire entre deux sommets du

haut. Notons-la e = {v, v′}, où v, v′ ∈ V1. Pour le grapheHj, posons U(v), U(v′), L(v)
et L(v′) tels que dans la dé�nition 8.2.2. Par la proposition 8.2.2 appliquée à Hj,

U(v) et U(v′) sont des cliques, L(v) est biparti avec U(v) et L(v) est biparti avec
U(v). Cela est illustré par la �gure 8.1.

U(v′)/{v′}

v′

L(v′)

v

U(v)/{v}

L(v)

Figure 8.1 Deux composantes connexes du graphe Hj

Dans les �gures utilisées lors de cette preuve, le fait que deux ensembles de som-

mets soit reliés par une arête signi�e que tous les sommets d'un ensemble sont

reliés à tous les sommets de l'autre.

Par la proposition 8.2.2, les ensembles U(v)∪L(v) et U(v′)∪L(v′) sont alors des
composantes connexes du graphe Hj.
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Comme dit précédemment, Hj+1 ajoute l'arête {v, v′} à Hj, illustrée en rouge à la

�gure 8.2. Notons que joindre deux sommets de composantes connexes distinctes

d'un graphe réduit le nombre de composantes connexes de 1.

U(v′)/{v′}

v′

L(v′)

v

L(v)

U(v)/{v}

Figure 8.2 Composante connexe du graphe Hj+1

On a ensuite que Hj+2 = △(Hj+1). On ajoute alors les arêtes illustrées en vert à

la �gure 8.3.

U(v′)/{v′}

v′

L(v′)

v

L(v)

U(v)/{v}

Figure 8.3 Composante connexe du graphe Hj+2

Puis, de même, Hj+3 =△(Hj+2). On ajoute alors les arêtes illustrées en bleu à la

�gure 8.4.

Cette composante connexe est alors égale à UHj+3(v) ∪LHj+3(v) où les ensembles

sont dé�nis en fonction du nouveau graphe Hj+3. On peut également véri�er que

UHj+3(v) = U(v) ∪U(v′) est une clique et que LHj+3(v) = L(v) ∪L(v′) est biparti
avec UHj+3(v). Donc, pour v, toutes les conditions de la proposition 8.2.2 sont
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U(v′)/{v′}

v′

L(v′)

v

L(v)

U(v)/{v}

Figure 8.4 Composante connexe du graphe Hj+3

respectées. Cela est également vrai pour tous les sommets dans UHj+3(v)∪LHj+3(v).

Les sommets en dehors de cet ensemble font partie d'ensembles U et L inchangé

depuis Hj (qui est clos, rappelons-le) et respectent donc aussi les conditions de la

proposition 8.2.2. On en conclut, par cette même proposition, que Hj+3 est clos,

avec r = 3 ≤ 4.

Cas 2 : Supposons que Hj+1 rajoute une arête entre un sommet du haut et un

sommet du bas. Dénotons-là e = {v, u}, où v ∈ V1 et u ∈ V0.

Cas 2a : Supposons que u n'est connecté à aucun sommet de V1 dans le graphe

Hj. Cela est illustré par la �gure 8.5.

v u

U(v)/{v}

L(v)

Figure 8.5 Composante connexe du graphe Hj+1

Puis, Hj+2 =△(Hj+1). Cela ajoute les arêtes illustrées en vert à la �gure 8.6.
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v u

U(v)/{v}

L(v)

Figure 8.6 Composante connexe du graphe Hj+2

On peut véri�er que UHj+2(v) = U(v)∪{u} est une clique est que LHj+2(v) = L(v)
est biparti avec UHj+2(v). De manière analogue à précédemment, on en déduit que

Hj+2 est clos, avec r = 2 ≤ 4.

Cas 2b : Supposons que u est connecté à un sommet de V1, disons v′, dans le

graphe Hj. Remarquons que u ∈ L(v′). Cela est illustré par la �gure 8.7.

L(v′)/{u}

U(v′)

u

v

U(v)/{v}

L(v)

Figure 8.7 Composante connexe du graphe Hj+1

Puis, Hj+2 =△(Hj+1). Cela ajoute les arêtes illustrées en vert à la �gure 8.8.

Ensuite, Hj+3 =△(Hj+2). Cela ajoute l'arête illustrée en bleu à la �gure 8.9.

Finalement, Hj+4 =△(Hj+3). Cela ajoute l'arête illustrée en brun à la �gure 8.10.

On peut véri�er que UHj+4(v) = U(v) ∪ U(v′) est une clique est que LHj+4(v) =
L(v) ∪L(v′) est biparti avec UHj+4(v). De manière analogue à précédemment, on
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L(v′)/{u}

U(v′)

u

v

U(v)/{v}

L(v)

Figure 8.8 Composante connexe du graphe Hj+2

L(v′)/{u}

U(v′)

u

v

U(v)/{v}

L(v)

Figure 8.9 Composante connexe du graphe Hj+3

L(v′)/{u}

U(v′)

u

v

U(v)/{v}

L(v)

Figure 8.10 Composante connexe du graphe Hj+4

en déduit que Hj+4 est clos, avec r = 4 ≤ 4.

On a ainsi démontré le lemme A.

L'idée centrale est que lorsque le graphe H i est clos, le graphe H i+1 doit connecter

deux composantes connexes de H i+1, ce qui réduit leur nombre d'une unité. Le
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graphe initial de notre suite, H1 = (V0 ∪ V1,∅), possèdant 2m sommets isolés, et

donc 2m composantes connexes, on peut réduire leur nombre au plus 2m fois.

Par le lemme A, puis en remarquant que H1 est clos, le nombre de composantes

connexes diminue après au plus 4 étapes. Ainsi, la longueur k de la suite est bornée

supérieurement par 4 ⋅ 2m. Donc, k ∈ O(m).

La lemme suivant est aussi utilisé dans la démonstration du théorème principal.

Lemme 8.3.2. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide, et

t une fonction de seuil. Soit une chaîne de ra�nements de graphes colorés bien

dissociants dans ΓV , G0 ⪰ G1 ⪰ ... ⪰ Gl−1 ⪰ G. Supposons que G respecte C1 ainsi

que l'équivalence contraire. On a alors que △(Aux(G)) ⊆ Aux(G(1)).

Précisons que Aux(G) est construit à partir de la chaîne G0 ⪰ G1 ⪰ ... ⪰ Gl−1 ⪰ G
et Aux(G(1)) à partir de la chaîne G0 ⪰ G1 ⪰ ... ⪰ Gl−1 ⪰ G ⪰ G(1).

Preuve. 1) Montrons d'abord que V△(Aux(G)) ⊆ VAux(G(1)).

Par dé�nition de la clôture triangulaire, nous avons que V△(Aux(G)) = VAux(G).

Ainsi, il reste à montrer que VAux(G) ⊆ VAux(G(1)).

Comme G ⪰ G(1), par la proposition 8.1.2, Aux(G) ⊆ Aux(G(1)) et on en déduit

directement que VAux(G) ⊆ VAux(G(1)).

2) Puis montrons que E(△(Aux(G))) ⊆ E(Aux(G(1))).

Soit V0 et V1 tels que E(△(Aux(G))) = E(Aux(G)) = V0∪̇V1.

Soit {u, v} ∈ E(△(Aux(G))). Par dé�nition de la clôture triangulaire, on a quatre

possibilités non nécessairement mutuellement exclusives :

a) {u, v} ∈ E(Aux(G))
b) u, v ∈ V1 et il existe w ∈ V0 tel que {u,w},{v,w} ∈ E(Aux(G))
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c) u, v ∈ V1 et il existe w ∈ V1 tel que {u,w},{v,w} ∈ E(Aux(G))
d) u ∈ V0, v ∈ V1 et il existe w ∈ V1 tel que {u,w},{v,w} ∈ E(Aux(G))

Montrons pour chacune des catégories que {u, v} ∈ E(Aux(G(1))).

2a) Supposons {u, v} ∈ E(Aux(G)).

De G ⪰ G(1) et par la proposition 8.1.2, on a que Aux(G) ⊆ Aux(G(1)). Puis, on
infère de cela que E(Aux(G)) ⊆ E(Aux(G(1))) et donc {u, v} ∈ E(Aux(G(1))).

2b) Soit u, v ∈ V1 et w ∈ V0 tels que {u,w},{v,w} ∈ E(Aux(G)).

Posons u = (C1,M1,1), v = (C2,M2,1) et w = (D,N,0).

De {u,w} ∈ E(Aux(G)), on déduit alors qu'il existe un ensemble C1 ⊆ CG tel que

pour tout v1 ∈ C1,

v1 ∈M1 ⇐⇒ N+G,C1(v1) = N. (∗)

De {v,w} ∈ E(Aux(G)), on déduit alors qu'il existe un ensemble C′ ⊆ CG tel que

pour tout v2 ∈ C2,

v2 ∈M2 ⇐⇒ N+G,C′(v2) = N. (∗′)

Par la proposition 3.3.1, pour toute couleur dans C′, il existe une couleur duale

quelque part dans C. Soit C2 l'ensemble de toutes les couleurs duales des couleurs
de C′. Ainsi, on a que χG(v1, v2) ∈ C′ si et seulement si χG(v2, v1) ∈ C2.

Nous avons donc

N+G,C′(v1) = {v2 ∈ V ∣ χG(v1, v2) ∈ C′} = {v2 ∈ V ∣ χG(v2, v1) ∈ C2} = N−G,C2(v1).

(∗′) se traduit alors par :
Il existe C2 ⊆ CG tel que pour tout v2 ∈ C2,

v2 ∈M2 ⇐⇒ N−G,C2(v2) = N. (∗∗)
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Maintenant, pour prouver le résultat principal de la section 2b), c.-à-d. que {u, v} =
{(C1,M1), (C2,M2)} ∈ E(Aux(G(1))), montrons qu'il existe C′ ⊆ CG(1) tel que pour
tout v1 ∈ C1,

v1 ∈M1 ⇐⇒ N+
G(1),C′(v1) =M2. (A)

En fait, il faut aussi montrer qu'il existe C′′ ⊆ CG(1) tel que pour tout v2 ∈ C2,

v2 ∈M2 ⇐⇒ N+
G(1),C′′(v2) =M1. (A′)

Par symétrie, la démonstration de (A′) ci-dessus est analogue à celle de (A).
Concentrons-nous sur (A).

En manipulant bien les symboles et en remarquant que VG = VG(1) nous pouvons

montrer que (A) est équivalent à ce qu'il existe C′ ⊆ CG(1) tel que tout v1 ∈ C1,

v1 ∈M1 ⇐⇒ (∀v2 ∈ VG, v2 ∈M2 ⇐⇒ χG(1)(v1, v2) ∈ C′)

Posons simplement C′ ∶= χG(1)(M1 ×M2).

Nous séparons la preuve de (A) en trois étapes (A.1), (A.2) et (A.3).

(A.1) Si v1 ∈M1, alors pour tout v2 ∈ VG, v2 ∈M2 implique χG(1)(v1, v2) ∈ C′.
(A.2) Si v1 ∈M1, alors pour tout v2 ∈ VG, v2 /∈M2 implique χG(1)(v1, v2) /∈ C′.
(A.3) v1 /∈M1 implique N+

G(1),C′(v1) ≠M2.

Montrons quelques résultats avant cela.

Montrons quelques résultats avant de prouver les autres sous-cas.

On peut reformuler le résultat (∗) du début de la section 2b) : il existe un ensemble
C1 ⊆ CG tel que pour tout m ∈ C1,

m ∈M1 ⇐⇒ (pour tout m′ ∈ VG, (m′ ∈ N ⇐⇒ χG(m,m′) ∈ C1)).
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De même, pour (∗∗) : il existe un ensemble C2 ⊆ CG tel que pour tout m′ ∈ C2,

m′ ∈M2 ⇐⇒ (pour tout m ∈ VG, (m ∈ N ⇐⇒ χG(m,m′) ∈ C2)).

Pour le reste de la preuve, soit m et m′ deux représentants quelconques de M1 et

M2, avec m ∈M1 et m2 ∈M2. On a alors directement des derniers résultats que

m′ ∈ N si et seulement si χG(m,m′) ∈ C′, (�)

puis que

m ∈ N si et seulement si χG(m,m′) ∈ C′. (�′)

Intéressons-nous maintenant à la couleur :

χG(1)(m,m′) ∶= (χG(m,m′),{{ (χG(w,m′), χG(m,w)) ∣ w ∈ VG}}).

Par les équivalences (�) et (�′), les éléments du multiensemble respectent alors

pour tout w ∈ VG :

(χG(w,m′), χG(m,w)) ∈
⎧⎪⎪⎪⎨⎪⎪⎪⎩

C2 × C1 si w ∈ N
(C/C2) × (C/C1) si w /∈ N

(∗ ∗ ∗)

Cela nous donne un bon portrait des couleurs dans l'ensemble C′ ∶= χG(1)(M1×M2).

Passons maintenant à la preuve de (A.1), (A.2), (A.3).

(A.1)
Prouvons que si v1 ∈M1, alors χG(1)(v1, v2) ∈ C′ pour tout v2 ∈M2.

Supposons v1 ∈M1 et v2 ∈M2. On a alors par dé�nition de C′ que χG(1)(v1, v2) ∈ C′.
Cela conclut la démonstration de (A.1).

(A.2)
Prouvons que si v1 ∈M1, alors χG(1)(v1, v2) /∈ C′ pour tout v2 ∈ VG/M2.
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Supposons v1 ∈M1 et v2 ∈ VG/M2 et montrons que χG(1)(v1, v2) /∈ C′.

Dans le cas où v2 ∈ C2/M2, on déduit directement de (∗) et (∗∗) que N+G,C1(v1) = N
et N−G,C2(v2) ≠ N , de sorte que N+G,C1(v1) ≠ N−G,C2(v2). Cette inégalité implique

l'existence d'un élément dans un ensemble mais pas dans l'autre. Il existe donc

w ∈ VG tel que

w ∈ N+G,C1(v1)⊕w ∈ N−G,C2(v2).

Ce qui est équivalent à

χG(v1,w) ∈ C1 ⊕ χG(w, v2) ∈ C2,

puis �nalement à

(χG(w, v2), χG(v1,w)) ∈ (C/C2 × C1) ∪ (C2 × C/C1).

Avec la supposition χG(1)(v1, v2) ∈ C′ = χG(1)(M1 ×M2), les éléments du multien-

semble de la deuxième composante de cette couleur devraient respecter (∗ ∗ ∗),
mais ce n'est pas le cas, car le résultat ci-dessus est un contre-exemple. L'hypo-

thèse du début du paragraphe est donc fausse, ce qui conclut ce cas.

Il faut aussi considérer le cas où v2 ∈ VG/C2.

Supposons encore χG(1)(v1, v2) ∈ C′ = χG(1)(M1 ×M2).
Il existe alors (m,m′) ∈M1 ×M2 tel que χG(1)(v1, v2) = χG(1)(m,m′).
Comme G ⪰ G(1), χ(v1, v2) = χG(m,m′).
Puis, comme G respecte C1, χG(v2, v2) = χG(m′,m′).
Cela est impossible par la proposition 4.1.1, car m′ ∈ C2 et v2 /∈ C2. La supposition

est une fois de plus fausse.

Cela conclut la démonstration de (A.2).
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Maintenant, prouvons la réciproque en utilisant la notation avec l'ensemble voisi-

nage :

(A.3)
Prouvons que v1 /∈M1 implique N+

G(1),C′(v1) ≠M2.

Pour cela, supposons v1 ∈ C1/M1 et montrons qu'il existe un élément v2 ∈ V tel

que v2 ∈M2 et v2 /∈ N+G(1),C′(v1).

En fait, en prenant un élément v2 ∈ M2 quelconque, il est possible de montrer

que χG(1)(v1, v2) /∈ C′. La preuve est alors analogue à la première moitié de l'étape

(A.2). Cela conclut la démonstration de (A.3) et donc de (A).

Cela conclut le cas 2b). Les cas 2c) et 2d) se démontrent de façon similaire.

Nous avons �nalement besoin du résultat suivant.

Lemme 8.3.3. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide, et

t une fonction de seuil. Soit une chaîne de ra�nements de graphes colorés bien

dissociants dans ΓV , G0 ⪰ G1 ⪰ ... ⪰ Gl−1 ⪰ G ⪰ Gl+1 ⪰ ... ⪰ Gm−1 ⪰ G′. Supposons
que G et G′ respectent C1 et C2 et qu'il existe une classe de couleur C de G telle

que G ≻C G′. Si C est une CCA de G uniquement incidente avec des petites CCS

de G et qu'aucune petite CCS de G n'est scindée, alors Aux(G) ≠ Aux(G′).

Preuve. On a que C est scindée dans G′ en au moins deux CCA qu'on note C ′

et C ′′.

Par le lemme 6.4.1, il existe C1 et C2, des CCS de sommets telles que C ⊆ C1×C2.

Comme C est uniquement incidente de petites CCS, on a que C1 et C2 doivent

être des petites CCS.

Par le lemme 6.4.1, en prenant B comme étant l'ensemble des petites CCS de G,

on déduit qu'il existe v ∈ C1 tel que ∅ ⊂ N+C′(v) ⊂ N+C(v).



114

Posons M ∶= {u ∈ C1 ∣ N+C′(u) = N+C′(v)}. En retraduisant en langage logique, cela

veut dire que pour tout u ∈ C1, alors u ∈ M si et seulement si N+C′(u) = N+C′(v).
Ainsi, par dé�nition du graphe auxiliaire, Aux(G′) doit contenir une arête entre
ses sommets (C1,M,1) et (C2,N+C′(v),0).

Au contraire, Aux(G) ne contient pas cette arête. Montrons-le par contradiction

en supposant le contraire. Cela veut dire qu'il existe C̄, une MCCA de G pour

laquelle, pour tout u ∈ C1, u ∈M ⇐⇒ N+
C̄
(u) = N+C′(v).

Comme v ∈ C1 et même v ∈M , en véri�ant sa dé�nition, on a alors que N+
C̄
(v) =

N+C′(v). Par ∅ ⊂ N+C′(v) ⊂ N+C(v), on déduit ∅ ⊂ N+
C̄
(v) ⊂ N+C(v). On peut véri�er

que cela implique ∅ ⊂ C̄ ⊂ C. Puisque C̄ est une MCCA non vide incluse dans C,

une CCS, on en déduit qu'il existe une CCA non vide incluse dans C, ce qui est

impossible, car les classes de couleur doivent être disjointes entre elles.

Ceci clôt l'ensemble des résultats sur les graphes auxiliaires. Nous disposons main-

tenant de tous les lemmes nécessaires a�n d'aborder la démonstration du théorème

principal de l'article de Kiefer et Schweitzer au chapitre suivant.



CHAPITRE IX

DÉMONSTRATION DU THÉORÈME PRINCIPAL

Comme mentionné précédemment au chapitre 5, c(G) ∶=minS2 maxS1 val(G;S1, S2).
De plus, on a aussi remarqué que WL2(G) ≤ c(G). Ainsi, il reste essentiellement

à borner supérieurement c(G).

Assignons au joueur 2 d'une partie du jeu de Kiefer-Schweitzer une stratégie qu'on

note S′2. Puisque cette stratégie n'est pas nécessairement optimale, on a alors que

c(G) ∶=min
S2

max
S1

val(G;S1, S2) ≤max
S1

val(G;S1, S
′
2)

La valeur à la droite de l'inégalité est alors ce que nous cherchons �nalement à

borner. On pose c′(G) ∶=maxS1 val(G;S1, S′2). Ainsi, c(G) ≤ c′(G).

La stratégie S′2 est une fonction ΓV → ΓV , donc de propriété de type markovienne.

L'algorithme suivant dé�nit cette fonction.

Algorithme 9.0.1. Un tour du joueur 2 dans une partie du jeu de Kiefer-

Schweitzer où ce dernier applique la stratégie S′2. L'algorithme a pour entrée un

graphe coloré G.

1 : G← nettc(G)
2 : tant que △(Aux(G)) ≠ Aux(G) faire

3 : G← G(1)

4 : G← nettc(G)
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5 : �n tant que

6 : retourner G

Notons que si le joueur 2 suit cette stratégie durant le jeu, il n'y a alors que

trois type de coups e�ectués : les ra�nements du joueur 1, les ra�nements de

Weisfeiler-Lehman e�ectués par le joueur 2, puis les nettoyages complets e�ectués

par le joueur 2. On appelle les deux premiers types les coups canoniques. On

remarque d'ailleurs qu'ils ont tous deux un coût individuel de 1.

Désignons par graphes apparaissant dans la partie tous les graphes résultant de

ces trois types de coups. Il est important de les distinguer des graphes joués dans

le jeu, soit ceux retournés par chaque joueur à la �n de leur tour.

Précisons que, lors de l'algorithme 9.0.1, le calcul de Aux(G) utilise comme chaîne

de ra�nements associée celle de tous les graphes apparaissant dans la partie avant

G inclusivement.

Notre objectif à présent consiste à borner le coût total d'une partie du jeu de

Kiefer-Schweitzer quand le joueur 2 applique la stratégie S′2. Pour nous aider,

nous séparons les coups e�ectués en plusieurs catégories et bornons le coût total

de chacune d'entre elles.

En premier lieu, remarquons que l'on peut borner tout de suite le coût de tous les

coups canoniques scindant des CCS directement ou par le biais de leur nettoyage

complet subséquent.

Lemme 9.0.1. Soit une partie du jeu de Kiefer-Schweitzer ayant G pour graphe

initial, où le joueur 2 suit la stratégie S′2. Le coût des coups canoniques scindant

des CCS ou pour lesquels leur nettoyage complet subséquent scinde une CCS est

au plus n ∶= ∣VG∣.

Preuve. Supposons que durant une partie du jeu de Kiefer-Schweitzer, il y a au
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moins n + 1 coups scindant des CCS. On peut alors prendre les graphes G1, G2,

..., Gn+1, qui apparaissent dans la partie directement après un tel coup.

Considérons la chaîne

G ≻S G1 ≻S G2 ≻S ⋅ ⋅ ⋅ ≻S Gn+1.

En appliquant la proposition 4.3.7 avec E = S, on déduit

0 < ∣χG(S)∣ < ∣χG1(S)∣ < ⋅ ⋅ ⋅ < ∣χGn+1(S)∣ ≤ n.

On déduit donc l'existence de n entiers strictement situés entre 0 et n, ce qui est

absurde.

Il y a donc au plus n coups scindant des CCS. Disons que parmi tous ces coups,

il y en a n1 qui soient canoniques et n2 qui soient des nettoyages complets. Donc,

n1 + n2 ≤ n. Chaque nettoyage complet scindant des CCS est précédé d'un coup

canonique. Il y en a donc le même nombre n2. Si parmi ces derniers, on exclut

ceux qui scindent des CCS (pour ne pas compter en double), on se retrouve avec

n3 ≤ n2 coups restants. Comme les coups canoniques ont un coût individuel de 1, le

coût total des coups canoniques scindant des CCS ou pour lesquels leur nettoyage

complet subséquent scinde une CCS est de n1 + n3 ≤ n

Pour les coups canoniques, il ne nous reste alors plus qu'à borner le coût des ceux

qui scindent uniquement des CCA et pour lesquels leur nettoyage subséquent ne

scinde aucune CCS. Notons l'emploi du mot uniquement. En e�et, si un coup

canonique scinde à la fois une CCS et une CCA, son coût est déjà pris en compte

par le lemme précédent.

Pour nous aider, nous séparons le reste des coups canoniques à considérer en

deux cas que nous désignons par un symbole, car ils sont particulièrement longs

à énoncer.
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Cas α : Le coup canonique scinde une CCA incidente avec de grandes CCS. De

plus, le coup ainsi que le nettoyage complet subséquent ne scindent aucune CCS.

Cas β : Le coup scinde une CCA incidente uniquement avec des petites CCS. De

plus, le coup ainsi que le nettoyage complet subséquent ne scindent aucune CCS.

Lemme 9.0.2. Soit une partie du jeu de Kiefer-Schweitzer ayant G comme graphe

initial, où le joueur 2 suit la stratégie S′2, alors le coût des coups canoniques de

cas α est au plus n2/t(n), où t(n) est la fonction de seuil et n ∶= ∣VG∣.

Preuve. Posons G comme graphe initial et considérons une chaîne avec tous

les graphes qui apparaissent dans le jeu. On peut alors considérer les k coups

canoniques de cas α Gi ≻ G∗i qui apparaissent dans le jeu. Notons que nettc(G∗i ) ⪰
Gi+1.

Par le lemme 7.2.1, on déduit f(Gi)+t(n) ≤ f(nettc(G∗i )) pour tout i entre 1 et k,
où f est la fonction potentielle dé�nie à la section 7. Comme la fonction potentielle

est décroissante par la proposition 7.1.2, on en déduit de nettc(G∗i ) ⪰ Gi+1 que

f(nettc(G∗i )) ≤ f(Gi+1).

Ainsi, f(Gi)+ t(n) ≤ f(Gi+1). On peut montrer par itération que f(G1)+k ⋅ t(n) ≤
f(Gk), ce qui implique k ⋅ t(n) ≤ f(Gk) ≤ n2, par la proposition 7.1.1, et on en

conclut que k ≤ n2/t(n), où k correspond aussi au coût des coups.

Lemme 9.0.3. Soit une partie du jeu de Kiefer-Schweitzer avec G comme graphe

initial, où le joueur 2 suit la stratégie S′2. Le coût des coups canoniques de cas β

est alors O(n2t(n)), où t(n) est la fonction de seuil et n ∶= ∣VG∣.

Preuve. Soit la suite G1, ...,Gk de tous les graphes apparaissant dans une partie

du jeu de Kiefer-Schweitzer résultant d'un coup canonique de cas β suivi d'un

nettoyage complet.

Montrons que la suite Aux(G1), ...,Aux(Gk) respecte les conditions du lemme
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8.3.1, où Aux(Gi) est dé�ni à partir de la chaîne de ra�nements de tous les

graphes apparaissant dans la partie avant Gi inclusivement.

Posons m ∶= 2n ∗ 2t(n) où n = ∣VGi ∣. Notons que pour chaque Gi de la suite, nous

avons VAux(Gi) ∶= V i
0 ∪ V i

1 . Par la proposition 8.1.1, on a alors que ∣V i
0 ∣ = ∣V i

1 ∣ ≤ m.

Cela montre les conditions 1) et 2).

La condition 6) est une propriété des graphes auxiliaires, qui est donc respectée

par les éléments de notre suite.

De Gi ⪰ Gi+1, par la proposition 8.1.2, on infère que Aux(Gi) ⊆ Aux(Gi+1), ce qui
implique que VAux(Gi) ⊆ VAux(Gi+1) et donc que V i

0 ⊆ V i+1
0 et V i

1 ⊆ V i+1
1 . Cela montre

la condition 3).

Par le lemme 8.3.3, la condition 5) est respectée.

Montrons �nalement la condition 4).

Cas 1) Gi, Gi+1 sont tels que Gi+1 résulte d'un coup canonique de cas β du joueur

2 suivi d'un nettoyage complet par le joueur 2.

Par analyse de l'algorithme, on a que Gi ⪰ Gi(1) ⪰ Gi+1. On a alors par la proposi-

tion 8.1.2, que Aux(Gi(1)) ⊆ Aux(Gi+1). Comme △(Aux(Gi)) ⊆ Aux(Gi(1)), par
le lemme 8.3.2, on en conclut que, △(Aux(Gi)) ⊆ Aux(Gi+1).

Cas 2) Gi, Gi+1 sont tels que Gi+1 résulte d'un coup canonique de cas β du joueur

1 suivi d'un nettoyage complet par le joueur 2.

Par analyse de l'algorithme, remarquons que le graphe Gi reçu par le joueur 1

doit respecter △(Aux(Gi)) = Aux(Gi). Comme Gi ⪰ Gi+1, par la proposition

8.1.2, Aux(Gi) ⊆ Aux(Gi+1) et on en conclut que △(Aux(Gi)) ⊆ Aux(Gi+1).

Ainsi, la chaîne Aux(G1), ...,Aux(Gk) respecte toutes les conditions du lemme
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8.3.1 et on a que k ∈ O(m) = O(n2t(n)). Cette chaîne contenant tous les graphes
résultant de coups canoniques de cas β suivis d'un nettoyage complet, cela veut

dire que le nombre et donc le coût de tous les coups canoniques de cas β est borné

par O(n2t(n)).

Il reste alors à borner le coût des nettoyages complets e�ectués par le joueur 2.

Pour cela, il est plus simple de borner le coût des nettoyages (tout court) e�ectués.

Séparons-les en ceux scindant des CCS et ceux ne le faisant pas.

Les nettoyages scindant des CCS ont un coût individuel d'au plus 2. Par la pro-

position 6.3.1, leur nombre est ≤ n. Ainsi, leur coût est ≤ 2n.

Les nettoyages ne scindant pas des CCS consistent en un seul ra�nement pour

faire respecter la condition C1. Leurs coûts individuels sont donc d'au plus 1. Ne

pouvant être e�ectués plus d'une fois dans un nettoyage complet, leur nombre est

donc borné supérieurement par le nombre de nettoyages complets. Puisque ces

derniers sont toujours e�ectués après des coups canoniques, on en déduit que le

nombre total de nettoyages ne scindant pas des CCS est borné par le nombre et

donc le coût des coups canoniques. Ainsi, par les lemmes 9.0.1, 9.0.2 et 9.0.3, ce

dernier est de O(n + n2/t(n) + n2t(n)).

Dans le but de calculer c′(G), il faut ajouter les coûts des coups canoniques et des
nettoyages complets. On obtient

c′(G) = (O(n) +O(n2/t(n)) +O(n2t(n))) + (O(n) +O(n + n2/t(n) + n2t(n)))

= O(n + n2/t(n) + n2t(n))
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Puis, en posant t(n) ∶= log2(n)/2, on obtient

c′(G) = O(n + n2

log2(n)/2
+ n2log2(n)/2)

= O(n + n2/log2(n) + n3/2)

= O(n2/log2(n))

Ce qui nous permet �nalement d'obtenir le résultat suivant qui est l'objectif prin-

cipal de l'article de Kiefer et Schweitzer.

Théorème 9.0.1. (Kiefer et Schweitzer, 2016) Soit V un ensemble �ni non vide,

et G ∈ ΓV . On a alors que WL2(G) = O(n2/log2(n)) où n ∶= ∣V ∣.



CONCLUSION

L'objectif initial de ce mémoire était d'étudier les structures �nies, en relation

avec les descriptions que l'on peut en faire par des formules logiques. Ce champ

disciplinaire, appelé théorie des modèles �nis (Libkin,2004), se situe à l'inter-

section de l'algorithmique et de la logique. Cela est naturel, car le traitement

de structures relationnelles �nies relève de la combinatoire et nécessite des al-

gorithmes adéquats. D'un autre côté, la description des structures, et de leurs

propriétés, relève aussi tout naturellement de la logique. D'ailleurs, les résultats

les plus spectaculaires de la théorie des modèles �nis établissent des liens précis

entre algorithmes et formalisations logiques. Il existe en e�et une correspondance

entre la complexité algorithmique d'un problème et sa capacité à être exprimé

dans une certaine logique.

Il n'est malheureusement pas possible, dans le cadre de ce mémoire, d'aller beau-

coup plus loin sur ce sujet. Il reste qu'il est tout de même important de souligner

que la borne de Kiefer et Schweitzer a des conséquences importantes en logique.

Nous allons maintenant les résumer sans entrer dans les détails qu'on peut retrou-

ver dans (Grohe, 1998) et (Immerman et Lander, 1990).

Une façon naturelle d'évaluer dans quelle mesure deux structures �nies, par exemple

des graphes, sont facilement distinguables est d'établir quel genre de formule de

la logique du premier ordre permet de les distinguer. Dans ce but, on peut tout

d'abord déterminer des classes de complexité de formules, et c'est justement l'ob-

jectif des classes Lk et Ck que nous allons maintenant introduire.

Soit L la logique de premier ordre. A�n de créer une autre logique, on peut par
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exemple limiter de nombre maximal de variables pouvant apparaître dans une

formule. Le fragment (ou classe) Lk est ainsi formé de toutes les formules de la

logique du premier ordre utilisant au plus k variables. Par exemple, ∃x∀yR(x, y)∧
∃xT (x) appartiendrait à L2.

On pourrait penser que Lk limite le rang de quanti�cateurs (c.-à-d. le nombre

maximal de quanti�cateurs imbriqués les uns sur les autres) à k, mais ce n'est

pas le cas. On peut d'ailleurs en donner un exemple simple, par une dé�nition

inductive de prédicats. Par exemple, soit R une relation binaire quelconque et

considérons les formules suivantes :

ϕ0(x) ∶= R(x,x)

ϕ1(x) ∶= ∃yR(x, y) ∧ ϕ0(y)

ϕ2(x) ∶= ∃yR(x, y) ∧ ϕ1(y)

ϕ3(x) ∶= ∃yR(x, y) ∧ ϕ2(y)

Pour chaque formule ϕi(x), son indice i correspond à son rang de quanti�cateur.

Donc, ϕ3(y) est une formule de L2 avec un rang de quanti�cateur de 3.

Comme le dénombrement occupe une place centrale en combinatoire, il est tout

naturel d'étendre Lk à Ck en ajoutant le quanti�cateur ∃≥i pour tous les i ∈ N.
Ce symbole est dé�ni de telle sorte que ∃≥ixϕ(x) signi�e qu'il existe au moins i

éléments qui satisfont la propriété ϕ. Il est possible de dé�nir ce quanti�cateur

avec la logique de premier ordre avec le symbole d'égalité. Par contre, pour des

logiques comme Lk, cela n'est pas possible et donc ajouter ce symbole permet

d'exprimer davantage de propositions.

On constate la pertinence de WL2 en logique formelle en remarquant que, pour

deux graphes donnés, deux sommets ont la même couleur dans la stabilisation de

WL2 si et seulement s'ils satisfont exactement les mêmes formules de C2 (Grohe,
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1998). De plus, deux graphes donnés sont distinguables dans Ck si et seulement

s'ils sont distinguables par WLk (Immerman et Lander, 1990). Finalement, on

sait aussi que le nombre d'itérations nécessaires avant que WLk ne se stabilise

correspond au rang de quanti�cateurs d'une formule de Ck distinguant les graphes.

Par le théorème principal du mémoire, le paragraphe ci-dessus et la remarque

que l'algorithme WL2 peut être dé�ni par une formule de C3, on infère le résultat

suivant :

Corollaire C.0.1. (Kiefer et Schweitzer, 2016) Toute paire de graphes à n sommets

distinguables par une formule de C3 le sont alors également par une formule de C3

où le rang de quanti�cateur ne dépasse pas O(n2/log(n)).

On voit donc que la borne supérieure pour l'algorithme WL2 permet de borner

la complexité d'une formule logique. Il s'agit donc d'un résultat très représentatif

du domaine de la théorie des modèles �nis.

Ce type de résultat justi�e pleinement l'objectif de ce mémoire qui était d'éclaircir

la preuve de Kiefer et Schweitzer en rajoutant des concepts et des étapes inter-

médiaires pour rendre le raisonnement plus clair et explicite.

Pour terminer, il est utile de revenir sur tout le travail accompli et de mettre en

lumière mes contributions personnelles.

Au chapitre 2, nous avons tout d'abord présenté l'algorithme deWeisfeiler-Lehman

de dimension 1 en procédant d'abord par une approche intuitive. Cela a pour

but de motiver la version en dimension 2 et aussi d'introduire les mécanismes

fondamentaux qui sont en jeu. Les choses se sont d'ailleurs développées dans cet

ordre historiquement.

Au chapitre 3, l'algorithme de Weisfeiler-Lehman de dimension 2 tel que formalisé
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par Kiefer et Schweitzer a été justi�é comme étant juste lorsque ce dernier a pour

sortie le booléen indiquant que ses deux graphes d'entrée ne sont pas isomorphes.

Le concept de graphe coloré a été formalisé et un diagramme a été introduit pour

aider à visualiser leur ra�nement. De plus, la distinction a été faite entre les

graphes colorés isomorphes et équivalents.

Les concepts de classes et multiclasses de couleur, la relation ⪰E et les ra�nements

atomiques et composés ont été introduits au chapitre 4 et plusieurs résultats élé-

mentaires ont été démontrés sur ces derniers.

La description du jeu faite dans l'article original a présenté de nombreux dé�s

pour se convaincre que son usage dans la preuve était correct. Le chapitre 5 tente

donc d'être plus clair à ce sujet et donner une approche intuitive pour permettre

de mieux saisir la motivation derrière sa dé�nition.

Aux chapitres 5 et 9, les inégalités ayant pour but de borner supérieurement WL2

ont été explicitement écrites.

Au chapitre 6, les ra�nements pour faire respecter les propriétés C1 et C2 ont

été formalisés, l'article original nous semblant vague sur ce sujet. Le coût d'un

nettoyage a rigoureusement été borné. La proposition 6.4.1 a aussi été introduite

pour permettre de mieux comprendre les graphes colorés respectant C1.

Au chapitre 8, de nombreux diagrammes ont été introduits pour permettre de

mieux suivre la preuve du lemme 8.3.1. Similairement, les propositions 8.1.1, 8.2.1

et 8.2.2 ont été rajoutées pour rendre le raisonnement plus explicite.

Au chapitre 9, la séparation de la preuve en divers cas permettait de clari�er

l'argument.

En ce qui concerne les ouvertures o�ertes par ce mémoire, il y a en autre l'idée de



126

généraliser les graphes de couleur pour pouvoir décrire l'algorithme de Weisfeiler-

Lehman de dimension k. Ainsi, un graphe coloré généralisé serait une couple (V,χ)
où χ ∶ V k → C. La plupart des résultats du chapitre 4 pourraient alors être gé-

néralisés. De même, peut-être qu'une partie de la preuve de l'article de Kiefer et

Schweitzer pourrait s'appliquer pour l'algorithme de Weisfeiler-Lehman de dimen-

sion k, pour lesquels il n'y a toujours pas de borne supérieure connue analogue à

celle de Kiefer et Schweitzer.
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