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RÉSUMÉ

Cette thèse est composée de trois articles. Chaque article se concentre sur des prob-
lèmes différents et les résultats sont pertinents pour le travail empirique en macroé-
conomie.

Le premier chapitre concerne la capacité des modèles à vecteurs autorégressifs par
quantile (QVAR) à prévoir les risques macroéconomiques dans plusieurs contextes.
Les modèles QVAR ont été introduits par White et al. (2015), Chavleishvili and Man-
ganelli (2021) et Ruzicka (2021) dans les contextes de prévision de la valeur en jeu
(value-at-risk), des scénarios de prévision et de l’analyse structurelle. Par contre, leur
capacité à prévoir les densités et les quantiles dans les queues de distributions n’avait
pas encore été évaluée. Cet article propose de procéder à cette évaluation sur la base
d’une comparaison relative à des modèles paramétriques standards dans un exercice de
prévision pseudo-hors-échantillon couvrant 112 variables mensuelles aux États-Unis,
ainsi qu’une période de plus de 40 ans. Les modèles QVAR font systématiquement
mieux que les modèles paramétriques, particulièrement pour le marché du travail et les
taux d’intérêt. De plus, l’utilisation de facteurs estimés par composantes principales
comme dans Stock and Watson (2002a,b) et de facteurs quantiles introduits par Chen
et al. (2021) améliore la précision des prévisions, particulièrement pour le marché du
travail. Les QVAR sont donc des modèles adéquats pour la prévision de risque en
macroéconomie.

Le second chapitre porte sur le problème d’identification de chocs structurels en présence
de données macroéconomiques persistentes. L’approche par maximisation des parts
(Max Share) identifie un choc en maximisant sa contribution dans la décomposition
de la variance de l’erreur de prévision pour une variable cible à un horizon donné.1

Cette méthode est souvent appliquée sur des variables en niveau (par exemple, Barsky

1Cela s’applique aussi sur une séquence d’horizons ou, encore, sur une bande de fréquences
dans le domaine des fréquences.
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and Sims (2011) ou Zeev and Khan (2015)) et cible des horizons distants afin d’éviter
d’avoir à se prononcer sur la structure de cointégration du système. Nous montrons
théoriquement que cette stratégie mène généralement à des estimateurs non converents.
Nous illustrons dans des simulations Monte Carlo que ceci peut conduire à des biais
importants et des erreurs quadratiques (RMSE) plus grandes à des horizons intermé-
diaires et longs. Une application empirique aux chocs de nouvelles (news shocks) sur
la technologie spécifique à l’investissement (IST) et sur la productivité multifactorielle
(TFP) illustre la pertinence des résultats pour le travail empirique.

Le troisième chapitre présente une grande base de données canadienne2 et établit son
utilité pour le travail empirique. La base de données a été construite pour offrir une
version canadienne de la base de donnée FRED-MD (McCracken and Ng, 2016) qui
est disponible publiquement pour les États-Unis et elle a été créée pour pouvoir être
mise à jour régulièrement. Les millésimes (vintages) en temps réel sont aussi conservés
afin de soutenir d’éventuels travaux de recherche. L’article montre aussi que la base de
données présente une structure à facteurs latents relativement stable, qu’elle permet
d’améliorer notre capacité à prévoir les points de retournements du cycle canadien et
qu’elle améliore la précision des prévisions macroéconomiques. Nous montrons aussi
comment la base de données peut servir pour étudier l’hétérogénéité des réponses à un
choc de politique monétaire à travers le Canada.

Mots-clés: Régression quantile, risque macroéconomique, prévision par densité, prévi-
sion par quantile, facteurs quantiles, SVAR, identification par maximisation des parts et
inférence, racines unitaires, racines quasi-unitaires, asymptotique, environnement riche
en données, modèle à facteurs, prévision, analyse structurelle.

2La base de données est disponible publiquement et a été mise à jour à chaque mois depuis mars
2019. La version actuelle, ainsi que tous les millésimes (vintages) depuis mars 2019 sont disponibles ici:
https://chairemacro.esg.uqam.ca/donnees/base-de-donnees-canadiennes/.

https://chairemacro.esg.uqam.ca/donnees/base-de-donnees-canadiennes/


INTRODUCTION

La présente thèse est composée de trois articles où chacun porte sur une question per-

tinente pour le travail empirique en macroéconomie. En particulier, cette thèse couvre

des problèmes liés à la prévision du risque en macroéconomie, l’identification de chocs

structurels en présence de données persistentes et le travail empirique dans un environ-

nement riche en données.

D’abord, la crise financière de 2007 et la pandémie du COVID-19 ont mis fin à la

période de la Grande Modération. Ce retour de la volatilité macroéconomique dans les

pays occidentaux a été accompagné d’une prolifération de travaux de recherches sur la

modélisation du risque en macroéconomie. Des travaux comme ceux de Giglio et al.

(2016) et Adrian et al. (2019) ont popularisé l’utilisation de régressions quantiles et ont

établi qu’une hausse de stress financiers était liée à une distribution asymétrique de la

croissance de la production. Plusieurs études ont ensuite évalué la capacité de divers

indicateurs de stress financier dans ce type de modèles pour prévoir le risque sur la

croissance de la production (par exemple, Figueres and Jarociński (2020), Adams et al.

(2021) et Iseringhausen (2021)) et l’inflation (par exemple, Manzan and Zerom (2013),

Manzan (2015) et López-Salido and Loria (2020)). Dans ce contexte, White et al.

(2015), Chavleishvili and Manganelli (2021), Chavleishvili et al. (2021) et Ruzicka

(2021) ont introduit les modèles quantiles vectoriels autorégressifs (QVAR) l’analyse

dans un contexte multivarié.

Le premier chapitre contribue à cette litérature en offrant une évaluation au sens large

de la capacité de prévision du risque macroéconomique des modèles QVAR. Nous

procédons à une évaluation de la précision des prévisions par densité et par quantiles
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dans les queues de distribution des modèles QVAR à l’aide d’un exercice pseudo-hors-

échantillon. Celui-ci couvre 112 variables macroéconomiques mensuelles aux États-

Unis sur une période de plus de 40 ans pour des horizons de 1 à 12 mois. Nous

comparons le modèle QVAR à trois modèles paramétriques standards, soit un VAR

Gaussien, un VAR-GARCH et un VAR avec volatilité stochastique. Le modèle QVAR

fait souvent significativement et quantitativement mieux et rarement pire que les mod-

èles paramétriques standards. Les améliorations sont concentrées dans le marché du

travail, ainsi que les taux d’intérêt et de change. Introduire des facteurs estimés par

composantes principales (comme Stock and Watson (2002a,b)) ou des facteurs quan-

tiles introduits par Chen et al. (2021) permet d’améliorer significativement la précision

des prévisions de risque dans quelques cas comme pour le marché du travail. Nous con-

cluons que le modèle QVAR est une méthode adéquate de prévision du risque macroé-

conomique.

Ensuite, bien que le premier chapitre se concentre sur la prévision et demande essen-

tiellement à quel point les modèles QVAR offrent une représentation adéquate du risque

macroéconomique, l’intérêt principal de leur utilisation est la possibilité qu’ils offrent

d’évaluer si les chocs structurels peuvent avoir des effets différents à différents quan-

tiles des distributions des variables macroéconomiques.

L’identification des réponses de différentes variables à des chocs structurels est un prob-

lème important en macroéconomie et peut éventuellement permettre de discriminer en-

tre différents modèles théoriques. Cette identification est habituellement effectuée dans

des modèles vectoriels autorégressifs accompagnés de divers types de restrictions. La

plupart des modèles théoriques limitent le type de chocs qui peuvent avoir des effets

permanents ce qui implique des relations de cointégration3 et peut servir pour iden-

tifier des chocs structurels (par exemple, des chocs de productivité multifactorielle

3Des exemples sont disponibles dans King et al. (1991) et Serletis and Gogas (2014).
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TFP shocks comme Gali (1999)). Par contre, ces restrictions pourraient ne pas tenir

exactement dans les données et ce schéma d’identification requiert de contraindre le

comportement de long terme des séries lors de l’estimation. Dans ce contexte, Fran-

cis et al. (2014) a proposé d’utiliser une approche introduite par Faust (1998) et Uhlig

(2003, 2004) qui consiste à identifier un choc par la maximisation de sa contribution

dans la décomposition de variance des erreurs de prévision (ce que nous appelons le

Max Share). L’idée est donc d’échanger les restrictions de long terme qui imposent

que seulements quelques chocs ont des effets non nuls à un horizon infini par la re-

strictions que ces chocs sont dominants à un horizon fini, mais long. L’approche est

habituellement appliquée à un système estimés en niveau avec des variables possible-

ment cointégrées sans restrictions sur leur comportement de long terme (par exemple,

Barsky et al. (2015) ou Zeev and Khan (2015)).

Le second chapitre étudie les propriétés de l’approche d’identification par maximisa-

tion des parts (Max Share) dans le contexte particulier où les variables employées sont

persistentes4. Nous obtenons les distributions asymptotiques de cet estimateur et dé-

montrons qu’il converge vers une matrice aléatoire ce qui implique que les estimateurs

des vecteurs propres employés dans l’identification ainsi que les estimateurs des fonc-

tions de réponses sont non convergents. Nous montrons dans des simulations Monte

Carlo que les modèles VAR estimés en niveau dans ce contexte introduisent des biais

significatifs et des erreurs quadratiques (RMSE) plus importantes aux horizons inter-

médiaires et longs comparativement à leur estimation sous des représentations station-

naires (par exemple, en différence première ou imposant la cointégration). Ceci est

particulièrement important quand plusieurs chocs peuvent avoir des effets permanents.

Une application empirique aux chocs de nouvelles (news shocks) sur la technologie

spécifique à l’investissement (IST) et sur la productivité multifactorielle (TFP) illustre

la pertinence des résultats pour le travail empirique.

4C’est-à-dire qu’elles introduisent des racines unitaires ou quasi-unitaires dans le VAR.



4

Finalement, que ce soit dans le contexte de la prévision ou de l’analyse structurelle,

plusieurs études ont établit la valeur de pouvoir recourir à l’utilisation d’un grand en-

semble de variables macroéconomiques et financières. Par exemple, Stock and Wat-

son (2002b,a) ont proposé d’introduire des facteurs latents estimés par composantes

principales comme variables explicatives dans des modèles autorégressifs à retards dis-

tribués (autoregressive distributed lag). Cela améliore souvent la capacité de prévision,

même pour des algorithmes d’apprentissage automatique (e.g., Coulombe et al. (2021a,

2022)). Aussi, ces facteurs peuvent permettre de mieux approximer l’information

disponible aux agents économiques et améliorer l’identification de chocs structurels

(par exemple, Bernanke et al. (2005)). Par contre, construire une base de données

macroéconomiques avec plusieurs dizaines de variables sur une période longue est un

travail exigeant. Ceci peut aussi rendre difficile la mise à jour de résultats ou encore

leur comparaison à travers plusieurs études puisque divers choix sont effectués lors de

sa construction. McCracken and Ng (2016) ont introduit la base de données FRED-MD,

une base de données mensuelles aux États-Unis qui imite la base de données employée

par Stock and Watson (2002a,a), pour répondre à ce besoin.

Le troisième chapitre répond à ce besoin en introduisant une grande base de données

pour le Canada sous le même principe que McCracken and Ng (2016). La base de

données contient quelques centaines d’indicateurs économiques canadiens et provin-

ciaux. Elle a été conçue afin de faciliter sa mise à jour régulière et ses millésimes

(vintages) en temps réel sont disponibles publiquement5. Cette base de données permet

d’éviter aux chercheurs le travail nécessaire pour prendre en compte les changements

méthodologiques. Nous établissons quatre aspects utiles de cette base de données pour

la recherche empirique en macroéconomie. Premièrement, la structure à facteurs ex-

plique une fraction importante de la variation observée dans les données et semblent

5La base de données est disponible publiquement et a été mise à jour à chaque mois depuis mars
2019. La version actuelle, ainsi que tous les millésimes (vintages) depuis mars 2019 sont disponibles ici:
https://chairemacro.esg.uqam.ca/donnees/base-de-donnees-canadiennes/.

https://chairemacro.esg.uqam.ca/donnees/base-de-donnees-canadiennes/
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offrir une approche adéquate pour en réduire la dimension. Deuxièment, la base de

données est utile pour prévoir les points de retournement du cycle d’affaires au Canada.

Troisièmement, elle a un pouvoir prédictif substantiel pour des indicateurs macroé-

conomiques clés. Quartièmement, la richesse des variables incluses est exploitée pour

étudier l’efficacité de la politique monétaire à travers les régions et les secteurs au

Canada.



CHAPTER I

QUANTILE VARS AND MACROECONOMIC RISK FORECASTING



ABSTRACT

Recent rises in macroeconomic volatility have prompted the introduction of quantile

VAR (QVAR) models for macroeconomic risk forecasting. This paper provides an

extensive evaluation of the predictive performance of QVAR models in a pseudo-out-

of-sample experiment spanning 112 US monthly variables over 40 years, with horizons

of 1 to 12 months. We compare QVAR with three parametric benchmarks: a Gaus-

sian VAR (VAR-N), a VAR-GARCH and a VAR with stochastic volatility (VAR-SV).

QVAR frequently significantly and quantitatively improves upon parametric bench-

marks and almost never performs significantly worse. Improvements are concentrated

in the labor market and interest and exchange rates. Augmenting the QVAR model

with factors (QFAVAR) estimated by principal components or the quantile factors sig-

nificantly improves macroeconomic risk forecasting in some cases, mostly in the labor

market. Generally, QVAR and QFAVAR perform equally well. We conclude that both

are adequate tools for modeling macroeconomic risks.

Keywords: Quantile Regression, Macroeconomic Risk, Density Forecasting, Quantile

Factors.

JEL Classification: C53, E37, C55.
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1.1 Introduction

The rise in macroeconomic volatility experienced during the 2007 financial crisis and

the COVID pandemic ended the Great Moderation and increased interest in modeling

macroeconomic risk. Work by Giglio et al. (2016) and Adrian et al. (2019) popularized

the use of quantile regressions in this context, providing evidence that financial stress

leads to asymmetry in output growth. Many studies applied those methods in a single

equation framework, focusing on the predictive power of financial indicators for risk

to output growth (e.g., Figueres and Jarociński (2020), Adams et al. (2021) and Iser-

inghausen (2021)) and inflation (e.g., Manzan and Zerom (2013), Manzan (2015) and

López-Salido and Loria (2020)). Others have proposed using quantile regressions as

part of a structural analysis studying the effects of shocks on the conditional distribu-

tion of output growth (Loria et al., 2023) or to distinguish between shocks to upside,

downside and total uncertainty (Forni et al., 2021). Against this background, several re-

searchers (White et al. (2015), Chavleishvili and Manganelli (2021), Chavleishvili et al.

(2021) and Ruzicka (2021)) have recently proposed a quantile VAR (QVAR) model for

forecasting, scenario analysis, macroprudential risk management and quantile impulse

responses. However, the forecasting performance of QVAR has yet to be assessed.

The use of linear quantile regression models is primarily motivated by their robust-

ness as approximations to conditional quantiles and distributions. Economic theory

can justify a wide variety of VAR processes for modeling conditional distributions1,

but all of them require committing to a particular functional form. Since linear quantile

1Occasionally binding collateral constraints (Aiyagari and Gertler, 1999) or a kinked Phillips
curve (Benigno and Eggertsson, 2023) suggest using a threshold VAR. The model in Acemoglu and
Scott (1997) imply a smooth transition process for output where the transition function emerges from
firm heterogeneity as only some firms opt to invest at a given point in time. Real options arguments
(Bernanke (1983) and McDonald and Siegel (1986)) and frictions to the supply of credit (e.g., (Adrian
and Boyarchenko, 2012) and (Brunnermeier and Sannikov, 2014)) can motivate the use of volatility-in-
means effects (e.g., Elder and Serletis (2010)).
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regressions provide a weighted least squares optimal linear approximation to the true

conditional quantiles (Angrist et al., 2006), they have been employed to produce fore-

casts or insights regarding macroeconomic risks in ways which are hopefully robust to

the unknown form of the underlying data generating process.

The first contribution of this paper to provide an extensive evaluation of the predic-

tive performance of the QVAR model. Other papers explored a similar comparison in

a single equation setting between quantile regression models and AR-GARCH mod-

els (e.g., Brownlees and Souza (2021), Iseringhausen (2021) and Kipriyanov (2022)).

Other papers compared quantile regression models with more sophisticated parametric

VAR alternatives (e.g., Carriero et al. (2021) and Caldara et al. (2021)), but the QVAR

model has yet to be compared to parametric alternatives. Throughout this paper, we

target conditional densities with a focus on both tails of conditional distributions. The

comparison features 112 US monthly macroeconomic variables and an out-of-sample

period of over 40 years with forecasting horizons of between a month and a year. This

contrasts with the typical forecasting evaluation in this literature which focuses on just

a few targets. We supplement this comparative analysis with some specification tests

used in the financial literature to evaluate value-at-risk models. This allows us to eval-

uate the 5th and 95th quantile forecasts produced by the QVAR model independently

of the choice of benchmark models and to inspect the contexts in which evidence of

misspecification can be found.

The forecasting experiment is built around bivariate VAR models where the target vari-

able is paired with the National Financial Conditions Index (NFCI). This is perhaps the

most interesting comparison as it is the most commonly used predictor in the growth-

at-risk literature following Adrian et al. (2019). There is also some evidence that credit

shocks are important drivers of macroeconomic fluctuations for a large number of vari-

ables (Boivin et al., 2020) such that financial stress is relevant to many of our target

variables insofar as it captures this type of shock. On this basis, we compare QVAR
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with three parametric alternatives. The first alternative is a Gaussian VAR (VAR-N)

which allows us to evaluate when and how much gain there is to moving beyond iid

disturbances. We also include a VAR-GARCH model as in Normandin and Phaneuf

(2004), Bouakez and Normandin (2010) or Bouakez et al. (2014) and a VAR-SV simi-

lar to those used by Cogley and Sargent (2005), Primiceri (2005) or Chan and Eisenstat

(2018) to offer two common and relatively simple ways we can introduce parametric

changes in volatility. However, unlike these authors, we do not pursue time-varying pa-

rameters in an effort to limit our deviation from the iid setting to changes in volatility.

Moreover, as we explain in Section 1.2, all four models (QVAR, VAR-N, VAR-GARCH

and VAR-SV) have in common that they impose a linear functional form on conditional

expectations at all future horizons.

We find that QVAR provides statistically significant improvements in tail density fore-

casting accuracy over the VAR-N model in close to half of all variables considered and

those improvements are frequently quantitatively important with reductions in density

scores on the order of 10 to 30% in many cases. These are particularly important for

labor market variables across all horizons considered and for interest and exchange rate

at shorter horizons. QVAR also offers improvements over a VAR-GARCH and VAR-

SV, albeit in fewer cases which are concentrated in those same groups of variables.

More importantly, QVAR almost never does statistically significantly and substantially

quantitatively worse than any of the parametric alternatives: it is therefore a robust way

to model macroeconomic risk. Those results surprisingly turn out to not be driven by

QVAR doing exceptionally better than the parametric alternatives during NBER reces-

sions. Finally, specification tests do reveal evidence of misspecification. In particular,

realized values which fall below or above the 5th and 95th quantile forecasts, respec-

tively, tend to be serially correlated whereas such ’tail events’ should be unpredictable

under a correctly specified model.

The second contribution of this paper is to extend the analysis to a data-rich environ-
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ment by augmenting QVAR models with latent factors estimated from our set of 112

target variables. Applications featuring principal component estimates (PCA) (e.g.,

Manzan (2015) and Coulombe et al. (2022)) and the recently introduced iterative quan-

tile regression (IQR) estimates of quantile factors (Chen et al., 2021) have been consid-

ered in the past, but all of them involve direct forecasting models in a univariate setting.

In contrast, factor augmented QVAR models jointly model the dynamic between ob-

served variables and latent factor estimates.

We find that QFAVAR and QVAR models tend to perform equally well at forecasting

macroeconomic risks across all variable categories. PCA and IQR factors may carry in-

formation which significantly overlaps much with the NFCI. However, QFAVAR mod-

els do provide statistically significant improvements in about 13% of cases, most of

them in the labor market across all horizons. Specification tests reveal that introduc-

ing IQR factors into the set of variables available to QVAR reduces the frequency of

misspecification and the incidence of serially correlated ’tail events.’ This suggests the

specifications issues reported in both cases may be due to the small set of variables

we consider. We conclude that QVAR and QFAVAR models are appropriate tools for

modeling macroeconomic risk.

The paper is organized as follows. Section 1.2 presents the QVAR model, details some

of its properties and explains how to use it for forecasting. Section 1.3 details the

forecasting experiment, the parametric alternatives and the tests used for evaluating

QVAR and QFAVAR models. Section 1.4, presents and discusses the results. Section

1.5 concludes.

1.2 Quantile VAR Models

The QVAR model considered in this paper has been studied for scenario analysis and

structural analysis by Chavleishvili and Manganelli (2021), Montes-Rojas (2021) and



12

Ruzicka (2021). For a 1 vector yt of time series, the conditional quantile [0 1]

of the -th variable takes the form

Q
k,t

(
x̃
(k)
t

)
=
∑
≤

0 ( ) +
∑
=1

∑
=1

( ) − + ( ) (1.1)

where x̃(k)
t contains the regressors for this equation. It is well known in this liter-

ature that quantile regressions admit a (restricted) random coefficient representation,

whereby data can be simulated by uniformly sampling parameters over a grid of quan-

tiles one equation at a time, one period at a time. This leads to

=
∑
≤

0 ( ) +
∑
=1

∑
=1

( ) − + ( )

yt = A0(ut)yt +
∑

=1

Aj(ut)yt−j + ε(ut) (1.2)

where ut [0 1] and A0(ut) is a lower triangular matrix with a null diagonal.

Contemporary terms are included to ensure coefficients across equations do not depend

on multiple ’s, but are instead independent to eliminate the need for a notion of

multivariate quantiles2. The triangular structure simplifies estimation and is applied to

all models compared in the forecasting experiment.

Before turning to estimation and forecasting, we consider a few properties of QVAR

processes. The QVAR model in (1.2) admits the following SVAR representation

yt = Ā0yt +
∑

=1

Ājyt−j + ε̄t (1.3)

where ε̄t :=
(
A0(ut) Ā0(ut)

)
+
∑

=1

(
Aj(ut) Āj

)
yt−j + ε(ut) and Āj :=

2The interested reader can also find a technical explanation in the Theorem 1 of Chavleishvili
and Manganelli (2021).
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E (Aj(ut)) under technical conditions spelled out in Proposition 1.5 of Ruzicka (2021).

This establishes that VAR and QVAR processes impose the same linear functional form

for conditional expectations. Moreover, when QVAR admits a VAR representation, re-

sults in Lütkepohl (2005) concerning linear transformations of the form Fyt apply. In

particular, if a large set of variables follow a QVAR(p) process (and thus a VAR(p)

process), then a subset of it will generally follow a VARMA( , ) process (with pos-

sibly some heteroskedasticity or other higher order dependence). We should therefore

expect that QVAR and VAR models offer similar mean forecasts under fairly general

conditions.

Equation (1.3) also shows that QVAR processes capture such things as changes in

conditional heteroskedasticity by allowing slope parameters to vary across quantiles.

If the coefficient matrices were constant across quantiles (i.e., Aj(ut) = Āj for

= 0 ), then we would have a linear model with iid shocks. This observa-

tion is also the reason why model (1.2) implies that the support of yt must generally

be bounded because otherwise quantile crossing would occur even in large samples. It

is best seen in the simpler QAR(1) case (i.e., = 1( ) −1 + ( )) where varia-

tion in the slope parameters mean the conditional quantiles of must cross somewhere

along the real line and bounding the process makes visiting this region a zero proba-

bility event3. When this condition is violated, the approximation QVAR provides to

the conditional distribution of yt in part of its domain may be poor4. However, as we

explain below, the quantile regression estimator we use enjoys an optimality property

which should limit this process to a small region. How much each of these points mat-

ter is an empirical question. Finally, the same univariate QAR(1) process is useful to

3See discussions in Koenker and Xiao (2006) and Hallin and Werker (2006) or Ruzicka (2021)
for the multivariate case.

4Ruzicka (2021) mentions that one could mitigate this problem by using nonlinear transforma-
tions of regressions in quantile local projection setting, but this lies beyond the scope of the present
paper.
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intuitively understand the technical condition under which a QVAR process is ergodic,

as well as both weakly and strongly stationary. In this simple case, the condition is

E ( 1( )2) 1 which allows for unit and explosive roots for some subsets of condi-

tional quantiles.

1.2.1 Estimation and Forecasting

The parameters of the QVAR process (1.1) can be estimated by linear quantile re-

gression (Koenker and Bassett, 1978) one equation at a time for a grid of quantiles.

Let β(k)( ) be all parameters for regression , including the intercept ( ), and

x
(k)
t =

(
1 x̃

(k)′

t

)′
be the corresponding vector of regressors. Then the estimator is

given by

β̂(k)( ) := argmin
β∈R(k+Kp)

∑
= +1

k

(
β′x

(k)
t

)
(1.4)

where
k
( ) := ( I ) is the quantile loss function. Under some technical

conditions which guarantee among other things that the process is strongly stationary

and ergodic, Ruzicka (2021) has established the asymptotic normality of this estima-

tor5. This estimator further enjoys a similar property to ordinary least squares under

misspecification as it offers the optimal linear approximation to conditional quantiles

in a weighted least square sense (Angrist et al., 2006). This ’robustness’ property is one

of the primary motivations behind its use for macroeconomic risk modeling.

In this paper, we produce all forecasts for QVAR models by simulating future sam-

ple paths from iteratively applying the random coefficient representation (1.2) using

5Using weights based on its asymptotic covariance matrix, β̂(k)(τk) viewed as a process over
τk [0, 1] converges to aKp+k-dimensional standard Brownian Bridge. The interested reader can also
find some results for the quantile regression estimator under unit roots and cointegration in Koenker and
Xiao (2004), Xiao (2009) or Cho et al. (2015).
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estimates obtained from (1.4). Specifically, at each point in time the parameters are se-

lected by choosing the point on the quantile grid that falls closest to a uniform random

draw for each equation . Iterating this forward allows us to draw a sample path

for yt+1 yt+12 and repeating this a large number of times allows us to compute a

variety of statistics at each point in time (quantile forecasts, mean forecasts, etc.).

This algorithm contrasts with the approach introduced by Adrian et al. (2019) in a

univariate context whereby the skewed t distribution of Azzalini and Capitanio (2003)

is fitted to closely match a handful of conditional quantile forecasts produced using

quantile regression estimates. On the other hand, it is closer in spirit to the method

used by Chavleishvili and Manganelli (2021) for stress testing and Chavleishvili et al.

(2021) for risk management in a macroprudential context as we can condition forecasts

on scenarios by simply imposing predetermined sequences of quantiles. It also mirrors

Ruzicka (2021)’s approach for obtaining quantile impulse responses. Considering this

is how the QVAR model was introduced, we limit our attention to this approach.

An important detail concerns the choice of a grid of quantiles. We opted to use a rel-

atively fine grid of 100 equally spaced quantiles, but note that some of those quantiles

may not be well estimated. Chernozhukov et al. (2017) suggested using extreme value

methods for quantiles beyond ( + ) 15 where + is the number of

parameters in the last equation. For example, a bivariate QVAR with a single lag es-

timated on 400 observations gives us the interval [0 15 0 85] whereas adding a second

lag reduces it to [0 225 0 775]. Parsimony may thus be even more important when

dealing with quantiles in the tails. For this reason, we follow Chavleishvili and Man-

ganelli (2021) and Chavleishvili et al. (2021) and use a QVAR with one lag throughout

the paper. This also obviates the need to implement necessarily different lag selection

procedures across models. Moreover, while information criteria to choose the number

of lags in each equation separately have been proposed in the literature (e.g., Koenker

and Machado (1999)), there currently is no counterpart for the entire QVAR process
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and this question is thus left open to future research.

1.3 Forecasting Experiment

In this section, we conduct an out-of-sample forecasting experiment in which we target

many monthly US variables obtained from the FRED-MD data set (McCracken and Ng,

2016) spanning the period between January 1959 to June 2022. Since all our models

will also feature the National Financial Conditions Index (NFCI) which is observed

from January 1971 to June 2022, we selected all target variables from FRED-MD which

started at least as early as the NFCI and did not feature any missing values in the July

2022 version of the data. This leaves us with a subset of 112 target variables. To obtain

many cycles of recessions and expansions, we set the start of the out-of-sample period

to January of 1980, giving us 6 NBER recessions and a total of 510 periods for model

comparison.

All target variables are transformed to induce stationarity6 and we target the resulting

values in = 1 12 months rather than period averages as forecasts are produced

iteratively through simulations for all models7. Finally, given our focus on forecasting

tails, a difficult balance must be struck between allowing a large sample size for esti-

mation and allowing the model to adapt to structural changes. We opted for a rolling

window of 400 observations, allowing the window to initially expand to this size to

include the two recessions from the early 1980s in the analysis.

6We follow McCracken and Ng (2016), except that we do not take second differences on interest
rates, unemployment rates, monetary aggregates and prices as in Bernanke et al. (2005). All transforma-
tions are given in Table A.1 Appendix.

7Results in Coulombe et al. (2021a) suggest that averaging single period forecasts ex post is
generally preferable to directly targeting averages when point forecasts are of primary interest, but this
question lies beyond the scope of this paper.
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1.3.1 Models

The forecasting experiment includes four bivariate models with the targeted variable

ordered first, followed by the NFCI. These models are the QVAR, as well as three para-

metric alternatives: a VAR-N, a VAR-GARCH and VAR-SV. The VAR-N is a useful

benchmark insofar as it is not obvious modeling moments beyond the mean is mean-

ingful for macroeconomic data (Plagborg-Moller et al., 2020). The VAR-GARCH and

VAR-SV models are interesting as common tools in the structural VAR literature which

relaxes the iid assumption of the VAR-N by allowing conditional volatility to change

over time. We further consider two additional variations on the baseline QVAR model

by introducing latent factor and latent quantile factor estimates as regressors, a set of

hitherto unexplored extensions we call a factor augmented QVAR or QFAVAR.

VAR-N This model takes the form

yt+1 = ν +A1yt + ut+1 ut+1 (0 Σ) (1.5)

We estimate mean parameters ν and A1 by ordinary least squares. The covariance

matrix of innovations is estimated as Σ̂ =
∑

=2 ûtû
′
t ( 2) where = 2,

= 1 and ût are residuals.

VAR-GARCH We follow the structural VAR literature (e.g., Normandin and Pha-

neuf (2004); Bouakez and Normandin (2010); Bouakez et al. (2014)) and create a

multivariate GARCH process by imposing that each ’structural’ shock follows its own

GARCH(1,1) process. Hence, we replace the normal for the vector of innovations with

ut+1 =Dεt+1 (1.6)

+1 =
√

+1 +1 +1 (0 1)
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+1 = (1 ) + 2 +

whereD is lower triangular to use the same restriction as in the QVAR model. We use

the same parameter estimates for ν andA1 and Σ as we do for the Gaussian VAR case.

D̂ is obtained from a Cholesky factorization of Σ̂. Series of ’structural residuals’ ε̂k,t

are then obtained on which individual GARCH(1,1) processes are fitted by maximum

likelihood.

(Bayesian) VAR-SV We use one of the restricted models featured in Chan and Eisen-

stat (2018) which essentially replaces individual GARCH processes featured in the

VAR-GARCH shown above by (random walk) stochastic volatility processes.

B0y +1 = µ+B1y + ε +1 (1.7)

+1 = exp ( +1 2) +1 +1 (0 1)

+1 = + +1 +1 (0 1)

We impose recursive short-run restrictions as with the QVAR and VAR-GARCH mod-

els such thatB0 is set to a lower triangular matrix with a unit diagonal. It is a common

choice (e.g., Cogley and Sargent (2005) and Primiceri (2005)). The model is estimated

using Bayesian methods with the following priors:

θ :=
(
vec ((µ B1)

′)
′

0 2 1

)′
(b V ) h0 (bh Vh) and ( )

We set bθ and Vθ as a Minnesota-type prior with common hyperparameter values cen-

tered on a random walk, except for the growth rates of consumption, exchange rates

and stock market indexes which we center on white noise. We center the value for

0 2 1 at 0 with a relatively large variance of 10 and likewise for the initial log variance

(bh = 0 and V = 10) following Chan and Eisenstat (2018). We use the shape = 5



19

and scale = 0 1( 1) as Chan and Eisenstat (2018) reflecting a relatively diffuse

prior centered on a small value (here, 0 1).

Their Gibbs Sampling algorithm has two particular features. First of all, it jointly

samples mean parameters θ for each equation whereas other algorithms would sample

free elements in B0 separately. Second of all, while it applies the common auxiliary

mixture sampler proposed by Kim et al. (1998) which allows using methods for linear

Gaussian state-space models, it also samples the sequence of log variances (ht) =1 in

a single step for each equation using the precision sampler of Chan and Hsiao (2014).

These features make the algorithm fairly efficient.

QFAVAR As a means of exploring the value of a data-rich environment for macroeco-

nomic forecasting, we introduce latent factor estimates as part of the vector of variables

yt in (1.2). This is similar in spirit to the FAVAR model of Boivin and Ng (2005),

although we do not impose restrictions that would strictly justify treating the target

variable and NFCI as ’observed’ factors. In all cases, latent factors are recursively esti-

mated using the in-sample data window. We collect our 112 variables into a matrix

and let variable obey

= λ′ift + (1.8)

where ft is a 1 vector of factors and λi is the corresponding vector of loadings. Fol-

lowing common practice since Stock and Watson (2002a,b), we obtain factor estimates

f̂t by principal components. We set = 1 factor out of concern for parsimony so our

vector of time series becomes yt = ( 1 )′. A natural alternative would be

to consider doing the same thing using the quantile latent factors recently introduced
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by Chen et al. (2021). In this case, we have

Q
i,t
( ft( )) = λi( )′ft( ) + ( ) (1.9)

with ( ) being ( ) 1. We obtain estimates f̃t( ) for the 5th and 95th quantiles

using the IQR algorithm (Chen et al., 2021). Again, we set ( ) = 1 for parsimony and

use yt = ( 1 (0 05) (0 95) )′.

1.3.2 Relative Forecasting Evaluation

To perform the model comparison, we follow Carriero et al. (2020) and Carriero et al.

(2022) in our evaluation of density forecasts and adopt the quantile weighted continuous

ranked probability score (CRPS) introduced by Gneiting and Ranjan (2011). For model

and variable , define the period ahead quantile forecasts as

+ ( ) := Q( )
t+h,v

( F )

and quantile scores as

( + ( ) + ) := ( + ( ) + ) (1.10)

where we recall that ( ) := ( I ). For a grid of quantiles, the quantile

weighted CRPS is defined as

(q̂t+h,v,m ν + ) =
2

1

∑
=1

( )
j
( + ( ) + ) (1.11)

where ν := ( ( )) =1 is a vector of weights and q̂t+h,v,m := ( + ( )) =1 stacks

quantile forecasts into a vector. Gneiting and Ranjan (2011) proposed using the func-

tion ( ) = (2 1)2 to put more weight on the tails. The use of this scoring rule is
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motivated by the fact that it is minimized in expectation by the true conditional density

(Gneiting and Raftery, 2007).

Diebold and Mariano (1995) statistics allows us to test the null hypothesis of equal

forecasting performance between models 1 and 2 using the following regression

(q̂t+h,v,m1 ν + )

(q̂t+h,v,m2 ν + ) = 1 2 + + 1 2

for each forecasting horizon and variable where 1 2 = 0 under the null8. In

this context, note that 1 2 0 means that model 1 is performing better than

model 2 (i.e., its average score is lower).

1.3.3 Absolute Forecasting Evaluation

In an effort to mitigate concerns with the choice of benchmark models, we supplement

the model comparison with specification tests used in finance for evaluating value-at-

risk models.

Quantile Mincer-Zarnowitz Tests Gaglianone et al. (2011) proposed a test of quan-

tile forecast optimality in the spirit of Mincer and Zarnowitz (1969) based on a quantile

regression by adapting an idea from Christoffersen et al. (2001). Let Q
i,t+h

( F ) and

Q
i,t+h

( F ) be the -period ahead -th quantile of variable conditional on informa-

tion F and its forecast by some model, respectively. If the model is correctly specified,

we should have

Q
i,t+h

( F ) = 0( ) + 1( )Q
i,t+h

( F ) := x′tα( )

8The constant is estimated by OLS and HAC standard errors are used in all cases.
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with α( ) := ( 0( ) 1( ))′ = (0 1)′ and xt :=
(
1 Q

i,t+h
( F )

)′
. These parame-

ters can be estimated by a quantile regression of realized values + on the quantile

forecasts Q
i,t+h

( F ) at the corresponding quantile . Under mild regularity condi-

tions, the Wald statistic testing the null of correct specification has a 2
2 asymptotic

distribution9. Note that simulation evidence in Gaglianone et al. (2011) suggest this

test suffers from size distortion in small sample (the true size tends to be larger than

the nominal size), but it tends to enjoy as much or more power than the more common

alternative tests based on dummy variables such as Kupiec (1995), Christoffersen and

Diebold (1998) or Engle and Manganelli (2004).

Coverage Tests We begin by defining

:= I
{ [

Q
i,t+1

(0 05 F ) Q
i,t+1

(0 95 F )
]}

as a dummy variable indicating when observations fall inside this symmetric 90% inter-

val10. Following Kupiec (1995), Christoffersen and Diebold (1998) leverage the idea

that a correctly specified model implies should be an iid Bernoulli variable with a

= 0 9 success rate. The resulting likelihood function is thus given by

L( ) = =1(1 )1− t t = (1 ) 0 1

where 0 =
∑

=1(1 ) and 1 =
∑

=1 where is the size of the pseudo-out-of-

sample period. The unconditional coverage test is based on a likelihood ratio statistic

which compares this likelihood evaluated at the nominal coverage rate = 0 9 and

9For the implementation, we follow the authors’ suggestion and use Koenker and Machado
(1999)’s estimator for the covariance matrix.

10Since these are binary events, this is equivalent to jointly testing coverage in the 5% tail on
each side of the distribution.
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its sample counterpart, = −1
∑

=1 , which is the maximum likelihood estimator.

Under the null, Christoffersen and Diebold (1998) show the likelihood ratio statistic

satisfies = 2 log (L( ) L( )) 2
1. The conditional coverage test changes

the alternative hypothesis by modelling possible serial dependence in as a first order

Markov Chain with transition matrix

1 :=

1 01 01

1 10 11


where = P ( +1 = = ). The likelihood function is then given by

L ( 1) = (1 01) 00 01
01 (1 11) 10 11

11

where :=
∑

=2 I +1 = I = counts transition cases with the maximum

likelihood estimator being again the sample shares of the relevant events, i.e 1 =

1 ( 0+ 1). Under the null, Christoffersen and Diebold (1998) shows the likelihood

ratio statistic satisfies = 2 log
(
L( ) L( 1)

)
2
2. Note that for both cover-

age tests, we follow Christoffersen (2004) and adopt the Monte Carlo testing approach

of Dufour (2006) and obtain exact finite sample p-values instead of relying on asymp-

totic approximations11. The ability to control the size of these tests exactly in small

sample is an advantage they possess over the previous specification tests. However, the

power of those tests varies with sample size12 and they require non-overlapping fore-

casts so we only perform these tests for = 1. Nevertheless, as QVAR (and QFAVARs)

produce forecasts iteratively, misspecification at = 1 would naturally propagate for-

ward and may pose problems with quantile forecasting accuracy at longer horizons.

11The procedure is detailed in Section A.1 of the Appendix

12See, for example, simulation evidence in Gaglianone et al. (2011).
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1.4 Discussion

As explained in the previous sections, we rely on Diebold and Mariano (1995) tests

to evaluate the forecasting accuracy of the QVAR model relative to the three para-

metric alternatives, VAR-N, VAR-GARCH and VAR-SV, and this raises the problem

of concisely reporting a very large number of results. We proceed in a manner sim-

ilar to Stock and Watson (1998) who reported test rejection counts. We use Diebold

and Mariano (1995) tests as a means of categorizing variables. Specifically, given that

we seek to minimize the tail weighted quantile CRPS, we consider that QVAR ’wins’

against a given benchmark, at a given horizon and for a given variable when it has a

lower average score and the null of equal forecasting performance is rejected at 5%.

QVAR ’loses’ if it has a higher average quantile weighted CRPS13 score and the null of

equal forecasting performance is rejected at 5%. In all other cases, we consider that the

models have equal forecasting performance. A similar idea is applied to build figures

for Gaglianone et al. (2011)’s quantile extension of the Mincer-Zarnowitz test and the

Christoffersen and Diebold (1998) coverage test. The same figures are presented for

QFAVAR models.

1.4.1 QVAR Results

Figure 1.1 features two panels that each display the number of variables in each of

the 8 groups featured in FRED-MD for which QVAR wins and loses. Group results

are stacked so that the total number of wins and loses correspond to the top of area

for group one. The figure shows results for each decade of the out-of-sample period

and the whole out-of-sample period and for each of the parametric benchmarks. As

an example of how to read the figure, consider the area plot displayed in the first row

13See section 1.3.2 for details.
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and first column of panel A. The counts refer to the number of variables for which

QVAR statistically significantly outperformed the VAR-N models in the 1980s. At

horizon 3, there are about 40 variables out of 112 and about 10 of those variables are

in the labor market (group 2) category. The same entry in panel B shows the VAR-N

statistically significantly outperformed the QVAR for fewer than 10 variables out of

112 at all horizons.

We begin by focusing on the last column of each panel for the average relative per-

formance across the whole out-of-sample period. For this period, panel A shows that

QVAR significantly outperforms VAR-N in between 25 and 50% of cases depending on

the horizon. It also significantly improves upon VAR-GARCH and VAR-SV in about

25% and 10% of cases. Importantly, panel B reveals that QVAR rarely does signif-

icantly worse than any of the three benchmark models considered, losing in around

18% of cases at an horizon of one month against VAR-GARCH and VAR-SV and in

between only 5 to 10% of cases at all other horizons. Breaking down results across

different categories of variables, QVAR appears to perform best relative to benchmark

models when applied to the labor market (group 2) at all horizons and to interest and

exchange rate (group 6), especially at shorter horizons. We note that most of the few

cases where QVAR is outperformed across all benchmark models are prices (group 6).

The bulk of issues of relative performances identified in the short 2020s sub-sample

included in the forecasting experiment are also related to prices.

Shifting our attention across the first five columns of each panel, we can get a sense

of how stable are those results. The patterns of relative performance appear to vary

slightly over time, but the broad qualitative message remains the same. Across each

decade, QVAR infrequently does worse than benchmark models, more frequently im-

proves upon them and both of these observations concentrated in the same categories

of variables.
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Of course, Figure 1.1 does not tell us whether the statistically significant differences in

performance between models are meaningfully large. To this end, Figure 1.2 displays

the average log differences in scores between QVAR and VAR-GARCH and VAR-SV14

over the whole out-of-sample period for each variable in each of the eight groups of

variables in FRED-MD. Values below zero indicate that QVAR has a smaller average

score than the benchmark and a rejection of the null in the corresponding Diebold and

Mariano (1995) test in either direction is indicated by the color yellow. For example,

take the plot in the first row and first column of panel A. It shows that there is a variable

in the output and income (group 1) for which QVAR is about 15% more accurate at

forecasting the tails than the VAR-GARCH model at all horizons and this difference is

statistically significant at 5%.

14Panel B omitted the results for the oil price variable in group 7 because VAR-SV performed
too poorly and it hindered visualizing the rest of the results. The random walk process for stochastic
volatilities seems to be the culprit.
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(a) Number of Cases where QVAR Beats the Benchmark

(b) Number of Cases where QVAR Loses to the Benchmark

Figure 1.1: QVAR Diebold-Mariano Tests (tail-weighted CRPS)

Note: QVAR wins (loses) when it has a lower (higher) average score and the Diebold-Mariano statistic
is significant at the 5% level. Columns are periods and rows are different benchmark models. Colors
indicate FRED groups: (1) Output and income, (2) Labor market, (3) Housing, (4) Consumption, orders
and inventories, (5) Money and credit, (6) Interest and exchange rate, (7) Prices and (8) Stock market.
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(a) QVAR and VAR-GARCH

(b) QVAR and VAR-SV

Figure 1.2: QVAR Relative Scores (tail-weighted CRPS)

Note: Negative values are improvements. Yellow corresponds to rejecting the null of equal scores at
5%. Yellow corresponds to not rejecting the null of equal scores at 5%. FRED groups are: (1) Output
and income, (2) Labor market, (3) Housing, (4) Consumption, orders and inventories, (5) Money and
credit, (6) Interest and exchange rate, (7) Prices and (8) Stock market.
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We find that the statistically significant improvements provided by QVAR over the

VAR-GARCH and VAR-SV benchmarks routinely exceed 10%, even sometimes 20%

or more across horizons. These gains tend to concentrate in the categories of output and

income (group 1), labor market (group 2) and money and credit (group 5). Importantly,

QVAR almost never does much worse than VAR-GARCH. However, it does underper-

form VAR-SV by statistically significant margins in excess of 10%. This can be seen

in interest and exchange rates (group 6), as well as prices (group 7), even as it happens

infrequently. Figure A.1 in the appendix displays the corresponding comparison be-

tween QVAR and VAR-N which is considerably more favorable: it virtually never does

worse, it almost always does better, the improvements can be large or even very large

and it’s frequently statistically significant.

Figures 1.1, 1.2 and A.1 all point to QVAR performing relatively better against VAR-

N than VAR-GARCH and VAR-SV. Moreover, this pattern seems to hold over time.

Since all four models imply the same linear form for the conditional expectation of the

target variable at all horizons, these result suggests that there is enough information in

macroeconomic data to meaningfully capture variation in conditional volatility. Over-

all, these figures also offer evidence in favor of the purported robustness of QVAR in

the sense that it tends to perform as well or better, but almost never much worse than

competing parametric alternatives.

Perhaps surprisingly, Figure 1.3 reveals that this good relative performance of QVAR

is generally not driven by recessions. When a forecasted value is realized in what

the NBER later determines to be a recession month, QVAR performance is statisti-

cally indistinguishable from that of benchmark models in between 75 and 85% of cases

depending on the model and horizon. There is a slightly greater advantage during re-

cessions against the VAR-SV than the VAR-N and VAR-GARCH models at longer

horizons. Given that this pattern does not hold against VAR-GARCH, this may owe to

the fact the random walk in stochastic volatility may overstate the persistence of uncer-
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tainty in those circumstances. This finding points to the presence of important variation

in macroeconomic risks during periods of economic expansion that aren’t as well cap-

tured by the parametric alternatives we considered. One possible explanation is that

the binary discrete approximation to what is an otherwise continuous state variable we

call "the business cycle" is neglecting meaningful information and more than two states

should be considered. Alternatively, we can also note that the concept of a recession is

fuzzy and the NBER recession dates are up to debate.

Figure 1.3: QVAR Recesssion Comparison (tail-weighted CRPS)

Note: QVAR wins (loses) when it has a lower (higher) average score and the Diebold-Mariano statistic
is significant at the 5% level. Rows are different benchmark models. Colors indicate FRED groups: (1)
Output and income, (2) Labor market, (3) Housing, (4) Consumption, orders and inventories, (5) Money
and credit, (6) Interest and exchange rate, (7) Prices and (8) Stock market.

We now turn to specification tests. Figure 1.4 displays results for the quantile Mincer-

Zarnowitz tests of Gaglianone et al. (2011) for forecasts at the 5th and 95th quantiles
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separately. The figure counts the number of variables for which the null hypothesis of

a correctly specified quantile forecast cannot be rejected at a level of 5% and breaks

these results down for each decade in the out-of-sample period, as well as the whole

period, and each group of variables in FRED-MD. As an example of how to read the

figure, the area plot in the column of the first row shows that at a horizon of 1 and 2

months, we cannot reject the hypothesis that the QVAR forecast is well specified at 5%

during the 1980s for about 75 out of 112 variables. This is also true for over 20 labor

market variables (group 2).

Looking across all columns and rows, we see that the null hypothesis of optimal quan-

tile forecasts cannot be rejected for between 25 and 50% of cases, depending on the

horizon and period covered. However, we consistently find greater evidence of mis-

specification at longer than shorter horizons. Of all variable types, the test again singles

out labor market (group 2) and interest and exchange rate (group 6) variables as cases

where the model performs particularly well. This picture is also relatively stable over

time.
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Figure 1.4: Number of Optimal QVAR Forecasts

Note: Number of cases where we obtain a non rejection of the null of optimal forecast at 5% for the
Gaglianone et al. (2011) test. Columns are periods and rows are the 5th (Q05) and 95th (Q95) quantile
forecasts, respectively. Colors indicate FRED groups: (1) Output and income, (2) Labor market, (3)
Housing, (4) Consumption, orders and inventories, (5) Money and credit, (6) Interest and exchange rate,
(7) Prices and (8) Stock market.

Results for coverage tests are presented in Figure 1.5. We here focus on one month

ahead 5th and 95th quantile forecasts15, so an observation that falls outside of the 90%

interval between them will be our notion of a ’tail event.’ If QVAR is correctly speci-

fied, the unconditional probability of a tail event would be 10%. That’s the null of the

unconditional coverage tests. Moreover, ’tail events’ should be ’unpredictable’ and, in

particular, they shouldn’t be serially correlated. The null of correct conditional cover-

age jointly tests both of these restrictions. The figure shows the shares of non rejection

15Recall that the tests are carried out only for horizon h = 1 for reasons discussed in Section 1.3.
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of the null for each of those tests for each group of variables and each decade of the

out-of-sample period.

Figure 1.5: Unconditional and Conditional Coverage Tests on QVAR (90% Interval)

Note: Shares of non rejection of the null at 5% using Monte Carlo p-values (Dufour, 2006). UC is the
unconditional coverage test and CC is the conditional covargae test. Columns are periods. Colors
indicate FRED groups: (1) Output and income, (2) Labor market, (3) Housing, (4) Consumption, orders
and inventories, (5) Money and credit, (6) Interest and exchange rate, (7) Prices and (8) Stock market
and (All) 112 variables.

The last column results for the whole pseudo-out-of-sample period. We can see in the

bottom row that the test fails to reject the null of correct unconditional coverage in

almost 50% of cases and, likewise, for more than half of output and income (group 1),

labor market (group 2) and interest and exchange rates (group 6). However, we can see

that the null of correct conditional coverage is rejected over 90% of times across all

variable groups. This means that on average QVAR quantile forecasts lead to a correct
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probability of 10% for observing tail events, but that it leads to tail events that are

serially correlated. Since forecasts at longer horizons are produced iteratively, this may

explain the consistent pattern in Figure 1.4 where the null of optimal quantile forecasts

can always be rejected more frequently at longer than shorter horizons.

1.4.2 QFAVAR Results

Figure 1.6 presents the results for the Diebold and Mariano (1995) tests comparing both

QFAVAR models with the QVAR model. The last column of both panels show that on

average over the whole pseudo-out-of-sample period, QVAR and both QFAVAR mod-

els have statistically indistinguishable tail density forecasting performances in between

85 to 90% of cases depending on the horizon and the type of factor included. More dif-

ferences can be noticed during the 1990s and 2010s where the addition of either PCA or

IQR factors improves performance for prices (group 7) in particular. We will recall that

the few cases in which QVAR is significantly outperformed by VAR-SV with relatively

large magnitudes are concentrated in this category.

Figure 1.7 displays the average log differences in scores, as well as whether these dif-

ferences are statistically significant. As QFAVAR models serve as benchmarks in these

comparisons, adding factors is found to be helpful when the values displayed are posi-

tive. We can see that the changes in accuracy resulting from the addition of either type

of factors are relatively small with the vast majority being under 5% in either direction.

This corroborates the main finding from the previous figure and suggests that adding

factors usually doesn’t substantially affect tail density forecasting accuracy. That being

said, panel A does show a few moderate improvements obtained from the addition of a

PCA factor in interest and exchange rates (group 6) and prices (group 7) variables. At

the same time, introducing a PCA factor can be costly as we can see in panel A with

some moderately negative values in money and credit (group 5), as well as in some of
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the interest and exchange rate (group 6) variables.

Perhaps where differences are most striking is during NBER recessions as can be seen

in Figure 1.8. QFAVAR models outperform QVAR in between 12 and 18% of cases

depending on the horizon and type of factors considered. It also appears to be rarely

costly to add factors when the realized value turns out to fall during a recession. It is

especially visible with the labor market (group 2) where adding a PCA factor helps at

all horizons, while the IQR factors seem to be most helpful at shorter horizons.
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(a) Number of Cases where QVAR Loses to QFAVAR

(b) Number of Cases where QVAR Beats QFAVAR

Figure 1.6: QFAVAR Diebold-Mariano Tests (tail-weighted CRPS)

QVAR wins (loses) when it has a lower (higher) average score and the Diebold-Mariano statistic is
significant at the 5% level. Columns are periods and rows are different benchmark models. Colors
indicate FRED groups: (1) Output and income, (2) Labor market, (3) Housing, (4) Consumption, orders
and inventories, (5) Money and credit, (6) Interest and exchange rate, (7) Prices and (8) Stock market.
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(a) QVAR and QFAVAR (PCA)

(b) QVAR and QFAVAR (IQR)

Figure 1.7: QFAVAR Relative Scores (tail-weighted CRPS)

Note: Positive values are improvements over QVAR. Yellow corresponds to rejecting the null of equal
scores at 5%. Yellow corresponds to not rejecting the null of equal scores at 5%. FRED groups are: (1)
Output and income, (2) Labor market, (3) Housing, (4) Consumption, orders and inventories, (5) Money
and credit, (6) Interest and exchange rate, (7) Prices and (8) Stock market.
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Figure 1.8: QVAR and QFAVAR Recesssion Comparison (tail-weighted CRPS)

Note: QVAR wins (loses) when it has a lower (higher) average score and the Diebold-Mariano statistic
is significant at the 5% level. Rows are different benchmark models. Colors indicate FRED groups: (1)
Output and income, (2) Labor market, (3) Housing, (4) Consumption, orders and inventories, (5) Money
and credit, (6) Interest and exchange rate, (7) Prices and (8) Stock market.

Introducing latent factor estimated by either PCA or IQR in the set of variables used

by QVAR to produce forecast has little effect on its tail forecasting accuracy. How-

ever, there remains the question of whether we can find evidence that QFAVAR models

tend to be less frequently misspecified than the QVAR model. Figure 1.9 displays the

number of cases where the null of a correctly specified quantile forecast at the 5th and

95th quantiles could not be rejected at the 5% level. We can see in the last column that

using IQR factors rather than a PCA factor results in slightly fewer rejections at both

quantiles over all horizons across the whole pseudo-out-of-sample period. Adding fac-

tors do not meaningfully impact the conclusions we previously reached for the QVAR
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model, nor their stability over time, except that including either PCA and IQR factors

slightly reduces the number of rejections.

Finally, Figure 1.5 present the shares of non rejection of the null hypothesis of cor-

rect unconditional and conditional coverage, respectively, for both QFAVAR models.

On average across variable categories and time, introducing a PCA factor slightly in-

creases the cases in which the model is found to have incorrect coverage. Moreover,

it does not address the issue of excessive clustering of violations of the 5th and 95th

conditional quantile bounds. Two notable exceptions are with interest and exchange

rates (group 6) and the stock market (group 8) where both the issues with coverage and

clustering are improved. The story is quite different when we introduce IQR factors.

This QFAVAR model is found to have correct unconditional and conditional coverage

more frequently across time and variable categories. This provides some suggestive

evidence that factors which specifically target tail behavior in large data sets carries

useful some information that allows improving the timing of changes in risk such that

the model less frequently leads to serially correlated tail events (i.e., observations that

lie in the tails of its forecasts). This would be worth exploring in future research.
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(a) Number of Optimal QFAVAR (PCA) Forecasts

(b) Number of Optimal QFAVAR (IQR) Forecasts

Figure 1.9: QFAVAR Relative Scores (tail-weighted CRPS)

Note: Number of cases where we obtain a non rejection of the null of optimal forecast at 5% for the
Gaglianone et al. (2011) test. Columns are periods and rows are the 5th (Q05) and 95th (Q95) quantile
forecasts, respectively. Colors indicate FRED groups: (1) Output and income, (2) Labor market, (3)
Housing, (4) Consumption, orders and inventories, (5) Money and credit, (6) Interest and exchange rate,
(7) Prices and (8) Stock market.
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(a) PCA Factor

(b) IQR Factors

Figure 1.10: Unconditional and Conditional Coverage Tests on QFAVARs (90% Inter-
val)

Note: Shares of non rejection of the null at 5% using Monte Carlo p-values (Dufour, 2006). UC is the
unconditional coverage test and CC is the conditional covargae test. Columns are periods. Colors
indicate FRED groups: (1) Output and income, (2) Labor market, (3) Housing, (4) Consumption, orders
and inventories, (5) Money and credit, (6) Interest and exchange rate, (7) Prices and (8) Stock market
and (All) 112 variables.
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1.5 Conclusion

In this paper, we evaluated the performance of the QVAR model for forecasting macroe-

conomic risk. To this end, we conducted a large out-of-sample forecasting experiment

on US monthly variables using VAR-N, VAR-GARCH and VAR-SV models as para-

metric benchmarks. All models were specified as bivariate models featuring the target

variables and the NFCI.

We found that QVAR provides significant improvements in tail density forecasting ac-

curacy over the VAR-N model in close to half of all variables considered and those

improvements are frequently quantitatively important, reaching between 10 and 30%

in many cases. QVAR also offers improvements over a VAR-GARCH and VAR-SV,

albeit in fewer cases. For all three benchmark models, improvements are concentrated

in the labor market as well as interest and exchange rate variables. However, we also

found evidence that observations which fall in the tails of QVAR forecasts tend to be

serially correlated, which points to misspecification.

We then extended QVAR to a data-rich environment by introducing PCA and IQR fac-

tors as additional predictors. The resulting QFAVAR model significantly improves upon

the QVAR model for forecasting macroeconomic risks in 13% of our target variables.

Most of the improvements are tied to labor market variables. Interestingly, adding IQR

factors also reduces the incidence of serial correlations with observations that fall in

the tails of density forecasts. This suggests the specification issue with QVAR may

be alleviated by adding information in the model and that IQR factors, in particular,

carry information that helps improve the timing of predicted changes in macroeco-

nomic risks.

In summary, we find that QVAR and QFAVAR models are adequate tools for mod-

eling macroeconomic risk. This is relevant from a macroprudential risk management
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perspective, as in Chavleishvili et al. (2021), since the relevance of conclusions drawn

from such studies requires reliable and accurate models of risk.



CHAPTER II

MAX SHARE IDENTIFICATION FOR STRUCTURAL VARS IN LEVELS:

THERE IS NO FREE LUNCH



ABSTRACT1

This paper examines the implications of using VARs in levels under the Max Share

identification approach when variables exhibit unit or near-unit roots. We derive the

asymptotic distributions of the Max Share estimator, demonstrating that it converges to

a random matrix, resulting in inconsistent reduced-form impulse responses and eigen-

vector estimates for structural shock identification. Monte Carlo simulations highlight

that VAR models in levels can exhibit significant bias and higher RMSEs at interme-

diate and long horizons compared to stationary representations (e.g., first-difference

VARs or VECMs), particularly in the presence of multiple permanent shocks. An em-

pirical application focusing on investment-specific technology and TFP news shocks

underscores the sensitivity of results to the nonstationarity of variables and the identifi-

cation order of structural shocks when using VARs in levels.

Keywords: SVARs, Max Share identification and inference, unit roots, near-unit roots

and asymptotics

JEL Classification: C32, C50.

1This Chapter is a paper written with Professor Alain Guay and Professor Florian Pelgrin.
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2.1 Introduction

Structural VARs are now routinely applied in empirical macro research to assess and

understand the key mechanisms in macroeconomics, such as the impact of technology

shocks or the primary drivers of business fluctuations. Building upon the seminal works

of Sims (1980b,a), moving from atheoretical/unrestricted VAR models to structural

VAR models requires making identifying assumptions grounded on economic theory

and related priors—VAR results cannot be interpreted independently of a more struc-

tural macroeconomic model (Cooley and Leroy, 1985; Bernanke, 1986).

Recent contributions have often concentrated on forecast error variance decompositions

of some target variables, known as the Max Share identification, to pinpoint one struc-

tural shock (Faust, 1998; Uhlig, 2004) or multiple structural shocks (e.g., Zeev and

Khan (2015); Carriero and Volpicella (2024)). For example, this approach identifies

technology shocks as those explaining the most significant proportion of the forecast

error variance decomposition of labor productivity at ten-year period (Francis et al.,

2014). Applications include identifying technology shocks (DiCecio and Owyang,

2012), news shocks (Barsky and Sims, 2011; Kurmann and Otrok, 2013; Forni et al.,

2014; Kurmann and Sims, 2021; Bouakez and Kemoe, 2023; Kilian et al., 2023), neu-

tral and investment specific shocks (Chen and Wemy, 2015; Zeev and Khan, 2015),

credit shocks (Mumtaz et al., 2018), inflation target shocks (Mumtaz and Theodoridis,

2023), sentiment shocks (Fève and Guay, 2019; Levchenko and Pandalai-Nayar, 2020;

Benhima and Cordonier, 2022) and main business cycle shocks (Angeletos et al., 2020).

A common practice in these contributions involves estimating unrestricted VARs in

levels even when roots may be at or near unity. For instance, the structural identifi-

cation of technological news shocks relies on a TFP (Total Factor Productivity) mea-

sure (e.g., Fernald (2014)), which inherently has an exact unit root due to its construc-
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tion.2 Additionally, other macroeconomic variables of interest, such as the relative

price of investment goods to consumption and real personal consumption expenditures

per capita, may exhibit trending behaviors and potentially near-unit root processes.

Some of these variables may also be cointegrated, indicating the presence of common

stochastic trends.

The rationale for specifying models in levels is that individual regression coefficients

can be consistently estimated in any unrestricted VAR model in levels, regardless of

the potential presence of unit roots and cointegration, as long as the model includes an

intercept and sufficient lags, as indicated by Sims et al. (1990). Kilian and Lütkepohl

(2017) highlight that the uncertainty regarding the presence of unit roots justifies this

approach, as VAR models in levels encompass both integrated VAR models and station-

ary models without a trend. Furthermore, uncertainty about the presence of unit roots

in the variables and cointegration relationships between these unit root variables can

lead to misspecification and thus inconsistent estimates when using pre-test procedures

to transform some variables in the multivariate dynamic representation.

Finally, the Max Share approach involves selecting a truncated forecast error variance

horizon to capture short-to-medium or long-run cycles, typically representing a sub-

stantial fraction of the sample size. For instance, with quarterly observations spanning

60 years, a truncated horizon of 40 quarters (or 60 or 80 quarters) constitutes a signif-

icant part of the sample size. Consequently, the rate at which the maximal truncated

horizon increases relative to the sample size is crucial in the asymptotic analysis of the

Max Share approach, especially for the impulse response and forecast error variance

decomposition estimators.

Unfortunately, combining the estimation of VARs in levels with a substantial horizon-

2Starting from quarterly estimates of TFP growth (or the first-difference of the logarithm of
TFP), one can derive the level (non-stationary) series, typically with initial levels normalized to zero.
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to-sample size ratio can result in undesirable statistical properties for impulse responses

and forecast error variance decompositions. Phillips (1998) demonstrates that esti-

mated impulse responses and forecast error decompositions are inconsistent at all but

the shortest horizons when some unit root processes or local-to-unity processes are

present. These estimates tend to converge to random matrices rather than the true im-

pulse responses, despite the consistent estimation of individual autoregressive VAR

parameters (Sims et al., 1990).

The results of Phillips (1998) have several implications for the Max Share approach.

Most notably, the Max Share identification relies on finding the largest eigenvalue(s)

of the Max Share matrix derived from the forecast error variance decomposition, and

thus the associated eigenvector(s). Inconsistent estimates of the forecast error variance

decomposition impacts the eigendecomposition of this matrix, influencing the distribu-

tion of the maximum eigenvalue and the corresponding eigenvector. The severity of this

issue naturally depends on the forecast error variance horizon. As a result, including

nonstationary variables in unrestricted VARs in levels may lead to the identification of

a hybrid shock rather than a primitive shock, potentially causing a confounding effect.3

Thus, when using the Max Share approach, there is a trade-off between employing a

nonstationary representation, such as an unrestricted VAR in levels with some unit or

near-unit roots, and a stationary representation, such as a VECM in the presence of

common trends or an unrestricted VAR with some first-differenced variables. Indeed,

there is no "free lunch"; estimating unrestricted VARs in levels may result in incon-

sistent estimates of structural shocks and impulse responses. Conversely, estimating

3See Dieppe et al. (2021) and Francis and Kindberg-Hanlon (2022) for additional discussion on
confounding effects with the Max Share approach. They provide evidence that the identification per-
formance of the Max Share procedure is poor when shocks other than the target of interest significantly
contribute to the forecast error variance decomposition at the targeted horizon, thus confounding the
estimation. In contrast, we outline the consequences of estimating VARs in levels in the presence of
confounding effects, as for instance two dominant permanent structural shocks.
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a VECM (or a VAR with variables in differences) may suffer from misspecification

issues due to pre-test procedures.

Therefore, it is crucial to thoroughly understand the consequences of using variables in

levels for the Max Share identification approach in the presence of unit-root or near-

unit-root processes. The contributions of this paper are as follows: First, we derive the

asymptotic results for the estimator of the Max Share matrix, its eigenvalues, and the

corresponding eigenvectors in the presence of (weakly) stationary variables. This anal-

ysis is conducted in three cases of interest: maximizing the objective function over a

given maximal horizon (e.g., Kurmann and Sims (2021)), over a range of horizons (e.g.,

Zeev and Khan (2015)), or over a frequency interval (e.g., Angeletos et al. (2020)). No-

tably, the asymptotic distributions of the Max Share estimator, the eigenvalues, and the

associated eigenvectors have not been previously proposed in the literature.

Second, building upon the seminal work of Phillips (1998), we derive the Max Share

asymptotics with roots at or near unity. Specifically, when the horizon is a fixed fraction

of the sample size, we show that the estimator of the Max Share matrix is inconsistent

when the unrestricted VAR is estimated in levels, converging instead to a random matrix

that is a continuous average of a matrix quadratic form in the limiting (reduced-form)

impulse responses. Consequently, the estimators of both the largest eigenvalue and the

associated eigenvector are also inconsistent, tending towards a random variable/vector.

We illustrate our results using a bivariate structural VAR in four relevant cases for

applied macroeconomics: (i) the first variable is a unit root process while the second

one is weakly stationary, (ii) both variables possess a unit root without cointegration,

(iii) both variables are cointegrated and (iv) the first variable has a unit root while the

second one is a near-to-unity stochastic process.

Third, we conduct Monte Carlo simulations using a flexible bivariate data-generating

process (DGP) that accommodates a unit-root process, a highly persistent process, and
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a potential confounding effect between two permanent structural shocks. Through these

simulations, we compare the performance of a stationary representation, achieved by

appropriately transforming the variables of the DGP, with a VAR in levels. We use OLS-

based estimates for the stationary specification, as well as OLS-based estimates, bias-

corrected estimates (Pope, 1990), and bootstrapped estimates (Kilian, 1998a; Inoue and

Kilian, 2002a) for the level specification, across different impulse response horizons

and truncated forecast error variance horizons.4

In this respect, we highlight the following key insights:

1. Structural impulse responses: Structural impulse responses derived from VAR

models in levels show a significant loss in terms of bias and RMSE properties

at intermediate and long horizons compared to those from the stationary repre-

sentation of VAR models (e.g., first-difference specification), despite performing

similarly at (very) short horizons.

2. Bias Correction and estimation methods: Bias-corrected, bootstrap, or Bayesian

methods can reduce the bias in OLS-based impulse response estimates in un-

restricted VARs in levels. However, these methods may increase RMSEs and

generally perform worse than estimates derived from a stationary representation

(e.g., first-difference model).

3. Confounding effects: The presence of a potential confounding effect, such as

two permanent shocks, further amplifies the discrepancies between first-difference

estimates and level-based estimates.

Finally, we illustrate our theoretical and simulation results through an application that

identifies two permanent shocks, namely an investment-specific technology and TFP

4Bayesian estimates using Minnesota priors and estimates from short-run identification are also
available upon request.
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news shocks, using the Max-share approach (See Fisher (2006); Chen and Wemy (2015);

Zeev and Khan (2015); Kurmann and Sims (2021)). Results critically depend on the

integration order of the variables, and thus the chosen specification in level or in first-

difference, and the identification order of structural shocks. Notably, in the specification

using level variables, the impulse response functions differ substantially depending on

whether the TFP measure or the relative price of consumption-to-investment is placed

first. However, it vanishes when stationary transformations of the variables are per-

formed.

Both theoretical and empirical results underscore that the application of the Max-share

approach using variables in levels, especially when some of the variables are character-

ized by unit or near unit root processes (and possibly cointegration relationships), can

have detrimental effects on the identification of structural shocks and their correspond-

ing impulse response functions. These issues are exacerbated when a long forecast

error variance horizon is chosen and multiple permanent shocks are present. Therefore,

it is strongly recommended to also report the corresponding results using stationary

transformations of the variables, such as with a VECM or a VAR with first-differenced

variables.

The rest of the paper is organized as follows. Section 2.2 reviews notation and presents

the Max-share identification strategy. Section 2.3 presents the asymptotic results in the

presence of (weakly) stationary variables and extends the results to cases where unre-

stricted VAR models are estimated in levels and there are some roots at, or near, unity.

Section 2.4 provides Monte Carlo simulations, while Section 2.5 discusses an empiri-

cal application regarding the identification of investment-specific and technology long-

term shocks. The last section contains concluding comments and future extensions.

Proofs are gathered in Appendix B.
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2.2 Max share identification of structural VAR models

In this section, we first introduce preliminary notation and provide an overview of the

Max Share approach.

2.2.1 Notation

Let = ( 1 )′ be a N-vector time series generated by the following th

order vector autoregressive model in levels:

=
∑
=1

− + = ( ) −1 + (2.1)

where is the lag operator, the ( ) autoregressive matrices are fixed, =

( 1 )′ is a -dimensional weak white noise with E [ ] = 0 ×1 and E [ ′ ] =

. The reduced-form (2.1) is initialized at = + 1 0 and we let these initial

values be any random vectors including constants.The presence of deterministic re-

gressors does not affect our main results and thus we proceed without them to keep the

derivations as simple as possible.

The reduced-form VAR can also be written in companion form as:

= −1 + (2.2)

where =
( ′ ′

−
)′, = ( ′ 0 0)′, and

=


1 2 −1

0 0 0
...

... . . . ...
...

0 0 0

 (2.3)
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Up to some initial conditions, the vector moving average (VMA) representation of the

reduced-form VAR is then defined by:

=
−1∑
=0

− (2.4)

and one can retrieve the reduced-form VMA representation of :

=
−1∑
=0

− (2.5)

where 0 is the identity matrix of order , denoted by I , and =
∑

=1 − .

Notably, equation 2.5 can be decomposed as follows:

=
−1∑
=0

− =

∗∑
=0

− +
−1∑

= ∗+1

− (2.6)

This decomposition of the VMA representation is useful to study the impulse response

and forecast error variance asymptotics in nonstationary VARs (Phillips, 1998). In

particular, it is worth emphasizing, for a small fixed ∗, the estimates of the impulse

response matrices have asymptotic normal distributions (as in the stationary case)

even in the presence of unit root or nearly unit root processes. In contrast, the estimates

of impulse-response matrices of the second right-hand side term, which are those as-

sociated to a lead time that can be written formally as = where 0 a fixed

fraction of the sample, are inconsistent for all . More specifically, the limits are

random variables with unit root or local-to-unity distributions.

The structural VAR model can be written as:

0 =
∑
=1

− + = ( ) −1 + (2.7)
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where is an 1 random vector of structural shocks with E [ ] = 0 and E [ ′] =

. A common identification assumption is = . Taking equations (2.4) and

(2.7), the error terms of the reduced-form model are a linear combination of structural

shocks:5

= −1
0 = 0 (2.8)

with −1
0 ( ) = ( ). The structural VMA representation is then defined by:

=
∞∑
=0

−1
0 − =

∞∑
=0

−

where = −1
0 = 0. Using equation (2.8), one has = −1

0
−1′

0 = 0
′
0.

Let tr denote the lower triangular Cholesky decomposition of (with the diagonal

elements normalized to be positive), and let be a orthogonal matrix. Since
′ = ′ = I and hence ( tr )( tr )′ = tr

′
tr, the set of possible solutions for

−1
0 can be written as tr . Then identification involves pinning down some or all

columns of .

Finally, Equation (2.1) can also be equivalently written in levels and differences format

as:

= −1 + ( ) −1 + (2.9)

where = (1), =
−1∑
=1

−1 with =
∑
= +1

, and = ( 1 2 )′. As-

sumptions regarding nonstationary components and the presence of cointegration (i.e.,

the dimension of the cointegrating space and the form of the cointegration vectors)

will be specified in Assumption 2.3.2. Furthermore, the formulation (2.9) proves to be

5For a more general presentation, see Amisano and Giannini (1997), Kilian (2013) and Kilian
and Lütkepohl (2017).
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useful when deriving the asymptotic properties of the Max Share matrix estimator.

2.2.2 Max share approach

Starting from the seminal contributions of Faust (1998) and Uhlig (2003, 2004), the

Max Share identification scheme focuses on maximizing the contribution of a (struc-

tural) shock to the forecast-error variance of a given variable at a long but finite horizon,

say . To illustrate it, consider the bivariate structural VAR model of Gali (1999) that

attributes variation in U.S. labour productivity and hours worked to a technology shock

and a non-technology shock. The first structural shock, labelled as a technology shock,

can be identified by maximizing its contribution to the forecast-error variance of labor

productivity (Francis et al., 2014).

Using the VMA representation of the reduced-form VAR, the starting point is to define

the -step-ahead forecast error for as a function of realized reduced-form errors:

+ E [ + ] =
−1∑
=0

+ − (2.10)

Accordingly, the h-step-ahead forecast-error variance matrix is given by:

MSE( ) =
−1∑
=0

′ =
−1∑
=0

tr
′ ′

tr
′ (2.11)

Then the share of forecast-error variance of a given variable that is attributed to a

given shock at horizon is:

( ) =
′ ( )
′ MSE( )

=
′ ′ ( )
′ MSE( )

(2.12)

where is the -th column vector of the identity matrix, = is the -th column

of the orthogonal matrix , and ( ) is the Max Share matrix at horizon for the
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variable :

( ) =
−1∑
=0

′
tr
′ ′

tr =
−1∑
=0

′ (2.13)

with = ′
tr the -th row of tr. According to the decomposition of the

VMA representation (2.6), the Max Share matrix depends not only on the impulse

responses at short-run horizons but also on those at longer horizons when constitutes

a substantial fraction of the sample size.

We consider the first structural shock = 1, which is identified by solving, for a given

horizon , the following maximization of the Max Share statistic with respect to 1:

1 ( ) = argmax
1

′
1 ( ) 1

′ MSE( )
(2.14)

subject to ′
1 1 = 1.6 Note that the solution, denoted by 1 ( ), is conditional upon the

selection of a truncated forecast error variance horizon . Following Faust (1998) and

Uhlig (2003, 2004), it can be shown that 1 is the eigenvector associated to the largest

eigenvalue of the Max Share matrix or, equivalently, is the first principal component:

( ) 1 ( ) = max 1 ( ) (2.15)

Thus, the structural IRFs from the identified shock are given by:

·1 ( ) = tr 1 ( ) (2.16)

where ·1 is the first column of the impulse response matrix . The identified shocks

and the corresponding IFRs then depend on the finite sample and the asymptotic prop-

6Without loss of generality, note that further structural constraints can be added, such as the
absence of contemporaneous effect of a structural shock (e.g., Zeev and Khan (2015); Bouakez and
Kemoe (2023)).
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erties of the Max Share matrix for a given horizon (i.e., ( )), as well as the largest

eigenvalue max and the associated eigenvector 1 . As aforementioned and accord-

ing to the VMA decomposition (2.6), the Max Share matrix depends not only on the

impulse responses at short-run horizons but also on those at longer horizons when

constitutes a substantial fraction of the sample size. The next section examines the

asymptotic properties of these elements.

As a final remark, other Max Share matrices have been considered in the literature.

On the one hand, as stated in Uhlig (2003) and Barsky and Sims (2011), one can also

consider an accumulated Max Share approch, i.e., the (partial) sum of the contributions

of a given structural shock to the forecast-error variance of a given variable between

two finite horizons, say and (with ). Notably, the accumulated Max Share

matrix, denoted by ( ), is then given by:

( ) =
∑

=

( )
′ MSE( )

=
∑

=

∑ −1
=0

′∑ −1
=0

′

In this expression, the weight decreases for = , and thus the accumulated

Max Share matrix places more weight on short horizons than long horizons. Simi-

larly to the non-accumulated Max Share approach, the first structural shock = 1 is

identified by maximizing, for a given horizon interval [ ; ], the following Max Share

statistics with respect to 1:

( )
1 = argmax

1

′
1

∑
=

( )
′ MSE( )


1 (2.17)

subject to ′
1 1 = 1.

On the other hand, building on DiCecio and Owyang (2012), Francis et al. (2014)

and Angeletos et al. (2020), the Max Share approach in the frequency domain aims to
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maximize the contribution of a given structural shock to the spectral density of a given

variable over a frequency interval, say [ ; ]. Provided the multivariate spectral density,

denoted by , is well-defined [ ; ], one has:

( ) =
1

2
( ( )) ( ( ))

where denotes the complex conjugate transpose of . Therefore, the Max share

statistics in the frequency domain, that is the contribution to the spectral density of a

given variable attributable to a given shock , say = 1, over a frequency band [ ; ]

is defined by:

′
1 ( ; ) 1

′ ( )
(2.18)

where the frequency Max Share matrix over the frequency band [ ; ] is:

( ; ) = 2Re

∫
(exp( )) (exp( )) (2.19)

where (exp( )) = [ (exp( )) tr] =

[
∞∑
=0

(exp( )) tr

]
and Re is

the real part of any complex. The identification and interpretation of the first structural

shock then proceeds as in the case of the non-accumulated Max Share approach at a

given horizon . In the frequency domain, the Max Share matrix relies on the infinite

sum of the (reduced-form) impulse responses irrespective of the frequency interval. A

truncated sum may weaken the statistical performances in the presence of persistent

stochastic processes.7

7Note that the multivariate spectral density is no longer defined at ω = 0 in the presence of unit
or near-unit root processes.
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2.3 Max Share asymptotics

This section delves into the asymptotic properties of the Max Share estimator. We start

by examining the asymptotic distribution of the estimator for the Max Share matrix in

the context of a weakly stationary multivariate process . These results are also valid

for VAR models in levels with a fixed in the VMA decomposition (2.6), i.e., for short

horizons. Next, we characterize the asymptotic distribution of the (maximal) eigenval-

ues and their corresponding eigenvectors. We then provide the asymptotic distribution

of the Max Share estimator in the presence of roots at or near unity. As highlighted by

the decomposition (2.6), the small sample properties of the Max Share approach based

on a VAR in levels stem from the finite-sample approximations associated with these

two asymptotic behaviors.

2.3.1 Max Share asymptotics with weakly stationary processes

We suppose that:

Assumption 2.3.1 (Stationary Case)

(a) is an i.i.d. process with zero mean, covariance matrix 0 and finite fourth

cumulants;

(b) The determinantal equation
∑

=1 = 0 has roots outside the unit

circle.

Following Lütkepohl (2005) and using the Delta method, the asymptotic distribution of

the estimator of the Max Share matrix at a fixed horizon is then given in Theorem 2 3 1
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Theorem 2.3.1 Let Assumption 2.3.1 hold and let = vec ([ 1 ]),

= vech ( ), = ( +1 ) R ×( − ), and (0) :=[
( ( )) ( ( ))′

]
. Then, as , the estimator of the Max Share

matrix ( ), denoted ̂ ( ), at a fixed and finite forecast error variance horizon

is weakly consistent and is asymptotically normally distributed:

vec
(̂ ( ) ( )

)
N (0 ( ))

with

( ) =
[

˜( ) ( )
] (0)−1 0

0 2 + ( ) +′

 ′
˜( )

′ ( )


where + := ( ′ )−1 ′ is the Moore-Penrose generalized inverse of an appro-

priate 2 ( + 1) 2 duplication matrix, and the gradients ˜( ) and ( ) are

defined in Appendix B.

Proof: See Appendix B.

This Theorem can be easily adapted to apply to the accumulated Max Share approach

(Uhlig, 2003; Barsky and Sims, 2011), which involves summing the contributions of

the th structural shock to the forecast error variance of the th variable between two

finite horizons. It can also be extended to the Max Share approach in the frequency

domain (DiCecio and Owyang (2012); Angeletos et al. (2020).8

We can now provide the asymptotic distribution of the eigenvalues of ( ). We start

8Appendix B provides the results in the case of the accumulated Max Share matrix (respectively,
the non-accumulated frequency-based Max Share approach).
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from the spectral decomposition of ( ):

( ) = ( ) ( ) ( )′ (2.20)

where ( ) is the diagonal matrix associated with the ordered eigenvalues ( ),

= 1 , and ( ) is the corresponding matrix of (orthonormal) eigenvectors.

By convention, we assume that the eigenvalues are always arranged in algebraically

non-increasing order:

max( ) 1( ) 2( ) ( ) min( )

Since ( ) is not necessarily of full rank, suppose that the first eigenvalues are dif-

ferent from zero, and thus the last eigenvalues are equal to zero. Accordingly,

the orthonormal matrix ( ) can be partitioned as ( ) =
[

( ) − ( )
]
,

where ( ) =
[

1( ) 2: ( )
]
, with 1( ) being the eigenvector associated with

max( ), 2: ( ) the matrix of eigenvectors associated with 2( ) ( ), and

− ( ) the matrix of eigenvectors associated with the smallest eigenvalues

+1( ) min( ). Notably,

max( ) = ′
1 ( ) ( ) 1 ( )

2: ( ) = vec ( ′
2: ( ) ( ) 2: ( ))

Combining this decomposition with Theorem 2.3.1, the asymptotic distribution of the

eigenvalues follows.

Theorem 2.3.2 Let Assumption 2.3.1 hold. Then, the (ordered) eigenvalue estimators

( ), which solve the spectral decomposition (equation 2.20) for ̂ ( ), are weakly

consistent estimators of ( ), = 1 . Furthermore, the asymptotic distribution
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of ̂max ( ) at a fixed and finite forecast error variance horizon is given by:

(̂
max ( ) max( )

)
(0 ( 1 ( ) 1 ( ))′ ( )( 1 ( ) 1 ( )))

where ( ) is the asymptotic variance-covariance matrix of

vec
(̂ ( ) ( )

)
as given in Theorem 2.3.1. Additionally, the asymp-

totic distribution of ̂2: =
(̂

2 ( ) ̂ ( )
)′

is:

(̂
2: ( ) 2: ( )

)
(0 ( 2: ( ) 2: ( ))′ ( )( 2: ( ) 2: ( )))

Proof: See Appendix B.

There are three points worth noting. First, the weak convergence of the eigenvalue esti-

mator stems from the continuity property. Specifically, this implies that ( ) ( )

for = 1 and ( ) 0 for = + 1 . Second, a consistent estimate of

the asymptotic variance-covariance matrix of the largest eigenvalue relies on a consis-

tent estimate of both ( ) and the eigenvector associated with max( ). This creates

two sources of uncertainty in finite samples. Third, it is straightforward to show that

the asymptotic distribution of the largest eigenvalue (and of 2: ( ), respectively) in the

case of the accumulated or frequency-based Max Share approach has the same expres-

sion as in Theorem 2.3.2, except for the appropriate asymptotic variance-covariance

matrix defined in the Appendix B.

Finally, we derive the asymptotic distribution of the eigenvector associated with the

maximal eigenvalue, as well as the joint distribution of the 1 eigenvectors asso-

ciated with the remaining 1 largest (nonzero) eigenvalues, denoted by 2: ( ).

For simplicity, 1 ( ) is abbreviated as 1( ), and the results apply to any variable

= 1 .



63

Theorem 2.3.3 Let Assumption 2.3.1 hold. Suppose that max( ) 2( ) + for

0, i.e., the maximum eigenvalue of ( ) is well-separated from the second highest

eigenvalue. Then,

i) 1̂ ( ) 1( ) and the asymptotic distribution of 1̂ ( ) is:

( 1̂ ( ) 1( )) (0 1( ))

where 1( ) = ( ′1( ) ) ′
1( ) ( ) 1( )( 1( ) ), with 1( ) =∑

=2( max( ) ( ))−1
1( ) ′

j
(h), and

j
( ) = ( ) ′ ( ) is the eigen-

projection associated with ( );

ii) ̂2: ( ) 2: ( ) and the asymptotic distribution of vec( ̂2: )( ) is:

(
vec( ̂2: ( )) vec( 2: ( ))

)
(0 2:r( ))

where 2:r( ) = ( ′
2: ( ) ) ′

2( ) ( ) 2( )( 2: ( ) ), with 2( ) =∑
=2

∑
6= ( ( ) ( ))−1

j
( ) ′

i
( ).

Proof: See Appendix B.

As consequences of the above results, considering the expression of the structural IRFs

using the first (identified) structural shock associated with the largest eigenvalue (equa-

tion 2.16), the estimates of structural IRFs depend on the reduced-form estimates ,

the lower-triangular factor from the Cholesky decomposition, and the eigenvector 1 ,

which are nonlinear functions of the estimates of the autoregressive parameters. In the

weakly stationary case, all these estimates converge in probability to their respective

true values, implying that the structural IRFs associated with the largest eigenvalue are

weakly consistent.9

9See Lütkepohl (2005) for the asymptotic properties of the reduced-form moving average coef-
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In the special case where the error terms of the reduced-form VAR are normally dis-

tributed, and according to Anderson (1963), the expression of 1 is given by:

1( ) = 2: ( )
(˜( )

)2
′
2: ( )

where

˜( ) =


( 1( ) 2( ))1 2 ( 1( ) 2( )) 0

... . . . ...

0 ( 1( ) ( ))1 2 ( 1( ) ( ))


In the general case, the expression of 1( ) (respectively, 2:r( )) depends on 1( )

(respectively, 2). Specifically, 1( ) is a linear combination of the Kronecker prod-

ucts between the eigenprojection associated with the maximal eigenvalue max( ), de-

noted by 1( ), and those associated with each other eigenvalue ( ), denoted by

j
( ). The weight of each Kronecker product is determined by the discrepancy be-

tween max( ) and ( ), specifically by max( ) 2( ), that is, the difference be-

tween the two largest eigenvalues. When these two eigenvalues are roughly of the

same magnitude, the presence of at least two driving structural shocks cannot be ruled

out, causing 1( ) to become arbitrarily large. Thus, an examination of the empirical

eigenvalues is necessary.

2.3.2 Max Share asymptotics with some roots at, or near, unity

We now discuss the asymptotics of the Max Share estimator in the presence of nearly

unit root and/or nonstationary processes when the VAR model is estimated in levels.

In the spirit of Phillips (1998), our primary interest is on the behaviour of when

ficients in the stationary case.
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the sample size goes to infinity and the horizon is a fixed fraction of , that is,

= .10

Consider the general specification in levels and differences:

= −1 + ( ) −1 +

We construct the orthogonal matrix = [ ⊥ ] where ⊥ is an ( ) orthogonal

full rank matrix containing the unit roots or near unit roots linear combinations of and

is an orthogonal full rank matrix containing the stationary linear combinations

of .

Following Phillips (1998), we assume that:

Assumption 2.3.2

(a) is an i.i.d. process with zero mean, covariance matrix 0 and finite fourth

cumulants;

(b) The determinantal equation
∑

=1 = 0 has roots on or outside the

unit circle;

(c) = ⊥ exp(
−1 ) ′⊥ + ′ + ′, where R × and 0 rank( ) =

rank( ) = . Without loss of generality, is orthonormal, and R ×

is a constant matrix;

(d) The matrix ′
⊥ ( (1)) ⊥ is nonsingular and ⊥ ⊥ R × with =

are the orthogonal complements of and , respectively.

10One could also consider the case where both h and T go to infinity such that h/T 0.
However, it is less relevant from a macroeconomic perspective.
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The standard condition (a) is necessary for deriving the asymptotic variance matrix.

Condition (b) allows for the inclusion of both stationary and nonstationary components.

Condition (c) encompasses the unit root and local-to-unity cases. Specifically, the ma-

trix can be interpreted as a noncentrality parameter matrix (see Phillips (1998)).11

Moreover, note that = ′ in the presence of unit roots and cointegration. Lastly,

condition (d) specifies that the stochastic process is driven by random walks and/or

nearly integrated processes. Consequently, the linear combinations ′
⊥ exhibit unit

roots or near unit roots (or a mixture of both), while ′ remains stationary.

Interestingly, Assumption 2.3.2 covers several cases of interest. Notably, empirical

macroeconomic applications often focus on one of the following four cases.

• Case 1: Some variables have a unit root while other variables are weakly station-

ary. For instance, in the bivariate case, one variable possesses a unit root (e.g., a

TFP measure) and the other is stationary with an autoregressive coefficient (e.g.,

a financial spread), say = 9. In this case, = 1, = 1, and = [0 1]′.

• Case 2: All variables in the vector possess a unit root without cointegration

(Lütkepohl and Velinov, 2016). Accordingly, ⊥ = , is the null matrix, and

( −1 ) = .

• Case 3: All variables possess a unit root but there are cointegration relation-

ships (e.g., the baseline quarterly model of King et al. (1991)), ( −1 ) = ,

and = ′.

• Case 4: Some variables have a unit root (e.g., a TFP measure) and other variables

have near unit roots (e.g., hours worked). In particular, can be a diagonal matrix

in which some series may be I(1) processes corresponding to the components

11An alternative and asymptotically equivalent approach is to replace the matrix exponential rep-
resentation with deviations from Is of the form Is + T−1Γ.



67

with = 0, and some series may be stable processes with near unit roots (that is,

0).12 The matrix can be partitioned such that the first diagonal elements

correspond to the I(1) variables and the remaining elements correspond to the

nearly integrated variables.

We are now in a position to present the asymptotics of the impulse responses and the

Max Share matrix in the presence of unit or near-unit roots when the unrestricted

(reduced-form) VAR is estimated in levels. To avoid any confusion, note that in the

sequel, we use the index (respectively, the notation ) to denote the impulse response

horizon or lead time (respectively, the forecast error variance horizon).

Theorem 2.3.4 Consider the reduced-form VAR in levels (equation 2.1). Let Assump-

tion 2.3.2 hold, and let [0 1]. Then,

i) If the lead time = , where 0 is a fixed fraction of the sample, the limiting

reduced-form impulse response matrix is nonzero as :

= ⊥ exp( Γ)
′ (2.21)

ii) If = , where 0 is a fixed fraction of the sample, then the limiting

non-accumulated Max Share matrix and the h-step-ahead forecast-error vari-

ance matrix at horizon are random as :

−1 ̂ ( ) −1

∫
0

′
tr exp( ′

Γ)
′
⊥

′
⊥ exp( Γ)

′
tr ( Γ)

(2.22)

−1MSE( ) −1

∫
0

⊥ exp( Γ)
′ exp( ′

Γ)
′
⊥ (2.23)

12Note that if Γ has some nonzero off-diagonal elements, one can have series that are near inte-
grated of different orders.
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where denotes weak convergence. The formal definitions of the matrices ⊥, , and

Γ, which is a matrix function of a mixture of unit-root or local-to-unity distributions

(or a mixture of both distributions), are given in Appendix B.

Proof: These results follow directly from Lemma 2.2 and Theorem 3.1 in Phillips

(1998).

Part (i) of Theorem 2.3.4 asserts that the limiting response matrices of the moving

average (reduced-form) representation lie in the range of ⊥ in the presence of roots

at or near unity. This implies that the limiting impulse responses, denoted as , are

nonzero exclusively for nonstationary variables possessing unit roots or near unit roots,

specifically for ′
⊥ , particularly when the lead time constitutes a significant fraction

of the sample size. Moreover, the matrix captures the permanent impact of the

reduced-form innovations on ′
⊥ .

Importantly, result (i) shows that for = where 0 is a fixed fraction of the

sample, the impulse response matrices in the moving average representation for the

VAR in levels are inconsistent except at the very shortest horizons. More precisely,

the limits of the impulse response matrices become random variables rather than true

values. The presence of unit roots and/or nearly unit roots accelerates the convergence

of OLS estimates and leads to (super-)consistency in OLS regressions in levels (see

Sims et al. (1990)). Specifically, as explained by Phillips (1998), impulse response

functions do not converge faster in some directions, defined from the range of ⊥, but

rather carry the effects of (near) unit roots indefinitely as the lead time increases. It

is important to note that (near) unit roots are estimated with some degree of error, and

this error not only persists but also accumulates as , with the impulse response

horizon constituting a non-negligible fraction of the sample size.

The second result (ii) of Theorem 2.3.4 establishes that the estimator of the Max Share
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̂ ( ) matrix becomes inconsistent and converges to a random matrix, when the unre-

stricted VAR is estimated in levels. This inconsistency arises because ̂ ( ) depends

on the reduced-form impulse response estimates at medium-to-long horizons (equa-

tions 2.6 and 2.13). Specifically, this random matrix represents a continuous average of

a (matrix) quadratic form, derived from the limiting (reduced-form) impulse responses

(equation 2.22). Consequently, the estimators of the corresponding eigenvalues and

eigenvectors are also inconsistent, failing to converge to their true values.

Similarly, the mean squared error converges to a random variable, which is a con-

tinuous average of a quadratic form derived from the limiting reduced-form impulse

responses. Interestingly, the Max Share statistic can converge weakly in probability

to a non-random matrix when the forecast error variance horizon is a fixed fraction of

the sample size and diverges to infinity, that is, the mixture of unit root or local-to-

unity distributions does not contribute to the limiting Max Share statistic. For instance,

this occurs in the first experiment of our Monte Carlo simulations. Meanwhile, finite-

sample approximations can be severely distorted relative to the limiting distribution.

Given that structural IRFs from the identified Max Share shock are given by equation

(2.16), the presence of some roots at, or near, unity has three significant implications.

Firstly, according to Theorem 2.3.4(i), structural impulse responses, which are funda-

mentally functions of the reduced-form impulse responses, are inconsistent when roots

are at or near unity. Their limits are altered by the distribution of the unit root or near

unit root processes. Secondly, as stated in Theorem 2.3.4(ii), structural impulse re-

sponse functions are also inconsistent due to the estimation of the eigenvector 1 ( ).

Specifically, with a medium- to long-term Max Share identification scheme, the (in-

consistent) estimate of 1 ( ), derived from an inconsistent estimate of the Max Share

matrix, affects all structural impulse response matrices. This impact is not limited to

those with a lead time extending beyond a fixed fraction of the sample size but also con-

taminates the entire structural IRF matrices. Thirdly, in combination with the inherent
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inconsistency of the reduced-form impulse response matrices, non-normal asymptotics

generally prevail. This results in non-normal random limits, even in the presence of

stationary components within the VAR specification. Therefore, the structural IRFs are

influenced by the stochastic nature of the eigenvector estimates and the nonstationarity

embedded within the unrestricted VAR model in levels.

2.4 Monte Carlo simulations

This section provides some Monte Carlo simulations to study the performances of the

Max-share procedure in the presence of misspecification regarding the integration or-

der. We assume that the data generating process (DGP) is a bivariate VAR model: 1

2

 =

 11 12 +

21 22

 1 −1

2 −1


+

 0 12

0 0

 1 −2

2 −2

+

 1

2

 (2.24)

with

=

 1 12

21 1

 1

2


where (0 2) is a bivariate vector of structural shocks.

The parameter controls the number of permanent structural shocks and the magnitude

of the permanent effect of the second shock 2 on the first variable 1 . When = 0,

only the first structural shock has a permanent impact on the first variable. To some

extent, the corresponding specification can be viewed as the one often encountered in

the macroeconomic literature to identify a permanent shock, for example, the identifi-

cation of a technology shock with some measures of (labor or total) productivity and
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hours worked (see Section 2.5).13 When = 0, the two structural shocks have a perma-

nent effect on the first variable (e.g., Fisher (2006)). In other words, the identification of

the first structural shock can be contaminated by the second permanent structural shock,

meaning the two permanent shocks can be confounded. Taking the transformation of

the first variable, this specification is labeled the first-difference model.

On the other hand, the corresponding specification in levels is given by: 1

2

 =

 1 + 11 12 +

21 22

 1 −1

2 −1


+

 11 12

21 0

 1 −2

2 −2

+ (2.25)

In both cases, we can also consider a situation in which the second variable 2 is

nearly integrated, that is, 22 = exp( ) with 0. To summarize, 1 is in-

tegrated of order one and is either specified in first-difference or in level, and 2 is

either weakly stationary or nearly integrated in our Monte Carlo simulations. In the

sequel, we assume that 11 = 0. Appendix B provides the derivation of the asymptotic

distribution of the Max Share matrix 1̂ ( ) for different configurations of this DGP.

Using equation (2.24), we generate 10,000 samples of size = 240 observations, a

common sample size in applied macroeconomic research. To control for initial condi-

tion effects, we include 200 pre-sampled observations that are subsequently discarded

during estimation. In each replication, we set the lag order to its true value, whether

considering ( 1 2 )′ or ( 1 2 )′, ensuring that our results are free from lag

13It is worth emphasizing that the VAR(1) specification (the first set of experiments) is the DGP of
Gospodinov et al. (2013) and Chevillon et al. (2020), whereas the VAR(2) (the second set of experiments)
corresponds to that of Gospodinov (2010) and Gospodinov et al. (2011).
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order misspecification issues. 14 For each replication, we perform OLS estimation

for both the first difference (equation 2.24) and level (equation 2.25) VAR specifica-

tions. Additionally, for the level-based specification, we apply the analytical correction

proposed by Pope (1990) and a bootstrap procedure (Kilian, 1998b; Inoue and Kilian,

2002b).15 Subsequently, we identify two structural shocks using the Max Share ap-

proach, which involves maximizing the contribution of the first structural shock to the

h-step ahead forecast error variance of the first variable 1 or 1 (equation 2.14).

We explore different truncated forecast error variance horizons for the Max Share cri-

terion, including = 0, 40, and 80 quarters. Notably, when = 0, the Max Share

approach simplifies to a Cholesky decomposition of the variance-covariance matrix of

the innovations .

The results are evaluated across three dimensions. Firstly, after computing the (cumu-

lative) mean bias and root mean squared error (RMSE) for selected lead times ( = 0, 4,

8, and 40 quarters), we analyze the average impulse response functions of the -th vari-

able due to the -th structural shock at each lead time , using a forecast error variance

horizon of = 0 40, or 80 for the Max Share matrix. These average impulse response

functions are denoted as IRF ( ) and are compared against the true impulse response

function IRF . Note that we only report the impulse responses for the first structural

shock for sake of conciseness: detailed tables regarding the bias and RMSE, along with

further evidence for the second structural shock, are provided in Appendix B. Secondly,

we calculate the contemporaneous correlation between the estimated structural shocks

and the true structural shocks, denoted by corr ( ) for = 1 2, as well as the

contemporaneous correlation between estimated structural shocks and true complemen-

14Several robustness exercises, available upon request, were conducted to control for lag order
selection, all of which confirm the consistency of our results.

15Bayesian estimation with Minnesota unit root priors and consideration of short-run restrictions
were also conducted, although detailed results are not presented here, but are available upon request.
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tary structural shocks, denoted by corr ( ) for = . Lastly, we analyze the

empirical distribution of the first (and second) element of the eigenvector 1, denoted by

1 1( ) (and 2 1( )), associated with the maximal eigenvalue of the Max Share matrix.

In our initial experiment, we assume that ( 1 2 )′ is modeled as a VAR(1) sys-

tem with parameters ( 11 12 21 22 12 21 ) = (0 0 0 2 0 96 0 0 5 0). Since

11 = 12 = = 0, 1 follows a random walk, while the second variable is a (per-

sistent) stationary process driven by . This configuration corresponds to Case 1 as

described in Section 2.3. Furthermore, with = 0, only the first structural shock has

a lasting impact on the first variable. As depicted in Figure 2.1 for = 0, there is

no contemporaneous bias observed in the average structural impulse response function

(IRF) estimates, denoted by IRF11 0(0) and IRF21 0(0), regardless of how the nonsta-

tionary variable 1 is handled. This absence of bias is consistent with the fact that the

Max Share identification method is here essentially equivalent to a recursive Cholesky

identification approach. As demonstrated by Phillips (1998), IRFs are then consistently

estimated at short horizons , where = represents a small fraction of the sample

size.
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Figure 2.1: Impulse response effects of the first structural shock based on a contempo-
raneous (h = 0) Max-Share identification (experiment 1)

(a) Variable 1

(b) Variable 2

Notes: The black solid line represents the true IRF, IRF11,i and IRF21,i for i = 0, , 40, whereas the
dashed line, the red solid line, the blue dashed line, and the red dotted line represent the average IRF
estimates, IRF11,i(0) andIRF11,i(0), inherited from the first-difference specification, the level
specification, the bias-correction method of Pope, and a bootstrap procedure, respectively.

As the lead time of structural impulse response functions (IRFs) increases, the bias and

root mean squared error (RMSE) of IRF11 (0) increase significantly when the reduced-

form VAR is estimated in levels. Specifically, the (average) bias of the impulse response
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function of the first variable to the first structural shock, IRF11 (0), is approximately

0.05 at = 20 and 0.07 at = 40 for the first-difference VAR, whereas these biases are

notably higher at 0.35 and 0.55, respectively, for the VAR in levels. Meanwhile, with

the exception of the shortest horizons, the RMSE of the level-based specifications rises

rapidly compared to the first-difference specification, showing a multiplication factor

of two or even three at medium-to-long horizons.

Interestingly, both Pope’s correction and the bootstrap method exhibit similar bias re-

duction performances, halving the bias compared to the (uncorrected) VAR in levels.

However, the (average) bias remains substantial, around 0.15 and 0.3 at = 20 and 40,

respectively. This bias reduction comes at the cost of a slight RMSE increase at the

shortest horizons ( 4), followed by a much larger RMSE at medium-to-long hori-

zons compared to the corresponding performances of the first-difference specification.

Furthermore, similar patterns are observed when analyzing the (average) impulse re-

sponse function of the second variable to the first structural shock, as well as the cor-

responding RMSE at each horizon. Starting from 4, a notable discrepancy in bias

performances between the first-difference and the level-based specifications is observed

regarding IRF21. This relative performance is even more pronounced when examining

the RMSE. Indeed, using Pope’s correction or the bootstrap procedure effectively re-

duces the (average) bias to levels comparable to the first-difference specification but

comes with a multiplication factor (for the RMSE) greater than two at medium-to-long

horizons.



76

Figure 2.2: Impulse response effects of the first structural shock based on a non-
accumulated Max-Share identification with = 40 (experiment 1)

(a) Variable 1

(b) Variable 2

Notes: The black solid line represents the true IRF, IRF11,i and IRF21,i for i = 0, , 40, whereas the
dashed line, the red solid line, the blue dashed line, and the red dotted line represent the average IRF
estimates, IRF11,i(0) andIRF11,i(0), inherited from the first-difference specification, the level
specification, the bias-correction method of Pope, and a bootstrap procedure, respectively.
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Figure 2.3: Impulse response effects of the first structural shock based on a non-
accumulated Max-Share identification with = 80 (experiment 1)

(a) Variable 1

(b) Variable 2

Notes: The black solid line represents the true IRF, IRF11,i and IRF21,i for i = 0, , 40, whereas the
dashed line, the red solid line, the blue dashed line, and the red dotted line represent the average IRF
estimates, IRF11,i(0) andIRF11,i(0), inherited from the first-difference specification, the level
specification, the bias-correction method of Pope, and a bootstrap procedure, respectively.

As illustrated in Figure 2.2 and Figure 2.3, an increase in the forecast error variance

horizon within the Max Share procedure unveils three main features. First, consistent

with the findings of Theorem 2.3.4, a contemporaneous bias in the impulse response
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function of the first variable, resulting from the first structural shock, emerges when

level-based methods are used. Additionally, neither Pope’s correction nor standard

bootstrap techniques fully mitigate this bias, particularly at the shortest impulse re-

sponse horizons . When analyzing the effect of the first structural shock on the second

variable, IRF21, both bias-correction methods display minimal (average) bias and per-

form comparably to the first-difference method, albeit at the cost of lower efficiency.

The uncertainty associated with level-based structural IRF estimates for the second

variable increases with the forecast error variance horizon . Specifically, the RMSE

for bias-corrected methods is higher than that inherited from ordinary least squares es-

timation of the VAR in levels when considering the IRF of the second variable due to

the first structural shock. Conversely, for the IRF of the first variable, the RMSE from

bias-corrected methods is lower.

Examining the eigenvector corresponding to the maximal eigenvalue, Figure 2.4 dis-

plays the distributions of its two elements when the forecast error variance horizon

is 40 or 80 quarters. When employing the first-difference specification, the distribu-

tion of the first element of the eigenvector exhibits a pronounced peak around the true

value of the first unit vector element. In contrast, all estimation methods using the level

specification result in a significantly greater dispersion for the first element, with values

ranging between 0.6 and 1. The distributions for the second element of the eigenvector,

while approximately symmetric around the true value of 0, span a broad interval from

-1 to 1.

These results can be rationalized by analyzing the asymptotic distribution of the Max

Share statistic. According to the derivations presented in Appendix B, the asymptotic

distribution of the Max Share matrix is characterized as a random matrix expressed by:

−1
1̂ ( )

1

1 0

0 0

∫
0

exp (2 ) (2.26)
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Figure 2.4: Distributions of the eigenvector elements associated to the largest eigen-
value (experiment 1)

(a) h = 40

(b) h = 80

(1) The top (respectively, bottom) panel illustrates the distribution of the two elements v1,1(h) and
v2,1(h) of the eigenvector associated with the largest eigenvalue when the forecast error variance
horizon is set to h = 40 (respectively, h = 80). (2) For each horizon, the two upper subfigures depict
the distributions of the eigenvector elements (black solid line) when considering the first-difference
model. The two lower subfigures display the distributions of the OLS-based estimates (black solid line),
bias-corrected estimates (blue dashed line), and the bootstrapped estimates (red solid line) of the level
specification.
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with
∫

0
exp (2 ) = 1

2
[exp(2 ) 1] where the real random variable has a

unit root distribution. Moreover, the asymptotic distribution of the mean squared error

is given by:

−1 ′
1MSE( ) 1

1
∫

0

exp (2 )

These two results imply that the Max Share statistic is weakly convergent, i.e.

′
1 ( ) 1

′
1MSE( ) 1

1 0

0 0

 (2.27)

In this case, the limit of the Max Share statistic is consistent, and the limits in (weak)

probability of the eigenvalue estimators are one and zero, respectively. Moreover, the

limit of the eigenvector estimator associated with the maximal eigenvalue is the vector

[1 0]′. This aligns with the simulation results depicted in Figure 2.4. Additionally,

given the definition of the structural impulse response functions outlined in equation

(2.16), the impact on these functions also depends on the distribution of the reduced-

form impulse responses . As outlined in Theorem 2.3.4, the latter is given by:exp( ) 0

0 0


This distribution has a random limit, characterized by the exponential of the scalar unit

root distribution, which notably exhibits left-skewness that intensifies with increasing

values of .16 For instance, with = 40
240

, our Monte Carlo simulations indicate that the

resulting asymmetry in the distributions of the reduced-form impulse response func-

tions (IRFs) is pronounced, featuring a significant negative skewness coefficient. This

16See also Figure 1(a) of Phillips (1998).
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asymmetry mirrors that typically observed in unit-root distributions.17

Figure 2.5: Impulse response effects of the first structural shock based on a non-
accumulated Max-Share identification with = 40 (experiment 2)

(a) Variable 1

(b) Variable 2

The black solid line represents the true IRF, IRF11,i and IRF21,i for i = 0, , 40, whereas the dashed
line, the red solid line, the blue dashed line, and the red dotted line represent the average IRF estimates,
IRF11,i(0) andIRF11,i(0), inherited from the first-difference specification, the level specification, the
bias-correction method of Pope, and a bootstrap procedure, respectively.

17Note that the asymmetry results from the nonnormal limit theory (Phillips, 1998).
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Figure 2.6: Distributions of the eigenvector elements associated to the largest eigen-
value (experiment 1)

(a) h = 40

(b) h = 80

Notes: (1) The top (respectively, bottom) panel illustrates the distribution of the two elements v1,1(h)
and v2,1(h) of the eigenvector associated with the largest eigenvalue when the forecast error variance
horizon is set to h = 40 (respectively, h = 80). (2) For each horizon, the two upper subfigures depict
the distributions of the eigenvector elements (black solid line) when considering the first-difference
model. The two lower subfigures display the distributions of the OLS-based estimates (black solid line),
bias-corrected estimates (blue dashed line), and the bootstrapped estimates (red solid line) of the level
specification.
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For our second experiment, we maintain the same parameter vector as in the initial ex-

periment. However, we now assume that both structural shocks have a permanent effect

on the first variable ( = 0 025 = 0), potentially leading to a confounding effect. Sev-

eral noteworthy observations arise from Figure 2.5. Firstly, consistent with Experiment

1, impulse response estimates derived from the first-difference method consistently out-

perform those from the level specification across all lead times, demonstrating superior

bias and RMSE properties.18 Secondly, as the forecast error variance horizon in-

creases, we observe significant differences, particularly regarding the impact of the first

structural shock on the second variable. This suggests that the Max Share identification

method may partially confound the two permanent structural shocks.

This interpretation is further supported by the correlation analysis between each esti-

mated structural shock and the true complementary structural shock (see Tables B.1

and B.2 in Appendix B). Specifically, we note that these (absolute) correlations hover

around 25% for level-based impulse response estimates, whereas they are negligible

when using the first-difference specification. Additionally, we observe an average 10%

decrease in the correlation between each estimated structural shock and the true one for

OLS-based, bias-corrected, and bootstrapped estimates derived from the level specifi-

cation. In contrast, these correlations remain unchanged and close to 100% in the case

of the first-difference specification.

Thirdly, we observe that the RMSE generally increases as the forecast error variance

horizon extends in the Max Share procedure, particularly noticeable at the shortest im-

pulse response horizons for level-based estimates. Fourthly, consistent with the results

detailed in Appendix B, two main features emerge regarding the distribution of the

eigenvector elements (see Figure 2.6). On the one hand, using the first-difference spec-

ification in the presence of two persistent structural shocks results in distributions that

18Figures B.3 and B.4 display results for h = 0 and h = 80, respectively, in Appendix B.
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remain nearly invariant compared to those in the first experiment. On the other hand,

employing the specification in levels broadens the support of the two distributions. No-

tably, the distribution of the second eigenvector element exhibits a right-skewed pattern,

with a negative mean and median estimate of 2 1 around -0.5, significantly deviating

from the true value of 0. Increasing the forecast error variance horizon from 40 to

80 quarters further exacerbates this issue. This can be understood by examining the

asymptotic distribution of 1̂ ( ) given by:

−1
1̂ ( )

1

 0 3735 0 3395

0 3395 0 3086

∫
0

exp (2 )

Comparing with the expression of the asymptotic distribution of the Max Share matrix

estimator in equation 2.26, one main difference is that the matrix ′
tr

′
⊥ 1 1 ⊥

′

given in the right-hand side now possesses four nonzero elements due to the presence

of two permanent structural shocks, thus = 0. It turns out that the finite sample

estimation of these elements further contributes to increased uncertainty, compounding

the finite sample approximation of nonnormal, asymmetric asymptotics associated with

the unit-root distribution. 19

For our last two reported experiments, we focus on Case 4 (Section

2.3), where ( 1 2 )′ is modeled as a VAR(1) system with parameter

( 11 12 21 22 12 21) = (0 0 2 0 2 0 99 0 0 5) and = 0 (experiment 3)

or -0.025 (experiment 4). The second variable is modeled as a near-unit root process.

In the case of a forecasting error variance horizon of 40 quarters, Figures 2.7 and

2.8 report the average impulse responses and the RMSE for = 0 and = 0 025,

19Interestingly, when we apply the Max Share matrix estimator with a horizon beginning at 20
instead of zero and a maximal horizon of 80, the medians of the first eigenvector are close to those of the
asymptotic matrix given above.
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respectively.20 Several points are worth noting. The presence of a near-unit root second

variable substantially increases the bias of impulse response estimates, even in the

case of the first-difference specification. In particular, the bias is more pronounced

for greater impulse response horizons and = 0 or 40 quarters when studying the

effect of the first structural shock on the second variable (lower panels in Figure 7 and

8) in the presence or absence of a confounding effect. Meanwhile, the level-based

estimates of IRF21 exhibit, as in our second experiment, a large contemporaneous

bias, combined with large RMSEs. With only one permanent structural shock ( = 0),

the occurrence of a near-unit root for 2 results in contemporaneous correlations (in

absolute value) corr ( ) of 15% for the two structural shocks. In the case of

two permanent structural shocks, these correlations increase to around 60% for = 40,

while those between the -th estimated level-based structural shock and the true one,

corr ( ), drop to 74% ( = 40) and 60% ( = 80). Consistent with previous

results, in the case of first-difference estimates, the correlations corr ( ) for

= 1 2 remain close to 100%, and those between and for = are close to

zero.

The rationale behind the structural IRF results remains consistent with the findings of

the first two experiments. On the one hand, using the derivations detailed in Appendix

B, the asymptotic distribution of the Max Share matrix is given by:

−1
1̂ ( )

1
∫

0

0 8615 0 6808

0 2 0 9615

 exp( ′
Γ) 1

′
1 exp( Γ)

0 8615 0 2

0 6808 0 9615


where Γ denotes a matrix function representing a mixture of unit root and local-to-

unity distributions and =

0 1

0 2

, with = 0 (experiment 3) or = 025 (ex-

periment 4), = 1 , and 1 characterizes the root near unity (see Assumption 3.2).

20Results for h = 0 and 80 are also available in the supplementary material.
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The finite sample approximation of this more complex asymptotic distribution, which

is nonnormal and asymmetric, significantly impacts the eigenvector associated to the

largest eigenvalue.

Figure 2.7: Impulse response effects of the first structural shock based on a non-
accumulated Max-Share identification with = 40 (experiment 3)

(a) Variable 1

(b) Variable 2

Notes: The black solid line represents the true IRF, IRF11,i and IRF21,i for i = 0, , 40, whereas the
dashed line, the red solid line, the blue dashed line, and the red dotted line represent the average IRF
estimates, IRF11,i(0) andIRF11,i(0), inherited from the first-difference specification, the level
specification, the bias-correction method of Pope, and a bootstrap procedure, respectively.
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Figure 2.8: Impulse response effects of the first structural shock based on a non-
accumulated Max-Share identification with = 40 (experiment 4)

(a) Variable 1

(b) Variable 2

Notes: The black solid line represents the true IRF, IRF11,i and IRF21,i for i = 0, , 40, whereas the
dashed line, the red solid line, the blue dashed line, and the red dotted line represent the average IRF
estimates, IRF11,i(0) andIRF11,i(0), inherited from the first-difference specification, the level
specification, the bias-correction method of Pope, and a bootstrap procedure, respectively.

On the other hand, this effect is compounded with the estimation of the reduced-form

impulse responses whose asymptotic distribution, as indicated by Theorem 2.3.4, is
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given in both cases by:

exp( Γ)

0 9615 0 2

0 2 0 9615


where exp( Γ) is a 2 2 matrix. Consequently, the elements of the structural IRFs

of the first variable, as identified by the Max Share approach, are adversely affected by

the relationship (2.16).

Regarding the finite sample distribution of the two elements of the eigenvector associ-

ated with the maximal eigenvalue, the simulation results from the first two experiments

are further exacerbated in the context of both a near-unit root for the second variable and

a possible confounding effect ( = 0) (see Figures 9 and 10). Specifically, the distribu-

tions of level-based estimates of the eigenvector elements exhibit either a left-skewed

shape (for the first eigenvector element) or a right-skewed shape (for the second eigen-

vector element) when = 40, with only minor concentration around the true value.

As the forecast error variance horizon increases, both distributions undergo significant

distortions in the presence of both a unit root and a near-unit root in the unrestricted

VAR in levels. In particular, when = 0 025, the distribution of the first eigenvector

element displays an inverted U-shape with a broad range, while the distribution of the

second eigenvector element is bimodal, with values predominantly clustered around

either -1 or 1. 21

21The bimodal distribution can be understood with the following argument: let A =[
1 + ε 0

0 1 ε

]
, where ε > 0 is small enough. A has two eigenvalues λmax = 1 + ε and λmin = 1 ε.

One eigenvector associated with the largest (respectively, smallest) eigenvalue is the first (respectively,

second) basis vector of R2, v1 =

[
1
0

]
(respectively, v2 =

[
0
1

]
). Consider a small perturbation of A,

Aε = A + ε

[
1 1

1 1

]
. The two eigenvalues remain unchanged, while (using the same normalization

as in the initial matrix) one eigenvector associated with λmax is the sum vector of R2, v1 =

[
1
1

]
and
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In conclusion, given the prevalence of such a data-generating process (DGP) in macroe-

conomic applications, these simulation experiments highlight several interesting in-

sights. First, structural impulse responses derived from VAR models in levels show

a substantial loss in terms of bias and RMSE properties at intermediate and long hori-

zons. This contrasts with those obtained from the first-difference specification. Second,

while bias-corrected, bootstrap and Bayesian methods mitigate the bias issue, they still

perform worse than estimates from a stationary representation, especially in terms of

RMSE. Third, the presence of a potential confounding effect, such as two permanent

shocks, exacerbates the discrepancies between first-difference estimates and level-based

estimates. This further underscores the need for caution when interpreting results from

unrestricted VAR models in levels.

v2 =

[
1
1

]
.
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Figure 2.9: Distributions of the eigenvector elements associated to the largest eigen-
value (experiment 3)

(a) h = 40

(b) h = 80

Notes: (1) The top (respectively, bottom) panel illustrates the distribution of the two elements v1,1(h)
and v2,1(h) of the eigenvector associated with the largest eigenvalue when the forecast error variance
horizon is set to h = 40 (respectively, h = 80). (2) For each horizon, the two upper subfigures depict
the distributions of the eigenvector elements (black solid line) when considering the first-difference
model. The two lower subfigures display the distributions of the OLS-based estimates (black solid line),
bias-corrected estimates (blue dashed line), and the bootstrapped estimates (red solid line) of the level
specification.
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Figure 2.10: Distributions of the eigenvector elements associated to the largest eigen-
value (experiment 4)

(a) h = 40

(b) h = 80

Notes: (1) The top (respectively, bottom) panel illustrates the distribution of the two elements v1,1(h)
and v2,1(h) of the eigenvector associated with the largest eigenvalue when the forecast error variance
horizon is set to h = 40 (respectively, h = 80). (2) For each horizon, the two upper subfigures depict
the distributions of the eigenvector elements (black solid line) when considering the first-difference
model. The two lower subfigures display the distributions of the OLS-based estimates (black solid line),
bias-corrected estimates (blue dashed line), and the bootstrapped estimates (red solid line) of the level
specification.
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2.5 Empirical application

Our empirical application underscores the potential issues arising from relying solely

on VAR models in levels, consistent with our theoretical and simulations results. We

draw upon the study of Zeev and Khan Zeev and Khan (2015), who used Max Share

identification to investigate the nature of investment-specific technology (IST) news

shocks. Interestingly, their unrestricted VAR specification, which includes both IST

and TFP variables in levels, highlights two possible sources of long-run fluctuations,

potentially leading to a confounding effect.

We consider a reduced-form VAR with five (log-) variables for the US economy from

1959Q1 to 2019Q4:

= (logTFP log IST log log log )′

The first variable is the real time, quarterly series on total factor productivity (TFP)

adjusted for variations in factor utilization, constructed by Fernald (2014). Our bench-

mark measure of IST is the inverse of the real price of investment, which is defined

as the ratio of the investment deflator and the consumption deflator. The consumption

deflator encompasses nondurable and service consumption from the National Income

and Product Account (NIPA) whereas the investment deflator corresponds to private

fixed investment and durable consumption. Following Whelan (2002), we make use of

a Fisher index to get chain-aggregated data.22 Consumption is measured as the sum of

nondurables and services and is converted to per capita terms by dividing by the civil-

ian noninstitutionalized population aged 16 and over. The real series is then obtained

by using the corresponding chain-weighted deflator. The hours series is log of total

22The IST series is nearly identical when using the Törnqvist-Theil discrete time approximation
to a Divisia index.
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hours worked in the nonfarm business sector adjusted for the civilian noninstitution-

alized population aged 16 and over. Finally, inflation is measured as the percentage

change in the GDP deflator.

Our identification strategy assumes two sources of persistent fluctuations in the system,

which we define as TFP and IST news shocks. In line with Kurmann and Sims (2021),

we sequentially apply the Max Share approach of Francis et al. (2014) to identify two

structural permanent shocks. The truncated forecast error variance horizon is set to =

80 quarters. Let 0 represent the lower triangular Cholesky factor of the reduced-form

covariance matrix , and be an orthonormal matrix such that all impact matrices

are given by 0 = 0 . The first structural shock is identified by solving:

1( ) = argmax
1

′
1 1( ) 1

′
1MSE( ) 1

s.t. ′
1 1 = 1

where 1 is the first column of the matrix . This vector 1 is the linear combination

that best explains future movements in TFP over a horizon , that is, the linear combi-

nation that maximally contributed to TFP future forecast error variance.23 The second

structural shock is identified similarly, under the additional condition that this shock is

orthogonal to the first structural shock:

2( ) = argmax
2

′
2 2( ) 2

′
2MSE( ) 2

s.t. ′
2 2 = 1 and ′

2 1 = 0

where 2 is the second column of the matrix . This vector 2 primarily accounts for the

long-term fluctuations in IST. Consequently, the first two columns of 0 encompass

the TFP and IST news shocks. To ensure the robustness of our identification strategy,

we reverse the order of identification, where 1 represents IST and 2 represents TFP.

23As pointed out by Kurmann and Sims (2021) for the TFP shock, imposing short-run restrictions,
such as zero impact restrictions used by Barsky and Sims (2011), may lead to misleading outcomes due to
the imperfect measurement of factor utilization. Therefore, we refrain from such identifying restrictions
on TFP and IST permanent shocks.
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In our empirical analysis, we employ two specifications. First, we estimate an un-

restricted reduced-form VAR in levels with four lags, which is standard practise for

quarterly data. Second, we estimate a VECM to account for potential unit roots and

long-run relationships. Unit root tests provide evidence that the first three variables—

TFP, IST, and consumption– are non-stationary. Moreover, economic theory suggests

that consumption shares a stochastic trend with both TFP and IST.

More specifically, Johansen (1995)’s cointegration tests, using both trace and maxi-

mum eigenvalue test-statistics, reject the null hypothesis of a cointegration rank of two

or less, but not of three or less. This result implies that the data is consistent with the

presence of two stochastic trends, suggesting no more than one cointegrating relation-

ship among TFP, IST, and consumption, assuming total hours worked and inflation are

covariance stationary. Conversely, the Engle-Granger test rejects the null hypothesis

of cointegration between any combinations of these three variables. To reconcile these

conflicting pre-test results, we report results based on a single cointegration vector, al-

though our findings remain robust even under the assumption of no cointegration, such

as when estimating a VAR with the three non-stationary variables in their first differ-

ences. This dual approach, employing both a VECM and a first-differenced VAR, is

again intended to provide a comprehensive understanding of the underlying dynamics

while enhancing the robustness of our results against varying assumptions regarding

the cointegration structure.

Figure 2.11 illustrates the structural impulse response functions (top panel) and the

forecast error variance shares (bottom panel) due to the structural TFP shock on each

variable under both identification strategies. Figure 2.12 provides a similar presentation

for the structural IST shock. Notably, the IRFs and FEVD shares for the TFP shocks

differ significantly depending on the identification ordering. For instance, while both

orderings agree that a TFP shock increases hours worked (except at impact), the VAR in

levels yields a distinct response and attributes a substantially larger share in the variance
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decomposition of hours worked to the TFP shock. Specifically, TFP shocks account for

nearly 60% of the variance decomposition of hours worked after 10 quarters when iden-

tified first, but only 20% when identified second. Thus, when TFP shocks are identified

first, they are seen as the main driver of fluctuations in hours worked, a conclusion that

should be moderated when these shocks are identified second.

The differences are even more pronounced with IST shocks, as depicted in Figure 2.12.

When the VAR in levels is employed, hours worked decline for several quarters follow-

ing the impact of IST shocks when identified conditional on TFP shocks. If IST shocks

are identified first, they explain a significant portion of fluctuations in hours worked

and consumption. However, when identified second, their impact on these fluctuations

is considerably less significant. This suggests that, in the second identification scheme,

IST shocks may not be a primary driver of business cycles.

This analysis provides evidence that applying the Max Share approach to VAR in lev-

els at a distant horizon can lead to conflicting results, likely due to the confounding

of the two permanent shocks, as seen in our simulation experiments. By explicitly ac-

counting for the stochastic trends using a VECM, the impact of the identification order

is substantially reduced. As detailed in the Appendix B, this impact becomes almost

negligible when employing a reduced-form VAR model with the first three variables

in differences. Regardless of the stationary transformation or the identification order,

the impulse response functions and the forecast error variance shares remain consistent

for the two structural shocks. Importantly, neither TFP nor IST shocks emerge as the

primary drivers of fluctuations in hours worked.
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Figure 2.11: TFP shock

(a) Structural Impulse Responses

(b) Forecast Error Variance Decomposition

Notes: (1) Red color corresponds to level-based estimates. Blue color corresponds to "first-difference"
estimates. (2) A solid line indicates the TFP shock is identified before the IST shock. A dashed line
indicates the IST shock is identified before the TFP shock.
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Figure 2.12: IST shock

(a) Structural Impulse Responses

(b) Variance Decomposition

Notes: (1) Red color corresponds to level-based estimates. Blue color corresponds to VECM- based
estimates. (2) A solid line indicates the TFP shock is identified before the IST shock. A dashed line
indicates the IST shock is identified before the TFP shock.
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Finally, this empirical application underscores the potential pitfalls of relying solely on

VAR in levels. While this application does not settle the debate on whether TFP or

IST shocks are pivotal for business cycles, it highlights the sensitivity of results when

using a VAR in levels in the presence of persistent processes with roots at or near unity.

This emphasizes the importance of also estimating stationary representations, such as

a reduced-form VECM or a reduced-form VAR with certain variables in differences,

to accurately capture the dynamics of structural shocks and enhance the robustness of

macroeconomic analysis.

2.6 Conclusion

This paper critically explores the implications of using VAR models in levels for the

Max Share identification approach, particularly in the presence of unit or near-unit root

processes. Our theoretical and empirical analyses provide several key insights. First,

structural impulse responses from level-based VARs exhibit significant bias and higher

RMSE at intermediate and long horizons compared to those from stationary representa-

tions, despite performing similarly at very short horizons. Second, while bias-corrected,

bootstrap, and Bayesian methods reduce some bias, they tend to increase RMSE and do

not consistently outperform stationary specifications, such as first-difference models.

Third, the presence of multiple permanent shocks exacerbates discrepancies between

estimates from level-based and differenced VARs, potentially leading to confounding

effects and unreliable identification of structural shocks.

These findings emphasize the importance of using stationary transformations, such as

VECMs or differencing, and reporting the corresponding results to ensure reliable iden-

tification of structural shocks and impulse responses. Such transformations help mit-

igate the risk of identifying hybrid shocks instead of primitive shocks. While unre-

stricted VARs in levels can be useful under uncertainty about unit roots and cointe-
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gration, it is advisable to complement this approach with stationary model estimates,

like the adaptive automated VECM estimation procedure proposed by Liao and Phillips

(2015), which effectively handles unknown cointegrating rank structures and transient

lag dynamic orders, or to conduct a thorough VECM robustness analysis in a stepwise

manner.



CHAPTER III

A LARGE CANADIAN DATABASE FOR MACROECONOMIC ANALYSIS



ABSTRACT1

This paper provides a large-scale Canadian macroeconomic database and shows its

usefulness for empirical macroeconomic analysis. The dataset contains hundreds of

Canadian and provincial economic indicators. It is designed to be updated regularly

and real-time vintages are publicly available. It relieves users to deal with data changes

and methodological revisions. We show four useful features of this dataset for macroe-

conomic research. First, the factor structure explains a sizeable part of the variation of

the dataset and appears as an appropriate means of dimension reduction. Second, the

dataset is useful to capture turning points of the Canadian business cycle. Third, it has

substantial predictive power when forecasting key macroeconomic indicators. Fourth,

the richness of the panel is used to study the effectiveness of monetary policy across

regions and sectors.

Keywords: Big Data, Factor Model, Forecasting, Structural Analysis.

JEL classification: C55, C82, E32

1This Chapter is a paper written with Olivier Fortin-Gagnon, Maxime Leroux and Professor
Dalibor Stevanovic. It has been published in 2022 in the Canadian Journal of Economics, 55(4), p.
1799-1833. https://onlinelibrary.wiley.com/doi/abs/10.1111/caje.12618.

https://onlinelibrary.wiley.com/doi/abs/10.1111/caje.12618
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3.1 Introduction

Large datasets are now very popular in empirical macroeconomic research. Stock and

Watson (2002a,b) have initiated the breakthrough by providing the econometric theory

and showing the benefits in terms of macroeconomic forecasting, while Bernanke et al.

(2005) have inspired the literature on impulse response analysis in the so-called data-

rich environment. Since then, many theoretical and empirical improvements have been

made, see Stock and Watson (2016) for a recent overview. Most of this literature is built

on US datasets. Therefore, McCracken and Ng (2016, 2020) proposed a standardized

version of a large monthly and quarterly US datasets that are regularly updated and

publicly available at the FRED (Federal Reserve Economic Data) website. No such

developments have been made with Canadian macroeconomic data, so the objective of

this work is to fill the gap and provide a user-friendly version of a large Canadian dataset

suitable for many types of macroeconomic research. Since Canada is an example of a

small open economy, this dataset will also be of interest for a wide range of applications

in international economics.

In this paper, we construct a large-scale Canadian macroeconomic database in monthly

frequency and show how it can be useful for empirical macroeconomic analysis with

several illustrative examples. The dataset contains hundreds of Canadian and provincial

raw economic indicators observed from 1914. It is designed to be updated regularly in

real time through StatCan databases and is publicly available.2 It relieves users to deal

with data changes and methodological revisions. We provide a balanced and stationary

panel starting from 1981 that is suitable for work in business cycle fluctuations. The

quarterly panel is available as well, and is essentially constructed by averaging the

monthly series and adding the GDP and its components that are only observable at

quarterly frequency. In this paper we only study the monthly panel.

2Data can be accessed here: http://www.stevanovic.uqam.ca/DS_LCMD.html.

http://www.stevanovic.uqam.ca/DS_LCMD.html
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Early attempts to construct large Canadian macroeconomic datasets are Gosselin and

Tkacz (2001) and Galbraith and Tkacz (2007). Boivin et al. (2010) updated and merged

data from those previous studies yielding a panel that covered the period 1969 - 2008

and had 348 monthly and 87 quarterly series. Then, Bedock and Stevanovic (2017)

constructed a new dataset of 124 monthly variables observed from 1981 to 2012. Their

selection of series was based on the Canadian counterparts of US data used in Boivin

and Ng (2005). More recently, Sties (2017) has built a much smaller monthly dataset

containing mostly financial series and few real activity indicators. Stephen Gordon

has also been updating some relevant Canadian indicators3, while the Bank of Canada

released its Staff Economic Projections database, as documented in Champagne et al.

(2018, 2020).4 Our data selection is inspired by McCracken and Ng (2016) when it

comes to major groups of economic variables. Given that Canada is a small open econ-

omy, the dataset contains many international trade, financial flows and natural resource

indicators.

We illustrate several useful features of this dataset for macroeconomic research. First,

we show that our panel is likely to present a factor structure and that common factors

explain a sizable portion of variation in Canadian and provincial aggregate series. The

principal component analysis of the dataset identifies few driving forces of the Cana-

dian economy such as GDP in business and financial sectors, term structure, exchange

rates, unemployment duration, international transaction net flows and oil production.

Second, the dataset is useful to capture turning points of the Canadian business cycle.

Using Probit, Lasso and factor models we show that this dataset has substantial ex-

planatory power in addition to the standard term spread predictor. Third, the dataset

provides information to substantially improve the predictive accuracy when forecast-

3See Project Link at https://www.ecn.ulaval.ca/s̃gor.

4Data are available here: https://www.bankofcanada.ca/rates/staff-economic-projections/.

https://www.ecn.ulaval.ca/~sgor
https://www.bankofcanada.ca/rates/staff-economic-projections/


104

ing key real macroeconomic indicators. Factor and sparse models, random forests and

regularized complete subset regressions show good performance in forecasting real ac-

tivity variables such as industrial production, employment and unemployment rate, as

well as CPI and Core CPI inflation. In the case of credit market aggregates, only the

regularized complete subset regressions and random forests are resilient, while practi-

cally no model improves the predictive accuracy for housing starts and building permits.

Fourth, the dataset can serve for structural impulse response analysis. We document

heterogenous effects of monetary policy on different sectors of the Canadian economy

and across regions. The passage to inflation targeting since 1992 coincides with a de-

crease in those differences, but some regional heterogeneity still pertains and may pose

a challenge for the Bank of Canada in its role to further stabilize the economy.

The rest of the paper is organized as follows. Section 3.2 describes the construction of

datasets and performs the factor analysis. Section 3.3 shows the informational content

of this dataset in detecting recession dates. In Section 3.4 we conduct a pseudo-out-

of-sample forecasting exercise to test the capability of the dataset to help predicting

main Canadian macroeconomic variables. Section 3.5 performs an impulse response

analysis and Section 3.6 concludes.

3.2 Datasets

In this section, we start by describing the construction of the dataset and, in particular,

how we deal with several issues related to availability and statistical properties of the

data. We then explore the factor structure of this dataset.
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3.2.1 Construction of datasets

The Canadian monthly database comprises eight different groups of variables: produc-

tion, labor, housing, manufacturers’ inventories and orders, money and credit, inter-

national trade and financial flows, prices and stock markets. Whenever available, we

included regional data covering the Atlantic provinces, Québec, Ontario, the Prairies

and British Columbia, as well as provincial data. The complete list of series is avail-

able in the data appendix C.2. We decided to include a large number of housing market

series since the housing cycle is an important feature of the business cycle (Leamer,

2015). In addition, given that Canada is a small open economy, we added more inter-

national trade, financial flows and natural resource indicators than one usually finds in

the US applications.

In building this database, several problems are encountered. Some tables have unfor-

tunately been discontinued and the new tables seldom go sufficiently far back in time

to afford us a sizeable time frame. Therefore, we combine old and new time series to

cope with this problem. This happens with data on production, housing, orders and

imports and exports. For instance, GDP data for the period starting in January 1981

and ending today is split across two tables: 379-0027, going from 1981/01 to 2012/01

and 379-0031, starting only on 1997/01. There exist several procedures to combine

two time series that share an overlapping period. de la Escosura (2016) reviews three

splicing procedures and introduces a new one of his own. As he notes, this aspect of

data analysis generally receives little attention with researchers often going for what he

calls retropolation whereby the new time series is re-projected using the growth rates

of the old time series. If the oldest observation of the new series is made at time , the

retropolated series over the previous time interval is given by:

:=

( )
(3.1)



106

This corresponds to assigning all the measurement adjustment to the level of the old

time series. However, by construction, all increasing time series will be retrospectively

skewed upward. As de la Escosura (2016) notes, this is an undesirable feature if we

are studying long-term growth, although it is mostly accurate over long time periods

and in economies undergoing deep structural change, such as developing economies.

Linear and non-linear interpolation schemes would, on the other hand, force the levels

of the new series at and of the old series at some other reference date, to be preserved,

which means assigning all the modification to the observed growth rates of the old time

series in between both references dates.5

The choice of a splicing method therefore depends on the application and the beliefs of

the researchers concerning what is best measured. In the construction of this database,

we privilege the retropolation approach because we prefer to leave observed growth

rates intact. For some series, this involves making hardly any changes as we can see in

Figure 3.1.

For imports and export series, there usually was a need to aggregate old series before

splicing since old and new trade data do not share a common classification system. In

the example provided below of exported consumption goods, we aggregate section 2

data on food, feed, beverages and tobacco, major group 4.23 on textile fabricated mate-

rials, and major group 5.11 on other consumption goods to approximate the consumer

good class of the North American Product Classification System (NAPCS). As is ev-

ident from the examples provided in Figure 3.1, viewing the old time series as noisy

indexes of new time series seems justified by the high correlations in the overlapping

periods.

5Interpolation schemes spare observed levels at specific dates, at the expense of modifying
growth rates, the dates being strategically chosen because measurements are believed to be more ac-
curate. Moreno (2014) also proposed a mixed splicing method that allows for a middle ground to be
chosen by the researcher through a tuning parameter.
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Figure 3.1: Examples of data splicing
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Note: Old series are in black, while new (actual) series are in red.

Another problem concerns the seasonal behavior of a few important labor market time

series, unemployment duration and initial claims, as they are not readily available in a

seasonally adjusted format. To deal with this, we use the SEATS model based decom-

position method that is provided along the X11 type capabilities of the ARIMA-X13-

SEATS program of the US Census Bureau6. As a sanity check on the viability of the

6This approach relies on a factorization of the AR lag polynomial of an ARIMA model whereby
different roots of the polynomial can be assigned, respectively, to trend, transitory and seasonal compo-
nents based on the fact each component will exhibit a different signature in the frequency domain. The
ARIMA model is selected based on the automatic selection procedure provided by the program which
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procedure, the Kruskal-Wallis test (Kruskal and Wallis (1952)) for seasonal behavior

is conducted both prior to and after the seasonal adjustment is performed. The result

of the Kruskal-Wallis tests are shown in table C.1 in Appendix C.1. The tests imply a

rejection of the absence of seasonal behavior prior to the adjustments, but do not allow

for rejection of the null hypothesis after the adjustments have been made as anticipated.

Figures C.1-C.2, in Appendix C.1.1, show the behavior of the model based adjustment

procedure for a few of unemployment duration and initial claims series.

Most of the series included in the database must be transformed to induce stationarity.

We roughly follow McCracken and Ng (2016) and Bedock and Stevanovic (2017):

most I(1) series are transformed in the first difference of logarithms, a first difference of

levels is applied to unemployment rates and interest rates, first difference of logarithms

is used for all price indexes, and housing data is featured in logarithms. Transformation

codes are reported in the data appendix.7

Our last concern is to balance the resulting panel since some series have missing ob-

servations. We opted to apply an expectation-maximization algorithm by assuming a

factor model to fill in the blanks as in Stock and Watson (2002b) and McCracken and

Ng (2016). We initialize the algorithm by replacing missing observations with their un-

conditional mean and then proceed to estimate a factor model by principal component.

The fitted values of this model are used to replace missing observations. Examples of

missing values include export and import series since the old tables went back only to

1988/01.

relies on minimizing the BIC. For the implementation details, the reader is referred to the user manual of
the US Census Bureau ARIMA-X13-SEATS program. Reader is referred to US Census Bureau (2017)
X-13ARIMA-SEATS Reference Manual, available at https://www.census.gov/ts/x13as/docX13AS.pdf

7Some of those transformations are questionable, e.g. keeping unemployment or interest rates
in levels rather than applying first differences. We provide raw data as well so users can apply any
transformation of their choice. This can potentially improve predictability as in Coulombe et al. (2021a).

https://www.census.gov/ts/x13as/docX13AS.pdf
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The resulting balanced and stationary panel is used in the rest of this paper.8 We will

consider only aggregate Canadian data in sections 3.3 and 3.4, while the richness of the

provincial data will be explored in the section 3.5. The number of variables is likely

to change over time as new data become available or some existing series end. In this

paper, the Canadian data set contains 116 variables, while adding the provincial data

gives a panel of 386 time series.

3.2.2 Number of Factors

Estimating the number of factors is an empirical challenge. Usually the first step is to

plot the eigenvalues of the correlation matrix of data (scree plot) as well as the aver-

age explanatory power of consecutive principal components (trace). These are reported

in Figure 3.2 for both panels: aggregate data only (CAN) and aggregate plus provin-

cial data (CAN+Prov). The results are typical for macroeconomic panels. There is no

clear cut separation among eigenvalues, and the explanatory power grows slowly with

the number of factors. However, we remark that in the case of the Canadian panel 10

principal components explain almost 50% of variance of all variables, which is quite

satisfactory. This suggests that the factor representation of the Canadian macroecon-

omy is an appropriate means of dimension reduction. Adding hundreds of regional

time series reduces the explanatory power of the common factors which is not surpris-

ing. Considering groups of highly correlated variables tends to deteriorate the ability

of principal components to recover the factor space (Boivin and Ng, 2006).

Many statistical decision procedures have been proposed to select the number of factors

(see Takongmo and Stevanovic (2016) for a review). Table 3.1 reports the number of

factors estimated by the following methods: (BN02) Bai and Ng (2002) 2 informa-

8This dataset ends on 2019M12 and have been constructed from March 2020 vintage. Changes
can occur across vintages when some series become unavailable, such as the CERI_new: Canadian-
Dollar Effective Exchange Rate Index.
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tion criterion; (ABC) modified version of (BN02) by Alessi et al. (2010); (ON) Onatski

(2010) test based on the empirical distribution of eigenvalues; (AH) Ahn and Horen-

stein (2013) eigenvalue ratio test; (HL) Hallin and Liška (2007) test for the number of

dynamic factors; (BN07) Bai and Ng (2007) test for the number of dynamic factors;

and finally (AW) Amengual and Watson (2007) information criterion for the number of

dynamic factors. (ON) and (AH) are known to be very conservative – and sensitive to

the presence of weaker factor structures – and they indeed identify only few sources of

common variation. (BN02) and (ABC) suggest 6 static factors for the aggregate panel

and 5 to 6 in the case of the panel augmented by the regional series. The number of

dynamic factors is estimated between 4 and 6 according to (HL), (BN07) and (AW).

It is also common in the literature to verify the stability of the factor structure in terms

of the number of common components. Figure 3.3 plots the number of factors selected

recursively by Bai and Ng (2002) and Hallin and Liška (2007) methods.9 We observe

that the number of static and dynamic factors is generally increasing since 1990, a

similar pattern found with other large macroeconomic datasets (McCracken and Ng,

2016; Coulombe et al., 2021b). Many explanations on the time-varying nature of the

number of factors are plausible: structural changes in terms of the correlation structure,

presence of group-specific factors, finite-sample sensitivity of selection procedures, and

so on. We are not investigating those possibilities but practitioners should be aware of

this instability.

3.2.3 Estimated Factors

The factors estimated over the full sample by principal components are depicted in

Figures 3.4 and 3.5 alongside their main series identified by the corresponding largest

9These are the most commonly used procedures to select the numbers of static and dynamic
factors respectively. We use the expanding window in the recursive procedure.
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Figure 3.2: Eigenvalues and explanatory power of factors

Note: This figure plots the eigenvalues of the correlation matrix of data and the average explanatory
power of consecutive factors.

Table 3.1: Estimating the number of factors in CAN_MD

Canada Canada + Provinces
BN02 6 5
ABC 6 6
ON 0 2
AH 2 1
HL 4 4
BN07 4 6
AW 4 4

Note: This table lists the number static and dynamic factors estimated by various statistical procedures.

loading for each factor. The first factor closely tracks the evolution of real activity in

Canada measured by GDP growth in the business sector, therefore capturing much of

the movements related to business cycle frequencies.

The variable best explained by the second factor is the production in the finance, real

estate and insurance sectors. The third factor is related to Treasury bonds of maturi-
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Figure 3.3: Number of factors over time

(a) Canada (b) Canada + Provinces
Note: This figure plots the number of factors selected recursively since 1981 by the Bai and Ng (2002)
ICp2 information criterion and by the test of Hallin and Liška (2007).

ties 1-3 years, while the USD to CAD exchange rate movements seem to dominate the

fourth factor. Another strong characteristic of the strength of the business cycle, un-

employment average duration, is the most correlated variable with the fifth factor. The

sixth factor is related to net flows in securities with United States and the seventh to

the spread between the 1-3Y Treasury bonds and the short-term bank rate. Finally, the

Alberta oil production growth is driving the eighth factor. In addition to real activity

variables, the importance of exchange rates, international transactions and oil produc-

tion confirms the intuition that a small open economy business cycle should be heavily

exposed to international markets. The stability of factors’ interpretation is analyzed in

section C.1.2 of the Appendix.

3.3 Predicting Recessions

In this section we verify the ability of the dataset in analyzing the Canadian business

cycle. To begin, we need an operational definition of a recession. We assume peaks

and troughs are observed and they coincide with the dates from Cross and Bergevin

(2012). Since 1981, the C.D. Howe committee has identified three recessions: June
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Figure 3.4: Factors 1 to 4 and their main series

(a) Factor 1, GDP business (b) Factor 2, GDP finance and insurance

(c) Factor 3, Governmental bonds 1-3 years (d) Factor 4, Exchange rate CADUSD

Note: Factors are displayed in black and their main components in red. Factors have been estimated
over the full sample and the chosen rotation is indicated by (+) or (-). Factors and series have been
reduced by their respective standard deviation.

1981 - October 1982, March 1990 - April 1992 and October 2008 - May 2009. Hence,

these are fairly rare events in our dataset so we will not be able to do a pseudo-out-

of-sample forecasting evaluation. We will focus only on the in-sample capability to

correctly identify the turning points and to discover important leading indicators of the

business cycle.

We adopt the static Probit to model the probability of recession since this is the standard

approach in the literature. Let be a latent lead indicator:

= + + (3.2)
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Figure 3.5: Factors 5 to 8 and their main series

(a) Factor 5, Unemployment average duration
(b) Factor 6, Canadian securities, United States,
Net flows

(c) Factor 7, Government bonds (1-3 years) -
Bank rate (d) Factor 8, Crude oil production in Alberta

Note: Factors are displayed in black and their main components in red. Factors have been estimated
over the full sample and the chosen rotation is indicated by (+) or (-). Factors and series have been
reduced by their respective standard deviation.

where is an -dimensional predictors’ set, (0 1), and which satisfies:

+ =

 1 if 0

0 otherwise


where is the forecasting horizon. Since Estrella and Mishkin (1998) it is standard

practice to consider the slope of the yield curve as the only predictor. It is usually

proxied by the term spread (TS) which is the difference between the 10-year and 3-

month Treasury bills. This is our benchmark model. Therefore, the probability of

recession is

P( + = 1 ) = ( + ) (3.3)
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Then, we consider two ways of including the information from our large macroeco-

nomic dataset in predicting business cycle turning points. The first is the static Probit

where instead of we consider factors estimated as principal components of :

= + + (3.4)

= + (3.5)

The probability of recession is then

P( + = 1 ) = ( + ) (3.6)

This is a two-step procedure. First, principal components are constructed. Second,

the Probit model is estimated with those factors as inputs. Note that this is considered

as dense modelling since all series in are first used to construct .

Another popular way to include a large number of predictors is through a Lasso model.

Following Sties (2017), we use the Logit Lasso model:

P( + = 1 ) =
( h+ h t)

1 + ( + h t)
(3.7)

with

argmin
h h

[
+

∑
=1

]
This is known as sparse modeling since many elements of are set to zero. The

hyperparameter is selected by cross-validation. As opposed to the factor Probit model

(3.6), this is a one-step procedure.

Those three models are evaluated through the Estrella and McFadden pseudo- 2s, the

quadratic probability score (QPS), and the log probability score (LPS). The forecasting
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Figure 3.6: Predicting recessions: full sample probabilities

(a) 1-month ahead (b) 6-months ahead

(c) 12-months ahead (d) 18-months ahead

Note: This Figure reports the estimated probabilities of recessions from all three models and for
horizons 1, 6, 12 and 18 months ahead. The shaded areas correspond to C.D. Howe recession dates.

horizons are 1 to 18 months. Figure 3.6 shows the full-sample estimated probabilities

for horizons 1, 6, 12 and 18 months ahead. Overall, all three models produce high

probabilities during the C.D. Howe recession dates. Spread and factor Probit models

produce more volatile probabilities and present a lot of ‘false’ signals.10 Some of them

are interpretable. The peak in 1987 is caused by the stock market crash, while the 2001

increase in recession probability reflects the U.S. recession. The increase at the end of

sample is associated to the inversion of the term structure slope. On the other hand, the

Lasso model probabilities are much smoother across all horizons.

10We call a false signal when the estimated probability is high while the C.D. Howe did not
classify that observation as a recession. Of course, this false signal may also reveal some economic
disturbances that were not pervasive or big enough to be judged as recession by the committee.
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Figure 3.7: Predicting recessions: goodness of fit

Note: This Figure shows several in-sample goodness-of-fit measures for all three models and for all
horizons.

Figure 3.7 shows goodness of fit measures across horizons for all three models. In

terms of pseudo- 2, Spread model performance is maximized around 8-month ahead

which has been already reported in the literature at least for the US economy. Factors

have better explanatory power at short horizons, while Lasso and the Spread model

augmented by factors (F+Spread) improve at longer horizons. In terms of LPS and

QPS, the Lasso model is preferred to the Probit alternatives, especially in case of the

quadratic probability score.

Table 3.2 reports the 10 most important series of selected by Lasso procedure for

horizons 1, 6, 12 and 18 months ahead. One month ahead, the most important predictor

is the initial claims, followed by a term spread and average unemployment duration.
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Table 3.2: Predicting recessions: top 10 series in Lasso

h=1 h=6 h=12 h=18
1 CLAIMS_CAN G_AVG_5.10.Bank_rate G_AVG_5.10.Bank_rate G_AVG_10p.TBILL_3M
2 G_AVG_5.10.Bank_rate CLAIMS_CAN CRED_MORT CRED_HOUS
3 UNEMP_DURAvg_CAN_new IPPI_MACH_CAN TBILL_6M.Bank_rate N_DUR_INV_RAT_new
4 TSX_CLO TBILL_6M.Bank_rate NHOUSE_P_CAN WTISPLC
5 EMP_CAN PC_3M.Bank_rate RT_new G_AVG_5.10.Bank_rate
6 TSX_HI TSX_CLO FIN_new CLAIMS_CAN
7 BSI_new PC_PAPER_1M BANK_RATE_L FOR_SEC_NETFLOW
8 NHOUSE_P_CAN CPI_SERV_CAN CPI_DUR_CAN USDCAD_new
9 EMP_CONS_CAN NHOUSE_P_CAN GBPCAD_new NHOUSE_P_CAN
10 PC_3M.Bank_rate IPPI_METAL_CAN RES_IMF EMP_MANU_CAN

Note: This table reports 10 most important predictors selected by Lasso.

Employment and stock market indicators are also relevant. Claims and spreads are

still the most important at the 6-month horizon, and few price indices enter the top 10.

As expected, spreads are the most decisive predictor at the 12 and 18-month horizons,

followed by credit aggregates. Interestingly, the oil price arrives fourth at the longest

horizon.

Overall, the analysis in this section shows that our dataset provides valuable informa-

tion, compressed by factors or selected by Lasso, for monitoring the Canadian business

cycle. In terms of individual predictors, we find that term spreads are very resilient,

followed by the labor market and stock market indicators for short horizons, and credit

aggregates for longer horizons.

3.4 Forecasting Economic Activity

In order to explore the potential for predictive modelling of the CAN-MD database,

we perform a standard out-of-sample forecasting exercise. Let be the variable of

interest. If is stationary, the goal is to forecast its average over periods:

( )
+ = (1200 )

∑
=1

+ (3.8)
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where ln . If is an I(1) series, then we forecast the average annualized growth

rate as in Stock and Watson (2002b) and McCracken and Ng (2016):

( )
+ = (1200 )ln( + ) (3.9)

3.4.1 Forecasting Models

A large number of forecasting techniques have been proposed to deal with big macroe-

conomic datasets, see Kotchoni et al. (2019) and Coulombe et al. (2022) for a review

and comparison. The goal of this section is to verify whether the CAN-MD dataset has

some relevant and significant forecasting power in predicting key Canadian macroeco-

nomic series, and not to find the best models. Therefore, we will use only a subset of

data-rich methods based on dimension reduction, sparse modeling and model averag-

ing.

Autoregressive Direct (ARD) The benchmark time series model is the autoregressive

direct (ARD) model, which is specified as:

( )
+ = ( ) +

h
y∑

=1

( )
− +1 + + = 1 (3.10)

where ln ln −1, 1 and . A direct prediction of ( )
+ is deduced

from the model above as follows:

( )
+ | = ( ) +

h
y∑

=1

( )
− +1

where ( ) and ( ) are OLS estimators of ( ) and ( ). The optimal is selected

using the Bayesian Information Criterion (BIC).



120

Diffusion Indices (ARDI) The first data-rich model is the (direct) autoregression

augmented with diffusion indices from Stock and Watson (2002b):

( )
+ = ( ) +

h
y∑

=1

( )
− +1 +

h
f∑

=1

− +1
( )

+ + = 1 (3.11)

= + (3.12)

where is the -dimensional large informational set, are ( ) static factors, and

the superscript stands for the value of when forecasting periods ahead. This the

dimension-reduction workhorse model that has been heavily used for macroeconomic

forecasting. The optimal values of hyperparameters , , and ( ) are simultaneously

selected by BIC from 1 6 grids for the number of lags and 1 10 for the number

of factors. The -step ahead forecast is obtained as:

( )
+ | = ( ) +

h
y∑

=1

̂( )
− +1 +

h
f∑

=1

− +1
(̂ )

The feasible ARDI model is obtained after estimating as the first ( ) principal

components of .11

Penalized regressions An alternative shrinkage scheme to the factor model is the

penalized regression:

= argmin

∑
=1

(
( )
+

Z∑
=1

)2

+
Z∑

=1

 0 (3.13)

where 0 is the hyperparameter controlling the strength of the regularization

and is a collection of predictors from two distinct cases: (i) observables

11See Stock and Watson (2002a) for technical details on the estimation of Ft as well as their
asymptotic properties.
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:= [ −
y

=0 −
x

=0]; (ii) ARDI := [ −
y

=0 −
f

=0].. We consider

two special cases. If = 2, (3.13) becomes the Ridge estimators (Hoerl and Kennard,

1970):

= ( ′ +
Z
)
−1 ′ (3.14)

where is the matrix of predictors, and is the target vector. If = 1,

we obtain Lasso estimator (Least Absolute Shrinkage Selection Operator) of Tibshirani

(1996)

= argmin

∑
=1

(
( )
+

Z∑
=1

)2

+
Z∑

=1

 (3.15)

Lasso is the representative of the sparse class of models where the predictive regression

is estimated at the same time as variable selection is performed. In the presence of

correlated predictors, Lasso tends to discard variables having less predictive impact,

inducing an inconsistent model selection. Two solutions have been proposed. The first

is the Elastic Net of Zou and Hastie (2005):

− = argmin

∑
=1

(
( )
+

Z∑
=1

)2

+
Z∑

=1

(
+ (1 ) 2

)
(3.16)

with = [0 1]. Fixing to 1 or 0 generates Lasso or Ridge respectively. The second

alternative is the Adaptive Lasso of Zou (2006):

− = argmin

∑
=1

(
( )
+

Z∑
=1

)2

+
Z∑

=1

 (3.17)

where = 1
| ĩ|γ

are weights previously obtained from a consistent estimator and

0. Here, is obtained by Ridge and we fix = 1. Hyperparameters and

are selected by cross-validation. The corresponding forecasting models are labelled

by Ridge-X, Lasso-X, Elastic-Net-X, and Adaptive Lasso in the case of observable
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predictors, and ARDI, Ridge, ARDI, Lasso, ARDI, Elastic-Net, and ARDI,Adaptive-

Lasso in the case of being populated by lags of and estimated factors. In ‘X’

models, the number of lags are = = 6, while in factor space models we used

= = 6 and = 10 for every .

Random forests The previous models are linear in both parameters and predictors. A

growing literature on machine learning methods for macroeconomic forecasting is doc-

umenting the importance of nonlinearities, see Coulombe et al. (2022) for details and

review. One of the most promising, yet computationally feasible, methods to introduce

nonlinearity in the predictive equation is to use regression trees.

The idea is to split sequentially the space of , as defined above, into several regions

and model the response by the mean of ( )
+ in each region. The process continues

according to some stopping rule. The details of the recursive algorithm can be found in

Hastie et al. (2009). Then, the tree regression forecast has the following form:

( ) =
∑

=1

I( ∈ m) (3.18)

where is the number of terminal nodes, are node means, and 1 rep-

resents a partition of feature space. In the diffusion indices setup, the regression tree

would estimate a nonlinear relationship linking factors and their lags to ( )
+ . Once the

tree structure is known, it can be related to a linear regression with dummy variables

and their interactions.

However, the recursive tree fitting process is prone to overfitting. The most popular

solution was proposed in Breiman (2001): Random Forests. This consists in grow-

ing many trees on subsamples (or nonparametric bootstrap samples) of observations.

Further randomization of underlying trees is obtained by considering a random subset

of regressors for each potential split. An important hyperparameter to be selected is



123

the number of variables to be considered at each split, which is fixed to one third of

the sample cross-section size. The minimum number of observations in every terminal

node is set to 5. These are default values in Matlab. The forecasts of the estimated re-

gression trees are then averaged together to make one single "ensemble" prediction of

the targeted variable.12 Depending on , two random forests models are used: RF-X

(on observables) and RFARDI (on factors). The former has been successfully applied

in Medeiros et al. (2019), while the RFARDI model has been one of the best models in

Coulombe et al. (2022).

Regularized Data-Rich Model Averaging Kotchoni et al. (2019) proposed a new class

of data-rich model averaging techniques that combines pre-selection and regularization

with the complete subset regressions (CSR) of Elliott et al. (2013). The idea of CSR

is to generate a large number of predictions based on different subsets of and then

construct the final forecast as the simple average of the individual forecasts:

( )
+ = + + + (3.19)

( )
+ | =

∑
=1

( )
+ | (3.20)

where contains series for each model = 1 .

Kotchoni et al. (2019) proposed to preselect a subset of relevant predictors (first step)

before applying the CSR algorithm (second step). This model is labelled Targeted CSR

(T-CSR). The initial step is meant to discipline the behavior of the CSR algorithm ex

ante. The idea is to pre-select a subset ∗ of the series in , that are relevant for

forecasting ( )
+ as in Bai and Ng (2008). Then, CSR is applied on ∗. In particular,

we use hard thresholding to construct ∗. A univariate predictive regression is done

12In this paper, we consider 500 trees, which is usually more than enough to get a stabilized
prediction (that will not change with the addition of another tree).
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for each predictor :

( )
+ = +

3∑
=0

− + + (3.21)

The subset ∗ is obtained by gathering those series whose coefficients have the -

stat larger than the critical value : ∗ = , with = 1 65. We

consider T-CSR with three choices for the hyperparamter : 5, 10, and 20 regressors,

labelled T-CRS,5, T-CSR,10, and T-CSR,20 respectively. The total number of models

is fixed at 2500.

3.4.2 Pseudo-Out-of-Sample Experiment Design

The pseudo-out-of-sample period is 1990:01 - 2019:12. The forecasting horizons con-

sidered are 1, 3, 6, and 12 months. All models are estimated with the expanding win-

dow. The results using the rolling window approach are reported in the appendix C.1.3.

The hyperparameters are re-optimized every 24 months. When needed, 5-fold cross-

validation is used. We consider the following variables: industrial production, employ-

ment, unemployment rate, consumer price index, core consumer price index, credit

aggregates (total, business, and household), housing starts, and building permits. These

are typical macroeconomic aggregates that have been forecasted in the previous liter-

ature. All the series are modelled as I(1), hence we forecast the annualized growth

rates. The forecasting performance of the above models will be compared on the basis

of the Root Mean Square Prediction Error (RMSPE) as is often the case in forecasting

literature. Other metrics could be used but for the sake of simplicity and under space

constraints we stick to the most common one.
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3.4.3 Results

Tables 3.3 - 3.6 summarize the results. We report the value of RMSPE ratio with respect

to the reference ARD model as well as the p-value of Diebold-Mariano test. We group

the variables in three categories: real activity (industrial production, employment, and

unemployment rate), inflation (CPI and core CPI), credit market (total, business, and

household), and housing market (housing starts, and house price).

Using our large database improves substantially the prediction power for real activity

series. For instance, when forecasting industrial production one month ahead, almost

all models outperform significantly the autoregressive reference and the winner is the

random forest using all the observables, RF-X. For = 3, improvements are even larger

and the best model, Ridge-X, decreases the RMSE by 8%. At longer horizons, most

of the models show significant ameliorations with ARDI estimated by Adaptive Lasso

improving the accuracy by 15% at the one-year horizon. In the case of employment

growth, ARDI,Elastic-Net is the best at short horizons. Interestingly, the forecasting

power decreases at long horizons for this series. In the case of the unemployment

rate, most of the models produce significantly better results than the autoregressive

benchmark.

Table 3.4 shows that using the large panel greatly improves the prediction of inflation

series. RF-X is in general the most resilient model which is in line with Medeiros

et al. (2019). Probably the most important horizon when forecasting inflation is the

one year ahead and the regularized data-rich averaging model T-CSR outperforms the

autoregressive benchmark by 24 and 13% for total and core inflation respectively.
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Table 3.6: Forecasting the housing market

Housing Starts Building Permits

Models h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12

AR,BIC (RMSE) 0.090 0.040 0.026 0.017 0.079 0.032 0.020 0.013

ARDI,BIC 1.00*** 1.00 0.99 0.96 1.00 1.02 1.02* 1.11**

Elastic-Net-X 1.04** 1.03 1.05*** 1.21*** 1.05*** 1.04** 1.07** 1.16**

Ridge-X 1.06*** 1.01 1.01 1.04 1.07*** 1.06*** 1.04** 1.09

Lasso-X 1.02* 1.01 1.02* 1.16*** 1.04*** 1.04** 1.07** 1.17**

Adaptive-Lasso-X 1.02* 1.03** 1.03** 1.16*** 1.04*** 1.05*** 1.05** 1.26***

RF-X 1.04*** 1.01 1.03*** 1.06** 1.04*** 1.04* 1.06 1.05

ARDI,Elastic-Net 1.03** 1.02 0.99 0.99 1.04*** 1.05*** 1.07*** 1.09

ARDI,Ridge 1.05*** 1.01 1.00 1.02 1.07*** 1.05*** 1.04** 1.04*

ARDI,Lasso 1.01* 1.00 1.00 1.00 1.04*** 1.03** 1.03*** 1.09

ARDI,Adaptive-Lasso 1.02*** 1.02* 1.00 1.00 1.03*** 1.05*** 1.02** 1.11

RFARDI 1.03*** 1.02* 1.04* 1.07** 1.03** 1.04** 1.06** 1.08**

T-CSR5 0.99 1.00 1.00 0.99 0.99 1.01 1.03 1.04

T-CSR10 1.00 1.01 1.03 1.05 1.00 1.03 1.07* 1.11*

T-CSR20 1.04* 1.04* 1.09** 1.19*** 1.04** 1.07* 1.18** 1.25**

Note: See table 3.3.

The results for the credit market, presented in the table 3.5, are mixed. In the case

of total credit growth, the best models are RFARDI and T-CSR, but improvements are

small and insignificant. T-CSR10 ameliorates substantially forecasting power for the

business credit at horizons 6 and 12, by as much as 8 and 11% respectively.

Finally, table 3.6 reports the results for the housing market. It shows that predicting

housing starts and building permits growths is a very difficult task. Virtually none of

our models improves significantly upon the autoregressive benchmark.

Up to now we have studied the average performance over the whole 1990-2019 period.

Giacomini and Rossi (2010) propose a test to compare the out-of-sample forecasting

performance of two competing models in the presence of instabilities. Figure 3.8 shows

the results. We report the comparison between selected data-rich models and the au-

toregressive benchmark. Following the Monte Carlo results in Giacomini and Rossi
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(2010), the moving average of the standardized difference of MSPEs is produced with

a window that uses 30% of the out-of-sample period. The critical value of 10% is used.

Positive values of the test statistic reflect a better performance of a competing model,

which becomes significant if above the critical value. For real activity series, the per-

formance is relatively stable across horizons and variables. For industrial production,

there is a ditch in the performance around 2005 but it fully recovers by the end of the

sample. In the case of inflation, the forecasting power generally improves over time

except for the core inflation at one-year horizon. The fluctuation test is quite stable for

credit markets at short horizons but indicate a lot of instability when predicting housing

starts and building permits.

Figure 3.8: Forecasting performance over time: fluctuation test
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Note: The figure shows the Giacomini-Rossi fluctuation test for best RMSPE models against the ARD
benchmark. Solide lines correspond to 10% critical value.
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In the above analysis the expanding window approach has been used, which is less ro-

bust to frequent structural breaks, but more efficient since more observations are avail-

able to estimate the parameters. When the rolling window is used, we find relatively

similar results except that the distribution of best models by variable and horizon is

different. For instance, the standard ARDI is in general the most resilient model when

predicting real activity variables. In case of credit markets, the T-CSR5 model improves

significantly the predictive accuracy for most of the horizons and variables. The results

are available in tables C.4-C.7 and in figure C.5.

Our monthly and quarterly datasets have already been successfully used in other fore-

casting exercises. Coulombe et al. (2022) have shown that machine learning meth-

ods relying on (nonparametric) nonlinearities can improve the forecasting accuracy of

Canadian macroeconomic variables when paired with large datasets such as CAN-MD

and CAN-QD.

3.5 Measuring heterogenous effects of monetary policy

In this section we take advantage of the richness of the cross section of CAN-MD

database to study the regional and sectoral effects of monetary policy.13 The Bank of

Canada’s goal of economic stabilization throughout Canada is not equivalent to eco-

nomic stability in all of Canada’s provinces at the same time. This can be an issue in all

monetary unions; a cure for the union can become a curse for some of its members if

their business cycles are not synchronized (Micossi, 2015). Our goal in this section is

not to introduce new estimation methodologies but to show how CAN-MD can be used

to explore regional and sectoral effects of shocks on key macroeconomic aggregates

13Note that our CAN-MD and CAN-QD datasets have been recently used in Moran et al. (2022)
who constructed a measure of Canadian macroeconomic uncertainty and studied their effects in the
context of Covid-19 pandemic.
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and their components.14

To estimate the impulse response functions (IRFs) of key macroeconomic variables

to monetary policy shocks we follow Champagne and Sekkel (2018) and use local

projections with their constructed monetary policy shocks.15 Their shock is constructed

following the narrative approach of Romer and Romer (2004) that uses the monetary

policy framework to decompose rate changes in systematic and exogenous components.

Each rate change is composed of the Bank of Canada’s systematic reaction function

to current and expected economic conditions and of the monetary policy shocks. To

identify the latter, Champagne and Sekkel (2018) use real-time information available

during meetings of the Governing Council preceding the interest rate announcement to

purge the rate changes of the systematic component.

We estimate IRFs for price, labor market, and housing market series for Canada, On-

tario, Québec, Manitoba, Saskatchewan, British Columbia, Alberta, New Brunswick,

Nova Scotia, and Newfoundland.16 Table 3.7 lists the selected series. These variables

are among key indicators for the conduct of the monetary policy in Canada and are

available for provinces.

14The study of the regional effects of monetary policy has a long history. Dominguez-Torres and
Hierro (2019) provide a thorough review of the literature. Kronick and Ambler (2019) estimate regional
effects of monetary policy shocks but only on inflation and unemployment. We go further by considering
the components of inflation, the housing market, and sectoral employment.

15See Dufour and Renault (1998), Òscar Jordà (2005), and Plagborg-Møller and Wolf (2019)
for details on local projections as means of estimating IRFs. We opted for a direct approach via local
projections instead of the simultaneous approach like a Factor-Augmented VAR as in Bernanke et al.
(2005) because the structural shock here is already identified and hence considered as an exogenous
variable. The alternative would be to add εt as an exogenous variable in the VAR process specified on
the above control variables. Here, given a very large number of provincial variables (hence correlation
clusters that can affect the estimation of common factors, (Boivin and Ng, 2006)) we prefer to estimate
IRFs with a direct approach and not impose factor model restrictions (Stevanovic, 2015).

16Prince Edward Island is left out of this analysis since some of the series considered were prob-
lematic.
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Table 3.7: Variables of interest for the impulse response analysis

Prices Labor market Housing market
CPI_total Total_EMP Build_permit_total
CPI_core Services_EMP Build_permit_ind
CPI_goods Resources_EMP Build_permit_comm
CPI_services Const_EMP Housing_start
CPI_durables Sales_EMP
CPI_health Finance_EMP
CPI_clothing Manufacturing_EMP
CPI_shelter Unemployment

Note: IRFs of these series are estimated for Canada and all provinces but Prince Edward Island.

For all provinces and all series we estimate the following regressions:

+ = + ( ) −1 + + + (3.22)

where denotes the variable of interest as listed in Table 3.7, −1 contains

control variables, is the already identified monetary policy shock series, and =

0 1 48. We follow closely Champagne and Sekkel (2018) in the variables used as

controls in −1 ; when estimating the IRFs for Canada we include real GDP growth

rate, CPI growth rate, and the growth rate of series , monetary policy shock lags but

instead of using the growth rate of commodity prices as they do we instead include

the first four principal components extracted from CAN-MD.17 When estimating the

IRFs of provinces, we use the same controls as for Canada but augment the set with the

core CPI inflation rate and unemployment rate of the province to capture provincial

business cycles. In all cases we use 4 lags of control variables and 48 lags of the

monetary policy shocks. The full sample time span is 1981M01 - 2015M10 and we also

consider the estimation during the inflation targeting (IT) period that starts in 1992M01.

17Bernanke et al. (2005) show that using principal components can solve the price puzzle found
on US data without having to rely on commodity prices as an ad hoc way of correcting the puzzle. Boivin
et al. (2010) apply a similar approach on Canadian data and also find that it solves many puzzles found
in the literature as it better approximates the Central Bank’s information set.
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Given a limited number of observations and a large number of lags in controls, we do

not consider estimating (3.22) during the pre-IT period only. is then the effect of

the monetary policy shocks months ahead, for series and province .

There is a fair amount of heterogeneity across regions, sectors, and time and thus we

choose to resume and quantify the main sources of heterogeneity in IRFs with the

following fixed effect model:

= + + + (3.23)

where the left hand side is the gap between province’s estimated IRFs for series

at a given horizon ( ) and the same series for Canada ( ), while and

are the provincial and series fixed effects.18 Figure 3.9 shows the results in terms

of explained heterogeneity for both full sample and IT period using the 2 from the

fixed-effect regressions.

Results of the first column (All series) come from the estimation of equation (3.23)

using the IRFs of all series from Table 3.7, i.e. all sectors (prices, labor, and housing),

all their components (or subsectors) and for all provinces. The second (Aggregate

series) performs the same analysis using only the IRFs for core CPI, unemployment,

total employment, housing starts, and total building permits, hence the component-

specific variation is averaged out. In the former case, the sectorial (and component-

specific) source of heterogeneity in IRFs are more important than regional ones. The

total 2 rises slightly since the inflation targeting shift in the monetary policy. When

only aggregate variables are used, the picture is similar for the full sample, but for the

IT-period we observe that regional heterogeneity becomes more important within two

years after the shock.

18Selected IRFs are reported in the appendix C.1.4.
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Figure 3.9: Total heterogeneity explained by sectors and provinces

•

• • • •
Note: The light blue line show the total smoothed R2 from equation (3.23) while the dark blue and

green lines respectively show the smoothed R2 using only provincial and sectorial fixed effects.

To investigate this heterogeneity at a more granular level, we perform the same anal-

ysis on employment and price series’ IRFs separately. The results are reported in the

third and fourth columns respectively. Those graphs reveal that provincial unobserved

heterogeneity is the most important ingredient to explain the gaps in IRFs. Comparing

full sample and inflation targeting periods shows that the importance of both sources

of heterogeneity has decreased with the change in monetary policy, which could be

interpreted as a result of monetary policy effectiveness to stabilize the economy and

to synchronize the business cycle fluctuations across the country (Mihov, 2001; Boivin

and Giannoni, 2006).

We now explore the average differences for employment and CPI series in separate

analysis. In other words, for every group of series formed from employment sub-sectors

and CPI sub-components, we estimate the following fixed-effect model

β̂h,s,p = ΦCAN
h,Bench. + θh,p + φh,s + eh,s,p, (3.24)
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where is the IRF of either Canadian total employment or Core CPI, while

and are the province and sub-sector (sub-component) -specific fixed effects.

Figure 3.10 shows the estimated fixed effects coefficients for sectorial employment and

CPI components for Canada and across provinces.19 This figure reports the IRFs of the

benchmark in the leftmost column and fixed effect estimates and thereafter.

For example, let’s look at the leftmost two entries in the top panel: the IRF of total

employment in Canada and the fixed effects associated with the response of

employment in the service industry . The average response of service employ-

ment is also negative since the sum of 0 and 0 is negative. The

same panel also reveals that the response has the same sign and is much stronger in

the Atlantic provinces ( 0) and that it eventually turns positive in the

Prairies ( 0 at longer horizons).

In the case of employment for the full sample, we remark that the construction sector

responds more to monetary policy shocks than total employment, as well as Ontario,

Québec, and few Atlantic provinces, while the opposite is true for the west part of

Canada with smaller and less persistent responses of employment. Since 1992, the

heterogeneity across provinces and sectors is dampened, except for employment in the

resource sector which exhibits a clear increase over the entire IRF horizon. These re-

sults are broadly in line with Jansen et al. (2013) who find that firms in the construction

sector in the United States are more affected by changes in interest rates while those in

the mining sector are better off following a tightening of monetary policy.

The second part of figure 3.10 explores regional and sectorial heterogeneity in the re-

sponse of prices. In the full sample, the responses to monetary policy shocks for most

19Dedola and Lippi (2005) and Peersman and Smets (2005) have documented cross-industry
heterogeneities to monetary policy shocks using industrial output in France, Germany, Italy, the UK, the
US, and the Euro zone, while Fares and Srour (2001) have explored the cross-industry heterogeneity for
Canada.
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provinces are weaker than for Canada, while Ontario is more affected. In terms of sub-

components, the heterogeneity is mostly observed in durable goods which virtually do

not respond with going the opposite direction of . After the change in

monetary policy in 1992, the regional differences are much smaller and the response

for durable goods is even less important. This lower response of durable good prices is

consistent with the idea that their consumption is highly interest rate sensitive and has

a central role in monetary policy transmission (Erceg and Levin, 2006; Barsky et al.,

2007; Cantelmo and Melina, 2018).

Overall, this analysis has documented a presence of a fair amount of heterogeneity

across sectors, regions, and time in the effects and transmission of the monetary policy

in Canada. If inflation targeting has helped to decrease those differences, still some

regional heterogeneity pertains and may pose a challenge for the Bank of Canada in its

role to further stabilize the economy.
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Figure 3.10: Heterogeneity across sectors and provinces

(a) Employment

• • • • • • • • • • • • • • • •

•

(b) Inflation

• • • • • • • • • • • • • • • • •

•

Note: This figure shows the estimated fixed effect coefficients from equation (3.24) along with the 90%

confidence bands constructed using heteroskedastic consistent standard errors.

3.6 Conclusion

In this paper we proposed a large-scale Canadian macroeconomic database containing

hundreds of Canadian and provincial economic indicators. It is designed to be updated

regularly through the StatCan database and is publicly available. Real-time vintages are
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collected as well. It relieves users from dealing with data changes and methodological

revisions and we provide an already balanced and stationary panel starting in 1981.

Four important features of the dataset have been explored. First, we studied the factor

structure and found that common factors explain a sizable portion of variation in Cana-

dian and provincial aggregate series. Few driving forces of the Canadian economy

have been identified, such as GDP in business and financial sectors, term structure, ex-

change rates, unemployment duration, and international transaction net flows and oil

production. Second, the dataset has been applied to the prediction of turning points for

the Canadian business cycle. Using Probit, Lasso, and factor models we showed that

this dataset has substantial explanatory power in addition to the standard term spread

predictor.

Third, using the dataset has substantially improved the predictive accuracy when fore-

casting key real macroeconomic indicators. Factor and sparse models, random forests,

and regularized complete subset regressions showed good performance in forecasting

real activity variables such as industrial production, employment and unemployment

rate, as well as CPI and Core CPI inflation.

Finally, we studied heterogenous effects of monetary policy on different sectors of the

Canadian economy and across regions. Results suggested that the passage to inflation

targeting since 1992 coincides with a decrease in those differences, but some regional

heterogeneity still pertains and may pose a challenge for the Bank of Canada in its role

to further stabilize the economy.



CONCLUSION

Cette thèse porte sur trois problèmes pertinents au travail empirique en macroéconomie

soit la prévision du risque en macroéconomie, l’identification de chocs structurels en

présence de données persistentes et l’analyse macroéconomique dans un environnement

riche en données.

Dans le premier chapitre, nous exploitons un exercice de prévision pseudo-hors-

échantillon afin d’évaluer le modèle QVAR pour les prévisions par quantiles et par

densités dans les queues de distribution. L’exercice couvre un grand nombre de vari-

ables macroéconomiques aux États-Unis sur quelques décennies pour des horizons de

1 à 12 mois et inclut une comparaison avec des modèles VAR standards. Nous trou-

vons que le modèle QVAR fait souvent significativement et quantitativement mieux et

rarement pire que les modèles VAR considérés. Le modèle fait particulièrement bien

pour le marché du travail et les taux d’intérêt et de change. Nous avons aussi considéré

l’ajout de facteurs estimés par composantes principales, ainsi que des facteurs quantiles

et trouvons que ceci améliore la capacité de prévision dans certains cas comme pour le

marché du travail. Ces résultats suggèrent que le modèle QVAR offrent une représenta-

tion adéquate du risque macroéconomique. Cela suggèrent que la motivation originale

de les appliquer à des questions de nature structurelles pourraient générer des résultats

informatifs.

Dans le second chapitre, nous abordons l’identification de chocs structurels par la max-

imisation des parts (Max Share) lorsque le modèle VAR est estimé en niveau sur des

variables persistentes. Nous établissons théoriquement que l’estimateur résultant est

non convergent et montrons dans des simulations Monte Carlo que ceci peut causer
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des biais importants et augmenter les erreurs quadratiques (RMSE) lorsqu’on cible des

horizons intermédiaires et longs. Nous illustrons la pertinence des résultats pour le tra-

vail empirique dans une application empirique aux chocs de nouvelles (news shocks)

sur la technologie spécifique à l’investissement (IST) et sur la productivité multifacto-

rielle (TFP). Ces résultats montrent que la pratique commune d’estimer en niveau et

de recourir à la maximisation des parts pour éviter de se prononcer sur le comporte-

ment de long terme du système n’est pas justifiée. Ces résultats suggèrent d’utiliser

des représentations stationnaires pour s’assurer de la robustesse des résultats obtenus

en niveau. Des méthodes d’apprentissage automatique (par exemple, Liao and Phillips

(2015) ou Liang and Schienle (2019)) permettant la sélection conjointe du rang de coin-

tégration et du nombre de retards sont des avenues prometteuses pour effectuer ce type

d’analyse de robustesse.

Dans le troisième chapitre, nous introduisons une grande base de données macroé-

conomiques mensuelles pour le Canada. La base de données contient quelques cen-

taines d’indicateurs économiques canadiens et provinciaux. Elle a été conçue afin

de faciliter sa mise à jour régulière et ses millésimes (vintages) en temps réel sont

disponibles publiquement. Nous établissons que la base de données présente une

structure à facteurs latents relativement stable et qu’elle permet d’améliorer la prévi-

sion des points de retournement du cycle économique canadien, ainsi que la prévision

d’indicateurs macroéconomiques clés. Nous montrons finalement comment la base de

données peut servir pour étudier l’hétérogénéité des réponses à la politique monétaire

à travers les différents secteurs et régions au Canada.

En somme, ces articles contribuent au travail en macroéconomie en montrant

que les modèles QVAR permettent de bien modéliser le risque macroéconomique,

l’identification de chocs structurels par maximisation des parts (Max Share) dans des

modèles VAR estimés en niveau sur des données persistentes posent des problèmes

jusqu’ici négligés et suggèrent de considérer systématiquement leur robustesse et en
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offrant une grande base de données macroéconomiques mensuelles pour le Canada à

partir de laquelle nous pouvons appliquer des méthodes qui exploitent la richesse des

données pour améliorer les prévisions ou approfondir l’analyse structurelle.



APPENDIX A

QUANTILE VARS AND MACROECONOMIC RISK FORECASTING
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A.1 Monte Carlo Tests

The idea behind the Dufour (2006) Monte Carlo testing framework is that exact finite

sample p-values can be obtained even when an analytic formula for the distribution of

a test statistic under the null is unavailable provided we can simulate it. In our case,

we draw samples of observations of (0 9) and compute likelihood ratio

statistics for = 1 . If 0 is the corresponding statistic we computed on

the actual data, then the p-value is given by

( 0) =
( 0) + 1

+ 1

where ( 0) =
∑

=1 I 0 . As noted by Christoffersen (2004), the

distribution is discrete such that ties can happen and need to be handled. They propose

breaking ties by drawing + 1 uniform random variables [0 1] where =

0 and using

( 0) = 1
1 ∑

=1

I 0 +
1 ∑

=1

I = 0 I 0

in the above formula.
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A.2 Additional Results

Figure A.1: QVAR and VAR-N Relative Scores (tail-weighted CRPS)

Note: Negative values are improvements. Yellow corresponds to rejecting the null of equal scores at
5%. Yellow corresponds to not rejecting the null of equal scores at 5%. FRED groups are: (1) Output
and income, (2) Labor market, (3) Housing, (4) Consumption, orders and inventories, (5) Money and
credit, (6) Interest and exchange rate, (7) Prices and (8) Stock market.
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(a) Null Constant

(b) Unit Slope

Figure A.2: Number of Optimal QVAR Forecasts

Note: Number of cases where we obtain a non rejection of the null at 5% for the Gaglianone et al.
(2011) test. Columns are periods and rows are the 5th (Q05) and 95th (Q95) quantile forecasts,
respectively. Colors indicate FRED groups: (1) Output and income, (2) Labor market, (3) Housing, (4)
Consumption, orders and inventories, (5) Money and credit, (6) Interest and exchange rate, (7) Prices
and (8) Stock market.
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(a) Null Constant

(b) Unit Slope

Figure A.3: Number of Optimal QFAVAR (PCA) Forecasts

Note: Number of cases where we obtain a non rejection of the null at 5% for the Gaglianone et al.
(2011) test. Columns are periods and rows are the 5th (Q05) and 95th (Q95) quantile forecasts,
respectively. Colors indicate FRED groups: (1) Output and income, (2) Labor market, (3) Housing, (4)
Consumption, orders and inventories, (5) Money and credit, (6) Interest and exchange rate, (7) Prices
and (8) Stock market.
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(a) Null Constant

(b) Unit Slope

Figure A.4: Number of Optimal QFAVAR (IQR) Forecasts

Note: Number of cases where we obtain a non rejection of the null at 5% for the Gaglianone et al.
(2011) test. Columns are periods and rows are the 5th (Q05) and 95th (Q95) quantile forecasts,
respectively. Colors indicate FRED groups: (1) Output and income, (2) Labor market, (3) Housing, (4)
Consumption, orders and inventories, (5) Money and credit, (6) Interest and exchange rate, (7) Prices
and (8) Stock market.
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A.3 Data Transformation

As in the reference documentation of FRED-MD, the transformation codes are (1) ,

(2) , (3) 2 , (4) , (5) , (6) 2 and (7) −1 1.

Table A.1: Data Transformation

ID Description Used FRED

RPI Real Personal Income 5 5

W875RX1 Real personal income ex transfer receipts 5 5

INDPRO IP Index 5 5

IPFPNSS IP: Final Products and Nonindustrial Supplies 5 5

IPFINAL IP: Final Products (Market Group) 5 5

IPCONGD IP: Consumer Goods 5 5

IPDCONGD IP: Durable Consumer Goods 5 5

IPNCONGD IP: Nondurable Consumer Goods 5 5

IPBUSEQ IP: Business Equipment 5 5

IPMAT IP: Materials 5 5

IPDMAT IP: Durable Materials 5 5

IPNMAT IP: Nondurable Materials 5 5

IPMANSICS IP: Manufacturing (SIC) 5 5

IPB51222s IP: Residential Utilities 5 5

IPFUELS IP: Fuels 5 5

CUMFNS Capacity Utilization: Manufacturing 1 2

HWI Help-Wanted Index for United States 5 2

HWIURATIO Ratio of Help Wanted/No. Unemployed 4 2

CLF16OV Civilian Labor Force 5 5

CE16OV Civilian Employment 5 5

UNRATE Civilian Unemployment Rate 1 2

UEMPMEAN Average Duration of Unemployment (Weeks) 1 2

UEMPLT5 Civilians Unemployed - Less Than 5 Weeks 1 5

UEMP5TO14 Civilians Unemployed for 5-14 Weeks 1 5

UEMP15OV Civilians Unemployed - 15 Weeks & Over 1 5
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Table A.1. Data Transformation (Continued)

ID Description Used FRED

UEMP15T26 Civilians Unemployed for 15-26 Weeks 1 5

UEMP27OV Civilians Unemployed for 27 Weeks and Over 1 5

CLAIMSx Initial Claims 5 5

PAYEMS All Employees: Total nonfarm 5 5

USGOOD All Employees: Goods-Producing Industries 5 5

CES1021000001 All Employees: Mining and Logging: Mining 5 5

USCONS All Employees: Construction 5 5

MANEMP All Employees: Manufacturing 5 5

DMANEMP All Employees: Durable goods 5 5

NDMANEMP All Employees: Nondurable goods 5 5

SRVPRD All Employees: Service-Providing Industries 5 5

USTPU All Employees: Trade, Transportation & Utilities 5 5

USWTRADE All Employees: Wholesale Trade 5 5

USTRADE All Employees: Retail Trade 5 5

USFIRE All Employees: Financial Activities 5 5

USGOVT All Employees: Government 5 5

CES0600000007 Avg Weekly Hours : Goods-Producing 1 1

AWOTMAN Avg Weekly Overtime Hours : Manufacturing 1 2

AWHMAN Avg Weekly Hours : Manufacturing 1 1

CES0600000008 Avg Hourly Earnings : Goods-Producing 5 6

CES2000000008 Avg Hourly Earnings : Construction 5 6

CES3000000008 Avg Hourly Earnings : Manufacturing 5 6

HOUST Housing Starts: Total New Privately Owned 4 4

HOUSTNE Housing Starts, Northeast 4 4

HOUSTMW Housing Starts, Midwest 4 4

HOUSTS Housing Starts, South 4 4

HOUSTW Housing Starts, West 4 4

PERMIT New Private Housing Permits (SAAR) 4 4

PERMITNE New Private Housing Permits, Northeast (SAAR) 4 4

PERMITMW New Private Housing Permits, Midwest (SAAR) 4 4



151

Table A.1. Data Transformation (Continued)

ID Description Used FRED

PERMITS New Private Housing Permits, South (SAAR) 4 4

PERMITW New Private Housing Permits, West (SAAR) 4 4

DPCERA3M086SBEA Real personal consumption expenditures 5 5

CMRMTSPLx Real Manu. and Trade Industries Sales 5 5

RETAILx Retail and Food Services Sales 5 5

ACOGNO New Orders for Consumer Goods 5 5

AMDMNOx New Orders for Durable Goods 5 5

ANDENOx New Orders for Nondefense Capital Goods 5 5

AMDMUOx Unfilled Orders for Durable Goods 5 5

BUSINVx Total Business Inventories 5 5

ISRATIOx Total Business: Inventories to Sales Ratio 2 2

UMCSENTx Consumer Sentiment Index 2 2

M1SL M1 Money Stock 5 6

M2SL M2 Money Stock 5 6

M2REAL Real M2 Money Stock 5 5

BOGMBASE Monetary Base 5 6

TOTRESNS Total Reserves of Depository Institutions 5 6

NONBORRES Reserves Of Depository Institutions 7 7

BUSLOANS Commercial and Industrial Loans 5 6

REALLN Real Estate Loans at All Commercial Banks 5 6

NONREVSL Total Nonrevolving Credit 5 6

CONSPI Nonrevolving consumer credit to Personal Income 5 2

DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding 5 6

DTCTHFNM Total Consumer Loans and Leases Outstanding 5 6

INVEST Securities in Bank Credit at All Commercial Banks 5 6

FEDFUNDS Effective Federal Funds Rate 1 2

CP3Mx 3-Month AA Financial Commercial Paper Rate 1 2

TB3MS 3-Month Treasury Bill: 1 2

TB6MS 6-Month Treasury Bill: 1 2

GS1 1-Year Treasury Rate 1 2
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Table A.1. Data Transformation (Continued)

ID Description Used FRED

GS5 5-Year Treasury Rate 1 2

GS10 10-Year Treasury Rate 1 2

AAA Moody’s Seasoned Aaa Corporate Bond Yield 1 2

BAA Moody’s Seasoned Baa Corporate Bond Yield 1 2

COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS 1 1

TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 1 1

TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 1 1

T1YFFM 1-Year Treasury C Minus FEDFUNDS 1 1

T5YFFM 5-Year Treasury C Minus FEDFUNDS 1 1

T10YFFM 10-Year Treasury C Minus FEDFUNDS 1 1

AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS 1 1

BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS 1 1

TWEXAFEGSMTHx Trade Weighted U.S. Dollar Index 5 5

EXSZUSx Switzerland / U.S. Foreign Exchange Rate 5 5

EXJPUSx Japan / U.S. Foreign Exchange Rate 5 5

EXUSUKx U.S. / U.K. Foreign Exchange Rate 5 5

EXCAUSx Canada / U.S. Foreign Exchange Rate 5 5

WPSFD49207 PPI: Finished Goods 5 6

WPSFD49502 PPI: Finished Consumer Goods 5 6

WPSID61 PPI: Intermediate Materials 5 6

WPSID62 PPI: Crude Materials 5 6

OILPRICEx Crude Oil, spliced WTI and Cushing 5 6

PPICMM PPI: Metals and metal products: 5 6

CPIAUCSL CPI : All Items 5 6

CPIAPPSL CPI : Apparel 5 6

CPITRNSL CPI : Transportation 5 6

CPIMEDSL CPI : Medical Care 5 6

CUSR0000SAC CPI : Commodities 5 6

CUSR0000SAD CPI : Durables 5 6

CUSR0000SAS CPI : Services 5 6
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Table A.1. Data Transformation (Continued)

ID Description Used FRED

CPIULFSL CPI : All Items Less Food 5 6

CUSR0000SA0L2 CPI : All items less shelter 5 6

CUSR0000SA0L5 CPI : All items less medical care 5 6

PCEPI Personal Cons. Expend.: Chain Index 5 6

DDURRG3M086SBEA Personal Cons. Exp: Durable goods 5 6

DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods 5 6

DSERRG3M086SBEA Personal Cons. Exp: Services 5 6

S&P 500 S&P’s Common Stock Price Index: Composite 5 5

S&P: indust S&P’s Common Stock Price Index: Industrials 5 5

S&P div yield S&P’s Composite Common Stock: Dividend Yield 1 2

S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio 1 5

VIXCLSx VIX 1 1



APPENDIX B

MAX SHARE IDENTIFICATION FOR STRUCTURAL VARS IN LEVELS:

THERE IS NO FREE LUNCH
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B.1 Proofs of Asymptotic Results in the Stationary Case

Proof of Theorem 2.3.1

Let Assumption (2.3.1) hold and consider the behavior of ( ) as for some

finite, fixed . The asymptotic distribution can be derived from the delta method. Let

= vec ([ 1 ]), one has

˜( ) :=
vec ( ( ))

′ =
−1∑
=0

( ′
tr
′ ′ )

vec ( tr)
′

+
−1∑
=0

( ′
tr
′ ′ )

vec ( ′
tr
′ )

′

with (see Lütkepohl (2005) p.668, rules 7 and 6, respectively)

vec ( tr)
′ = ( ′

tr )
vec( )

′

vec ( ′
tr
′)

′ = ( ′
tr)

vec( ′ )
′

= ( ′
tr)

vec( )
′

where is the 2 2 commutation matrix such that vec( ′) = vec( ) for

any matrix. Therefore, using the Kronecker product rules and the properties of

the commutation matrix, one has:1

vec ( ( ))
′ =

−1∑
=0

( ′
tr
′ ′ ) ( ′

tr )
vec( )

′

+
−1∑
=0

( ′
tr
′ ′ ) ( ′

tr)
vec( )

′

1Let G be (m n) and F (p q). Then Kpm(G F ) = (F G)Kqn, with Kpm and Kqn

some commutation matrices.
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=
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Likewise, defining := vech( ),

( ) :=
vec ( ( ))

′ =
−1∑
=0

( ′
tr
′ ′ )

vec( tr)
′

+
−1∑
=0

( ′
tr
′ ′ )

vec( ′
tr)
′

=
−1∑
=0

( 2 + ) ( ′
tr
′ ′ )

vec( tr)
′

We define the ( ) matrix := ( +1 ) and (0) :=(
( ( )) ( ′ ( ))′

)
, the contemporaneous covariance matrix of the vector

process . Under Assumption (2.3.1),  0

 (0)−1 0

0 2 + ( ) +′


where + := ( ′ )−1 ′ is Moore-Penrose generalized inverse of the 2

( + 1) 2 duplication matrix. Using the Delta method,

vec
(̂ ( ) ( )

)
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0
[

˜( ) ( )
] (0)−1 0

0 2 + ( ) +′

 ′
˜

′


as stated.

Proof of Theorem 2.3.2

Suppose that the Max Share matrix ( ) is of rank . The spectral decomposition

of ( ) is given by:

( ) = ( ) ( ) ′( )

where is the diagonal matrix whose diagonal elements are the eigenvalues arranged

in algebraically nonincreasing order, and is the orthogonal matrix with ′ = I

containing the associated eigenvectors. Given that the Max Share matrix is not nec-

essarily of full rank (e.g., Case 1, Section 4), we assume that the first eigenvalues

are different from zero and the last eigenvalues are equal to zero. Accordingly,

the submatrix contains the eigenvectors associated with the first eigenvalues, and

the submatrix − contains the eigenvectors associated with the last eigen-

values, so that ′ = ′ + −
′
− . Additionally, can be partitioned as

= [ 1 2: ], where 1 = ( ) denotes the eigenvector associated with the max-

imal eigenvalue when the target is the th variable. Therefore, the matrix can be

written as:  0

0 −


= ′ ( ) =

 ′ ( ) ′ ( ) −

′
− ( ) ′

− ( ) −





158

where ′ ( ) =

 ′
1 ( ) 1

′
1 ( ) 2:

′
2: ( ) 1

′
2: ( ) 2:

. Using the vectorization of the

matrix , we have:

vec ( ) = vec ( ′ ( ) ) = ( ′ ′ ) vec ( ( ))

Using Theorem 2.3.1, 1 2vec
(̂ ( ) ( )

)
N (0 ), and assuming a weakly

consistent estimate of the submatrix of eigenvectors , ̂ , the two results of

Theorem 2.3.2 follow by virtue of the Slutsky theorem.

Proof of Theorem 2.3.3

Theorem 2.3.3 is an application of Theorem 4.1 and Theorem 4.2. (p. 729) of Tyler

(1981) and Theorem 1 in Bura and Pfeiffer (2008). The expression of the variance-

covariance matrix of the eigenvector associated to the maximal eigenvalue results from

Anderson (1963).

B.2 Asymptotic Properties of the Max Share Matrix for the Bivariate DGP

We first provide some preliminary notations.

Rotating the System in Separate I(1) and I(0) Components

Some of the results in the paper rely on rotating the system into separate I(1) and I(0)

components following Phillips (1998). Define := ( ⊥ ), := ′ , := ′

and := ′ . Then,

=
∑
=1

− +
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Letting := ′( ) , we get

= −1 +
′ ( ) −1 +

Furthermore, we define :=
( ′

−1
′
− +1

)′
=( ′

−1
′
− +1

)
( −1 ) and := ′ ( 1 −1) ( −1 ) whence

= ′ ( )

= −1 + + (B.1)

We now obtain a partition of the matrix . Under (c), one gets

=

exp( −1 ) ′
⊥

0 × + ′



Two Random Matrix distributions

Following Phillips (1998) we define the random matrices and Γ. Recall that :=

′ are the residuals in the separated system and define ( ) as a vector of uncorrelated

Brownian motions. Under assumption (c), we further define 1 := ′
⊥ 2 −1+ 1 +

1 , its long-run covariance matrix as , the long-run covariance matrix of 1 as and

the correlated Brownian motions ( ) = ( ) and 1( ) = ( ). Then, the so-called

unit root matrix is given by

:=

∫ 1

0

( ) 1( )′
(∫ 1

0
1( ) 1( )′

)−1

(B.2)
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Now, under assumption (c’), we must also introduce the following Ornstein-Uhlenbeck

process Γ( ) :=
∫

0
exp (( ) ) 1( ) and the so-called local-to-unit matrix

Γ :=

∫ 1

0

( ) Γ( )′
(∫ 1

0
Γ( ) Γ( )′

)−1

(B.3)

Specific derivations for the experiments

We discuss part (i) of Theorem 2.3.4 (i.e., the limiting distribution of IRFs) in the

special case of the DGP used in Section 2.3: 1

2

 =

1 + 11 12 +

21 22

 1 −1

2 −1

+

 11 12

21 0

 1 −2

2 −2

+

 1

2


Equivalently, the reduced-form VECM form can be written as: 1

2

 =

0
0 22 1

 1 −1

2 −1

+

 11 12

21 0

 1 −1

2 −1

+

 1

2


More generally, 1

2

 =

1
0 22

 1 −1

2 −1

+

 11 12

21 0

 1 −1

2 −1

+

 1

2



Following Phillips (1998), the system of equations admits the following alternate com-
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panion form such that = −1 + with = ( 1 2 1 2 )
′:


1

2

1

2

 =


1 11 12

0 22 21 0

0 11 12

0 22 1 21 0




1 −1

2 −1

1 −1

2 −1

+


1

2

1

2


where = ′ with = [ 2 2].

The (modified) companion matrix can be partitioned as follows:
exp( −1 ) 12

0 ×

exp( −1 )

0( −1)×

 22

 (B.4)

where is the number of unit root or near unit root variables, the number of stationary

variable and the number of lags in the level-based specification. Note that the DGP

imposes that the matrix can be either a scalar or a 2 2 matrix depending on the

number of unit roots or near-unit roots. In particular, when is a matrix, the exponential

function exp( ) is understood as the matrix exponential.

As shown in Phillips (Phillips (1998), p.28), the impulse response matrices can be

rewritten in terms of this companion form as follows

= ′

=

exp( −1 ) exp( −1 ) 12( + + −1
22 )

( −1) 22 + ( −1)

 ′
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and = [ 2 02×2] and the moving average (MA) representation of is

=
−1∑
=0

′
− =

−1∑
=0

−

For = for a fixed fraction 0, then where

=

exp( ) exp( ) 12 ( 22)
−1

0 0

 ′

as because 22 has stable roots. Using an OLS-based estimation of the unre-

stricted VAR in levels, the ith impulse response matrix estimate is given by:

̂ = ̂ ′

where

̂ =

 ̂
1̂2̂

2 2̂2

 (B.5)

with

=

1
0 22

 and 12 = 22 =

 11 12

12 0



Let 1 denote the submatrix containing the first columns of (i.e., the nonstationary

components of ), the limit distribution is given by:

( ̂1 1)

(∫ 1

0

′
Γ

)
( Γ

′
Γ)
−1

= Γ

where Γ( ) =
∫

0
exp ( ) 1 is a vector diffusion process and 1 is vector of
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Brownian motion (see Phillips, 1988). In particular, when the diagonal elements of

are equal to zero, then Γ( ) reduces to 1( ).

It follows that the expression of ̂ is:

̂ =

 ̂1 + ( −1)
∑

=0
̂ −

1
̂

12
̂

22 + ( −1)

( −1) ̂
22 + ( −1)

 (B.6)

and, as shown by Phillips (1998),

̂
1 = [ + ( ̂1 )] = [ + ( ̂1 ) ] exp( Γ)

as and = . Finally,

̂ exp( Γ) exp( Γ) 12( 22)
−1

0 0


and

̂ exp( Γ) exp( Γ) 12 ( 22)
−1

0 0

 ′

.

We now provide the complete derivations of different configurations.

• 1 is (1) and 2 is (0) with possibly = 0

In this case = 1, = 0 and the matrix is given by (assuming that 11 = 0 as

in Section 5):
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=

 1 12

03×1 22

 =


1 0 12

0

0

0

22 21 0

0 12

22 1 21 0


where 12 = [ 0 12] and

22 =


22 21 0

0 12

22 1 21 0



To determine the (random) limit, we need to compute 12 ( 3 22)
−1. Using

( 3 22)
−1 =


1 22 21 0

1 12

1 22 21 1


−1

=
1

22


1 12 21 21 12 21

12(1 22) (1 22) 12(1 22)

21 (1 22) 0 (1 22) 21


we have

12( 3 22)
−1 =

1

22


( (1 21 21) 12((1 22) 21 ))

21

( 12 21 + 12((1 22) 21 ))


′

=
1

22

[
12(1 22) 21 12(1 22)

]
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where 22 = (1 22 21 ). Therefore,

lim
→∞

= =

 1 12 ( 3 22)
−1

03×1 03×3


As the impulse response horizon , the impulse response matrix of the

unrestricted (reduced-form) VAR lin levels converge to :

lim
→∞

= = ′ =

1 + 21

22 22

0 0


It means that the only permanent impact is from both shocks on the first variable.

Turning to the limiting distribution of the Max Share matrix, we first define ⊥,

and . Taking that ′
⊥ = [1 0], ′ = [0 1] and = [ ⊥ ], the permanent

effect of the reduced-form innovations on the first variable is given by:

′ = ′
⊥ + 12 ( 3 22)

−1

 ′

′



= [1 0] +

[
12(1 22)

22

21

22

12(1 22)

22

]
0 1

1 0

0 1


=

[
1 +

21

22 22

]

Finally, it involves the expression of the matrix , which is a scalar. In so doing,

we derive the expression of 1 from the specification of 1 , namely

1 = 2 −1 + 12 2 −1 + 1 = 1

=
∞∑
=0

−
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where the last expression results from the moving average representation of the

innovations = ( 1 2 )
′.Then,

=

∫ 1

0

( ) 1( )

(∫ 1

0
1( ) 1( )′

)−1

=

∫ 1

0 1( ) ( )∫ 1

0 1( )2

where 1 is a scalar Brownian motion with a variance given by the long-run
variance of

∑∞
=0 − and is a scalar Brownian motion with variance given

by ( 1 ). The asymptotic distribution of −1 ( ) as with =

for ]0 1] is therefore:

h−1Sk,T (h)
1

f

∫ f

0

Σ′trβE exp (sU ′)β′⊥eke
′
kβ⊥ exp (sU)β′EΣtrds

1

f

∫ f

0

Σ′tr

1 + a21δ
d22

δ
d22

 exp (sU)
[
1 0

]
eke
′
k

1

0

 exp (sU)
[
1 + a21δ

d22
δ
d22

]
Σtrds

where tr is the lower triangular Cholesky decomposition of , = ′
tr tr,

and is the first ( = 1) or second ( = 2) base vector of R2. When = 1, one
has:

h−1S1,T (h)
1

f

∫ f

0

exp (2sU) Σ′tr

1 + a21δ
d22

δ
d22

[1 + a21δ
d22

δ
d22

]
Σtrds

1

f

∫ f

0

exp (2sU)

σ̃11 σ̃21

0 σ̃22

1 + a21δ
d22

δ
d22

[1 + a21δ
d22

δ
d22

]σ̃11 0

σ̃21 σ̃22

 ds
1

f

∫ f

0

exp (2sU)

σ̃11 (1 + a21δ
d22

)
+ σ̃21

δ
d22

σ̃22
δ
d22

[σ̃11 (1 + a21δ
d22

)
+ σ̃21

δ
d22

σ̃22
δ
d22

]
ds

1

f
(2U)

−1


(
σ̃11

(
1 + a21δ

d22

)
+ σ̃21

δ
d22

)2 (
σ̃11

(
1 + a21δ

d22

)
+ σ̃21

δ
d22

)
σ̃22

δ
d22(

σ̃11

(
1 + a21δ

d22

)
+ σ̃21

δ
d22

)
σ̃22

δ
d22

(
σ̃22

δ
d22

)2


(exp (f) 1) .

where are the elements of lower triangular Cholesky decomposition of .

Accordingly, 1̂ ( ) is of rank one, the second eigenvalue converges to zero and
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the resulting eigenvector converges to [1 0]′. When = 0,

−1
1̂ ( )

1
(2 )−1

 2
11 0

0 0

 (exp ( ) 1)

• 1 is (1) and 2 is (1)

In this case, = 2, is a 2 2 null matrix and is given by:

=

 2×2 12

02×2 22

 =


1 0 0 12

0 1 21 0

0 0 0 12

0 0 21 0


Since assumption (c) is satisfied here, we first need to compute the expression of

12 ( 2 22)
−1:

( 2 22)
−1 =

 1 12

21 1

−1

=
1

1 12 21

 1 12

21 1


It implies that:

12( 2 22)
−1 = 1

1− 12 21

 12 21 12

21 12 21


and thus

lim
→∞

=

 2×2 12 ( 2 22)
−1

02×2 02×2


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Capitalizing on Lemma 2.2. of Phillips (1998), one gets:

lim
→∞

= =
[

2 12 ( 2 22)
−1
]

meaning that the only permanent impact is from both shocks on the first variable.

Regarding the limiting distribution of ( ), since is the empty matrix,

′
⊥ =

1 0

0 1

 =

and the permanent effect of the reduced-form innovations on the two variables is

then given by:

′ = ′
⊥ + 12 ( 2 22)

−1 ′ =

 1
1− 12 21

12

21
1

1− 12 21


Finally, starting from the (infinite) moving average representation of 1

1 =

 1

2

 =

 0 12

21 0

 1 −1

2 −1

+

 1

2


=
∞∑
=0

1 −

where 1 = 12, one can define the matrix unit root distribution

:=

∫ 1

0

( ) ′( )

(∫ 1

0

( ) ( )′
)

where ( ) is a two dimensional Brownian motion vector with covariance matrix

(1) (1)′. Using Theorem , the asymptotic distribution of −1 ̂ ( ) as
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with = for ]0 1] is therefore

−1 ̂ ( )
1
∫

0

′
tr exp ( ′) ′

⊥
′
⊥ exp ( ) ′

tr

1
∫

0

′
tr exp ( ′) ′ exp ( ) ′

tr

• 1 is (1) and 2 is a nearly unit-root process with possibly = 0

The derivation is the same, with the exception that:

Γ :=

∫ 1

0

( ) Γ( )′
(∫ 1

0
Γ( ) Γ( )′

)−1

where

=

0
0


This is a mixture of correlated unit root distribution and a local-to-unit root dis-

tribution.

B.3 Additional Results

We discuss the asymptotic results in the case of weakly stationary processes for the

accumulated and frequency Max Share approaches mentioned in Remark 1 of the main

text.

B.3.1 Asymptotic results with weakly stationary processes

Theorem B.3.1 Let Assumption (2.3.1) hold and let = vec ([ 1 ]),

= vech ( ), = ( +1 ) R ×( − ), and (0) :=[
( ( )) ( ( ))′

]
. Then, as ,
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(a) The estimator of the accumulated Max Share weighting matrix of ( ), denoted

by ̂ ( ), at a fixed horizon band
[
;
]

satisfies

vec
(̂ ( ) ( )

)
N

0
[

˜

] (0)−1 0

0 2 + ( ) +′

 ′
˜

′


(b) The estimator of the non-accumulated Max Share weighting matrix of ( ),

denoted by ̂ ( ), at a given frequency band [ ; ] satisfies

vec
(̂ ( ) ( )

)
N

0
[

˜

] (0)−1 0

0 2 + ( ) +′

 ′
˜

′


where + := ( ′ )−1 ′ is the Moore-Penrose generalized inverse of an appro-

priate 2 ( + 1) 2 duplication matrix, and the gradients ˜, , ˜, and

are defined in the proof.

Proof: Following Lütkepohl (2005), these results make use of the Delta method.

Proof of Theorem (B.3.1), part (a) Starting from

( ) =
∑

=

( )
′ MSE( )

one has

D̃α̃ :=
∂vec

(
Sk(h, h)

)
∂α̃

=
h∑

h=h

∂

∂α̃

(
1

e′kMSE(h)ek
Sk(h)

)

=
h∑

h=h

{
1

e′kMSE(h)ek

∂vec (Sk(h))

∂α̃
+
∂ 1
e′kMSE(h)ek

∂α̃
vec (Sk(h))

}
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where

∂vec (Sk(h))

∂α̃
=
h−1∑
`=0

(IN2 +KNN ) (Σ′tr Σ′trΦ
′
`eke

′
k)
∂Φ`
∂α̃′

.

∂ 1
e′kMSE(h)ek

∂α̃
=

1

(e′kMSE(h)ek)
2

∂e′kMSE(h)ek
∂α̃

=
h−1∑
`=0

e′kΦ`ΣtrΣ
′
tr (K1N + IN ) (IN e′k)

∂vec(Φ`)

∂α̃′
.

On the other hand,

D̃σ :=
∂vec

(
Sk(h, h)

)
∂σ

=
h∑

h=h

∂

∂σ

(
1

e′kMSE(h)ek
Sk(h)

)

=
h∑

h=h

{
1

e′kMSE(h)ek

∂vec (Sk(h))

∂σ
+
∂ 1
e′kMSE(h)ek

∂σ
vec (Sk(h))

}

where

∂vec (Sk(h))

∂σ
=
h−1∑
`=0

h−1∑
`=0

(IN2 +KNN ) (IN Σ′trΦ
′
`eke

′
kΦ`)

∂vec(Σtr)

∂σ′

∂ 1
e′kMSE(h)ek

∂σ
=

1

(e′kMSE(h)ek)
2

∂e′kMSE(h)ek
∂σ

=
h−1∑
`=0

(IN2 +KNN ) (e′kΦ` e′kΦ`Σtr)
∂vec(Σtr)

∂σ′
.

Using the Delta method,

vec
(̂ ( ) ( )

)
N

0
[

˜

] (0)−1 0

0 2 + ( ) +′

 ′
˜

′



Remark: In the case of the estimator of ( ) =
∑
=

( ), denoted ̂ ( ), one

has:
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̂̃Sk,T (h, h) =
h−1∑
`=0

(
h max(h 1, `)

)
Σ′trΦ

′
`eke

′
kΦ`Σtr

Suppose that 1 are fixed horizons. Similar algebra derivation yields

D̃α̃ :=
∂vec

(
S̃k(h, h)

)
∂α̃

=
h−1∑
`=0

(
h max(h 1, l)

)
(IN2 +KNN ) (Σ′tr Σ′trΦ

′
`eke

′
k)
∂Φ`
∂α̃′

and

D̃σ :=
∂vec

(
S̃k(h, h)

)
∂σ′

=
h−1∑
`=0

(
h max(h 1, l)

)
(IN2 +KNN ) (IN Σ′trΦ

′
`eke

′
kΦ`)

∂vec(Σtr)

∂σ′
.

Using the Delta method,

vec
(̂ ( ) ( )

)
N

0
[

˜

] (0)−1 0

0 2 + ( ) +′

 ′
˜

′



Proof of Theorem (B.3.1), part (b) In the case of the frequency Max Share approach,

one has

( ) :=

∫
∈[ ]

′ ( − ) ′
( − )

=

∫
∈[ ]

(
∞∑
=0

′
tr
′

)
′

(
∞∑
=0

tr
−

)

We first consider the partial derivative with respect to ′. To simplify notation, let
:= tr

− and its conjugate transpose. Then, taking the interchangeability of
the differential operator and the integral operator,
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In the case of the partial derivative with respect to ′, using Lütkepohl (2005) (p.668,
rule 6), starting from
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one has
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Finally,
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Then, under Assumption (2.3.1),

vec
(̂ ( ) ( )

)



175

0
[

˜

] (0)−1 0

0 2 + ( ) +′

 ′
˜

′


as stated.

B.3.2 Additional Monte Carlo Results

Table B.1: Correlations corr( 1 1 ) and corr( 1 2 )

FEV Horizon corr(ŵ1,t, w1,t) corr(ŵ1,t, w2,t)

Diff Level Levelc Levelcb Diff Level Levelc Levelcb

Experiment 1

0 0.9955 0.9863 0.9863 0.9863 0.0009 0.0020 0.0020 0.0020

40 0.9955 0.9590 0.9570 0.9551 0.0031 0.0167 -0.0101 0.014

80 0.9956 0.9474 0.9368 0.9330 -0.0003 0.0106 -0.0208 0.0117

Experiment 2

0 0.9956 0.9880 0.9880 0.9880 -0.0016 0.0029 0.0029 0.0029

40 0.9954 0.9213 0.9128 0.9105 0.0046 -0.2337 -0.2562 -0.2477

80 0.9955 0.8927 0.8604 0.8547 0.0073 -0.2823 -0.3315 -0.3205

Experiment 3

a22 = 0.9

0 0.9916 0.9871 0.9871 0.9871 0.4e-03 0.5e-03 0.5e-03 0.5e-03

40 0.9904 0.9640 0.9612 0.9614 0.0230 -0.0715 -0.0801 -0.0639

80 0.9909 0.9614 0.9570 0.9569 0.0255 -0.0588 -0.0628 -0.0442

a22 = 0.96

0 0.9914 0.9866 0.9866 0.9866 -0.0001 0.0013 0.0013 0.0013

40 0.9908 0.9517 0.9470 0.9477 0.0259 -0.0993 -0.1175 -0.0932

80 0.9906 0.9437 0.9313 0.9292 0.0225 -0.0790 -0.0895 -0.0550

a22 = 0.99

0 0.9907 0.9855 0.9855 0.9855 -0.0032 -0.0007 -0.0007 -0.0007

40 0.9903 0.9336 0.9306 0.9300 0.0241 -0.1606 -0.1761 -0.1599

80 0.9904 0.9105 0.8933 0.8867 0.0258 -0.1361 -0.1455 -0.1133
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Table B.1: Correlations corr( 1 1 ) and corr( 1 2 )

Experiment 4

a22 = 0.96

0 0.9915 0.9879 0.9879 0.9879 -0.0048 -0.0007 -0.0007 -0.0007

40 0.9902 0.8753 0.8664 0.8634 0.0322 -0.3670 -0.3817 -0.3746

80 0.9903 0.8420 0.8116 0.8053 0.0337 -0.4091 -0.4416 -0.4280

a22 = 0.99

0 0.9908 0.9898 0.9898 0.9898 -0.0048 -0.0036 -0.0036 -0.0036

40 0.9901 0.7380 0.7484 0.7345 0.0375 -0.5875 -0.5741 -0.5797

80 0.9902 0.6160 0.5922 0.5567 0.0370 -0.5883 -0.5830 -0.5288

Table B.2: Correlations corr( 2 1 ) and corr( 2 2 )

FEV Horizon corr(ŵ2,t, w1,t) corr(ŵ2,t, w2,t)

Diff Level Levelc Levelcb Diff Level Levelc Levelcb

Experiment 1

0 0.0000 0.0000 0.0030 -0.0013 0.9932 0.9879 0.9879 0.98

40 -0.0022 -0.0144 0.0149 -0.0152 0.9932 0.9596 0.9575 0.9537

80 -0.0023 -0.0118 0.0216 -0.0126 0.9932 0.9478 0.9370 0.9313

Experiment 2

0 -0.0000 -0.0000 0.0029 0.0018 0.9934 0.9863 0.9863 0.9843

40 -0.0073 0.2357 0.2596 0.2487 0.9930 0.9195 0.9108 0.9064

80 -0.0075 0.2865 0.3403 0.3264 0.9925 0.8903 0.8577 0.8503

Experiment 3

a22 = 0.9

0 -0.0000 0.0000 0.0027 0.0020 0.9894 0.9887 0.9888 0.9867

40 -0.0253 0.0693 0.0799 0.0606 0.9882 0.9659 0.9629 0.9611

80 -0.0248 0.0592 0.0652 0.0467 0.9886 0.9626 0.9580 0.9558

a22 = 0.96

0 0.0000 -0.0000 0.0030 0.0020 0.9885 0.9874 0.9874 0.9854

40 -0.0244 0.1008 0.1209 0.0965 0.9880 0.9523 0.9472 0.9463
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Table B.2: Correlations corr( 2 1 ) and corr( 2 2 )

80 -0.0237 0.0786 0.0930 0.0568 0.9884 0.9440 0.9308 0.9267

a22 = 0.99

0 -0.0000 -0.0000 0.0017 0.0004 0.9875 0.9854 0.9853 0.9829

40 -0.0244 0.1622 0.1787 0.1613 0.9877 0.9337 0.9301 0.9277

80 -0.0249 0.1463 0.1585 0.1290 0.9873 0.9085 0.8903 0.8809

Experiment 4

a22 = 0.96

0 0.0000 -0.0000 0.0030 0.0020 0.9889 0.9863 0.9863 0.9843

40 -0.0328 0.3709 0.3863 0.3783 0.9874 0.8748 0.8656 0.8616

80 -0.0330 0.4154 0.4501 0.4448 0.9880 0.8421 0.8114 0.8024

a22 = 0.99

0 0.0000 0.0000 0.0056 -0.0024 0.9882 0.9834 0.9834 0.9815

40 -0.0377 0.5930 0.5798 0.5877 0.9870 0.7327 0.7433 0.7261

80 -0.0388 0.6765 0.6899 0.6897 0.9867 0.5989 0.5738 0.5301

Table B.3: Bias and RMSE for experiment 1

Bias RMSE

IR Horizon i Diff Level Pope Bootstrap Diff Level Pope Bootstrap

Forecast error variance horizon h = 0

Shock 1 to Variable 1

0 0.0003 0.0003 0.0048 0.0043 0.0087 0.0460 0.0458 0.0647

4 0.0236 0.0236 0.0960 0.0525 0.0526 0.1381 0.1097 0.1198

8 0.0383 0.0383 0.1762 0.0934 0.0909 0.2257 0.1633 0.1710

40 0.0663 0.0663 0.5488 0.2742 0.2672 0.6152 0.4194 0.4304

Shock 2 to Variable 1

0 0 0 0 0 0 0 0 0

4 0.0290 0.0290 0.0058 0.0014 0.0052 0.0925 0.0902 0.0916

8 0.0488 0.0488 0.0101 0.0045 0.0089 0.1432 0.1406 0.1445

40 0.0859 0.0859 0.0203 0.0033 0.0468 0.2273 0.3049 0.3331

Shock 1 to Variable 2
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Table B.3: Bias and RMSE for experiment 1

Bias RMSE

IR Horizon i Diff Level Pope Bootstrap Diff Level Pope Bootstrap

0 0.0011 0.0011 0.0004 0.0031 0.0010 0.0697 0.0699 0.0995

4 0.0329 0.0329 0.0765 0.0393 0.0342 0.1387 0.1254 0.1401

8 0.0582 0.0582 0.1378 0.0688 0.0613 0.1976 0.1655 0.1733

40 0.0429 0.0429 0.1560 0.0745 0.0701 0.2232 0.2451 0.2571

Shock 2 to Variable 2

0 0.0048 0.0048 0.0059 0.0075 0.0146 0.0469 0.0470 0.0654

4 0.0620 0.0620 0.0630 0.0281 0.0259 0.1282 0.1182 0.1270

8 0.0936 0.0936 0.1009 0.0410 0.0311 0.1813 0.1656 0.1726

40 0.0615 0.0615 0.0768 0.0211 0.0446 0.1382 0.1980 0.2257

Forecast error variance horizon h = 40

Shock 1 to Variable 1

0 0.0003 0.0324 0.0338 0.0403 0.0460 0.0705 0.0732 0.0911

4 0.0238 0.1019 0.0615 0.0627 0.0887 0.1426 0.1173 0.1278

8 0.0386 0.1662 0.0864 0.0842 0.1124 0.2162 0.1568 0.1649

40 0.0670 0.5111 0.2235 0.2102 0.2116 0.5856 0.3896 0.4053

Shock 2 to Variable 1

0 0.0022 0.0144 0.0125 0.0127 0.0040 0.2290 0.2361 0.2432

4 0.0310 0.0122 0.0055 0.0133 0.0760 0.1382 0.1561 0.1632

8 0.0507 0.0108 0.0030 0.0154 0.1296 0.0688 0.0891 0.0968

40 0.0876 0.0153 0.0021 0.0177 0.2903 0.1087 0.1260 0.1343

Shock 1 to Variable 2

0 0.0032 0.0003 0.0301 0.0032 0.0691 0.2439 0.2555 0.2660

4 0.0313 0.0668 0.0532 0.0269 0.1054 0.2404 0.2591 0.2690

8 0.0569 0.1189 0.0691 0.0428 0.1209 0.2500 0.2625 0.2719

40 0.0427 0.1436 0.0596 0.0445 0.0870 0.2191 0.2669 0.2849

Shock 2 to Variable 2

0 0.0059 0.0416 0.0319 0.0530 0.0464 0.1346 0.1324 0.1499

4 0.0631 0.0974 0.0529 0.0675 0.1070 0.1574 0.1461 0.1592

8 0.0945 0.1305 0.0678 0.0727 0.1554 0.1813 0.1581 0.1641
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Table B.3: Bias and RMSE for experiment 1

Bias RMSE

IR Horizon i Diff Level Pope Bootstrap Diff Level Pope Bootstrap

40 0.0617 0.0751 0.0056 0.0239 0.1232 0.1295 0.1732 0.1922

Forecast error variance horizon h = 80

Shock 1 to Variable 1

0 0.0024 0.0467 0.0566 0.0615 0.0468 0.0888 0.1031 0.1185

4 0.0203 0.1067 0.0733 0.0733 0.0901 0.1517 0.1347 0.1431

8 0.0353 0.1676 0.0932 0.0896 0.1162 0.2228 0.1701 0.1759

40 0.0640 0.4988 0.2091 0.1907 0.2209 0.5806 0.3937 0.4094

Shock 2 to Variable 1

0 0.0023 0.0123 0.0191 0.0117 0.0043 0.2702 0.3015 0.3123

4 0.0320 0.0133 0.0090 0.0166 0.0788 0.1838 0.2264 0.2392

8 0.0522 0.0136 0.0014 0.0218 0.1335 0.1159 0.1606 0.1756

40 0.0909 0.0124 0.0011 0.0002 0.2949 0.0798 0.0694 0.0704

Shock 1 to Variable 2

0 0.0014 0.0125 0.0515 0.0184 0.0676 0.2878 0.3259 0.3319

4 0.0326 0.0719 0.0674 0.0358 0.1083 0.2764 0.3180 0.3258

8 0.0576 0.1178 0.0755 0.0447 0.1243 0.2768 0.3110 0.3222

40 0.0407 0.1287 0.0403 0.0206 0.0920 0.2147 0.2766 0.3074

Shock 2 to Variable 2

0 0.0073 0.0538 0.0507 0.0752 0.0479 0.1576 0.1696 0.1957

4 0.0640 0.1087 0.0697 0.0895 0.1096 0.1801 0.1839 0.2034

8 0.0947 0.1424 0.0856 0.0960 0.1583 0.1943 0.1800 0.1917

40 0.0588 0.0782 0.0071 0.0072 0.1292 0.1318 0.1647 0.1834

Table B.4: Bias and RMSE for experiment 2

Bias RMSE

IR Horizon i Diff Level Pope Bootstrap Diff Level Pope Bootstrap

Forecast error variance horizon h = 0

Shock 1 to Variable 1
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Table B.4: Bias and RMSE for experiment 2

Bias RMSE

IR Horizon i Diff Level Pope Bootstrap Diff Level Pope Bootstrap

0 0.0031 0.0065 0.0071 0.0109 0.0462 0.0468 0.0470 0.0635

4 0.0223 0.0882 0.0420 0.0435 0.0876 0.1321 0.1077 0.1151

8 0.0330 0.1562 0.0708 0.0719 0.1050 0.2058 0.1538 0.1603

40 0.0162 0.3622 0.1529 0.1599 0.1675 0.4201 0.3090 0.3188

Shock 2 to Variable 1

0 0 0 0 0 0 0 0 0

4 0.0281 0.0049 0.0079 0.0101 0.0721 0.0918 0.0891 0.0915

8 0.0413 0.0214 0.0207 0.0249 0.1179 0.1440 0.1407 0.1466

40 0.0136 0.2495 0.1489 0.1580 0.2290 0.3345 0.3246 0.3483

Shock 1 to Variable 2

0 0.0031 0.0003 0.0035 0.0045 0.0703 0.0710 0.0710 0.0981

4 0.0351 0.0410 0.0154 0.0120 0.1080 0.1229 0.1209 0.1356

8 0.0580 0.0722 0.0238 0.0165 0.1227 0.1607 0.1549 0.1657

40 0.0323 0.0371 0.0298 0.0442 0.0739 0.1356 0.2074 0.2277

Shock 2 to Variable 2

0 0.0053 0.0081 0.0094 0.0110 0.0452 0.0461 0.0464 0.0637

4 0.0617 0.0880 0.0392 0.0345 0.1104 0.1452 0.1265 0.1320

8 0.0901 0.1387 0.0556 0.0464 0.1565 0.2064 0.1773 0.1824

40 0.0457 0.0864 0.0129 0.0295 0.1042 0.1525 0.2117 0.2390

Forecast error variance horizon h = 40

Shock 1 to Variable 1

0 0.0017 0.0718 0.0804 0.0839 0.0447 0.1253 0.1351 0.1483

4 0.0204 0.1008 0.0625 0.0632 0.0877 0.1468 0.1307 0.1396

8 0.0276 0.1285 0.0483 0.0479 0.1080 0.1857 0.1442 0.1518

40 0.0013 0.2747 0.0168 0.0183 0.1824 0.3666 0.2863 0.2966

Shock 2 to Variable 1

0 0.0073 0.2366 0.2585 0.2487 0.0099 0.3457 0.3649 0.3671

4 0.0266 0.2211 0.2525 0.2468 0.0787 0.2663 0.3021 0.3034

8 0.0333 0.2214 0.2553 0.2525 0.1248 0.2347 0.2727 0.2731
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Table B.4: Bias and RMSE for experiment 2

Bias RMSE

IR Horizon i Diff Level Pope Bootstrap Diff Level Pope Bootstrap

40 0.0113 0.3739 0.3458 0.3495 0.2470 0.3896 0.3691 0.3762

Shock 1 to Variable 2

0 0.0038 0.2716 0.3003 0.2916 0.0683 0.4053 0.4312 0.4437

4 0.0293 0.2514 0.2584 0.2481 0.1045 0.3654 0.3941 0.4063

8 0.0514 0.2222 0.2089 0.1965 0.1190 0.3172 0.3452 0.3562

40 0.0267 0.0452 0.0016 0.0181 0.0779 0.1609 0.2486 0.2697

Shock 2 to Variable 2

0 0.0087 0.0436 0.0441 0.0307 0.0459 0.1034 0.1045 0.1160

4 0.0617 0.0018 0.0528 0.0462 0.1112 0.1304 0.1470 0.1533

8 0.0867 0.0653 0.0231 0.0235 0.1567 0.1629 0.1676 0.1730

40 0.0384 0.0621 0.0429 0.0579 0.1104 0.1262 0.1992 0.2198

Forecast error variance horizon h = 80

Shock 1 to Variable 1

0 0.0029 0.1017 0.1341 0.1393 0.0456 0.1728 0.2136 0.2317

4 0.0199 0.1196 0.1007 0.1032 0.0856 0.1688 0.1770 0.1909

8 0.0294 0.1411 0.0766 0.0777 0.1063 0.1938 0.1671 0.1779

40 0.0085 0.2662 0.0161 0.0147 0.1778 0.3701 0.2976 0.3083

Shock 2 to Variable 1

0 0.0076 0.2880 0.3404 0.3304 0.0102 0.4043 0.4598 0.4653

4 0.0304 0.2692 0.3326 0.3263 0.0807 0.3316 0.4048 0.4102

8 0.0397 0.2634 0.3301 0.3267 0.1273 0.2935 0.3701 0.3747

40 0.0013 0.4006 0.4087 0.4114 0.2399 0.4072 0.4141 0.4175

Shock 1 to Variable 2

0 0.0061 0.3368 0.4038 0.3911 0.0730 0.4889 0.5609 0.5747

4 0.0261 0.3041 0.3490 0.3367 0.1039 0.4369 0.5081 0.5227

8 0.0505 0.2625 0.2823 0.2694 0.1174 0.3717 0.4355 0.4496

40 0.0291 0.0535 0.0189 0.0041 0.0767 0.1644 0.2615 0.2893

Shock 2 to Variable 2

0 0.0063 0.0423 0.0338 0.0196 0.0454 0.1043 0.1161 0.1317
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Table B.4: Bias and RMSE for experiment 2

Bias RMSE

IR Horizon i Diff Level Pope Bootstrap Diff Level Pope Bootstrap

4 0.0624 0.0001 0.0515 0.0435 0.1088 0.1350 0.1590 0.1670

8 0.0894 0.0673 0.0167 0.0155 0.1554 0.1663 0.1755 0.1826

40 0.0423 0.0650 0.0310 0.0455 0.1086 0.1215 0.1858 0.2063

Table B.5: Bias and RMSE for experiment 3 with 12 = 0 2, 22 = 0 99, and = 0

Bias RMSE

IR Horizon i Diff Level Pope Bootstrap Diff Level Pope Bootstrap

Forecast error variance horizon h = 0

Shock 1 to Variable 1

0 0.0022 0.0074 0.0073 0.0124 0.0457 0.0463 0.0462 0.0645

4 0.0237 0.0956 0.0586 0.0607 0.0879 0.1312 0.1058 0.1159

8 0.0371 0.1691 0.1019 0.1027 0.1044 0.2128 0.1610 0.1694

40 0.0904 0.5125 0.3034 0.3003 0.2173 0.5717 0.4183 0.4292

Shock 2 to Variable 1

0 0 0 0 0 0 0 0 0

4 0.0128 0.0190 0.0096 0.0135 0.0781 0.0861 0.0814 0.0832

8 0.0306 0.0374 0.0171 0.0243 0.1077 0.1335 0.1233 0.1276

40 0.1074 0.0935 0.0473 0.0761 0.2872 0.2744 0.3167 0.3437

Shock 1 to Variable 2

0 0.0044 0.0045 0.0061 0.0073 0.0692 0.0691 0.0692 0.0997

4 0.0540 0.0843 0.0543 0.0531 0.1295 0.1430 0.1291 0.1460

8 0.0971 0.1528 0.0944 0.0913 0.1583 0.2204 0.1875 0.1976

40 0.2155 0.3279 0.1918 0.1869 0.2644 0.4280 0.4064 0.4176

Shock 2 to Variable 2

0 0.0063 0.0084 0.0091 0.0148 0.0472 0.0476 0.0476 0.0652

4 0.0673 0.0898 0.0529 0.0517 0.1305 0.1466 0.1301 0.1371

8 0.1290 0.1600 0.0921 0.0853 0.1905 0.2294 0.1947 0.1995

40 0.3017 0.3400 0.1468 0.1169 0.3700 0.4238 0.3866 0.4089
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Table B.5: Bias and RMSE for experiment 3 with 12 = 0 2, 22 = 0 99, and = 0

Bias RMSE

IR Horizon i Diff Level Pope Bootstrap Diff Level Pope Bootstrap

Forecast error variance horizon h = 40

Shock 1 to Variable 1

0 0.0039 0.0609 0.0635 0.0696 0.0482 0.1092 0.1126 0.1280

4 0.0289 0.0930 0.0556 0.0613 0.0955 0.1339 0.1133 0.1227

8 0.0446 0.1567 0.0882 0.0923 0.1132 0.2033 0.1551 0.1619

40 0.1093 0.4746 0.2481 0.2456 0.2301 0.5393 0.3763 0.3865

Shock 2 to Variable 1

0 0.0245 0.1633 0.1787 0.1617 0.0295 0.3069 0.3146 0.3154

4 0.0367 0.1523 0.1628 0.1523 0.0899 0.2115 0.2267 0.2260

8 0.0569 0.1559 0.1603 0.1531 0.1204 0.1758 0.1876 0.1860

40 0.1453 0.1543 0.1471 0.1579 0.2948 0.2055 0.2097 0.2245

Shock 1 to Variable 2

0 0.0225 0.1932 0.2116 0.1967 0.0737 0.3558 0.3681 0.3737

4 0.0200 0.2361 0.2296 0.2144 0.1117 0.3722 0.3850 0.3892

8 0.0640 0.2727 0.2429 0.2266 0.1379 0.3935 0.4010 0.4028

40 0.1920 0.3535 0.2507 0.2358 0.2533 0.4601 0.4844 0.4932

Shock 2 to Variable 2

0 0.0149 0.0244 0.0278 0.0156 0.0495 0.1197 0.1196 0.1324

4 0.0791 0.0372 0.0074 0.0005 0.1342 0.1526 0.1580 0.1693

8 0.1362 0.1150 0.0388 0.0386 0.1915 0.1991 0.1841 0.1930

40 0.2962 0.3172 0.1191 0.0908 0.3641 0.3990 0.3630 0.3771

Forecast error variance horizon h = 80

Shock 1 to Variable 1

0 0.0024 0.0827 0.0993 0.1072 0.0464 0.1468 0.1718 0.1896

4 0.0299 0.1108 0.0860 0.0961 0.0910 0.1533 0.1525 0.1710

8 0.0438 0.1663 0.1095 0.1172 0.1090 0.2094 0.1777 0.1916

40 0.0990 0.4567 0.2309 0.2257 0.2293 0.5295 0.3716 0.3848

Shock 2 to Variable 1

0 0.0250 0.1462 0.1570 0.1283 0.0294 0.3614 0.3958 0.4058
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Table B.5: Bias and RMSE for experiment 3 with 12 = 0 2, 22 = 0 99, and = 0

Bias RMSE

IR Horizon i Diff Level Pope Bootstrap Diff Level Pope Bootstrap

4 0.0379 0.1402 0.1483 0.1294 0.0879 0.2600 0.2993 0.3084

8 0.0559 0.1458 0.1470 0.1310 0.1162 0.2130 0.2492 0.2575

40 0.1338 0.1470 0.1350 0.1351 0.2889 0.1723 0.1508 0.1513

Shock 1 to Variable 2

0 0.0250 0.1790 0.1979 0.1664 0.0772 0.4084 0.4496 0.4593

4 0.0239 0.2275 0.2219 0.1919 0.1163 0.4171 0.4618 0.4688

8 0.0688 0.2638 0.2333 0.2019 0.1422 0.4315 0.4722 0.4781

40 0.1981 0.3412 0.2304 0.1965 0.2601 0.4753 0.5356 0.5570

Shock 2 to Variable 2

0 0.0166 0.0104 0.0244 0.0522 0.0488 0.1675 0.1908 0.2149

4 0.0800 0.0742 0.0508 0.0742 0.1352 0.2008 0.2246 0.2467

8 0.1390 0.1521 0.1005 0.1160 0.1932 0.2403 0.2427 0.2600

40 0.3029 0.3502 0.1932 0.1743 0.3733 0.4164 0.3798 0.3882

Table B.6: Bias and RMSE for experiment 3 with 12 = 0 2, 22 = 0 96, and = 0

Bias RMSE

IR Horizon i Diff Level Pope Bootstrap Diff Level Pope Bootstrap

Forecast error variance horizon h = 0

Shock 1 to Variable 1

0 0.0028 0.0077 0.0071 0.0122 0.0479 0.0484 0.0484 0.0638

4 0.0191 0.0866 0.0482 0.0491 0.0953 0.1263 0.1003 0.1089

8 0.0316 0.1548 0.0843 0.0831 0.1163 0.2055 0.1520 0.1590

40 0.0697 0.5125 0.2605 0.2538 0.2175 0.5824 0.4014 0.4135

Shock 2 to Variable 1

0 0 0 0 0 0 0 0 0

4 0.0155 0.0135 0.0014 0.0076 0.0770 0.0816 0.0785 0.0800

8 0.0321 0.0272 0.0024 0.0142 0.1141 0.1269 0.1225 0.1256

40 0.0861 0.0356 0.0013 0.0393 0.2742 0.2151 0.2812 0.3032



185

Table B.6: Bias and RMSE for experiment 3 with 12 = 0 2, 22 = 0 96, and = 0

Bias RMSE

IR Horizon i Diff Level Pope Bootstrap Diff Level Pope Bootstrap

Shock 1 to Variable 2

0 0.0015 0.0026 0.0053 0.0066 0.0676 0.0681 0.0681 0.0950

4 0.0326 0.0786 0.0422 0.0396 0.1196 0.1352 0.1210 0.1343

8 0.0589 0.1330 0.0672 0.0613 0.1304 0.1915 0.1621 0.1709

40 0.0445 0.1477 0.0640 0.0576 0.0935 0.2164 0.2415 0.2563

Shock 2 to Variable 2

0 0.0046 0.0057 0.0072 0.0136 0.0459 0.0464 0.0464 0.0657

4 0.0528 0.0630 0.0279 0.0248 0.1203 0.1295 0.1201 0.1266

8 0.0883 0.0996 0.0403 0.0297 0.1581 0.1789 0.1645 0.1701

40 0.0640 0.0761 0.0216 0.0480 0.1299 0.1387 0.1967 0.2265

Forecast error variance horizon h = 40

Shock 1 to Variable 1

0 0.0007 0.0400 0.0440 0.0449 0.0476 0.0811 0.0871 0.0985

4 0.0235 0.0747 0.0379 0.0388 0.0893 0.1129 0.0925 0.1037

8 0.0329 0.1296 0.0599 0.0579 0.1094 0.1763 0.1260 0.1352

40 0.0584 0.4760 0.2037 0.1900 0.2143 0.5485 0.3586 0.3795

Shock 2 to Variable 1

0 0.0246 0.1014 0.1195 0.0948 0.0296 0.2553 0.2708 0.2667

4 0.0301 0.0968 0.1048 0.0888 0.0925 0.1595 0.1792 0.1746

8 0.0423 0.1030 0.1011 0.0898 0.1254 0.1230 0.1334 0.1291

40 0.0813 0.0894 0.0869 0.1004 0.2762 0.1347 0.1469 0.1604

Shock 1 to Variable 2

0 0.0259 0.1204 0.1431 0.1189 0.0812 0.2918 0.3120 0.3125

4 0.0149 0.1629 0.1475 0.1235 0.1107 0.2896 0.3030 0.3047

8 0.0443 0.1943 0.1494 0.1253 0.1235 0.2970 0.3005 0.3039

40 0.0400 0.1681 0.0966 0.0832 0.0935 0.2372 0.2785 0.3007

Shock 2 to Variable 2

0 0.0159 0.0111 0.0132 0.0035 0.0501 0.1107 0.1125 0.1264

4 0.0629 0.0422 0.0021 0.0107 0.1236 0.1268 0.1321 0.1414
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Table B.6: Bias and RMSE for experiment 3 with 12 = 0 2, 22 = 0 96, and = 0

Bias RMSE

IR Horizon i Diff Level Pope Bootstrap Diff Level Pope Bootstrap

8 0.0953 0.0881 0.0266 0.0252 0.1611 0.1604 0.1538 0.1600

40 0.0639 0.0788 0.0090 0.0330 0.1259 0.1349 0.1802 0.2095

Forecast error variance horizon h = 80

Shock 1 to Variable 1

0 0.0025 0.0498 0.0616 0.0643 0.0469 0.0929 0.1119 0.1215

4 0.0241 0.0858 0.0549 0.0596 0.0948 0.1224 0.1112 0.1220

8 0.0345 0.1396 0.0736 0.0749 0.1174 0.1859 0.1406 0.1476

40 0.0633 0.4803 0.2039 0.1896 0.2277 0.5584 0.3744 0.3895

Shock 2 to Variable 1

0 0.0238 0.0785 0.0907 0.0571 0.0284 0.2811 0.3156 0.3206

4 0.0280 0.0811 0.0848 0.0610 0.0931 0.1832 0.2214 0.2256

8 0.0419 0.0856 0.0784 0.0586 0.1284 0.1388 0.1704 0.1755

40 0.0859 0.0732 0.0571 0.0575 0.2830 0.1016 0.0832 0.0847

Shock 1 to Variable 2

0 0.0214 0.1042 0.1231 0.0874 0.0752 0.3162 0.3549 0.3563

4 0.0113 0.1445 0.1261 0.0935 0.1115 0.3029 0.3342 0.3371

8 0.0417 0.1744 0.1254 0.0940 0.1242 0.3035 0.3248 0.3314

40 0.0398 0.1458 0.0635 0.0446 0.0950 0.2220 0.2791 0.3054

Shock 2 to Variable 2

0 0.0170 0.0104 0.0193 0.0435 0.0497 0.1326 0.1499 0.1764

4 0.0626 0.0570 0.0267 0.0455 0.1254 0.1508 0.1669 0.1850

8 0.0960 0.1004 0.0475 0.0571 0.1628 0.1718 0.1703 0.1822

40 0.0648 0.0800 0.0014 0.0142 0.1298 0.1357 0.1731 0.1948
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Table B.7: Bias and RMSE for experiment 4 with 12 = 0 2, 22 = 0 99, and =
0 025

Bias RMSE

IR Horizon i Diff Level Pope Bootstrap Diff Level Pope Bootstrap

Forecast error variance horizon h = 0

Shock 1 to Variable 1

0 0.0022 0.0033 0.0011 0.0074 0.0472 0.0474 0.0473 0.0638

4 0.0204 0.0483 0.0147 0.0215 0.0881 0.0946 0.0847 0.0937

8 0.0271 0.0829 0.0233 0.0321 0.0997 0.1372 0.1157 0.1239

40 0.0323 0.1534 0.0087 0.0278 0.2018 0.2784 0.2780 0.2838

Shock 2 to Variable 1

0 0 0 0 0 0 0 0 0

4 0.0109 0.0033 0.0019 0.0034 0.0747 0.0782 0.0777 0.0799

8 0.0195 0.0061 0.0110 0.0117 0.0991 0.1169 0.1152 0.1201

40 0.0656 0.3166 0.2013 0.1797 0.2613 0.4340 0.3804 0.4027

Shock 1 to Variable 2

0 0.0060 0.0053 0.0099 0.0049 0.0705 0.0706 0.0713 0.0963

4 0.0449 0.0345 0.0266 0.0156 0.1292 0.1174 0.1177 0.1304

8 0.0810 0.0577 0.0385 0.0204 0.1529 0.1589 0.1574 0.1648

40 0.1510 0.1062 0.0100 0.0376 0.2174 0.2444 0.2947 0.3273

Shock 2 to Variable 2

0 0.0049 0.0097 0.0090 0.0137 0.0464 0.0472 0.0473 0.0625

4 0.0590 0.1128 0.0702 0.0635 0.1198 0.1576 0.1316 0.1319

8 0.1117 0.2025 0.1247 0.1087 0.1746 0.2534 0.2018 0.1964

40 0.2156 0.4172 0.2481 0.2100 0.3022 0.4811 0.4012 0.4001

Forecast error variance horizon h = 40

Shock 1 to Variable 1

0 0.0026 0.2559 0.2413 0.2613 0.0490 0.3221 0.3090 0.3370

4 0.0317 0.0562 0.0267 0.0411 0.0928 0.1204 0.1173 0.1400

8 0.0432 0.0149 0.0337 0.0208 0.1107 0.1091 0.1169 0.1325

40 0.0024 0.1611 0.3621 0.3558 0.2178 0.3223 0.4579 0.4763

Shock 2 to Variable 1
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Table B.7: Bias and RMSE for experiment 4 with 12 = 0 2, 22 = 0 99, and =
0 025

Bias RMSE

IR Horizon i Diff Level Pope Bootstrap Diff Level Pope Bootstrap

0 0.0379 0.5966 0.5823 0.5894 0.0423 0.6358 0.6233 0.6343

4 0.0421 0.5274 0.5328 0.5452 0.0944 0.5538 0.5599 0.5754

8 0.0490 0.5036 0.5223 0.5345 0.1185 0.5179 0.5366 0.5513

40 0.0470 0.6302 0.6173 0.6017 0.2630 0.6444 0.6338 0.6218

Shock 1 to Variable 2

0 0.0365 0.7207 0.7032 0.7145 0.0833 0.7887 0.7732 0.7952

4 0.0064 0.6597 0.6546 0.6683 0.1210 0.7329 0.7350 0.7601

8 0.0493 0.5864 0.5923 0.6038 0.1404 0.6563 0.6741 0.6974

40 0.1440 0.2540 0.2604 0.2538 0.2128 0.3512 0.4185 0.4371

Shock 2 to Variable 2

0 0.0232 0.0377 0.0398 0.0266 0.0517 0.1170 0.1156 0.1265

4 0.0844 0.0424 0.0786 0.0833 0.1379 0.1438 0.1641 0.1762

8 0.1360 0.0525 0.0152 0.0333 0.1929 0.1876 0.1949 0.2068

40 0.2333 0.3000 0.1319 0.0755 0.3059 0.3694 0.3448 0.3620

Forecast error variance horizon h = 80

Shock 1 to Variable 1

0 0.0006 0.3767 0.3962 0.4356 0.0455 0.4708 0.4903 0.5344

4 0.0267 0.1517 0.1493 0.1982 0.0925 0.2836 0.3029 0.3639

8 0.0367 0.1015 0.0792 0.1316 0.1092 0.2726 0.2942 0.3586

40 0.0100 0.1190 0.3009 0.2302 0.2204 0.4426 0.5908 0.6639

Shock 2 to Variable 1

0 0.0391 0.6824 0.6961 0.6918 0.0433 0.7306 0.7476 0.7614

4 0.0414 0.6341 0.6742 0.6855 0.0937 0.6785 0.7204 0.7441

8 0.0461 0.6179 0.6737 0.6890 0.1169 0.6521 0.7090 0.7349

40 0.0580 0.7571 0.8069 0.8207 0.2703 0.7613 0.8103 0.8254

Shock 1 to Variable 2

0 0.0377 0.7830 0.7894 0.7495 0.0829 0.9149 0.9356 0.9473

4 0.0050 0.7347 0.7585 0.7310 0.1152 0.8591 0.9017 0.9182
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Table B.7: Bias and RMSE for experiment 4 with 12 = 0 2, 22 = 0 99, and =
0 025

Bias RMSE

IR Horizon i Diff Level Pope Bootstrap Diff Level Pope Bootstrap

8 0.0481 0.6506 0.6848 0.6585 0.1342 0.7665 0.8267 0.8445

40 0.1439 0.2735 0.3040 0.2720 0.2111 0.3812 0.4988 0.5223

Shock 2 to Variable 2

0 0.0240 0.0548 0.0765 0.1209 0.0523 0.2129 0.2314 0.2813

4 0.0849 0.0190 0.0019 0.0291 0.1401 0.1638 0.1828 0.2241

8 0.1357 0.1026 0.0560 0.0683 0.1941 0.2029 0.2065 0.2393

40 0.2314 0.3031 0.1615 0.1209 0.3066 0.3619 0.3252 0.3412

Table B.8: Bias and RMSE for experiment 4 with 12 = 0 2, 22 = 0 96, and =
0 025

Bias RMSE

IR Horizon i Diff Level Pope Bootstrap Diff Level Pope Bootstrap

Forecast error variance horizon h = 0

Shock 1 to Variable 1

0 0.0026 0.0062 0.0067 0.0077 0.0464 0.0468 0.0468 0.0650

4 0.0232 0.0830 0.0393 0.0389 0.0865 0.1215 0.0960 0.1042

8 0.0285 0.1418 0.0638 0.0639 0.1056 0.1886 0.1391 0.1465

40 0.0081 0.3535 0.1505 0.1574 0.1837 0.4092 0.2961 0.3070

Shock 2 to Variable 1

0 0 0 0 0 0 0 0 0

4 0.0080 0.0191 0.0144 0.0167 0.0794 0.0890 0.0844 0.0880

8 0.0145 0.0487 0.0322 0.0359 0.1139 0.1435 0.1336 0.1405

40 0.0142 0.2705 0.1533 0.1611 0.2420 0.3504 0.3229 0.3464

Shock 1 to Variable 2

0 0.0060 0.0037 0.0070 0.0067 0.0700 0.0697 0.0698 0.0974

4 0.0381 0.0461 0.0195 0.0144 0.1171 0.1172 0.1122 0.1289

8 0.0626 0.0758 0.0273 0.0188 0.1297 0.1563 0.1467 0.1594

40 0.0364 0.0416 0.0252 0.0399 0.0790 0.1393 0.2078 0.2292
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Table B.8: Bias and RMSE for experiment 4 with 12 = 0 2, 22 = 0 96, and =
0 025

Bias RMSE

IR Horizon i Diff Level Pope Bootstrap Diff Level Pope Bootstrap

Shock 2 to Variable 2

0 0.0061 0.0087 0.0099 0.0145 0.0447 0.0453 0.0455 0.0660

4 0.0540 0.0844 0.0365 0.0341 0.1207 0.1417 0.1247 0.1301

8 0.0884 0.1329 0.0519 0.0448 0.1592 0.1996 0.1731 0.1766

40 0.0514 0.0908 0.0125 0.0278 0.1083 0.1545 0.2133 0.2344

Forecast error variance horizon h = 40

Shock 1 to Variable 1

0 0.0030 0.1183 0.1273 0.1316 0.0442 0.1760 0.1873 0.2015

4 0.0282 0.0555 0.0181 0.0221 0.0955 0.1052 0.0957 0.1116

8 0.0335 0.0836 0.0091 0.0125 0.1145 0.1466 0.1184 0.1302

40 0.0144 0.2577 0.0074 0.0137 0.1943 0.3492 0.2706 0.2794

Shock 2 to Variable 1

0 0.0330 0.3729 0.3866 0.3802 0.0378 0.4425 0.4568 0.4592

4 0.0314 0.3291 0.3525 0.3504 0.0947 0.3550 0.3834 0.3859

8 0.0337 0.3306 0.3549 0.3541 0.1244 0.3373 0.3655 0.3668

40 0.0040 0.4318 0.4140 0.4156 0.2416 0.4426 0.4301 0.4347

Shock 1 to Variable 2

0 0.0312 0.4303 0.4507 0.4429 0.0812 0.5288 0.5501 0.5573

4 0.0069 0.3712 0.3792 0.3716 0.1097 0.4547 0.4800 0.4874

8 0.0350 0.3151 0.3116 0.3028 0.1191 0.3881 0.4145 0.4211

40 0.0259 0.0666 0.0378 0.0244 0.0821 0.1735 0.2574 0.2772

Shock 2 to Variable 2

0 0.0213 0.0677 0.0635 0.0523 0.0516 0.1040 0.1039 0.1125

4 0.0660 0.0360 0.0861 0.0820 0.1301 0.1349 0.1633 0.1691

8 0.0927 0.0339 0.0510 0.0531 0.1616 0.1593 0.1831 0.1906

40 0.0448 0.0594 0.0486 0.0655 0.1111 0.1242 0.2060 0.2325

Forecast error variance horizon h = 80

Shock 1 to Variable 1
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Table B.8: Bias and RMSE for experiment 4 with 12 = 0 2, 22 = 0 96, and =
0 025

Bias RMSE

IR Horizon i Diff Level Pope Bootstrap Diff Level Pope Bootstrap

0 0.0039 0.1529 0.1833 0.1915 0.0479 0.2257 0.2615 0.2790

4 0.0306 0.0717 0.0469 0.0544 0.0972 0.1267 0.1292 0.1497

8 0.0381 0.0943 0.0305 0.0375 0.1159 0.1584 0.1368 0.1576

40 0.0252 0.2477 0.0011 0.0069 0.1890 0.3480 0.2800 0.3017

Shock 2 to Variable 1

0 0.0331 0.4169 0.4501 0.4424 0.0380 0.4939 0.5348 0.5378

4 0.0362 0.3663 0.4118 0.4091 0.0950 0.4054 0.4623 0.4670

8 0.0412 0.3632 0.4104 0.4090 0.1233 0.3808 0.4381 0.4420

40 0.0105 0.4482 0.4556 0.4571 0.2317 0.4529 0.4590 0.4607

Shock 1 to Variable 2

0 0.0321 0.4897 0.5384 0.5293 0.0813 0.6000 0.6584 0.6687

4 0.0137 0.4231 0.4596 0.4515 0.1089 0.5160 0.5767 0.5867

8 0.0432 0.3583 0.3809 0.3721 0.1214 0.4377 0.4959 0.5054

40 0.0319 0.0802 0.0684 0.0573 0.0791 0.1774 0.2707 0.2913

Shock 2 to Variable 2

0 0.0221 0.0552 0.0391 0.0266 0.0515 0.1149 0.1224 0.1387

4 0.0715 0.0246 0.0665 0.0613 0.1320 0.1359 0.1625 0.1707

8 0.1008 0.0486 0.0268 0.0278 0.1668 0.1639 0.1809 0.1892

40 0.0519 0.0658 0.0270 0.0439 0.1092 0.1179 0.1835 0.2117

B.3.3 Additional Empirical Results

We consider a reduced-form VAR with five (log-) variables for the US economy from

1959Q1 to 2019Q4:

= ( logTFP log IST log log log )′
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We employ a first-difference transformation for the first three variables of the unre-

stricted VAR model, while leaving the last two variables unchanged (see Section 5).

Our identification approach assumes two sources of persistent fluctuations in the sys-

tem, which we define as TFP and IST permanent shocks. Using the methodology out-

lined in Section 5, we apply the Max Share approach of Francis et al. (2014) to sequen-

tially identify two structural permanent shocks. The forecast error variance horizon is

truncated at = 80 quarters. We then contrast these results with those obtained from a

VAR in levels.

Importantly, each structural shock (i.e., TFP and IST permanent shocks) is identified

under two different orderings: (1) The permanent TFP shock is identified first, fol-

lowed by the IST permanent shock; and (2) the permanent IST shock is identified first,

followed by the TFP permanent shock. This allows us to identify two sets of perma-

nent TFP (and IST) shocks and compare the corresponding structural impulse response

functions across both specifications.

Figure B.1 presents the impulse response functions (top panel) and the forecast error

variance shares (bottom panel) for each structural permanent TFP shock on each vari-

able, comparing both identification order strategies for the VAR in levels and in first-

differences. Three points are worth commenting on. First, the impulse response func-

tions (IRFs) and forecast error variance decomposition (FEVD) shares for TFP shocks

exhibit significant differences based on the identification order of structural shocks.

For example, while both orderings suggest that a TFP shock generally increases hours

worked (except at the initial impact), the VAR in levels shows a markedly different

response and attributes a considerably larger share of the variance in hours worked to

TFP shocks. Specifically, TFP shocks account for nearly 60% of the variance in hours

worked after 10 quarters when identified first, but only 25% when identified second.

This suggests that when TFP shocks are identified first, they appear to be the primary

drivers of fluctuations in hours worked, a conclusion that becomes less pronounced
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when TFP shocks are identified second.

Second, results for the first-difference VAR specification are nearly identical and thus

are robust regardless of the identification order. Third, consistent with our Monte Carlo

simulation findings, there is a substantial discrepancy between the structural impulse

responses estimated from the VAR in levels and those from the first-difference VAR,

irrespective of the identification order.

Figure B.2 illustrates the impulse response functions (top panel) and the forecast error

variance shares (bottom panel) for each structural permanent IST shock on each vari-

able, comparing both identification order strategies for the VAR in levels and in first-

differences. The differences are even more pronounced with IST shocks, as depicted in

Figure 2. When using the VAR in levels, hours worked tend to decline for several quar-

ters following an IST shock, particularly when the shock is identified conditionally on

the TFP shock. In contrast, if IST shocks are identified first, they account for a substan-

tial portion of the fluctuations in hours worked and consumption. However, when IST

shocks are identified second, their influence on these fluctuations is markedly dimin-

ished. This discrepancy suggests that in the second identification scheme, IST shocks

may not be a primary driver of business cycles.

These results highlight the sensitivity of structural identification when using an unre-

stricted VAR in levels and thus the importance of considering stationary transforma-

tions to assess the reliability of structural shock estimates.
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Figure B.1: TFP Shock

(a) Impulse Responses

(b) Variance Decomposition

Notes: (1) The first three (log-) variables—total factor productivity, inverse of the real price of
investment and real consumption per capita—enter in first-difference in the unrestricted reduced-form
VAR. (2) Red color corresponds to level-based estimates. Blue color corresponds to "first-difference"
estimates. (3) A solid line indicates the TFP shock is identified before the IST shock. A dashed line
indicates the IST shock is identified before the TFP shock.



195

Figure B.2: IST Shock

(a) Impulse Responses

(b) Variance Decomposition

Notes: (1) The first three (log-) variables—total factor productivity, inverse of the real price of
investment and real consumption per capita—enter in first-difference in the unrestricted reduced-form
VAR. (2) Red color corresponds to level-based estimates. Blue color corresponds to "first-difference"
estimates. (3) A solid line indicates the TFP shock is identified before the IST shock. A dashed line
indicates the IST shock is identified before the TFP shock.
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B.3.4 Additional Figures

Figure B.3: Impulse response effects of the first structural shock based on a non-
accumulated Max-Share identification with = 0 (experiment 2)

(a) Variable 1

(b) Variable 2

The black solid line represents the true IRF, IRF11,i and IRF21,i for i = 0, , 40, whereas the dashed
line, the red solid line, the blue dashed line, and the red dotted line represent the average IRF estimates,
IRF11,i(0) andIRF11,i(0), inherited from the first-difference specification, the level specification, the
bias-correction method of Pope, and a bootstrap procedure, respectively.
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Figure B.4: Impulse response effects of the first structural shock based on a non-
accumulated Max-Share identification with = 80 (experiment 2)

(a) Variable 1

(b) Variable 2

The black solid line represents the true IRF, IRF11,i and IRF21,i for i = 0, , 40, whereas the dashed
line, the red solid line, the blue dashed line, and the red dotted line represent the average IRF estimates,
IRF11,i(0) andIRF11,i(0), inherited from the first-difference specification, the level specification, the
bias-correction method of Pope, and a bootstrap procedure, respectively.
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C.1 Additional Results

C.1.1 Seasonal adjustments

The series under investigation is split into 12 subsamples, each consisting of ( )12
=1

observations specific to a given month. Under the null hypothesis of no seasonal be-

havior, these subsamples must have the same mean. The Kruskal-Wallis test (Kruskal

and Wallis (1952)) offers a non-parametric approach to test this hypothesis. In each

subsample, observations are assigned a rank following their relative magnitudes. If

is the total number of observations, the Kruskal-Wallis statistic is given by:

=
12

( + 1)

12∑
=1

(∑
j

=1

)2

3( + 1) 2(12 1) (C.1)

C.1.2 Factors’ interpretation over time

Here, we study the factor interpretation through time by estimating the factor model

recursively since 1990M12. The resulting time series form the basis of the heatmaps

shown in Figures C.3 and C.4. For convenience, variables are grouped in categories,

the exact composition of which are given in the data appendix. Tables C.2 and C.3

offer a more granular look in the interpretation and stability of factors, reporting the

top ten series in terms of average squared loadings over subperiods. The subperiods

have been chosen to match visual changes in some of the heatmaps, facilitating the

parallel between the two.

The first factor weighs heavily and constantly on production variables. The factor ap-

pears overall very stable and this can be confirmed by the ranking of series in three

selected subperiods reproduced in Table C.2. The second factor is clearly related to
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Table C.1: Kruskal-Wallis Rank Sum Test Results

Series Unajusted Ajusted
chi-squared p-value chi-squared p-value

Unemployment duration
Canada 239.6419 0 0.8426 1
New Foundland 57.6381 0 1.9380 0.9987
Prince Edward Island 216.5544 0 1.7885 0.9991
Nova Scotia 131.6689 0 1.9556 0.9986
New Brunswick 75.7492 0 1.4571 0.9997
Quebec 76.0553 0 0.9038 1
Ontario 171.9024 0 0.3691 1
Manitoba 74.1367 0 0.8112 1
Saskatchewan 93.2069 0 2.2827 0.9972
Alberta 92.7645 0 3.5774 0.9807
British Columbia 87.9181 0 0.9468 1
Initial claims
Canada 309.4079 0 0.6171 1
New Foundland 387.0221 0 0.8858 1
Prince Edward Island 416.8684 0 0.5220 1
Nova Scotia 382.3249 0 0.3162 1
New Brunswick 425.1459 0 0.3084 1
Quebec 317.1152 0 1.8707 0.9989
Ontario 254.3162 0 0.4762 1
Manitoba 279.2051 0 0.3161 1
Saskatchewan 288.7726 0 0.5814 1
Alberta 74.4530 0 0.3275 1
British Columbia 213.2004 0 0.7640 1

money and credit measures, even though few price and production series gain impor-

tance since 2010. The third factor used to be linked to international flows until 2003 but

then turns to production and inflation series. The case of the fourth factor is interesting

since it drastically changed since 2000, going from credit and house prices to exchange

rates and stock returns.

Of course, further factors are harder to interpret given the natural ordering of impor-

tance of principal components. Nevertheless, there are some interesting patterns in
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Figure C.1: Seasonal adjustment of unemployment duration

−0.2

−0.1

0.0

0.1

1980 1990 2000 2010 2020
Years

U
N

EM
P_

D
U

R
Av

g_
C

AN
_n

ew

Unajusted
Adjusted

(a) Canada

−0.2

0.0

0.2

1980 1990 2000 2010 2020
Years

U
N

EM
P_

D
U

R
Av

g_
O

N
T_

ne
w

Unajusted
Adjusted

(b) Ontario

−0.4

−0.2

0.0

0.2

0.4

1980 1990 2000 2010 2020
Years

U
N

EM
P_

D
U

R
Av

g_
Q

C
_n

ew

Unajusted
Adjusted

(c) Québec

−0.5

0.0

0.5

1980 1990 2000 2010 2020
Years

U
N

EM
P_

D
U

R
Av

g_
AL

B_
ne

w

Unajusted
Adjusted

(d) Alberta

factors 5 and 6. The former captures movements in orders until 2003, then is related

to stock market and finally it mostly loads on labor market and money / credit. The
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Figure C.2: Seasonal adjustment of initial claims
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latter has almost the opposite behaviour, but ends up being related to inflation and few

international flows. The remaining factors are hard to interpret over time.
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Figure C.3: Heatmaps for factors 1 to 4

(a) Factor 1 (b) Factor 2

(c) Factor 3 (d) Factor 4

Note: Factors and loadings are estimated recursively using an expanding window. Displayed shades of
red capture squared loadings.
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Figure C.4: Heatmaps for factors 5 to 8

(a) Factor 5 (b) Factor 6

(c) Factor 7 (d) Factor 8

Note: Factors and loadings are estimated recursively using an expanding window. Displayed shades of
red capture squared loadings.
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Table C.2: Top ten explained series for factors 1 to 4

Factor 1
1991M1-2005M1 2005M1-2010M1 2010M1-2019M12
DUR_INV_RAT_new BSI_new BSI_new
MANU_INV_RAT_new GDP_new GDP_new
BSI_new GPI_new GPI_new
GPI_new IP_new IP_new
DM_new DUR_INV_RAT_new DM_new
GDP_new DM_new EMP_CAN
IP_new MANU_INV_RAT_new DUR_INV_RAT_new
EMP_CAN EMP_CAN MANU_INV_RAT_new
N_DUR_INV_RAT_new N_DUR_INV_RAT_new TBILL_3M
CPI_MINUS_FEN_CAN CPI_MINUS_FEN_CAN TBILL_6M
Factor 2
1991M1-2005M1 2005M1-2010M1 2010M1-2019M12
TBILL_6M GOV_AVG_1_3Y G_AVG_10p.TBILL_3M
GOV_AVG_1_3Y TBILL_6M CRED_T
TBILL_3M TBILL_3M CRE_BUS
BANK_RATE_L PC_PAPER_3M G_AVG_5.10.Bank_rate
PC_PAPER_3M GOV_AVG_3_5Y TBILL_6M
GOV_AVG_3_5Y BANK_RATE_L GOV_AVG_1_3Y
MORTG_1Y GOV_AVG_5_10Y PC_PAPER_3M
MORTG_5Y MORTG_5Y TBILL_3M
GOV_AVG_5_10Y MORTG_1Y BANK_RATE_L
Factor 3
1991M1-2005M1 2005M1-2010M1 2010M1-2019M12
CAN_SEC_NETFLOW GDP_new GDP_new
CAN_US_SEC_NETFLOW GPI_new BSI_new
GDP_new BSI_new CPI_MINUS_FOO_CAN
BSI_new IP_new GPI_new
CAN_EQTY_NETFLOW CPI_MINUS_FOO_CAN N_DUR_INV_RAT_new
GPI_new N_DUR_INV_RAT_new GOV_AVG_1_3Y
SPI_new Exp_BP_new CAN_US_SEC_NETFLOW
IP_new MANU_INV_RAT_new PC_PAPER_3M
CPI_MINUS_FOO_CAN Imp_BP_new TBILL_6M
N_DUR_INV_RAT_new DUR_INV_RAT_new TBILL_3M
Factor 4
1991M1-2005M1 2005M1-2010M1 2010M1-2019M12
CRED_T CRED_T USDCAD_new
CRED_HOUS CRED_HOUS IPPI_MOTOR_CAN
NHOUSE_P_CAN NHOUSE_P_CAN TSX_LO
G_AVG_1.3.Bank_rate CRED_CONS TSX_CLO
UNEMP_DURAvg_CAN_new EMP_CAN TSX_HI
CRED_MORT G_AVG_1.3.Bank_rate IPPI_MACH_CAN
USDCAD_new CAN_US_SEC_NETFLOW SP500
G_AVG_3.5.Bank_rate G_AVG_3.5.Bank_rate DJ_CLO
CRED_CONS G_AVG_5.10.Bank_rate JPYCAD_new
EMP_CAN CRED_MORT WTISPLC

Note: Factor loadings estimated recursively with an expanding window. Rankings are based on mean
squared loadings over the indicated period.



206

Table C.3: Top ten explained series for factors 5 to 8

Factor 5
1991M1-2005M1 2005M1-2010M1 2010M1-2019M12
DUR_N_ORD_new SP500 UNEMP_DURAvg_CAN_new
MANU_UNFIL_new DJ_CLO CRED_T
DUR_UNFIL_new TSX_LO CRED_HOUS
MANU_N_ORD_new USDCAD_new G_AVG_1.3.Bank_rate
GOOD_HRS_CAN TSX_CLO G_AVG_3.5.Bank_rate
CAN_US_SEC_NETFLOW TSX_HI CLAIMS_CAN
CAN_EQTY_NETFLOW IPPI_MOTOR_CAN G_AVG_5.10.Bank_rate
WT_new IPPI_CAN NHOUSE_P_CAN
FOR_SEC_NETFLOW CAN_SEC_NETFLOW CRED_MORT
Imp_BP_new CAN_US_SEC_NETFLOW G_AVG_10p.TBILL_3M
Factor 6
1991M1-2005M1 2005M1-2010M1 2010M1-2019M12
DJ_CLO MANU_UNFIL_new IPPI_ENER_CAN
SP500 DUR_UNFIL_new IPPI_CAN
TSX_LO DUR_N_ORD_new CAN_US_SEC_NETFLOW
TSX_CLO DUR_TOT_INV_new CAN_EQTY_NETFLOW
TSX_HI MANU_TOT_INV_new CPI_GOO_CAN
MANU_UNFIL_new OIL_ALB_new CAN_SEC_NETFLOW
DUR_UNFIL_new MANU_N_ORD_new CPI_MINUS_FOO_CAN
DUR_N_ORD_new OIL_CAN_new CPI_ALL_CAN
MANU_TOT_INV_new DJ_CLO MANU_TOT_INV_new
IPPI_CAN SP500 WTISPLC
Factor 7
1991M1-2005M1 2005M1-2010M1 2010M1-2019M12
Exp_BP_new IPPI_ENER_CAN G_AVG_1.3.Bank_rate
Imp_BP_new WTISPLC DJ_CLO
DUR_TOT_INV_new EX_TRANSP_BP_new SP500
EX_TRANSP_BP_new CAN_EQTY_NETFLOW G_AVG_3.5.Bank_rate
MANU_TOT_INV_new CAN_SEC_NETFLOW IPPI_ENER_CAN
IMP_TRANSP_BP_new CAN_US_SEC_NETFLOW EOIL_BP_new
OIL_CAN_new EX_ENER_BP_new WTISPLC
OIL_ALB_new EOIL_BP_new TBILL_6M.Bank_rate
TBILL_6M.Bank_rate IMP_TRANSP_BP_new EX_ENER_BP_new
IPPI_METAL_CAN Exp_BP_new EX_TRANSP_BP_new
Factor 8
1991M1-2005M1 2005M1-2010M1 2010M1-2019M12
UNEMP_DURA_1.4_CAN IPPI_ENER_CAN OIL_ALB_new
CPI_GOO_CAN CPI_GOO_CAN OIL_CAN_new
UNEMP_CAN G_AVG_1.3.Bank_rate G_AVG_1.3.Bank_rate
CPI_ALL_CAN CPI_ALL_CAN EOIL_BP_new
IPPI_CAN G_AVG_3.5.Bank_rate EMP_MANU_CAN
EX_TRANSP_BP_new G_AVG_5.10.Bank_rate EX_ENER_BP_new
EMP_MANU_CAN CPI_MINUS_FOO_CAN TBILL_6M.Bank_rate
USDCAD_new WTISPLC G_AVG_3.5.Bank_rate
SP500 TBILL_6M.Bank_rate UNEMP_CAN
TSX_CLO G_AVG_10p.TBILL_3M G_AVG_5.10.Bank_rate

Note: Factor loadings estimated recursively with an expanding window. Rankings are based on mean
squared loadings over the indicated period.
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C.1.3 Forecasting results: rolling window

Table C.4: Forecasting real activity

Industrial Production Employment Unemployment

Models h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12

AR,BIC (RMSE) 0.010 0.006 0.005 0.004 0.002 0.001 0.001 0.001 0.186 0.111 0.093 0.083

ARDI,BIC 0.96** 0.90*** 0.97 0.91** 0.97 0.98 1.00 1.00 0.96** 0.88** 0.85*** 0.91**

Elastic-Net-X 0.95** 0.91*** 0.96 1.03 1.00 1.08* 1.11** 1.22*** 1.02 0.94 0.96 1.15***

Ridge-X 0.95*** 0.93*** 0.92*** 0.95 1.02 1.04 1.05 1.02 0.97* 0.90*** 0.89*** 0.97

Lasso-X 0.94*** 0.92*** 0.94** 1.00 0.99 1.02 1.06* 1.23*** 0.99 0.96 0.98 1.12**

Adaptive-Lasso-X 0.95*** 0.92*** 0.93** 1.00 0.99 1.01 1.07* 1.21*** 1.00 0.95 0.95 1.10**

RF-X 0.95*** 0.95** 0.99 0.92** 0.99 1.00 1.03 1.04 0.95*** 0.93** 0.98 1.04

ARDI,Elastic-Net 0.96** 0.93*** 0.95* 1.11 0.99 1.04 1.00 1.06 1.00 0.90** 0.92* 0.98

ARDI,Ridge 0.97*** 0.97* 0.97** 1.08 1.05 1.10* 1.02 1.09 0.98* 0.91*** 0.89*** 0.92*

ARDI,Lasso 0.96*** 0.93*** 0.93** 0.89** 0.98 1.00 1.04 1.04 0.99 0.92** 0.91** 1.06

ARDI,Adaptive-Lasso 0.96** 0.95** 0.93** 0.89** 0.98* 0.99 1.01 1.01 0.99 0.90** 0.90*** 1.10

RFARDI 0.96*** 0.94*** 0.94*** 0.92*** 0.99 1.04 1.04 1.04 0.97** 0.93* 0.92*** 0.97

T-CSR5 0.95*** 0.92*** 0.96 0.92** 0.97* 0.95* 0.96* 1.00 0.97* 0.92** 0.90*** 0.96

T-CSR10 0.95*** 0.92*** 0.99 1.00 0.99 0.96 0.96 1.02 0.97 0.92** 0.89*** 1.01

T-CSR20 0.97 0.96 1.07 1.16** 1.04* 1.01 1.01 1.09 1.00 0.98 0.93 1.15*

Note: See table 3.3.

Table C.5: Forecasting inflation

CPI Core CPI

Models h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12

AR,BIC (RMSE) 0.004 0.002 0.002 0.001 0.003 0.002 0.001 0.001

ARDI,BIC 0.99 0.99 1.04 0.83** 0.99 0.97 0.98 0.90

Elastic-Net-X 0.96*** 0.94*** 1.04 1.04 0.93*** 0.94** 1.09* 1.03

Ridge-X 0.98** 0.97*** 0.99 0.82** 0.97 1.01 0.97 0.94

Lasso-X 0.96*** 0.95*** 1.03 0.93 0.94*** 0.96 1.10** 0.99

Adaptive-Lasso-X 0.96*** 0.94*** 1.02 0.95 0.94*** 0.97* 1.10** 0.97

RF-X 0.95*** 0.95*** 0.98 0.87*** 0.93*** 0.94** 1.00 0.87**

ARDI,Elastic-Net 0.98* 0.99 1.13* 0.98 0.95*** 0.94** 0.96 1.01

ARDI,Ridge 0.99 0.98*** 1.03 0.98 0.99 1.04** 1.07*** 0.97**

ARDI,Lasso 1.00 0.97* 1.09* 0.84** 0.96*** 0.99 1.00 0.93

ARDI,Adaptive-Lasso 0.99 0.98* 1.12* 0.86** 0.96** 0.99 0.99 0.93

RFARDI 0.98** 0.94*** 0.95 0.90*** 0.95*** 0.96 0.91* 0.91**

T-CSR5 0.97* 0.97 1.01 0.90** 0.95*** 0.95* 1.03 0.97

T-CSR10 0.99 1.01 1.06 0.88** 0.97** 0.97 1.09* 1.02

T-CSR20 1.02 1.05 1.19*** 0.92 1.01 1.01 1.17** 1.12

Note: See table 3.3.

Table C.6: Forecasting credit markets

Total Credit Business Credit Consumption Credit

Models h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12

AR,BIC (RMSE) 0.002 0.001 0.001 0.002 0.003 0.002 0.002 0.002 0.003 0.002 0.002 0.003

ARDI,BIC 1.04** 1.04* 1.03 0.97 1.00 1.03 0.99 1.00 1.04** 1.04* 1.02 1.04

Elastic-Net-X 1.01 0.99 1.18*** 1.24*** 0.98 0.95* 1.04 1.12* 1.06** 1.10** 1.10* 1.15***
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Table C.6: Forecasting credit markets

Total Credit Business Credit Consumption Credit

Models h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12

Ridge-X 1.08** 1.09* 1.27*** 1.30*** 1.01 1.05 1.13** 1.07 1.12*** 1.13*** 1.14*** 1.13***

Lasso-X 1.02 0.98 1.16*** 1.22*** 1.01 0.92** 1.01 1.12* 1.09** 1.09** 1.10* 1.16***

Adaptive-Lasso-X 1.04 1.01 1.16*** 1.23*** 1.00 0.95* 1.04 1.13* 1.09** 1.11** 1.10* 1.15***

RF-X 1.00 1.09* 1.22** 1.28*** 1.00 1.06* 1.18*** 1.18** 1.02 1.08* 1.16** 1.23***

ARDI,Elastic-Net 1.03* 1.01 1.07** 1.19** 1.00 0.98 0.94* 1.13 1.08*** 1.03 1.02 1.10

ARDI,Ridge 1.28*** 1.15*** 1.31*** 1.26*** 1.10*** 1.18** 1.11** 1.02 1.24*** 1.34*** 1.24*** 1.15***

ARDI,Lasso 1.04* 0.98 1.02 1.20*** 1.00 0.93* 0.93** 1.03 1.07*** 1.09** 1.00 1.03

ARDI,Adaptive-Lasso 1.02 0.99 1.03 1.23*** 1.00 0.93* 0.93* 1.10* 1.08*** 1.03 1.02 1.05

RFARDI 1.01 1.06* 1.18*** 1.15*** 0.98 1.01 1.12*** 1.09** 1.02 1.04 1.05 1.08**

T-CSR5 1.00 0.95** 0.96* 1.10** 0.98* 0.93*** 0.90*** 0.95* 0.97 0.96** 0.96* 1.00

T-CSR10 1.04** 0.99 1.00 1.22*** 1.02 0.96* 0.90*** 1.01 1.01 0.99 0.98 1.03

T-CSR20 1.13*** 1.10** 1.13** 1.39*** 1.08*** 1.01 0.95* 1.15** 1.07** 1.10** 1.06 1.07

Note: See table 3.3.

Table C.7: Forecasting the housing market

Housing starts Building Permits

Models h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12

AR,BIC (RMSE) 0.090 0.041 0.027 0.018 0.078 0.033 0.021 0.014

ARDI,BIC 1.00 1.05* 1.03 1.06 1.02** 1.03* 1.03*** 1.06**

Elastic-Net-X 1.11*** 1.03* 1.06** 1.23*** 1.14*** 1.06* 1.09*** 1.22***

Ridge-X 1.07*** 1.02 1.01 1.18*** 1.10*** 1.05** 1.07** 1.12***

Lasso-X 1.05** 1.04* 1.01 1.18** 1.07*** 1.04 1.07** 1.26***

Adaptive-Lasso-X 1.05*** 1.02 1.02 1.08** 1.08*** 1.04* 1.04* 1.14**

RF-X 1.06*** 1.02 1.04** 1.06** 1.07*** 1.04* 1.07** 1.04

ARDI,Elastic-Net 1.05*** 1.03 1.05*** 1.09** 1.08*** 1.03 1.11** 1.22**

ARDI,Ridge 1.07*** 1.02 1.00 1.05** 1.10*** 1.04* 1.06** 1.04

ARDI,Lasso 1.04*** 1.02 1.04* 1.10*** 1.06*** 1.04** 1.05* 1.19**

ARDI,Adaptive-Lasso 1.03** 1.01 1.03** 1.13*** 1.06*** 1.03* 1.08** 1.20**

RFARDI 1.07*** 1.03 1.02 1.04** 1.07*** 1.04* 1.07** 1.04

T-CSR5 1.02 1.06 1.04 1.08* 1.02 1.03 1.03 1.06*

T-CSR10 1.05** 1.10** 1.08** 1.17** 1.05*** 1.06** 1.08** 1.15**

T-CSR20 1.08*** 1.20*** 1.25*** 1.40** 1.12*** 1.13*** 1.18*** 1.40**

Note: See table 3.3.
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Figure C.5: Forecasting performance over time: fluctuation test
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Note: The figure shows the Giacomini-Rossi fluctuation test for best RMSPE models against the ARD
benchmark. Solide lines correspond to 10% critical value.

C.1.4 Impulse response functions

Figure C.6 show the main results for the aggregate series when considering observa-

tions from 1981M01 to 2015M10. When looking at inflation and unemployment one

pattern emerge, monetary shocks have larger effects in central Canada (Québec and

Ontario) than in the prairies, British-Columbia and New Foundland. The effect on

inflation is slowly decaying as one move west and the shape of the IRFs for unem-

ployment follow a hump shape in Québec and Ontario while it’s less clear in the other

provinces. Unemployment in Alberta and British Columbia eventually rises but the ef-

fect in Manitoba and Saskatchewan are quite small and counterintuitive with reductions
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in unemployment after around two years. We can also see a similar pattern for total

employment but in this case Manitoba joins Québec and Ontario with decreases in em-

ployment following a monetary policy shock. Atlantic provinces are affected the most

by the shock. In Québec and Ontario housing starts drops while it takes more time in

Alberta and British-Columbia and we see the opposite in Manitoba and Saskatchewan

with an increase in housing starts. As for housing prices, they clearly decrease in On-

tario, Alberta and British-Columbia but increases in Québec before starting to decrease

after 30 months. Manitoba and Saskatchewan have again their own specific patterns

with increases in housing prices.

Figure C.7 reports same IRFs but estimated since inflation targeting. Using only the in-

flation targeting (IT) period we find similar results to those of Champagne and Sekkel

(2018) when looking specifically at Canada. Figure C.8 shows that monetary policy

shocks in Canada have smaller effects in the IT period than in the entire period. While

prices dropped by 2% in the full sample they only drop by around 0.7 % in the post-

1992 estimation.1 The differences for unemployment are even more important as the

shocks no longer have a significant effect using in the IT period. This suggests that

monetary policy have become more effective since inflation targeting (Boivin and Gi-

annoni, 2006). We find similar results for the provinces but again there are important

differences. Monetary policy continued to have significant effects on prices in Québec

and Ontario but not in the other provinces. The effect on unemployment is interesting

as Ontario’s unemployment rate is no longer affected by monetary policy shocks but

Québec’s and Manitoba’s are.

1We also find smaller effects of monetary policy shocks in the post-1992 period for price com-
ponents.
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Figure C.6: Impulse response functions of aggregate series - 1981m1-2015m10
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Figure C.7: Impulse response functions of aggregate series - 1992m1-2015m10
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Figure C.8: Comparison of IRFs: full sample versus IT period
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Figure C.9: Comparison of IRFs: CPI - full sample
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Figure C.10: Comparison of IRFs: CPI - IT period
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Figure C.11: Comparison of IRFs: EMP - full sample
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Figure C.12: Comparison of IRFs: EMP - IT period
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C.2 Data Set

The transformation codes are: 1 - no transformation; 2 - first difference; 4 - logarithm; 5

- first difference of logarithm. Vector(1) and Vector(2) indicate StatCan vectors. When

different series are needed to construct an indicator of interest because of the break

indicated by column Date, Vector(1) is the most recent series. Some variables are taken

from the Federal Reserve of St-Louis Economic Data Base (FRED), from the Bank of

Canada (BoC) and Yahoo Finance.

No Variable Description Region Vector(1) Vector(2) Date T-code

PRODUCTION

1 GDP_new GDP total CAN v41881478 v65201483 1997M1 5

2 BSI_new GDP business CAN v41881479 v65201486 2007M1 5

3 GPI_new GDP goods CAN v41881485 v65201484 1997M1 5

4 SPI_new GDP services CAN v41881486 v65201485 1997M1 5

5 IP_new GDP industrial production CAN v41881487 v65201492 1997M1 5

6 NDM_new GDP non durable goods CAN v41881488 v65201493 1997M1 5

7 DM_new GDP durables CAN v41881489 v65201494 1997M1 5

8 OILP_new GDP mining, petrol and gas CAN v41881501 v65201509 1997M1 5

9 CON_new GDP construction CAN v41881523 v65201531 1997M1 5

10 RT_new GDP retail trade CAN v41881688 v65201641 1997M1 5

11 WT_new GDP wholesale trade CAN v41881689 v65201631 1997M1 5

12 PA_new GDP public administration CAN v41881775 v65201749 1997M1 5

13 FIN_new GDP finance and insurance CAN v41881725 v65201680 1997M1 5

14 OIL_CAN_new Crude oil production (Cubic meters) CAN v17948 v107757044 2016M1 5

15 OIL_ALB_new Crude oil production (ALB) (Cubic meters) ALB v18050 v107757710 2016M1 5

LABOR MARKET

16 EMP_CAN Employment total CAN v24793 5

17 EMP_SERV_CAN Employment services CAN v2057610 5

18 EMP_FOR_OIL_CAN Employment forestry, fishing, mining, oil and gas CAN v2057606 5

19 EMP_CONS_CAN Employment construction CAN v2057608 5

20 EMP_SALES_CAN Employment sales (wholesale and retail trade) CAN v2057611 5

21 EMP_FIN_CAN Employment finance, insurance and real estate CAN v2057613 5

22 EMP_MANU_CAN Employment manufacturing CAN v2057609 5

23 EMP_PART_CAN Employment part time CAN v2062813 5

24 UNEMP_CAN Unemployment rate LRUNTTTTCAM156S CAN (FRED) v2062815 1976M1 2

25 UNEMP_DURA_1-4_CAN Unemployment duration (1-4 weeks) CAN v1078667742 5

26 UNEMP_DURA_5-13_CAN Unemployment duration (5-13 weeks) CAN v1078667850 5

27 UNEMP_DURA_14-25_CAN Unemployment duration (14-24 weeks) CAN v1078667958 5

28 UNEMP_DURA_27+_CAN Unemployment duration (27+ weeks) CAN v1078668066 5

29 UNEMP_DURAvg_CAN_new Unemployment average duration CAN v3433887 v1078668391 1997M1 5

30 CLAIMS_CAN Employment insurance initial claims, Allowed CAN v383942 1

31 TOT_HRS_CAN Hours worked total CAN v4391505 5

32 GOOD_HRS_CAN Hours worked goods CAN v4391507 5

HOUSING AND CONSTRUCTION

33 NHOUSE_P_CAN New housing price index, Total (house and land) CAN v111955442 5

34 hstart_CAN_new Housing starts (units) CAN v730413 v52300157 1990M1 5

35 build_Total_CAN_new Building permits (tous) CAN v42061 v121293395 2011M1 5

36 build_Ind_CAN_new Building permits (industries) CAN v42064 v121301795 2011M1 5

37 build_Comm_CAN_new Building permits (commerce) CAN v42065 v121304915 2011M1 5
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No Variable Description Region Vector(1) Vector(2) Date T-code

MANUFACTURING, SALES AND INVENTORIES

38 MANU_N_ORD_new Manufacturing new orders (total) CAN v723019 v800913 1992M1 5

39 MANU_UNFIL_new Manufacturing unfilled orders (total) CAN v723313 v803189 1992M1 5

40 MANU_TOT_INV_new Manufacturing inventories (total) CAN v724933 v803227 1992M1 5

41 MANU_INV_RAT_new Manufacturing inventories to shipments ratio (total) CAN v725059 v803313 1992M1 1

42 N_DUR_INV_RAT_new Manufacturing inventories to shipments ratio (durables) CAN v725060 v803314 1992M1 1

43 DUR_N_ORD_new Manufacturing new orders (durables) CAN v723034 v800926 1992M1 5

44 DUR_UNFIL_new Manufacturing unfilled orders (durables) CAN v723328 v803202 1992M1 5

45 DUR_TOT_INV_new Manufacturing inventories (durables) CAN v724948 v803240 1992M1 5

46 DUR_INV_RAT_new Manufacturing inventories to shipments ratio (durables) CAN v725074 v803326 1992M1 1

MONEY AND CREDIT

47 M3 M3 (gross) CAN v41552794 5

48 M2p M2+ (gross) CAN v41552798 5

49 M_BASE1 Monetary base CAN v37145 5

50 CRED_T Total credit CAN v36414 5

51 CRED_HOUS Household credit CAN v36415 5

52 CRED_MORT Mortgage credit CAN v36416 5

53 CRED_CONS Consumption credit CAN v36417 5

54 CRE_BUS Business credit CAN v36418 5

55 BANK_RATE_L Bank rate CAN v122550 2

56 PC_PAPER_1M Corporate paper rate (1 month) CAN v122509 IIROC 2019M1 2

57 PC_PAPER_3M Corporate paper rate (3 months) CAN v122491 IIROC 2019M1 2

58 GOV_AVG_1_3Y Governmental bonds (average rate) (1-3 years) CAN v122558 2

59 GOV_AVG_3_5Y Governmental bonds (average rate) (3-5 years) CAN v122485 2

60 GOV_AVG_5_10Y Governmental bonds (average rate) (5-10 years) CAN v122486 2

61 GOV_AVG_10pY Governmental bonds (average rate) (10+ years) CAN v122487 2

62 MORTG_1Y Mortgage rate (1 year) BoC CAN v122520 (V80691333) 2019M10 2

63 MORTG_5Y Mortgage rate (5 years) BoC CAN v122521 (V80691335) 2019M10 2

64 TBILL_3M Treasury bills (3 months) CAN v122541 2

65 TBILL_6M Treasury bills (6 months) CAN v122552 2

66 PC_3M-Bank_rate Corporate paper rate (3 months) - Bank rate CAN Difference 1

67 G_AVG_1-3-Bank_rate Government bonds (1-3 years) - Bank rate CAN Difference 1

68 G_AVG_3-5-Bank_rate Government bonds (3-5 years) - Bank rate CAN Difference 1

69 G_AVG_5-10-Bank_rate Government bonds (5-10 years) - Bank rate CAN Difference 1

70 TBILL_6M-Bank_rate Treasury bond (6 months) - Bank rate CAN Difference 1

71 G_AVG_10p-TBILL_3M Government Bonds (10+ years) - TBILL_3M CAN Difference 1

INTERNATIONAL TRADE AND FLOWS

72 RES_TOT Total Canada’s official international reserves CAN v122396 5

73 RES_USD Canadian USD reserves CAN v122398 5

74 RES_IMF Canadian reserve position at the IMF CAN v122401 5

75 Imp_BP_new Imports total CAN v183406 v1001826653 1988M1 5

76 IOIL_BP_new Imports oil CAN v183426 v1001826667 1988M1 5

77 Exp_BP_new Exports total CAN v191490 v1001827265 1988M1 5

78 EOIL_BP_new Exports oil CAN v191516 v1001827279 1988M1 5

79 EX_ENER_BP_new Export energy products CAN v191516 v1001827278 1988M1 5

(Sum) Export energy products CAN v191517 v1001827278 1988M1

(Sum) Export energy products CAN v191504 v1001827278 1988M1

(Sum) Export energy products CAN v191533 v1001827278 1988M1

80 EX_MINER_BP_new Exports non-metallic ores CAN v191511 v1001827292 1988M1 5

(Sum) Exports non-metallic ores CAN v191512 v1001827292 1988M1

(Sum) Exports non-metallic ores CAN v191513 v1001827292 1988M1

(Sum) Exports non-metallic ores CAN v191514 v1001827292 1988M1

(Sum) Exports non-metallic ores CAN v191515 v1001827292 1988M1

(Sum) Exports non-metallic ores CAN v191508 v1001827292 1988M1

81 EX_METAL_BP_new Exports metal and other mineral products CAN v191522 v1001827303 1988M1 5

(Sum) Exports metal and other mineral products CAN v191523 v1001827303 1988M1
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No Variable Description Region Vector(1) Vector(2) Date T-code

(Sum) Exports metal and other mineral products CAN v191524 v1001827303 1988M1

(Sum) Exports metal and other mineral products CAN v191525 v1001827303 1988M1

(Sum) Exports metal and other mineral products CAN v191526 v1001827303 1988M1

(Sum) Exports metal and other mineral products CAN v191527 v1001827303 1988M1

(Sum) Exports metal and other mineral products CAN v191528 v1001827303 1988M1

(Sum) Exports metal and other mineral products CAN v191529 v1001827303 1988M1

(Sum) Exports metal and other mineral products CAN v191531 v1001827303 1988M1

(Sum) Exports metal and other mineral products CAN v191532 v1001827303 1988M1

(Sum) Exports metal and other mineral products CAN v191535 v1001827303 1988M1

82 EX_IND_EQUIP_BP_new Exports industrial machinery, pieces and equipment CAN v191545 v1001827350 1988M1 5

(Sum) Exports industrial machinery, pieces and equipment CAN v191549 v1001827350 1988M1

(Sum) Exports industrial machinery, pieces and equipment CAN v191556 v1001827350 1988M1

83 EX_TRANSP_BP_new Exports motor vehicules and parts CAN v191550 v1001827369 1988M1 5

(Sum) Exports motor vehicules and parts CAN v191551 v1001827369 1988M1

(Sum) Exports motor vehicules and parts CAN v191552 v1001827369 1988M1

84 EX_CONS_BP_new Exports consumption goods CAN v191492 v1001827385 1988M1 5

(Sum) Exports consumption goods CAN v191534 v1001827385 1988M1

(Sum) Exports consumption goods CAN v191547 v1001827385 1988M1

85 IMP_METAL_BP_new Imports metal and other mineral products CAN v183446 v1001826691 1988M1 5

(Sum) Imports metal and other mineral products CAN v183447 v1001826691 1988M1

(Sum) Imports metal and other mineral products CAN v183448 v1001826691 1988M1

(Sum) Imports metal and other mineral products CAN v183435 v1001826691 1988M1

(Sum) Imports metal and other mineral products CAN v183436 v1001826691 1988M1

(Sum) Imports metal and other mineral products CAN v183439 v1001826691 1988M1

86 IMP_IND_EQUIP_BP_new Imports industrial machinery, pieces and equipment CAN v183450 v1001826738 1988M1 5

(Sum) Imports industrial machinery, pieces and equipment CAN v183461 v1001826738 1988M1

(Sum) Imports industrial machinery, pieces and equipment CAN v183465 v1001826738 1988M1

(Sum) Imports industrial machinery, pieces and equipment CAN v183466 v1001826738 1988M1

(Sum) Imports industrial machinery, pieces and equipment CAN v183467 v1001826738 1988M1

(Sum) Imports industrial machinery, pieces and equipment CAN v183468 v1001826738 1988M1

87 IMP_TRANSP_BP_new Imports motor vehicules and parts CAN v183469 v1001826757 1988M1 5

(Sum) Imports motor vehicules and parts CAN v183470 v1001826757 1988M1

(Sum) Imports motor vehicules and parts CAN v183471 v1001826757 1988M1

88 IMP_CONS_BP_new Imports consumption goods CAN v183457 v1001826773 1988M1 5

(Sum) Imports consumption goods CAN v183458 v1001826773 1988M1

(Sum) Imports consumption goods CAN v183459 v1001826773 1988M1

(Sum) Imports consumption goods CAN v183460 v1001826773 1988M1

(Sum) Imports consumption goods CAN v183462 v1001826773 1988M1

(Sum) Imports consumption goods CAN v183463 v1001826773 1988M1

89 USDCAD_new Exchange rate CADUSD CAN v37426 v111666275 2017M1 5

90 JPYCAD_new Exchange rate CADJPY CAN v37456 v111666258 2017M1 5

91 GBPCAD_new Exchange rate CADGBP CAN v37430 v111666274 2017M1 5

92 CAN_EQTY_NETFLOW Canadian equity and investment fund shares, net flows CAN v61916203 1

93 CAN_SEC_NETFLOW Canadian securities, Net flows CAN v61915649 1

94 FOR_SEC_NETFLOW Foreign securities, Net flows CAN v61915715 1

95 CAN_US_SEC_NETFLOW Canadian securities, United States, Net flows CAN v61915862 1

PRICES

96 CPI_ALL_CAN Consumption price index (CPI) (all) CAN v41690973 5

97 CPI_SHEL_CAN CPI (shelter) CAN v41691050 5

98 CPI_CLOT_CAN CPI (clothing and footwear) CAN v41691108 5

99 CPI_HEA_CAN CPI (health and personal care) CAN v41691153 5

100 CPI_MINUS_FOO_CAN CPI (all minus food) CAN v41691232 5

101 CPI_MINUS_FEN_CAN CPI (all minus food and energy) CAN v41691233 5

102 CPI_GOO_CAN CPI (durable goods) CAN v41691223 5

103 CPI_DUR_CAN CPI (goods) CAN v41691222 5

104 CPI_SERV_CAN CPI (services) CAN v41691230 5
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No Variable Description Region Vector(1) Vector(2) Date T-code

105 IPPI_CAN Industrial production price index (IPPI) (all) CAN v79309114 5

106 IPPI_ENER_CAN IPPI (energy) CAN v79309126 5

107 IPPI_WOOD_CAN IPPI (wood) CAN v79309124 5

108 IPPI_METAL_CAN IPPI (metal and construction materials) CAN v79309129 5

109 IPPI_MOTOR_CAN IPPI (motor vehicles and parts) CAN v79309130 5

110 IPPI_MACH_CAN IPPI (industrial machinery and equipment) CAN v79309131 5

111 WTISPLC Petroleum price Western Intermediate (WTI) (FRED) WTISPLC 5

STOCK MARKETS

112 TSX_HI Toronto Stock Exchange (high) v122618 5

113 TSX_LO Toronto Stock Exchange (low) v122619 5

114 TSX_CLO Toronto Stock Exchange (close) v122620 5

115 DJ_CLO Dow Jones index (close) v37416 DJI (YAHOO!) 5

116 SP500 Standard and Poor’s (500) index (YAHOO) GSPC 5

PROVINCIAL / REGIONAL SERIES

HOUSING AND CONSTRUCTION

117 NHOUSE_P_NF New housing price index, Total (house and land) NF v111955448 5

118 NHOUSE_P_PEI New housing price index, Total (house and land) PEI v111955454 5

119 NHOUSE_P_NS New housing price index, Total (house and land) NS v111955460 5

120 NHOUSE_P_NB New housing price index, Total (house and land) NB v111955466 5

121 NHOUSE_P_QC New housing price index, Total (house and land) QC v111955472 5

122 NHOUSE_P_ONT New housing price index, Total (house and land) ONT v111955490 5

123 NHOUSE_P_MAN New housing price index, Total (house and land) MAN v111955526 5

124 NHOUSE_P_SAS New housing price index, Total (house and land) SAS v111955532 5

125 NHOUSE_P_ALB New housing price index, Total (house and land) ALB v111955541 5

126 NHOUSE_P_BC New housing price index, Total (house and land) BC v111955550 5

127 hstart_NF_new Housing starts (units) NF v730402 v52300159 1990M1 2

128 hstart_PEI_new Housing starts (units) PEI v730403 v52300160 1990M1 2

129 hstart_NS_new Housing starts (units) NS v730404 v52300161 1990M1 5

130 hstart_NB_new Housing starts (units) NB v730405 v52300162 1990M1 2

131 hstart_QC_new Housing starts (units) QC v730406 v52300163 1990M1 5

132 hstart_ONT_new Housing starts (units) ONT v730407 v52300164 1990M1 5

133 hstart_MAN_new Housing starts (units) MAN v730409 v52300166 1990M1 2

134 hstart_SAS_new Housing starts (units) SAS v730410 v52300167 1990M1 5

135 hstart_ALB_new Housing starts (units) ALB v730411 v52300168 1990M1 5

136 hstart_BC_new Housing starts (units) BC v730412 v52300169 1990M1 5

137 build_Total_NF_new Building permits (tous) NF v42094 v121314755 2011M1 5

138 build_Ind_NF_new Building permits (industries) NF v42097 v121323155 2011M1 2

139 build_Comm_NF_new Building permits (commerce) NF v42098 v121326275 2011M1 5

140 build_Total_PEI_new Building permits (tous) PEI v42106 v121336115 2011M1 5

141 build_Ind_PEI_new Building permits (industries) PEI v42109 v121344515 2011M1 2

142 build_Comm_PEI_new Building permits (commerce) PEI v42110 v121347635 2011M1 5

143 build_Total_NS_new Building permits (tous) NS v42112 v121357475 2011M1 5

144 build_Ind_NS_new Building permits (industries) NS v42115 v121365875 2011M1 5

145 build_Comm_NS_new Building permits (commerce) NS v42116 v121368995 2011M1 5

146 build_Total_NB_new Building permits (tous) NB v42118 v121378835 2011M1 5

147 build_Ind_NB_new Building permits (industries) NB v42122 v121387235 2011M1 2

148 build_Comm_NB_new Building permits (commerce) NB v42123 v121390355 2011M1 5

149 build_Total_QC_new Building permits (tous) QC v42163 v121400195 2011M1 5

150 build_Ind_QC_new Building permits (industries) QC v42166 v121408595 2011M1 5

151 build_Comm_QC_new Building permits (commerce) QC v42167 v121411715 2011M1 5

152 build_Total_ONT_new Building permits (tous) ONT v42199 v121421555 2011M1 5

153 build_Ind_ONT_new Building permits (industries) ONT v42202 v121429955 2011M1 5

154 build_Comm_ONT_new Building permits (commerce) ONT v42203 v121433075 2011M1 5

155 build_Total_MAN_new Building permits (tous) MAN v42124 v121442915 2011M1 5

156 build_Ind_MAN_new Building permits (industries) MAN v42128 v121451315 2011M1 5

157 build_Comm_MAN_new Building permits (commerce) MAN v42129 v121454435 2011M1 5
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158 build_Total_SAS_new Building permits (tous) SAS v42130 v121464275 2011M1 5

159 build_Ind_SAS_new Building permits (industries) SAS v42133 v121472675 2011M1 5

160 build_Comm_SAS_new Building permits (commerce) SAS v42134 v121475795 2011M1 5

161 build_Total_ALB_new Building permits (tous) ALB v42136 v121485635 2011M1 5

162 build_Ind_ALB_new Building permits (industries) ALB v42139 v121494035 2011M1 5

163 build_Comm_ALB_new Building permits (commerce) ALB v42140 v121497155 2011M1 5

164 build_Total_BC_new Building permits (tous) BC v42250 v121506995 2011M1 5

165 build_Ind_BC_new Building permits (industries) BC v42253 v121515395 2011M1 5

166 build_Comm_BC_new Building permits (commerce) BC v42254 v121518515 2011M1 5

LABOR MARKET

167 EMP_NF Employment total NF v2057622 5

168 EMP_SERV_NF Employment services NF v2057629 5

169 EMP_FOR_OIL_NF Employment forestry, fishing, mining, oil and gas NF v2057625 5

170 EMP_CONS_NF Employment construction NF v2057627 5

171 EMP_SALES_NF Employment sales (wholesale and retail trade) NF v2057630 5

172 EMP_FIN_NF Employment finance, insurance and real estate NF v2057632 5

173 EMP_MANU_NF Employment manufacturing NF v2057628 5

174 EMP_PEI Employment total PEI v2057641 5

175 EMP_SERV_PEI Employment services PEI v2057648 5

176 EMP_FOR_OIL_PEI Employment forestry, fishing, mining, oil and gas PEI v2057644 5

177 EMP_CONS_PEI Employment construction PEI v2057646 5

178 EMP_SALES_PEI Employment sales (wholesale and retail trade) PEI v2057649 5

179 EMP_FIN_PEI Employment finance, insurance and real estate PEI v2057651 5

180 EMP_MANU_PEI Employment manufacturing PEI v2057647 5

181 EMP_NS Employment total NS v2057660 5

182 EMP_SERV_NS Employment services NS v2057667 5

183 EMP_FOR_OIL_NS Employment forestry, fishing, mining, oil and gas NS v2057663 5

184 EMP_CONS_NS Employment construction NS v2057665 5

185 EMP_SALES_NS Employment sales (wholesale and retail trade) NS v2057668 5

186 EMP_FIN_NS Employment finance, insurance and real estate NS v2057670 5

187 EMP_MANU_NS Employment manufacturing NS v2057666 5

188 EMP_NB Employment total NB v2057679 5

189 EMP_SERV_NB Employment services NB v2057686 5

190 EMP_FOR_OIL_NB Employment forestry, fishing, mining, oil and gas NB v2057682 5

191 EMP_CONS_NB Employment construction NB v2057684 5

192 EMP_SALES_NB Employment sales (wholesale and retail trade) NB v2057687 5

193 EMP_FIN_NB Employment finance, insurance and real estate NB v2057689 5

194 EMP_MANU_NB Employment manufacturing NB v2057685 5

195 EMP_QC Employment total QC v2057698 5

196 EMP_SERV_QC Employment services QC v2057705 5

197 EMP_FOR_OIL_QC Employment forestry, fishing, mining, oil and gas QC v2057701 5

198 EMP_CONS_QC Employment construction QC v2057703 5

199 EMP_SALES_QC Employment sales (wholesale and retail trade) QC v2057706 5

200 EMP_FIN_QC Employment finance, insurance and real estate QC v2057708 5

201 EMP_MANU_QC Employment manufacturing QC v2057704 5

202 EMP_ONT Employment total ONT v2057717 5

203 EMP_SERV_ONT Employment services ONT v2057724 5

204 EMP_FOR_OIL_ONT Employment forestry, fishing, mining, oil and gas ONT v2057720 5

205 EMP_CONS_ONT Employment construction ONT v2057722 5

206 EMP_SALES_ONT Employment sales (wholesale and retail trade) ONT v2057725 5

207 EMP_FIN_ONT Employment finance, insurance and real estate ONT v2057727 5

208 EMP_MANU_ONT Employment manufacturing ONT v2057723 5

209 EMP_MAN Employment total MAN v2057736 5

210 EMP_SERV_MAN Employment services MAN v2057743 5

211 EMP_FOR_OIL_MAN Employment forestry, fishing, mining, oil and gas MAN v2057739 5

212 EMP_CONS_MAN Employment construction MAN v2057741 5
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213 EMP_SALES_MAN Employment sales (wholesale and retail trade) MAN v2057744 5

214 EMP_FIN_MAN Employment finance, insurance and real estate MAN v2057746 5

215 EMP_MANU_MAN Employment manufacturing MAN v2057742 5

216 EMP_SAS Employment total SAS v2057755 5

217 EMP_SERV_SAS Employment services SAS v2057762 5

218 EMP_FOR_OIL_SAS Employment forestry, fishing, mining, oil and gas SAS v2057758 5

219 EMP_CONS_SAS Employment construction SAS v2057760 5

220 EMP_SALES_SAS Employment sales (wholesale and retail trade) SAS v2057763 5

221 EMP_FIN_SAS Employment finance, insurance and real estate SAS v2057765 5

222 EMP_MANU_SAS Employment manufacturing SAS v2057761 5

223 EMP_ALB Employment total ALB v2057774 5

224 EMP_SERV_ALB Employment services ALB v2057781 5

225 EMP_FOR_OIL_ALB Employment forestry, fishing, mining, oil and gas ALB v2057777 5

226 EMP_CONS_ALB Employment construction ALB v2057779 5

227 EMP_SALES_ALB Employment sales (wholesale and retail trade) ALB v2057782 5

228 EMP_FIN_ALB Employment finance, insurance and real estate ALB v2057784 5

229 EMP_MANU_ALB Employment manufacturing ALB v2057780 5

230 EMP_BC Employment total BC v2057793 5

231 EMP_SERV_BC Employment services BC v2057800 5

232 EMP_FOR_OIL_BC Employment forestry, fishing, mining, oil and gas BC v2057796 5

233 EMP_CONS_BC Employment construction BC v2057798 5

234 EMP_SALES_BC Employment sales (wholesale and retail trade) BC v2057801 5

235 EMP_FIN_BC Employment finance, insurance and real estate BC v2057803 5

236 EMP_MANU_BC Employment manufacturing BC v2057799 5

237 UNEMP_NF Unemployment rate NF v2063004 2

238 UNEMP_PEI Unemployment rate PEI v2063193 2

239 UNEMP_NS Unemployment rate NS v2063382 2

240 UNEMP_NB Unemployment rate NB v2063571 2

241 UNEMP_QC Unemployment rate QC v2063760 2

242 UNEMP_ONT Unemployment rate ONT v2063949 2

243 UNEMP_MAN Unemployment rate MAN v2064138 2

244 UNEMP_SAS Unemployment rate SAS v2064327 2

245 UNEMP_ALB Unemployment rate ALB v2064516 2

246 UNEMP_BC Unemployment rate BC v2064705 2

247 EMP_PART_NF Employment part time NF v2063002 5

248 EMP_PART_PEI Employment part time PEI v2063191 5

249 EMP_PART_NS Employment part time NS v2063380 5

250 EMP_PART_NB Employment part time NB v2063569 5

251 EMP_PART_QC Employment part time QC v2063758 5

252 EMP_PART_ONT Employment part time ONT v2063947 5

253 EMP_PART_MAN Employment part time MAN v2064136 5

254 EMP_PART_SAS Employment part time SAS v2064325 5

255 EMP_PART_ALB Employment part time ALB v2064514 5

256 EMP_PART_BC Employment part time BC v2064703 5

257 UNEMP_DURAvg_NF_new Unemployment average duration NF v3434211 v1078669579 5

258 UNEMP_DURAvg_PEI_new Unemployment average duration PEI v3434535 v1078670767 5

259 UNEMP_DURAvg_NS_new Unemployment average duration NS v3434859 v1078671955 5

260 UNEMP_DURAvg_NB_new Unemployment average duration NB v3435183 v1078673143 5

261 UNEMP_DURAvg_QC_new Unemployment average duration QC v3435507 v1078674331 5

262 UNEMP_DURAvg_ONT_new Unemployment average duration ONT v3435831 v1078675519 5

263 UNEMP_DURAvg_MAN_new Unemployment average duration MAN v3436155 v1078676707 5

264 UNEMP_DURAvg_SAS_new Unemployment average duration SAS v3436479 v1078677895 5

265 UNEMP_DURAvg_ALB_new Unemployment average duration ALB v3436803 v1078679083 5

266 UNEMP_DURAvg_BC_new Unemployment average duration BC v3437127 v1078680271 5

267 CLAIMS_NF Employment insurance initial claims, Allowed NF v383943 1

268 CLAIMS_PEI Employment insurance initial claims, Allowed PEI v383948 1
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269 CLAIMS_NS Employment insurance initial claims, Allowed NS v383949 1

270 CLAIMS_NB Employment insurance initial claims, Allowed NB v383950 1

271 CLAIMS_QC Employment insurance initial claims, Allowed QC v383951 1

272 CLAIMS_ONT Employment insurance initial claims, Allowed ONT v383952 1

273 CLAIMS_MAN Employment insurance initial claims, Allowed MAN v383953 1

274 CLAIMS_SAS Employment insurance initial claims, Allowed SAS v383954 1

275 CLAIMS_ALB Employment insurance initial claims, Allowed ALB v383955 1

276 CLAIMS_BC Employment insurance initial claims, Allowed BC v383944 1

MANUFACTURING, SALES AND INVENTORIES

277 MANU_NF_new Manufacturing new orders (total) NF v727515 v803786 1992M1 5

278 DUR_NF_new Manufacturing new orders (durables) NF v727527 v803799 1992M1 5

279 MANU_PEI_new Manufacturing new orders (total) PEI v727539 v804246 1992M1 5

280 DUR_PEI_new Manufacturing new orders (durables) PEI v727551 v804259 1992M1 5

281 MANU_NS_new Manufacturing new orders (total) NS v727563 v804706 1992M1 5

282 DUR_NS_new Manufacturing new orders (durables) NS v727577 v804719 1992M1 5

283 MANU_NB_new Manufacturing new orders (total) NB v727591 v805166 1992M1 5

284 DUR_NB_new Manufacturing new orders (durables) NB v727605 v805179 1992M1 5

285 MANU_QC_new Manufacturing new orders (total) QC v727617 v805626 1992M1 5

286 DUR_QC_new Manufacturing new orders (durables) QC v727632 v805639 1992M1 5

287 MANU_ONT_new Manufacturing new orders (total) ONT v727646 v806086 1992M1 5

288 DUR_ONT_new Manufacturing new orders (durables) ONT v727661 v806099 1992M1 5

289 MANU_MAN_new Manufacturing new orders (total) MAN v727675 v806546 1992M1 5

290 DUR_MAN_new Manufacturing new orders (durables) MAN v727689 v806559 1992M1 5

291 MANU_SAS_new Manufacturing new orders (total) SAS v727703 v807006 1992M1 5

292 DUR_SAS_new Manufacturing new orders (durables) SAS v727716 v807019 1992M1 5

293 MANU_ALB_new Manufacturing new orders (total) ALB v727729 v807466 1992M1 5

294 DUR_ALB_new Manufacturing new orders (durables) ALB v727743 v807479 1992M1 5

295 MANU_BC_new Manufacturing new orders (total) BC v727756 v807928 1992M1 5

296 DUR_BC_new Manufacturing new orders (durables) BC v727770 v807941 1992M1 5

PRICES

297 CPI_ALL_NF Consumption price index (CPI) (all) NF v41691244 5

298 CPI_SHEL_NF CPI (shelter) NF v41691277 5

299 CPI_CLOT_NF CPI (clothing and footwear) NF v41691304 5

300 CPI_HEA_NF CPI (health and personal care) NF v41691328 5

301 CPI_MINUS_FOO_NF CPI (all minus food) NF v41691368 5

302 CPI_MINUS_FEN_NF CPI (all minus food and energy) NF v41691369 5

303 CPI_GOO_NF CPI (goods) NF v41691363 5

304 CPI_DUR_NF CPI (durable goods) NF v41691364 5

305 CPI_SERV_NF CPI (services) NF v41691367 5

306 CPI_ALL_PEI Consumption price index (CPI) (all) PEI v41691379 5

307 CPI_SHEL_PEI CPI (shelter) PEI v41691412 5

308 CPI_CLOT_PEI CPI (clothing and footwear) PEI v41691439 5

309 CPI_HEA_PEI CPI (health and personal care) PEI v41691462 5

310 CPI_MINUS_FOO_PEI CPI (all minus food) PEI v41691502 5

311 CPI_MINUS_FEN_PEI CPI (all minus food and energy) PEI v41691503 5

312 CPI_GOO_PEI CPI (goods) PEI v41691497 5

313 CPI_DUR_PEI CPI (durable goods) PEI v41691498 5

314 CPI_SERV_PEI CPI (services) PEI v41691501 5

315 CPI_ALL_NS Consumption price index (CPI) (all) NS v41691513 5

316 CPI_SHEL_NS CPI (shelter) NS v41691546 5

317 CPI_CLOT_NS CPI (clothing and footwear) NS v41691573 5

318 CPI_HEA_NS CPI (health and personal care) NS v41691597 5

319 CPI_MINUS_FOO_NS CPI (all minus food) NS v41691637 5

320 CPI_MINUS_FEN_NS CPI (all minus food and energy) NS v41691638 5

321 CPI_GOO_NS CPI (goods) NS v41691632 5

322 CPI_DUR_NS CPI (durable goods) NS v41691633 5
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323 CPI_SERV_NS CPI (services) NS v41691636 5

324 CPI_ALL_NB Consumption price index (CPI) (all) NB v41691648 5

325 CPI_SHEL_NB CPI (shelter) NB v41691681 5

326 CPI_CLOT_NB CPI (clothing and footwear) NB v41691708 5

327 CPI_HEA_NB CPI (health and personal care) NB v41691732 5

328 CPI_MINUS_FOO_NB CPI (all minus food) NB v41691772 5

329 CPI_MINUS_FEN_NB CPI (all minus food and energy) NB v41691773 5

330 CPI_GOO_NB CPI (goods) NB v41691767 5

331 CPI_DUR_NB CPI (durable goods) NB v41691768 5

332 CPI_SERV_NB CPI (services) NB v41691771 5

333 CPI_ALL_QC Consumption price index (CPI) (all) QC v41691783 5

334 CPI_SHEL_QC CPI (shelter) QC v41691816 5

335 CPI_CLOT_QC CPI (clothing and footwear) QC v41691844 5

336 CPI_HEA_QC CPI (health and personal care) QC v41691868 5

337 CPI_MINUS_FOO_QC CPI (all minus food) QC v41691908 5

338 CPI_MINUS_FEN_QC CPI (all minus food and energy) QC v41691909 5

339 CPI_GOO_QC CPI (goods) QC v41691903 5

340 CPI_DUR_QC CPI (durable goods) QC v41691904 5

341 CPI_SERV_QC CPI (services) QC v41691907 5

342 CPI_ALL_ONT Consumption price index (CPI) (all) ONT v41691919 5

343 CPI_SHEL_ONT CPI (shelter) ONT v41691952 5

344 CPI_CLOT_ONT CPI (clothing and footwear) ONT v41691980 5

345 CPI_HEA_ONT CPI (health and personal care) ONT v41692004 5

346 CPI_MINUS_FOO_ONT CPI (all minus food) ONT v41692044 5

347 CPI_MINUS_FEN_ONT CPI (all minus food and energy) ONT v41692045 5

348 CPI_GOO_ONT CPI (goods) ONT v41692039 5

349 CPI_DUR_ONT CPI (durable goods) ONT v41692040 5

350 CPI_SERV_ONT CPI (services) ONT v41692043 5

351 CPI_ALL_MAN Consumption price index (CPI) (all) MAN v41692055 5

352 CPI_SHEL_MAN CPI (shelter) MAN v41692088 5

353 CPI_CLOT_MAN CPI (clothing and footwear) MAN v41692116 5

354 CPI_HEA_MAN CPI (health and personal care) MAN v41692140 5

355 CPI_MINUS_FOO_MAN CPI (all minus food) MAN v41692180 5

356 CPI_MINUS_FEN_MAN CPI (all minus food and energy) MAN v41692181 5

357 CPI_GOO_MAN CPI (goods) MAN v41692175 5

358 CPI_DUR_MAN CPI (durable goods) MAN v41692176 5

359 CPI_SERV_MAN CPI (services) MAN v41692179 5

360 CPI_ALL_SAS Consumption price index (CPI) (all) SAS v41692191 5

361 CPI_SHEL_SAS CPI (shelter) SAS v41692224 5

362 CPI_CLOT_SAS CPI (clothing and footwear) SAS v41692252 5

363 CPI_HEA_SAS CPI (health and personal care) SAS v41692276 5

364 CPI_MINUS_FOO_SAS CPI (all minus food) SAS v41692316 5

365 CPI_MINUS_FEN_SAS CPI (all minus food and energy) SAS v41692317 5

366 CPI_GOO_SAS CPI (goods) SAS v41692311 5

367 CPI_DUR_SAS CPI (durable goods) SAS v41692312 5

368 CPI_SERV_SAS CPI (services) SAS v41692315 5

369 CPI_ALL_ALB Consumption price index (CPI) (all) ALB v41692327 5

370 CPI_SHEL_ALB CPI (shelter) ALB v41692360 5

371 CPI_CLOT_ALB CPI (clothing and footwear) ALB v41692387 5

372 CPI_HEA_ALB CPI (health and personal care) ALB v41692411 5

373 CPI_MINUS_FOO_ALB CPI (all minus food) ALB v41692451 5

374 CPI_MINUS_FEN_ALB CPI (all minus food and energy) ALB v41692452 5

375 CPI_GOO_ALB CPI (goods) ALB v41692446 5

376 CPI_DUR_ALB CPI (durable goods) ALB v41692447 5

377 CPI_SERV_ALB CPI (services) ALB v41692450 5

378 CPI_ALL_BC Consumption price index (CPI) (all) BC v41692462 5
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379 CPI_SHEL_BC CPI (shelter) BC v41692495 5

380 CPI_CLOT_BC CPI (clothing and footwear) BC v41692523 5

381 CPI_HEA_BC CPI (health and personal care) BC v41692547 5

382 CPI_MINUS_FOO_BC CPI (all minus food) BC v41692587 5

383 CPI_MINUS_FEN_BC CPI (all minus food and energy) BC v41692588 5

384 CPI_GOO_BC CPI (goods) BC v41692582 5

385 CPI_DUR_BC CPI (durable goods) BC v41692583 5

386 CPI_SERV_BC CPI (services) BC v41692586 5
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