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(BV), this CST is also present in several healthy women. 
However, CST-IV and CST-III are considered the less 
optimal vaginal communities. In the past few years, new 
efforts to understand and classify the vaginal microbiota 
have been made, and these studies expanded the diver-
sity of the female community tested, leading to character-
ization of the vaginal microbiota worldwide [2, 3]. These 
studies demonstrated the importance of host factors in the 
composition of the microbiota, including age, pregnancy, 
sexual activity and individual habits (contraception, use 
of antibiotics, use of spermicides, and vaginal douch-
ing) [4–6]. Individual habits lead to changes in the vagi-
nal environment, including changes in pH, oxygen levels, 
nutrients and metabolites [4]. Although traditional CSTs 
do not fully represent the diversity of the vaginal composi-
tion, they are simple models that recapitulate most of the 
bacterial signature.

It is unclear which microbe is the etiologic agent of 
BV. Few studies have noted the presence of G. vaginalis 

The vaginal environment of cis-gender women of repro-
ductive age is rich in nutrients that sustain microbial 
life, and these microorganisms are essential for women’s 
reproductive health. The vaginal microbiota is tradition-
ally classified into community state types (CSTs), which 
are either dominated by specific Lactobacillus species 
(CST-I = L. crispatus; CST-II = L. gasseri; CST-III = L. 
iners; CST-V = L. jensenii) or form a diverse community 
that is usually considered less optimal (CST-IV). CST-IV 
is associated with the presence of bacteria such as Gard-
nerella vaginalis (G. vaginalis), Prevotella species, Por-
phyromonas species and Atopobium vaginae (A. vaginae) 
[1]. Although CST-IV may evolve into bacterial vaginosis 
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Abstract
The vaginal tract of cis-gender women of reproductive age is inhabited by communities of bacteria generally 
dominated by one of four Lactobacillus species. These bacteria are important for the reproductive health of 
women and favor better outcomes, including fertility, pregnancy leading to term and protection against infections. 
Past studies have focused on the role of carbohydrates in the balance of vaginal communities, and the role of 
fatty acids has been underestimated. However, small- to long-chain fatty acids present few properties that, in 
combination with sugar metabolism, affect the outcomes of the health or disease within the vaginal communities. 
Herein, we explore the origins of fatty acids in the vaginal tract as well as their roles in the bacterial life cycle in this 
environment. We also detail the putative impact of vaginal FAs on S. aureus, one of the etiologic agents of aerobic 
vaginitis. Finally, we discuss their potential for prevention or therapy in women of reproductive age.
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and A. vaginae in most cases of this disease, although we 
can associate the exfoliative properties of Prevotella and 
Porphyromonas species to BV as well [1, 7–10]. Another 
bacterial disease, aerobic vaginitis (AV), was described 
in 2002 by Donders et al. and has few known etiologic 
agents (Staphylococcus aureus [S. aureus], Streptococcus 
agalactiae [S. agalactiae], Escherichia coli [E. coli] and 
Enterococcus faecalis [E. faecalis]) [11, 12]. In rare situ-
ations, bacteria from the Lactobacillus genus may be in 
excess and accompanied by a large release of glycogen 
that leads to a disease named cytolytic vaginosis [13]. In 
addition to bacterial infections, other microorganisms 
lead to diseases, including the fungus Candida albicans 
(C. albicans), the etiologic agent of candidiasis, and sev-
eral viruses (human immunodeficiency virus, human 
papillomavirus and hepatitis viruses) [14–17].

Vaginal secretions are mainly composed of mucin, 
fatty acids (FAs), salts, urea, iron chelators, and carbo-
hydrates derived from glycogen [18–21]. Many vaginal 
changes rely on glycogen production by the vaginal epi-
thelium and on the consumption of glucose, primarily by 
microorganisms. Epithelial cells produce glycogen, which 
is released by the cyclic exfoliation of this epithelium. 
Glycogen is then hydrolyzed by α-amylases and other 
enzymes (β-amylases, type-I and -II pullulanases) in glu-
cose, which fulfills the most vital functions for the sur-
vival of microorganisms within the vaginal tract. All these 
processes occur in an environment with poor accessibil-
ity to oxygen, favoring fermentation over respiration for 
energy production [22]. Although we often associate col-
onization by beneficial Lactobacillus species in the vagi-
nal tract with the presence of carbohydrates (glycogen 
and glucose), the importance of other molecules and their 
roles in colonization and signaling have yet to be studied 
under vaginal conditions. Moreover, these molecules may 
play a role not only in lactobacilli but also in pathogenic 
microorganisms of the female reproductive tract, leading 
to an intricate cascade of sensing and responding to their 
availability. Herein, we explore the origin and role of FAs 
in bacterial metabolism, survival, signaling and virulence 
within the vaginal niche, especially their importance in 
maintaining or disrupting women’s reproductive health.

Origins of lipids and fatty acids in the reproductive 
system of women
FAs have two main origins: they are either host-derived 
(mainly long-chain fatty acids or LCFAs) or produced 
through bacterial metabolism. The human mucosa (i.e., 
skin, nares, intestinal tract, and vaginal tract) tends to be 
rich in LCFAs, which are specifically secreted by the host 
for their antibacterial properties or found through cellu-
lar degradation [23–29]. Polyunsaturated LCFAs with cis 
double bonds are especially potent antimicrobial agents 
[30]. The concentration and composition of LCFAs in 

vaginal fluids is still poorly known. Nevertheless, the 
lipidic pool in the vagina during pregnancy is markedly 
associated with glycerophospholipid, sphingolipid and 
ether lipid metabolism suggesting a possible degradation 
of these lipids and the presence of C16 and C18 FAs such 
as palmitic acid or oleic acid [29].

The majority of short-chain fatty acids (SCFAs) within 
the vaginal tract stem from microbial metabolic activi-
ties, especially carbohydrate fermentation and amino acid 
catabolism [31]. The vaginal environment is rich in glyco-
gen, a large polymer of glucose connected through α-1,4- 
and α-1,6-glycosidic bonds. Glycogen is hydrolyzed into 
smaller sugars by human and microbial enzymes [32, 33]. 
Among these enzymes, α-amylases facilitate the opti-
mal degradation of glycogen via the hydrolysis of α-1,4-
glycosidic linkages, which results in the production of 
maltose, maltotriose and α-limit dextrins [34]. Although 
women produce their own α-amylases, these enzymes 
lose the majority of their activity at acidic pH [32]. Thus, 
human α-amylases are hypothesized to be the initial 
enzymes that catabolize the glycogen accumulation start-
ing at puberty and then allows the establishment of Lac-
tobacillus species within the vaginal tract [32]. Compared 
with amylases produced by microorganisms residing in 
the vaginal tract, the involvement of human amylases 
from menarche is weak [32]. Interestingly, few vaginal 
bacterial species produce enzymes such as 1,6-glucosi-
dases and pullulanases [32, 35]. These enzymes degrade 
glycogen mainly into maltotetraose [35]. Among the 
resident bacteria, L. crispatus and L. iners produce simi-
lar enzymes and cleave both α-1,4- and α-1,6-glycosidic 
bonds, although 20% of the L. crispatus population 
encodes a dysfunctional PulA [32, 36]. L. gasseri and L. 
jensenii produce mainly glucosidases that cleave α-1,6-
glycosidic bonds [32]. In addition to Lactobacillus, G. 
vaginalis also produces a pullulanase [37]. The processes 
of carbohydrate degradation are of special importance 
for the subsequent metabolic steps occurring within the 
vaginal tract, leading either to the production of lactic 
acid by the Lactobacillus species or to the production of 
SCFAs by the less stable communities.

Lactic acid (lactate) is the main metabolite found in 
the vaginal tract of reproductive-age women [38]. The 
vaginal tract is an environment limited in oxygen, which 
promotes the use of alternative respiratory pathways by 
Lactobacillus species, including homolactic and hetero-
lactic fermentation [39, 40]. Fermentation is responsible 
for the production of most lactic acid and acidification 
of the vaginal tract to ~ pH 4, except during menstrua-
tion when the pH reaches near neutral [41, 42]. Most of 
the beneficial effects are associated with D-lactic acid, 
and Lactobacillus species that produce better concen-
trations of D- versus L-lactate present better stability 
and better health outcomes [13, 43, 44]. Although most 
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lactate production is associated with bacteria, the vaginal 
mucosa also uses anaerobic fermentation, leading to the 
production of a small proportion of lactic acid within the 
vaginal tract [45–47].

Conversely, in communities that are not dominated 
by Lactobacillus species, the FA composition changes 
drastically. When the lactate concentration decreases, 
SCFA levels increase, favoring the development of vagi-
nal dysbiosis [15]. This shift from lactic acid to increased 
concentrations of other SCFAs, including acetate, pro-
pionate, succinate and butyrate, is one of the hallmarks 
of bacterial vaginosis (BV) [15]. Acetate and succinate are 
increased in symptomatic BV patients, however this pro-
duction of SCFAs was not associated with any specific BV 
bacteria so far [15, 48]. L. jensenii is also able to produce 
a significant amount of acetate in addition to its produc-
tion of lactic acid; however, the balance between lactic 
acid and acetate is still maintained for this Lactobacillus 
specie [49, 50]. Interestingly, the relationship between 
SCFA production and BV is not clearly understood.

A similar decrease in lactate concentration is found in 
other bacterial infections, including infection by Chla-
mydia trachomatis (C. trachomatis), the agent of chla-
mydia, a sexually transmitted disease [51]. In this case, 
the lactate decrease is mainly associated with a switch 
from vaginal Lactobacillus species to a population domi-
nated by L. iners instead [51]. Given that AV is still a 
recent diagnosis, no study has focused on the FA pro-
file in this context; it is likely that changes similar to BV 

will be observed as the AV bacteria disturb the vaginal 
communities and lead to a disruption of the Lactobacil-
lus dominance as well [12, 52]. Overall, an interesting 
component of most bacterial infections in the female 
reproductive tract is this modification of the lipidic land-
scape of the vaginal mucosa. These microorganisms also 
interfere with lactate production by lactobacilli [53]. To 
date, little is known about the lipid signature of vaginal 
infections, and this gap needs to be filled to find new 
therapeutic strategies. Figure  1 synthesizes the known 
and hypothesized composition in FAs within the vaginal 
tract.

Microbial survival and response to sensing fatty 
acids within the vagina
FA-producing microorganisms use these metabolites for 
interbacterial and interkingdom competition with certain 
species in the vaginal environment [14, 27, 53]. During 
microbial interactions, FAs fulfill several roles, including 
antimicrobial (LCFA and medium-chain FA) or antiviru-
lent functions as well as signaling for microbial response 
[54]. Additionally, in the case of carbohydrate starvation, 
FAs become a source of carbon and change the meta-
bolic pathway (e.g., β-oxidation) of bacteria that are able 
to survive within these restrictions [55]. Herein, we focus 
on the role of FAs as antimicrobial molecules and as sig-
nals for the regulation of vaginal bacteria.

Among the FAs, oleic acid, linoleic acid and pal-
mitoleic acid have shown protective effects on 

Fig. 1  FA composition and vaginal communities. The main FAs found in the Lactobacillus-dominant, BV or AV community are represented in this figure. In 
an optimal Lactobacillus-dominant community (CST-I, -II or -V), it is expected that the concentration of lactic acid will be greater than SCFAs (acetate and 
succinate). LCFAs are present and provide an additional mechanism for Lactobacillus dominance. In a BV-prone community, fewer Lactobacillus species 
are present, leading to a decrease in lactic acid, and BV bacteria produce SCFAs, especially succinate and acetate. LCFAs would also be present. In the AV-
prone community, little is known. This community is believed to be more similar to the BV-prone community
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Lactobacillus-dominant communities, which are consid-
ered relatively stable; however, these LCFAs are detri-
mental to L. iners [27]. Two major determinants explain 
the observed differences: an oleate dehydratase (OhyAB) 
and an efflux pump (FarE) in strains of L. crispatus, L. 
gasseri and L. jensenii but not in L. iners [27, 56]. In addi-
tion to the resistance of vaginal Lactobacillus species to 
oleic acids and derivates, these unsaturated LFCAs pro-
mote their dominance within the vaginal tract, suggest-
ing that these host-derived FAs are important for the 
maintenance of Lactobacillus and therefore protection 
of the niche [27]. Indeed, the vaginal environment is spe-
cifically designed to provide essential nutrients to the 
vaginal Lactobacillus species and to fight alongside these 
bacteria against less favorable microbes through the pro-
duction of antimicrobials such as FAs.

Conversely, oleic acid and its derivatives inhibit bacte-
ria with suboptimal health outcomes in the vagina (i.e., 
BV bacteria and L. iners) [27]. BV-associated bacteria 
also lack OhyA and FarE, similar to L. iners, and do not 
present any predicted oleate dehydratase-encoding genes 
[27]. These bacteria are unable to detoxify or integrate 
host-derived LCFAs into their membranes, and the pres-
ence of these metabolites instead provokes lysis of bac-
terial cells [27]. Several possibilities for survival in the 
presence of host LCFAs must be envisioned, including 
the activation of the immune response in the presence 
of BV-prone bacteria and the production of BV-prone 
virulence factors in response to stress. The bacteria asso-
ciated with BV are known to trigger a host response via 
many mechanisms, including the production of virulence 
factors and specific SCFAs [1, 57–60].

Although no unique etiologic agent has been defined 
for BV, G. vaginalis and Prevotella species (especially 
P. bivia) are generally the two most prominent bacteria 
prone to this disease [1]. Among the known virulence 
factors of G. vaginalis, the bacterium has the capacity to 
produce biofilm, adhere to the epithelium and produce 
cytotoxic components [61, 62]. Interestingly, this bacte-
rium produces vaginolysin, which activates the produc-
tion of interleukin-8 from human epithelial cells and is 
considered the main determinant of its pathogenicity 
(Fig.  2) [63]. In the case of Prevotella and Porphyromo-
nas species, their proteolytic activities have been recently 
shown to disrupt vaginal communities through activation 
of the proinflammatory response [7, 8]. Little is known 
about how virulence factors are regulated in G. vaginalis, 
Prevotella and Porphyromonas, and even less is known 
about their role in the vaginal environment. Therefore, we 
hypothesize that extracellular proteins (vaginolysin and 
proteases) are activated in the vaginal tract in response to 
stress signals within this environment. In addition to the 
virulence factors impacting the vaginal mucosa, the BV-
prone community presents a decreased concentration of 

lactic acid through disruption of the Lactobacillus domi-
nance leading to the inhibition of anti-inflammatory sig-
nals associated with D-lactate [40, 48]. Additionally, the 
BV bacteria produce high levels of acetate and succinate 
that are suggested to increase TLR4 expression leading 
to production of pro-inflammatory cytokines [48, 53, 
64]. Indeed, the regulation of metabolism and virulence 
within BV-prone bacteria is still poorly understood [65]. 
Hence, future studies to understand the dynamism of the 
vaginal tract should focus on how these bacterial species 
sense and respond to vaginal cues.

Like BV, several bacteria are associated with AV, and no 
unique etiologic agent has been defined. However, most 
AV-prone bacteria are opportunistic pathogens and are 
also found on other mucosal surfaces [12, 66]. Both E. 
coli and S. aureus have been extensively studied for their 
survival in response to host-derived FAs in other organs. 
Both bacteria have several mechanisms for detoxifying 
and metabolizing FAs; these mechanisms were recently 
reviewed by Kengmo Tchoupa et al., 2022 [56].

S. aureus is especially interesting for the interaction 
with FAs in the vaginal tract. Several studies have dem-
onstrated few mechanisms for S. aureus to survive  in the 
presence of host-derived FAs on the skin, the main col-
onization site of the bacterium [55, 56, 67–72]. Herein, 
we apply to the vaginal tract, the knowledge researchers 
have built about interactions between S. aureus and FAs 
in other niches. S. aureus uses fatty acid kinase A (FakA) 
to incorporate exogenous FAs into its membrane and 
assure the integrity of the bacterial cell [69, 70, 73–75]. 
This mechanism would also compensate for the loss of 
its FA synthesis system (FASII) in the case of inhibition 
of this pathway [76]. Otherwise, the bacterium uses the 
fatty acid-modifying enzyme (FAME), recently iden-
tified as the lipase Lip2, to detoxify the host-derived 
FAs in addition to OhyA and efflux pumps [67, 77–79]. 
Taken together, bacteria use several detoxification and 
metabolic pathways to survive and thrive in the pres-
ence of host-derived FAs at physiological concentrations, 
and these mechanisms are regulated mainly by GraXRS 
(Fig. 2) [56, 80].

Like other vaginal bacteria, FAs are responsible for 
the regulation of S. aureus; however, many regulators 
impact virulence factors in the vaginal tract. One major 
virulence factor that has been studied in this environ-
ment is toxic shock syndrome toxin-1 (TSST-1), which is 
responsible for menstrual toxic shock syndrome (mTSS), 
a rare but life-threatening disease affecting young women 
of reproductive age [66, 81, 82]. As its name suggests, 
mTSS occurs at menstruations and is associated with 
the use of menstruation management devices such as 
tampons or menstrual cups [82–85]. The production of 
the toxin is tightly regulated it is mainly repressed by the 
presence of glucose in the vaginal tract [86]. Otherwise, 
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the introduction of oxygen at the insertion of the earlier 
generation of tampons, in combination with changes in 
other environmental cues, triggers the production of an 
important concentration of TSST-1, leading to the clini-
cal outcomes of mTSS [86–90]. Although mTSS rep-
resents the most acute condition in the vaginal tract, 
studies on the regulation of TSST-1 highlight the impor-
tance of maintaining a balance between S. aureus, the 
host and the microbiota, especially in an environment as 
dynamic as the vaginal tract. In this context, we believe 
that several other regulators are involved in the produc-
tion of toxins and other colonizing factors important for 

S. aureus, including iron-regulated surface determinant 
proteins (Isd) and fibrinogen-binding proteins [91, 92]. 
Among the putative regulatory and survival mechanisms, 
the two-component system GraXRS possibly senses the 
acidic environment within the vagina and might also reg-
ulate S. aureus virulence factors and resistance to host-
derived FAs in this context [80]. This system remains to 
be studied in the vaginal context to understand its role 
for the intricate regulation of S. aureus in this specific 
environment. S. aureus is a great example of a colonizing 
bacteria that is able to trigger pathogenicity in response 
to changes in its environment, and more efforts are 

Fig. 2  FAs in interaction with BV or AV bacteria. A synthesis of the main findings on mechanisms of interaction between FAs and prototypic bacteria is 
presented. G. vaginalis (purple bacterium), a BV-associated bacterium, is unable to modify and integrate LCFAs like oleic acid and their growth is normally 
inhibited in their presence. However, through sensing stressful signals and responding by activation of virulence factors (e.g. vaginolysin) and by produc-
ing acetate and succinate, G. vaginalis is triggering vaginal inflammation. The mechanisms of action are still unclear for these changes as well as for the 
mechanisms that lead to the switch from Lactobacillus (dark blue bacteria) dominance to a diverse community (BV-prone). S. aureus (golden spherical 
bacteria), an AV-prone bacterium, can modify certain LCFAs by the action of OhyA and FakA, alleviating the toxicity of these host-derived FAs and allowing 
its survival. In response to stress, S. aureus will produce virulence factors including TSST-1. These virulence factors are responsible for triggering vaginal 
inflammation and for the modification of the vaginal community leading to a decrease of lactic acid production
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needed to obtain a full picture of the mechanisms leading 
to colonization or diseases such as AV or mTSS [66].

Fatty acids as determinants of a healthy microbiota
In the vaginal tract, the composition of FAs is a conse-
quence of changes in the community and in metabolic 
activities. BV and AV diagnoses are still made on the 
basis of microscopic examination; thus, FAs (mainly 
acetate and succinate) could be used as biomarkers to 
facilitate the validation of BV. Although this review did 
not explore the role of FAs in candidiasis, there are signif-
icant differences in the lipidic signature during this dis-
ease as well as their impact on C. albicans pathogenesis 
(growth, biofilm formation and morphogenesis), adding 
to our conclusion that the lipidic signature of the vagina 
is a determinant clue leading to the diagnosis of microbial 
infections beyond BV [14, 93–96]. Moreover, the findings 
from the vaginal environment are of great interest as FAs, 
more precisely SCFAs, play a converse role for the intes-
tinal microbiota where their presence is generally asso-
ciated with healthy outcomes [97]. Interestingly, D-lactic 
acid also demonstrate converse role in the gut micro-
biome suggesting a niche-specific distribution of roles 
associated either with the microbial population or with 
the specificity of the host tissue [98]. In the future, inves-
tigating the specific changes in FAs occurring in micro-
bial infections and comparing these FA patterns between 
diseases, organs and even between etiologic agents for a 
more accurate diagnosis will be of outmost importance.

In addition to their potential in the prediction of dis-
eases within the reproductive tract of cis-gender women, 
FAs, especially LCFAs, show great potential for therapy 
for combination with antibiotics [54]. Most host-derived 
FAs are already known for their antimicrobial activities 
[54, 79]. The example of oleic acid and its derivatives in 
in vitro experiments with representative strains from 
the vaginal community showed a real advantage given to 
Lactobacillus species associated with health compared 
to L. iners and G. vaginalis [27]. However, certain oppor-
tunistic pathogens associated with AV easily manipulate 
FAs, evade these antimicrobial metabolites and become 
more resistant [67, 70, 76]. A better understanding of 
the metabolic pathways of FAs and their impact on gene 
regulation in vaginal bacteria will allow the use of these 
metabolites for future treatment.
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