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RESUME

Lalgorithme de Weisfeiler-Lehman prend pour entrée une paire de graphes ayantle méme
nombre de sommets et soit permet de déterminer que ces derniers ne sont pas isomorphes, soit
ne peut rien conclure. Le but de ce mémoire est d’éclaircir le résultat original de Kiefer et
Schweitzer donnant une borne supérieure pour la complexité algorithmique de la version
bidimensionnelle de cet algorithme. En plus de présenter la preuve en détails, des concepts et
des étapes intermédiaires sont ajoutés pour rendre le raisonnement plus explicite. Le mémoire
présente donc tout d’abord les notions de graphes colorés et de raffinements sur ces derniers.
Lalgorithme bidimensionnel de Weisfeiler-Lehman est alors reformulé comme étant une
succession de raffinements sur des graphes colorés. Borner la complexité temporelle de
I'algorithme revient alors a borner le nombre de raffinements effectués jusqu’a ce que ces
derniers se stabilisent. Pour cela, les auteurs congoivent un jeu ou deux joueurs raffinent tour a
tour un graphe coloré. A une partie de ce jeu est alors associé un co(t. Puis, I'objectif du premier
joueur est le maximiser et du deuxieme joueur de le minimiser. Il est alors démontré que le
nombre de raffinements qu’il est possible d’effectuer lors de I'exécution de I'algorithme
bidimensionnel de Weisfeiler-Lehman est borné supérieurement par le colt associé a une partie
ou les deux joueurs jouent optimalement. Ce nombre est ensuite borné par l'usage d’arguments
combinatoires utilisant les concepts de grandes et petites classes de couleurs et de graphes
auxiliaires. Des conséquences de ce résultat en logique sont ensuite traitées.

Mots-clés de I'auteur : isomorphismes de graphes, algorithme de Weisfeiler-Lehman, graphe
coloré, raffinement de graphe coloré, jeu de Kiefer-Schweitzer, grandes et petites classes de
couleurs, graphe auxiliaire
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INTRODUCTION

En algorithmique ou en informatique théorique, connaitre la complexité temporelle
du probléme de I'isomorphisme de graphes, c.-a-d. déterminer le nombre d’étapes
de calcul nécessaire pour savoir si deux graphes donnés sont isomorphes ou pas

en fonction de leur taille, est 'une des grandes questions non résolues.

Notamment, encore a ce jour, nous n’avons ni établi un algorithme qui résout
ce probléme en temps polynomial, ni démontré qu’il s’agit d’'un probléme NP-

complet .

Vis-a-vis ce probléme, I'algorithme de Weisfeiler-Lehman, notons-le WL, est un
test de complexité polynomiale pour déterminer si deux graphes donnés avec le
méme nombre de sommets sont isomorphes (Pikhurko et Verbitsky, 2011). Toute-
fois, ce dernier est faillible, dans le sens ot il peut soit détecter que deux graphes
donnés ne sont pas isomorphes, soit étre incapable de conclure. L’algorithme WL
se décline en une infinité dénombrable de versions, soit celle de dimension 1, celle
de dimension 2, etc. L’algorithme WL de dimension k fonctionne essentiellement
en associant une coloration & I'union des deux graphes d’entrée, soit une fonction
attribuant une couleur a chaque k-uplet de sommets d’un graphe et a chaque k-
uplet de sommets de 'autre, et en itérant une régle qui raffine la coloration jusqu’a

ce que cette derniére se stabilise.

1. Un probléme est NP-complet si tout probléme résoluble en temps polynomial par un
algorithme non déterministe peut s’y ramener par réduction polynomiale (Garey et Johnson,

1990).



Il est pertinent de noter que, pour des naturels k£ et [ tels que k < [, 'algorithme
WL de dimension [ est au moins aussi fiable que 1’algorithme WL de dimension
k dans le sens oul, pour deux graphes donnés, si I'algorithme WL de dimension
k peut établir que ces derniers ne sont pas isomorphes, alors il en est de méme
pour celui de dimension [. Toutefois, une dimension plus élevée pour l'algorithme
implique une complexité de calcul plus élevée également. Plus précisément, on
peut montrer que I'algorithme WL de dimension k a une complexité de calcul de

O(nk)2 on n est le nombre de sommets des graphes données 3.

Ce mémoire a pour objectif de présenter et d’éclaircir le résultat de Sandra Kiefer
et Pascal Schweitzer (2016). Ceux-ci démontrent que WL de dimension 2 a une
complexité de calcul de O(n?/log(n)), ce qui constitue une amélioration de la

borne O(n?), qui était la meilleure connue jusque la.

Puisque la démonstration de l'article de Kiefer et Schweitzer est trés ardue a
suivre, notamment a cause de la densité de son écriture, ’objectif de ce mémoire est
d’expliciter les étapes de cette démonstration et de mettre en valeur les techniques
et les mécanismes utilisés ainsi que les concepts introduits, tout en présentant les

notions de base nécessaires.

Ce mémoire est structuré de la facon suivante. Le chapitre 1 introduit le pro-
bléme de I'isomorphisme des graphes, incluant ses répercussions en théorie de la
complexité algorithmique. Au chapitre 2, on présente l'algorithme de Weisfeiler-

Lehman, ses propriétés et ses applications.

2. La notation O est définie dans (Cormen et al., 2009) comme étant

O(g(n)) :=={f(n)| il existe ¢,ng € N tels que 0 < f(n) < cg(n) pour tout n > ng}.

3. Cela est démontré au début de la section 2.6.



La notion de graphe coloré joue un role central dans la preuve de Kiefer et Schweit-
zer. Comme on le verra, un graphe coloré est un graphe orienté, fini et complet ot
une couleur est associée & chacune de ses arétes. Au chapitre 3, on présente donc
une formalisation de l'algorithme de Weisfeiler-Lehman de dimension 2 utilisant
le concept de graphe coloré et un certain type de raffinement de ces derniers. Au
chapitre 4, on présente des concepts reliés aux graphes colorés et on démontre des

propriétés élémentaires de ces derniers.

Dans leur article, Kiefer et Schweitzer introduisent un jeu ot deux joueurs raffinent
a leurs tours un graphe coloré, qui est 'une des idées fondamentales de leur dé-
monstration. Ce jeu est introduit au chapitre 5 et quelques résultats élémentaires

sur ce dernier sont démontrés.

Les chapitres 6, 7 et 8 introduisent des concepts reliés aux graphes colorés, puis
présentent des résultats sur leur sujet qui sont utilisés dans la démonstration

principale de 'article.

Le chapitre 6 présente des conditions qui sont respectées par le graphe initial du

jeu et qui sont préservées par les raffinements qui se produisent lors de ce dernier.

Le chapitre 7 présente les notions de petites et de grandes classes de couleur. Par
définition, toutes les arétes d’un graphe coloré ayant une méme couleur forment
une classe de couleur de ce dernier. Puis, toujours par définition, une classe de
couleur est grande ou petite si sa cardinalité est plus grande ou plus petite quun

certain seuil qui est fixé dans la démonstration.

Le chapitre 8 présente la notion de graphe auxiliaire, soit un graphe fini non orienté
construit a partir d'un graphe coloré. Un résultat sur ce dernier qui s’avére utile
pour la démonstration principale de 'article est que, si un premier graphe coloré

est un raffinement d’un deuxiéme, alors le graphe auxiliaire construit a partir du



deuxiéme est inclus dans le graphe auxiliaire construit a partir du premier.

Toutes les étapes fondamentales étant établies, la démonstration du théoréme

principal est finalement présentée au chapitre 9.

La conclusion traite des répercussions de la borne établie par Kiefer et Schweit-
zer en logique, tout particuliérement sur les structures finies, des apports de ce

mémoire sur 'article source et des avenues futures qui pourraient étre envisagées.



CHAPITRE I

LE PROBLEME DE L'ISOMORPHISME DES GRAPHES

Ce chapitre a pour but d’introduire le probléme de I'isomorphisme des graphes,
en plus d’aborder la question de sa complexité algorithmique ainsi que ses divers

applications.

1.1 Description

Avant d’introduire le probléme de l'isomorphisme des graphes, il convient tout
d’abord de définir ce qu’est un graphe, plus spécifiquement ce qu’est un graphe

simple fini.

Définition 1.1.1. Un graphe simple fini est un couple (V,E) ou V est un en-
semble fini et £ € V2 est une relation irréflexive, c.-a-d. qui ne contient aucun élé-
ment de la forme (a,a), et symétrique, c.-a-d. (a,b) € E si et seulement si (b,a) €

E.

L’ensemble V' représente les sommets du graphe (V) E) et lorsqu’un couple (a,b) €

E, on dit que les deux sommets a et b sont reliés par une aréte.

Pour un graphe donné, le degré d’un de ses sommets consiste au nombre d’autres
sommets du graphe auxquels ce dernier est relié. Plus précisément, pour une aréte

veV,
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FIGURE 1.1 Graphe G

FiGURE 1.2 Graphe G,

deg(v) :=|{ueV | (v,u) e E}|

Définition 1.1.2. Soit G = (V,E) et G' = (V', E"), deux graphes. On dit que G
est un sous-graphe de G', et on écrit GSG',siVcV'et ECFE.

Définition 1.1.3. Soit deux graphes G = (V,E) et G' = (V',E"). Un isomor-
phisme de graphes entre G et GG’ est une fonction bijective f : V — V' telle que
pour tout (u,v) € V2, (u,v) € E si et seulement si (f(u), f(v)) € E'.

Deux graphes G et H sont dit isomorphes s’il existe un isomorphisme de graphes
entre les deux. On écrit alors G ~ H.
Par exemple, les deux graphes des figures 1.1 et 1.2 sont isomorphes.

La bijection f : G — G, définie par le tableau 1.1, est d’ailleurs un isomorphisme

entre ces deux graphes.

Par exemple, on peut vérifier que B et C sont reliés par une aréte dans G et il en



u || f(u)
A | Dy
B | ¢
c | B
D | B
E | A

TABLEAU 1.1 Isomorphisme f entre les graphes Gy et G

est de méme pour f(B)=C) et f(C) = E; dans Gj.

Le probleme de l'isomorphisme des graphes, ou IG, consiste alors a déterminer un

algorithme efficace pour vérifier si deux graphes donnés sont isomorphes.

Comme un isomorphisme de graphes est forcément une bijection, on en déduit que
deux graphes ne sont pas isomorphes s’ils n’ont pas le méme nombre de sommets.
Donc, pour le reste de ce mémoire, on suppose qu’on teste 'isomorphisme entre

deux graphes ayant le méme nombre de sommets n.

1.2 Complexité

Soit deux graphes simples finis G = (V, E) et G’ = (V' E’) tels que |V| = |V'|.
Il existe alors n! bijections entre leurs sommets, ou n = |V/|. Déterminer si 1'une
d’entre elles est un isomorphisme demande alors de vérifier pour chacune des n?
paires de sommets (u,v) de |V| que (u,v) € E si et seulement si (f(u), f(v)) € E'.

La résolution de IG par énumération exhaustive a alors une complexité de calcul

de O(n?n!).

Nous allons maintenant présenter quelques rudiments de la théorie de la com-

plexité algorithmique nécessaires pour justifier 'importance du probléme de I'iso-



morphisme des graphes. Pour des définitions complétes et formelles, on peut

consulter un texte standard sur le sujet, par exemple (Papadimitriou, 1994).

Un algorithme est dit non déterministe s’il permet & au moins une étape un
choix entre plusieurs opérations. Il y a donc alors plusieurs exécutions possibles,
pour la méme entrée. La classe de complexité NP consiste alors en I'ensemble des
problémes tels qu’il existe, pour chaque entrée, au moins une exécution qui prend
un temps polynomial, en fonction de la taille de ’entrée. Pour IG, un algorithme
non déterministe peut donc générer une fonction f:V — V'’ en temps O(n), puis
vérifier en temps O(n?) qu’il s’agit d’un isomorphisme de graphes. IG est donc

dans la classe NP.

On ne sait toujours pas si IG est dans P (classe de problémes résolubles en temps
polynomial) ou s’il est NP-complet. Notons que montrer que ce probléme n’est
pas dans P aurait pour conséquence que P # N P. Déterminer alors précisément sa
classe de complexité est un probléme mentionné par Karp, dans son célébre article
ou il démontre que le probléme SAT est NP-complet (1972). Cette question est
aussi mentionnée par Garey et Johnson (1900b). IG est d’ailleurs I'une des grandes

questions ouvertes en théorie de la complexité algorithmique.

Il reste que pour les graphes planaires, Hopcroft et Trajan ont trouvé un algo-

rithme en temps O(nlog(n)) (1972).

Un indice pouvant indiquer que ce probléme n’est pas NP-complet est qu’il posséde
une propriété que les autres problémes de cette classe ne possédent pas (Grohe
et Schweitzer, 2020). En effet, compter le nombre d’isomorphismes entre deux
graphes a la méme complexité algorithmique que de déterminer I'existence d’un
isomorphisme (Mathon, 1979). Aussi, pour deux graphes choisis au hasard, selon
une distribution uniforme, ceux-ci peuvent, en moyenne, étre facilement distingués

a isomorphisme prés par un algorithme (Babai et al., 1980).



L’introduction de techniques provenant de la théorie des groupes par Babai (1979)
et Luks (1982) a jeté une nouvelle lumiére sur le probléme IG. Luks a montré en
particulier que pour une classe de graphes pour lesquels les degrés admis pour
leurs sommets sont bornés, il existe alors un algorithme polynomial pour tester
I'isomorphisme des graphes. Ce résultat est basé sur I'utilisation de la technique
diviser pour régner. Cette approche, combinée avec des idées de Zemlyachenko, a
amené Babai et Luks & construire un algorithme modérément exponentiel pour 1G,
c-a-d. en'*™ (1983). Puis, la borne supérieure 20(Vn*og(®) 66 établie (Babai
et al., 1983).

L’une des grandes avancées des derniéres années vis-a-vis le probléme IG est le
résultat de Babai, qui démontre que ce probléme est au moins de complexité
quasi-polynomiale, c.-a-d. O(2!°9(")°) pour ¢ > 0 (2015). Le probléme est alors dit

presque efficacement résoluble.

1.3 Applications

Une des premiéres traces écrites mentionnant les isomorphismes de graphes se
concentre sur un probléme de chimie. Il s’agit de comparer des graphes de mo-
lécules dans le but d’en sélectionner une seule par classe d’équivalence selon la
relation d’isomorphisme, ce qui réduit la mémoire utilisée pour des bases de don-

nées de molécules (Ray et Kirsch, 1957).

Il est fréquent en optimisation combinatoire que 'espace de recherche soit im-
mense et requiert d’étre réduit. Il est alors naturel de vérifier une propriété sur
un seul représentant de sa classe d’équivalence selon la relation d’isomorphisme.
Un algorithme d’isomorphisme des graphes permet donc de comparer des graphes

dans le but de former des classes d’équivalences de ceux-ci.

D’autres applications existent en génération de structures combinatoires, en calcul
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de formes normales, en apprentissage automatique, en vérification de logiciels,
en programmation mathématique, en infographie, en vision par ordinateur, en
logique, en théorie des groupes algorithmique et en programmation quantique

(Grohe et Schweitzer, 2020).



CHAPITRE II

L’ALGORITHME DE WEISFEILER-LEHMAN

Afin d’aborder le résultat de I'article de Kiefer et Schweitzer, il est nécessaire
d’introduire ce qu’est 'algorithme de Weisfeiler-Lehman. Ce dernier résout le pro-
bléme de I'isomorphisme des graphes en temps polynomial, mais le fait de maniére
faillible, dans le sens ot il peut soit déterminer que les deux graphes d’entrée ne

sont pas isomorphes, soit ne rien pouvoir conclure.

2.1 Quelques préalables

Définissons la notion de multiensemble, qui est utile dans la description de ’algo-

rithme WL.

Un multiensemble est une structure similaire & un ensemble mais pouvant contenir
le méme élément plusieurs fois. Chaque élément d’un multiensemble y est donc
présent avec une certaine multiplicité qui est un nombre entier strictement positif.
Formellement, on peut définir un multiensemble comme un couple (E, f) ou E
est un ensemble et f: E — N* est une fonction de F vers 'ensemble des entiers
strictement positifs. La fonction f associe donc a chaque élément sa multiplicité,

soit le nombre de fois que cet élément apparait dans le multiensemble.

Notons que seuls les multiensembles finis, ¢’est-a-dire ayant un nombre fini d’élé-
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ments, sont utilisés dans ce mémoire.

Par convention, un multiensemble est noté avec des doubles accolades et ses élé-

ments sont énumérés dans un ordre quelconque. Par exemple, {1,1,2,3,3,3}}.

Deux multiensembles sont égaux s’ils contiennent les mémes éléments avec les
mémes multiplicités. Ainsi, {1,1,2,3,3,3}} # {1,2,3}}, car 1 et 3 n’apparaissent

pas le méme nombre de fois dans chacun.

2.2 Approche intuitive

Intéressons-nous tout d’abord a des propriétés que deux graphes isomorphes doivent
avoir. Cette approche nous améne a formaliser 'algorithme de Weisfeiler-LLehman

de dimension 1.

On a par exemple la remarque suivante.

Remarque 2.2.1. Pour que deux sommets de graphes différents puissent étre
reliés par un isomorphisme, ils doivent avoir le méme nombre de sommets reliés,

soit le méme degré, puisqu’il s’agit de graphes simples.

Cette approche qui consiste a vérifier des propriétés nécessaires aux isomorphismes
explique pourquoi 'algorithme peut distinguer deux graphes non isomorphes mais

ne peut pas garantir avec certitude I'isomorphisme de deux graphes.

Soit les graphes des figures 2.1 et 2.2. 1l ne peut y avoir d’isomorphisme entre les
deux. En effet, une telle bijection devrait associer le sommet A’ de G’, de degré

4, a un sommet du graphe G de méme degré. Or, il n’y a aucun tel candidat.

L’idée est alors de comparer les distributions des degrés des graphes. Pour cela,
on construit un multiensemble associé a chaque graphe contenant les degrés de

chacun de leurs sommets.
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FIGURE 2.1 Graphe G

FIiGURE 2.2 Graphe G’

Par exemple, pour le graphe G de la figure 2.1, on obtient {{1,1,1,2,3}} et pour
le graphe G’ de la figure 2.2, on a plutot {1,1,1,1,4}}.

Maintenant, de la remarque 2.2.1, on déduit que deux graphes isomorphes doivent
étre associés au méme multiensemble. Autrement dit, avoir le méme multien-
semble associé est une condition nécessaire pour que deux graphes puissent étre

isomorphes. Ainsi, pour les figures ci-dessus, G ne peut pas étre isomorphe a G'.

Notons par contre que cela n’est pas un critére suffisant : deux graphes ayant le
méme multiensemble associé peuvent ne pas étre isomorphes. Par exemple, les
graphes Hy et Hy des figures 2.3 et 2.4 ont le méme multiensemble associé, c.-a-d.
{1,1,2,2,2}}, mais ne sont pas isomorphes, car le premier est connexe alors que

I’autre ne l’est pas.

En fait, la méthode décrite ci-dessus, qui permet d’établir si deux graphes ne
sont pas isomorphes en comparant la distribution des degrés de leurs sommets,

peut méme étre généralisée de la facon suivante. En partant d’'un sommet d’un
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P

FI1GURE 2.3 Graphe H;

&
O,

FIGURE 2.4 Graphe H,

graphe, au lieu de simplement noter son degré, on lui associe un multiensemble
correspondant aux degrés de chacun de ses sommets reliés. Puis, en prenant pour
éléments les multiensembles associés & chaque sommet du graphe, on construit un

nouveau multiensemble associé a ce dernier.

Prenons par exemple le sommet A; du graphe H; de la figure 2.3. Ce sommet a
deux sommets reliés, soit By et (. Chacun est de degré 2, donc le multiensemble
associé a Ay est {2,2}}. De méme, les sommets B; et C; ont pour multiensemble

associé {1,2}}, puis D; et E; ont {2}} d’associé.

Cela permet d’associer au graphe H; le multiensemble

{22y 12y, €129 (2 €2 -
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Pour le graphe Hs, on obtient plutot

{22y 220 €229 ) 0y -

Comme ces deux multiensembles ne sont pas égaux, on en déduit que les graphes

H, et Hy ne sont pas isomorphes.

Toutefois, comme avant, ce critére n’est toujours pas suffisant pour montrer que
deux graphes sont bien isomorphes. Il est au moins aussi puissant que le critére
précédent, car il permet d’identifier comme non isomorphes toutes les paires de
graphes que le premier critére identifierait également comme non isomorphes.
La justification est laissée au lecteur. Il est d’ailleurs strictement plus puissant

puisqu’il distingue H; et Hs, ce qui n’était pas le cas avec le critére précédent.

On remarque qu’il est facile d’itérer ce processus de construction de multiensemble

et que, en fait, le critére devient ainsi de plus en plus puissant.

2.3 Formalisation du cas de dimension 1

Comme le montre 'exemple précédent, bien que les opérations sont naturelles,
I'itération de multiensembles peut devenir lourde en terme de notation et difficile a
suivre. Pour rendre ce processus plus clair, la méthode usuelle consiste & considérer

des colorations de graphe.
Une coloration d’un ensemble A est une fonction x : A - C, ot C est un ensemble
quelconque dont les éléments sont appelés couleurs.

Définition 2.3.1. Soit un ensemble A et soit y et x’, deux colorations de A. Les
deux colorations sont alors dites équivalentes si pour tous u,v € A, x(u) = x(v) si

et seulement si x/(u) = x'(v).

Par exemple, I'ensemble A peut étre 'ensemble des sommets d’un graphe. A H,
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défini plus tot a la figure 2.3, on peut associer les colorations x et x’ définies par

le tableau 2.1.

u | x(u) | x'(u)

Ajq || rouge | vert

By || rouge | vert

C; || orange | bleu

D, || orange | bleu

E, | vert violet

TABLEAU 2.1 Colorations x et x’ sur les sommets du graphe H;

Il est alors évident que ces deux colorations sont équivalentes, c.-a-d. que deux
sommets de méme (ou différente) couleur pour une coloration sont alors de méme

(ou différente) couleur pour I'autre coloration également.

Avec ces définitions, on peut enfin formaliser [’algorithme WL de dimension 1
ou WL;. Ce dernier est aussi appelé [’étiquetage canonique ou [’algorithme de
raffinement de couleurs. Nous suivons ici la présentation faite par (Pikhurko et

Verbitsky, 2011).

L’algorithme WL, a pour entrées GGy, G5, deux graphes finis simples & n sommets.
Sa sortie nous indique soit que G, G5 sont non isomorphes, soit qu’on peut rien
conclure. L’algorithme WL, définit des colorations de Vi, U Vi, qui seront notées
X* pour i € N, avec pour ensemble de départ Vg, U Vg,. Les couleurs sont des
multiensembles et les multiensembles de couleurs considérés sont définis récursi-

vement.

Pour débuter, x° est définie pour tout u € Vg, U Vg, par x°(u) = @, ou @ est le

multiensemble vide.
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De facon générale, pour t € {1,2} et u € Vg,, la coloration x*! est définie par

X () = (X (), X (0) | (u,0) € E(GO) )

La coloration limite est notée y, oul x = lim;_ oo X"

On peut prouver qu’il existe un nombre f inférieur ou égal a 2n tel que x/ est
équivalent a y/*1. En effet, chaque itération de 'algorithme augmente le nombre
de couleurs des colorations et il ne peut y avoir plus de 2n couleurs pour une
coloration x* étant donné que |V, U Vg,| = 2n. On dit alors que ’algorithme se

stabilise & la f-iéme itération. On en déduit que y = /.

Pour terminer, s’il existe, pour la coloration y, une couleur associée a un nombre
différent de sommets de GGy que de G5, alors les deux graphes sont non tsomorphes

et I'algorithme retourne cela en sortie. Autrement, il retourne inconnu.
Cela conclut la description de ’algorithme.

Notons que la deuxiéme composante de y**1(u), soit {x*(v) | (u,v) € E(Gy)}},
assure que des sommets ayant pour au moins une couleur de x* des nombres

différents de voisins de cette couleur sont de couleurs différentes pour la coloration

Xi+1

I est alors utile de voir le couple x*!(u) comme donnant une description du
voisinage du sommet u € Vg,. Notons aussi que, plus il y a d’itérations, plus le

voisinage décrit est grand.

L’algorithme se termine par la vérification que les deux multiensembles de couleurs
de sommets des graphes ne sont pas égaux, c.-a-d. {x(u) |ue Vg, J} # {x(u) |ue

Ve, I}, ce qui permet d’inférer que les deux graphes ne sont pas isomorphes.
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Utilisons cet algorithme pour distinguer les graphes H; et Hs, définis plus tot aux

figures 2.3 et 2.4.

Pour abréger I’écriture, on va réécrire les couples par des symboles «,, de maniére
a ce que deux couples aient le méme symbole si et seulement s’ils sont égaux.
Cette réécriture préserve suffisamment d’information pour pouvoir dire si deux

colorations sont équivalentes ou pas.

En définissant x°(u) := @ pour tout sommet u € Vg, U Vy,, on trouve pour A;

que x' (A1) = (x*(A1), {x°(B1), X" (C)}}) = (2, {2, 2}}) qu'on dénote par a; par

souci de concision. Le tableau 2.2, illustre le processus de raffinements itérés sur

la coloration x°. On constate que x* est équivalent & x3. On a donc y = x3.

u | XO(w)| x'(u) X (u) x*(u)

A || @ (2.{{z,2}) =ar | (a1, far,an}}) =2 | (a2, {52, Bo}}) = 05
B | o (@.fo.o8) =1 | (a1, {ar,B1}) =B | (B, 2,72 }}) = B3
Gy | @ (@, {2,08) =a1 | (a1, {ar,B1}}) = Ba | (B2, {2, 72}}) = B3
Dy | o (2. {2f) =4 (Br, e }}) =72 (2. {B2}}) =73

by | o (2. {2}) =4 (Br, e }}) =72 (2, {B2}}) =73

A | @ (2, {2,28) =1 | (a1, {ar,an}}) =t aa | (a2, {{az, al}) =03
By || @ (2, {2,28) =1 | (a1, {ar,anf}) =t aa | (a2, {{az, al}) =03
Cy || @ (2, {2,28) =1 | (a1, {ar,anf}) =t aa | (a2, {{az, al}) =03
D, | @ (2. {2f) =4 (Br, {B1}}) = 02 (62, f{d2}}) =t €3

by || @ (2. {2f) =4 (Br, {B1}}) =: 02 (02, {021}) =t €3

TABLEAU 2.2 Itérations de WL pour les graphes H; et Hy
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Comparons maintenant les deux multiensembles de couleurs des sommets de chaque

graphe :

{03 (w) [ue Vi, Jf = {as, Bs, B3, 73,733
{{Xg(u) | u € VHz}} = {{52752762762762}}

Ces derniers ne sont pas égaux. Fn effet, par exemple, la couleur a3 apparait une
fois dans le premier multiensemble et aucune fois dans le deuxiéme. Cela nous

permet de conclure que les deux graphes H; et Hy ne sont pas isomorphes.

Méme si I'algorithme de Weisfeiler-Lehman de dimension 1, dans le cas ou il
nous retourne deux multiensembles non égaux, nous permet de conclure que les
deux graphes d’entrée ne sont pas isomorphes, il ne permet pas de déterminer
avec certitude que deux graphes sont isomorphes. De fait, si 'algorithme retourne

deux multiensembles égaux, on ne peut alors rien conclure.

Notons qu'une variante de ’algorithme consiste a comparer les multiensembles des

couleurs des sommets des deux graphes a chaque itération et a s’arréter dés que

ceux-ci différent. Ci-dessus, nous n’aurions alors pas a calculer y3 et x*. Notons
9 A s e . . . .

qu’il faut tout de méme vérifier I'inéquivalence des colorations successives, car

autrement, l'algorithme pourrait durer éternellement (c.-a-d. rentrer dans une

boucle infinie).

Présentons maintenant un exemple ot 'algorithme retourne deux multiensembles
égaux pour deux graphes non isomorphes. Considérons les graphes Hex et Tri

des figures 2.5 et 2.6.

En analysant le tableau 2.3 qui présente le résultat du calcul de x? et x!, on voit

que x° et x! sont équivalents et on a donc que y := x°.
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FIGURE 2.5 Graphe Hex

FIGURE 2.6 Graphe Tri

u | X(u) | X' (u)

A | @ (2, {2,2}}) = a
B | @ (2, {2,2}}) = a
C, | @ (2, {a2,2}}) == a1
Dy | (2, {2,}) = a
E | o (2, {2,8}) = a
A | @ (2, {a2,0}}) =
B, | @ (2, {2,2}}) = a
C; | @ (2, {2,2}}) = a
D, | @ (2, {a2,2}}) =1
By | @ (2, {2,2}) = a

TABLEAU 2.3 Itérations de WL pour les graphes Hex et T'ri
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Alinsi,
ix(u) |ue V) = {{20,9,2,0,0%
{{X(u) | u € VTTi}} = {{®7@7®7®’ Q}}

On a donc que les deux multiensembles sont égaux. En effet, leurs couleurs ont
autant de représentants dans un multiensemble que dans I'autre. Pourtant, les

deux graphes ne sont pas isomorphes, 'un étant connexe et ’autre non.

2.4 Formalisation du cas de dimension k

Il est possible de modifier cet algorithme afin qu’il puisse distinguer des graphes
que la version originale ne peut distinguer. L’idée est alors de considérer des k-
uplets de sommets plutdt que des simples sommets. En contrepartie, 'algorithme

augmente en complexité temporelle.

Définissons l’algorithme de Weisfeiler-Lehman de dimension k ou WL, ou k est

un entier positif.

L’algorithme WLy a pour entrées G, G, deux graphes finis simples & n sommets.
Sa sortie nous indique soit que G, G5 sont non isomorphes, soit qu’on ne peut

conclure.

L’algorithme WL définit des colorations de VGk’1 UVGk2 qui sont notées x* pour i € N,
avec pour ensemble de départ Vi UV on, par exemple, Ve, " désigne Pensemble
des k-uplets a valeurs dans I'ensemble Vi, . Les couleurs sont des multiensembles

et les multiensembles de couleurs considérés sont définis récursivement.

Pour débuter, x° attribue a chaque k-uplet un couple d’ensembles. Formellement,

pour t € {1,2} et pour tout @ = (uy,...,ux) € V& , alors

(@) = ({(@,j) € {1, kY2 [ =}, {(6, ) € {1, o k32| (i, ) € E(Gt))})
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Dénotons par @ le k-uplet @ dans lequel on remplace la [-iéme coordonnée wu;

par la variable v.

De facon générale, pour ¢ € {1,2} et u € Vg,, la coloration x*! est définie par

V(@) = (@), @), o @) [oe v 1)

On peut prouver qu’il existe un nombre f inférieur ou égal a 2n* tel que x/ est
équivalent a y/+1. En effet, chaque itération de 'algorithme augmente le nombre
de couleurs des colorations et il ne peut y avoir plus de 2n* couleurs pour une

coloration x* étant donné que [VE uVE | =2nk.

On dit alors que I'algorithme se stabilise a la f-iéme itération. La coloration limite

x/ est tout simplement notée y.

Pour terminer, s’il existe, pour la coloration y, une couleur associée a un nombre
différent de k-uplets de sommets de G que de GG, alors les deux graphes sont non
isomorphes et l'algorithme retourne cela comme sortie. Autrement, ce dernier

retourne inconnu.
Cela conclut la description de ’algorithme.
Ici, x°(@) nous donne une description compléte de P’allure du k-uplet a.

L’algorithme se termine par la vérification que les deux multiensembles de couleurs
de k-uplets de sommets des graphes ne sont pas égaux, c.-a-d. {x(a) eV } #
{{x(a) | u e V& }, ce qui impliquerait alors alors les deux graphes ne sont pas

isomorphes.

Nous allons nous attarder sur le cas k = 2, tout d’abord pour nous aider a saisir

ce langage plutot lourd, puis parce que ce mémoire se concentre sur ce cas précis.

Soit deux graphes G et Go. En appliquant la version de I'algorithme pour £ = 2,
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nous obtenons, pour @ = (u1,uz) € G2 (analogue pour @ € G%),

(@) = ({) € {1,202 w = w;}, {(5,) € {1,2)% | (wi, ) € E(G)}).

Nous observons alors seulement trois possibilités :

X°(uq,ug) = ({(1, 1), (2,2)}, {}), donc uq # us et ils ne sont pas reliés.

X (ug, up) = ({(1, 1), (2,2)}7 {(1,2), (2, 1)}), donc u; # us et ils sont reliés.

X0 (ug, ug) = ({(1, 1),(2,2),(1,2),(2, 1)}, {}), donc u; = uy (forcément non reliés,

car E est antiréflexive).

Pour 4 = (u1,uz) € G2 (analogue pour @ € G3), nous obtenons ensuite

X ) = (3 (), (O (0, 12), X (1, 0) [0 € Vi, )

L’article de Kiefer et Schweitzer étudie la complexité algorithmique de cet algo-
rithme et pour ce faire introduit plusieurs autres objets mathématiques comme
nous allons le voir. Entre autres, cet article présente la notion de graphes colorés,
qui unifie en un seul concept les graphes et les colorations. De plus, le raffine-
ment de couleur se fait sur chaque graphe individuellement plutdt que sur 'union

disjointe des deux, ce qui nécessite de modifier le critére final de ’algorithme.

2.5 Fiabilité

Formellement, il a été démontré que la version unidimensionnelle de cet algorithme
décide asymptotiquement presque toujours correctement si deux graphes sont iso-
morphes ou pas (Babai et al., 1980). Ce test est connu entre autres pour échouer
a distinguer deux graphes lorsque ceux-ci sont de méme taille et sont réguliers,
c’est-a-dire qu’ils ont des sommets de méme degré. Les figures 2.5 et 2.6, présentés

plus tot, montrent un exemple.



24

On a par la suite démontré que la version bidimensionnelle de 1'algorithme de
Weisfeiler-Lehman, lorsqu’appliquée a des paires de graphes réguliers, décide asymp-
totiquement presque toujours correctement si ces derniers sont isomorphes ou pas

(Kucera, 1987).

On sait aussi que pour toutes classes de graphes avec mineurs interdits (c.-a-
d. lorsque la classe est caractérisée par le fait que la collection des mineurs des
graphes de cette derniére ne puisse contenir certains graphes spécifiés), il existe
un k tel que WL, distingue correctement tous ses éléments (Grohe, 2010). Ici
un mineur M d’un graphe G est obtenu de G par contraction des arétes d’un

sous-graphe induit de G (Robertson et Seymour, 1983).

En revanche, peu importe la dimension, on a démontré qu’il existe toujours deux

graphes non isomorphes que WL ne peut distinguer (Cai et al., 1992).

2.6 Complexité

L’algorithme WLy, se stabilise en temps O(n**tlog(n)) (Berkholz et al., 2017).

Remarquons que borner la complexité de WL, revient & borner le nombre d’itéra-
tions du pire cas du processus de raffinement avant que ce dernier ne se stabilise.
Soit W Li(n), ce nombre, pour deux graphes a n sommets. La borne WL, (n) <
nk—1 se déduit alors du fait qu'un graphe & n sommets posséde n* k-uplets et peut
donc avoir au plus n* couleurs différentes, et que chaque itération de I'algorithme

doit augmenter le nombre de couleurs du graphe.

Babai a démontré que pour deux graphes choisis au hasard, le nombre d’itérations

avant stabilisation est asymptotiquement presque toujours 2 (1980).

De plus, on considérant les chemins, on voit facilement que WLi(n) >n/2-1.
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FIGURE 2.7 Coloration x°

FIGURE 2.8 Coloration x!
() ) Q
@ (—®) i

FIGURE 2.9 Coloration x?

Par exemple, considérons un graphe chemin comme dans la figure 2.7. Dans cette
figure, la coloration x consiste & associer la couleur bleue aux sommets de degré 1
et verte & ceux de degré 2. A partir de x2, soit la troisiéme coloration, le raffinement

est déja stabilisé. Notons que 8/2 -1 = 3, donc la formule est respectée.

L’article (Krebs et Verbitsky, 2015) démontre qu’il est possible de trouver deux
graphes non isomorphes pour lesquels le nombre d’itérations avant stabilisation
est n—O(y/n). Donc, WLi(n) >n-0(y/n), ce qui est une borne inférieure plus

grande que la derniére.

Pour k > 1, la meilleure borne inférieure connue a été découverte par Fiirer (Orejas
et al., 2001) qui montra que WLg(n) € Q(n),! en s’inspirant des constructions

de larticle (Cai et al., 1992) de lui-méme et de ses collégues Cai et Immerman.

Récemment, on a démontré qu’il existe des graphes a n sommets ne pouvant étre

1. La notation 2 est définie dans (Cormen et al., 2009) comme étant

Q(g(n)) ={f(n)| il existe ¢,ng € N tels que 0 < cg(n) < f(n) pour tout n <ng}.
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distingués par no(k/legk) itérations de WL, ce qui est une nouvelle borne inférieure,

mais elle est restreinte a k < n%9! par (Berkholz et Nordstrom, 2016).

En ce qui concerne les bornes supérieures, la borne naive O(n*) est la seule connue
jusqu’a présent. Non seulement cela, pour k =1, W Li(n) est dominée et soumise
a n asymptotiquement, c.-a-d. W Li(n) € ©(n) 2. Ainsi, cette borne est impossible

a améliorer. 1l est alors faux que W Li(n) = O(n') pour t < 1.

Finalement, nous arrivons au point tournant : le résultat de Kiefer et Schweitzer
fut d’abaisser cette borne dans le cas de k = 2, en établissant que Wls(n) =
O(n?/log(n)). La démonstration de ce résultat consiste en la majeure partie de
ce mémoire. On a donc que WLy(n) € ©(n?) est faux. Cela falsifie ’hypothése
pessimiste comme quoi O(n¥) n’est pas une borne améliorable pour toutes les
dimensions. Cela démontre aussi que pour k = 2, WlLy(n) n’est pas dominée et

soumise asymptotiquement & ne(k/logk),

Déterminer si W Li(n), pour toute dimension k > 1, a une borne supérieure infé-

rieure & O(n*) reste un probléme ouvert.

2.7 Applications

Malgré que WL, soit faillible, il est tout de méme utilisé en pratique pour tester
I'isomorphisme de graphes, au minimum comme sous-routine a des algorithmes
plus complets comme ceux de Nauty et Traces (McKay et Piperno, 2014), de Bliss
(Junttila et Kaski, 2007) et de Saucy (Darga et al., 2004).

2. La notation © est définie dans (Cormen et al., 2009) comme étant

O(g(n)) :={f(n)| il existe c1,c2,n0 € N tels que 0 < c1g(n) < f(n) < cag(n) pour tout n < np}.
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Le résultat de Babai cité a la section 1.2 utilise d’ailleurs une version de l’al-
gorithme de Weisfeiler-Lehman de dimension polylog(n) pour développer 1’algo-
rithme le plus rapide connu a ce jour pour résoudre le probléme de I'isomorphisme

des graphes, avec complexité de calcul quasi polynomiale (2015).

Cet algorithme est aussi utilisé dans l'application de noyau de sous-graphe en
apprentissage automatique (N. Shervashidze et Borgwardt, 2011) ou en analyse

statique de programme (Yang et al., 2021).

Il permet aussi la réduction effective de dimension en programmation linéaire

(Grohe et al., 2014).

De plus, la version bidimensionnelle de ’algorithme est reliée d’une certaine ma-
niére & la multiplication matricielle, surtout en ce qui concerne les configurations
cohérentes (un certain type de graphe construit a partir d’'un groupe) (Babai,
1996). Ce paralléle se poursuit en réalisant qu’effectuer un certain nombre d’ité-
rations de WLy est équivalente a effectuer le méme nombre de produits matriciels
sur un certain type d’anneau (Babel et al., 2010). Cet anneau peut méme étre
celui des entiers, a I’aide de randomisation, ce qui donne & ’algorithme une com-
plexité de calcul de O(n*) (Schweitzer, 2009). Ici, w < 3 consiste au coefficient

de multiplication matricielle, tirée d’une définition généralisée de cette opération

(Bléser, 2013).

L’algorithme de WL peut étre décrit par certains jeux de Ehrenfeucht-Frassé (Cai
et al., 1992). Dans ce cas, une stratégie gagnante du Géacheur minimisant le
nombre de coups joués, W Li(n) correspond au nombre maximum de coups joués.

Ce dernier est en conséquence inférieur ou égal aux bornes supérieures connues de



CHAPITRE III

L’ALGORITHME DE WEISFEILER-LEHMAN DE DIMENSION 2 TEL QUE
FORMALISE PAR KIEFER ET SCHWEITZER

L’article de Sandra Kiefer et Pascal Schweitzer (Kiefer et Schweitzer, 2016) a pour
but de démontrer que la version de cet algorithme a 2 dimensions a une complexité
de calcul d’au plus O(n?/log(n)). 11 s’agit de la meilleure borne connue jusqu’a

ce jour.

Dans leur formalisation de I'algorithme WL de dimension 2, les graphes simples
finis d’entrée sont convertis en graphes colorés. Ces derniers sont introduits dans

la section suivante.

3.1 Graphes colorés

Les graphes colorés sont des objets qui unifient en un concept les graphes et les

colorations.

Définition 3.1.1. (Kiefer et Schweitzer, 2016) Un graphe coloré est un couple
G = (V,x) ot V est un ensemble fini non vide, x : V2 — C, une fonction surjective,

et C, un ensemble quelconque.

Définition 3.1.2. (Kiefer et Schweitzer, 2016) Soit G = (V, x), un graphe coloré.

Un élément de V est dit un sommet de G.



29

Un élément de V2 est dit un sommet de G s’il appartient a I'ensemble
S:={(u,u) |ueV}.
Un élément de V2 est dit une aréte de G s'il appartient a I’ensemble

A= {(u,v) |u,veV et u=uv}.

Nous spécifierons sommet dans V ou sommet dans V2 au besoin afin d’éviter les

ambiguTtés.

Définition 3.1.3. Soit V, un ensemble fini non vide, alors I'y est 'ensemble de

tous les graphes colorés ayant V' pour ensemble de sommets.

Notons que pour un certain ensemble V', tous les graphes colorés de ’ensemble
I'y; ont le méme ensemble de sommets V2 et le méme ensemble d’arétes V2. Cest

donc par leurs colorations qu’ils se distinguent.

Définition 3.1.4. Soit V et V', des ensembles finis non vides, et G € I'y,, G’ € T'y.
Un isomorphisme de graphes colorés est une fonction bijective f : V — V' telle
que pour tout (uy,us) € V2

Xc(u1,u2) = xar(f(ur), f(uz)). Si une telle fonction f existe, les deux graphes

colorés sont, dit isomorphes.

Définition 3.1.5. Soit V' un ensemble fini non vide, et G,G" € T'y,.

1) On dit que G’ raffine G ou que G’ est un raffinement de G et on note G > G’
si pour tous u,v € V2 tels que xq (@) = xo(0), alors xg(@) = xa(9).

2) On dit qu’ils sont équivalents et on note G =G’ si G>G' et G' > G.

3) On dit que G’ raffine strictement ou est un raffinement strict de G et on note

G>GsiG>=G et G#G'.
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FIGURE 3.2 Tllustration de I'équivalence G = G’

Un raffinement d’un graphe coloré consiste en un raffinement de la partition in-

duite par la coloration du graphe.

Dans la figure 3.1, chaque graphe coloré est représenté par une bande, qui contient
I'ensemble de ses sommets et de ses arétes dans V2 arrangées linéairement. Ainsi,
pour @ € V2 situé quelque part sur une bande, l’autre bande contient le méme
élément a ’exact méme position ou coordonnée horizontale. Puis, les rectangles

indiquent la couleur associée aux éléments a 'intérieur de ceux-ci.

Ainsi, pour la figure 3.1, G’ raffine G, car on observe que si deux arétes de V2
ont la méme couleur dans le graphe G’ (@,v par exemple), alors ils ont aussi la
méme couleur dans G. La contraposée est également vraie : si deux arétes ont

deux couleurs différentes dans G' (w, Z, par exemple), alors il en est de méme dans

G'.

Dans la figure 3.2, G’ et G sont équivalents dans ce cas-ci, car deux arétes de V2
ont la méme couleur dans le graphe G’ (u,? par exemple) si et seulement s'il en

est de méme pour G.

A partir de maintenant, on ne colore plus les représentations, car tout ce qui
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compte, c’est la partition induite par la coloration, indépendamment des couleurs

utilisées.

Soit les G,G" et H tels que Vg = Vo = {a, b}, Vi = {c,d}, et les colorations sont

définies par le tableau 3.1.

u Xa(t) | xer(u) | @ X (@)
(a,a) || orange | jaune | (c,c) | bleu
(a,b) || orange | jaune | (c,d) |l rouge
(b,a) || rouge | vert (d,c) | orange
(b,b) | bleu rouge | (d,d) | orange

TABLEAU 3.1 Graphes colorés G, G’ et H

Ici, les deux graphes G et G’ sont équivalents, car deux couples de V' ont la méme
couleur dans un graphe coloré si et seulement s’ils ont la méme couleur dans ’autre
graphe coloré. Remarquons que ces graphes doivent avoir le méme ensemble de
sommets (soit V), c.-a-d. {a,b}. Par contre, ils n’ont pas nécessairement le méme
multiensemble de couleurs. En effet, G a {{orange, orange, rouge, bleu}} et G’ a

{jaune, jaune, vert, rouge }}.

D’autre part, les graphes G et H sont isomorphes. En effet, on peut vérifier que
la fonction f : Vg — Vg telle que f(a) = d et f(b) = ¢ respecte la définition
d’isomorphisme de graphes colorés. Remarquons que ces graphes n’ont pas le
méme ensemble de sommets, c.-a-d. respectivement {a,b} et {c,d}. Par contre, ils
ont le méme multiensemble de couleurs, soit {{orange, orange, rouge, bleu}} dans

chacun des cas.

La proposition suivante découle de la définition 3.1.5.

Proposition 3.1.1. Soit V un ensemble fini non vide. Alors la relation > est une

relation d’ordre partiel sur I'y relative a la relation d’équivalence =. Donc, pour
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tous G,H,I €Iy, on a :

1) G = G (réflexivité) ;

2)si G> H et H>G, alors G = H (antisymeétrie) et
3)siGx=H et Hx>1,alors H > I (transitivité).

3.2 La conversion en graphe coloré

La conversion d’un graphe simple fini en graphe coloré se fait de la maniére sui-
vante. Celle-ci est inspirée par la coloration x° de la section précédente, basée sur

le type d’isomorphisme.

Définition 3.2.1. Soit G = (V, E), un graphe simple fini. Alors son graphe coloré
associé est le couple (V) x) avec x : V2 — C défini de la fagon suivante. On pose
d’abord I’ensemble des couleurs C = {0, 1,2}. Puis, on attribue la couleur 2 aux
sommets (dans V?), 1 aux arétes respectant la relation F, et 0 aux arétes ne la

respectant pas.

Les termes sommet et aréte utilisés ci-dessus correspondent a ceux de la définition

3.1.2.

Remarque 3.2.1. Soit A, B et C, des ensembles finis non vides, et f: A - C et
g:B - C.Soit {f(z)|xe A} et {g(x)|ze B}}, deux multiensembles. Ces deux
multiensembles sont égaux si et seulement s’il existe une bijection b: A — B telle

que pour tout z € A, on a f(x) = g(b(x)).

Proposition 3.2.1. Soit V' un ensemble fini non vide, et G,G’ € I'yy qui sont

isomorphes. Alors {xg(u) |ue V2} = {xqe(a) |ueV2}.

Preuve. Comme G et G’ sont isomorphes, il existe un isomorphisme f:V -V

entre les deux graphes. Soit maintenant la fonction F' : V2 - V2 telle que pour
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tout (ug,uz) € V2 F(uy,uz) == (f(u1), f(uz)). Cette fonction F' posseéde un inverse
F~Yuy,ug) == (f~1(ur), f1(ug)) et est donc une bijection.

Ainsi, pour tout (uy,us) € V2 xg(ui,uz) = xor(F(u1,u2)) et par la remarque
3.2.1, le résultat est démontré. [

Proposition 3.2.2. Soit G = (V, E) et G' = (V' E"), deux graphes simples fi-
nis. S’ils sont isomorphes, alors leurs graphes colorés associés sont également iso-

morphes.
Preuve. Supposons les deux graphes isomorphes. Alors il existe une bijection

f:V =V’ tel que pour tout (ug,us) €V, (u,uz) € E < (f(uy1), f(uz)) € E".

Nous allons montrer que f induit un isomorphisme entre les graphes colorés asso-
ciés et donc qu’on a bien que (uy,uz), (v1,v2) € V2 xa(ur, uz) = xor (f(u1), f(uz)).
Il y a trois cas a considérer.

Si xa(u1,uz) =0, alors par définition du graphe coloré associé, on a que (uy, us) ¢

E et u; # us. Comme la fonction f est un isomorphisme de graphes, on a donc que

(f(u1), fu2)) £ E" et f(u1) # f(uz) et on en conclut que x¢r(f(u1), f(u2)) = 0.

De maniére analogue, de xg(u1,u2) = 1, on déduit (uj,us) € E et uj; # ug, puis

(f(u1), f(uz)) € E" et f(uy) # f(uz), et finalement xar(f(u1), f(u2)) = 1.

De méme, de xg(ui,us) =2, on infére uy = ug, donc f(uy) = f(us), ce qui permet

de conclure que xo (f(u1), f(uz))=2. O

3.3 Propriétés conservées par la conversion

Maintenant, considérons les deux propriétés suivantes des graphes colorés.

Définition 3.3.1. Soit V' un ensemble fini non vide. Un graphe coloré G € I'y, est

dit bien dissociant si ’ensemble des couleurs des sommets (dans V2) et I'ensemble
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des couleurs des arétes sont disjoints, c.-a-d.
{xc(u,u) |ueVin{xg(v,w)|v,weVetv+w}=2

Définition 3.3.2. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non
vide. On dit que le graphe coloré G € I'y respecte [’équivalence contraire si pour
tous (up,us), (v1,v2) € V2 xag(ur,uz) = xa(v1,v2) si et seulement si xg(usz,uy) =

XG(U27U1)-

Démontrons une proposition importante sur les graphes ayant cette propriété :

Proposition 3.3.1. Soit V' un ensemble fini non vide, et G € I'y respectant
I’équivalence contraire. On a alors que pour toute couleur ¢ € Cgq, il existe une
couleur dite duale ¢ € Cg telle que pour tout (u,v) € V, xg(u,v) = ¢ si et seulement

si xg(v,u) =¢.

Preuve. Soit ¢ € Cg. Comme yg est surjective, il existe (ug,v9) € V tel que

Xc(uo, v9) = ¢. Posons alors ¢ := xg(vo, up).

L’opérateur ¢ — ¢ est bien défini pour la raison suivante. Soit (u,v) € V quel-
conque. Si yg(u,v) = ¢, alors xg(u,v) = xg(ug,v9) et on déduit par I’équivalence
contraire que yg(v,u) = xg(vo,up) et donc yg(v,u) = ¢ On démontre de maniére

analogue que xg(v,u) = ¢ implique que xg(u,v) =c. O

On observe trivialement par 'analyse des définitions 3.3.2 et 3.3.1 la proposition

suivante.

Proposition 3.3.2. Le graphe coloré (V) xg) associé au graphe simple fini G =

(V, E) est bien dissociant et respecte I’équivalence contraire.

Preuve. Le fait que G soit bien dissociant découle de la définition de graphe
coloré associé, qui assigne la couleur 2 aux sommets et les couleurs 0 ou 1 aux

arétes.
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La deuxiéme partie de la proposition vient du fait que, puisque la relation E sur
le graphe simple initial est symétrique, la fonction yg l'est aussi. Donc le graphe

coloré associé respecte I’équivalence contraire. [J

Alinsi, pour le reste du mémoire, nous prenons pour acquis que nos graphes co-
lorés d’entrée pour l'algorithme de Weisfeiler-Lehman de dimension 2 sont bien

dissociants et respectent I’équivalence contraire.

3.4 Raffinement bidimensionnel de Weisfeiler-Lehman

Notons qu’ici, contrairement a la formalisation de I'article (Pikhurko et Verbitsky,
2011), le raffinement tel que formalisé par Kiefer et Schweitzer se fait individuelle-
ment sur chacun des graphes colorés. Cela ne pose pas de probléme majeur, mais
il faut noter qu’on ne peut plus réétiqueter les couleurs a chaque itération. Ce pro-
cessus permettait une concision d’écriture, mais dans le contexte de raffinement

individuel, il y a une perte d’information.

Définition 3.4.1. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non vide,
et G € I'y. Alors le raffinement bidimensionnel de Weisfeier-Lehman de G, ou
raffinement de Weisfeiler-Lehman de G, est le graphe coloré noté G” € I'y,, défini

par C" := xgr(V?) et ou, pour tout (u,v) e V2,

xar(u,v) = (xa(u, ), { (xa(w,v), xa(u,w)) [we V).
La proposition suivante montre que le raffinement de Weisfeiler-Lehman porte
bien son nom, dans le sens ot ce dernier raffine le graphe.

Proposition 3.4.1. Soit V' un ensemble fini non vide. On a alors que G > G"

pour tout G e I'y.
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Preuve. Soit (uq,us), (v1,v2) € V2 tels que xgr(u1,uz) = xar(vi,v2). De la défi-
nition 3.4.1, on a que xg(u1,u2) = xg(v1,v2) et donc G > G™ par la définition de

>. U

Notation 3.4.1. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non vide,
et G € T'y. Posons GO := G et GO = (GU-D) ot GO correspond a la i€ itération
de ’algorithme WL,.

Corollaire 3.4.1. Soit V' un ensemble fini non vide, et G € I'y,. Pour tous 7, € N

tels que 7 < j, on a alors que G > GU),

Maintenant, pour ne pas alourdir cette section, nous énoncons la proposition 4.3.9
et reportons sa démonstration a la section 4. Puisque la section 4 n’est pas une
continuité de cette section, mais plutot une élaboration paralléle des propriétés

des graphes colorés, cela ne crée pas d’argument circulaire.

La proposition 4.3.9 stipule que, quelle que soit la suite {G;}:»0, décroissante (ou
croissante) de graphes colorés, c.-a-d. pour tous ¢,j € N, i < j implique G; = G;
(ou G; = G;), il existe alors un k € N tel que G}, = Gy41. On a donc toujours deux

termes consécutifs équivalents dans une telle suite.

Proposition 3.4.2. L’algorithme de Weisfeiler-Lehman de dimension 2 se stabi-
lise. Autrement dit, soit V' un ensemble fini non vide, et G € I'y,. Alors il existe

k e N tel que pour tout [ e N, G(¥) = G+,

Preuve. La suite {G()},5q est décroissante pour la relation > par le corollaire
3.4.1. Par la proposition 4.3.9 avec F := V2, il existe k € N tel que G**) = G(k+1),

G®) = G+ pour tout [ € N se prouve alors aisément par induction sur [. [

Définition 3.4.2. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non vide, et
G eT'y. Soit k € N, le nombre minimum tel que G*) = G*¢+1_ Alors la stabilisation

de G consiste en G := G*). On dit que G est stable si G = G.
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3.5 Description et justification de I’algorithme

Nous sommes maintenant en mesure de décrire I’algorithme de Weisfeiler-Lehman
tel que formalisé par Kiefer et Schweitzer. Tout d’abord, a partir des deux graphes
d’entrée GG et H, on calcule pour chacun leurs graphes colorés associés, qu’on note
encore G et H. Puis, on calcule G et H en itérant le raffinement bidimensionnel de
Weisfeiler-Lehman jusqu’a ce qu’il se stabilise. Enfin, on calcule les multiensembles
{xe(a) |ue V2] et {xz(a)|aeVi}. Siles deux multiensembles ne sont pas
égaux, alors les graphes originaux ne sont pas isomorphes. Sinon, on ne peut rien

conclure.

Avant de justifier cet algorithme, démontrons les propositions suivantes.

Proposition 3.5.1. Soit G = (Vg,xg) et H = (Vy, xu), deux graphes colorés.

S’ils sont isomorphes, alors G" et H" sont également isomorphes.

Preuve. Comme G et H sont isomorphes, il existe une bijection f : Vg - Vy telle
que pour tous u, v € Vg, alors xg(u,v) = xg(f(u), f(v)). Montrons alors que cette

fonction f est aussi un isomorphisme pour les graphes colorés G™ et H", c.-a-d.

pour tous u,v € Vg, alors xgr(u,v) = xgr(f(u), f(v)).

La derniére égalité est vraie si les composantes respectives des couples sont égales.
Tout d’abord, il faut que xg(u,v) = xg(f(u), f(v)), ce qui est déja le cas par la

définition de f ci-dessus. Puis, il faut aussi avoir I’égalité

{xe(w,v), xa(u,w)) [we Vol = {xn (w, f(0)), xu (f (u), w)) [we V]

Par la remarque 3.2.1, il suffit de démontrer 'existence d’une bijection
b: VG’ - VH telle que (XG(w7v)7XG(uvw)) = (XH(b(w)7f(U))vXH(f(u)vb(w)))
pour tout w € V. Observons que nous n’avons qu’a poser b := f et I'égalité est

vérifiée.
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Ainsi, f respecte la définition d’isomorphisme entre G" et H", qui sont donc iso-

morphes. [

On peut maintenant déduire par induction le corollaire suivant.

Corollaire 3.5.1. Soit G = (Vg, x¢) et H = (Vy, xu ), deux graphes colorés. S’ils
sont isomorphes, alors :

1) G*) et H(*®) sont isomorphes pour tout k € N*, on G*), H*) gsont comme a la
notation 3.4.1 et

2) G et H sont isomorphes.

Maintenant, tous les ingrédients sont réunis pour justifier I’algorithme.

En partant de deux graphes GG et H isomorphes, alors, par la proposition 3.2.2,
leurs graphes colorés associés G et H sont aussi isomorphes. Par le corollaire
3.5.1, il en est de méme pour G et H. Finalement, par la proposition 3.2.1, les

multiensembles {xs(a) | e V2} et {xz(a)|ae V3] sont égaux.

Ainsi, en prenant la contraposée de cette chaine d’implication, si les deux mul-
tiensembles ci-dessus ne sont pas égaux, alors les deux graphes G et H initiaux

ne sont pas isomorphes.

D’un point de vue computationnel, un algorithme peut trouver une couleur as-
sociée a un nombre différent d’¢léments dans V2 que dans V3, ce qui montre

I'inégalité des multiensembles et que les graphes ne sont pas isomorphes.
On en conclut que I'algorithme est correct.

Le reste de ce mémoire est consacré a déterminer la complexité de cet algorithme.
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3.6 Propriétés invariantes par le raffinement

Montrons que les propriétés des définitions 3.3.1 et 3.3.2 sont invariantes via les

itérations de l'algorithme de Weisfeiler-Lehman de dimension 2

Proposition 3.6.1. Soit V' un ensemble fini non vide, et G € 'y, bien dissociant.

Pour tout G’ € I'y tel que G > GG7, alors GG’ est aussi bien dissociant.

Preuve. Posons G,G’ € I'y. Etant donné que G est bien dissociant, si on prend
un sommet et une aréte quelconques dans V2, alors il n’ont pas la méme couleur
selon yq. Par contraposée de la définition de G > G’, ils n’ont également pas la

méme couleur selon yqo. O

La proposition 3.6.1 est trés générale et est appliquée dans la suite de ce mémoire
a d’autres raffinements. Pour les besoins actuels, par cette proposition et par le

corollaire 3.4.1, on a alors le corollaire suivant.

Corollaire 3.6.1. Soit V un ensemble fini non vide, et G € I'y, bien dissociant.

Alors pour tout i € N, G() est aussi bien dissociant.

Proposition 3.6.2. Soit V' un ensemble fini non vide, et G € I'y respectant
I'équivalence contraire. Pour tout i € N, G(®) respecte alors aussi I’équivalence

contraire.

Preuve. Supposons que G respecte I’équivalence contraire. Montrons que c’est le
cas pour G". On aura alors, par induction, que G respecte I’équivalence contraire

pour tout 7 € N.
Soit (uy,us), (v1,v9) € V2. Supposons que

Xer (U1, u2) = Xar(v1,v2) (*)
et montrons que

Xar(ug, ur) = Xar (v, v1). (x*)



40

La démonstration de la réciproque est analogue.

Démontrons d’abord 1'égalité des premiéres composantes dans (*x). De (*), on
déduit xg(ur,uz) = xg(v1,v2). Parce que G respecte 1’équivalence contraire, on a

donc que xg(ug,u1) = xg(ve,v1), ce qui conclut cette partie.

Justifions finalement 'égalité des deuxiémes composantes dans (**). De (%) on

a, en examinant les secondes composantes,

{{ (XG(w7u2)7XG(u17w)) | w e V}} = {{ (XG(U)?U?)’XG(UDUJ)) | w e V}}

Par la remarque 3.2.1, cette égalité signifie qu’on peut établir une correspondance
bijective entre les éléments des deux multiensembles telle que chaque élément a la
méme couleur que son associé. Plus formellement, il existe une bijection b: V' - V'

tel que pour tout w eV,
(Xa(w,u2), xa(u1,w)) = (xa(b(w), v2), xa(v1, b(w))).
Par I’équivalence contraire de G,
(xc(u2, w), xe(w,u1)) = (xa(v2, b(w)), X (b(w), v1)).
Puis, en renversant ces couples, on obtient que
(xa(w,u1), xa(u2, w)) = (xa(b(w),v1), xc(v2, b(w))).
Le fait que la bijection b respecte ’équation ci-dessus nous permet d’en déduire

{{ (XG(w7u1)7XG(u27w)) | w e V}} = {{ (XG(w7U1)’XG(U27w)) | w e V}}

Donc, les deuxiémes composantes dans (*x*) sont égales. [

3.7 Un résultat utile

Le résultat suivant illustre que le raffinement de Weisfeiler-Lehman est une opé-

ration monotone selon la relation de raffinement.



41

Lemme 3.7.1. (Kiefer et Schweitzer, 2016)
Soit V' un ensemble fini non vide, et G, H € 'y, tels que G > H. On a alors que
la) G@ > H® pour tout 7 € N,

Preuve. 1a) Soit G, H € T'y.. Supposons G > H et montrons que G” > H". Le cas

général se fait alors par induction sur 7.
Pour cela, prenons (uy,us), (vi,v2) € V2 tels que
Xar (U, u2) = xpr(vi,v2) (*)

et montrons que
Xar (u1,u2) = xgr (1, v2). (**)

Tout d’abord, il faut prouver que les premiéres composantes de (*x*) sont égales.
Par I’égalité des premiéres composantes de (*), on obtient x g (u1,us) = xg(v1, v2).

Puis, par la définition de G > H, on déduit yg(u1,us2) = xa(v1,v2), tel que voulu.

Puis, pour démontrer I’égalité des deuxiémes composantes de (*x*), on utilise

I'égalité des deuxiémes composantes de (%) qu’on exprime

{ (xu(w,u2), xm (ur,w)) [we V= { (xu(w,v2), xu(vi,w)) |we V3.

Par la remarque 3.2.1, I’égalité ci-dessus est équivalente a dire qu’il existe une

bijection b: V — V telle que pour tout weV,

(XH(w7u2)7 XH(UI; w)) = (XH(b(w)7v2)’XH(U17 b(w)))

Par G > H, on obtient directement que

(xa(w, uz), xa(ur, w)) = (xa(b(w), v2), xa(v1, b(w))).



42

Comme la bijection b respecte I’égalité ci-dessus, on peut en déduire

{ (xe(w, u2), xa(ur, w)) [w e Vi = { (xe(w,v2), xa (v, w)) [w e Vi,

Donc, les deuxiémes composantes dans (*x*) sont égales.

1b) Supposons G = H. Soit i, € N tels que G® = G et HO) = H. Par 1a), on a
alors que G = G(maz(iy)) » ff(maw(if) = [

2a) Soit i € N tel que G® = G. Supposons G > H > G. Par 1a), on déduit
G@ > HO > GO ainsi G > H® > G et donc H = G.

2b) Supposons G = H > G. Par 1b), on déduit G > H > é =G. Ainsi, H=G. O

Avant d’aborder la preuve de Kiefer et Schweitzer, il convient tout d’abord d’ac-

corder une section a certaines propriétés des graphes colorés.



CHAPITRE IV

DEFINITIONS ET PROPRIETES SUR LES GRAPHES COLORES

La notion de graphe coloré est cruciale dans la preuve de 'article de Kiefer et
Schweitzer. Cette section présente donc les définitions et propositions sur ce sujet

qui seront nécessaires pour la démonstration du résultat principal.

4.1 Classes et multiclasses de couleur

Définition 4.1.1. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non vide,
et G eI'y. On dit d’un ensemble C ¢ V2 qu'il est une classe de couleur de G s’
existe une couleur ¢ € Cg telle que C = {u € V2 | xg(u) = ¢}. L’ensemble C' est

alors aussi appelé la classe de couleur de ¢ et est notée CC(c).

Remarquons que, dans le cas d’'un graphe bien dissociant, les classes contiennent
soit seulement des sommets (de V2), soit seulement des arétes. On parle alors de
classe de couleur de sommet et on utilise 'abréviation C'CS. De méme, on désigne

une classe de couleur d’aréte par CCA.

Définition 4.1.2. Soit V un ensemble fini non vide, et G € I'yy. Un ensemble
C < V2 est dit une multiclasse de couleur de G s’il existe C' € Cq tel que C' = {u €

V2| xg(u) € C'}. L'ensemble C est alors aussi appelé la multiclasse de couleur de
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C'" et est notée CC(C"). Si C n’est pas une classe de couleur, on dit alors qu’il est

une multiclasse stricte de couleur.

Pour un graphe coloré G € I'y, et un ensemble de couleur C’ € Cg, il est facile de

vérifier que xc(C') =C’ pour toute multiclasse de couleur C' := CC(C’).

Remarquons qu’une classe de couleur est aussi une multiclasse de couleur : il suffit

de prendre un singleton pour C’.

On note aussi qu’'une multiclasse de couleur est une union disjointe de classes de

couleur. Soit V un ensemble fini non vide, et G € I'y,. Soit C' € Cq. Alors,

COC") ={ueV?|xq(u)eC'}
={aeV? |\ (xa(a) =)}

ceC’

= UceC’{ﬂ eV? | xq(u) =c}
= UceC’CC(C)

Notons qu’une multiclasse de couleur peut contenir a la fois des sommets et des
arétes, et cela méme si le graphe est bien dissociant. Dans le cas ou une multi-
classe ne contient que des sommets, on parle de multiclasse de couleur de sommet
et on utilise 'abréviation MCCS. De maniére analogue, on parle de multiclasse de

couleur d’aréte qu’on désigne par MCCA.

Proposition 4.1.1. Soit V' un ensemble fini non vide, et G € I'y,. Soit C’ ¢ Cq.

Alors G € 'y et C, une multiclasse de couleur de G. Pour u,v € V? tels que w e C

et v¢C, on aque xg(u) # xa(v).

Preuve. Par définition de C, il existe C' € Cg tel que C' = {w € V2 | xyg(w) € C'}.

Donc, pour w € V2 on a w € C si et seulement si yg(w) € C'. Ainsi, pour u € C' et
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v ¢ C de I'énoncé, on a que xg(u) € C' et xg(v) ¢ C'. 11 est donc impossible a ce

que xg(u) = xa(v). O

4.2 Incidence et voisinages

Définition 4.2.1. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non vide,
et Gel'y. Soit ScV?2et C, une CCS de G. On dit que S est incident de C si et

seulement s'il existe (u,v) €S tel que (u,u) € C ou (v,v) € C.

S’il existe (u,v) € S tel que (u,u) € C, alors S est dit incident a gauche de C' et
s'il existe (u,v) € S tel que (v,v) € C, alors S est dit incident & droite de C.

On dit également que S est incident uniquement de C' lorsque, pour tout (u,v) € S,

on a (u,u),(v,v)eC.

Soit B, un ensemble ne contenant que des CCS de G. On dit alors que S est
incident (4 gauche/a droite) de B s'il existe C' € B tel que S est incident (a
gauche/a droite) de C.

On dit aussi que S est incident uniquement de B si le fait que S soit incident a

une CCS C implique alors que C € B.

Plus tard, comme exemple de B, nous utilisons les ensembles des grandes CCS et

des petites CCS, qui sont définies au chapitre 7.

Notation 4.2.1. I(v) = {(v,w) |w eV} et Ig(v) = {(v,w) | we E}.

Par abus de notation, si C' ¢ V2 est une CCS ou MCCS de G, alors

To(v) = {(v, w) | (w,w) € C} et Ty-o(v) = {(v,w) | (w,w) { C}.
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Remarquons que la notation ?7 revient a sélectionner des arétes reliées a v en
fonction de l'inclusion de leurs seconds sommets dans un certain ensemble (ce

dernier pouvant étre une CCS, par exemple).

D’une facon similaire, dans la définition suivante, pour un v € V', on sélectionne

des sommets en fonction de la couleur des arétes les reliant a v.

Définition 4.2.2. (Kiefer et Schweitzer, 2016)
Soit V un ensemble fini non vide, et G € I'y,. Soit v € V' et un ensemble de couleurs

C'cCq.

e Le voisinage interne de v, noté Ng . (v) ou N, (v) est défini par
{ueV|xa(u,v)eC}.

e Le wvoisinage externe de v, noté N . (v) ou Ng (v) est définie par
{ueV|xg(v,u)eC'}.

Dans le simple cas d’une couleur c € Cg, Ng (v) :={u eV | xg(u,v) =c}. On a

aussi une définition analogue pour N} (v).
Si on utilise plutot une CCA ou MCCA C, alors N (v) := {ueV | (u,v) e C'}. On

. e N
a aussi une définition analogue pour N (v).

4.3 Les relations > et >p

La relation > et ses dérivées > et = ont été introduites dans le chapitre précédent,

mais il reste des propriétés utiles et intéressantes a présenter.

Proposition 4.3.1. Soit V', un ensemble fini non vide.

1) Un raffinement non strict est une équivalence. Plus précisément, pour G, G’ €

Ly, (G=G"et G# G') si et seulement si G = G.
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2) Un raffinement est strict s’il n’est pas un raffinement de 'autre sens. Formelle-

ment, pour G,G' €Ty, (G > G et G' # G) si et seulement si G > G'.

La preuve se fait directement avec les définitions.

Définition 4.3.1. Soit V un ensemble fini non vide, et G € I'y,. On dit alors que
G a une coloration discréte si xg est injectif (et donc bijectif). Autrement dit,

aucune aréte dans V2 n’a la méme couleur qu’une autre.

Proposition 4.3.2. Soit V un ensemble fini non vide, et G,G4€I'y. Si G4 a une

coloration discréte, alors G > Gj.

Preuve. Soit u,v € V2 tel que xg,(@) = xg,(0). Comme x¢, est injectif, on a que

@ = 0. On en déduit donc que x¢(u) = xg(v). O

Corollaire 4.3.1. Soit V un ensemble fini non vide. Tout graphe a coloration
discréte est un élément minimal de I'y, pour la relation d’ordre >. Formellement,

soit G4 € I'y a coloration discréte, alors pour tout G € I'y,, G4 > G implique G4 = G.

Il est aussi pertinent d’introduire la notation >z, qui est utile dans les circonstances
oll le raffinement est valide seulement pour un sous-ensemble des sommets et arétes

des graphes colorés.

Définition 4.3.2. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non vide,
et G,G'eT'y. Soit £ c V2,

1) On dit que G’ est un raffinement sur E de G et on note G >g G’ si pour tous
u,v € E tels que xor () = xgr(v), alors xg(u) = xg(v).

2) On dit que G et G’ sont équivalents sur E et on écrit G =g G’ si G =g G’ et
G' 2z G.

3) On dit que G’ est un raffinement strict sur E de G et on note G > G’ si
G>pG' et G#p G'.
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Notons que G >y2 G’ est équivalent & G > G'. Aussi, la proposition 4.3.1 se

généralise a >p.

Proposition 4.3.3. Soit V' un ensemble fini non vide, et G,G’ € I'y,. Soit E ¢
E'cv2

1) Si G =g G, alors G =g G'.

2) Si G =g G, alors G = G'.

Preuve. La preuve découle de la définition 4.3.2. [

De cette proposition, en prenant E' := V2 et E € V2, on a directement que G > G’
implique G >g G’'. Par contre, il est généralement faux que G > G’ implique
G >g G'. 11 faut rajouter une condition supplémentaire & cela et c¢’est ce que fait

la proposition 4.3.4.

Proposition 4.3.4.
Soit V un ensemble fini non vide, et G,G’ € I'y,. Soit E € E' c V2. Si G = G’ et
G>g G, alors G > G'.

Preuve. Par la proposition 4.3.1, G >p G’ est équivalent & G > G' et G' ¥/ G.

Montrons ces deux parties a part.
De G > G, on déduit directement par la proposition 4.3.3 que G > G'.

De G > G', par la proposition 4.3.1, on infére que G’ ¥ G. Cela veut dire
qu’il existe @, € E tels que xg(a) = xg(v) et xa () # xo(v). Comme E <€ E,
u,v € £, donc G' g G par définition. [

Proposition 4.3.5. Soit V' un ensemble fini non vide, et G,G’ € I'y, tels que
G > G'. Soit, C'; une multiclasse de couleur de G. C est alors une multiclasse de

couleur de G.
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Preuve. Comme C est une multiclasse de couleur de G, alors il existe C’ € Cq
tel que C' = {v € V2| xg(v) € C'}. Donc, pour v € V2, v € C si et seulement si

Xg(@) e(C.

Remarquons que xg (C') € Cqr. Pour démontrer la proposition, prouvons que C' =
{veV?| xa(v) € xar(C)}. Cela est équivalent & montrer que pour tout v € V2,

v e C si et seulement si x¢ () € xor (C).

Comme x¢/(?) € xor(C) pour tout v € C, il nous reste a démontrer la réciproque.
En supposant que xg(0) € xo(C), alors il existe u € C tel que xa () = xor(@).
Par G > G', on infére de la derniére égalité que xg(v) = xg(u) et donc xq(v) €

Xc(C) =C’. Finalement, par le résultat du premier paragraphe, € C. [

Un cas spécifique de la derniére proposition est de prendre pour C une classe de
couleur de G. Ainsi, si G > G’, une classe de couleur de G reste une classe de

couleur pour G’ ou alors elle devient une multiclasse stricte de couleur de G'.

Proposition 4.3.6. Soit V' un ensemble fini non vide, et G,G’" € I'y, tels que
G > G'. Soit C une classe de couleur de G, telle que G =¢ G'. C est alors une

classe de couleur de G".

Preuve. Soit u € C quelconque. Comme C' est une classe de couleur de GG, on a

que C'={0eV? | xq(?) = xa(u)}.

Montrons que C' = {v € V2 | o (0) = xo (@)}, ce qui implique que C est une classe
de couleur de G'. Cela revient a montrer que pour tout v € V2, x¢ (0) = x¢(u) si

et seulement si v e C.

Pour prouver I'implication directe, supposons xq(v) = xg(@). Par G > G’, cela
implique que xg(v) = xg(@), ce qui implique que v € C, par le premier paragraphe

de la démonstration.
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Pour prouver la réciproque, supposons v € C, ce qui implique comme plus haut
que x¢(0) = xg(u). Par G =¢ G' et u,v € C, on en déduit que xg/ () = xo(u).
O

Proposition 4.3.7. Soit V un ensemble fini non vide, et G, G’ € I'y,. Soit E ¢ V2.
1) Si G =g G', alors |xg(E)| < |xe (E)|.
2) Si G =g G, alors |xa(E)| = |xe ().
3) Si G > G, alors |[xa(E)| < |xa (E)|

Preuve. 1) Supposons G >p G'.

On définit alors Papplication s : xa(E) — xa(E) telle que s(xa (1)) = xq(u)

pour tout w € E. La figure 4.1 est un exemple permettant de visualiser s.

s:OQF 0O

G restreint a E uv HO
. ——— @)
G’ restreint & F uv O|—>

FIGURE 4.1 Illustration du raffinement G > G’ et de la fonction s

Cette fonction est bien définie. En effet, quelque soit u,v € E tels que xg(u) =
Xa (), la définition de G > G’ implique alors xg(@) = xc(v). Ainsi, on a que

s(xa (1)) = s(xa(9)).

La fonction s est aussi surjective, car tout élément xo(u) € xo(F) admet xq(u) €

Xo'(F) comme préimage. On a donc que |xa (E)| > [xa(E)|-

2) Supposons que G =g G’, ce qui équivaut & G > G’ et G’ > G. Par 1), on
obtient [x(E)| < [xer(E)] et [xer (E)] < [xa(E)|. Donc [xa(E)| = [xa (E)|-

3) Supposons G > G'. De maniére analogue a 1), on définit une méme fonction

s et on montre qu’elle est bien définie et surjective. La figure 4.2 illustre la fonction.
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G restreint a £ | v HOL{®
~O
G restreint & E| @ v Donc s non injective

FIGURE 4.2 Illustration du raffinement G > G’ et de la fonction s

De ce dernier fait, on déduit

s(xa'(F)) = xc(E). (*)

Pour ce cas, s n’est pas injectif. Pour montrer cela, remarquons que notre suppo-
sition G >g G’ implique que G’ ¥ G, ce qui veut dire qu’on peut trouver deux
éléments u, v € F tels qu’ils ne sont pas de la méme couleur x¢r, mais tout de méme
de la méme couleur yg. Ainsi, yo(@) et xo () sont deux éléments différents de

X¢(F) avec la méme image par s.

Comme la fonction s est non injective et xo/(FE) est fini, on en déduit que

Ixa'(E)| > |s(xe(E))|. Avec cela et (*), on conclut que |xqo (E)| > |xq(F)|. O

Proposition 4.3.8. Soit V' un ensemble fini non vide, et £ ¢ V2. Soit G,G' € 'y
tels que G > G'.

1) Si|xa(E)| =|xe (E)|, alors G =g G.

2) Si |xa(E)| # |xe'(E)|, alors G > G.

Preuve. 1) Démontrons la contraposée. Avec G >g G et en supposant G #p G,

on déduit que G > G'. En appliquant la proposition 4.3.7 partie 3), on obtient
Ixa(E)| # [xer (E)-

2) Toujours par contraposée, supposons que G >z G’ soit faux. A cause de G > G,
il est alors nécessaire que G =i G'. Par la proposition 4.3.7 partie 2), on conclut

donc que [xa(E)| = [xe (E)]. O
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Proposition 4.3.9. Soit V' un ensemble fini non vide, et E € V2. Soit {G,}o,
une suite décroissante (respectivement croissante) pour E d’éléments de 'y, c.-
a-d. pour tous 7,7 € N tel que ¢ < j, nous avons que G; >p G; (respectivement

Gz G;). On a alors qu’il existe k € N tel que G =g G-

Preuve. Supposons le contraire, ¢’est-a-dire que pour tout i € N, alors G; #5 Gi41-
Comme {G, };so est décroissant pour E, on en déduit que G; > G;,1 et donc que
G; >r Gi1. Avec ce résultat et par la proposition 4.3.7, on a que pour tout 7 € N,

|XG1(E)| < |XG1'+1 (E)|

Ainsi, {|xg,;(E)|}iso est une suite strictement croissante d’entiers. Cela contredit

le fait que pour toute fonction y avec domaine V2, |x(E)| < |[x(V?)|<|V?| e N.

Dans le cas ou la suite {G;};s0 est croissante pour E, de maniére analogue,
{Ixc,(E)|}izo est alors une suite strictement décroissante de naturels, ce qui est

impossible. [

4.4 Raffinements atomiques et composés

De ce que nous avons vu, les raffinements de graphes colorés se classifient en équi-
valences et en raffinements stricts. Nous allons, de plus, distinguer deux types de

raffinements stricts, soit les raffinements atomiques et les raffinements composés.

Définition 4.4.1. Soit V' un ensemble fini non vide, et F ¢ V2. Soit G,G' € 'y
tels que G >g G'. On dit que G’ est un raffinement atomique pour E de G et on
le note G >3, G’ §'il n'existe pas de G” € I'y tel que G > G” > G'. Autrement,
G’ est dit un raffinement composé pour E de G et on le note GG >7‘E7£ G'.

Si E = V2, on utilise simplement les termes raffinement atomique et raffinement

COMPOSE.

Pour le choix de notation, I'astérisque rappelle un atome, et le diése fait penser a
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une construction en blocs.

Proposition 4.4.1. Soit V' un ensemble fini non vide, et F ¢ V2. Soit G,G" €'y,

tels que G >g G'. G’ est un raffinement atomique pour E de G si et seulement si

IXa(E)| = |xc(E)|+1.

Il est assez intuitif de voir qu’un raffinement G > G’ qui augmente d’au moins
deux le nombre de classes de couleur ne peut étre atomique. Il suffit de construire
un graphe de couleur G” qui unit deux classes de couleur distinctes de G’ inclus
dans la méme classe de couleur de G. On a alors que G > G” > G'. Nous présentons

une preuve plus formelle de ce résultat.

Preuve. Pour démontrer I'implication directe, procédons par contraposée. Sup-
posons alors que |xa (F)| # [xa(E)| + 1. Remarquons que G > G’ implique que
Ixa(E)| < |xe(E)| par la proposition 4.3.7 partie 3). De tout cela, on déduit que

Xa(E)| < Ixer(E)| - 1. (*)

Construisons maintenant G” € I'y tel que G >g G” > G', ce qui permet de

démontrer I'implication directe.

De G >g G', on en déduit que G’ #g G. Donc il existe @,v € E tels que yg(u) #
Xa (D) et xg(@) = xg(v). De 14, on définit la fonction yg» comme une coloration

similaire & y¢, mais qui unit les classes de couleur de u et v.

Formellement, soit w € V2,

) xe(@) st xe (@) € {xa (@), xer (V) }
XG//(’LU) = B )
X¢'(w) sinon.

On remarque directement que xgr(F) = Yo' (E) — {x¢(0)}. Ainsi,

IXar (E)| = [xer (E)] - 1. ()
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Montrons que G" > G'. Soit wy,ws € E tels que g (1) = xo(w2). Dans le cas
olt Xar (1), Xar (W2) € {xe (@), xa'(V)}, alors xn(w1) = xar (@) = X (Ww2). Dans
lautre cas, alors xgr(w1) = xar(01) = xar(W2) = xgr(w2). Ainsi, par définition,

G" >p G'. Puis, par (**) et la proposition 4.3.8 partie 2), on déduit que G" > G'.
Finalement, montrons G > G". Soit wy,ws € E tels que xgr(w1) = xgr (ws).

Cas 1) xgr(w1) # xar () et xgr(w2) # xer () :
Par la définition de XaG, XG’(wl) = XG//(wl) et XG/(wQ) = XG”(wQ)' Des trois
derniéres égalités, on déduit que x¢(w1) = Yo (w2). Puis, par G >g G’, on conclut

que xg(wr) = xa(ws).

Cas 2) xgr(w1) = xar (1) et xgr(ws) = xar (@) :

Par la définition de xgr, xor(01), X (W02) € {xa (@), xa (D) }. Si xar (w1) = xgr (02),
par G > G', on déduit xg(w;) = xg(w2). Sinon, sans perte de généralité, on peut
supposer que Yo (w1) = xar () et xo(w2) = xo(v). Par G > G’, on trouve
Xa(w1) = xa(@) et xa(ws) = xg(¥). Avec cela, en plus de I'égalité xq(u) = xa (),

posée plus haut, on infére yq(w;) = xg(w2).

En réunissant les 2 cas, on déduit que G > G”. De (x) et (**), on a que |xg(E)| <
Ixar(E)|. De ces résultats et de la proposition 4.3.8 partie 2), on obtient que
G >E G".

Cela conclut la preuve directe.

Pour la réciproque, supposons que |xqg (E)| = [xg(F)|+ 1 et montrons par contra-
diction que G” est un raffinement atomique pour E de (. Ainsi, supposons I’exis-

tence de G = (V, xa) € Ty tel que G > G > G,

Par le lemme 4.3.7, |xa(E)| < |xa"(E)| < |xe(E)|. Puis, par 'implication directe

de notre proposition qu’on vient tout juste de montrer, et du fait que G’ est un
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raffinement atomique pour E de G, on infére que |xa (E)| = |xa(E)|+1. On a alors
que |xa(E)| < |xa(E)| < |xa(E)|+1. Cela implique que 0 < |xar (E)|-|xa(F)| < 1,

ce qui est absurde. [

Proposition 4.4.2. Soit V' un ensemble fini non vide, et E ¢ V2. Soit G,G' € 'y
tels que G >§ G'. 1l existe alors G” € I'y tel que G >3, G" > G'.

Preuve. Supposons le contraire, qu’il existe G, G’ € I'y tels que G >§ G’, pour

lesquels il n’existe pas G” € I'y vérifiant G >3, G” >p G'.
Par définition, GG >§ G’ veut dire qu’il existe Gy € I'y tel que G > G1 > G.

Il est impossible que G >7, G4, car I'inégalité ci-dessus serait un contre-exemple

de notre hypothése initiale. On a donc que G >§ G1.

Par le méme argument, pour tout Gy € I'yy tel que G >§ G, on peut trouver

Gre1 €Ty tel que G >§ Gi1 > Gi.

Ainsi, on construit une suite croissante {G,};»o avec Gy := G'. La proposition 4.3.9
nous dit que deux éléments consécutifs de la suite doivent étre équivalents, ce qui

est impossible, car tous les raffinements sont stricts. [

Proposition 4.4.3. Soit V' un ensemble fini non vide, et E ¢ V2. Soit G,G' € 'y,
tels que G >§ G'. Il existe alors G1,...,Gy €'y, ol f est un entier positif, tels que

G>,Gr>y o> Gy >3 G

Cette proposition nous indique qu’il est alors possible de décomposer un raffine-

ment strict de graphes colorés en une chaine finie de raffinements atomiques.

Preuve. Supposons I'énoncé faux. Comme G >§ G', par la proposition 4.4.2, il
existe Gy € I'y tel que G >3, Gy >g G'. 1l faut alors que G, >§ G’, sinon cette

chaine serait un exemple prouvant 1’énoncé vrai.
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Par le méme argument, pour une chaine G >}, G| >}, ... >3, G >g G’, on peut

construire la chaine G' >3, G1 >% ... >5 G >3 G >5 G-

Ainsi, on construit une suite décroissante {G;};»0 avec Gy := G. La proposition
4.3.9 nous dit que deux éléments consécutifs de la suite doivent étre équivalents,

ce qui est impossible, car tous les raffinements sont stricts. [

La proposition suivante, outre ses applications, nous permet de bien pouvoir vi-

sualiser en quoi consiste un raffinement atomique.

Proposition 4.4.4. Soit V' un ensemble fini non vide et G, G’ € I'y,. Soit F ¢ V2,
une multiclasse de couleur de G. Si G >7, G’ alors il existe une et une seule classe
de couleur C' de G incluse dans E qui n’est pas une classe de couleur de G’. De

plus, C est 'union disjointe de deux et seulement deux classes de couleur de G'.

Ainsi, pour E := V2, un raffinement atomique ne fait que scinder une et une seule

classe de couleur en deux et seulement deux autres classes de couleur.

Preuve. Partie 1 : Supposons qu’il existe au moins deux classes de couleur C' et

C" de G incluses dans E qui ne soit pas des classes de couleur de G’.

Par la proposition 4.3.5, C' et C” doivent alors étre des multiclasses strictes de
couleurs de G’ et donc des unions disjointes d’au moins deux classes de couleur

chacune.

Alinsi, il existe @, Uy € C' et v1,09 € C' tels qu’ils soient tous de couleurs différentes

pour G'.
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Donc,

e (B)] = Ixar (O] + Ixa (CN)] + [xer (B = C' = C))|
> |xar ({ur, u2})| + [xer ({01, 02}) | + [xe (B = € = C))]
=2+2+|xa(E-C-C")|
>2+1+1+|xg(F-C-C")| (par la proposition 4.3.7)
=2+ [xc(O) + [xe(C)]+ [xe(E - C =)

=2+ [xa(E)|

Ainsi, par la proposition 4.4.1, G 45 G".

Partie 2 : Supposons qu’il existe une classe de couleur C' de G incluse dans E qui

est une union disjointe d’au moins trois classes de couleur de G'.
Alinsi, il existe uy, uq, u3 € C' tels qu’il sont tous de couleurs différentes pour G'.

Donc,

Xer (E)| = [xar (O)] +[xer (E = O))]
> |xer ({2, us})| + [xar (B = O
=3+[xe(E-0C)
>2+1+|xe(E-C)| (par la proposition 4.3.7)
=2+ xa(CO) +xa(E - )]

=2+[xa(E)

Ainsi, par la proposition 4.4.1, G ¥ G'. 0O

Cela fait le tour des propriétés élémentaires sur les graphes colorés.



CHAPITRE V

LE JEU DE KIEFER-SCHWEITZER

Quand vient le temps de calculer la complexité de WLs, la grande difficulté revient
a savoir aprés combien d’itérations au plus est-ce que le raffinement de WL d’un

graphe coloré se stabilise.

Soit un graphe coloré G quelconque a n sommets. Définissons alors W Ly (G)
comme le nombre d’itérations de WLy a partir du graphe G jusqu’a ce que le
graphe se stabilise. Le but de 'article de Kiefer et Schweitzer est alors de montrer
que WLy(G) = (O(n?/log(n)). Dans le but de démontrer cela, ils ont ont congu
un jeu a deux joueurs. Dans ce mémoire, ce dernier est nommé en fonction des

auteurs, donc un jeu de Kiefer-Schweitzer.

Faisons une analogie trés simple pour comprendre les motivations derriére la for-

mulation du jeu.

Considérons un rouleau de monnaie. Notons que plus une piéce de monnaie est
. . . .. T

épaisse, moins il est possible d’en insérer a l'intérieur du rouleau avant que ce
dernier ne se remplisse. Si 'on peut insérer 20 exemplaires d’une piéce A et 15

exemplaires d’une piéce B, on sait alors que la piéce B est plus la épaisse des deux.

Prenons un autre exemple, soit un nombre quelconque, disons 40. De ce nombre,

on construit une chaine d’inégalité ou l'on soustrait toujours le méme nombre
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successivement et on s’arréte juste avant d’atteindre les négatifs. Disons que la
chaine a cinq éléments et s’arréte 4 4. La question est alors de déterminer quel

nombre on soustrayait & chaque fois. Il est alors aisé de déduire qu’il s’agit de 9.

40>31>22>13>4

De cela, on tire 'intuition de I’épaisseur d’'une opération : plus une opération est

épaisse, moins il est possible de I'itérer avant d’atteindre un minimum.

Maintenant, pour nos besoins, partons d’un graphe coloré quelconque G. Disons
que lopération a laquelle on s'intéresse maintenant est G — G, le raffinement
de Weisfeiler-Lehman (définition 3.4.1). Notons que puisque cette opération est
idempotente, il n’est pas utile de l'itérer directement. Nous pouvons par contre
contourner ce probléme en faisant un raffinement atomique avant de réitérer ’opé-

ration.

On peut alors construire une chaine de graphes colorés selon la relation de raf-
finement. Une fois le graphe a coloration discréte atteint, soit le minimum selon

cette relation, la chaine s’arréte.

La longueur de la chaine, plus spécifiquement le nombre de fois qu’on applique
G - G nous donne alors une idée de son épaisseur. Plus rigoureusement, cela
nous donne une idée sur W ILs(n) c.-a-d. le nombre de raffinements de Weisfeiler-
Lehman maximum que nous pouvons appliquer avant que le graphe ne se stabilise,

ce qui est ce que nous cherchons a borner.

Au niveau technique, le jeu de Kiefer-Schweitzer permet de réordonner certaines
des opérations effectuées dans les itérations de WLy sans changer substantielle-
ment le nombre d’itérations. Cela permet alors de simplifier I'analyse des opéra-

tions et ultimement d’arriver a la borne supérieure prévue.
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5.1 Formalisation

Le jeu de Kiefer-Schweitzer est défini de la facon suivante. Il s’agit d’un jeu a
deux joueurs. Chacun des joueurs raffine individuellement tour a tour un graphe
coloré recu en commencant par le joueur 1 jusqu’a ce que la coloration du graphe

soit discréte. Durant la partie, un cotit associé au jeu s’accumule.

Le joueur 1, recevant un graphe G, doit retourner un raffinement strict G’. Donc,
il faut que G > G’. A chacun de ses tours, le raffinement du joueur 1 a un cott

associé de 1 et on dit qu’il effectue 1 coup.

Le joueur 2, recevant un graphe G, doit retourner un raffinement non nécessaire-
ment strict G’ tel que G > G’ > G. Le coiit associé a son tour correspond au plus
petit k € N tel que G’ > G%)| la k-iéme itération de I’algorithme WL,. On dit alors

qu’il effectue k coups.

La partie s’arréte lorsque le graphe a une coloration discréte, ce qui est équivalent

a ce que |[x(V?2)| =|V?| ou que x soit une injection.
La définition suivante décrit cela formellement.

Définition 5.1.1. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non vide.

Une partie de Kiefer-Schweitzer consiste en un uplet
(Go, Gl, GQ, ceey Gt—l, Gt) € F%;rl

respectant les propriétés suivantes :

1) Pour i € N impair, G;_1 > G;. En particulier, Gy > G;.

2) Pour i € N, i > 2 et pair, G;_1 > G; > Giy.

3) G; a une coloration discréte.

Les graphes dans le uplet sont dits des graphes joués dans le jeu. Go est dit le
graphe d’entrée/initial du jeu et Gy, le graphe terminal/final du jeu.
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Le coit associé & une partie du jeu de Kiefer-Schweitzer est défini de maniére

formelle ainsi.

Définition 5.1.2. (Kiefer et Schweitzer, 2016) Soit une partie du jeu de Kiefer-
Schweitzer (G, G1, Gy, ..., Gi-1, Gy). Son coit associé est [/2]+Yocics pair min({k €
N|G; = G,

Ici, le premier terme est le nombre de tours effectués par le joueur 1, et donc le
colit que ce dernier ajoute au coiit total. La sommation correspond a la somme

des cofits associés a chaque tour du joueur 2.
5.2 Propriétés

Intéressons-nous a démontrer quelques propriétés élémentaires sur le jeu de Kiefer-
Schweitzer. On cherche d’abord & établir une borne supérieure sur la longueur
d’une partie. Puis, on s’intéresse a démontrer 'existence de stratégies optimales

pour les deux joueurs.

Proposition 5.2.1. Soit IV un ensemble fini non vide. Soit une partie du jeu de
Kiefer-Schweitzer ayant G € I'yy comme graphe initial. Sa longueur est alors finie

et bornée par O(n?) ou n = |V|.

Preuve. Supposons l'existence d’une partie (Go, G1,Ga,G3,Gy,...,Gy) de lon-

gueur k. On construit alors la chaine
G0>G12G2>03204>...>Gk.

Notons que le dernier raffinement doit étre strict, méme pour k pair, sinon, en cas
d’équivalence, la partie serait considérée finie dés la remise du graphe Gj_; qui

serait & coloration discréte.
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De la chaine, de la proposition 4.3.7 et du fait que |xg(V?)| < |[V?| pour tout

graphe coloré G € I'y,, alors

0 <[xco (V) < Ixe, (V)] < Ixe: (V)] < .. < Ixg, (V) < .

Si k est pair, on infére Iexistence de 1+ k/2 entiers strictement situés entre 0 et
n?. 1l faut alors que k/2 < n? et donc que k < 2n?. Autrement, si k est impair, on
infére lexistence de 1+ (k —1)/2 entiers strictement situés entre 0 et n2. Il faut

alors que (k-1)/2 <n? et donc que k<n?/2+1. O

Au niveau des objectifs, le joueur 1 cherche a maximiser le coiit total du jeu, et
le joueur 2, a le minimiser. Chacun utilise pour cela une stratégie, qui consiste
en une fonction ayant pour entrée I'uplet contenant le graphe que le joueur recoit
ainsi que tous les graphes joués précédemment, et pour sortie le graphe que le
joueur produit. Ainsi, une stratégie optimale pour le joueur 1 maximise le cotlt

du jeu, tandis qu’une stratégie optimale pour le joueur 2 le minimise.

Notons que pour chaque joueur, il existe alors une stratégie optimale ne dépendant

que du graphe recu par le joueur et d’aucun autre graphe précédent.

Disons en effet qu’un joueur joue optimalement. S’il recoit a une certaine étape
un graphe Gy, comme il a toujours pour but de minimiser le coiit total d’une
partie commencant par G, il doit alors minimiser la somme des cotits précédents
ainsi que le coiit d’une partie commencant par G. Comme ce premier terme est
constant, le joueur ne peut que minimiser le second. Il a alors seulement besoin de
G comme entrée pour décider de sa stratégie pour minimiser le cotit d’une partie
commencant par G. Ainsi, a chaque étape, le joueur n’a besoin que de prendre

en compte le graphe recu pour jouer optimalement.

Autrement dit, chaque joueur a une stratégie optimale S;: I'yy — 'y, ol le graphe

d’entrée est le graphe regu par le joueur.
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Si le joueur 7 utilise la stratégie S;, alors val(G; S1,S2) est défini comme étant le

cotit résultant d’une telle partie.

Le jeu étant fini (toute partie est de longueur finie), déterministe, & somme nulle
et avec parfaite information, par le principe Mazimin-Minimaz (Zermelo, 1913),

on a alors que maxg, ming, val(G; Sy, S9) = ming, maxg, val(G; Sy, Sz).

Lemme 5.2.1. Soit une partie du jeu de Kiefer-Schweitzer ou le joueur 1 suit
une stratégie S) telle que, si G n’est pas stable, alors S](G) = GM. Tl existe alors
une stratégie optimale pour le joueur 2 telle que, s’il recoit un graphe coloré G, il

retourne G.

Preuve. Supposons que le joueur 2 suive une stratégie optimale Sy et qu’il existe

une situation ou il recoit G et ne retourne pas G.

Construisons un arbre enraciné représentant toutes les parties possibles admettant

que le joueur 2 suive Sy et que le joueur 1 suive 5.

Si la partie commence avec le graphe Gg, ce dernier est la racine de notre arbre.
Si Gy est stable, comme nous n’avons pas précisé ce que la stratégie S| retourne
dans ce cas, les sommets de hauteur 1 sont formés de tous les raffinements stricts
de Gy. Autrement, GGy a pour unique fils G(()l). Notons que le graphe a coloration
discréte est toujours une feuille, peu importe la hauteur. Puis, tout sommet H de

hauteur 1 qui n’est pas a coloration discréte a Sy(H) pour fils.

Puis, a partir de tous les sommets de hauteur 2 qui ne sont pas des feuilles, on
réitére ce processus. Eventuellement, par la proposition 5.2.1, la partie doit finir

et donc chaque branche se termine par des feuilles.

Le fait qu'il existe des situations o le joueur 2 ne joue pas G aprés avoir recu G
implique qu’il existe dans cet arbre au moins un sommet G de hauteur impaire

(retourné par le joueur 1) ayant pour fils G’ tel que G’ > G et pour lequel le sous-
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arbre commencant par G ne contient aucune autre fois cette situation. Nommons

cette situation (}).

Notons que dans cette situation, G se doit d’étre non stable. En effet, le joueur 2 est
obligé, en recevant un graphe G, de retourner un graphe G’ tel que G > G’ > G.
Or, si G était stable, on aurait alors que G = G et G’ > G serait impossible a

respecter.

Nous allons maintenant montrer que le joueur 2 aurait pu jouer G dans cette

situation sans augmenter le coft.

Dans la situation (1), le joueur 2 joue alors le graphe G’ > G aprés avoir recu le
graphe G. Soit un entier positif j, minimum tel que G’ > GU). Jouer G’ a alors un
cott de j. Comme G est non stable et G’ > G, G’ est alors également non stable
et le joueur 1 doit retourner G’ lorsqu’on lui présente G’, ce qui a un coftit de 1.
Comme G a été choisi comme la derniére occurrence dans I’arbre d’un graphe tel
que S5(G) = G' > G, le joueur 2 doit jouer (G'M)) aprés que le joueur 1 ait joué
G'D). Par le lemme 3.7.1 et le fait que G > G'®) > G, on infére que (G'M) = G. Soit
un entier positif f, minimal, tel que G) = G. Par le méme lemme et G’ > G, on
deduit (G'M)(=i-D) = (G")F-9) » (GWD)F-) =G =G = (G’N(l)). Jouer (Gf(l)) a
donc un cotit de f—j —1. Ces 3 coups ont donc un coiit total de f. La figure 5.1

illustre la situation.

Par contre, notons que nous aurions pu nous rendre au méme point si, une fois
donné le graphe G, le joueur 2 retournait directement G = G() et cela toujours
avec un coit de f. Modifions la stratégie Sy en posant Syo(G) := G, pour ce G

précis de l'arbre, c¢’est-a-dire pour la situation (7).

Modifier Sy change alors 'arbre de jeu. En itérant 'argument, on peut se débar-

rasser de toutes les situations ou Sy(G) # G, pour G quelconque. On construit
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@ non stable

Le joueur 2 joue avec un cotit de j

FeARyeCipYe

Le joueur 1 joue avec un cotit de 1

[@m

Le joueur 2 joue avec un cotit de f—j -1

G

(G'0)

FIGURE 5.1 La situation (7)

ainsi une stratégie S, optimale pour le joueur 2, dans le cas ot le joueur 1 suit

S!, tel que Sy(G) = G pour tout graphe G du jeu. [,

Définissons alors ¢(G) := ming, maxg, val(G; Sy, 52) qui correspond a la valeur du
jeu, ou GG est son graphe d’entrée. Pour le reste de cette section, notre objectif est

de montrer que WLy(G) < ¢(G).

Pour cela, remarquons en premier lieu que ¢(G) = maxg, ming, val(G; Sy, S2) >
ming, val(G; Sy, S2) ot S| est une stratégie quelconque. Nous pouvons alors sans
probléme faire des restrictions sur ce que peut étre S|. Supposons que si G n’est pas
stable (définition 3.4.2), alors S](G) = G(). Comme plusieurs stratégies obéissent
a cette restriction, S] a plusieurs valeurs possibles. Cette remarque est pertinente

pour le chapitre 9.

Définissons alors la stratégie S) : I'y — I'y telle que S5(G) := G pour tout G e T'y.
Par le lemme 5.2.1, on a alors que S} est optimale pour le joueur 2 si le joueur 1

suit S7. On en déduit que ¢(G) > ming, val(G; S}, S2) = val(G; 51, S5).
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Il nous reste alors & montrer que WLy(G) < val(G,57,S5). Cela n'est pas trop
difficile. Remarquons que si G est stable, alors W Ly (G) = 0. Autrement, s’il n’est
pas stable, considérons une partie commencant par le graphe G et ou les joueurs
suivent S} et S5. Le joueur 1 retourne alors en premier lieu G, pour un cofit de
1, suivi de G pour un coit de W Ly(G) - 1. Le cotit d’une partie aprés 2 coups
¢gale done déja WLy (G). On conclut de tout cela que WLy (G) < ¢(G).

Les trois prochains chapitres introduisent des outils qui nous permettront ultime-

ment de borner supérieurement la valeur de ¢(G).



CHAPITRE VI

CONDITIONS SUR LES GRAPHES DURANT LE JEU

Lorsque le joueur 2 raffine le graphe durant une partie du jeu de Kiefer-Schweitzer,
il a toute la latitude lui permettant de respecter certaines conditions. Ces derniéres
permettent alors d’appliquer certains théorémes sur le graphe, qu'on démontre

plus tard et qui permettent ultimement d’établir la borne sur le cotit du jeu.

En fait, il s’agit de déterminer des conditions, qui sont implicitement établies par
le raffinement bidimensionnel de Weisfeiler-Lehman et qui permettent de simplifier

son analyse, comme on le voit aux chapitres 7,8 et 9.

Ainsi, en recevant un graphe G, le joueur 2 peut le raffiner en un graphe G’ tel

que G = G' > G et qu'il obéit a certaines conditions respectées par G.

6.1 Faire respecter la condition C1

Définition 6.1.1. (Kiefer et Schweitzer, 2016) Soit V un ensemble fini non
vide, et G € I'y,. On dit que G respecte la condition C1 ou respecte C1 si la
couleur d’une aréte détermine la couleur de ses extrémités. Formellement, pour
tous (u,v), (u/,v") € V2, si xg(u,v) = xg(u',v"), alors xg(u,u) = xg(u',u’) et

XG(vv U) = XG(vlv /U,)'

Comme un graphe ne respecte pas nécessairement C1, définissons une méthode
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pour raffiner un graphe coloré quelconque en un graphe coloré respectant C1.

Notation 6.1.1. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non vide,
et G €'y, On définit Gy € I'y tel que pour tous u,v eV ot u# v, on a

1) Xe ) (w,u) = xa(u, u),

2) X, (w,v) = (xa(u,v), xa(u, u), xa(v, v)),

et Ca = X6, (V?)-

Autrement dit, pour chaque aréte de V2, on lui associe une nouvelle coloration

qui encode sa coloration ainsi que celle de ses extrémités.

Proposition 6.1.1. Soit V' un ensemble fini non vide, et G € I'y.. Alors Gy
respecte C1.

Preuve. Montrons que G (1) respecte la définition.

Soit (u,v), (u',v") € V? tels que g, (u,v) = X, (W,v"). Si u =wv, il est alors
trivial que xg,, (v, u) = xg, (W, ') et xg,, (v,v) = XG,, (v/,v"). Sinon, en sub-
stituant dans I’hypothése par la définition de Gy, on obtient I’égalité de deux
triplets

(xa(u,v), xa(u, u), xa(v,0)) = (xa (W', v'), xa (W', v'), xa (v',v"))

d’ott xa(u,u) = xg(u',u') et xq(v,v) = xa(v',v"). Par la définition de G(y), on
conclut que xq,,, (u,u) = xg,, (v, ') et X, (v,v) = xa,, (V,0"). O
Proposition 6.1.2. Soit V' un ensemble fini non vide, et G € I'y, alors G > G(y).

Si, de plus, G ne respecte pas C1, alors on a forcément que G' > G(y).

Preuve. Montrons que la définition de raffinement est respectée.

Cas 1) Soit (u,u), (v,v) € V2, tels que xq,,(u,u) = xg,,(v,v). En substituant
chaque coté selon la définition de Gy (soit la notation 6.1.1), on obtient directe-

ment XG(uvu) = XG(U7U)‘
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Cas 2) Soit (u,v), (u/,v") € V2, tels que u # v, v’ # v’ et xq,, (u,v) = xg,, (v, V).
Selon la définition de G/(1), chaque coté correspond & un triplet. On en déduit alors

I'égalité de leurs premiéres coordonnées, ce qui correspond a yg(u,v) = xo(u',v").
Cela démontre la premiére partie de la proposition.

Si nous sommes dans une situation o G = G(1), alors il faut forcément que
G respecte la condition Cl. En effet, en prenant (u,v),(u',v") € V2 tels que
xa(u,v) = xg(u',v"), alors on déduit de ’équivalence des graphes que XG, (U, v) =
XG(U(U/,U/). Puis, comme Gy respecte C1 par la proposition précédente, on dé-
duit que xg,,(u,u) = Xg, (W, ') et xg,, (v,v) = Xxa,,,(v',0") et on en conclut

que xg(u,u) = xg(u',u') et xg(v,v) = xg(v',v").

La deuxiéme partie de la proposition se déduit de la contraposée de ’énoncé du

dernier paragraphe. [

Raffiner afin de faire respecter C1 conserve certaines propriétés du graphe. Par
exemple, la proposition 3.6.1 nous dit que, si G est bien dissociant, Gy I'est égale-

ment. Le respect de 'équivalence contraire est également une propriété préservée.

Proposition 6.1.3. Soit V un ensemble fini non vide, et G € I'y, tel qu’il respecte

I'équivalence contraire. I en est alors de méme pour G/y).

Preuve. Supposons que G = (V, x) respecte I’équivalence contraire. Montrons que

Gay=(V, XG(l)) le respecte aussi.
Soit (u,v), (u',v") € V* tels que xa,, (u,v) = Xg,, (v, 0"). On a alors que

(x(u,v), x(u ), x(0,0)) = (x (', 0"), x (' u'), x (0, 0)). (*)

De T'égalité des premiéres composantes dans (*) et du fait que G respecte I'équi-

valence contraire, on peut déduire que x(v,u) = x(v',%'). A partir de ce résultat,
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en plus de I'égalité des deuxiémes et troisiémes composantes de (*), on peut inférer

I’égalité des triplets

(x(v,u), x(v,0), x(u,u)) = (x(W', ), x (v, 0"), x (u', ).
On en conclut alors que xg,,, (v,u) = xa, (v/,u'). O

Proposition 6.1.4. Soit V' un ensemble fini non vide, et G, H € Iy, tel que
G = H et que G et H sont bien dissociants. Alors G 1y = H(®), ot I'on rappelle que
H® correspond a la premiére itération de I'algorithme de Weisfeiler-Lehman de

dimension 2.

Remarque 6.1.1. Comme G > G, on a comme conséquence directe de cette
proposition que G(1y = GM. Cela veut donc dire que si le joueur 2 d’une partie
du jeu de Kiefer-Schweitzer raffine le graphe comme ci-dessus pour faire respecter

C1, alors le cott associé est d’au plus 1.

Preuve. Cas 1) Soit (u,u), (u/,u’") € V2 tels que xym (u,u) = xyo (v, u’"). Par
H > H® on déduit que xg(u,u) = xg(v',u’). Puis, par G > H, on infére
Xa(u,u) = xo(u',u'). Finalement, par la définition de G(1), on obtient que x¢,,, (u,u) =

XG(I) (ul’ u’)

Cas 2) Soit (u,v), (u/,v") € V2, tels que u # v, u' #v" et x g (u,v) = x g (v, v").
Cette équation correspond a une égalité de deux couples. L’égalité des premiéres

composantes s’exprime
xu(u,v) = xm(u',v"). (*)

Quant a I'égalité des deuxiémes composantes, elle s’écrit

{Ocu (w, ), xa (u, w))|w e Wi = { Ocu (w, o), xu (0, w))|w e W ()

On remarque que le multiensemble écrit & gauche dans (**) ne contient des cou-

leurs de sommets de V2 que pour les couples (x g (u,v), xg(u,u)) et (xg(v,v), xg(u,v)).
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Quant au multiensemble de droite, la méme remarque s’applique et on a que
(xu(u' v, xu(u, u")) et (xg(v',v'"), xg(u',v")) sont ses seuls éléments contenant

des sommets de V2.

Comme les deux multiensembles sont égaux, chaque élément de I'un doit étre égal
a un élément de 'autre. Ensuite, puisque les graphes sont bien dissociants, un
sommet de V2 ne peut pas avoir une méme couleur qu'une aréte de V2. Ainsi,

pour les couples ci-dessus, il est seulement possible que (xg(u,v), xg(u,u)) =
O (', 0"), xm (W) et (xu(v,v), xu(u,v)) = (xu(v',v"), xu(u',v")). De cela,

on infére xy(u,u) = xg(u',u') et xg(v,v) = xg(v',v").

Puis, comme G > H, on déduit des derniéres égalités et de (x) que xg(u,v) =

XG(UI7U,)7 XG(U,U) = XG(UI7U,) et XG(UaU) = XG(Ulvvl)'
A partir de 1, on peut inférer 'égalité des triplets
(XG(U7 U)7 XG(uv U), XG(Ua U)) = (XG(UIJ Ul)a XG(ula u’)a XG(U,7 U,))'

Puis, on peut déduire par la définition de G1) que xq,, (u,v) = X, (W, v). O
6.2 Faire respecter la condition C2

En raffinant son graphe recu lors d’une partie, le joueur 2 vise a ce que celui-ci
respecte la propriété que deux sommets de méme couleur aient des voisinages
similaires en terme de couleur. Enoncé plus précisément, le joueur 2 désire obtenir
un graphe dans lequel, pour une couleur de sommet quelconque s et une couleur
d’aréte quelconque a, deux sommets de méme couleur ont le méme nombre de

sommets de couleur s reliés & eux par une aréte de couleur a.
Définition 6.2.1. (Kiefer et Schweitzer, 2016)

Soit V' un ensemble fini non vide, et G € I'y,, bien dissociant. On dit qu’il respecte
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la condition C2 ou respecte C2 si la condition suivante est vérifiée. Soit C, une
CCA de G, et soit C7,C5, des CCS de G. On a alors que

1) pour tous vy, v € C1,
ING(v1) 0 Cof = [NE(v2) N Cof et [Ne(v1) N Cof = [No(v2) NG,
2) pour tous uy,ug € Cy,

ING(ur) NGyl = [N (ug) nCy et [Ng(ur) nCy| = [Ng(uz) nCyl.

Comme précédemment, trouvons une méthode de raffinement du graphe pour faire

respecter C2.

Notation 6.2.1. Soit V' un ensemble fini non vide, et G' € I'yy. On définit G o) € 'y
tel que pour tous u,v eV ol u # v,

1) X6 (u,v) = xa(u,v)

2) Xer (1) = (Xa(u,w), L (xa(w,u), xo(u,w)) [we V)

et Cg ) = XGoy (V?)-

Il est facile de montrer que pour G € I'y, alors G > G(2). Ainsi, par la proposition

3.6.1, si G est bien dissociant, il en est de méme pour G (s).

Notons qu’on peut montrer que G9) respecte I'équivalence contraire si G la res-
pecte initialement, car ce raffinement ne modifie que les couleurs des sommets de

V2.

Proposition 6.2.1. Soit V' un ensemble fini non vide, et G € I'y, tel qu’il est bien
dissociant et respecte I'équivalence contraire. Si GG respecte C1, alors G(9) respecte

C2.

Preuve. Soit C, une CCA de G(g), et soit C1,Cy, des CCS de G(z). Prenons

v1,v9 € C1. On a alors forcément que XG(Q)(Ul,Ul) = XG(Q)(U27’U2). [’égalité de
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couples impliquant 1’égalité de leurs deuxiémes composantes, on a alors que

{{(XG(wvvl)va(vlvw)) ’ w e V}} = {{(XG(w7U2)7XG(UQ7w)) ’ w e V}}

[’égalité de deux multiensembles des couples de couleurs signifie que chaque couple
de couleurs a autant de réprésentants dans un multiensemble que dans 'autre.

Ainsi, pour tout couple (c1,ce) de couleurs de G,
‘{'UJ eV | (XG(U17M)7XG(M,U1)) = (01762)}‘

= ‘{weV| (XG(UQ,w),Xg('w7U2)): (01,02)}|, (+)

Soit ¢ la couleur de GG associée & la classe de couleur C. Comme G respecte
I’équivalence contraire, par la proposition 3.3.1, il existe ¢ une couleur de G qui

correspond a la couleur duale de c.

Donc,

ING(01)] = [N (01))]
={w eV |xa(vi,w) =c}|
={weV|xa(vi,w) = c et xa(w,v1) =}
=[{weV | (xa(vi,w),xa(w,v1)) = (c,0)}|
=[{w eV | (xe(v2,w), xa(w,v2)) = (¢,€)}| en utilisant (x)
=[{w eV | xa(v2,w) = ¢ et xa(w,vz) = ¢}
={w eV |xg(v2,w) =}
= [NZ (v2)|

= [N&(w2)|

De maniére analogue, on trouve que [Ng(v1)| = [Ng(v2)]-

Comme G respecte C1, la couleur d’une aréte détermine la couleur de ses sommets.

. . . . . , . <
Prenons la convention d’écriture suivante. Si ¢ := yg(a,b), alors on écrit ¢ :=
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xa(a,a) et € = xg(b,b). De méme, si C' correspond & la classe de couleur de c,

<~ N «— 1 . = —
alors C' correspond de méme pour ¢ et similairement pour C et ¢.

A partir de cela, remarquons :

N&(vr) = NS (vr)
={weV|[xg(v1,w) = c}
={weV|xa(vi,w) = c et xg(w,w) =€}
={weV|xe(v,w)=ctn{weV |xe(w,w)="7}
=N ()nC

= Ni(v)n C

De méme, on peut prouver que Ng(v1) = N5(v1)n C.

Montrons finalement que G2y respecte C2. Pour cela, démontrons que la condition
C1) de la définition est respectée, la deuxiéme se prouvant de la méme maniére
par symétrie.

. —>
Si 02 = C, alors |N5(U1) N CQ| = |N5(’Ul)| = |N5(U2)| = |N5(U2) n Cg|

—
Si Cy # C, alors

[IN&(v1) 0 Gl = [(NG(01) n ) 0 Gyl
= NG (01) 0 (C 1 Gy)|
= [N&(v1) N
= |o|

=0

Puis, de méme, |N/,(v1) nCy| =0, ainsi la condition est respectée dans ce cas.

La deuxiéme égalité de la condition C1 se prouve de maniére analogue. [J
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En conséquence directe de cette proposition, si G ne respecte pas C2, alors G >

G'(2). L’argument est analogue a celui pour C1.

Proposition 6.2.2. Soit V' un ensemble fini non vide, et G, H € I'y, tels que
G = H et que G et H sont bien dissociants. Alors G (o) = H().

Preuve. Soit (u,v),(u,v") e V.
Si x g (u,v) = xgo (uw',0"), alors
(a0, € O (w,0), X (,w) ) | w e V)

B (XH(U'W')7 {Oca (', 0), x (', w')) [w' € V}})'

Cas 1) u#vetu #v
Par I'égalité des premiéres composantes de I’équation ci-dessus, on a que x g (u,v) =
xu(u',v"). Puis, on déduit xg(u,v) = xg(u',v") par G > H. En substituant avec

la notation 6.2.1, on conclut que Xg, (u,v) = XG,, (W', V).
Cas2) u=vetu =0

La méme égalité ci-dessus devient alors
(). f (xew.). xe(w, w)) [we V)

= (XG(UI> u,)7 {{(XG(wla ul)a XG(UI7 w,)) | w' € V}})
Par définition, xq,,, (u,u) = xg, (v, u). O

6.3 Faire respecter les deux conditions

Si le joueur 2 souhaite que son graphe respecte les deux conditions, une méthode

simple est d’itérer les raffinements pour faire respecter C1 et C2, jusqu’a ce que
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ces deux derniéres soient satisfaites. En effet, le rétablissement de la propriété C1
peut faire en sorte que C2 ne soit plus vérifiée et vice-versa. Par la proposition

6.3.4, ce processus doit s’arréter.

Définition 6.3.1. (Kiefer et Schweitzer, 2016) Soit V un ensemble fini non vide,
et G € I'y. Un nettoyage de G, noté nett(G) consiste en un raffinement de G' dans
le but de faire respecter C1, puis, si nécessaire, en un autre afin de faire respecter

C2. Formellement,

G si G (1) respecte C2
nett(G) := W ) TP

(G(l))(g) sinon
Proposition 6.3.1. Soit V' un ensemble fini non vide, et G, H € I'y, tels que

G > H et que G et H sont bien dissociants. On a alors que nett(G) > H®),

Remarque 6.3.1. Comme G > G, on en déduit que nett(G) > G®?). Autrement
dit, le fait que le joueur 2 applique un nettoyage dans une partie du jeu de Kiefer-

Schweitzer a un cott d’au plus 2.

Preuve. Cas 1) nett(G) = G

Par la proposition 6.1.4, on a que G(1y = H() Dans ce cas. nett(G) = Gy = HY »
H®),

Cas 2) nett(G) = (Gay) )

Par la proposition 6.1.4, on a que G 1y = H(). Puis, par la proposition 3.6.1, G
est alors bien dissociant. De ces deux résultats et de la proposition 6.2.2, on déduit

que (G(l))(g) > (H(l))(l) = H(Z). ]

Le principal probléme ici est qu’il est possible que le raffinement afin de faire
respecter C2 brise la condition C1. Par les prochains lemmes, nous allons montrer

qu’itérer des nettoyages sur le graphe va éventuellement faire respecter C1 et C2.

Proposition 6.3.2. Soit V' un ensemble fini non vide, et G,G’ € I'y, tels que G
respecte Cl et G > G'. Alors G =5 G’ implique que G’ respecte Cl1.
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Rappelons qu’ici S correspond a I'ensemble des sommets de V2.
Preuve. Supposons G =5 G'.

Soit (u,v), (u',v") € V2 tels que xar(u,v) = xg(u',v").

Par G > G', on en déduit que xg(u,v) = xg(w',v").

Puis, comme G respecte C1, on infére yo(u, u) = xg(u',u') et xg(v,v) = xa(v',v").
Finalement, par G =5 G, on a que x¢ (u,u) = xgr(u',u") et xg(v,v) = xa (v, 0")

Donc, G’ respecte C1. [

Proposition 6.3.3. Soit V un ensemble fini non vide, et G € 'y, tel que nett(G)
ne respecte pas C1. Alors une classe de couleur de sommets a été scindée. Formel-

lement, G >s nett(G).

Preuve. Si nett(G) = G, alors nett(G) doit respecter C1. Il faut donc s’inté-
resser au cas ot nett(G) = (Gay)2)-

Il est clair que G 1y = nett(G) et donc que
G(l) zZs nett(G) (*)

Comme G(1) respecte C1, que Gy = nett(G) et que nett(G) ne respecte pas Cl,

alors par contraposée de la proposition 6.3.2, on a que Gy #s nett(G).
Par ce dernier résutat et (*), on obtient G(1) >s nett(G) et donc G >s nett(G). O

Proposition 6.3.4. Soit V' un ensemble fini non vide, et G € I'y. 1l existe alors

k €N tel que k < [V] et nett*(G) respecte C1.

Preuve. Supposons le contraire, soit qu’il n’existe pas de k strictement plus petit

que n = |[V] tel que nett*(G) respecte C1.

Ainsi, pour ¢ quelconque tel que 1 <i<n -1, on a que nett’(G) ne respecte pas

C1. On peut alors inférer nett’-'(G) >s nett’(G) par la proposition 6.3.3.
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On peut alors construire la chaine
G >s nett(G) >s nett?*(GQ) >s -+ >s nett" 1 (G).
En appliquant la proposition 4.3.7 avec E' =S, on déduit

0< |XG(S)| < |Xnett(G) (S)l <eee< |Xnett”*1(G’) (8)| <n.

On déduit donc 'existence de n entiers strictement situés entre 0 et n, ce qui est

absurde. [

Définition 6.3.2. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non vide,
et G € T'y. Soit k € N, le minimum tel que nett*(G) respecte C1. On dit alors que
nett*(G) correspond au nettoyage complet de G, noté nett.(G).

Nous avons introduit la notion de nettoyage complet pour que le joueur 2 d'une
partie du jeu de Kiefer-Schweitzer puisse en effectuer sur les graphes qu’il recoit.
Par contre, pour s’assurer que cela soit permis par les régles du jeu, nous avons
besoin de la proposition suivante. Il s’agit en fait de montrer que le cotit supplé-
mentaire induit par les nettoyages complets est asymptotiquement négligeable en

comparaison de la borne visée, comme nous le détaillerons au chapitre 9.

Proposition 6.3.5. Soit V' un ensemble fini non vide, et G € I'y/, bien dissociant.

On a alors que nett.(G) = G.

Remarque 6.3.2. Ce résultat a simplement pour but de montrer que le joueur 2 a
le droit d’effectuer un nettoyage complet sur son graphe, car, s’il recoit un graphe
G, il doit selon les régles du jeu, retourner un graphe G’ tel que G > G’ > G. Ainsi,
si le joueur 2 effectue un nettoyage complet en premier lieu, on retrouve la chaine
de raffinement G = nett.(G) = G’ = G, ce qui est possible, car on aura prouvé que

nett,(G) = G pour tout graphe coloré G.
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Preuve. En itérant la proposition 6.3.1 en commencant par G > G, on ob-

tient nett"(G) > G*™ pour n, un naturel quelconque. Puis, pour un certain k,

nett,(G) = netth(G) = G > G. [

Le lemme suivant est I’énoncé le plus important de cette section en préparation a

la démonstration du théoréme principal.

Lemme 6.3.1. Soit une partie du jeu de Kiefer-Schweitzer avec un graphe initial
a n sommets. Le nombre de nettoyages scindant des CCS que le joueur 2 puisse

faire est alors au plus n.

Preuve. Soit G1,Gy,...,Gy, 'ensemble des graphes colorés d’une partie du jeu
de Kiefer-Schweitzer recus par le joueur 2 tels que, pour chacun, leur effectuer un

nettoyage leur scinde une classe de couleur, c.-a-d. G; >s nett(G;).

Dans le cas ot nett(G;) = Gy, alors G; =s nett(G;), par simple analyse de la
notation 6.1.1. Comme, ici, aucune classe de couleur n’est scindée, il faut plutot

s'intéresser & l'autre cas, soit nett(G;) = (Giy)(2)-
Ainsi, pour chaque graphe G, il existe k;, un entier strictement positif, tel que

G >s nett(G;) >s nett*(G;) >s ... »s nett™ (G;) = nett (G;).

Soit G, le graphe que le joueur 2 retourne lorsqu’il regoit le graphe G;. Comme
nous voulons maximiser le nombre de nettoyages scindant des CCS que celui-ci
effectue, il doit retourner un graphe G. tel que G; = nett.(G;) > G%. Puis, par les
régles du jeu, on a alors forcément que G > G;,;. De tout cela, on en conclut que

nettc(GZ) = Gi+1 .

Par les résultats des deux derniers paragraphes, on construit la chaine de relation
nett(Gy) >s ... >s netth1(Gy) >s nett(Gs) >s ... >s nett?2(Gs) >s ... >s nett(Gy) >s
... >g netths (Gy).
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Ainsi, le nombre total de nettoyages scindant des CCS que le joueur 2 peut effec-

tuer correspond a ki + kg + ... + ky.

En appliquant la proposition 4.3.7 a la chaine de relation ci-dessus, avec E = S,

on déduit

0 < [Xnett(cr) (S)] <+ < Xnerrr (61) ()] < [Xnett(Ga) (S)] <+ < [Xnentra () (S)] < -+ <
|Xnett(Gf)(S)| <see < |Xnettkf (Gf)(8)| <n.

On en conclut qu’il faut que ki + ko + ...+ kr<n. [

6.4 Propriétés induites par C1 et C2

La proposition suivante est utile afin de bien comprendre les graphes colorés res-

pectant C1.

Proposition 6.4.1. Soit V un ensemble fini non vide, et G € I'y,, bien dissociant
et respectant C1. Pour C', une CCA non vide quelconque de G, il existe alors C

et Cy, des CCS de G, tels que C' € C x Cs.

Ainsi, en prenant une CCA quelconque d’un graphe respectant C1, ses sommets
de gauche doivent étre tous dans la méme CCS, de méme pour tous ses sommets

de droite.

Notons qu’il se peut qu’il existe plus d'une CCA dans un produit cartésien de
CCS. En fait, tout produit cartésien de deux CCS peut étre exprimé comme une

union disjointe de CCA.

Preuve. Soit (u,v) € C' quelconque. Posons C; comme la CCS de (u,u) et Cy
comme la CCS de (v,v). Montrons que C' € C} x Cy par la définition du produit

cartésien.
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Soit (u’,v") € C' quelconque. On a alors que yg(u,v) = xg(u',v"). Comme G
respecte C1, on infére que xg(u,u) = xa(u',u’) et que xg(v,v) = xg(v’,v"). On
a alors que u' € C) et v/ € Cy. Ainsi, (u',v") € Cp x Cy et on en conclut que

CE01><CQ. ]

Le lemme suivant a pour but d’étre appliqué & un moment précis dans la preuve

du théoréme principal, ce qui explique son aspect spécifique.

Lemme 6.4.1. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non vide, et
G, G’ eT'y, bien dissociants et respectant C1 et C2. Soit B, un ensemble de CCS
de G. Supposons que G >¢ G’, ou C' est une CCA incidente & B. Supposons aussi
qu’aucune CCS appartenant a B n’est scindée dans ce raffinement.

Soit C’, une nouvelle CCS de G’ en laquelle C est scindée. (Par le lemme 6.4.1, il
existe C] et Cy, CCS de G, tels que C ¢ C} x Cy.) Si C' est incident & gauche de
B, alors il existe v € Cy tel que @ c N/, (v) c N5(v). Autrement, si C' est incident
a droite de B, alors il existe v € Cy tel que @ c N;,(v) c N5(v).

Ci-dessus, c désigne l'inclusion stricte.

Preuve. Par hypothése, soit (', soit C5 doit appartenir & B. Supposons que C

est incident & gauche de B, 'autre cas étant analogue. Il faut alors que C € B.

Comme C" c C, alors pour tout v € V, on a que @ ¢ N}, (v) € Nf. Il reste alors
a montrer qu’il existe v € Cy tel que N}, (v) + @ et Nj,(v) # N5(v). Montrons-le

par ’absurde.
Supposons que pour tout v e Cy, N, (v) =@ ou N}, (v) = Ni(v).

Cette proposition peut se séparer en trois cas. Montrons que chacune d’entre elles

meéne & une contradiction.

Cas 1) Pour tout v e Cy, N}, (v) = @.
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Cela est impossible, car, comme on suppose C’ non nul, il existe (ug,uy) € C’ C

C1 x Cy et a donc uy € Cy tel que ug € N, (uy).

Cas 2) Pour tout v e Cy, N}, (v) = N(v).

Notons que C' c C c C; x Cs.

Soit u; € C et ug € C5. On a alors la chaine d’équivalence suivante.

(u1,u9) € C" <= ug e Nt (uy) = Ni(uq) <= (uq,uz) e C

On a donc par la définition que C' = C", ce qui est absurde.
Cas 3) I existe vy, vy € Cy tels que Ng,(v1) = @ et NG (v2) = Nf(v2).

Comme G’ respecte la condition C2, on a alors que [N}, (vy)| = |[NZ (v2)|. Ainsi,

NG (w2)] = [N (v2)] = [NEs (01)] = |@] = 0.

Puis, G respectant la condition C2, on déduit que pour tout v € Cy, |[NA(v)| =

NZ(vg)| = 0. Cela est absurde de maniére analogue au cas 1). [
c

Le lemme suivant énonce que, pour un graphe coloré bien dissociant respectant
C1, pour un sommet quelconque, deux sommets de couleurs différentes ne peuvent
alors pas étre reliés a ce dernier par des arétes de méme couleur. Ici, voir la notation

4.2.1 pour rappel.

Lemme 6.4.2. Soit V' un ensemble fini non vide, et G € I'y,, bien dissociant,

tel qu’il respecte C1. Soit C, une MCCS de G. Pour tout v € V, on a alors que

xa(Ie(v)) nxa(Iy2-c(v)) = @.

Preuve. Montrer I’égalité ci-dessus est équivalent & montrer que pour tous (v, w) €

Io(v) et (v,w') € Iy2_c(v), alors xa (v, w) # xa(v,w').
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Supposons que (v,w) € Ic(v) et (v,w’) € Iy2_c(v). Par la proposition 4.1.1, w € C
et w’ ¢ C, on infére yo(w) # xo(w'). Par la contraposée de la définition comme

quoi G respecte C1, on en déduit yq(v,w) # xg(v,w’). O

Le lemme suivant utilise la notation 4.2.1 et sert & démontrer une maniére équiva-
lente de formaliser la condition C2, qui est appliqué dans une preuve du chapitre

suivant.

Lemme 6.4.3. Soit V' un ensemble fini non vide, et G € I'y,, bien dissociant et

qui respecte C2. On a alors que :

1) pour tous C1,Cy, CCS de G, et pour tous vy,v, € Cp, on a que xg(Ic,(v1)) =
xa (e, (v2))-

2) pour tout Cy, CCS de G et Cy, MCCS de G, et pour tous vy, vy € Cp, on a que
Xa(ley(v1)) = xa (Lo, (v2))-

Preuve. 1) Soit C,C,, CCS de G.

Soit C', une CCA de G, et c € Cqg, sa couleur associée. GG respectant C2, on a alors

que pour tous vy, v € Cp, [N (v1) N Cs| = [NF(vg) nCyl.
Notons que
[N (1) nCo| = [{u e Vi xa(vr,u) = ;0 Cy
={ueCy:xg(vy,u) =c}
= {(v,u) :ueCy et xg(v,u) =c}l.
De méme, [Nf (v2) 0 Cof = [{(v2,u) : u' € Gy et xa(v2,u') = c}.
Des trois paragraphes ci-dessus, on infére

(v, u) :ueCy et xg(v,u) =ct] = {(v,u") :u' € Cy et xg(ve,u’) = c}l.
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On en conclut que
{(vi,u) :ueCyet xg(v,u)=c} =@ = {(vy,u'):u' € Cy et xg(vo,u') =c} =@.

(*)

Cela veut dire qu'un des ensembles ci-dessus est vide si et seulement si ’autre est
vide. Remarquons aussi que, soit ’ensemble est vide, soit il contient des éléments

d’une seule et méme couleur c.

Démontrons que

{xa(vi,u) |ueCyet xa(vr,u) = c} = {xa(ve, ') | v/ € Cy et xg(va,u’) = c}.

()

Cas 1) Supposons que {(v1,u) |ueCy et xg(vi,u) =c} # @.
On a alors Xg<{(1j1,u) |ueCyet xg(vr,u) = c}) ={c}.

De notre supposition et de (*), on déduit
{(vg,u’) |u' € Cy et xg(vg,u") = ¢} + @.
Donc, de maniére analogue, Xg({(UQ,U,) | u' € Cy et xg(ve,u') = c}) = {c}.
Ce qui démontre (**) pour ce cas.
Cas 2) Supposons {(vi,u) | u € Cy et xg(vi,u) =c} =@.
Alinsi,
xo{(v1,u) [weCy et xa(vi,u) = ¢}) = xa(2) = 2.

De notre supposition et de (*), on déduit
{(vo,u’) |u' € Cy et xg(va,u") = ¢} = @.

Donc,

XG({(UQ,U,) | u" € Cy et xg(ve,u’) = c}) =xa(2) = 2.
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Ce qui démontre (**) pour ce cas.
Nous avons ainsi tout ce qu’il faut pour prouver le lemme directement.

Remarquons que

Xa(ley(01)) = {xa(vi,u) [ueCy}

= {xc(vi,u) |ueCyet \/ (xg(vi,u) =c)} (en insérant une tautologie)

CECG

= U {xe(v1,u) |ueCy et xg(vi,u) =c}
CeC

De maniére analogue,

chic(Ic,(v2)) = U {xc(v2,u') |t/ € Cy et xg(va,u’) = C}
CeC

Des deux derniers paragraphes et de (**), on conclut xg(Io,(v1)) = xa(Iey (v2))-

2) Comme Cy est un MCCS de G, il est donc la réunion disjointe de CCS de G.
Formellement, Cy = U;.;C; o les C; sont des CCS de G.

xa(Ie,(01)) = xa({(vi,w) |w e Ca})
= XG({(Ubw) |we Uie[ci})
= xe({(vi,w) |V weCi})

= vo(U { (v w) [we Ci})
= xo(Ujerle, (1))
=Uxe(e,(v1))

iel
De maniére analogue,
xa (e, (v2)) = Uxe(Le,(v2)).
iel
Puisque les C; sont des CCS de G, on peut appliquer la partie 1) de notre lemme

pour montrer que pour tout i € I, xg(Ic,(v1)) = xa(Ieo, (v2)).
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Par les 3 derniers paragraphes, on déduit xg(Ic,(v1)) = xa(Io,(v2)). O

Ainsi, nous avons démontré tous les résultats élémentaires concernant les condi-
tions C1 et C2 sur les graphes colorés dont nous nous servirons dans la preuve du

théoréme principal.



CHAPITRE VII

LA CLASSIFICATION DES CLASSES DE COULEUR DE SOMMETS PAR
TAILLE

Dans leur article, Kiefer et Schweitzer introduisent des notions de grandes et pe-
tites classes de couleur que nous présentons maintenant. Cette division de struc-
tures par leur taille est une astuce combinatoire qui permet de séparer I’étude de

cas.

Comme nous le mentionnons au chapitre 9, les résultats de ce chapitre servent
a borner, pour une partie du jeu de Kiefer-Schweitzer, le nombre de coups scin-
dant de grandes CCS. Pour les petites, ’évaluation est plus difficile et nécessite
des résultats sur le graphe auxiliaire qui sont présentés au chapitre 8, un graphe

auxiliaire étant un graphe fini non orienté construit a partir d’un graphe coloré.

7.1 Fonction potentielle

La notion de fonction potentielle associe & un graphe coloré un nombre. I’intérét

de ce dernier est mis en évidence par les propositions 7.1.1 et 7.1.2.

Définition 7.1.1. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non vide.
La fonction potentielle sur T'y est définie par f : T'y - N, telle que f(G) :=
Yoevixa(I(w))| ou G eTy et I(v) = {(v,w) |weV}.
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Remarquons que la fonction potentielle sur I'y est bornée supérieurement en fonc-

tion de la taille de V.

Proposition 7.1.1. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non vide
et soit f : I'y - N, une fonction potentielle sur I'y,, et G € I'y,. On a alors que

(@) < VR
Preuve. Notons que |E| > |yg(E)| pour tout ensemble E ¢ V2. Donc,

F(G) = Euevxc(I(v))] € Boev I (v)] = Suer [V] = [V O

La proposition suivante nous permet de nous servir de la fonction potentielle sur

I'yy comme outil pour la démonstration de divers résultats sur les graphes colorés.

Proposition 7.1.2. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non vide.
Toute fonction potentielle f : 'y, — N est strictement décroissante, c’est-a-dire que

siG,G"el'y et G>G', alors f(G) < f(G").

Preuve. Soit v € V. Comme G > G’, en appliquant la proposition 4.3.7 partie 3)

et en posant F := I(v), on obtient

Ixa(I(0))] < Ixar(I(v))l
Ainsi,

F(G) = ZoevIxa(I(v))] < Zvev[xe (1(v))] = F(G). O

L’intérét de la fonction potentielle peut se voir ainsi. Soit une chaine de graphes
colorés selon la relation de raffinement strict. On peut alors, par la proposition
7.1.2, en déduire une chaine de leurs nombres associés par la fonction, tout cela
selon la relation <. Puis, par la proposition 7.1.1, cette derniére chaine est alors

bornée en longueur, ce qui borne automatique la longueur de la chaine initiale.
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7.2 Classes de couleur grandes et petites

Les notions de petite et de grande classe de couleur constituent probablement 'idée

clé de la preuve de Kiefer-Schweitzer, car elle permet de séparer en plusieurs cas.

Définition 7.2.1. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non vide
et G € I'y. Soit une fonction ¢ : N - N*, qu’on nomme fonction de seuil. Une
classe de couleur C' € C est dite grande ou grande selon la fonction t si |C| > t(|V]).

De maniére analogue, cette derniére est dite petite ou petite selon la fonction t si

Gl <t(VD-

La notation suivante est utilisée lors de la démonstration du lemme 7.2.1.

Notation 7.2.1. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non vide,
et G € I'yy. On dénote chacune de ses grandes classes de couleur de sommets par

B;.. On note alors B := UkBk.

On utilise ’abréviation grandes CCS pour se référer aux grandes classes de couleur

de sommets.

Soit G > GG'. Dire que GG =g GG’ est alors équivalent a dire que le raffinement G’ ne

scinde pas les grandes CCS.

Le lemme suivant est utile pour la démonstration du théoréme principal.

Lemme 7.2.1. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non vide,
et GG € I'y bien dissociant et respectant C1 et C2. Soit ¢, une fonction de seuil.
Soit G* un raffinement de G tel qu’il scinde une CCA incidente d’une grande

CCS. Supposons de plus que ce raffinement et le nettoyage complet subséquent

ne scindent aucune grande CCS de G, alors f(nett.(G*)) > f(G) +t(n).

Preuve. Par simplicité, posons G’ := nett.(G*). Soit B 'ensemble des grandes

CCS de G.
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Par hypothése, il existe alors C', une CCS incidente avec B telle que
G >c G* = G', ce qui implique G >¢ G'. C' est scindée en au moins deux classes,

oll I’on note 'une d’entre elles C".

C respectant C1, par le lemme 6.4.1, il existe C et Cy, des CCS de G, tels que
C c C; x Cy. Puisque C est incidente avec B, alors au moins une des CCS C] et
C5 est une grande classe de couleur. Sans perdre de généralité, supposons qu’il
s'agisse de Cy. (Dans l'autre cas, on pourrait définir I (v) = {(u,v) | u € E} et

l'utiliser au lieu de Ig(v) pour le reste de la preuve.)
Partie 1 : Montrons qu’il existe v € C tel que G > 1, (v) G'.

De G > G’, on infére facilement G >, (,y G'. 1l reste alors a montrer que G £;._(,
co (V) cqy (V)

G'.

En appliquant le lemme 6.4.1, on trouve alors qu’il existe v € C; tel que @ c

Ng(v) € N&(v).

Cela signifie qu’il existe uj,uy € V tels que uy € NZ,(v), us ¢ N2 (v) et up,ug €

N (v). De cela, on infére (v,u1) € C7, (v,uz) ¢ C" et (v,uy), (v,usz) € C.

De cette derniére relation et de C' € CyxCy, on infére uy, us € Cy. Ainsi, (v,uq), (v,us) €
Ic,(v). On déduit aussi du paragraphe ci-dessus que xg(v,u1) = xa(v,ug) et

XG/(UJ ul) # XG’(U7 u2)'
Cela montre par définition que G ;§102 w) G
Partie 2 : Montrons que pour tout u € Cy,|xa (Ic,(w))| > |xa(Io, (w))] + 1.

De G >0y (v) G’ (le résultat de la partie 1) et la proposition 4.3.7, on déduit
Ixc(ey (v))] < xar(Ie, ()] et donc |xa (e, (0))] + 1 < [xer (Lo, (V)]

Par hypothése, G respecte C2. Appliquons le lemme 6.4.3 partie 2). Ainsi, pour
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tout u € Cy, comme v € C; aussi, on a que xg(Io,(u)) = xa(Io,(v)). Donc, pour

tout u € C1, |[xa(Ley,(w))] = [xa({e, (v))]-

Comme C5 est une CCS de G, par la proposition 4.3.5, il est alors une MCCS
de G'. Puisque C est une grande CCS de G et vu I'hypothése comme quoi le
raffinement G > G’ ne scinde aucune grande classe de couleur, C est alors aussi

une CCS de G'. De fagon analogue, en utilisant le lemme 6.4.3 partie 2), on trouve

que pour tout u € Cy, |xa(Ic, (u))] = |xer (Ic, (v))).

Des derniers résultats des trois derniers paragraphes, on déduit facilement le ré-

sultat voulu pour cette partie.

Partie 3 : Montrons le lemme directement. Mais juste avant, écrivons quelques

résultats.
Résultat 1 (R1) :

Par le résultat de la partie 2,

> Ixer (e, ()l > 3 (Ixa(ley(w)] +1)

ueCh ueCh

> Ixa (e, (w)] +1C]

ueC'y

> Ixa(Ie,(w))| +t(n) (puisque C; est grande)

u€C1

v

Résultat 2 (R2) :

Ixar(I(0)] = Ixar(Ie, (v) U Tv-c, (v(v))]
= |xar(Ioy, (v))Uxer (Iy-c, (v))| (union disjointe par le lemme 6.4.2)

= [xer (I, (0)| + [xar (Iv-c, (v))] (aussi vrai pour x¢ notons)

Résultat 3 (R3) :
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Par G > G’ et la proposition 4.3.7, alors pour tout u € V2,

IXar(I(u))| 2 [xa(L(u))| et [xar(Iv-c,(w))| 2 Ixa(Tv-c,(u))].

Finalement,

F(G@) =3 Ixe(I(w)|

= ZC; Ixer (I(u))] + VZ_C Ixer (1(u))]
=( > Ixer(Toy(w)+ Y- Ifo(Iv_cz(u))|)+ > Ixa(Iv(w))| (Par R2)
ueCq ueCq ueV-Cq
2 EC: IXc (e, (w))] +t(n) + Zc IXa(Tv-c, (u))| + VZC Ixa(Iv(u))] (Par R1 et R3)

= f(G) +t(n) (en regroupant et en utilisant R2 avec xg). O

Ceci clot I'ensemble des résultats importants sur les conditions C1 et C2.



CHAPITRE VIII

LES GRAPHES AUXILIAIRES

Dans le but de prouver le théoréme principal, nous allons associer a un graphe
coloré G et & une chaine de raffinements de graphes colorés se terminant par G

un graphe fini non orienté dit graphe auziliaire de G.

L’intérét est que, pour une chaine de raffinements de graphes colorés, on peut
en déduire une chaine d’inclusions de leurs graphes auxiliaires. Cela correspond
a la proposition 8.1.2. Comme la taille d'un graphe auxiliaire est bornée par la
proposition 8.1.1, cela borne la longueur de la chaine d’inclusions, puis celle de la

chaine de raffinements.

8.1 Définition et résultats élémentaires

Définition 8.1.1. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non vide,
et ¢t une fonction de seuil. Soit une chaine de raffinements de graphes colorés bien

dissociants dans I'y, Gy > Gy > ... = Gj_1 = G. Soit
T :=={C c V| C est une petite CCS de G ou de G, pour i entre 0 et [ —1}.

Le graphe auziliaire de G, noté Auz(G), est alors défini par le couple (Vauz(c), Eaua(c))

ol :
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1) Vaua(ay = VouVi ot V; := {(C,M,i) | C € Te, M ¢ C}. On dit alors que V; est
I’ensemble des sommets du bas et Vi, celui des sommets du haut.

2a) (C,M,1) € V; et (D,N,0) € Vj respectent entre eux la relation symétrique
E puz(c) si et seulement s’il existe un ensemble C’ € C de couleurs de G tel que

pour tout v e C'

V€ M < Né’cl(v) = N

2b) (C,M,1),(C", M’,1) € V; respectent entre eux la relation symétrique Fay. ()

si et seulement s’il existe C’,C" c C tels que pour tout v € C'
veM < Ngel(v)=M

et pour tout v € C'

V€ M’ <— Né’cu(v) = M

2¢) Aucune paire de sommets de Vi ne respecte la relation Ea,.(q)-

Le graphe auxiliaire est non orienté, car E est une relation symétrique.

Auz(G) est un abus de notation, car la construction du graphe auxiliaire dé-
pend de la chaine de raffinements associée (a cause de la définition de T) et pas

seulement du graphe G. Son utilisation a pour but d’alléger I’écriture.

Notons que les graphes auxiliaires ont une taille bornée en fonction de la taille de

leur graphe coloré associé.

Proposition 8.1.1. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non vide,
et t une fonction de seuil. Soit une chaine de raffinements de graphes colorés bien
dissociants dans I'y, Go = G > ... = Gi-1 = G. Pour Aux(G) = (VoUWi, Eaue(c)),

on a alors que |Vp| < 2n- 28 et [V1] < 2n -2 ou n = |V].
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Les expressions de ces bornes supérieures sont cruciales plus tard pour déduire la

formule de la borne de W Ls(n) trouvée par Kiefer et Schweitzer.

Preuve. Construisons une chaine de raffinements commencant par le graphe G,
puis prenant tous les graphes de la chaine Go > Gy > ... > G;_1 > G qui résultent

d’un raffinement scindant une CCS, on peut alors construire la chaine

GO >S Gll >S ... >§ G;c (*)
ou S :={(v,v) |veV}.
Notons que les graphes de cette chaine contiennent toutes les CCS des graphes de

la chaine Gy > Gy > ... > G;_1 > G. En effet, un graphe résultant d’un raffinement

ne scindant pas de CCS n’a aucune nouvelle CCS comparé a son prédécesseur.

Notons que par la proposition 4.4.3, on peut décomposer tous les raffinements
composés de la chaine ci-dessus en raffinements atomiques. Ainsi, en procédant a

un réétiquetage, on peut construire la chaine suivante de raffinements atomiques
G >s Gl >§ ... >% G;ﬁ. (%)
Notons que Gff = Gy et G}’ =G
Avec l'aide de la proposition 4.3.7, on infére que
0 <Ixey(S)l < Ixar(S) <. <Ixar(S) < n.

Cela veut dire que f < n, car autrement, il existerait au moins n entiers entre 0

et n exclusivement, ce qui est absurde.

Par la proposition 4.4.4, avec E/ := S, pour i = 1,..., f, G| posséde une et une
seule CCS qui n’est pas une CCS de G'. De cela et du fait que G7 a |[xg2(S)[<n

CCS, on infére que la chaine (**) contient au plus n + f < 2n CCS.
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Comme la chaine (#) est incluse dans la chaine (x*), cette premiére doit alors

également avoir au plus 2n CCS et donc au plus 2n petites CCS.
Ainsi, |Tg| < 2n.

Notons également qu’une petite classe de couleur a une taille d’au plus t(n) et a

donc au plus 21" sous-ensembles.
De cela, on infére que |[Vg| < 2n - 210 et [Vi| < 2n - 24 également. [

Proposition 8.1.2. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non
vide, et ¢t une fonction de seuil. Soit une chaine de raffinements de graphes colorés
bien dissociants dans I'y, Go>G1 > ... > G 1 >G >G> ... >2Gp 2G'. On a

alors que Aux(G) ¢ Aux(G").

Précisons que Aux(G) est construit & partir de la chaine Go > G > ... > G;_1 > G et

Auz(G") a partir de la chaine I'y, Go>G1> ... > G 1 >G> Gy > ... > Gy = G

Preuve. Soit G = (V, E), G":= (V', E'), Aux(G) = (Vau(c), Faus(c)) et Aux(G")
(Vaua(crys Eauz(cry)- Pour montrer que Aux(G) ¢ Aux(G’), il suffit de montrer que

VAux(G) c VAux(G’) et EAux(G) = EAu:E(G’)-
A) VAux(G) S VAux(G’)

Pour construire les graphes auxiliaires, on construit d’abord les ensembles T et

Tor. Par analyse de leurs définitions, on a que Tg € Ter.
Puis, on construit Vaye(a) = VouVi et Vayzary i= Vyuly.

Prenons (C, M, 0) € V, quelconque. Ainsi, C' € Tg et M < C. Comme T € Tgr, alors
C' € Ter. Par respect des conditions, on a alors que (C,M,0) € V. Cela montre

que Vp € V. De méme, on montre que Vi € V/, puis Vaue(@) € Vaue(ar)-
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B) EAua:(G) € EAuz(G”)

Soit (C,M,1),(D,N,0), deux sommets dans Viauu(a) € Vaus(ar) respectant la re-

lation E4,,(c). Montrons alors qu’ils respectent Eayqcr)-

Le fait que les sommets respectent E4,,(c) signifie qu’il existe C(, € Cq tel que

pour tout v e C,

veM <= Nge (v) =N,

Posons C'¢r = {xa/(w) € V2 | xg(w) € C,} et montrons que pour tout v € C,

veM — N&C,G,(v) = N. Par le paragraphe ci-dessus, il suffit de montrer que

Néer (v) = N+,7C,G, (v).

Cette égalité est équivalente a {u e V' | xg(v,u) € C,} = {u eV | xar(v,u) € CL},
puis & xa(v,u) €C, <= xc(v,u) € Cj. Cela est vrai par la définition de C'¢ au

paragraphe ci-dessus.

Ainsi, la relation F4,,(cr) est respectée pour les sommets donnés.

Dans le cas de paires de sommets de V7, la preuve est analogue, et pour les paires
de Vj, elle est triviale. Ainsi Eayp(c) € Faus(cry, puis Auz(G) ¢ Aux(G'). O

8.2 La cloture triangulaire

Définissons maintenant la cloture triangulaire, qui est une opération définie sur
les graphes finis non orientés et qui a pour but de s’appliquer sur les graphes

auxiliaires dans le contexte de ce mémoire.

Définition 8.2.1. (Kiefer et Schweitzer, 2016) Soit H = (V, E'), un graphe fini non

orienté comme ci-dessus ot V' est une union disjointe de V; et V{, respectivement
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les sommets hauts et les sommets bas.

Puisque le graphe est non orienté, E est une relation symétrique et peut ainsi étre

représentée comme un ensemble de paires de sommets, c.-a-d. E ¢ {{u,v} | u,v €

V1.
La cloture triangulaire de H est alors le graphe AH = (V| EA) tel que :
1) Pour tous u,v € V, si {u,v} € E, alors {u,v} € Ex.

2) Pour tous u,v € Vi, s’il existe w € V' = VyuV] tel que {u,w},{v,w} € E, alors

{u,v} € Ex.

3) Pour tous u € Vj et v € V}, §'il existe w € V] tel que {u,w},{v,w} € E, alors

{u,v} € Ea.
4) Aucune autre paire de sommets de V' ne respecte la relation Ex.

Additionnellement a cela, on note 7 itérations de la cléture triangulaire d’un graphe

H par AY(H). H est dit clos si H=A(H).

I1 découle directement de la définition 8.2.1 que H ¢ A(H).

Il n’est pas difficile de trouver des critéres pour caractériser les graphes qui sont

clos. Tout d’abord, remarquons le fait suivant.

Proposition 8.2.1. Soit H = (VUV4, E), un graphe fini non orienté comme ci-
dessus. La condition A(H) = H est alors équivalente aux trois conditions sui-
vantes :

1) Si u,v,weVy et {u,v}, {v,w} € E, alors {u,w} € E.

2) SiueVy, v,weVy et {u,v},{v,w} e E, alors {u,w} € E.

3) SiueVy, vyweVy et {u,v},{u,w} e E, alors {v,w} e E.
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L’implication directe se démontre simplement par la contraposée : si une des deux
conditions est fausse, appliquer la cloture triangulaire rajouterait une aréte et le
graphe serait ainsi non clos. En ce qui concerne la réciproque, on peut vérifier que
si un graphe respecte les trois conditions de la proposition 8.2.1, alors lui appliquer

la cloture triangulaire ne lui rajouterait aucune nouvelle aréte.

Définition 8.2.2. Soit H = (VoUV4, E), un graphe fini non orienté comme ci-
dessus, et v e V].

U(v):={ueVy|{v,u} € E}, soit 'ensemble des sommets hauts reliés a v.

L(v) ={ueVy|JweU(v) tel que {u,w} € E} soit I'ensemble des sommets bas

reliés & U(v).

Les définitions 8.2.3 et 8.2.4 ont pour but d’aider & la formalisation de la propo-

sition 8.2.2.

Définition 8.2.3. Soit G = (V, E'), un graphe fini non orienté et soit A c V.

A est dit une clique si pour tous u,v € A, alors {u,v} € F.

Définition 8.2.4. Soit G = (V, E'), un graphe fini non orienté et soit A, Bc V.

A est dit biparti avec B si pour tout u € A et pour tout v € B, alors {u,v} € E.

La proposition suivante caractérise alors entiérement les graphes clos.

Proposition 8.2.2. Soit H = (VyuVy, E), un graphe fini non orienté, tel que
VZnFE=@. On a alors que H est clos (c.-a-d. A(H) = H) si et seulement si pour
tout v € V7,

1) U(v) est une clique,

2) L(v) est biparti avec U(v),

3) U(v) u L(v) est une composante connexe du graphe.

Preuve. Implication directe : Supposons H clos et montrons les trois conditions.
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1) Soit w,w’ € U(v) ¢ Vi. Par définition de U(v), {v,w},{v,w'} € E. Par la
condition C1) de la proposition 8.2.1, {u,w} € E.

2) Soit uw e L(v) € Vy et w e U(v) € Vi, alors {u,v},{v,w} € E. Par la condition
C2) de la proposition 8.2.1, {u,w} € E.

3) Montrons d’abord que U(v) U L(v) est un ensemble connexe. Tout d’abord,
pour tous uy,us € U(v), ceux-ci sont connectés par les arétes {uj,v} et {v,us}.
Puis, pour tout u € U(v) et pour tout [ € L(v), alors il existe u’ € U(v) tel que les
sommets u et [ sont connectés par les arétes {u,v}, {v,u'} et {u',l}. Finalement,
pour tous 1,1y € L(v), alors il existe u,u’ € U(v) tels que les sommets [; et [ sont

connectés par les arétes {ly,u}, {u,v},{v,u'} et {u 1}

En supposant qu’un sommet de U(v) est relié & un autre sommet de V;, par la
proposition 8.2.1 1), ce nouveau sommet est relié & v et donc appartient a U(v).
De méme, en supposant qu’un sommet de L(v) est relié & un autre sommet de V7,
par la proposition 8.2.1 3), ce nouveau sommet est relié & v et donc appartient a
U(v). Par définition de L(v), on ne peut relier U(v) & aucun autre sommet de V4.
Enfin, par le critére 6), aucun sommet de L(v) n’est relié a un autre sommet de

Vo.

Réciproquement, supposons que le graphe respecte les trois conditions ci-dessus

et montrons que les trois conditions de la proposition 8.2.1 sont respectées.

1) Soit u,v,w € Vq, si {u,v},{v,w} € E, alors u,w € U(v). Comme on a supposé

que U(v) est une clique, on en conclut que {u,w} € E.

2) Soit u € Vy et v,w € V4, si {u,v},{v,w},e E alors, u € L(v) et w € U(v).

Puisqu’on suppose que U(v) est biparti avec L(v), on en déduit que {u,w} € E.

3) Soit u € Vy et v,w e Vi, si {u,v},{u,w}, e E, alors u € L(v) et ue L(w). On a
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donc que u appartient aux deux composantes connexes U(v)uL(v) et U(w)uL(w),
qui sont donc égales. Ainsi, U(v) = U(w) et L(v) = L(w). Comme U(v) = U(w)

est une clique, on en conclut {v,w} e E. [

8.3 Résultats utiles

Comme énoncé auparavant, le but des graphes auxiliaires est d’associer a une
chaine de graphes colorés selon la relation de raffinement une chaine de leurs
graphes auxiliaires selon la relation d’inclusion. Le lemme suivant permet alors
de borner la longueur de cette nouvelle chaine, ce qui borne en méme temps la

longueur de la chaine initiale.

Lemme 8.3.1. (Kiefer et Schweitzer, 2016) Soit H',..., H*, une suite de graphes
finis tels que, pour tout i € {1,...,k}, les propriétés suivantes sont vérifiées :

1) Vigi = VIOVZ.

2) |VE| = |V{| < m pour un certain m.

3) Vi< Vitl et Vi Vyi+L,

1) A(HY) € Hi+,

5) Hi # Hi+l,

6) Le graphe H® induit sur V7 est vide, c.-a-d. E(H?) n (V{)? = @.

On a alors que k € O(m).

Preuve. Par le fait que H' ¢ A(H?) et les conditions A(H?) ¢ H*! et HY # H*Y
alors H' ¢ H*'. Avec ce résultat et le fait que les graphes sont finis, avec un nombre

de sommets bornée par 2m et un nombre d’arétes bornée par m(2m —1) + 2m =

2m? + m, toutes les suites respectant les conditions de 'énoncé sont finies.

Soit H!,...,H* une suite respectant les conditions qui est aussi la plus longue

possible (finie par la derniére remarque). Si Vi = VEOVF alors

Vol = Vil =m. (*)
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En effet, autrement, on pourrait définir H**! simplement en ajoutant un autre
sommet & VF ou V¥ et les conditions de la suite seraient respectées, ce qui contredit

que notre suite est de longueur maximale.

Remarquons par la troisiéme condition que tous les V} (resp. Vi) sont sous-
ensembles de V¥ (resp. VF). Pour la suite des choses, posons Vj := V¥ et V; := V.
Définissons maintenant la suite H',..., H* comme la derniére suite, mais simple-
ment en faisant en sorte que tous les ensembles de sommets soient déja complets.
Formellement, on pose pour tout i, Vi := Vo Vi := Vi, puis les arétes ne changent
pas. Par (), on a que pour tout ¢, |[V{| = [V{| = m. Remarquons que cette suite res-
pecte les conditions de ’énoncé et est donc un autre exemple de suite de longueur

maximale. Sans perte de généralité, bornons sa longueur asymptotiquement.

Soit H?, un graphe de la suite. Puisque la suite est de longueur maximale, le graphe
H™! est un graphe minimal (au sens de I'inclusion) respectant les conditions de
I'énoncé. La condition 4) A(H?) ¢ H*! nous dit que parmi tous les potentiels
H#*1 A(H?) est le candidat minimal. Si H? # A(H?), alors A(H?) respecte toutes

les conditions et 'on peut déduire qu’il faut que H*! = A(H?).

Autrement, si H' = A(H?), le graphe minimal respectant les conditions posséde
une seule aréte supplémentaire, c.-a-d. |[E(H™*') — E(H?')| = 1. Notons toutefois

qu’on ne peut dire que I'aréte est choisie arbitrairement.

Remarquons finalement que le premier graphe doit étre H!' = (Vyu Vy,@). En
effet, si Pon suppose que le premier graphe a au moins une aréte, (V5 u V;, @)
pourrait lui servir d’antécédent respectant toutes les conditions, ce qui contredirait

la maximalité de la longueur de la suite.
Pour borner la longueur de la suite, nous prouvons I’énoncé suivant :

Lemme A : Soit j tel que A(H7) = HJ. Il existe alors r < 4 tel que A(HI*") = HI*",
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Preuve :

n u +1) = HJ naquer= énonceé est r ¢. Intéressons-
Dans le cas ou A(H7*) = Hi*1 on a que 1 et I’énoncé est respecté. Intéressons

nous alors au cas ou A(HJ*) # Hi+l,

Comme HJ est clos et la suite est minimale, on a que le graphe H7*! ne fait que
rajouter une seule aréte a son prédécesseur. Par la contrainte 6) de la suite, aucun
sommet dans Vj n’est relié par une aréte dans V5. Nous n’avons alors que deux

cas a traiter.

Cas 1 : Supposons que H7*! a une aréte supplémentaire entre deux sommets du
haut. Notons-la e = {v,v'}, ott v,v" € V;. Pour le graphe H7 posons U(v),U(v'), L(v)
et L(v") tels que dans la définition 8.2.2. Par la proposition 8.2.2 appliquée a H7,
U(v) et U(v") sont des cliques, L(v) est biparti avec U(v) et L(v) est biparti avec

U(v). Cela est illustré par la figure 8.1.

[ o] v/

U(v)\{v} U(v)\{v'}

L(v) L(v")

FIGURE 8.1 Deux composantes connexes du graphe H7

Dans les figures utilisées lors de cette preuve, le fait que deux ensembles de som-
mets soit reliés par une aréte signifie que tous les sommets d’'un ensemble sont

reliés & tous les sommets de l'autre.

Par la proposition 8.2.2, les ensembles U(v)u L(v) et U(v") u L(v") sont alors des

composantes connexes du graphe HJ.
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Comme dit précédemment, H7*! ajoute aréte {v,v'} & H7, illustrée en rouge a la
figure 8.2. Notons que joindre deux sommets de composantes connexes distinctes

d’un graphe réduit le nombre de composantes connexes de 1.

v V!

U(w)\{v} U@)\{v'}

L(v) L(v")

FIGURE 8.2 Composante connexe du graphe H7+!

On a ensuite que H7*2 = A(H7*1). On ajoute alors les arétes illustrées en vert a

la figure 8.3.

U(v)\{v} U(v)\{v'}

L(v) L(v")

FIGURE 8.3 Composante connexe du graphe HJ+2

Puis, de méme, Hi*3 = A(HJ*?). On ajoute alors les arétes illustrées en bleu a la

figure 8.4.

Cette composante connexe est alors égale & Upjss(v) U Lyi+s(v) ot les ensembles
sont définis en fonction du nouveau graphe H7*3. On peut également vérifier que
Upirs(v) = U(v) uU(v") est une clique et que Lyj+a(v) = L(v) u L(v") est biparti

avec Upgj+s(v). Donc, pour v, toutes les conditions de la proposition 8.2.2 sont
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U(v)\{v} U(v)\{v'}

L(v) L(v")

FIGURE 8.4 Composante connexe du graphe HJ+3

respectées. Cela est également vrai pour tous les sommets dans Upj+s (v)UL gi+s (v).

Les sommets en dehors de cet ensemble font partie d’ensembles U et L inchangé
depuis H7 (qui est clos, rappelons-le) et respectent donc aussi les conditions de la
proposition 8.2.2. On en conclut, par cette méme proposition, que H7*3 est clos,

avec r =3 < 4.

Cas 2 : Supposons que HJ*! rajoute une aréte entre un sommet du haut et un

sommet du bas. Dénotons-1a e = {v,u}, ot v € Vj et u e Vj.

Cas 2a : Supposons que u n’est connecté a aucun sommet de V) dans le graphe

Hi. Cela est illustré par la figure 8.5.

v

U(v)\{v}

L(v)

FIGURE 8.5 Composante connexe du graphe H7*!

Puis, H7*2 = A(H7*1). Cela ajoute les arétes illustrées en vert a la figure 8.6.
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U(v)\{v}

L(v)

FIGURE 8.6 Composante connexe du graphe HJ+2

On peut vérifier que Upj2(v) = U(v) U {u} est une clique est que Ly« (v) = L(v)
est biparti avec Upgj+2(v). De maniére analogue a précédemment, on en déduit que

Hi*2 est, clos, avec r = 2 < 4.

Cas 2b : Supposons que u est connecté¢ a un sommet de Vi, disons v’, dans le

graphe HJ. Remarquons que u € L(v'). Cela est illustré par la figure 8.7.

U(v'")

U(v)\{v}

L(v)\{u}

L(v)

FIGURE 8.7 Composante connexe du graphe H7+!

Puis, H/*2 = A(HJ*!). Cela ajoute les arétes illustrées en vert a la figure 8.8.
Ensuite, H/*3 = A(HJ*2). Cela ajoute laréte illustrée en bleu a la figure 8.9.
Finalement, Hi** = A(H7*3). Cela ajoute 'aréte illustrée en brun a la figure 8.10.

On peut vérifier que Ugi+a(v) = U(v) u U(v") est une clique est que Lyja(v) =

L(v)u L(v") est biparti avec Upj+a(v). De maniére analogue a précédemment, on
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[v] U(v')

U(v)\{v} \\ L(v)\{u}

Lv)| Tu]

FIGURE 8.8 Composante connexe du graphe HJ+2

OSED
\

U(v)\{v} \ L(v)\{u}

L(v) u

FIGURE 8.9 Composante connexe du graphe HJ*3

U(v)\{v} L(v)\{u}

L(v) [u]

FIGURE 8.10 Composante connexe du graphe HJ+*

en déduit que H7** est clos, avec r = 4 < 4.
On a ainsi démontré le lemme A.

L’idée centrale est que lorsque le graphe H? est clos, le graphe H**! doit connecter

deux composantes connexes de H**! ce qui réduit leur nombre d’une unité. Le
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graphe initial de notre suite, H' = (Vo u V1, @), possédant 2m sommets isolés, et
donc 2m composantes connexes, on peut réduire leur nombre au plus 2m fois.
Par le lemme A, puis en remarquant que H'! est clos, le nombre de composantes
connexes diminue aprés au plus 4 étapes. Ainsi, la longueur £ de la suite est bornée

supérieurement par 4 -2m. Donc, k€ O(m). O

La lemme suivant est aussi utilisé dans la démonstration du théoréme principal.

Lemme 8.3.2. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non vide, et
t une fonction de seuil. Soit une chaine de raffinements de graphes colorés bien
dissociants dans I'y,, Gy > Gy > ... > G;_1 > G. Supposons que G respecte C1 ainsi

que I'équivalence contraire. On a alors que A(Auz(G)) € Auz(GM).

Précisons que Aux(G) est construit a partir de la chaine G > Gy > ... > G,_1 > G

et Auz(GM) a partir de la chaine Go > Gy > ... > G > G > GW.
Preuve. 1) Montrons d’abord que Va(auz(c)) € Vaua(cm)-

Par définition de la cloture triangulaire, nous avons que Va(auz(@)) = Vauz(c)-

Ainsi, il reste & montrer que Vauz(c) € Vayz(cm)y-

Comme G > GO, par la proposition 8.1.2, Auz(G) ¢ Aux(GM) et on en déduit

directement que Vauz(c) € Vaya(am)-
2) Puis montrons que E(A(Auz(G))) € E(Auz(GM)).
Soit Vj et V; tels que E(A(Aux(G))) = E(Aux(G)) = VoUVi.

Soit {u,v} € E(A(Aux(G))). Par définition de la cloture triangulaire, on a quatre
possibilités non nécessairement mutuellement exclusives :

a) {u,v} € E(Auz(Q))

b) u,v eV et il existe w € Vj tel que {u,w}, {v,w} € E(Auz(G))
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c) u,v eV et il existe w e V; tel que {u,w},{v,w} e E(Auz(G))

d) ueVy, veV et il existe w e V] tel que {u,w},{v,w} € E(Auz(G))
Montrons pour chacune des catégories que {u,v} € E(Auz(GM)).
2a) Supposons {u,v} € E(Auz(G)).

De G > GO et par la proposition 8.1.2, on a que Aux(G) € Auz(G™)). Puis, on
infére de cela que E(Auz(G)) ¢ E(Aux(GM)) et donc {u,v} € E(Aux(GM)).

2b) Soit u,v € V1 et w € Vj tels que {u,w}, {v,w} € E(Aux(G)).
Posons u = (Cy, My,1),v = (Cy, M3,1) et w= (D, N,0).

De {u,w} € E(Auz(G)), on déduit alors qu’il existe un ensemble C; ¢ Cg tel que
pour tout vy € C,

U1€M1 <~ N57C1(Ul):N~ (*)

De {v,w} € E(Auz(G)), on déduit alors qu’il existe un ensemble C’ c Cg tel que
pour tout vy € Cy,

vy € My <= Ngeo(v2) =N, (+)

Par la proposition 3.3.1, pour toute couleur dans C’, il existe une couleur duale
quelque part dans C. Soit Cy I'ensemble de toutes les couleurs duales des couleurs

de C’. Ainsi, on a que xg(v1,v2) € C' si et seulement si xg(va,v1) € Ca.

Nous avons donc

Néer(v1) ={v2 € V | xa(v1,v2) €C'} = {va € V| xa(va,v1) €Ca} = Ng e, (v1).

(*") se traduit alors par :

Il existe Cy € Cq tel que pour tout vy € Co,

UQEMQ — Né7c2(U2):N. (**)
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Maintenant, pour prouver le résultat principal de la section 2b), c¢.-a-d. que {u,v} =
{(CY, My),(Cy, M3)} € E(Auz(G(M)), montrons qu'il existe C’ € Ca) tel que pour
tout vy € Cf,

(S M1 <~ Né(l)’CI(/Ul) = MQ. (A)

En fait, il faut aussi montrer qu’il existe C” € Ca) tel que pour tout vg € Cy,
Vg € M2 <~ Né(l)p,,(vg) = Ml- (A,)

Par symétrie, la démonstration de (A’) ci-dessus est analogue a celle de (A).

Concentrons-nous sur (A).

En manipulant bien les symboles et en remarquant que Vi = Vz1) nous pouvons

montrer que (A) est équivalent a ce qu’il existe C' € Cy tel que tout vy € C1,
v €M = (Vv2 € Vg, va€ My <= o) (v1,02) € C’)

Posons simplement C’ := x ) (M x Ms).

Nous séparons la preuve de (A) en trois étapes (A.1), (A.2) et (A.3).

(A.1) Si vy € My, alors pour tout vs € Vg, vo € My implique x ) (v1,v9) € C'.
(A.2) Si vy € My, alors pour tout v € Vg, vo ¢ My implique x o) (vi,v2) ¢C'.
(A.3) vy ¢ My implique Né(l)ﬂ,(vl) + M.

Montrons quelques résultats avant cela.
Montrons quelques résultats avant de prouver les autres sous-cas.

On peut reformuler le résultat (x) du début de la section 2b) : il existe un ensemble

Ci € Cq tel que pour tout m € C,

meM, — (pour tout m’ € Vg, (m’eN <~ xa(m,m’") eCl)).



111

De méme, pour (*x) : il existe un ensemble Cy C C tel que pour tout m’ € Cy,

m' € My <= (pour tout m € Vg, (m eN < yxg(m,m’) e (32)).

Pour le reste de la preuve, soit m et m’ deux représentants quelconques de M, et

My, avec m € My et my € Ms. On a alors directement des derniers résultats que
m’ € N si et seulement si xg(m,m") e ', (1)

puis que

m e N si et seulement si xyg(m,m') eC'. (1"

Intéressons-nous maintenant a la couleur :

Xao (m,m') = (xa(m.m'), {{ (xa(w,m'), xa(m,w)) | w e Vg ).

Par les équivalences (1) et (1), les éléments du multiensemble respectent alors

pour tout w e Vg :

Co xCq siweN
(Xg(w,m,),XG(m,UJ))G . (***)
(C/Co) x (CJCy) siw¢ N

Cela nous donne un bon portrait des couleurs dans 'ensemble C’ := x o) (M1 x My).

Passons maintenant a la preuve de (A.1),(A.2),(A.3).

(A1)

Prouvons que si v; € My, alors xaa) (v1,v2) € C’ pour tout vy € M.

Supposons vy € M et vy € My. On a alors par définition de C' que y o) (v1,v2) € C'.

Cela conclut la démonstration de (A.1).

(A.2)

Prouvons que si v; € My, alors xaa)(v1,v2) ¢ C' pour tout vg € Vg\Mo.
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Supposons vy € M et vy € Vg \ My et montrons que x ) (vy,v9) ¢C'.

Dans le cas ol vz € Cy\Ma, on déduit directement de (*) et (+*) que Ng . (v1) = N
et Nge,(v2) # N, de sorte que N§ o (v1) # Nge,(v2). Cette inégalité implique
I'existence d’un élément dans un ensemble mais pas dans I'autre. Il existe donc
w € Vg tel que

we NG e (v1) ®we Nge,(v2).

Ce qui est équivalent a

X (v, w) € Cy & xa(w,vy) €Co,

puis finalement a

(xa(w,va), xa(vi,w)) € (C\Ca x C1) U (C2 x C\Cy).

Avec la supposition yqa) (v1,v2) € C' = xam (My x My), les éléments du multien-
semble de la deuxiéme composante de cette couleur devraient respecter (* * %),
mais ce n’est pas le cas, car le résultat ci-dessus est un contre-exemple. L’hypo-

thése du début du paragraphe est donc fausse, ce qui conclut ce cas.

Il faut aussi considérer le cas o vy € V5 \Cs.

Supposons encore Xaa) (v1,v2) € C' = xaa) (My x My).

Il existe alors (m,m’) € My x My tel que xqm (v1,v2) = X (m, m').

Comme G > GM| x(v1,v2) = xg(m,m').

Puis, comme G respecte C1, xg(v2,v2) = xg(m',m').

Cela est impossible par la proposition 4.1.1, car m/ € Cy et vy ¢ Cy. La supposition

est une fois de plus fausse.

Cela conclut la démonstration de (A.2).
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Maintenant, prouvons la réciproque en utilisant la notation avec I’ensemble voisi-

nage :
(A.3)
Prouvons que vy ¢ My implique N, ,,(v1) # Mo.

Pour cela, supposons v; € C1\M; et montrons qu’il existe un élément vy € V' tel

que vy € My et vg ¢ Né(lw,(vl).

En fait, en prenant un élément vy € M, quelconque, il est possible de montrer
que Yo (v, v2) ¢ C'. La preuve est alors analogue & la premiére moitié¢ de étape

(A.2). Cela conclut la démonstration de (A.3) et donc de (A).

Cela conclut le cas 2b). Les cas 2¢) et 2d) se démontrent de fagon similaire. [

Nous avons finalement besoin du résultat suivant.

Lemme 8.3.3. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non vide, et
t une fonction de seuil. Soit une chaine de raffinements de graphes colorés bien
dissociants dans I'y,, Go > G1 > ... > G;_1 = G = Gy = ... > G, = G'. Supposons
que G et G’ respectent C1 et C2 et qu’il existe une classe de couleur C' de G telle
que G >¢ G'. Si C est une CCA de G uniquement incidente avec des petites CCS
de G et qu’aucune petite CCS de G n’est scindée, alors Auxz(G) # Aux(G').

Preuve. On a que C est scindée dans G’ en au moins deux CCA qu’on note C’

et O.

Par le lemme 6.4.1, il existe C et Cy, des CCS de sommets telles que C ¢ C x Cs.
Comme C' est uniquement incidente de petites CCS, on a que C et Cy doivent

étre des petites CCS.

Par le lemme 6.4.1, en prenant B comme étant ’ensemble des petites CCS de G,

on déduit qu’il existe v € Cy tel que @ c NZ,(v) ¢ Ni(v).
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Posons M :={ueCy | N} (u) = N} (v)}. En retraduisant en langage logique, cela
veut dire que pour tout w € C, alors u € M si et seulement si N}, (u) = N, (v).

Ainsi, par définition du graphe auxiliaire, Auz(G’) doit contenir une aréte entre

ses sommets (C1, M, 1) et (Cy, N2 (v),0).

Au contraire, Aux(G) ne contient pas cette aréte. Montrons-le par contradiction
en supposant le contraire. Cela veut dire qu’il existe C, une MCCA de G pour

laquelle, pour tout u € Cy, ue M <= N} (u) = N& (v).

Comme v € Cy et méme v € M, en vérifiant sa définition, on a alors que N} (v) =
N¢ (v). Par @ € N, (v) € N&(v), on déduit @ c Ni(v) € Ni(v). On peut vérifier
que cela implique @ c C c C. Puisque C est une MCCA non vide incluse dans C,
une CCS, on en déduit qu’il existe une CCA non vide incluse dans C', ce qui est

impossible, car les classes de couleur doivent étre disjointes entre elles. [

Ceci clot I’ensemble des résultats sur les graphes auxiliaires. Nous disposons main-
tenant de tous les lemmes nécessaires afin d’aborder la démonstration du théoréme

principal de l'article de Kiefer et Schweitzer au chapitre suivant.



CHAPITRE IX

DEMONSTRATION DU THEOREME PRINCIPAL

Comme mentionné précédemment au chapitre 5, ¢(G) := ming, maxg, val(G; Sy, S).
De plus, on a aussi remarqué que WLy (G) < ¢(G). Ainsi, il reste essentiellement

a borner supérieurement ¢(G).

Assignons au joueur 2 d'une partie du jeu de Kiefer-Schweitzer une stratégie qu’on
note S%. Puisque cette stratégie n’est pas nécessairement optimale, on a alors que

¢(G) :== minmax val(G; Sy, So) < max val(G; Sy, S5)

Se  S1

La valeur a la droite de I'inégalité est alors ce que nous cherchons finalement a

borner. On pose ¢/(G) := maxg, val(G; S1,55). Ainsi, ¢(G) < ¢ (G).

La stratégie 5% est une fonction I'yy - I'yy, donc de propriété de type markovienne.

L’algorithme suivant définit cette fonction.

Algorithme 9.0.1. Un tour du joueur 2 dans une partie du jeu de Kiefer-
Schweitzer ol ce dernier applique la stratégie S;. L’algorithme a pour entrée un
graphe coloré G.

1: G < nett(GQ)

2 : tant que A(Aux(G)) # Aux(G) faire
3: G« GW

4 G < nett.(G)
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5: fin tant que

6 : retourner GG

Notons que si le joueur 2 suit cette stratégie durant le jeu, il n’y a alors que
trois type de coups effectués : les raffinements du joueur 1, les raffinements de
Weisfeiler-Lehman effectués par le joueur 2, puis les nettoyages complets effectués
par le joueur 2. On appelle les deux premiers types les coups canoniques. On

remarque d’ailleurs qu’ils ont tous deux un cotit individuel de 1.

Désignons par graphes apparaissant dans la partie tous les graphes résultant de
ces trois types de coups. Il est important de les distinguer des graphes joués dans

le jeu, soit ceux retournés par chaque joueur a la fin de leur tour.

Précisons que, lors de I'algorithme 9.0.1, le calcul de Auz(G) utilise comme chaine
de raffinements associée celle de tous les graphes apparaissant dans la partie avant

G inclusivement.

Notre objectif & présent consiste a borner le cotit total d’'une partie du jeu de
Kiefer-Schweitzer quand le joueur 2 applique la stratégie S). Pour nous aider,
nous séparons les coups effectués en plusieurs catégories et bornons le cott total

de chacune d’entre elles.

En premier lieu, remarquons que ’on peut borner tout de suite le cotit de tous les
coups canoniques scindant des CCS directement ou par le biais de leur nettoyage

complet subséquent.

Lemme 9.0.1. Soit une partie du jeu de Kiefer-Schweitzer ayant G pour graphe
initial, ol le joueur 2 suit la stratégie S). Le cott des coups canoniques scindant
des CCS ou pour lesquels leur nettoyage complet subséquent scinde une CCS est

au plus n :=|Vg|.

Preuve. Supposons que durant une partie du jeu de Kiefer-Schweitzer, il y a au
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moins n + 1 coups scindant des CCS. On peut alors prendre les graphes G, G,

..., Gpnyi1, qui apparaissent dans la partie directement aprés un tel coup.

Counsidérons la chaine

G>s5sG1>s Gy >s - >s Gy

En appliquant la proposition 4.3.7 avec £ = S, on déduit

0 <Ixa(S) <Ixa (S < <Ixan.(S) <n.

On déduit donc 'existence de n entiers strictement situés entre 0 et n, ce qui est

absurde.

Il y a donc au plus n coups scindant des CCS. Disons que parmi tous ces coups,
il y en a ny qui soient canoniques et ny qui soient des nettoyages complets. Donc,
ny + ny < n. Chaque nettoyage complet scindant des CCS est précédé d’un coup
canonique. Il y en a donc le méme nombre ny. Si parmi ces derniers, on exclut
ceux qui scindent des CCS (pour ne pas compter en double), on se retrouve avec
ng < ny coups restants. Comme les coups canoniques ont un cott individuel de 1, le
cotit total des coups canoniques scindant des CCS ou pour lesquels leur nettoyage

complet subséquent scinde une CCS est de ny +ng<n [

Pour les coups canoniques, il ne nous reste alors plus qu’a borner le cotit des ceux
qui scindent uniquement des CCA et pour lesquels leur nettoyage subséquent ne
scinde aucune CCS. Notons I'emploi du mot uniquement. En effet, si un coup
canonique scinde a la fois une CCS et une CCA, son coiit est déja pris en compte

par le lemme précédent.

Pour nous aider, nous séparons le reste des coups canoniques a considérer en
deux cas que nous désignons par un symbole, car ils sont particulierement longs

a énoncer.
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Cas « : Le coup canonique scinde une CCA incidente avec de grandes CCS. De

plus, le coup ainsi que le nettoyage complet subséquent ne scindent aucune CCS.

Cas 3 : Le coup scinde une CCA incidente uniquement avec des petites CCS. De

plus, le coup ainsi que le nettoyage complet subséquent ne scindent aucune CCS.

Lemme 9.0.2. Soit une partie du jeu de Kiefer-Schweitzer ayant G comme graphe
initial, ot le joueur 2 suit la stratégie S, alors le coit des coups canoniques de

cas « est au plus n?/t(n), ou t(n) est la fonction de seuil et n := |V

Preuve. Posons G comme graphe initial et considérons une chaine avec tous
les graphes qui apparaissent dans le jeu. On peut alors considérer les k coups

canoniques de cas a G; > G} qui apparaissent dans le jeu. Notons que nett.(G}) =

Gi+1-

Par le lemme 7.2.1, on déduit f(G;)+t(n) < f(nett.(G})) pour tout ¢ entre 1 et k,
ot f est la fonction potentielle définie & la section 7. Comme la fonction potentielle

est décroissante par la proposition 7.1.2, on en déduit de nett.(G;) = G que

f(nett.(G?)) < f(Gisr).

Ainsi, f(G;)+t(n) < f(Gyi1). On peut montrer par itération que f(G1)+k-t(n) <
f(G}), ce qui implique k- t(n) < f(Gy) < n?, par la proposition 7.1.1, et on en

conclut que k <n?/t(n), on k correspond aussi au cott des coups. [

Lemme 9.0.3. Soit une partie du jeu de Kiefer-Schweitzer avec G comme graphe
initial, ol le joueur 2 suit la stratégie S). Le cout des coups canoniques de cas [

est alors O(n24™) ou t(n) est la fonction de seuil et n = |V

Preuve. Soit la suite G, ..., G* de tous les graphes apparaissant dans une partie
du jeu de Kiefer-Schweitzer résultant d’un coup canonique de cas [ suivi d'un

nettoyage complet.

Montrons que la suite Auz(G'),..., Auz(GF) respecte les conditions du lemme



119

8.3.1, ot Aux(G?) est défini a partir de la chaine de raffinements de tous les

graphes apparaissant dans la partie avant G inclusivement.

Posons m := 2n % 2t(") ou n = |Vgzi|. Notons que pour chaque G* de la suite, nous
avons Vi, (ci) = Vi U Vi Par la proposition 8.1.1, on a alors que |V{| = [V{| < m.

Cela montre les conditions 1) et 2).

La condition 6) est une propriété des graphes auxiliaires, qui est donc respectée

par les éléments de notre suite.

De G > G**1, par la proposition 8.1.2; on infére que Auz(G?) ¢ Aux(G*1), ce qui
implique que Viuu(ciy € Vaus(giry et donc que Vi € Vit et Vi € Vi1 Cela montre

la condition 3).
Par le lemme 8.3.3, la condition 5) est respectée.
Montrons finalement la condition 4).

Cas 1) G, G**! sont tels que G**! résulte d’un coup canonique de cas § du joueur
2 suivi d’un nettoyage complet par le joueur 2.

Par analyse de l'algorithme, on a que G > G > G+l On a alors par la proposi-
tion 8.1.2, que Auz(Gi™) ¢ Auz(G*1). Comme A(Auz(G?)) ¢ Aux(G'™M), par
le lemme 8.3.2, on en conclut que, A(Aux(G?)) € Aux(GH1).

Cas 2) G, G*! sont tels que G**! résulte d’un coup canonique de cas § du joueur

1 suivi d’un nettoyage complet par le joueur 2.

Par analyse de 'algorithme, remarquons que le graphe G* re¢u par le joueur 1
doit respecter A(Auz(G?)) = Aux(G?). Comme G > G™! par la proposition
8.1.2, Aux(G?") ¢ Auz(G™!) et on en conclut que A(Aux(G?)) € Aux(GH1).

Ainsi, la chaine Aux(G'),..., Aux(G*) respecte toutes les conditions du lemme
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8.3.1 et on a que k € O(m) = O(n2!(). Cette chaine contenant tous les graphes
résultant de coups canoniques de cas ( suivis d’un nettoyage complet, cela veut

dire que le nombre et donc le cotit de tous les coups canoniques de cas 5 est borné

par O(n2t™). [

Il reste alors & borner le cott des nettoyages complets effectués par le joueur 2.
Pour cela, il est plus simple de borner le cotit des nettoyages (tout court) effectués.

Séparons-les en ceux scindant des CCS et ceux ne le faisant pas.

Les nettoyages scindant des CCS ont un cott individuel d’au plus 2. Par la pro-

position 6.3.1, leur nombre est <n. Ainsi, leur coit est < 2n.

Les nettoyages ne scindant pas des CCS consistent en un seul raffinement pour
faire respecter la condition C1. Leurs cotits individuels sont donc d’au plus 1. Ne
pouvant étre effectués plus d’une fois dans un nettoyage complet, leur nombre est
donc borné supérieurement par le nombre de nettoyages complets. Puisque ces
derniers sont toujours effectués aprés des coups canoniques, on en déduit que le
nombre total de nettoyages ne scindant pas des CCS est borné par le nombre et
donc le coiit des coups canoniques. Ainsi, par les lemmes 9.0.1, 9.0.2 et 9.0.3, ce

dernier est de O(n + n?/t(n) +n2tm).

Dans le but de calculer ¢/(G), il faut ajouter les coiits des coups canoniques et des

nettoyages complets. On obtient

¢(G) = (O(n) + O(*[t(n)) + O(n2"™)) + (O(n) + O(n +n*[t(n) + n2t(”)))

= O(n +n2[t(n) + n2t™)
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Puis, en posant t(n) := logs(n)/2, on obtient

+ n2lon(m)2)

d(G)=0(n+ Tom(]2

= O(n +n?/loga(n) +n3/?)

= O(n?[loga(n))

Ce qui nous permet finalement d’obtenir le résultat suivant qui est I'objectif prin-

cipal de I'article de Kiefer et Schweitzer.

Théoréme 9.0.1. (Kiefer et Schweitzer, 2016) Soit V' un ensemble fini non vide,
et G eTy. On a alors que WLy(G) = O(n?/logz(n)) ou n = |V].



CONCLUSION

L’objectif initial de ce mémoire était d’étudier les structures finies, en relation
avec les descriptions que I'on peut en faire par des formules logiques. Ce champ
disciplinaire, appelé théorie des modéles finis (Libkin,2004), se situe & l'inter-
section de lalgorithmique et de la logique. Cela est naturel, car le traitement
de structures relationnelles finies reléve de la combinatoire et nécessite des al-
gorithmes adéquats. D’un autre coté, la description des structures, et de leurs
propriétés, reléve aussi tout naturellement de la logique. D’ailleurs, les résultats
les plus spectaculaires de la théorie des modéles finis établissent des liens précis
entre algorithmes et formalisations logiques. Il existe en effet une correspondance
entre la complexité algorithmique d’un probléme et sa capacité a étre exprimé

dans une certaine logique.

Il n’est malheureusement pas possible, dans le cadre de ce mémoire, d’aller beau-
coup plus loin sur ce sujet. Il reste qu’il est tout de méme important de souligner
que la borne de Kiefer et Schweitzer a des conséquences importantes en logique.
Nous allons maintenant les résumer sans entrer dans les détails qu’on peut retrou-

ver dans (Grohe, 1998) et (Immerman et Lander, 1990).

Une fagon naturelle d’évaluer dans quelle mesure deux structures finies, par exemple
des graphes, sont facilement distinguables est d’établir quel genre de formule de
la logique du premier ordre permet de les distinguer. Dans ce but, on peut tout
d’abord déterminer des classes de complexité de formules, et ¢’est justement 1’ob-

jectif des classes L, et Ci que nous allons maintenant introduire.

Soit L la logique de premier ordre. Afin de créer une autre logique, on peut par
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exemple limiter de nombre maximal de variables pouvant apparaitre dans une
formule. Le fragment (ou classe) £* est ainsi formé de toutes les formules de la
logique du premier ordre utilisant au plus k variables. Par exemple, 3xVyR(z,y) A

32T (x) appartiendrait a £2.

On pourrait penser que L limite le rang de quantificateurs (c.-a-d. le nombre
maximal de quantificateurs imbriqués les uns sur les autres) a k, mais ce n’est
pas le cas. On peut d’ailleurs en donner un exemple simple, par une définition
inductive de prédicats. Par exemple, soit R une relation binaire quelconque et

considérons les formules suivantes :

¢o(7) = R(x,x)

¢1(x) = JyR(z,y) A do(y)
¢2(z) = FyR(z,y) A 1(y)
¢3(x) = FyR(z,y) A d2(y)

Pour chaque formule ¢;(x), son indice i correspond a son rang de quantificateur.

Donc, ¢3(y) est une formule de L? avec un rang de quantificateur de 3.

Comme le dénombrement occupe une place centrale en combinatoire, il est tout
naturel d’étendre £* & C* en ajoutant le quantificateur 3> pour tous les ¢ € N.
Ce symbole est défini de telle sorte que 3*'z¢(x) signifie qu'il existe au moins i
éléments qui satisfont la propriété ¢. Il est possible de définir ce quantificateur
avec la logique de premier ordre avec le symbole d’égalité. Par contre, pour des
logiques comme LF, cela n’est pas possible et donc ajouter ce symbole permet

d’exprimer davantage de propositions.

On constate la pertinence de WL, en logique formelle en remarquant que, pour
deux graphes donnés, deux sommets ont la méme couleur dans la stabilisation de

WL, si et seulement s’ils satisfont exactement les mémes formules de C? (Grohe,
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1998). De plus, deux graphes donnés sont distinguables dans C* si et seulement,
s’ils sont distinguables par WL, (Immerman et Lander, 1990). Finalement, on
sait aussi que le nombre d’itérations nécessaires avant que WLy ne se stabilise

correspond au rang de quantificateurs d’une formule de C* distinguant les graphes.

Par le théoréme principal du mémoire, le paragraphe ci-dessus et la remarque
que Palgorithme WL, peut étre défini par une formule de C3, on infére le résultat

suivant :

Corollaire C.0.1. (Kiefer et Schweitzer, 2016) Toute paire de graphes & n sommets
distinguables par une formule de C3 le sont alors également par une formule de C3

ou le rang de quantificateur ne dépasse pas O(n?/log(n)).

On voit donc que la borne supérieure pour l'algorithme WLy permet de borner
la complexité d’une formule logique. 1l s’agit donc d’un résultat trés représentatif

du domaine de la théorie des modéles finis.

Ce type de résultat justifie pleinement 1’objectif de ce mémoire qui était d’éclaircir
la preuve de Kiefer et Schweitzer en rajoutant des concepts et des étapes inter-

médiaires pour rendre le raisonnement plus clair et explicite.

Pour terminer, il est utile de revenir sur tout le travail accompli et de mettre en

lumiére mes contributions personnelles.

Au chapitre 2, nous avons tout d’abord présenté ’algorithme de Weisfeiler-Lehman
de dimension 1 en procédant d’abord par une approche intuitive. Cela a pour
but de motiver la version en dimension 2 et aussi d’introduire les mécanismes
fondamentaux qui sont en jeu. Les choses se sont d’ailleurs développées dans cet

ordre historiquement.

Au chapitre 3, 'algorithme de Weisfeiler-LLehman de dimension 2 tel que formalisé
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par Kiefer et Schweitzer a été justifié comme étant juste lorsque ce dernier a pour
sortie le booléen indiquant que ses deux graphes d’entrée ne sont pas isomorphes.
Le concept de graphe coloré a été formalisé et un diagramme a été introduit pour
aider a visualiser leur raffinement. De plus, la distinction a été faite entre les

graphes colorés isomorphes et équivalents.

Les concepts de classes et multiclasses de couleur, la relation > et les raffinements
atomiques et composés ont été introduits au chapitre 4 et plusieurs résultats élé-

mentaires ont été démontrés sur ces derniers.

La description du jeu faite dans l'article original a présenté de nombreux défis
pour se convaincre que son usage dans la preuve était correct. Le chapitre 5 tente
donc d’étre plus clair a ce sujet et donner une approche intuitive pour permettre

de mieux saisir la motivation derriére sa définition.

Aux chapitres 5 et 9, les inégalités ayant pour but de borner supérieurement WL,

ont été explicitement écrites.

Au chapitre 6, les raffinements pour faire respecter les propriétés C1 et C2 ont
été formalisés, 1'article original nous semblant vague sur ce sujet. Le cott d’un
nettoyage a rigoureusement été borné. La proposition 6.4.1 a aussi été introduite

pour permettre de mieux comprendre les graphes colorés respectant C1.

Au chapitre 8, de nombreux diagrammes ont été introduits pour permettre de
mieux suivre la preuve du lemme 8.3.1. Similairement, les propositions 8.1.1, 8.2.1

et 8.2.2 ont été rajoutées pour rendre le raisonnement plus explicite.

Au chapitre 9, la séparation de la preuve en divers cas permettait de clarifier

I’argument.

En ce qui concerne les ouvertures offertes par ce mémoire, il y a en autre 'idée de
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généraliser les graphes de couleur pour pouvoir décrire 'algorithme de Weisfeiler-
Lehman de dimension k. Ainsi, un graphe coloré généralisé serait une couple (V, x)
ou x : V¥ - C. La plupart des résultats du chapitre 4 pourraient alors étre gé-
néralisés. De méme, peut-étre qu’une partie de la preuve de I'article de Kiefer et
Schweitzer pourrait s’appliquer pour I’algorithme de Weisfeiler-Lehman de dimen-
sion k, pour lesquels il n’y a toujours pas de borne supérieure connue analogue a

celle de Kiefer et Schweitzer.
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