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NOTATION

R : set of real numbers.
R+ : set of nonnegative real numbers.
R⋆
+ : set of positive real numbers.

C1,2((0, T )×E) : collection of all continuous functions f : (0, T )×E → Rwhich have continuous first
and the second order partial derivatives, where E denotes an open subset of R.
Xn ⇒ X denotes the weak convergence of the sequence of random variables {Xn}∞n=1 to the random
variableX .
Et,x[·] = E[·|Xt = x], where {Xt}t≥0 is a stochastic process.

xvi



RÉSUMÉ

Dans cette thèse, nous considérons l’évaluation d’instruments financiers de type américain avec une fonc-tion de gain non bornée, dépendante du temps et discontinue. Ce problème est motivé par l’évaluation defonds distincts offrant une garantie minimale à l’échéance et de titres de créance tels que les obligationsconvertibles. Le Chapitre 2 étudie le problème de façon théorique, alors que les Chapitres 3 et 4 présen-tent des algorithmes efficaces pour l’évaluation de ce type d’instruments financiers. Ces algorithmes sontbasés sur une méthode numérique récente qui repose sur les chaînes de Markov à temps continu pourapproximer le processus de diffusion sous-jacent.
Plus spécifiquement dans le Chapitre 2, nous effectuons une analyse rigoureuse de la fonction valeur d’uncontrat de fonds distinct dans le modèle de Black-Scholes, lorsque les frais et les pénalités de rachat an-ticipé (ou charges de rachat anticipé) dépendent à la fois du temps et de la valeur du fonds (voir parexemple, Bernard et al. (2014a)). Sous l’hypothèse que l’assuré maximise la valeur neutre au risque deson contrat, l’évaluation de fonds distincts équivaut à résoudre un problème d’arrêt optimal similaire àl’évaluation d’option américaine. Cependant, la garantie s’appliquant uniquement à l’échéance du contratdans un fonds distinct crée une discontinuité dans la fonction de gain à l’échéance, ce qui la distingue desfonctions de gain continues généralement étudiées dans la littérature des options américaines et compliquele problème d’arrêt optimal impliqué dans l’évaluation de fonds distinct. En particulier, nous donnons unecondition sous laquelle le temps d’arrêt optimal se produit toujours à l’échéance du contrat. En utilisantune représentation alternative de la fonction valeur pour le problème d’optimisation, nous étudions sespropriétés analytiques ainsi que la région de rachat (ou d’exercice) qui en résulte. Nous démontrons quela non-vacuité et la forme de la région de rachat sont entièrement caractérisées par les fonctions de fraiset de charge de rachat, fournissant ainsi un outil puissant pour comprendre leur interrelation et commentelles affectent les rachats anticipés et la frontière de rachat optimale. Sous certaines conditions sur cesdeux fonctions, nous développons trois représentations de la fonction valeur, deux sont analogues à cellede l’option américaine, alors que l’autre est nouvelle dans la littérature actuarielle et d’évaluation d’optionsaméricaines.
Le Chapitre 3 est aussi consacré à l’évaluation de fonds distincts. Dans ce chapitre, uneméthode numériquerécente basée sur les chaînes de Markov à temps continu est explorée pour l’évaluation de fonds distinctsavec une structure de frais générale sous une classe de modèles à volatilité stochastique incluant entreautres les modèles de Heston, Hull-White, Scott, α-Hypergeometric, 3/2, et 4/2. En particulier, l’impactd’une structure de frais liée à l’indice de volatilité VIX sur la stratégie de rachat optimale d’un contrat defonds distincts avec une prestation minimale garantie à l’échéance est analysé. En approximant la valeur dufonds par une chaine deMarkov à temps continu à deux dimensions, nous développons des algorithmes ef-ficaces. Lorsque le contrat est détenu jusqu’à l’échéance, une expression analytique sous forme matricielleest obtenue pour la valeur du contrat. Nous fournissons également une façon simple et efficace de déter-miner la valeur des rachats anticipés à l’aide d’un algorithme récursif et donnons procédure simple pourapproximer la surface de rachat optimale.
Le Chapitre 4 étend la méthode numérique explorée dans le Chapitre 3 aux processus de diffusion non ho-mogènes dans le temps pour l’évaluation de titres de créance tels que les obligations, les options sur obliga-tions, les obligations rachetables/rétractables et les obligations convertibles. Plus précisément, des expres-sions analytiques sous forme matricielle sont obtenues pour approximer le prix d’obligations et d’optionssur obligations sous des processus généraux de taux court à une dimension, et un algorithme efficace est
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développé pour l’évaluation de dettes rachetables/rétractables. La disponibilité d’une expression analy-tique pour le prix d’obligations zéro-coupon permet l’ajustement parfait dumodèle approximé à la structureà terme actuelle des taux d’intérêt dumarché, quelle que soit la complexité du processus de diffusion sous-jacent sélectionné. Nous considérons également l’évaluation d’obligations convertibles sous des processusde diffusion bi-dimensionnels non homogènes dans le temps pour modéliser la dynamique d’une action etdes taux courts. Basé sur une approximation à chaine de Markov à temps continu à deux dimensions, unalgorithme efficace est développé pour approximer le prix d’obligations convertibles. Lorsque la conversionn’est permise qu’à l’échéance du contrat, une expression analytique sous forme matricielle est obtenue.Des expériences numériques démontrent la précision et l’efficacité de la méthode sur un large éventail deparamètres de modèle et de modèles de taux d’intérêt court.

Mots clés: problèmes d’arrêt optimal, options américaines, méthodes numériques en finance, chaînesde markov à temps continu, volatilité stochastique, taux d’intérêt stochastique, fonds distincts, titres decréance, obligations convertibles.
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ABSTRACT

In this thesis, we consider the pricing of American-type financial instruments with an unbounded, time-dependent, and discontinuous reward function. This problem is motivated by the pricing of variable annu-ities with guaranteed minimum maturity benefit and of debt securities such as convertible bonds. Chapter2 studies the problem from a theoretical perspective, whereas Chapters 3 and 4 present efficient algorithmsfor the pricing of such financial instruments. These algorithms are based on recently developed numericaltechniques that rely on a continuous-time Markov chain (CTMC) to approximate the underlying diffusionprocess.
Specifically, in chapter 2, we perform a rigorous analytical study of the value of a variable annuity (VA)contract in the Black-Scholes framework, when the fee and the surrender charge are both time and state-dependent (that is, depending on the value of the VA account, see Bernard et al. (2014a)). Under the as-sumption that the policyholder maximizes the risk-neutral value of her contract, the pricing of a variableannuity is equivalent to solving an optimal stopping problem similar to pricing an American option. How-ever, the financial guarantee being applied only at maturity in a VA contract creates a discontinuity in thereward function at maturity, which sets it apart from the continuous reward function of the American op-tion and complicates the optimal stopping problem involved in the pricing of VAs. In particular, we give acondition under which optimal stopping always occurs at maturity. Using an alternative representation forthe value function of the optimization problem, we study its analytical properties and the resulting surren-der (or exercise) region. We show that the non-emptiness and the shape of the surrender region are fullycharacterized by the fee and the surrender charge functions, which provides a powerful tool to understandtheir interrelation and how it affects early surrenders and the optimal surrender boundary. Under certainconditions on these two functions, we develop three representations for the value function; two are anal-ogous to their American option counterpart, and one is new to the actuarial and American option pricingliterature.
Chapter 3 is also concernedwith the pricing of variable annuities. In this chapter, a recent numericalmethodbased on continuous-time Markov chain approximation is explored for the pricing of VA contracts withgeneral fee structure under a class of time-homogeneous stochastic volatility models which includes theHeston, Hull-White, Scott, α-Hypergeometric, 3/2, and 4/2 models. In particular, the impact of differentChicago Board Options Exchange volatility index (VIX)-linked fee structures on the optimal surrender strat-egy of a VA contract with guaranteed minimum maturity benefit (GMMB) is analyzed. Using a two-layercontinuous-time Markov chain approximation for the fund value process, efficient algorithms are devel-oped. When the contract is kept until maturity, a closed-formmatrix expression is obtained for the value ofthe VA contract. We also provide a quick and simple way to determine the value of early surrenders via arecursive algorithm and give an easy procedure to approximate the optimal surrender surface.
Chapter 4 extends the numerical methods explored in Chapter 3 to time-inhomogeneous diffusion pro-cesses for the pricing of debt securities such as bonds, bond options, callable/putable bonds, and convert-ible bonds. More precisely, closed-formmatrix expressions are obtained to approximate the price of bondsand bond options under general one-dimensional short-rate processes, and a simple efficient algorithm isalso developed for the pricing of callable/putable debts. The availability of a closed-form expression for theprice of zero-coupon bonds allows for the perfect fit of the approximatedmodel to the current market termstructure of interest rate, regardless of the complexity of the underlying diffusion process selected. Wefurther consider the pricing of a convertible bond (CB) under general bi-dimensional time-inhomogeneous

xix



diffusion processes to model equity and short-rate dynamics. Credit risk is also incorporated into themodelusing the approach of Tsiveriotis and Fernandes (1998). Based on a two-layer CTMC method, an efficientalgorithm is developed to approximate the price of convertible bonds. When conversion is only allowedat maturity, a closed-form matrix expression is obtained. Numerical experiments show the accuracy andefficiency of the method across a wide range of model parameters and short-rate models.

Keywords: optimal stopping problems, American options, numerical methods in finance, continuous-timeMarkov chains, stochastic volatility, stochastic interest rates, variable annuities, debt securities, convertiblebonds.
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INTRODUCTION

This thesis is divided into twomain parts. The first part, in Chapters 2 and 3, focuses on the pricing of variable
annuities, while the second part, in Chapter 4, addresses the pricing of debt securities such as convertible
bonds. Chapter 1 establishes the basic framework for valuing these financial securities and highlights the
similarities between variable annuity and convertible bond structures. Chapter 2 presents a rigorous ana-
lytical study of the pricing formula of a variable annuity contract within the Black-Scholes framework, while
Chapter 3 and 4 are concerned with efficient algorithms based on two-layer CTMC approximation for the
pricing of these securities. More precisely, Chapter 3 considers the pricing of variable annuities with fee
structures tied to the VIX under general stochastic volatility models, and Chapter 4 extends this method
to time-inhomogenous bi-dimensional diffusion processes for the pricing of debt securities under general
stochastic interest rate models.

Variable annuities are financial products offered by insurance companies mainly used for retirement plan-
ning. Typically, policyholders contribute either a single or periodic premium to an investment sub-account
(or fund), whose return is linked to a financial portfolio. This makes them comparable to mutual funds,
except that variable annuities offer financial guarantees at maturity or death, protecting the investors from
market downturns. Various types of protection are available within these products; see, for example, Hardy
(2003), Bauer et al. (2008), and Feng et al. (2022) for details. Common types of investment guarantees
include, among others, the guaranteed minimum maturity benefit (GMMB), ensuring a minimum capital
amount at contract maturity, and the guaranteed minimum withdrawal benefit (GMWB), providing a min-
imum level of withdrawals. Typically, these protection riders are financed through a periodic fee generally
set as a certain percentage of the fund value. Given their complex structures, variable annuities are subject
to different risk factors such as equity, interest rate, and mortality risk. Early surrenders can also lead to
liquidity issues. The uncertainty faced by insurers with respect to policyholder surrender behavior is known
as surrender risk. Given the significant size of the variable annuity market, appropriately pricing these
contracts and understanding optimal surrender behavior is thus essential for risk management purposes,
Niittuinperä (2022).

In recent years, the literature has extensively explored the pricing of variable annuities, covering various
pricing models and modeling approaches. For a comprehensive review, refer to Feng et al. (2022). In cer-
tain cases, simplified VA contracts can yield closed-form matrix expressions, as discussed in Hardy (2003)
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and Bauer et al. (2008). However, incorporating more realistic features like surrender risk to the valuation
framework necessitates the use of numerical techniques. Policyholder surrender behavior can significantly
affect rider fees and has thus drawn the interest of insurers and researchers. Bacinello et al. (2011) propose
a general pricing framework under different surrender behavior assumptions (static, dynamic, and mixed),
using Monte Carlo simulation. Gao and Ulm (2012) proposes a utility-based approach, whereas Zhu and
Welsch (2015) uses novel statistical learning techniques to model withdrawals. Another stream of literature
uses the no-arbitrage pricing principle and assumes that policyholders maximize the risk-neutral value of
their contract (Grosen and Jørgensen (1997), Milevsky and Salisbury (2001), Bernard et al. (2014b), Kang
and Ziveyi (2018), among others). It can be argued that it corresponds to the worst-case scenarios for VA
providers and provides an upper bound for the prices. Recent studies integrate market frictions like taxes
and other expenses into the valuation framework (Bauer et al. (2017), Alonso-García et al. (2022), Bauer
and Moenig (2023)), whereas Moenig and Zhu (2018) and Bernard and Moenig (2019) consider lapse and
reentry strategies.

Chapter 2 of this thesis concerns the pricing of variable annuities under rational surrender behavior, mean-
ing that the contract is terminated as soon as it is optimal to do so from a strictly financial perspective.
Under this assumption, the pricing of variable annuity corresponds to an optimal stopping problem simi-
lar to the pricing of American options. However, the unboundedness and time-dependence of the reward
function, combined with its time-discontinuity arising from the difference between the maturity and sur-
render benefits, sets apart variable annuities from classical American options pricing often studied in the
literature (Bassan and Ceci (2002), Bensoussan and Lions (1982), De Angelis and Stabile (2019), Jaillet et al.
(1990), Krylov (1980), to name a few). The main goal of Chapter 2 is thus to perform a rigorous analytical
study of the value function involved in the pricing of variable annuity contracts. The results of this chapter
establish a theoretical basis for existing numerical methods already applied in the VA pricing literature. It
extends the surrender premium representation of Bernard et al. (2014b) to more general fees and surren-
der charges functions and introduces a new representation of the value function in terms of the current
surrender value and an integral term that only takes non-zero value in the continuation region. We called
this new representation the “continuation premium”. To the author’s knowledge, such a representation is
new to the actuarial and American option pricing literature, opening the doors for the development of new
numerical techniques. Additionally, a detailed theoretical analysis of the shape and the non-emptiness of
the surrender region is performed. An explicit condition is derived under which early termination becomes
sub-optimal, revealing insights on the interrelation between fees, surrender charges, and surrender risk
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and extending the results of Milevsky and Salisbury (2001) to a more general finite time-horizon problem.

Chapters 3 and 4 introduced novel algorithms for pricing variable annuities and financial securities such as
convertible debts. The numerical method proposed is based on a two-layer continuous-time Markov chain
(CTMC) approximation developed by Cui et al. (2018). Building on the ideas of Kushner (1977) and Kushner
and DiMasi (1978), the use of CTMC has been developed by Kushner (1990) in control theory for approx-
imating diffusion processes, and subsequently applied to financial mathematics for the pricing of barrier
options in one-dimensional Markov models by Mijatović and Pistorius (2013). Then follows the work of Cai
et al. (2015) for the pricing of Asian options under general one-dimensional Markov processes with jumps,
whereas Lo and Skindilias (2014) discussed the calibration of the approximated model and grid designs,
and Cai et al. (2019) applied the techniques to regimes-switching models. Extension to two-dimensional
stochastic volatility models is explored in Chourdakis (2004), and subsequently in Cui et al. (2017b), Cui
et al. (2017c) and Kirkby et al. (2017). The idea behind the approach consists of first approximating the vari-
ance process by a CTMC, which results in a regime-switching diffusion process. The characteristic function
of the equity process is then obtained analytically, and the pricing of the derivative is performed through
Fourier techniques. Themethod applies to a wide class of stochastic volatility models but requires some re-
strictions on themodel parameters for the characteristic function to have an analytical expression. Cui et al.
(2018) then proposed a two-layer CTMC approximation, which applies to most stochastic volatility models,
removing the previous constraint on the diffusion process parameters. The method first approximates the
variance process by a CTMC (the first layer). The resulting regime-switching diffusion process is then ap-
proximated by a regime-switching CTMC (the second layer) and the technique of Cai et al. (2019) is used to
map the two-dimensional CTMC process onto a one-dimensional CTMC process on an enlarged state space.
The technique is then applied to the pricing of European, Asian, Barrier, Bermudan, and occupation time
derivatives under general stochastic volatility models. Ma et al. (2020) uses the method for approximating
the price of American-type derivatives using an iterative procedure based on the early exercise premium
representation of the value function under which the early exercise surface can also be approximated. Ding
andNing (2021) extend the procedure to time-inhomogeneous bi-dimensional diffusion processes, whereas
Kirkby et al. (2020) explore higher dimension setting. Recently, Kirkby (2023) developed the technique in
time-homogeneous stochastic interest rate models and applied CTMC approximations to the pricing of hy-
brid equity-rate derivatives such as equity swaps.

Various fee designs have been explored in existing literature, Bernard et al. (2014a), Bernard and MacKay
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(2015), MacKay et al. (2017), Bernard and Moenig (2019) and Wang and Zou (2021). Typically, these designs
aim to mitigate the exposure of VA providers to different risk factors. Fee structures that are tied to the VIX
are inspired directly by industry contracts. Cui (2013) theoretically investigate a particular VIX-linked fee de-
sign within the Heston-type stochastic volatility model for the pricing of VA contracts with GMMB rider and
highlight its potential in aligning fee incomes with liabilities, whereas Kouritzin andMacKay (2018) analyzed
the impact of VIX-linked fees on the sensitivity of the liability of the insurer to volatility risk for VA contracts
with GMWB rider. In Chapter 3, we numerically investigate the impact of three different VIX-linked fee struc-
tures on the optimal surrender strategy. Fee structures are allowed to be as general as possible, i.e. the fees
may depend on the time, the fund value, and the underlying latent variance process. To do so, we use a
two-layer CTMCmethodology inspired by Cui et al. (2018). The approach of Cui et al. (2018) is not only the-
oretically appealing and applies to most stochastic volatility models, but also allows for closed-form matrix
expression for the price of European-type derivatives, and simple recursive algorithms can be developed to
approximate the price of American-type derivatives. However, for the pricing of long-term financial instru-
ments, such as variable annuities, the method stretches computational resources to unacceptable levels.
This chapter addresses this challenge by presenting efficient algorithms for pricing European and American-
type derivatives under general two-dimensional models. Additionally, a novel methodology is proposed to
approximate the optimal surrender surface. Convergence of the new methodology is also demonstrated
theoritically.

Chapter 4 explores CTMC methods for the pricing of debt securities under general stochastic interest rate
models. Short-ratemodels that allow reproducing the term structure of interest rates are time-inhomogeneous,
adding to the numerical difficulty of this extension. Indeed, CTMC approximation is better suited for time-
homogeneous processes. The reason is that approximating a time-inhomogeneous process by CTMC results
in a time-dependent generator (see Ding and Ning (2021)). The theoretical extension of the results of Ding
and Ning (2021) to medium/long time horizon derivatives is straightforward but presents numerical chal-
lenges since calculations of matrix exponentials are required multiple times to obtain transition probabili-
ties and approximate option prices. Indeed, when the generator is time-dependent, transition probabilities
need to be calculated at each time step, adding to the numerical difficulty of valuing medium/long-term
derivatives. In Chapter 3, we address this challenge by adapting algorithms developed in Chapter 3 to bi-
dimensional time-inhomogeneous processes. Closed-form matrix expressions are obtained for the price of
bonds under general time-inhomogeneous short-rate models. Such an extension allows the perfect calibra-
tion of the approximated models to the current market term structure of interest rates. Efficient algorithms
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are then developed for the pricing of convertible debts under general time-inhomogeneous stochastic in-
terest rate models, and closed-form matrix expressions are obtained when conversion is only allowed at
maturity.
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CHAPTER 1

NOTATION AND SETTING

This thesis covers the pricing of two types of financial instruments: variable annuities and convertible bonds.
Although they may seem different in appearance, we observe in this chapter that their structure admits
many similarities. Section 1.1 defines their main characteristics and terms, while Section 1.2 describes the
market model used in each chapter. Lastly, some basic notions and concepts concerning the pricing of these
particular financial instruments are reviewed in Section 1.3.

1.1 Financial Instruments
In this section, we describe the main characteristics of variable annuities and convertible bonds. We also
introduce the terminology and the notation used in the next chapters.

1.1.1 Variable Annuity Contract
In this section, we describe a simplified variable annuity (VA) contract offering a guaranteed minimum

maturity benefit (GMMB) at maturity T > 0. At inception of the contract, the policyholder deposits an
initial premium in an investment sub-account (or fund) tracking the financial market. Here, we assume that
this sub-account tracks the risky asset with price process S = {St}0≤t≤T . We denote by F = {Ft}0≤t≤T

the value process of the sub-account.

The guarantees embedded in VA contracts are funded via a fee levied continuously from the investment
sub-account at a rate c = {ct}0≤t≤T . This fee rate, also called fee process, can depend on time and the
value of the sub-account or other risk factors depending on the context. Generally, we set ct := C(t, ·)

where C is called the fee function. This is discussed further in the next chapters. The sub-account value is
then defined by

Ft = Ste
−

∫︁ t
0 cu du, 0 ≤ t ≤ T, (1.1)

with F0 = S0.

At maturity, the policyholder receives the maximum between a pre-determined amount G ∈ R+ and the
value of the investment sub-account. This is defined as thematurity benefit. Should she decide to surrender
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her contract prior tomaturity, the policyholder receives the amount accumulated in the sub-account subject
to a penalty charge. This value is called the surrender benefit and depends on the surrender charge, which
is expressed as a certain percentage of the sub-account. If no surrenders occur, the maturity benefit is paid
atT . We assume that the surrender charge ismodeled by a function g(t, ·), also called the surrender charge
function, which can depend on time and other risk factors depending on the context. It is assumed to be
non-increasing in time; a later surrender will yield a higher proportion of the account value. In this work,
we often use the term surrender charge function to refer to either g(·, ·) or 1−g(·, ·). Imposing g(T, ·) = 1

is also common in the actuarial literature. It allows the function g(·, ·) to be defined on the closed interval
[0, T ] and represents the fact that at maturity, the policyholder is entitled to the full amount accumulated
in the account. In practice, it is also common to see the surrender charge vanish before maturity. Examples
of surrender charges are listed in Palmer (2006).

1.1.2 Convertible Bond
Convertible bonds (CBs) are hybrid securities that possess features of both debt and equity. They are similar
to bonds except that the investor has the right to convert the bond into a predetermined number of shares,
called the conversion ratio and denoted below by η > 0, of the issuer during a certain exercise window
prior tomaturity T > 0. This is also referred to as the conversion value. Atmaturity, if conversion is allowed
and the bond has not been converted to shares yet, the holder has the right to convert the bond or receive
its face value F > 0. In practice, additional features such as call and put options on the bonds are also
generally embedded in CBs.

In this work, we use the term European-style CB (resp. American-style CB) to refer to a bond under which
the conversion option can be exercised at maturity only (resp. at any time prior to maturity).

1.2 Market Models
On a probability space (Ω,F ,Q), letW = {(W (1)

t ,W
(2)
t )}t≥0 be a two-dimensional standard Brownian

motion, whose augmented filtration is denoted by F = {Ft}t≥0 and let Q be the risk-neutral probability
measure used to price assets.

We consider a financial market consisting of two risk factors, X = {Xt}0≤t≤T with Xt = (X
(1)
t , X

(2)
t ).
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We assume that the dynamics ofX under the pricing measure are given by
dX

(i)
t = µi(t,Xt) dt+

2∑︂
j=1

σij(t,Xt) dW
(j)
t , i ∈ {1, 2}. (1.2)

on [0, T ] with T > 0, the maturity of the financial instrument. Let SX be the state space ofX and define
drift vector by µ(t, x) = [µi(t, x)]

2
i=1 with µi : [0, T ]× SX → R and the diffusion matrix by σ(t, x) =

[σij(t, x)]
2
i,j=1 with σij : [0, T ]× SX → R. Conditions for (1.2) to be well-defined are discussed in more

details in the next chapters.

Each chapter of this thesis focuses on different risk factors relevant to the specific problem being addressed.
Chapter 2 examines the VA pricing problem from a theoretical perspective within the Black-Scholes frame-
work, considering only the stock index as a risk factor. In Chapter 3, VIX-linked fee incentives are incorpo-
rated into VA pricing, requiring the inclusion of stochastic volatility as a second risk factor. Finally, Chapter
4 addresses the pricing of debt securities, where interest rates play a significant role. Thus, both equity and
interest rates are modeled.

1.2.1 Black-Scholes Framework
In Chapter 2, a detailed theoretical study of the value of a variable annuity contract under the Black-Scholes
setting is performed. Under this market model, the risky asset {St}0≤t≤T follows a one-dimensional geo-
metric Brownian motion whose dynamics satisfy

dSt = rSt dt+ σSt dW
(1)
t , (1.3)

with r > 0 the risk-free rate and σ > 0 the volatility. Hence, using (1.1) and Itô’s formula, the dynamics of
the fund value process F is given by

dFt = (r − ct)Ft dt+ σFt dW
(1)
t , (1.4)

where {ct}0≤t≤T is the fee process.

1.2.2 Stochastic Volatility Models
Chapter 3 also studies variable annuities. However, particular fee structures are considered. In this chapter,
we numerically study the impact of three different fee structures tied to the VIX on the optimal surrender
strategy. Hence, in order to incorporate VIX-linked fee structures into the valuation model, the variance
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{Vt}0≤t≤T of the risky asset process {St}0≤t≤T needs to be modeled as a risk factor. The price of the risky
asset is thus described by a two-dimensional process (S, V ) = {(St, Vt)}0≤t≤T satisfying

dSt = rSt dt+ σS(Vt)St

(︂√︁
1− ρ2 dW (1)

t + ρ dW
(2)
t

)︂
,

dVt = µV (Vt) dt+ σV (Vt) dW
(2)
t ,

(1.5)
with S0 = s0 > 0 and V0 = v0 ∈ SV where SV denotes the state-space of V (usually R or R+ depending
on the model), with r > 0 denoting the risk-free rate and ρ ∈ [−1, 1] the correlation coefficient. The
functions µV : SV → R and σS , σV : SV → R+ are assumed to be well-defined such that (1.5) has a
unique-in-law weak solution. Other conditions are discussed in Chapter 3.

Hence, using (1.1) and Itô’s formula, the dynamics of the fund value process {Ft}0≤t≤T satisfy
dFt = (r − ct)Ft dt+ σS(Vt)Ft

(︂√︁
1− ρ2 dW (1)

t + ρ dW
(2)
t

)︂
,

dVt = µV (Vt) dt+ σV (Vt) dW
(2)
t ,

(1.6)
where {ct}0≤t≤T is the fee process.

1.2.3 Stochastic Interest Rate Models
The last chapter of this thesis concerns the pricing of various debt securities. In particular, we consider
the pricing of convertible bonds under general bi-dimensional time-inhomogeneous diffusion processes to
model the risky asset {St}t≥0 and short-rate {Rt}t≥0. The price of the risky asset can thus be described by
a two-dimensional process (S,R) = {(St, Rt)}t≥0 satisfying

dSt = RtSt dt+ σS(Rt)St

(︂√︁
1− ρ2 dW (1)

t + ρ dW
(2)
t

)︂
,

dRt = µR(t, Rt) dt+ σR(Rt) dW
(2)
t ,

(1.7)
with S0 > 0 and R0 ∈ SR, where SR denotes the state-space of R (generally R or R⋆

+ depending on the
model), and ρ ∈ [−1, 1] the correlation coefficient. The functions µR : SR → R and σS , σR : SR → R+

are assumed to be well-defined such that (1.7) has a unique-in-law weak solution. Other conditions are
discussed in Chapter 4.

1.3 Pricing of American-type Financial Instruments
In this thesis, anAmerican-type financial instrument (or American-type contract) refers to a financial instru-
ment under which the holder has the right to terminate (or surrender or convert depending on the context)
her contract at any time prior to maturity. We describe below their basic concepts and terminology.
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1.3.1 Reward (or Gain) Function
We consider a particular type of American contract under which the value received upon exercise differs
from the maturity benefit. This creates a time discontinuity in the reward (or gain) function, setting them
apart from standard American derivatives studied in the literature.

More formally, let φ : [0, T ]× SX → R+ denotes the reward function defined by

φ(t, x) =

⎧⎪⎨⎪⎩
f(t, x) if t < T ,
h(x) if t = T ,

(1.8)

where f : [0, T ]×SX → R+ is aC1,2 function representing the exercise (or surrender or conversion) value,
with f(T, ·) being the exercise value at maturity, and h : SX → R+ is a continuous function representing
the maturity benefit. We also suppose that f(T, x) ≤ h(x) for all x ∈ SX , so that the maturity benefit is
always greater or equal to the exercise value at maturity.

Remark 1.3.1 Under this assumption, we observe that the reward function can be discontinuous at time T

since

lim
t→T−

φ(t, x) = f(T, x) ≤ h(x) = φ(T, x).

In Chapters 2 and 3, variable annuity contracts are considered. The function f represents the surrender
value received by the policyholder, while the function h describes the maturity benefit, defined as the
maximum between a guaranteed amount G and the value of the investment sub-account at maturity FT .

In Chapter 4, the pricing of convertible debt is considered. Here, we assume that the bond does not pay
any coupons and that no other embedded features are included. Under these assumptions, the function
f corresponds to the conversion value. At maturity, if the bond has not been converted to shares yet,
the holder has the right to convert it or receive its face value F . This is modeled by the function h and
corresponds to the maturity benefit.

Using this particular notation, we observe that variable annuities and convertible bonds admit a similar
structure. However, the pricing of convertible debt can becomemore complex due to the inclusion of other
factors like credit risk, coupons, and additional embedded options such as call and put options. This is
discussed further in Chapter 4.
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1.3.2 Value Function
First, assume that the risk-free rate is constant and denoted by r > 0. Under the assumption that the
holder of the derivatives maximizes the risk-neutral value of her contract, the time-t value of an American-
type derivative with reward function defined in (1.8) is given by

v(t, x) = sup
τ∈Tt, T

Et,x[e
−r(τ−t)φ(τ,Xτ )], (1.9)

whereTt, T is the set of all stopping times taking value in the interval [t, T ], andEt,x[·] is short-hand notation
for E[·|Xt = x]. The function v : [0, T ]× SX → R+ is called the value function.

Suppose now that the risk-free rate is stochastic as in Chapter 4 and represented by X(2), the second risk
factor in (1.2). Under this assumption, the value function is given by

v(t, x) = sup
τ∈Tt, T

Et,x[e
−

∫︁ τ
t X

(2)
s dsφ(τ,Xτ )]. (1.10)

Lastly, we say that τxt is an optimal stopping time for (1.10) if τxt ∈ Tt, T and satisfies
v(t, x) = Et,x[e

−
∫︁ τxt
t X

(2)
s dsφ(τxt , Xτxt

)]. (1.11)

1.3.2.1 Basic Properties of the Value Function
Using the formulation in (1.9) or (1.10), it is straightforward to conclude that

v(t, x) ≥ f(t, x) for all (t, x) ∈ [0, T )× SX and v(T, x) = h(x), for all x ∈ SX ,
since t ∈ Tt,T . The domain of v is typically divided into two regions: the exercise (or surrender or conver-
sion) region S and the continuation region C, which are defined by

S = {(t, x) ∈ [0, T )× SX |v(t, x) = φ(t, x)},

C = {(t, x) ∈ [0, T )× SX |v(t, x) > φ(t, x)},

respectively.

11



1.3.2.2 Other Representations
We now explore common representations of the value function. To facilitate this, we assume a constant
risk-free rate denoted by r > 0. We also introduce the second-order differential operator L defined by

L :=
1

2

2∑︂
i=1

2∑︂
j=1

aij(t, x)
∂2

∂xi∂xj
+

2∑︂
i=1

µi(t, x)
∂

∂xi
,

where the terms aij(t, x) are the elements of the matrix a(t, x) := σ(t, x)σT (t, x) given by
aij =

2∑︂
k=1

σik(t, x)σjk(t, x).

Free-Boundary Value Problem and Variational Inequalities

Under some conditions on diffusion matrix σ, the drift vector µ and the reward function φ, the relation
between partial differential equations and the optimal stopping problem in (1.9) can be established. This
result is well-known for standard American option pricing literature when the reward function is continuous
or bounded. However, its application to the financial instruments studied in this thesis is not as straightfor-
ward. This is discussed further in Chapter 2 in the context of variable annuity pricing under the Black-Scholes
setting. More formally, under some regulatory assumptions, it can be shown the value function is a solution
of the following free boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lv(t, x) + ∂v

∂t
(t, x)− rv(t, x) = 0, (t, x) ∈ C

v(t, x) > φ(t, x), (t, x) ∈ C

v(t, x) = φ(t, x), (t, x) ∈ S

v(T, x) = h(x), x ∈ SX .

(1.12)

Using the supermartingale properties of the process {e−rtv(t,Xt)}0≤t≤T , which is also known as the Snell
envelope of the discounted reward process, we can further demonstrate that

Lv(t, x) + ∂v

∂t
(t, x)− rv(t, x) ≤ 0, (t, x) ∈ (0, T )× SX . (1.13)

Combining (1.12) and (1.13), we can establish the variational inequality. This means that the value function
v defined in equation (1.9) is a solution to

max

{︃
Lv(t, x) + ∂v

∂t
(t, x)− rv(t, x), φ(t, x)− v(t, x)

}︃
= 0, (1.14)
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with terminal condition v(T, x) = h(x) (with all the derivatives in the sense of distribution).

Conditions under which (1.12), (1.13) and (1.14) hold are discussed further in Chapter 2 under the Black-
Scholes setting.

Early Exercise Premium Representation

Another common characterization of the value function is in terms of the early exercise premium, also
known as the integral or surrender premium representation in the context of variable annuity pricing. This
representation decomposes the value function into two parts: the expected present value of the maturity
benefit and a term that only takes a non-zero value when the underlying is in the exercise (or surrender)
region. More precisely, under some conditions on the drift and diffusion parameters in (1.2) and the reward
function φ, we can demonstrate that

v(t, x) = Et,x

[︂
e−r(T−t)h(XT )

]︂
+

∫︂ T

t
Et,x

[︂
e−r(s−t) (rf(s, Xs)− Lf(s,Xs)− ft(s, Xs))1{(s,Xs)∈S}

]︂
ds,

(1.15)

where ft(t, x) = ∂f
∂t (t, x). Note that the term inside the expectation of (1.15) can be calculated explicitly as

it solely relies on the exercise value function f , which is already determined as part of the model setup in
equation (1.8). Establishing (1.15) rigorously in the present context is not trivial. Existing results often require
continuity of the reward function. Conditions under which (1.15) is valid for VA pricing are discussed further
in Chapter 2 under the Black-Scholes setting.

1.3.3 Classical Numerical Techniques
The optimal stopping problem in (1.9) generally does not admit a closed-form analytical solution, unless a
trivial optimal stopping time is shown to exist. This is discussed further in Chapter 2. Numerical techniques
are thus required to solve the optimization problem. Here we discussed themost commonly usedmethods,
which include finite difference techniques, tree methods, and Monte Carlo simulation.

Methods based on the resolution of partial differential equation (PDE) use (1.12), necessitating certain con-
ditions on µ, σ, andφ to rigorously define the problem. When these are satisfied, finite difference methods
are used to approximate the derivative, and the problem is solved iteratively; see, for instance, Hull (2018),
Chapter 21.8 for details.
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Tree methods and simulation techniques1, such as the one proposed by Longstaff and Schwartz (2001), are
based on a time-discretization of the problem. This is discussed below.

Consider a time partition 0 = t0 < t1 < . . . < tN = T with tn = n∆, n = 0, 1, 2 . . . , N and∆ = T/N for
someN ∈ N. In this thesis, we use the term Bermudan-type financial instrument (or Bermudan contract)
to refer to a financial instrument in which the holder has the option to exercise her right prior to maturity
on predetermined dates. In the same vein, a financial instrument that can be exercised at maturity only is
called a European-type financial instrument (or European contract). Note that these terms do not refer to
existing contracts, and they are used to simplify explanations. Naturally, as N → ∞, we expect the price
of the Bermudan contract to converge to the American-type financial instrument defined in (1.9). This is
formalized in Chapter 3.

Define the setHN = {t0, t1, . . . , tN}. The time-t risk-neutral value of the Bermudan contract with permit-
ted exercise datesHN is defined by

bN (t, x) = sup
τ∈TN ,τ≥t

Et,x[e
−r(τ−t)φ(τ,Xτ )], (1.16)

where TN is the set of stopping times taking values inHN .

We denote the Bermudan contract value process by B := {Bn}Nn=0, with Bn := bN (tn, Xtn). Based on
the principle of dynamic programming (refer for example to Lamberton (1998), Theorem 10.1.3), it can be
shown that the discretized problem admits the following representation:⎧⎨⎩ BN = h(XT )

Bn = max
(︁
f(tn, Xtn), e

−r∆nEtn [Bn+1]
)︁
, 0 ≤ n ≤ N − 1.

(1.17)
Therefore, if the process {Xtn}Nn=0 is approximated correctly, the value of the Bermudan contract can be
computed using a backward recursive procedure based on (1.17). The value of the American-type financial

1 Over the years, several simulation techniques have been developed to value American-type derivatives ranging from random-
tree methods (Broadie and Glasserman (1997)) to stochastic mesh techniques (Broadie and Glasserman (2004)) and parametric
approximation of early exercise rule (Garcıa (2003)). Other techniques used regression-based methods to approximate the contin-
uation value (Carriere (1996), Longstaff and Schwartz (2001), Tsitsiklis and Van Roy (2001)). The method of Longstaff and Schwartz
(2001), also known as least squares Monte Carlo (LSMC), has garnered significant attention in option pricing literature (Clément
et al. (2002), Stentoft (2004)), with different improvements proposed over time (Fabozzi et al. (2017), Auster et al. (2022), Wei
and Zhu (2022), Xiong et al. (2023), Reesor et al. (2024), among others). Recent advancements in machine learning and quantum
finance have also enabled novel extensions of this technique (Becker et al. (2021), Doriguello et al. (2021)).
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instrument can then be approximated by its Bermudan counterparts using a large number of exercised dates
N . The main challenge of this technique consists of calculating the continuation value, e−r∆nEtn [Bn+1],
at each time step.

When using tree methods, the continuation value can be calculated explicitly since each node is related to
subsequent nodes at the previously considered time step. This characteristic makes tree methods very at-
tractive for the pricing of American-type contracts. However, extending thesemethods to higher-dimensional
diffusion processes can be computationally expensive and quickly become inefficient. On the other hand,
simulation techniques easily adapt to high-dimension processes, but the calculation of the continuation
value requires an additional level of approximation, which makes the methodology usually less efficient
than trees. In this work, we provide efficient algorithms for the pricing of American-type financial instru-
ments. The method uses continuous-time Markov chains to approximate the underlying process X and
then employs a backward recursive procedure based on (1.17) to approximate the price of the Bermudan
contract. The method is very intuitive, similar to tree techniques, and allows for the explicit formulation of
the continuation value, which makes the procedure highly efficient. It also adapts to a wide range of diffu-
sion processes in one and two dimensions. Chapter 3 explores this methodology in the context of variable
annuity pricing under stochastic volatility models, while Chapter 4 applies the technique to the pricing of
debt securities under stochastic interest rate models.

Another common techniqueuses the exercise premium representation in (1.15) alongwith a time-discretization
of the integral. This has been explored by Kim (1990) and Carr et al. (1992) in the context of American call
and put options pricing, whereas Bernard et al. (2014b) apply the technique to variable annuity pricing.
However, establishing equation (1.15) rigorously is non-trivial, and its proof relies on the regularity proper-
ties of the value function. This is discussed further in Chapter 2 under the Black-Scholes setting. Extending
these results to stochastic volatility or interest rate models presents challenges. This has been done in
Lamberton and Terenzi (2019) for standard American-put option pricing under a Heston-type stochastic
volatility model, Heston (1993). Additionally, Ma et al. (2020) explored this method using continuous-time
Markov chain approximation under stochastic volatility models, assuming certain regularity assumptions
on the value function. Extending the results developed in Chapter 2 to American-type financial instruments
with a discontinuous reward function as described in (1.8) is left as future research.
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CHAPTER 2

ANALYTICAL STUDY OF A VARIABLE ANNUITY CONTRACT

This chapter is based on the paper “On an Optimal Stopping Problem with a Discontinuous Reward” in
collaboration with Dr. Anne MacKay. The research focuses on the pricing of variable annuities within the
Black-Scholes setting. Under the assumption that the policyholdermaximizes its risk-neutral value, the price
of a variable annuity contract corresponds to an optimal stopping problem akin to the pricing of American
options. However, the financial guarantee being applied only at maturity in a VA contract creates a discon-
tinuity in the reward function at maturity, which sets it apart from the continuous reward function of the
American option often studied in the literature. This unique feature complicates the optimal stopping prob-
lem involved in the pricing of variable annuities. The objective of this chapter is thus to perform a rigorous
analytical study of the value function associated with variable annuity contracts, considering the challenge
posed by the unbounded, time-dependent, and discontinuous reward function.

2.1 Introduction
Variable annuities (VAs) are structured products sold by insurance companies that are mainly used for re-
tirement planning. An initial premium is deposited in an investment account (or fund) whose return is
linked to that of one or more risky assets. They are similar to mutual funds, but they also offer financial
guarantees at the end of a pre-determined accumulation period. The embedded guarantees are akin to
long-dated options, but they are funded by a periodic fee, generally set as a percentage of the investment
account value, rather than being paid upfront. In this chapter, we focus on a GMMB, which provides the
policyholder a minimum guaranteed amount at maturity of the contract. Another common feature of vari-
able annuities contracts is that policyholders generally have the right to surrender, or lapse, their contract
prior to maturity. When policyholders choose to do so, they receive the value accumulated in the invest-
ment account, reduced by a penalty for early surrender (or surrender charge). The uncertainty faced by VA
providers with respect to early termination is known as surrender risk. Early surrenders can entail negative
consequences such as liquidity issues. Thus, incorporating adequate surrender assumptions in the pricing
of VAs is essential for risk management purposes; see Niittuinperä (2022).

Different early surrendermodelling approaches have been proposed in the literature (see Bauer et al. (2017)
and Feng et al. (2022) for a review), from the use of utility functions, Gao and Ulm (2012), to modern sta-
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tistical techniques, Zhu andWelsch (2015). Early surrenders are also often expressed as a decision taken by
policyholders on a strictly rational basis, meaning that the contract is terminated as soon as it is optimal to
do so from a financial perspective (see Bernard et al. (2014a), Jeon and Kwak (2018), Kang and Ziveyi (2018),
Milevsky and Salisbury (2001), and MacKay et al. (2023), as discussed in the next chapter, among others).
Bauer et al. (2017) discusses the impact of other factors on policyholder behavior, such as taxes and ex-
penses. This article gave rise to another stream of literature in which market frictions such as taxation rules
are considered (Alonso-García et al. (2022), Bauer andMoenig (2023), andMoenig and Bauer (2016)), which
helps to explain the discrepancies between market and model fee rates, Moenig and Bauer (2016). Other
recent studies include lapse and reentry strategies in their analysis (Bernard andMoenig (2019) andMoenig
and Zhu (2018)), whereas Moenig and Zhu (2021) consider a third-party investor to whom the policyholder
can sell her contract.

The goal of this chapter is to study the properties of the value function of the VA contract under the as-
sumption that the policyholder maximizes its risk-neutral value, when the fee and the surrender penalty
(or charge) are both time and state-dependent (that is, depending on the value of the VA account, see
Bernard et al. (2014a)). Our setup includes, among others, the constant fee case, the state-dependent fees
of Bernard et al. (2014a), Delong (2014), and MacKay et al. (2017), and the time-dependent fees of Bernard
and Moenig (2019) and Kirkby and Aguilar (2023). Under this assumption, valuing a variable annuity con-
tract is equivalent to solving an optimal stopping problem similar to pricing an American option. However,
the financial guarantee being applied only at maturity in a VA contract creates a discontinuity in the re-
ward function at maturity, which sets it apart from the continuous reward function of the American option
and complicates the optimal stopping problem involved in the pricing of VAs. The impact of the surrender
charge and the fee structure on the optimal surrender strategy has been studied in the Black-Scholes frame-
work by Bernard et al. (2014a), Bernard and MacKay (2015), Bernard and Moenig (2019), MacKay (2014),
MacKay et al. (2017), and Moenig and Zhu (2018), and in a more general setting by Kang and Ziveyi (2018),
and MacKay et al. (2023), as discussed in the next chapter. However, these articles approach the problem
from a numerical perspective. To the author’s knowledge, it is the first time that such an extensive analytical
study of the optimal stopping problem involved in the pricing of a variable annuity contract is performed in
the literature.

Recently, Luo and Xing (2021) studied variable annuity contracts under regime-switching volatility models
from an optimal stopping perspective. However, they consider a different surrender benefit, which results

17



in a continuous reward function similar to that of a put option. Chiarolla et al. (2022) perform an analysis
similar to ours, but for participating policies with minimum rate guarantee and surrender option. Partici-
pating policies are akin to variable annuities in that the premium paid by the policyholder tracks a financial
portfolio, subject to a minimum rate guarantee. However, the problem they consider is fundamentally dif-
ferent from ours in multiple ways. i) In variable annuity contracts, guarantees are funded via periodic fees
set as a percentage of the sub-account value. This creates a discrepancy between the fee amount and the
value of the financial guarantee, which becomes an incentive for the policyholder to surrender the policy
early (Milevsky and Salisbury (2001)). In participating policies, there is no such ongoing fee; upon termina-
tion or at maturity, the policyholder receives the reserve and a given percentage of the surplus, defined as a
percentage of the tracking portfolio over the policy reserve (the intrinsic value). ii) In variable annuities, the
surrender value differs from that of the maturity payout, which creates a time discontinuity in the reward
function at maturity; whereas in participating policies, the intrinsic value is paid at maturity or upon early
termination, so that the reward function is independent of time and continuous. iii) In participating policies,
the contract is terminated if the underlying portfolio falls below the reserve. There is no such feature in a
variable annuity, that is, early termination is at the sole discretion of the policyholder. The resulting optimal
stopping problem we study in this chapter is thus very different from the one considered by Chiarolla et al.
(2022), even if they are motivated by similar insurance products.

The time discontinuity and the unboundedness of the reward function involved in the pricing of variable an-
nuities with GMMB prevent the simple application of results from the American option pricing literature to
our problem. For example, to express the value function as the solution to a free-boundary value problem,
one needs to establish its continuity. However, continuity of the value function often follows from the con-
tinuity of the reward function, which, in our setting, is unbounded and only upper semi-continuous, making
the results usually cited in the context of American options inapplicable (see, for instance, Bassan and Ceci
(2002), Bensoussan and Lions (1982), De Angelis and Stabile (2019), Jaillet et al. (1990), Krylov (1980), and
Lamberton (2009)). In this chapter, following the work of VanMoerbeke (1974) and Palczewski and Stettner
(2010) (in the context of impulse control problems), we establish continuity of the value function by showing
that it admits an alternative representation in terms of a continuous reward function. We can then confirm
that it is a solution to a free-boundary value problem and prove further properties, which provides enough
regularity to apply a generalized version of Itô’s formula to the value process. This allows us to derive var-
ious integral representations for the value function, thus extending the results of Bernard et al. (2014b)
to general time-dependent fee and surrender charge functions and introducing a new decomposition, the
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continuation premium representation, to the literature on VA pricing.

The shape and the (non-)emptiness of the exercise region of an American option with a time-homogeneous
reward function has first been studied rigorously by Villeneuve (1999). Other authors, such as Jönsson
et al. (2006), Kotlow (1973), and Villeneuve (2007), also studied the conditions under which the exercise
region has a particular shape. These results are however not directly applicable to the problem we study
in this chapter, because of the time-dependence and the discontinuity of our reward function. Under the
assumption of a general fee and surrender charge structure, we are nonetheless able to identify a condition,
expressed as a partial differential inequality, under which the optimal stopping time is always at maturity
of the contract, thus mitigating surrender risk. This condition provides a powerful tool to understand the
interplay between the fees and surrender charges, and its effect on the optimal stopping strategy. It can
also be used to further study and characterize the shape of the optimal exercise, or surrender, region. In
particular, we show that the surrender region can be a disconnected set and that the optimal surrender
boundary can be discontinuous, thus illustrating amajor difference between the pricing of VA contracts and
standard American options. Our results extend the work of Milevsky and Salisbury (2001), who consider an
infinite horizon, to a more general finite horizon problem.

Our results on the shape of the surrender region also shed light on the link between our original optimal
stopping problem and its continuous reward function counterpart. In particular, we obtain conditions under
which the two reward functions lead to equivalent optimal stopping problems; that is, we identify cases
when they present the same surrender regions and optimal stopping times. While the idea of using an
alternate continuous reward process to obtain continuity of the value function is not new to the literature,
it is the first time, to the authors’ knowledge, that an in-depth comparison of the two problems is presented.

The main contributions of this chapter are listed below.

• We give a condition under which it is never optimal for the policyholder to surrender before maturity
of the VA contract.

• We present an alternative representation for the value function of the VA contract in terms of a con-
tinuous reward function. As stated above, various results in the literature rely on the continuity of
the reward function, in particular those regarding the continuity of the value function. In our chapter,
this representation is used in Section 2.4 to perform a rigorous theoretical study of the value function
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and to show that the value function of the optimal stopping problem solves a free boundary value
problem. This justifies the use of different numerical methods already applied to VA pricing in the
actuarial literature.

• We provide two further representations for the value function. For the first one, we decompose the
value of the contract into the value of the maturity benefit and an integral term akin to the early
exercise premium from the American option literature. The second representation is new to the
actuarial and American option pricing literature and expresses the contract value as the sum of the
surrender benefit and an integral term coined the continuation premium. These two representations
are used in Section 2.4.3 to better understand the value function of a VA contract and in the proofs of
Section 2.4.4, which presents characterizations of the (non-) emptiness of the surrender region. The
representations could also be used to develop numerical pricing algorithms.

• We obtain conditions under which the original optimal stopping problem and the one with an alter-
native continuous reward function are equivalent.

This chapter is organized as follows. Section 2.2 presents the optimal stopping problem involved in the
pricing of VA contracts with a GMMB. The existence of an optimal stopping time is discussed in Section 2.3.
In Section 2.4, we obtain analytical properties of the value function, derive its integral representations and
study the shape of the surrender region. We also discuss the equivalence between the original optimal
stopping problem and its continuous reward function counterpart. Numerical examples are provided in
Section 2.5. Section 2.6 concludes the chapter.

2.2 Financial Setting
2.2.1 Market Model
On a probability space (Ω,F ,Q), let W = {Wt}t≥0 be a standard Brownian motion whose augmented
filtration is denoted by F = {Ft}t≥0. Q is the probability measure used to price assets presented below.

We consider a financial market consisting of two primary assets, a risk-free bond B = {Bt}t≥0 and a risky
asset S = {St}t≥0 whose dynamics under the measure Q are given by

dBt = rBt dt,

dSt = rSt dt+ σSt dWt,
(2.1)
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where r, σ are deterministic constants with σ > 0. It is easy to verify that (2.1) has a unique strong solution
given by Bt = B0e

rt and
St = S0e

(r−σ2

2
)t+σWt .

Most readers will recognize the so-called Black-Scholesmodel, presented here directly in terms of its unique
risk-neutral measure.

2.2.2 Variable Annuity Contract
In this section, we describe a simplified variable annuity contract offering a guaranteed minimum accu-
mulation benefit at maturity T ∈ R⋆

+. At inception of the contract, the policyholder deposits an initial
premium in an investment sub-account (or fund) tracking the financial market. Here, we assume that this
sub-account tracks the risky asset with price process S. We denote by F = {Ft}0≤t≤T the value process
of the sub-account.

We remark that variable annuity policyholders usually benefit from a return-of-premium guarantee if they
die before maturity. Under the assumption that mortality risk is completely diversifiable, it is straight-
forward to add the death benefit in the analysis of the contract, see for example MacKay et al. (2017).
For this reason, in this chapter, we ignore mortality risk.

The guarantees embedded in VA contracts are funded via a fee levied continuously from the investment
sub-account at a rate ct defined as

ct := C(t, Ft), 0 ≤ t ≤ T, (2.2)
where C : [0, T ] × R⋆

+ → [0, 1], so that (2.4) has a unique strong solution. This fee structure is general
enough to include state-dependent (Bernard et al. (2014b), Delong (2014), MacKay et al. (2017)) and time-
dependent fees (Bernard and Moenig (2019), Kirkby and Aguilar (2023)). The sub-account value is then
defined by

Ft = Ste
−

∫︁ t
0 cu du, 0 ≤ t ≤ T, (2.3)

with F0 = S0, so that
dFt = (r − ct)Ft dt+ σFt dWt. (2.4)

Going forward, we denote by {F t,x
s }t≤s≤T the solution to (2.4) with starting conditionFt = x ∈ R⋆

+. When
t = 0, we simplify the notation and write F x

s = F 0,x
s .
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At maturity, the policyholder receives the maximum between a pre-determined amount G ∈ R⋆
+ and the

value of the investment sub-account. Given Ft = x, the time-t risk-neutral value of the maturity benefit is
given by

h(t, x) := E
[︂
e−r(T−t)max(G,F t,x

T )
]︂
. (2.5)

Should she decide to surrender her contract prior to maturity, the policyholder receives the amount ac-
cumulated in the sub-account subject to a penalty charge. We assume that this charge, expressed as a
percentage of the sub-account, can depend on time and on the sub-account value. If no surrenders occur,
the maturity benefit is paid at T .

More formally, let φ : [0, T ]× R⋆
+ → R⋆

+ denote the reward (or gain) function defined by

φ(t, x) =

⎧⎪⎨⎪⎩
g(t, x)x if t < T ,
max(G, x) if t = T ,

(2.6)

where g : [0, T ] × R⋆
+ → (0, 1] is in C1,2 with bounded first order derivatives on [0, T ] × R⋆

+, non-
decreasing in t and satisfies g(T, x) = 1 for all x ∈ R⋆

+. This function represents the amount received by
the policyholder upon surrender at t < T or at maturity T , given that the sub-account has value x.

In practice, 1 − g(·, ·) is often called the surrender charge. It is non-increasing in time; a later surrender
will yield a higher proportion of the account value. In this work, we often use the term surrender charge

function to refer to either g(·, ·) or 1− g(·, ·).

Imposing g(T, ·) = 1 is common in the actuarial literature. It allows the function g(·, ·) to be defined on
the closed interval [0, T ] and represents the fact that at maturity, the policyholder is entitled to the full
amount accumulated in the account. In practice, it is also common to see the surrender charge vanish
before maturity. Examples of surrender charges are listed in Palmer (2006).

It is the first time, to our knowledge, that state-dependent surrender charges are considered. We will show
that state-dependent surrender charges arise naturally when trying to mitigate surrender risk in the pres-
ence of a state-dependent fee.

Remark 2.2.1 For x < G, the function t ↦→ φ(t, x) is discontinuous at T since

lim
t→T−

φ(t, x) = g(T, x)x = x < G = φ(T, x).
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Under the assumption that the policyholdermaximizes the risk-neutral value of her contract, its time-t value
is given by

v(t, x) = ess sup
τ∈Tt, T

E[e−r(τ−t)φ(τ, F t, x
τ )] = sup

τ∈Tt, T
E[e−r(τ−t)φ(τ, F t, x

τ )], (2.7)
where Tt, T is the set of all stopping times taking value in the interval [t, T ]. Moreover, throughout this
chapter, it must be understood that for s > t,

v(t, F t,x
s ) = ess sup

τ∈Tt, T
E[e−r(τ−t)φ(τ, F t, x

τ )],

since, in that particular case, the essential supremum does not simplify to an ordinary supremum.

The difference between the value of the full variable annuity contract and the present value of the maturity
benefit is the value of the surrender right, which we denote by e : [0, T ]× R⋆

+ → R+ and define as
e(t, x) := v(t, x)− h(t, x).

2.3 Optimal Stopping Time
In this section, we show that under a simple condition on the fee and the surrender charge function, the
optimal stopping problem in (2.7) admits a trivial solution: an optimal stopping time is T , the maturity of
the contract. In the second part of the present section, we discuss the existence of an optimal stopping
time when this condition does not hold.

We say that a stopping time τ⋆ is optimal if
v(t, x) = sup

τ∈Tt, T
E[e−r(τ−t)φ(τ, F t,x

τ )] (2.8)
= E[e−r(τ⋆−t)φ(τ⋆, F t,x

τ⋆ )].

In this case, we also say that τ⋆ is optimal for (2.8).

For a general reward function φ, such an optimal stopping does not necessarily exist. However, under some
regularity conditions on the discounted reward process Z = {Zt}0≤t≤T , with Zt := e−rtφ(t, Ft), the ex-
istence and the form of an optimal stopping time are well-known from the theory of optimal stopping
for random processes in continuous time, see for instance Karatzas and Shreve (1998) (Appendix D, Theo-
rem D.12), Peskir and Shiryaev (2006) (Theorem 2.2), Lamberton (1998) (Section 10.2.1), Lamberton (2009)
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(Theorem 2.3.5 and Section 2.3.4), El Karoui (1981), Chapter 2. With the exception of El Karoui (1981), these
results rely on the (almost sure) continuity of the reward process, which does not hold for the one involved
in variable annuity pricing since its trajectories are discontinuous at time T with positive probability. In fact
the trajectories of Z are upper semi-continuous.

2.3.1 Surrender Right - Trivial Case
In this section, we derive a simple condition on the fee and surrender charge functions under which it is
always optimal for a policyholder maximizing the risk-neutral value of her policy to hold the contract until
maturity.

Lemma 2.1 Let g and φ be defined as in (2.6). If the discounted surrender value process Y = {Yt}0≤t≤T ,

with Yt := e−rtFtg(t, Ft), is a submartingale, then the discounted reward process Z = {Zt}0≤t≤T , with

Zt := e−rtφ(t, Ft), is also a submartingale.

In the proof below, and in the rest of the chapter when necessary, we use the notation Es[·] = E[·|Fs] for
s ≤ t.

Proof. We first observe that for 0 ≤ t < T , Yt = Zt so that if Y is a submartingale, then for any 0 ≤ s ≤

t < T , Es[Zt] ≥ Zs.

For 0 ≤ s < t = T , since g(T, x) = 1 for all x ∈ R⋆
+, we have

Es[e
−rTφ(T, FT )] ≥ Es[e

−rTFT g(T, FT )] ≥ e−rsFsg(s, Fs) = e−rsφ(s, Fs).

□

The next result is well-known in optimal stopping theory (see for example Björk (2009), Proposition 21.2)
and is reproduced here for completeness. It states that if the discounted reward process is a submartingale,
the maturity date of the contract is an optimal stopping time. There is a simple financial interpretation to
the above statement. If the discounted reward process Z is a submartingale, then it is non-decreasing on
average over time. Hence, it is optimal to hold the contract as long as possible because its value is expected
to increase. This is also the reasoning behind the optimal exercise strategy for an American call option on a
non-dividend-paying stock.
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Lemma 2.2 If the discounted reward process {Zt}0≤t≤T , withZt := e−rtφ(t, Ft), is a submartingale, then

T is an optimal stopping time, that is

v(t, x) = sup
τ∈Tt, T

E[e−r(τ−t)φ(τ, F t, x
τ )] = E[e−r(T−t)φ(T, F t, x

T )].

In the following, we denote gx(t, x) = ∂g
∂x(t, x), gxx(t, x) = ∂2g

∂x2 (t, x) and gt(t, x) = ∂g
∂t (t, x).

Proposition 2.3 Let C and g be the fee and the surrender charge functions as defined in (2.2) and (2.6),
respectively. If

gt(t, x) + (r − C(t, x) + σ2)xgx(t, x) +
σ2x2

2
gxx(t, x)− C(t, x)g(t, x) ≥ 0, (2.9)

holds for all (t, x) ∈ [0, T )× R⋆
+, then T is an optimal stopping time for (2.7).

Proof. An application of Itô’s lemma to the discounted surrender value process Y = {Yt}0≤t≤T , with Yt :=

e−rtFtg(t, Ft), yields

dYt = e−rtFt

(︂
gt(t, Ft) + (r − C(t, Ft) + σ2)Ftgx(t, Ft) +

σ2F 2
t

2
gxx(t, Ft)

− C(t, Ft)g(t, Ft)
)︂
dt+ e−rtσFt

(︂
g(t, Ft) + gx(t, Ft)Ft

)︂
dWt.

Thus, if

gt(t, x) + (r − C(t, x) + σ2)xgx(t, x) +
σ2x2

2
gxx(t, x)− C(t, x)g(t, x) ≥ 0,

for all (t, x) ∈ [0, T ) × R⋆
+, then Y is a submartingale and so is the discounted reward process by Lemma

2.1. The optimal stopping time follows from Lemma 2.2. □

We now present applications of Proposition 2.3.

Example 2.3.1 Let the fee rate be constant, that is C(t, x) = c > 0, and let g(t, x) = e−k(T−t) for some

k > 0. To eliminate the incentive to surrender, it suffices to choose k and c such that (2.9) holds; a quick

calculation yields k ≥ c. Therefore, it suffices to set the surrender rate k at or above the fee rate c to

eliminate surrender risk. This result is well-known and discussed in Bernard andMacKay (2015), Proposition

3.1 and MacKay (2014), Proposition 4.4.2. In particular, MacKay (2014) shows that in the Black-Scholes

setting, g(t, x) = e−c(T−t) is the maximal surrender charge function that can be used to eliminate the

surrender incentive when the fee rate is constant.
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Example 2.3.2 Let g(t, x) = 1− k
(︁
1− t

T

)︁3 for some constant k > 0, as in Bacinello and Zoccolan (2019),

MacKay (2014) Section 4.3.2., and MacKay et al. (2017). As explained in MacKay (2014), this form of surren-

der charge function mimics the surrender charges in the market, which are usually high in the first years of

the contract and drop drastically thereafter. Assume also that the fee function only depends on time, such

that C(t, ·) = c(t). In this example, we do not specify a particular form for the fee function; (2.9) is used to
obtain the function c(t) eliminating the surrender incentive. Simple calculations show that (2.9) is satisfied
if

c(t) ≤
3k
T (1− t/T )2

1− k(1− t/T )3
. (2.10)

Thus, any function c(t) satisfying this inequality above will eliminate the surrender incentive (from a risk-

neutral value maximization perspective). We may simply set c(t) = 3k/T (1−t/T )2

1−k(1−t/T )3
. This example highlights

the interplay between the fee and the surrender charge structures. Under this setting, it would have been

impossible to satisfy (2.9) using a constant fee rate, except with c = 0, as the function on the right-hand

side of (2.10) vanishes at maturity. Having a zero fee rate throughout the life of the VA contract is not a

feasible solution from the insurer’s perspective since the guarantee at maturity must be financed. On the

other hand, isolating k in (2.10) gives
k ≥ c(t)

3/T (1− t/T )2 + c(t)(1− t/T )3
. (2.11)

We observe that the term on the right-hand side of the inequality goes to infinity as t approaches T if c(t)

is kept constant over time. This is obviously not a feasible solution either.

The examples presented above illustrate the interplay between fees, surrender charges, and surrender
incentives. In order to eliminate early surrender incentives, surrender charges and fees must be struc-
tured conjointly; that is, a time-dependent fee structure should be paired with a time-dependent surrender
charge to satisfy (2.9).

Remark 2.3.1 The results of Section 2.3.1 can easily be extended to more general market models and fee

structures, such as the VIX-linked fee discussed in Cui et al. (2017a), Kouritzin andMacKay (2018), and Chap-

ter 3 of this thesis.
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2.3.2 Surrender Right - Non-Trivial Case
In this section, we study the existence of an optimal stopping time for the variable annuity contract when
(2.9) is not satisfied. To do so, the definitions below are required.

Definition 2.3.1 A processX = {Xt}t≥0 defined on a filtered probability space {Ω,F , {Ft}t≥0,P} is said

to be optional if it is measurable with respect to the sigma-algebra generated by the right-continuous and

adapted processes.

Definition 2.3.2 A right-continuous adapted process X = {Xt}t≥0 defined on a filtered probability space

{Ω,F , {Ft}t≥0,P} is said to be of class (D) if the family {Xτ , τ ∈ T0,∞} is uniformly integrable.

The next theorem is from Theorem 19 of Bassan and Ceci (2002), which summarizes concisely the results
of El Karoui (1981). An advised reader will notice differences between the conditions stated in Theorem 19
of Bassan and Ceci (2002) and the ones of Theorem 2.4. This is because Bassan and Ceci (2002) work with
bounded reward functions so the class (D) condition of El Karoui (1981) is automatically satisfied in their
setting.

Theorem 2.4 (El Karoui (1981), Theorems 2.28, 2.31 and 2.41, see also Bassan and Ceci (2002), Theorem 19)

Let the discounted reward process {Zt}t≥0 defined on some filtered probability space {Ω,F , {Ft}t≥0,P}

be optional, non-negative and of class (D), and let {Jt}t≥0 denote its Snell envelope, that is

Jt = ess sup
τ≥t

E[Zτ |Ft].

Then,

(i) J is the smallest non-negative supermartingale which dominates Z (El Karoui (1981), Theorem 2.28).

(ii) A stopping time τ⋆ ∈ T0,∞ is optimal if and only if Jτ⋆ = Zτ⋆ a.s. and {Jτ⋆∧t}t≥0 is a martingale

(El Karoui (1981), Theorem 2.31).

(iii) If, in addition, the trajectories of Z are upper semi-continuous, then

τ⋆ = inf{t ≥ 0|Jt = Zt},
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is the smallest optimal stopping time (El Karoui (1981), Theorem 2.41).

In light of Theorem 2.4, proving the existence of an optimal stopping time is simply a matter of checking
that the discounted reward process is positive, optional and of class (D), and has upper semi-continuous
trajectories.

Corollary 2.5 Let φ and v be defined by (2.6) and (2.7), respectively. The stopping time given by

τxt = inf
{︁
t ≤ s ≤ T,

⃓⃓
v(s, F t, x

s ) = φ(s, F t, x
s )

}︁
. (2.12)

is optimal for (2.7).

Proof. The discounted reward process Z = {Zt}0≤t≤T , with Zt = e−rtφ(t, Ft), is positive and adapted

with upper semi-continuous trajectories. Moreover, it is dominated by an integrable non-negative random

variable, sup0≤t≤T e
−rtφ(t, Ft)

1, so it is of class (D). The result then follows from Theorem 2.4. □

The next theorem, inspired by Palczewski and Stettner (2010), provides an alternative representation for
the optimal stopping problem in (2.7) and will be essential to prove the continuity of the value function.

Theorem 2.6 The value function v defined in (2.7) can be written as
v(t, x) = sup

τ∈Tt, T
E
[︂
e−r(τ−t)

[︁
g(τ, F t,x

τ )F t,x
τ ∨ h(τ, F t,x

τ )
]︁]︂
, (2.13)

where

h(s, x) = E
[︂
e−r(T−s)max(G,F s,x

T )
]︂
, s ∈ [0, T ].

Proof. Without loss of generality, let t = 0 and note that for 0 ≤ s ≤ T ,

h(s, Fs) = E
[︂
e−r(T−s)max(G,FT )|Fs

]︂
.

1 To clarify on the integrability of sup0≤t≤T e
−rtφ(t, Ft), first note that E[sup0≤t≤T e

−rtφ(t, Ft)] ≤ G+E[sup0≤t≤T e
−rtFt].

Then, using Doob’smaximal inequality, we obtain thatE[sup0≤t≤T e
−rtFt] <∞. It follows thatE[sup0≤t≤T e

−rtφ(t, Ft)] <∞.
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We define the Snell envelope of the discounted continuous reward process { ˜︁Js}0≤s≤T by

˜︁Js = ess sup
τ∈Ts,T

E
[︁
e−rτ (g(τ, Fτ )Fτ ∨ h(τ, Fτ )) | Fs

]︁
for 0 ≤ s ≤ T , and recall that the Snell envelope of the discounted original reward process {Js}0≤s≤T is

defined by

Js = ess sup
τ∈Ts,T

E
[︁
e−rτφ(τ, Fτ ) | Fs

]︁
.

We show that ˜︁Js = Js a.s. for all 0 ≤ s ≤ T .

First observe that since g(t, Ft)Ft ∨ h(t, Ft) ≥ φ(t, Ft) for all 0 ≤ t ≤ T , ˜︁Js ≥ Js for all 0 ≤ s ≤ T .
Now we show that ˜︁Js ≤ Js for all 0 ≤ s ≤ T . By definition of v(t, Ft), g(t, Ft)Ft ∨ h(t, Ft) ≤ v(t, Ft) for

all 0 ≤ t ≤ T . It follows that

˜︁Js ≤ ess sup
τ∈Ts,T

E
[︁
e−rτv(τ, Fτ ) | Fs

]︁
= ess sup

τ∈Ts,T
E
[︁
e−rτJτ | Fs

]︁
.

Since {Js}0≤s≤T is a supermartingale, by the optimal sampling theorem, E[Jτ | Fs] ≤ Js for any τ ∈ Ts,T ,

and thus ess supτ∈Ts,T E
[︁
e−rτJτ | Fs

]︁
= Js, which completes the proof. □

Remark 2.3.2 The modified reward function g(t, x)x∨h(t, x) is continuous since it is the maximum of two

continuous functions. Indeed, g(t, x)x is continuous by definition while the continuity of h(t, x) follows

from Theorem 3 of Veretennikov (1981), which is the analog of the Feynman-Kac Theorem (see, for instance,

Karatzas and Shreve (1991), Theorem 5.7.6).

Similarly to Palczewski and Stettner (2010), we use the new representation of the value function in (2.13) to
construct another optimal stopping time for the original problem in (2.7). Define

˜︁τxt := inf
{︁
t ≤ s ≤ T |v(s, F t,x

s ) = g(s, F t,x
s )F t,x

s ∨ h(s, F t,x
s )
}︁
, (2.14)

the smallest optimal stopping time for (2.13), as per Theorem 2.4.

Corollary 2.7 Let h and g be defined as in (2.5) and (2.6), respectively. The stopping time defined by

τ̄xt =

⎧⎪⎨⎪⎩
˜︁τxt , g(˜︁τxt , F t,x˜︁τxt )F t,x˜︁τxt ≥ h(˜︁τxt , F t,x˜︁τxt ),

T, g(˜︁τxt , F t,x˜︁τxt )F t,x˜︁τxt < h(˜︁τxt , F t,x˜︁τxt ),

(2.15)

is optimal for (2.7).
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Proof. To keep the notation lighter, we write τ̄ = τ̄xt and ˜︁τ = ˜︁τxt . By Theorems 2.4 and 2.6, we have

v(t, x) = sup
τ∈Tt, T

E
[︂
e−r(τ−t)

[︁
g(τ, F t,x

τ )F t,x
τ ∨ h(τ, F t,x

τ )
]︁]︂

= E
[︂
e−r(˜︁τ−t)

[︂
g(˜︁τ , F t,x˜︁τ )F t,x˜︁τ ∨ h(˜︁τ , F t,x˜︁τ )

]︂]︂
= E

[︂
e−r(˜︁τ−t)g(˜︁τ , F t,x˜︁τ )F t,x˜︁τ 1{g(˜︁τ ,F t,x˜︁τ )F t,x˜︁τ ≥h(˜︁τ ,F t,x˜︁τ )}

+ e−r(˜︁τ−t)h(˜︁τ , F t,x˜︁τ )1{h(˜︁τ ,F t,x˜︁τ )>g(˜︁τ ,F t,x˜︁τ )F t,x˜︁τ }

]︂
= E

[︂
e−r(˜︁τ−t)g(˜︁τ , F t,x˜︁τ )F t,x˜︁τ 1{g(˜︁τ ,F t,x˜︁τ )F t,x˜︁τ ≥h(˜︁τ ,F t,x˜︁τ )}

]︂
+ E

[︂
E
[︂
e−r(T−t)max(G,F t,x

T )1{h(˜︁τ ,F t,x˜︁τ )>g(˜︁τ ,F t,x˜︁τ )F t,x˜︁τ }

⃓⃓⃓
F˜︁τ]︂]︂

= E
[︂
e−r(˜︁τ−t)g(˜︁τ , F t,x˜︁τ )F t,x˜︁τ 1{g(˜︁τ ,F t,x˜︁τ )F t,x˜︁τ ≥h(˜︁τ ,F t,x˜︁τ )}

]︂
+ E

[︂
e−r(T−t)max(G,F t,x

T )1{h(˜︁τ ,F t,x˜︁τ )>g(˜︁τ ,F t,x˜︁τ )F t,x˜︁τ }

]︂
= E

[︂
e−r(τ̄−t)φ(τ̄ , F t,x

τ̄ )
]︂
.

This proves that τ̄xt is optimal for (2.7). □

It is possible to show that τ̄xt = τxt a.s., where τxt is the smallest optimal stopping time for the original
problem defined in Corollary 2.5. A comparison of the three stopping time is given in lemma 2.8 below.

Lemma 2.8 For 0 ≤ t ≤ T , the optimal stopping times defined in (2.12), (2.14) and (2.15) satisfy ˜︁τxt ≤ τxt

a.s. and τxt = τ̄xt a.s. Moreover, if τxt < T a.s., then ˜︁τxt = τxt a.s.

Proof. For t = T , the result trivially holds with equality. For the rest of the proof, let t < T .

To show ˜︁τxt ≤ τxt , let Ft = x and v(t, x) > g(t, x)x ∨ h(t, x) ≥ φ(t, x). Then, for any s ∈ [t, T ],

g(s, F t,x
s )F t,x

s ∨ h(s, F t,x
s ) ≥ φ(s, F t,x

s ) a.s., so, the process v(s, Fs) must first cross the continuous re-

ward process g(s, Fs)Fs ∨ h(s, Fs) to attain the discontinuous reward process φ(s, Fs) (since the process

v(s, Fs) starts above the two reward processes at t). It follows that ˜︁τxt ≤ τxt . The other cases are trivial.

Indeed, if v(t, x) = h(t, x) then necessarily h(t, x) ≥ xg(t, x), since by the continuous reward representa-

tion v(t, x) ≥ h(t, x) ∨ xg(t, x), so that ˜︁τxt = t, and τxt ≥ t, and the first inequality holds. The last case is

when v(t, x) = xg(t, x), which automatically implies ˜︁τxt = τxt = t.

To show that τxt = τ̄xt , we fix ω ∈ Ω and consider two cases: τxt (ω) < T and τxt (ω) = T .
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Case 1 – τxt (ω) < T : By the definition of τxt and the gain function φ, we have

v(τxt (ω), F
t,x
τxt (ω)

(ω)) = g(τxt (ω), F
t,x
τxt (ω)

(ω))F t,x
τxt (ω)

(ω), and note that if ˜︁τxt (ω) = τxt (ω), then it fol-

lows that ˜︁τxt (ω) = τxt (ω) = τ̄xt (ω). Now observe that from the definition of τxt (ω), we know that

v(s, F t,x
s (ω)) > g(s, F t,x

s (ω))F t,x
s (ω) for all t ≤ s ≤ τxt (ω). Thus, for ˜︁τxt (ω) to be equal to τxt (ω), we need

v(s, F t,x
s (ω)) > h(s, F t,x

s (ω)), for all t ≤ s ≤ τxt (ω). Now, suppose there exists some s in the interval

[t, τxt (ω)] such that v(s, F t,x
s (ω)) = h(s, F t,x

s (ω)). In this case, the two stopping times τxt (ω) and τ̄xt (ω)

would differ. However, the equality v(s, F t,x
s (ω)) = h(s, F t,x

s (ω)) implies that the contract is exercised

before maturity with probability zero, which contradicts our initial assumption that τxt (ω) < T . Therefore,

we must have v(s, F t,x
s (ω)) > h(s, F t,x

s (ω)) for all t ≤ s ≤ τxt (ω), which leads to the conclusion that˜︁τxt (ω) = τxt (ω) = τ̄xt (ω).

Case 2 – τxt (ω) = T : Note that τxt (ω) = T implies

v(s, F t,x
s (ω)) > g(s, F t,x

s (ω))F t,x
s (ω)

for all t ≤ s ≤ T . This means that if ˜︁τxt (ω) < T , v(˜︁τxt (ω), F˜︁τxt (ω)(ω)) = h(˜︁τxt (ω), F˜︁τxt (ω)(ω)). Thus,
τ̄xt (ω) = τxt (ω).

The final equality (˜︁τxt = τxt a.s when τxt (ω) < Ta.s.) follows from the arguments in Case 1. This completes

the proof. □

A simple example involving these optimal stopping times is when condition (2.9) of Proposition 2.3 is satis-
fied.

Example 2.3.3 Suppose that the fee and the surrender charge functions defined in (2.2) and (2.6), respec-
tively, satisfy (2.9). Hence, by Proposition 2.3, an optimal stopping time for the problem with the discontin-

uous reward function is τx0 = T , so that

v(0, x) = E[e−rT max(G,F x
T )] = h(0, x).

Clearly, an optimal stopping time for the problem with the continuous reward function is ˜︁τx0 = 0 since

h(0, x) = E[e−rT max(G,F x
T )] = v(0, x); whereas τ̄x0 = T as per (2.15).

In the next section, we present a simple condition on the fee and surrender charge functions under which˜︁τxt = τxt a.s. This result is particularly interesting since it provides a condition under which the two optimal
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stopping problems defined in (2.7) and (2.13) are equivalent. That is, the two problems have the same value
function (Theorem 2.6), surrender region (Proposition 2.25), and optimal stopping time (Corollary 2.27).

2.4 Analytical study of the value function
In Section 2.4.1 we study the regularity of the value function of the original problem defined in (2.7). In
Section 2.4.2, we establish the relationship between v, a free-boundary value problem, and a variational
inequality, analogously to American option pricing. To do so, we follow the reasoning of Jacka (1991) and
Lamberton (1998) in the context of American put option pricing. This allows us to derive, in Section 2.4.3,
two other representations for the value function: the surrender premium representationwhich is analogous
to the exercise premium representation in the American option pricing terminology, and the continuation
premium representation. This representation is new to the literature on VA and American option pricing
and allows us to characterize the (non-)emptiness of the surrender region in Section 2.4.4. Section 2.4.5
presents a condition on the fee and the surrender charge functions under which the optimal stopping prob-
lemwith discontinuous reward function defined in (2.7) is equivalent to the onewith the continuous reward
function, in (2.13).

Assumption 2.4.1 concerns the fee function and how it impacts the drift term in the account value process
(2.4), which we denote by µ : [0, T ]× R⋆

+ → R, with µ(t, x) = (r − C(t, x))x.

Assumption 2.4.1 (i) The fee function C is such that µ is continuous and globally Lipschitz in x, that is,

there existsK ≥ 0 such that for all x, y ∈ R⋆
+, t ≥ 0,

|µ(t, x)− µ(t, y)| ≤ K|x− y|.

(ii) For all x, the fee function C(·, x) is locally Hölder continuous.

Assumption 2.4.2 The fee and the surrender charge functions only depend on time; that is, we suppose

that C(t, x) = c(t) and g(t, x) = g(t) for all x ∈ R⋆
+.

Remark 2.4.1 Many results in this section require Assumptions 2.4.1 and 2.4.2 to hold. However, note that
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as soon as Assumption 2.4.2 holds, the drift term in (2.4) is globally Lipschitz in x, so Assumption 2.4.1(i) is

automatically satisfied.

We define the surrender region and the continuation region by
S =

{︁
(t, x) ∈ [0, T )× R⋆

+|v(t, x) = φ(t, x)
}︁
, and (2.16)

C = {(t, x) ∈ [0, T )× R⋆
+ : v(t, x) > φ(t, x)}, (2.17)

respectively. It follows that C ∪ S = [0, T )× R⋆
+, since v(t, x) ≥ φ(t, x) for all (t, x) ∈ [0, T ]× R⋆

+.

2.4.1 Elementary Properties of the Value Function
Theorem 2.9 If Assumption 2.4.1 (i) holds, the value function v is continuous on [0, T ]× R⋆

+.

Proof. The continuity of the reward function implies the continuity of the value function (see Krylov (1980),

Theorem 3.1.8, which requires Lipschitz continuity of the drift term in (2.4), hence the need for Assumption

2.4.1(i)). Thus, the assertion follows from the continuous reward representation of the value function in

Theorem 2.6 and Remark 2.3.2. □

Some basic properties of the value function, such as local boundedness, are derived in the next lemma.

Lemma 2.10 For every (t, x) ∈ E := [0, T ]× R⋆
+, the value function v satisfies the following properties:

(i) Ge−r(T−t) ≤ v(t, x) ≤ G+ x;

(ii) v(t, x) ≥ φ(t, x);

(iii) v(T, x) = max(G, x).

The first assertion follows from optional sampling since {e−r(u−t)F t,x
u }Tu=t is a supermartingale. Assertions

(ii) and (iii) follow easily from (2.7).
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Lemma 2.11 Under Assumption 2.4.2, the function x ↦→ v(t, x) is non-decreasing and convex for all t ∈

[0, T ].

The proof is a direct consequence of the convexity and the non-decreasing property of x ↦→ φ(t, x), for
each t ∈ [0, T ].

Remark 2.4.2 The value function in the American option pricing problem is often non-increasing in time.

Thiswill always be the case if the underlying asset price process and the reward function are time-homogeneous,

which is true for call and put options under the Black-Scholes model. However, in our setting, the reward

function is time-dependent and may be increasing in t (because of the surrender charge function g). There-

fore, the value function is not necessarily monotone in time.

We now examine the smoothness of the value function. The next two results are inspired by Lamberton
(1998), Proposition 10.3.5 in the context of the pricing of an American put option in the Black-Scholesmodel.
We show that the results still hold in our setting despite significant differences in the reward function,
namely its time-dependence and the discontinuity at t = T .

Proposition 2.12 Let Assumption 2.4.2 hold.

(i) For every t ∈ [0, T ], and for x, y ≥ 0,

|v(t, x)− v(t, y)| ≤ |x− y|.

(ii) For every x ∈ R⋆
+, there exist constants C1, C2 > 0 (which may depend on x) satisfying,

|v(t, x)− v(s, x)| ≤ C1|
√
T − t−

√
T − s|+ C2|t− s|,

for s, t ∈ [0, T ].

Assertion (i) follows from the Lipschitz property of φ, whereas (ii) follows from Proposition 10.3.5 (1) of
Lamberton (1998) and the Lipschitz property of the exponential function on a disk. The details of the proof
can be found in Section 2.7.
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Remark 2.4.3 In Proposition 2.12 (i), the assumption that the surrender charge function only depends on

time (Assumption 2.4.2) can be relaxed to more general state-dependent surrender charge functions as

long as x ↦→ xg(t, x) remains Lipschitz-continuous.

2.4.2 Free Boundary Value Problem and Variational Inequality
Using Theorem 2.6 and the previously established properties of the value function, we can apply classical
results from optimal stopping theory to establish the relationship between v, a free-boundary value prob-
lem, and a variational inequality. From the definition of the surrender and continuation regions in (2.16)
and (2.17), we can deduce from the continuity of the value function (Theorem 2.9) and the continuity of the
reward function on the interval [0, T )×R⋆

+ that the continuation region is open and the surrender region
is closed. The exercise boundary (or surrender boundary) is the boundary ∂C of C.

Henceforth, the t-section of the surrender (resp. continuation) region is denoted by St (resp. Ct). That is,
for t ∈ [0, T ),

St = {x ∈ R⋆
+ : v(t, x) = φ(t, x)} and Ct = {x ∈ R⋆

+ : v(t, x) > φ(t, x)}.

For 0 ≤ t ≤ T , we define the second-order differential operator Lt by
Lt :=

x2σ2

2

∂2

∂x2
+ (r − C(t, x))x

∂

∂x
,

and the function L : [0, T )× R⋆
+ → R by

L(t, x) :=
Lt(xg(t, x))

x
+ gt(t, x)− rg(t, x)

= gt(t, x) + (r − C(t, x) + σ2)xgx(t, x)

+
σ2x2

2
gxx(t, x)− C(t, x)g(t, x).

(2.18)

Note that L is the term on the right-hand side of (2.9). When the fee and the surrender charge functions
only depend on time (that is, when Assumption 2.4.2 holds), L becomes

L(t) = gt(t)− c(t)g(t).

Theorem 2.13 Let Assumption 2.4.1 hold. The value function v is the unique solution to the boundary value
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problem ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ltf(t, x) + ft(t, x)− rf(t, x) = 0, (t, x) ∈ C

f(t, x) > xg(t, x), (t, x) ∈ C

f(t, x) = xg(t, x), (t, x) ∈ S

f(T, x) = max(G, x), x ∈ R⋆
+.

(2.19)

That is, any solution v to (2.19) can be expressed by (2.7). In particular, the function v ∈ C1,2 on C.

Once the continuity of the value function has been established (Theorem 2.9), the optimal stopping time
has been shown to exist (Corollary 2.5), and themartingale property of the Snell envelope of the discounted
reward process has been proven (see Theorem 2.4 (ii), the connection between PDE and optimal stopping
problems can be established assuming enough regularity of the coefficients in (2.4). A sufficient condition
for the results of Friedman (1964) to hold is that the drift term in (2.4) is locally Hölder continuous, which
is why Assumption 2.4.1 is needed in Theorem 2.13. The proof makes use of standard PDE results in solving
the Dirichlet (or the first initial-boundary value) problem, see for instance Friedman (1964), Theorem 3.4.9.

Thus, the main difficulty in establishing the free-boundary value problem resides in proving the continuity
of the value function (Theorem 2.9). Once this has been done, the free-boundary value problems follow
using standard arguments. Specifically, the continuity of the value function implies that the continuation
region is an open set. From this, the Dirichlet problem (or the first initial-boundary value problem) can be
posed in an open subset (typically a ball or a rectangle) of the continuation region. Since the boundary of
the defined open subsets is sufficiently regular, standard PDE results guarantee that the Dirichlet problem
admits a unique solution. Probabilistic arguments are then used to identify this solution as the value func-
tion. For details of the proof in the context of the American put option pricing in the Black-Scholes setting,
see Jacka (1991), Proposition 2.6 or Karatzas and Shreve (1998), Theorem 2.7.7, among others. For more
general results, one can also refer to Peskir and Shiryaev (2006), Sections 3.7.1 and 4.8.2 or Jacka and Lynn
(1992), Proposition 3.1..

Assumption 2.4.1 is not sufficient to provide much information on the shape of the surrender region. How-
ever, we show in Section 2.4.4 (Theorem 2.22) that further conditions can be imposed on the fee and the
surrender charge functions in order to express the surrender region explicitly in terms of the optimal surren-
der boundary b. Under these assumptions, the free-boundary value problem can be stated more explicitly.

36



Corollary 2.14 Let Assumptions 2.4.1 and 2.4.2 hold. If L(t) < 0 for all t ∈ [0, T ), then, the value function

v is the unique solution to the boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ltf(t, x) + ft(t, x)− rf(t, x) = 0, x < b(t), t ∈ [0, T ),

f(t, x) > φ(t, x), x < b(t), t ∈ [0, T ),

f(t, x) = φ(t, x), x ≥ b(t), t ∈ [0, T ),

f(T, x) = max(G, x), x ∈ R⋆
+,

(2.20)

with b(t) := inf(St). That is, any solution v to (2.19) can be expressed by (2.7). In particular, the function v
is C1,2 on C.

Assuming L(t) < 0 for all t ∈ [0, T ) in Corollary 2.14 ensures that S ̸= ∅ (see Proposition 2.23). The proof
of this corollary is a direct consequence of Theorem 2.13 and the results of Section 2.4.4 in Theorem 2.22(i).

Remark 2.4.4 For each t ∈ [0, T ), the condition L(t) < 0 is equivalent to d ln g(t)
dt < c(t).

Remark 2.4.5 (Regularity of the value function) Fix t ∈ [0, T ) and suppose that L(t) < 0 for all t ∈ [0, T ].

Corollary 2.14 gives us smoothness of the value function in the continuation region, that is, when x < b(t).

On the other hand, when x > b(t), we know that v(t, x) = g(t)x, so v is smooth in int(S). What remains

is to assess the smoothness of the value function across the boundary (i.e. when x = b(t)). When L(t) ≥ 0

for all t ∈ [0, T ], an optimal stopping time for (2.7) is T , as per Proposition 2.3. Hence, the optimal stopping

problem in (2.7) is reduced to the valuation of the present value of the maturity benefit (2.5). The regularity
of the value function then follows from the Feynman-Kac representation (see, for instance, Karatzas and

Shreve (1991), Theorem 5.7.6), which states that, under some regularity assumptions on the coefficients

of (2.4), the value function in (2.5) is the unique solution to a Cauchy problem, and such a solution is in

C1,2([0, T )× R⋆
+).

Next, we discuss the link between the value function and a variational inequality. In Proposition 2.15 below,
we establish a result that is a direct consequence of the process J = {Jt}0≤t≤T , with Jt := e−rtv(t, Ft),
being the Snell envelope of the discounted reward process Z; thus, J is a supermartingale by Theorem 2.4
(i).
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Proposition 2.15 Let Assumption 2.4.2 hold. The value function v defined in (2.7) satisfies
Ltv + vt − rv ≤ 0 (2.21)

for all (t, x) ∈ (0, T )× R⋆
+ (with all derivatives in the sense of distribution).

This proposition is analogous to Proposition 10.3.7 of Lamberton (1998) in the context of American put
option pricing, and can be extended to the present context without any further complications (see Remark
2.4.6 for a detailed discussion). For an introduction to weak derivatives and distribution theory see Evans
(2010), Chapter 5, and Rudin (1991), Chapter 6.

Remark 2.4.6 The idea of the proof of Proposition 2.15 rests on the assumption that the value function is

regular enough to apply Itô’s lemma to J (which is usually not the case since v may not be smooth enough

across the boundary, see Remark 2.4.5). Ltv + vt − rv, being the drift term of J , must be non-positive

since J is a supermartingale. In the context of American put option pricing, a rigorous proof relying on

distribution theory is given in Lamberton (1998), Proposition 10.3.7. Their arguments are similar to the one

outlined above, but are generalized to considered derivatives in the sense of distribution. This approach can

also be easily adapted to our setting when the fee is time-dependent. The result also holds for more general

surrender functions depending on the sub-account value. Thus, in Proposition 2.15, Assumption 2.4.2 can be

relaxed to more general surrender charge functions.

Remark 2.4.7 Other authors have obtained results similar to Proposition 2.15 in more general settings, see

for instance Bensoussan and Lions (1982) Section 3.4.9 or Jaillet et al. (1990), Theorem 3.1 and 3.2. However,

the results of Bensoussan and Lions (1982) require the function ((t, x) ↦→ xg(t, x)) to be bounded, and the

ones of Jaillet et al. (1990) consider a continuous and time-independent reward function. Applying the results

of Jaillet et al. (1990) to the continuous reward representation (2.13) by adding a second dimension (time)

to the underlying process, as is often done for time-dependent reward functions, is not directly possible

because some conditions on the time derivative are not satisfied by the continuous reward function, the

first order derivative of h being unbounded. Establishing the results of Proposition 2.15 in a more general

market model is thus left as future research.

Once (2.21) has been established, we can show that the value function solves a variational inequality when
Assumptions 2.4.1 and 2.4.2 hold.
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Proposition 2.16 Let Assumptions 2.4.1 and 2.4.2 hold. The value function v defined in (2.7) is a solution to
the variational inequality

max {Ltv + vt − rv, φ− v} = 0, (2.22)
with the terminal condition v(T, x) = max(G, x) and all derivatives in the sense of distribution.

The proof is a direct consequence of Theorem 2.13 and Proposition 2.15.

Corollary 2.17 Let Assumption 2.4.2 hold. The partial derivatives (in the sense of distribution) ∂v/∂x, ∂v/∂t

and ∂2v/∂x2 are locally bounded, and ∂v/∂x is continuous on [0, T )× R⋆
+.

Proof. From Proposition 2.12, we have that the first order derivatives of the value function (in the sense of

distribution) in t and in x are locally bounded. Using the convexity of x ↦→ v(t, x) (Lemma 2.11), the local

boundedness of the first order derivatives and (2.21), we can show that the second order derivative in x is

also locally bounded (see for instance Lamberton (1998), Theorem 10.3.8 or Jaillet et al. (1990), Theorem 3.6

for details). Following the argument of Lamberton (1998), Corollary 10.3.10 (or Jaillet et al. (1990), Corollary
3.7), we can conclude that the function ∂v

∂x is continuous on [0, T ) × R⋆
+, see Ladyz̆enskaja et al. (1968),

Chapter 2, Lemma 3.1. This is also known as the smooth fit condition in the American option terminology. □

Hence, the main difficulty of this result resides in proving the Lipchitz property of v, obtained in Proposition
2.12. The rest of the proof follows using standard arguments; see, for instance, Lamberton (1998), Corollary
10.3.10, Jaillet et al. (1990), Corollary 3.7, or Touzi (1999), Lemma 2.1.

2.4.3 Surrender and Continuation Premium Representation
In the following, we derive two representations for the value function. The first one is akin to the early
exercise premium representation (or integral representation) in the American option terminology.

To the authors’ knowledge, the second representation is new to the literature on variable annuities and
American options. The particular form of the reward function involved in variable annuity pricing allows
the decomposition of the value function in two terms: the current value of the reward process and an
integral term which increases only when the sub-account process is in the continuation region. Therefore,
we call this second term the continuation premium.
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Theorem 2.18 Let Assumptions 2.4.1 and 2.4.2 hold. Then, the value function can be written as

v(t, x) = h(t, x) + e(t, x), (2.23)
whereh : [0, T ]×R⋆

+ → R+ is the present value of thematurity benefit, as defined in (2.5), and e : [0, T ]× R⋆
+ → R+

denotes the early surrender premium

e(t, x) :=

∫︂ T

t

(︂
c(s)g(s)− gt(s)

)︂
E
[︂
e−r(s−t)F t,x

s 1{(s,F t,x
s )∈S}

]︂
ds, (2.24)

where gt = ∂g
∂t .

Proof. Corollary 2.17 ensures that v is smooth enough to apply Itô’s formula for generalized derivatives (see

Krylov (1980), Theorem 2.10.1) to
{︂
e−rsv(t, F t,x

s )
}︂
t≤s≤T

, yielding

d(e−rsv(s, F t,x
s )) = e−rs

(︁
Lsv(s, F t,x

s ) + vt(s, F
t,x
s )− rv(s, F t,x

s )
)︁
ds

+ e−rsσF t,x
s vx(s, F

t,x
s ) dWs

for 0 ≤ s ≤ T . Integrating from t to T on both side and multiplying by ert, we get

e−r(T−t)v(T, F t,x
T )

= v(t, F t,x
t )

+

∫︂ T

t
e−r(s−t)

(︁
Lsv(s, F t,x

s ) + vt(s, F
t,x
s )− rv(s, F t,x

s )
)︁
ds

+

∫︂ T

t
e−r(s−t)σF t,x

s vx(s, F
t,x
s ) dWs.

(2.25)

∫︁ T
t e−r(s−t)σF t,x

s vx(s, F
t,x
s ) dWs is a martingale since |vx(t, x)| ≤ 1 for all (t, x) ∈ [0, T ) × R⋆

+, as per

Proposition 2.12 and Corollary 2.17, and E[
∫︁ T
0 F 2

s ds] <∞. Thus, taking the expectation on both sides of

(2.25) yields
v(t, x) = E

[︂
e−r(T−t)v(T, F t,x

T )
]︂

−
∫︂ T

t
E
[︂
e−r(s−t)

(︁
Lsv(s, F t,x

s ) + vt(s, F
t,x
s )− rv(s, F t,x

s )
)︁]︂

ds.

Now, E
[︂
e−r(T−t)v(T, F t,x

T )
]︂
= E

[︂
e−r(T−t)max(G,F t,x

T )
]︂
= h(t, x), and by Corollary 2.14,

Ltv(s, x) + vt(s, x)− rv(s, x) = 0 for all (s, x) ∈ C. Futhermore, for s < T , v(s, x) = g(s)x

when (s, x) ∈ S . It follows that

Lv(s, F t,x
s ) + vt(s, F

t,x
s )− rv(s, F t,x

s ) = F t,x
s [gt(s)− c(s)g(s)]1{(s,F t,x

s )∈S}, a.s.,
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which concludes the proof. □

Remark 2.4.8 If L(t) < 0 for all t ∈ [0, T ), the surrender region has the particular shape S = {(t, x) ∈

[0, T )× R⋆
+|x ≥ b(t)} for some b(t) ≥ Ge−r(T−t). This will be shown in the next section in Theorem 2.22.

Under this assumption, the early surrender premium becomes

e(t, x) :=

∫︂ T

t

(︂
c(s)g(s)− gt(s)

)︂
E
[︂
e−r(s−t)F t,x

s 1{F t,x
s >b(s)}

]︂
ds. (2.26)

The results presented in Theorem 2.18 are generalizations of Theorem 1 and Equation (11) of Bernard et al.

(2014b) to time-dependent fee and surrender charge functions.

Theorem 2.19 Suppose Assumptions 2.4.1 and 2.4.2 hold. The value function can be written as

v(t, x) = xg(t, x) + f(t, x), (2.27)
where f : [0, T ]× R⋆

+ → R+ is the continuation premium given by

f(t, x) = E[e−r(T−t)(G− F t,x
T )+]

+

∫︂ T

t

(︂
gt(s)− c(s)g(s)

)︂
E
[︂
e−r(s−t)F t,x

s 1{(s,F t,x
s )∈C}

]︂
ds.

(2.28)

The proof of Theorem 2.19 is presented at the end of the section; it relies on the results below.

Remark 2.4.9 If L(t) < 0 for all t ∈ [0, T ), the continuation region is given by

C = {(t, x) ∈ [0, T )× R⋆
+|x < b(t)} for some b(t) ≥ Ge−r(T−t), see Theorem 2.22. Under this as-

sumption, the continuation premium in (2.28) becomes

f(t, x) := E
[︃
e−r(T−t)

(︂
G− F t,x

T

)︂
+

]︃
+

∫︂ T

t

(︂
gt(s)− c(s)g(s)

)︂
E
[︂
e−r(s−t)F t,x

s 1{F t,x
s <b(s)}

]︂
ds.

(2.29)

Theorem 2.19 decomposes the value function in terms of the immediate surrender value plus a term rep-
resenting the value of holding on to the contract. This term, which we coin the continuation premium, is
the sum of the financial guarantee at maturity (or the put option) when the contract is held until T and an
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integral term equal to the value added by keeping the contract until it is optimal to surrender. The repre-
sentation of the continuation premium in (2.28) can be particularly helpful to develop numerical methods
for approximating the value of a variable annuity contract, since it uses additional information on the shape
of the continuation region.

When Assumptions 2.4.1 and 2.4.2 do not hold, it is still possible to decompose the value function in two
parts, the surrender benefit and the continuation premium. However, in this case, the continuation pre-
mium is written in terms of τxt , which can make it more complicated to compute. This result is given in
Lemma 2.20 below and will be used to prove Theorem 2.19.

Lemma 2.20 The value function can be written as

v(t, x) = xg(t, x) + f(t, x), (2.30)
where f : [0, T ]× R⋆

+ → R+ is the continuation premium given by

f(t, x) := E
[︂
e−r(T−t)(G− F t,x

T )+1{τxt =T}

]︂
+

∫︂ T

t
E
[︂
e−r(u−t)F t,x

u L(u, F t,x
u )1{u≤τxt }

]︂
du,

(2.31)

with τxt defined in (2.12).

Proof. The result is trivial for t = T . For the rest of the proof, fix (t, x) ∈ [0, T ) × R⋆
+. Recall that τxt is an

optimal stopping time for v(t, x) (see Corollary 2.5). Hence, we have

v(t, x) = E
[︂
e−r(τxt −t)φ(τxt , F

t,x
τxt

)
]︂
.

Notice that the discounted reward process can be decomposed as

e−r(s−t)φ(s, F t,x
s ) = Y t,x

s + e−r(T−t)(G− F t,x
T )+1{s=T}

with Y t,x = {Y t,x
s }t≤s≤T , with Y

t,x
s := e−r(s−t)g(s, F t,x

s )F t,x
s and observe that Y t,x

T = e−r(T−t)F t,x
T since

g(T, x) = 1 for all x ∈ R⋆
+. The function xg(t, x) is C1,2, so we can apply Itô’s formula to Y , which yields
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e−r(T−t)φ(τxt , F
t,x
τxt

) (2.32)
= Y t,x

τxt
+ e−r(τxt −t)(G− F t,x

τxt
)+1{τxt =T}

= xg(t, x) + e−r(T−t)(G− F t,x
T )+1{τxt =T}

+

∫︂ τxt

t
e−r(s−t)F t,x

s L(s, F t,x
s ) ds

+

∫︂ τxt

t
e−r(s−t)σF t,x

s

(︁
g(s, F t,x

s )− gx(s, F t,x
s )F t,x

s

)︁
dWs.

(2.33)

The final result is obtained by taking the expectation on both sides and using the zero-mean property of the

stochastic integral and Doob’s optional sampling theorem. To complete the proof, note that f(t, x) ≥ 0 for

all (t, x) ∈ [0, T ]× R⋆
+, since v(t, x) ≥ φ(t, x) as per Lemma 2.10. □

The proof of Theorem 2.19 also rely on the following Lemma, which is used to remove the dependence of
the continuation premium on τxt .

Lemma 2.21 Suppose Assumptions 2.4.1 and 2.4.2 hold. For all (t, x) ∈ [0, T ]× R⋆
+,

E
[︂
e−r(T−t)(G− F t,x

T )+1{τxt ̸=T}

]︂
+ E

[︄∫︂ T

τxt

(︂
gt(s)− c(s)g(s)

)︂
e−r(s−t)F t,x

s 1{(s,Fs)∈C} ds

]︄
= 0,

(2.34)

with τxt defined in (2.12).

Proof. The proof is trivial for t = T . For the rest of the proof, fix (t, x) ∈ [0, T )× R⋆
+. First, note that

v(t, x) = E
[︂
e−r(T−t)φ(T, F t,x

T )
]︂

+ E
[︂
e−r(τxt −t)φ(τxt , Fτxt

)− e−r(T−t)φ(T, F t,x
T )
]︂
.

(2.35)

Now recall that the discounted reward process admits the following decomposition

e−r(s−t)φ(s, F t,x
s ) = Y t,x

s + e−r(T−t)(G− F t,x
T )+1{s=T},

with Y t,x
s = e−r(s−t)g(s)F t,x

s for t ≤ s ≤ T . Hence, applying Itô’s lemma to Y t,x = {Y t,x
s }t≤s≤T , we
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obtain

e−r(T−t)φ(T, F t,x
T )

= e−r(T−t)Y t,x
T + e−r(T−t)(G− F t,x

T )+

= e−r(τxt −t)Yτxt + e−r(T−t)(G− F t,x
T )+1{τxt =T}

+

∫︂ T

τxt

e−r(s−t)F t,x
s (gt(s)− c(s)g(s)) ds

+

∫︂ T

τxt

e−r(s−t)g(s)F t,x
s σ dWs + e−r(T−t)(G− F t,x

T )+1{τxt ̸=T}

= e−r(τxt −t)φ(τxt , F
t,x
τxt

) +

∫︂ T

τxt

e−r(s−t)F t,x
s (gt(s)− c(s)g(s)) ds

+

∫︂ T

τxt

e−r(s−t)g(s)F t,x
s σ dWs + e−r(T−t)(G− F t,x

T )+1{τxt ̸=T}.

(2.36)

Replacing (2.36) in (2.35) yields
v(t, x) = E

[︂
e−r(T−t)φ(T, F t,x

T )
]︂
+ E

[︄∫︂ T

τxt

e−r(s−t)F t,x
s (c(s)g(s)− gt(s)) ds

]︄
− E

[︂
e−r(T−t)(G− F t,x

T )+1{τxt ̸=T}

]︂
= h(t, x) + E

[︄∫︂ T

τxt

e−r(s−t)F t,x
s (c(s)g(s)− gt(s))1{(s,F t,x

s ∈S} ds

]︄

+ E

[︄∫︂ T

τxt

e−r(s−t)F t,x
s (c(s)g(s)− gt(s))1{(s,F t,x

s ∈C} ds

]︄
− E

[︂
e−r(T−t)(G− F t,x

T )+1{τxt ̸=T}

]︂
,

(2.37)

where h(t, x) is defined as in (2.5). Now note that∫︂ τxt

t
e−r(s−t)F t,x

s (c(s)g(s)− gt(s))1{(s,F t,x
s )∈S} ds = 0 a.s.,

since for s ∈ [t, τxt ], F
t,x
s ∈ Cs, by definition of τxt being the first entry time of F t,x

s in Ss between t and T .

Thus, ∫︂ T

τxt

e−r(s−t)F t,x
s (c(s)g(s)− gt(s))1{(s,F t,x

s )∈S} ds

=

∫︂ T

t
e−r(s−t)F t,x

s (c(s)g(s)− gt(s))1{(s,F t,x
s )∈S} ds, a.s.,
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so (2.37) becomes

v(t, x) = h(t, x) + e(t, x)

+ E

[︄∫︂ T

τxt

e−r(s−t)F t,x
s (c(s)g(s)− gt(s))1{(s,F t,x

s ∈C} ds

]︄
− E

[︂
e−r(T−t)(G− F t,x

T )+1{τxt ̸=T}

]︂
,

(2.38)

where e(t, x) denotes the surrender premium defined in (2.24). The final result is obtained by comparing

(2.23) and (2.38). □

We note that Lemma 2.21 requires assumptions 2.4.1 and 2.4.2 to hold since the proof makes use of the
surrender premium representation (2.23) in Theorem 2.18.

Lemmas 2.20 and 2.21 can now be used to prove Theorem 2.19.

Proof. [Proof of Theorem 2.19] When t = T , the proof is trivial. For the rest of the proof, fix (t, x) ∈ [0, T ).

Using the continuation premium representation in (2.31) and recalling from the proof of Lemma 2.21 that∫︁ τxt
t e−r(s−t)F t,x

s (c(s)g(s)− gt(s))1{(s,F t,x
s )∈S} ds = 0 a.s., we find that

v(t, x) = xg(t) + E
[︂
e−r(T−t)(G− F t,x

T )+1{τxt =T}

]︂
+ E

[︂ ∫︂ τxt

t
e−r(s−t)F t,x

s L(s) ds
]︂

= xg(t) + E
[︂
e−r(T−t)(G− F t,x

T )+(1− 1{τxt ̸=T})
]︂

+ E
[︂ ∫︂ τxt

t
e−r(s−t)F t,x

s L(s)
(︂
1{F t,x

s ∈Cs}) + 1{F t,x
s ∈Ss}

)︂
ds
]︂

= xg(t) + E
[︂
e−r(T−t)(G− F t,x

T )+

]︂
− E

[︂
e−r(T−t)(G− F t,x

T )+1{τxt ̸=T}

]︂
+ E

[︂ ∫︂ τxt

t
e−r(s−t)F t,x

s L(s)1{F t,x
s ∈Cs} ds

]︂
= xg(t) + E

[︂
e−r(T−t)(G− F t,x

T )+

]︂
+

∫︂ T

t
L(s)E

[︂
e−r(s−t)F t,x

s 1{F t,x
s ∈Cs}

]︂
ds,

where the last equality follows from Lemma 2.21. □

2.4.4 Characterization of the Surrender Region
The goal of this section is to study the properties of the surrender and continuation regions. Under certain
conditions on the fee and surrender charge functions, we can fully characterize the two regions. The main
results of this section characterize specific types of surrender regions and are summarized in Theorem 2.22
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below. The rest of the section contains further results that are used in the proof of Theorem 2.22 and that
are of interest on their own. The proof of Theorem 2.22 is presented at the end of the section.

Although the shape of the surrender region can vary significantly (see for example Figures 4 and 5 ofMacKay
et al. (2017), when the fee rate is constant and the (time-dependent) surrender charge function satisfies
certain conditions, MacKay (2014), Appendix 2.A shows that the surrender region is a connected set. The
first part of Theorem 2.22 below indicates that as soon as the surrender region is non-empty and the fee
and surrender charge functions depend only on time, then t-section of S has the form St = [b(t),∞) for
some b(t) ∈ R⋆

+ ∪ {∞}. This result builds on Jacka (1991), Proposition 2.1 in the context of a bounded and
time-homogeneous reward function in a time-homogeneous market model.

The second part of Theorem 2.22 confirms that the optimal stopping time obtained in Proposition 2.3 is
unique.

We recall that, under Assumption 2.4.2 , the function L, defined in (2.18), becomes L(t) = gt(t)− c(t)g(t).

Theorem 2.22 Let Assumptions 2.4.1 and 2.4.2 hold.

(i) If L(t) < 0 for all t ∈ [0, T ) then the t-sections of S , denoted by St, are of the form

St = {x ∈ R⋆
+ : (t, x) ∈ S} = [b(t), ∞), (2.39)

for some b(t) ∈ R⋆
+ ∪ {∞} satisfying b(t) ≥ Ge−r(T−t) and t ∈ [0, T ).

(ii) If L(t) ≥ 0 for all (t) ∈ [0, T ), then S = ∅ and T is the unique optimal stopping time for (2.7).

The proof of Theorem 2.22 is presented at the end of the section, as it builds upon additional results pre-
sented below.

Remark 2.4.10 The proof of part (ii) of Theorem 2.22 does not require Assumptions 2.4.1 and 2.4.2 to hold.

In this more general setting, if L(t, x) ≥ 0 for all (t, x) ∈ [0, T ) × R⋆
+, then S = ∅ and T is the unique

optimal stopping time for (2.7).
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Under the assumptions of Theorem 2.22, b(t) is the smallest sub-account value for which it is optimal to
surrender the contract at time t < T , and for any fund value greater than b(t), it is also optimal to surrender,
so that

b(t) = inf
{︂
x ∈ R⋆

+

⃓⃓⃓
x ∈ St

}︂
= inf{St}, (2.40)

with b(t) = ∞ if St = ∅. Under these assumptions, the continuation and the surrender regions can be
expressed as

C =
{︂
(t, x) ∈ [0, T )× R⋆

+

⃓⃓⃓
x < b(t)

}︂
,

and
S =

{︂
(t, x) ∈ [0, T )× R⋆

+

⃓⃓⃓
x ≥ b(t)

}︂
,

respectively. When b(t) <∞ for all t ∈ [0, T ), the surrender boundary splits [0, T )×R⋆
+ in two regions: the

surrender region is at or above the boundary, and the continuation region is below. It follows that the set S
is connected. Henceforth, we say that the surrender region is of “threshold type” if for any t ∈ [0, T ), there
exists a b(t) <∞ such thatSt = [b(t),∞). Such a geometry for the surrender region can be explained, as in
Milevsky and Salisbury (2001), by the fact that when the account value is low, it is financially advantageous
for the policyholder to hold on to the contract since there is a significant chance that the guarantee will
be triggered at maturity. Since this guarantee is financed by the policyholder via the continuous fee, which
reduces the net return on the account, there is a point above which it is no longer profitable to hold the
contract and continue paying the fee; this threshold is the optimal surrender boundary.

The rest of this section presents further results on the (non-)emptiness of the surrender region and ends
with the proof of Theorem 2.22. Many of the results presented here are inspired by the work of Villeneuve
(1999), which we adapted to the time-dependent and discontinuous reward function considered in (2.7).
As pointed out by Villeneuve (1999), Remark 2.1, adapting some of their results to a time-dependent payoff
is not trivial.

Proposition 2.23 characterizes the non-emptiness of the surrender region. The first part involves relint(St),
the relative interior of a t-section St, which is defined as its interior within the affine hull of St. If it is not
empty, the relative interior of St forms a vertical line in the plane. If relint(St) ∈ int(S), it contains some
finite x for which (t, x) ∈ int(S). The second part of Proposition 2.23 (ii) can be seen as a local version of
the first part.

Proposition 2.23 Let Assumptions 2.4.1 and 2.4.2 hold.

47



(i) For each t ∈ [0, T ), if S ̸= ∅ and relint(St) ⊂ int(S), then L(t) ≤ 0.

(ii) If L(t) < 0 for all t ∈ [0, T ), then

• S ̸= ∅ and C ̸= ∅, and

• ∪t1≤t<t2St ̸= ∅ for any [t1, t2) ⊂ [0, T ) such that t1 < t2.

The proof of Proposition 2.23 is reported in Section 2.7. Proposition 2.24 below characterizes the emptiness
of the surrender region.

Proposition 2.24 Let Assumptions 2.4.1 and 2.4.2 hold.

(i) For each t ∈ [0, T ), if L(t) > 0, then St = ∅ or relint(St) ̸⊂ int(S).

(ii) For any [t1, t2) ⊂ [0, T ) such that t1 < t2, if L(t) > 0 for all (t) ∈ [t1, t2), then ∪t1≤t<t2St = ∅.

(iii) If S = ∅, then g(t)− e−
∫︁ T
t c(s) ds ≤ 0 for all t ∈ [0, T ).

Remark 2.4.11 Some of the assumptions of Proposition 2.24 can be relaxed. The proof of part (i) only re-

quires Assumption 2.4.2. Furthermore, Proposition 2.24(ii) holds in a general setting, without Assumptions

2.4.1 and 2.4.2. In this general setting, it holds that for any [t1, t2) ⊂ [0, T ) such that t1 < t2, if L(t, x) > 0

for all (t, x) ∈ [t1, t2)× R+, then ∪t1≤t<t2St = ∅.

The proof of Proposition 2.24 is reported in Section 2.7.

Remark 2.4.12 The first statements of Propositions 2.23 and 2.24 can apply to surrender charge functions

depending on both time and the value of the underlying process. Indeed, the proof relies on the results of

Proposition 2.15 which only requires the fee function, and not the surrender charge, to depend exclusively

on time, see Remark 2.4.6 for details.

Proposition 2.23 (ii) and Proposition 2.24 (i), state that the surrender region being empty or not only de-
pends on the sign of L(t). We believe that the results of Proposition 2.23 (ii) can be made more local. That
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is, we conjecture that as soon as L(t) < 0 for some t ∈ [0, T ), the relative interior of the t-section of the
surrender region is not empty. This is whatwe observe in numerical examples, see Section 2.5. Hence, when
L(t) changes sign in [0, T ), the boundary of the continuation region, ∂C, is discontinuous. This property
of the optimal surrender boundary sets the optimal stopping problem involved in variable annuities pricing
apart from the pricing of standard American call and put options.

Remark 2.4.13 The statements of Proposition 2.23 (ii) and 2.24 (i) do not cover the case where L(t) = 0.

Heuristically, when L(t) = 0 for all 0 ≤ t ≤ T , the discounted surrender value process {Yt}0≤t≤T , with

Yt = e−rtFtg(t), is a martingale, so one might expect that all stopping times τ such that 0 ≤ τ ≤ T

are optimal, implying that S = [0, T )× R⋆
+, see for instance Björk (2009), Proposition 21.2. However, this

is incorrect; due to the time discontinuity of the reward function in (2.7), the discounted reward process

{Zt}0≤t≤T , withZt = e−rtφ(t, Ft), is a submartingale (see Lemma 2.1). Hence, the policyholder can always

profit (on average) from holding on to the contract because of the guaranteed amount at maturity. The

optimal stopping time is then T and the surrender region is empty. This illustrates another major difference

between the optimal stopping problem in (2.7) and the one involved in the pricing of standard American

options.

The specificity of the VA pricing problem discussed above is also illustrated in the continuation premium

representation in (2.28).

Indeed, whenL(t) = 0 for all t ∈ [0, T ], then for any x ∈ R⋆
+, f(t, x) = E[e−r(T−t)(G− F t,x

T )+] > 0. That

is, the continuation premium f is equal to the expected present value of the financial guarantee. Hence,

v(t, x) = φ(t, x) + f(t, x) > φ(t, x) for all (t, x) ∈ [0, T )× R⋆
+, which implies that S = ∅.

The results presented in Propositions 2.23 and 2.24 can now be used to prove Theorem 2.22.

Proof. [Theorem 2.22]

To show part (i), let L(t) < 0 for all t ∈ [0, T ). It follows from Proposition 2.23 (ii) that S ̸= ∅, and thus

there exists t ∈ [0, T ) for which St ̸= ∅. Fix t ∈ [0, T ). If St = ∅ then b(t) = ∞ and the proof is complete.

If St ̸= ∅, define

b(t) = inf{x ∈ R⋆
+|v(t, x) = φ(t, x)} = inf{St}.
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Since St is non-empty, we know that b(t) < ∞. Moreover, since v and φ are continuous on [0, T ) (see

Theorem 2.9), S is a closed set that is bounded below, so that b(t) ∈ St and satisfies v(t, b(t)) = φ(t, b(t)).

Thus, for t < T,

b(t) ≥ g(t)b(t) = v(t, b(t)) ≥ E
[︂
e−r(T−t)max(G,F

t,b(t)
T )

]︂
≥ G−r(T−t),

since g takes values in (0, 1].

Next, we show that St = [b(t), ∞). Fix t ∈ [0, T ) and note that if St = [b(t),∞), then Ct = (0, b(t)).

Thus, we need to prove that x ∈ Ct ⇒ y ∈ Ct for any y < x, which we do next.

Recall that τxt = inf
{︂
t ≤ s ≤ T

⃓⃓
v(s, F t,x

s ) = φ(s, F t,x
s )
}︂
is optimal for v(t, x). Hence, we have that

0 ≥ v(t, y)− v(t, x) (since x ↦→ v(t, x) is non-decreasing, see Lemma 2.11)

≥ E
[︂
e−r(τxt −t)φ(τxt , F

t,y
τxt

)− e−r(τxt −t)φ(τxt , F
t,x
τxt

)
]︂

= E
[︃
e−r(τxt −t)g(τxt )e

(r−σ2/2)(τxt −t)−
∫︁ τxt
t c(s) ds+σWτxt −t(y − x)1{τxt <T}

]︃
+ E

[︂
e−r(τxt −t)

{︂
max(G, F t,y

τxt
)−max(G, F t,x

τxt
)
}︂
1{τxt =T}

]︂
.

(2.41)

For all ω ∈ Ω and τ ∈ Tt,T , we have F t,x
τ(ω)(ω) > F t,y

τ(ω)(ω), since y < x. It follows that (G−F t,y
τ )+− (G−

F t,x
τ )+ ≥ 0, for all ω ∈ Ω, so that

E
[︂
e−r(τxt −t)

{︂
max(G, F t,y

τxt
)−max(G, F t,x

τxt
)
}︂
1{τxt =T}

]︂
≥ E

[︂
e−r(τxt −t)

{︂
F t,y
τxt
− F t,x

τxt

}︂
1{τxt =T}

]︂
= E

[︃
e−r(τxt −t)g(τxt )e

(r−σ2/2)(τxt −t)−
∫︁ τxt
t c(s) ds+σWτxt −t(y − x)1{τxt =T}

]︃
, (2.42)

since g(T ) = 1. Combining (2.41) and (2.42) yields
0 ≥ v(t, y)− v(t, x) ≥ (y − x)E

[︃
e−r(τxt −t)g(τxt )e

(r−σ2/2)(τxt −t)−
∫︁ τxt
t c(s) ds+σWτxt −t

]︃
= g(t)(y − x)E

[︃
g(τxt )

g(t)
e−

∫︁ τxt
t c(s)e

σWτxt −t−σ2

2
(τxt −t) ds

]︃
= g(t)(y − x)E

[︃
e
∫︁ τxt
t

d ln g(s)
ds

−c(s) dse
σWτxt −t−σ2

2
(τxt −t)

]︃
> g(t)(y − x)E

[︃
e
σWτxt −t−σ2

2
(τxt −t)

]︃
(2.43)

= g(t)(y − x).
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Finally, since x ∈ Ct, we have v(t, x) > g(t)x, so that v(t, y) > g(t)y, which implies y ∈ Ct.

For part (ii), we have from Proposition 2.3 that v(t, x) = h(t, x), for all (t, x) ∈ [0, T ]×R⋆
+. Now using Itô’s

lemma on the discounted surrender value process and the zero-mean property of the stochastic integral, we

find that for any (t, x) ∈ [0, T )× R⋆
+,

v(t, x) = E
[︂
e−r(T−t)max(G,F t,x

T )
]︂

= E
[︂
e−r(T−t)g(T, F t,x

T )F t,x
T

]︂
+ E

[︂
e−r(T−t)(G− F t,x

T )+

]︂
= g(t, x)x+ E

[︃∫︂ T

t
e−r(s−t)F t,x

s L(s, F t,x
s ) ds

]︃
+ E

[︂
e−r(T−t)(G− F t,x

T )+

]︂
> g(t, x)x.

Hence, S = {(t, x) ∈ [0, T ) × R⋆
+|v(t, x) = φ(t, x)} = ∅, so that

τxt = inf{t ≤ s ≤ T |v(s, F t,x
s ) = φ(s, F t,x

s )} = T .

Now since τxt is the smallest optimal stopping time for (2.7), as per Theorem 2.4 (iii), we conclude that it is

unique (since all other optimal stopping times must be greater than τxt and smaller than T ). □

2.4.5 Equivalence of the Optimal Stopping Problems
In this section, we compare the optimal stopping problemswith continuous and discontinuous reward func-
tions introduced in Section 2.3, and provide a simple condition under which the two problems lead to the
exact same surrender regions and optimal stopping times.

Proposition 2.25 Suppose Assumption 2.4.2 holds. If L(t) < 0 for all t ∈ [0, T ), then S = ˜︁S.
The proof of Proposition 2.25 relies on the following lemma.

Lemma 2.26 Under the assumptions of Proposition 2.25, v(t, x) > h(t, x) for all (t, x) ∈ [0, T ) × R⋆
+,

where h(t, x) = E
[︂
e−r(T−t)max(G,F t,x

T )
]︂
.
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Proof. We proceed by contradiction. Suppose that L(t) < 0 for all t ∈ [0, T ) and that v(t, x) = h(t, x) for

some (t, x) ∈ [0, T )×R⋆
+. Using Itô’s lemma on the discounted surrender value process and the zero-mean

property of the stochastic integral, we find that

v(t, x) = E
[︂
e−r(T−t)max(G,F t,x

T )
]︂

= E
[︂
e−r(T−t)g(T )F t,x

T

]︂
+ E

[︂
e−r(T−t)(G− F t,x

T )+

]︂
= xg(t) + E

[︃∫︂ T

t
e−r(s−t)F t,x

s L(s) ds

]︃
+ E

[︂
e−r(T−t)(G− F t,x

T )+

]︂
≤ xg(t) + x sup

t≤s≤T
L(s)

∫︂ T

t
e−

∫︁ s
t c(u) du ds+ E

[︂
e−r(T−t)(G− F t,x

T )+

]︂
Now recall from Lemma 2.10 (ii) that v(t, x) ≥ xg(t) for all (t, x) ∈ [0, T )× R⋆

+. Hence, it follows that

xg(t) ≤ v(t, x) ≤ xg(t) + x sup
t≤s≤T

L(s)

∫︂ T

t
e−

∫︁ s
t c(u) du ds+ E

[︂
e−r(T−t)(G− F t,x

T )+

]︂
.

For the last inequality to be satisfied, it must be true that

E
[︂
e−r(T−t)(G− F t,x

T )+

]︂
≥ −x sup

t≤s≤T
L(s)

∫︂ T

t
e−

∫︁ s
t c(u) du ds.

Using arguments similar to those of the proof of Proposition 2.23(ii), we find a contradiction and therefore

conclude that v(t, x) > h(t, x) for all (t, x) ∈ [0, T )× R⋆
+. □

We can now prove Proposition 2.25.

Proof. [Proposition 2.25] To show that S ⊆ ˜︁S , fix (t, x) ∈ S , and observe that φ(t, x) = v(t, x) ≥ h(t, x).

Hence, φ(t, x) = max(φ(t, x), h(t, x)). By definition of S , v(t, x) = φ(t, x) = max(φ(t, x), h(t, x)), and

thus (t, x) ∈ ˜︁S.
To show that S ⊇ ˜︁S , we show C ⊆ ˜︁C. Fix (t, x) ∈ C, so that v(t, x) > φ(t, x). Since L(t) < 0 for all

t ∈ [0, T ), we have by Lemma 2.26 that v(t, x) > h(t, x) for all (t, x) ∈ [0, T ) × R⋆
+. Thus, v(t, x) >

max(φ(t, x), h(t, x)), which confirms that (t, x) ∈ ˜︁C. □
The next corollary establishes the equality of τxt and ˜︁τxt under a simple condition, complementing the pre-
vious results of Lemma 2.8.

Corollary 2.27 Suppose Assumption 2.4.2 holds. If L(t) < 0 for all t ∈ [0, T ), then τxt = ˜︁τxt .
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Proof. The stopping times τxt and ˜︁τxt can be written as

τxt = inf{t ≤ s ≤ T |(s, F t,x
s ) ∈ S},˜︁τxt = inf{t ≤ s ≤ T |(s, F t,x
s ) ∈ ˜︁S}.

The proof then follows immediately from Proposition 2.25. □

Remark 2.4.14 From the results above, we can conclude that when the fee and surrender charge functions

only depend on time (Assumption 2.4.2) and ifL(t) < 0 for all t ∈ [0, T ), the optimal stopping problemwith

the continuous reward function (2.13) is equivalent to the optimal stopping problem with the discontinuous

reward function (2.7). That is, the two problems lead to the same value function (Theorem 2.6), surren-

der region (Proposition 2.25), and optimal stopping time (Corollary 2.27). It also follows that the optimal

surrender boundary and the continuation region will be the same for the two problems.

2.5 Numerical Examples
In this section, we give two simple examples to illustrate the differences between the optimal stopping
problem involved in variable annuities pricing and the one stemming from American call and put option
pricing often studied in the literature. When valuing variable annuities, the fee and the surrender charge
functions can lead to a disconnected surrender region and a discontinuous optimal stopping boundary. We
consider the time-dependent fee functions c1 and c2 defined by

c1(t) = 0.010908× 1{t≤5} + 0.005454× 1{5<t≤10} + 0.010908× 1{10<t≤T},

c2(t) = 0.010908× 1{t≤10} + 0.005454× 1{10<t≤T},

withT = 15. The surrender function is set to g(t) = e−κ(T−t), withκ = 0.0055. A simple calculation shows
that L(t) > 0 when t ∈ (5, 10] for c1 and t ∈ (10, T ] for c2. The numerical example below shows that the
results of the preceding sections hold, even though the fee functions c1 and c2 do not satisfy Assumption
2.4.1 (ii), suggesting that the assumptions of Section 2.4 are sufficient conditions and may be relaxed.

Figure 2.1 shows the continuation regions (in red) of the optimal stopping problem with the discontinuous
reward function (2.7) when the fee function is modeled by c1 (left panel) and c2 (right panel). We first
observe that the surrender regions (in white) are empty between year 5 and 10 for the fee function c1, and
between year 10 and 15 for c2. This corresponds to the time intervals during which L(t) > 0, as shown
theoretically in Proposition 2.23 (i). Thus, the optimal surrender boundary is discontinuous when the fee is

53



(a) c1 (b) c2
Figure 2.1: Analysis of the continuation region (in red) of the optimal stopping problemwith the discontinuous reward
function (2.7). The value of the variable annuity contract is approximated using the continuous-time Markov chain
approximation described in the next chapter. Market and VA parameters are r = 0.03, σ = 0.2, F0 = G = 100 and
T = 15.

given by c1 (left panel). It is already known from the literature of variable annuity that the surrender region
can have different shapes depending on the fee function, see for example MacKay et al. (2017), Figures 4
and 5. However, such disconnected sets for the surrender region have not been observed in prior numerical
work on similar problems, see among others Bernard et al. (2014b), MacKay et al. (2017), Kang and Ziveyi
(2018), and the Chapter 3 of this thesis. Another important feature that is highlighted in the second example
(when the fee is modeled by c2) is that we no longer have limt→T b(t) = G. This is because the surrender
region is empty close to maturity (since L(t) > 0). These simple examples illustrate well how different the
optimal stopping problem involved in variable annuities pricing differs from the traditional American call
and put options often studied in the literature.

2.6 Concluding Remarks
In this chapter, we perform a rigorous theoretical analysis of the value function involved in the pricing of
a variable annuity contract with guaranteed minimum maturity benefit under the Black-Scholes setting
with general fee and surrender charge functions. Because of the time dependence, the discontinuity, and
the unboundedness of the reward function, many of the standard results in optimal stopping theory do
not apply directly to our problem. We show that the optimal stopping problem in (2.7) admits another
representation with a continuous reward function (2.13), which facilitates the study of the regularity of the
value function.
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In particular, the continuous reward representation allows us to use existing results from American option
pricing theory to obtain the continuity of the value function. We also prove its convexity in the state vari-
able, and its Lipschitz property in x and (locally) in t. Then, we derive an integral expression for the early
surrender premium, generalizing the results of Bernard et al. (2014a) to general time-dependent fee and
surrender charge functions. This second representation of the value function is also known as the early
exercise premium representation in the American option pricing literature. From there, we develop a third
representation for the value function in terms of the current surrender value and an integral expression that
only takes value in the continuation region. We call this third representation the continuation premium rep-
resentation.

The continuation premium representation turns out to be very helpful in studying the shapeof the surrender
region. We show that the (non-)emptiness of the surrender region depends on an explicit condition that is
expressed solely in terms of the fee and the surrender charge functions. This result is new to the literature
and provides a better understanding of the interaction between the fees and the surrender penalty on
surrender incentives. When the surrender region is nonempty, we show that t-sections of S are of the
form St = [b(t),∞), for some b(t) ∈ R⋆

+ ∪ {∞}. Investigating the regularity of the optimal surrender
boundary theoretically is left as future research.

2.7 Appendix - Proofs
2.7.1 Proof of Proposition 2.12
The following Lemma is necessary to prove Proposition 2.12.

Lemma 2.28 Let ˜︁τ be a stopping time taking values in [0, 1] and define c : R+ ↦→ [0, 1]. For 0 ≤ s ≤ t ≤ T ,⃓⃓⃓ ∫︂ s+˜︁τ(T−s)

s
c(u) du−

∫︂ t+˜︁τ(T−t)

t
c(u) du

⃓⃓⃓
≤ 3|t− s|.

Proof. Since s ≤ t, s+ ˜︁τ(T − s) ≤ t+ ˜︁τ(T − t). Hence, there are two cases to consider:
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1. when s ≤ t ≤ s+ ˜︁τ(T − s) ≤ t+ ˜︁τ(T − t),⃓⃓⃓ ∫︂ t+˜︁τ(T−t)

t
c(u) du−

∫︂ s+˜︁τ(T−s)

s
c(u) du

⃓⃓⃓
=
⃓⃓⃓ ∫︂ t+˜︁τ(T−t)

s+˜︁τ(T−s)
c(u) du−

∫︂ t

s
c(u) du

⃓⃓⃓
≤
⃓⃓⃓ ∫︂ t+˜︁τ(T−t)

s+˜︁τ(T−s)
c(u) du

⃓⃓⃓
+
⃓⃓⃓ ∫︂ t

s
c(u) du

⃓⃓⃓
≤ |t+ ˜︁τ(T − t)− s− ˜︁τ(T − s)|+ |t− s| ≤ 3|t− s|, (since c is bounded by 1);

2. when s ≤ s+ ˜︁τ(T − s) ≤ t ≤ t+ ˜︁τ(T − t),⃓⃓⃓ ∫︂ t+˜︁τ(T−t)

t
c(u) du−

∫︂ s+˜︁τ(T−s)

s
c(u) du

⃓⃓⃓
≤
⃓⃓⃓ ∫︂ t+˜︁τ(T−t)

t
c(u) du

⃓⃓⃓
+
⃓⃓⃓ ∫︂ s+˜︁τ(T−s)

s
c(u) du

⃓⃓⃓
≤
⃓⃓⃓ ∫︂ t+˜︁τ(T−t)

s+˜︁τ(T−s)
c(u) du

⃓⃓⃓
+
⃓⃓⃓ ∫︂ t

s
c(u) du

⃓⃓⃓
≤ 3|t− s|.

□

We can now prove Proposition 2.12.

(i) Wefirst note that under Assumption 2.4.2, the functionx ↦→ φ(t, x) satisfies |φ(t, x)− φ(t, y)| ≤ |x− y|
for all t ∈ [0, T ]. Suppose x > y. Since x ↦→ v(t, x) is non-decreasing (Lemma 2.11), we have

|v(t, x)− v(t, y)| = v(t, x)− v(t, y)

≤ E
[︂
e−r(τxt −t)

⃓⃓⃓
φ(τxt , F

t,x
τxt

)− φ(τxt , F
t,y
τxt

)
⃓⃓⃓]︂

≤ E
[︂
e−r(τxt −t)

⃓⃓⃓
F t,x
τxt
− F t,y

τxt

⃓⃓⃓]︂
≤ E

[︃
e−r(τxt −t)

⃓⃓⃓⃓
xe

(r−σ2/2)(τxt −t)−
∫︁ τxt −t

0 c(t+s) ds+σWτxt −t

−ye(r−σ2/2)(τxt −t)−
∫︁ τxt −t

0 c(t+s) ds+σWτxt −t

⃓⃓⃓⃓]︃
≤ |x− y|E

[︂
e
σWτxt −t−σ2(τxt −t)/2

]︂
= |x− y|.

The last equality follows from an application of Doob’s optional sampling theorem.
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(ii) DefineM1 := sup0≤s≤1 |Ws| and let ˜︁τ ∈ T0, 1. Since,M1 ≥ 0, for any t ∈ [0, T ],⃓⃓⃓⃓
⃓σ√T − tW˜︁τ(ω)(ω) + (r − σ2/2)˜︁τ(ω)(T − t)− ∫︂ ˜︁τ(ω)(T−t)

0
c(t+ u) du

⃓⃓⃓⃓
⃓

≤ σ
√
T − t|W˜︁τ(ω)(ω)|+ |r − σ2/2|˜︁τ(ω)(T − t) + ∫︂ ˜︁τ(ω)(T−t)

0
c(t+ u) du

≤ σ
√
TM1(ω) + |r − σ2/2|T +

∫︂ T

0
c(u) du, (2.44)

for all ω ∈ Ω.
Moreover, if |z| ≤ r, |w| ≤ r, for some r > 0, then

|ez − ew| ≤ er|z − w|. (2.45)

This is known as the Lipschitz property of the exponential function on a disk and follows from
zn+1 − wn+1 = (z − w)

∑︁n
k=0 z

kwn−k for all n ∈ N.
Now fix x ∈ R⋆

+ and 0 ≤ s ≤ t ≤ T . Since v is non-monotone in t (see Remark 2.4.2), we consider
two cases.
Case 1: v(s, x) ≥ v(t, x). Recall from Corollary 2.5 that

τxs = inf
{︁
s ≤ u ≤ T

⃓⃓
v(u, F s,x

u ) = φ(u, F s,x
u )

}︁
is optimal for v(s, x) and let ˜︁τ = (τxs − s)/(T − s). Then,
|v(s, x)− v(t, x)| = v(s, x)− v(t, x)

≤ E
[︂
e−r˜︁τ(T−t)

(︂
φ
(︂˜︁τ(T − s) + s, F s,x

s+˜︁τ(T−s)

)︂
− φ

(︂˜︁τ(T − t) + t, F t,x
t+˜︁τ(T−t)

)︂)︂]︂
≤ E

[︂(︂
g(˜︁τ(T − s) + s)F s,x

s+˜︁τ(T−s) − g(˜︁τ(T − t) + t)F t,x
t+˜︁τ(T−t)

)︂
1{˜︁τ<1}

+
(︂
max(G,F s,x

s+˜︁τ(T−s))−max(G,F t,x
t+˜︁τ(T−t))

)︂
1{˜︁τ=1}

]︂
≤ E

[︂⃓⃓⃓
F t,x
t+˜︁τ(T−t) − F

s,x
s+˜︁τ(T−s)

⃓⃓⃓
1{˜︁τ<1} +

⃓⃓⃓
F t,x
t+˜︁τ(T−t) − F

s,x
s+˜︁τ(T−s)

⃓⃓⃓
1{˜︁τ=1}

]︂
= E

[︂⃓⃓⃓
F t,x
t+˜︁τ(T−t) − F

s,x
s+˜︁τ(T−s)

⃓⃓⃓]︂
≤ E

[︂
xeσ

√
TM1+|r−σ2/2|T+

∫︁ T
0 c(u) du

⃓⃓⃓
(r − σ2/2)˜︁τ(s− t)

+

∫︂ s+˜︁τ(T−s)

s
c(u) du−

∫︂ t+˜︁τ(T−t)

t
c(u) du+ σ

√
T − tW˜︁τ − σ√T − sW˜︁τ ⃓⃓⃓

]︄
(by (2.44) and (2.45))

≤ E
[︂
xeσ

√
TM1+|r−σ2/2|T+

∫︁ T
0 c(u) du

{︂ ⃓⃓
r − σ2/2

⃓⃓ ˜︁τ |s− t|
+3|s− t|+ σ|W˜︁τ ||√T − t−√T − s|}︂]︂ (from Lemma 2.28)
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= E
[︂
xeσ

√
TM1+|r−σ2/2|T+

∫︁ T
0 c(u) du|r − σ2/2|˜︁τ |s− t|]︂

+ 3K1|s− t|+ E
[︂
xeσ

√
TM1+|r−σ2/2|T+

∫︁ T
0 c(u) duσ|W˜︁τ ||√T − t−√T − s|]︂

≤ K1|r − σ2/2||s− t|+ 3K1|s− t|+K2

⃓⃓⃓√
T − t−

√
T − s

⃓⃓⃓
≤ K ′

1|s− t|+K2|
√
T − t−

√
T − s|,

where the fifth to last equality follows by the scaling property of Brownian motion (see
for instance Lamberton (1998), Proposition 10.3.5 (1)), and the constants are defined by
K1 := xe|r−σ2/2|T+

∫︁ T
0 c(u) duE

[︂
eσ

√
TM1

]︂, K2 := xσe|r−σ2/2|T+
∫︁ T
0 c(u) duE

[︂
M1e

σ
√
TM1

]︂, and
K ′

1 := K1

(︂
3 + |r − σ2

2 |
)︂.

Case 2: v(s, x) ≤ v(t, x). Let ˜︁τ be defined as above. Note that the surrender function g is Lipschiz,
since it isC1 and it has bounded first order derivatives (by hypothesis). Hence, as in the first case, we
obtain
|v(t, x)− v(s, x)| = v(t, x)− v(s, x)

≤ E
[︂
e−r˜︁τ(T−t)φ

(︂˜︁τ(T − t) + t, F t,x
t+˜︁τ(T−t)

)︂
− e−r˜︁τ(T−s)φ

(︂˜︁τ(T − s) + s, F s,x
s+˜︁τ(T−s)

)︂]︂
= E

[︂(︂
e−r˜︁τ(T−t) − e−r˜︁τ(T−s)

)︂
φ
(︂˜︁τ(T − t) + t, F t,x

t+˜︁τ(T−t)

)︂]︂
+ E

[︂
e−r˜︁τ(T−s)

{︂
φ
(︂˜︁τ(T − t) + t, F t,x

t+˜︁τ(T−t)

)︂
− φ

(︂˜︁τ(T − s) + s, F s,x
s+˜︁τ(T−s)

)︂}︂]︂
= E

[︂⃓⃓⃓
e−r˜︁τ(T−t) − e−r˜︁τ(T−s)

⃓⃓⃓
φ
(︂˜︁τ(T − t) + t, F t,x

t+˜︁τ(T−t)

)︂]︂
+ E

[︂
e−r˜︁τ(T−s)

{︂
φ
(︂˜︁τ(T − t) + t, F t,x

t+˜︁τ(T−t)

)︂
− φ

(︂˜︁τ(T − s) + s, F s,x
s+˜︁τ(T−s)

)︂}︂]︂
≤ E

[︂
erT |r˜︁τ(T − t)− r˜︁τ(T − s)|φ(︂˜︁τ(T − t) + t, F t,x

t+˜︁τ(T−t)

)︂]︂
(by (2.45))

+ E
[︂
e−r˜︁τ(T−s)

{︂
φ
(︂˜︁τ(T − t) + t, F t,x

t+˜︁τ(T−t)

)︂
− φ

(︂˜︁τ(T − s) + s, F s,x
s+˜︁τ(T−s)

)︂}︂]︂
≤ rerT |t− s| ×

(︁
G+ 4xerT

)︁
(by Lemma 2.10)

+ E
[︂
e−r˜︁τ(T−s)

{︂
φ
(︂˜︁τ(T − t) + t, F t,x

t+˜︁τ(T−t)

)︂
− φ

(︂˜︁τ(T − s) + s, F s,x
s+˜︁τ(T−s)

)︂}︂]︂
≤ ˜︁K1|t− s|+ E

[︂
e−r˜︁τ(T−s)

{︂
φ
(︂˜︁τ(T − t) + t, F t,x

t+˜︁τ(T−t)

)︂
− φ

(︂˜︁τ(T − s) + s, F s,x
t+˜︁τ(T−s)

)︂}︂]︂

= ˜︁K1|t− s|+ E
[︂
e−r˜︁τ(T−s)

(︂
g(˜︁τ(T − t) + t)F t,x

t+˜︁τ(T−t) − g(˜︁τ(T − s) + s)F s,x
s+˜︁τ(T−s)

)︂
1{˜︁τ<1}

+e−r˜︁τ(T−s)
(︂
max(G,F t,x

t+˜︁τ(T−t))−max(G,F s,x
s+˜︁τ(T−s))

)︂
1{˜︁τ=1}

]︂
= ˜︁K1|t− s|+ E

[︄
e−r˜︁τ(T−s)

(︂
[g(˜︁τ(T − t) + t)− g(˜︁τ(T − s) + s)]F s,x

s+˜︁τ(T−s)
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+ g(˜︁τ(T − t) + t)
[︂
F t,x
t+˜︁τ(T−t) − F

s,x
s+˜︁τ(T−s)

]︂ )︂
1{˜︁τ<1}

+ e−r˜︁τ(T−s)
(︂
max(G,F t,x

t+˜︁τ(T−t))−max(G,F s,x
s+˜︁τ(T−s))

)︂
1{˜︁τ=1}

]︄
≤ ˜︁K1|t− s|+ E

[︂
[g(˜︁τ(T − t) + t)− g(˜︁τ(T − s) + s)] e−r˜︁τ(T−s)F s,x

s+˜︁τ(T−s)

]︂
+ E

[︂
e−r˜︁τ(T−s)g(˜︁τ(T − t) + t)

(︂
F t,x
t+˜︁τ(T−t) − F

s,x
s+˜︁τ(T−s)

)︂
1{˜︁τ<1}

+e−r˜︁τ(T−s)
(︂
max(G,F t,x

t+˜︁τ(T−t))−max(G,F s,x
s+˜︁τ(T−s))

)︂
1{˜︁τ=1}

]︂
≤ ˜︁K1|t− s|+ (G+ 4x)C|t− s|+ E

[︂⃓⃓⃓
F t,x
t+˜︁τ(T−t) − F

s,x
s+˜︁τ(T−s)

⃓⃓⃓]︂
(since g is Lipschitz)

≤ ˜︁K1|t− s|+ (G+ 4x)C|t− s|+K ′
1|t− s|+K2|

√
T − t−

√
T − s|

≤ ˜︁K∗
1 |t− s|+K2|

√
T − t−

√
T − s|,

where the second to last inequality follows using the same steps as in Case 1, and with˜︁K1 := rerT (G+ 4xerT ), ˜︁K∗
1 = (G+ 4x)C + ˜︁K1 +K ′

1,C is the Lipschitz constant of g andK ′
1 and

K2 are the constants defined in Case 1. □

2.7.2 Proof of Proposition 2.23
(i) FromTheorem2.13, Remark 2.4.5 and Corollary 2.17, we have that v ∈ C0,1([0, T ]×R⋆

+\{T}×{G})∩

C1,2([0, T ]×R⋆
+ \∂C), so that v ∈ C1,2(int(S)). Observe that for x ∈ relint(St), v(t, x) = xg(t), so

that xL(t) = Ltv+ vt− rv. We note that the differential operator can be applied since x ∈ int(S).
Recall fromProposition 2.15 that under Assumption 2.4.2,Ltv+vt−rv ≤ 0 for all (t, x) ∈ (0, T )×R⋆

+.
The result follows since x > 0 in int(S).

(ii) We first show that if L(t) < 0 for all t ∈ [0, T ) then S ̸= ∅ and C ̸= ∅. Using the continuation
premium representation (2.28), we have

v(t, x)− xg(t) = E
[︂
e−r(T−t)(G− F t,x

T )+

]︂
+

∫︂ T

t
L(s)E

[︂
e−r(s−t)F t,x

s 1{F t,x
s ∈Cs}

]︂
ds,

(2.46)

for all (t, x) ∈ [0, T ]×R⋆
+. We want to show that- there exists some (t1, x1) ∈ [0, T )×R⋆

+ satisfying
v(t1, x1) = φ(t1, x1) and some (t2, x2) ∈ [0, T )× R⋆

+ satisfying v(t2, x2) > φ(t2, x2). We proceed
by contradiction.
First, suppose that L(s) < 0 for all s ∈ [0, T ) and S = ∅. Fix t ∈ [0, T ). Since S = ∅, we have
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C = [0, T )× R⋆
+, so that (2.46) becomes

v(t, x)− φ(t, x)

= E
[︂
e−r(T−t)(G− F t,x

T )+

]︂
+

∫︂ T

t
(gt(s)− c(s)g(s))xe−

∫︁ s
t c(u) du ds

= E
[︂
e−r(T−t)(G− F t,x

T )+

]︂
+ x

(︂
e−

∫︁ T
t c(s) ds − g(t)

)︂
. (2.47)

Now note that St = ∅ implies v(t, x) − φ(t, x) > 0 for all x ∈ R⋆
+. Hence, we deduce that for all

x ∈ R⋆
+,

E
[︂
e−r(T−t)(G− F t,x

T )+

]︂
> x

(︂
g(t)− e−

∫︁ T
t c(s) ds

)︂
. (2.48)

Observe now that L(s) = gt(s) − c(s)g(s) < 0 ⇔ d ln g(s)
ds < c(s) for all s ∈ [0, T ). By integrating

from t to T on both sides of the inequality and using the fact that g(T ) = 1, we find that
g(t)− e−

∫︁ T
t c(s) ds > 0, (2.49)

for all t ∈ [0, T ).
The expectation on the left-hand side of (2.48) is a continuous andmonotonically decreasing function
of x, is equal toGe−r(T−t) when x = 0 and approaches 0 as x→∞. The function on the right-hand
side is continuous (under Assumption 2.4.1), strictly increasing in x and ranges from 0 to∞. Then,
theremust exist y ∈ R⋆

+ such thatE [︂e−r(T−t)(G− F t,x
T )+

]︂
≤ x

(︂
e−

∫︁ T
t c(s) ds − g(t)

)︂ for all x ≥ y,
contradicting (2.48). We conclude that St ̸= ∅.
For the second part of the proof, we proceed similarly. Suppose that L(s) < 0 for all s ∈ [0, T ) and
C = ∅. Fix t ∈ [0, T ). Since C = ∅, (2.46) becomes

v(t, x)− φ(t, x) = v(t, x)− xg(t) = E
[︂
e−r(T−t)(G− F t,x

T )+

]︂
.

Now note that Ct = ∅ implies v(t, x) − φ(t, x) = 0 for all x ∈ R⋆
+. However, we know that for

all x ∈ R⋆
+, E

[︂
e−r(T−t)(G− F t,x

T )+

]︂
> 0, so that Ct ̸= ∅, leading to a contradiction. Thus, we

conclude that Ct ̸= ∅.
Secondly, to show that ∪t1≤t<t2St ̸= ∅ for any [t1, t2) ⊂ [0, T ) such that t1 < t2, we proceed by
contradiction. Fix 0 ≤ t1 < t2 < T . Suppose that L(s) < 0 for all s ∈ [0, T ) and ∪t1≤t<t2St = ∅ .
This implies Ct = R⋆

+ for all t ∈ [t1, t2), so that v(t, x)−φ(t, x) > 0 for all (t, x) ∈ [t1, t2)×R⋆
+. Fix

(t, x) ∈ [t1, t2)× R⋆
+. Using the continuation premium representation (2.28), we have that

v(t, x)− φ(t, x) = E
[︃
e−r(T−t)

(︂
G− F t,x

T

)︂
+

]︃
+

∫︂ T

t
L(s)E

[︂
e−r(s−t)F t,x

s 1{F t,x
s ∈Cs}

]︂
ds > 0,
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so that,
E
[︃
e−r(T−t)

(︂
G− F t,x

T

)︂
+

]︃
> −

∫︂ T

t
L(s)E

[︂
e−r(s−t)F t,x

s 1{F t,x
s ∈Cs}

]︂
ds

≥ − sup
t≤s<t2

L(s)

∫︂ t2

t
E
[︂
e−r(s−t)F t,x

s 1{F t,x
s ∈Cs}

]︂
ds

= −x sup
t≤s<t2

L(s)

∫︂ t2

t
e−

∫︁ s
t c(u) du ds (2.50)

Note that the function on the right-hand side is positive, equal to 0 when x = 0, strictly increas-
ing in x (since L(t) < 0 by assumption) and approaches infinity as x → ∞. Then, using argu-
ments similar to those of the proof of Proposition 2.23 (ii), there must exist y ∈ R⋆

+ such that for all
x ≥ y, E

[︃
e−r(T−t)

(︂
G− F t,x

T

)︂
+

]︃
≤ −x supt≤s<t2 L(s)

∫︁ t2
t e−

∫︁ s
t c(u) du ds, contradicting the strict

inequality in (2.50) which must hold for all x ∈ R⋆
+. We conclude that St ̸= ∅. □

2.7.3 Proof of Proposition 2.24
(i) This statement is simply the contrapositive of Proposition 2.23 (i).
(ii) Observe that∪t1≤t<t2St = ∅ implies∪t1≤t<t2Ct = [t1, t2)× R⋆

+. Thus, weneed to show that v(t, x) >
φ(t, x) for all (t, x) ∈ [t1, t2) × R⋆

+. Fix (t, x) ∈ [t1, t2) × R⋆
+ and recall from the proof of Lemma

2.20 that for any 0 < t < s ≤ T

e−r(s−t)φ(s, F t,x
s ) = Y t,x

s + e−r(T−t)(G− F t,x
T )+1{s=T},

where Y t,x = {Y t,x
s }t≤s≤T , with Y t,x

s = e−r(s−t)g(s, F t,x
s )F t,x

s , is the discounted surrender value
process. Hence, applying Itô’s formula to Y t,x, we find that

E
[︂
e−r(t2−t)φ(t2, F

t,x
t2

)
]︂
= xg(t, x) +

∫︂ t2

t
E[L(s, F t,x

s )e−r(s−t)F t,x
s ] ds

+ E
[︂
e−r(T−t)(G− F t,x

T )+1{t2=T}

]︂
> xg(t, x) = φ(t, x),

where the last inequality follows since L(t, x) > 0 for all (t, x) ∈ [t1, t2)× R⋆
+. It follows that

v(t, x) ≥ E
[︂
e−r(t2−t)φ(t2, F

t,x
t2

)
]︂
> φ(t, x),

for all (t, x) ∈ [t1, t2)× R⋆
+, which completes the proof.
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(iii) Since S = ∅, C = [0, T ) × R⋆
+, v(t, x) − φ(t, x) > 0 for all (t, x) ∈ [0, T ) × R⋆

+. Then, for all
(t, x) ∈ [0, T )× R⋆

+, v(t, x)− φ(t, x) > 0 implies
E
[︂
e−r(T−t)(G− F t,x

T )+

]︂
> x

(︂
g(t)− e−

∫︁ T
t c(u) du

)︂
. (2.51)

As observed in the proof of Proposition 2.23 (ii), the expectation on the left-hand side is a continuous
and monotonically decreasing function of x, is equal to Ge−r(T−t) when x = 0 and decreases to 0

as x→∞. Therefore, in order for the inequality to hold for all (t, x) ∈ [0, T )× R⋆
+, it must be true

that
g(t)− e−

∫︁ T
t c(u) du ≤ 0 (2.52)

for all t ∈ [0, T ). □
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CHAPTER 3

VIX-LINKED FEE INCENTIVES IN VARIABLE ANNUITIES

This chapter is based on a collaborative paper authored by Dr. Anne MacKay, Dr. Zhenyu Cui from Stevens
Institute of Technology, and myself. The paper has been published in Quantitative Finance (see MacKay
et al. (2023)). In this work, we consider the pricing of variable annuities with general fee structures under
a class of stochastic volatility models, which includes the Heston, Hull-White, Scott, α-Hypergeometric,
3/2, and 4/2 models. In particular, we analyze the impact of different VIX-linked fee structures on the
optimal surrender strategy of a VA contract with GMMB using a two-layer continuous-time Markov chain
to approximate the fund value process.

3.1 Introduction
A variable annuity (or segregated fund in Canada) is a hybrid investment instrument mainly used for retire-
ment planning, which offers a life insurance benefit and a financial guarantee. It allows the policyholder
to profit from potential gains resulting from an investment in financial markets, while offering protection
against losses. The real options embedded in these products are comparable to exotic options, with the
following differences: the benefit may depend on the policyholder’s survival (or death), they are long-term
investments (generally between 5 and 15 years, or more), and the financial guarantee is funded via a peri-
odic fee (typically set as a percentage of the fund value) as opposed to a premium paid upfront. Different
types of protection riders are offered, such as guaranteed minimummaturity benefit (GMMB), guaranteed
minimum death benefit (GMDB), and guaranteedminimumwithdrawal benefit (GMWB); see (Hardy, 2003)
or Bauer et al. (2008) for details1. This chapter focuses on the GMMB rider, which guarantees the policy-
holder aminimumamount at the contract’smaturity. Considering the significant size of the variable annuity
market2, the management of the risk associated with the guarantees embedded in variable annuities is a
major concern for insurance companies, see Niittuinperä (2022). Indeed, variable annuities guarantees en-
tail significant risks given their long-term structure and sensitivity to various financial and demographic risks

1 There are no consensus amongpractitioners and scientists for these products’ name, and thus, different authorsmayuse different
terminologies for the same product.
2 In the United-States, the total variable annuity sales were $125 billion in 2021, representing an increase of 25% with respect to
the total VA sales in 2020. Source: LIMRA Secure Retirement Institute, U.S. Individual Annuities survey https://www.limra.
com/siteassets/newsroom/fact-tank/sales-data/2021/q4/2012-2021-annuity-sales-updated.pdf .
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as well as to policyholders’ behavior. For the GMMB rider, this last risk is mostly due to early surrenders.

Surrender risk refers to the uncertainty facing the insurer when a policyholder has the possibility to termi-
nate her contract before its maturity. When she does so, she is entitled to the value accumulated in the
variable annuity investment account, subject to a penalty. Kling et al. (2014) show that unexpected lapses
can represent a significant risk for insurers. For this reason, surrender risk has raised special attention in the
literature (Niittuinperä (2022), Chapter 18). Bacinello et al. (2011) provide a universal pricing framework for
various riders and considers different types of surrender behaviors: static, i.e. the contract is never surren-
dered; or mixed, i.e. the policyholder acts rationally and surrenders the policy as soon as it is optimal from
a risk-neutral valuation perspective. Pricing variable annuities under rational surrender behavior is equiva-
lent to solving an optimal stopping problem and corresponds to the worst-case scenarios for insurers, in the
sense that it maximizes the risk-neutral value of the contract from the policyholders’ perspective. Under
this assumption, Grosen and Jørgensen (1997) study the valuation of interest rate guarantees by assuming
that the surrender value will be the same as the benefit value. Milevsky and Salisbury (2001) assume that
the policyholder will only get a certain percentage of the fund upon surrender; this hypothesis is more in
line with policies seen in practice. Under this assumption, they provide a closed-form analytical solution
to the price of a GMDB with surrender in the Black-Scholes framework. In particular, they study the in-
teraction between the surrender charges, the fee rates, and the optimal surrender level. Bernard et al.

(2014b) study a problem similar to the one of Milevsky and Salisbury (2001), but focus on a GMMB rather
than a GMDB. It is well-known that American options with finite maturity generally do not have closed-
form solutions. Thus, Bernard et al. (2014b) used arbitrage-free techniques in the same vein as Kim (1990)
and Carr et al. (1992) in the context of American call and put options to derive an analytical expression for
the value of the right to surrender, which is analogous to the early exercise premium in American option
terminology. In particular, they study the impact of different risk factors influencing the optimal surrender
boundary. In that context, Bernard and MacKay (2015) provide a sufficient condition on surrender charges
and fees which eliminate surrender incentives for a financially rational policyholder. Recently, Kang and
Ziveyi (2018) extended the framework of Bernard et al. (2014b) by analyzing how the optimal surrender
boundary is affected by changes in different risk factors in a stochastic interest rate and volatility model of
the Heston-Hull-White type, whereas Alonso-García et al. (2022) incorporate taxes into their analysis.

Other fee structure designs have also been explored by different authors. The idea behind those designs
is usually to reduce the insurer’s exposure to various risks, such as market volatility and policyholder be-
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havior. Bernard et al. (2014a) introduce a state-dependent fee structure, where the fee is only paid when
the VA account value is below a certain level, and present an analytical formula for the value of a con-
tract with GMMB rider (without early surrender) under this type of fee structure. MacKay et al. (2017)
study how the fee structure and surrender charges affect the surrender region; they also design surrender
charges that eliminate surrender incentives for a financially rational policyholder. Other fee designs have
been explored in the literature: Delong (2014) considers a general state-dependent fee structure in a Lévy
process driven market, whereas Bernard and Moenig (2019) study lapse-and-reentry in variable annuities
with time-dependent fee structure. Finally, in a recent study, Wang and Zou (2021) propose a stochastic
control approach to determine the optimal fee structure.

Recently, fee structures that are tied to the Chicago Board Options Exchange (CBOE) volatility index, the
VIX3, have gained attention in the literature, see Cui et al. (2017a) and Kouritzin and MacKay (2018). The
motivations behind this new fee design come directly from the industry. In 2010, SunAmerica issued two
new variable annuities whose fees were tied to the volatility index4. More recently, America General Life
Insurance Company proposed a fee structure that is linked to the VIX for its Polaris series of variable an-
nuities, see Polaris Platinum O-Series prospectus dated May 3rd, 20215. By allowing the fees to move with
the volatility index, the insurer expects to better match the cost of hedging with the premium collected. It
also reduces fees for policyholders in low-volatility, rising market environments. The CBOE published two
white papers, CBOE (2013b) and CBOE (2013a), illustrating how VIX-linked fee designs can be advantageous
to both variable annuity providers and policyholders. Cui et al. (2017a) approach the question from a theo-
retical perspective by analyzing variable annuities without surrender with a fee structure that is tied to the
VIX under a Heston-type stochastic volatility model. They provide a closed-form expression for the GMMB
rider and observe that such a structure might help realign fee incomes with the value of the financial guar-
antee. Kouritzin and MacKay (2018) extend the works of Cui et al. (2017a) by applying the VIX fee designs
to a GMWB rider and by adding jumps to the underlying index value process.

In this work, we allow fee structures to be as general as possible, i.e. the fee structure may depend on

3 See https://www.cboe.com/tradable_products/vix/
4 See Retirement Income Journal available at https://retirementincomejournal.com/article/sunamerica-links-\
gls{va}-rider-fees-to-volatility-index/.
5 See footnote 6 on p.9 of the prospectus (the long-form) available at https://aig.onlineprospectus.net/AIG/

867018103A/index.php?open=POLARIS!5fPLATINUM!5fO-SERIES!5fISP.pdf.
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time, the fund value, and also on the latent variance process, making it possible to link the fee to the VIX.
In the constant fee case, it is well-known that the misalignment between the fees and the value of the
financial guarantee creates an incentive for the risk-neutral, rational policyholder to surrender her policy
early (see Milevsky and Salisbury (2001)). Since VIX-linked fee structures allow for better alignment of the
guaranteed value with the corresponding hedging cost, we expect that such fee designs can also help re-
duce the insurers’ exposure to surrender risk. For this reason, we numerically study the impact of three
different VIX-linked fee designs on the optimal surrender strategy. To do so, we use a two-layer continuous-
time Markov chain (CTMC) approximation for the fund dynamics inspired by Cui et al. (2018). Two-layer
CTMC approximations have recently been used to price derivatives in stochastic volatility models, see Cui
et al. (2018), Cui et al. (2019) and Ma et al. (2021), among others. The methodology proposed by Cui et al.
(2018) for approximating two-dimensional diffusions is not only theoretically appealing and applies to most
stochastic volatility models, but also is simple to implement for pricing European and American options.
Their approach is especially efficient for a short/medium time horizon. However, for derivatives with very
longmaturities, such as those involved in variable annuities pricing, themethodology proposed by Cui et al.
(2018) stretches the computing resource to unacceptable levels. In this chapter, we adapt their method to
long-maturity cases.

The main contributions of this chapter are as follows:

• We extend the work of Cui et al. (2018), done in the context of options pricing, by providing novel
efficient algorithms to value options with very long maturities, such as variable annuities, under gen-
eral stochastic volatility models. More precisely, Algorithms 1 and 3 are new to the CTMC literature
and allow to accelerate the calculation time considerably. The convergence of the new methodology
is also shown theoretically, see Proposition ??. All the algorithms provided in this chapter apply to a
general class of stochastic volatility models and can be used for option pricing under other types of
bi-dimensional models.

• We propose a methodology to approximate the optimal surrender surface of a VA contract with a
GMMB rider when the underlying index follows a two-dimensional diffusion process. Algorithms 4
and 5, which are based on the Bermudan approximation, can adapt easily to the context of American
option pricing to approximate the exercise surface under general stochastic volatility models. This
new way of approximating the exercise surface is novel to CTMC literature. The advantage of this
method over the current one (see, for instance, Ma et al. (2021)) is that the integral representation
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of the value function6 does not need to be derived to obtain the surface approximation.
• The application of CTMC approximation for variable annuity pricing is also new to the literature.
Moreover, in this chapter, we analyze the optimal surrender strategy for a VA contract with a GMMB
rider under the assumption that the fees are linked to the VIX index. Previously, such an analysis of
surrender incentives was performed using a constant fee structure, or in a Black-Scholes framework
when the fees are state-dependent. To our knowledge, this is the first time that early surrenders are
analyzed conjointly with fees depending on the volatility index under a general class of stochastic
volatility models.

• We derive a closed-form analytical expression for the VIX index when the variance process follows a
continuous-time Markov chain. This expression can also be used to price VIX derivatives.

The remainder of the chapter is organized as follows. In Section 4.2, we introduce the market model, the
VA contract, and the optimal stopping problem involved in the pricing of variable annuities with surrender.
A brief introduction to CTMC approximations for a two-dimensional diffusion process is provided in Sec-
tion 3.3. In Section 3.4, we apply CTMC approximations to VA contract pricing and provide new efficient
algorithms. Section 3.5 provides the numerical results and discusses how VIX-linked fees affect surrender
incentives. Section 3.6 concludes the chapter.

3.2 Financial Setting
3.2.1 Market Model
We consider a filtered probability space (Ω, F , F,Q), where F is a complete and right-continuous filtration
and where Q denotes the pricing measure for our market, see Remark 3.2.1. We consider a risky asset,
whose price can be described by the two-dimensional process (S, V ) = {(St, Vt)}t≥0 satisfying

dSt = rSt dt+ σS(Vt)St dW
(1)
t ,

dVt = µV (Vt) dt+ σV (Vt) dW
(2)
t ,

(3.1)
with S0 = s0 ∈ R+ and V0 = v0 ∈ SV where SV denotes the state-space of V (usually R or R+ de-
pending on the model, see Table 3.1 for examples), with r > 0 denoting the risk-free rate and withW =

6 The integral representation of the value function may be challenging to obtain under general stochastic volatility models unless
making some regularity assumptions on the value function as in Ma et al. (2021). Indeed, the smoothness of the value function
can be difficult to show under such bi-dimensional models; see Terenzi (2019) and Lamberton and Terenzi (2019).
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Table 3.1: Examples of stochastic volatility models
Model Name Dynamics Parameters Cond. for

Martingale Measure

Heston (1993) dSt = rSt dt+
√
VtSt dW

(1)
t S0 > 0, No additional cond.

Heston (1993) dVt = κ(θ − Vt) dt+ σ
√
Vt dW

(2)
t κ, θ, σ, V0 > 0 Cui (2013), Proposition 2.5.1

3/2 (1997) dSt = rSt dt+ St/
√
Vt dW

(1)
t S0 > 0, ρ ≤ 0,

Heston (1997) dVt = κ(θ − Vt) dt− σ
√
Vt dW

(2)
t κ, θ, σ, V0 > 0 Cui (2013), Proposition 2.5.47

with κθ ≥ σ2/2
4/2 (2017) dSt = rSt dt+ St

[︁
a
√
Vt + b/

√
Vt
]︁
dW

(1)
t a, b ∈ R, S0 > 0, σ2 ≤ 2κθ +min(0, 2ρσb)

Grasselli (2017) dVt = κ(θ − Vt) dt+ σ
√
Vt dW

(2)
t κ, θ, σ, V0 > 0, Grasselli (2017), Section 2.2

with κθ ≥ σ2/2 8
Hull-White (1987) dSt = rSt dt+

√
VtSt dW

(1)
t S0 > 0, ρ ≤ 0,

Hull and White (1987) dVt = αVt dt+ βVt dW
(2)
t α, β, V0 > 0 Jourdain (2004), Theorem 1 or

Cui (2013), Proposition 2.5.10
Scott (1987) dSt = rSt dt+ eVtSt dW

(1)
t S0 > 0, ρ ≤ 0,

Scott (1987), p.426 dVt = κ(θ − Vt) dt+ σ dW
(2)
t κ, θ, V0 ∈ R, σ > 0 Jourdain (2004), Theorem 1

α-Hypergeometric (2016) dSt = rSt + eVtSt dW
(1)
t S0 > 0, If α ≥ 2 or α < 2 and either

Da Fonseca and Martini (2016) dVt = (a− beαVt) dt+ σ dW
(2)
t α, b, σ > 0, a, V0 ∈ R ρ ≤ 0, α > 1 or α = 1 and b ≥ ρσ

Da Fonseca and Martini (2016), Proposition 6

{(W (1)
t ,W

(2)
t )}t≥0 a two-dimensional correlated Brownian motion with cross-variation [W (1), W (2)]t =

ρt, where ρ ∈ [−1, 1]. For simplicity, V will be referred to as the variance process. We assume that
µV : SV ↦→ R is continuous and that σS , σV : SV ↦→ R+ are continuously differentiable functions with
σS(·) > 0, σV (·) > 0 on the state-space SV of V . Further, we suppose that µV , σV and σS are defined
such that (3.1) has a unique-in-law weak solution.

Remark 3.2.1 In (3.1), we start directly with the dynamics under the risk-neutral measure, hence the form of

the market price of volatility risk is not necessary in our setting. However, as pointed out by Sin (1998), Jour-

dain (2004) and Cui (2013), a risk-neutral measure may not always exist under stochastic volatility models;

additional conditions must be added to the model parameters in order for {e−rtSt}t≥0 to be a true martin-

gale underQ. A list of common SV models is reported in Table 3.1, along with conditions for the martingale

property to hold under the risk-neutral measure.
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3.2.2 Variable Annuity Contract
A policyholder enters a variable annuity contract by depositing an initial premium F0 into a sub-account,
which is then invested in a fund tracking the financial market. For simplicity, we will assume that the sub-
account is invested in the risky asset S. The policyholder often has the right to surrender the contract, or
lapse, prior to maturity. This additional flexibility is often called surrender option (or surrender right) in
the literature and significantly complicates the valuation of variable annuity contracts. Below we discuss
the risk-neutral valuation approach for a variable annuity, under both the assumption that the policyholder
makes use of her surrender right or does not.

To do so, we consider a finite time horizon T > 0 and let F = {Ft}0≤t≤T denote the variable annuity fund
(or sub-account) process. Moreover, we let C : [0, T ] × R⋆

+ × SV → R+ denote the fee function and let
the continuously compounded fee rate process {ct}0≤t≤T be defined as

ct := C(t, Ft, Vt), 0 ≤ t ≤ T, (3.2)
whereC is assumed to be continuous or bounded and such that (3.4) has a unique-in-lawweak solution. We
allow the fee structure to be as general as possible. This setting includes, among others, state-dependent
fee structures (see Bernard et al. (2014a), Delong (2014), MacKay et al. (2017)), VIX-linked fee structures
(see Cui et al. (2017a), Kouritzin and MacKay (2018)), and time-dependent fee structures (see Bernard and
Moenig (2019)).

We assume that the fees are paid continuously out of the fund at a rate ct, so that the fund value is given
by

Ft = Ste
−

∫︁ t
0 cu du, 0 ≤ t ≤ T, (3.3)

with F0 = S0. Using Itô’s lemma, the dynamics of F under the risk-neutral measure are
dFt = (r − ct)Ft dt+ σS(Vt)Ft dW

(1)
t ,

dVt = µV (Vt) dt+ σV (Vt) dW
(2)
t .

(3.4)
For simplicity in this chapter, we assume that interest rates are constant. However, given the long-term
maturity of variable annuity contracts, it may be interesting to allow interest rates to be a deterministic

7 The condition stated in Cui (2013), Proposition 2.5.4 is automatically satisfied by requiring the correlation parameter ρ to be
non-positive, as pointed out by Drimus (2012).
8 If b ̸= 0, then we must also impose κθ ≥ σ2/2 for the model to be well-defined.
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function of time. Such an extension, discussed in Appendix 3.8, allows for the exact replication of the term
structure of interest rates.

Throughout this chapter, Et,x,y[·] is short-hand notation for E[·|Ft = x, Vt = y] and Et[·] for E[·|Ft], with
x ∈ R+, y ∈ SV and t ∈ [0, T ]. We also use Ex,y[·] to denote E0,x,y[·].

We focus on a variable annuity with a GMMB whose payoff at maturity T > 0 is max(G,FT ), where
G ∈ R+ is a predetermined guaranteed amount. Given (Ft, Vt) = (x, y), the time-t risk-neutral value of
the variable annuity assuming that it will not be surrendered early is

ve(t, x, y) := Et,x,y

[︂
e−r(T−t)max(G,FT )

]︂
. (3.5)

On early surrender, the policyholder receives the value of the VA sub-account, reduced by a penalty which,
in our setting, can depend on time and on the value of the variance process V . When no surrender occurs,
the maturity benefit is paid at T .

More formally, the VA reward (or gain) function φ : [0, T ]× R+ × SV → R+ is defined by

φ(t, x, y) =

⎧⎪⎨⎪⎩
g(t, y)x if t < T ,
max(G, x) if t = T ,

(3.6)

where g : [0, T ] × SV → [0, 1] is continuous, non-decreasing in time and satisfies limt→T− g(t, y) = 1

∀y ∈ SV . In practice, we usually consider the surrender charge (as a percentage of the account value),
1 − g(·, ·). A common form for the surrender charge function in the literature is g(t, y) = e−k(T−t) for
some constant k ≥ 0, see for example Shen et al. (2016), MacKay et al. (2017) and Kang and Ziveyi (2018). It
is the first time, to the best of our knowledge, that variance-dependent surrender charges are considered.

Remark 3.2.2 For x < G, the function t ↦→ φ(t, x, y) is discontinuous at T since

lim
t→T−

φ(t, x, y) = g(t, y)x ≤ x < G = φ(T, x, y).

Under the assumption that the policyholder maximizes the risk-neutral value of her VA contract, the time-t
value of the variable annuity policy is given by

v(t, x, y) = sup
τ∈Tt, T

Et,x,y[e
−r(τ−t)φ(τ, Fτ , Vτ )], (3.7)
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where Tt, T is the (admissible) set of all stopping times taking values in the interval [t, T ].

Similar to the early exercise premium in the American option literature, the value of the right to surrender,
denoted by e : [0, T ]× R+ × SV → R+, is defined by

e(t, x, y) := v(t, x, y)− ve(t, x, y).

3.3 Continuous-Time Markov Chain Approximation
The CTMC framework outlined in this section has been proposed by Cui et al. (2018) for exotic option pric-
ing under stochastic local volatility models. The general idea is to approximate the two-dimensional stock
price process by a two dimensional continuous-time Markov chain. This is done by first approximating the
variance process by a CTMC, and then by replacing the variance process by its CTMC approximation in the
underlying price process. The resulting regime-switching diffusion process is then further approximated by
a CTMC, yielding a two-dimensional CTMC process which converges weakly to the original two-dimensional
diffusion process, providing that the generator of the CTMC is chosen correctly.

First, we shall briefly recall the basics of continuous-time Markov chains, following sections 6.9 and 6.10
of Grimmet and Stirzaker (2001). The stochastic process ˜︁X = { ˜︁Xt}t≥0 taking values on some discrete
state-space S ˜︁X is called a continuous-timeMarkov chain if it satisfies the following property (a.k.a. Markov

property):
P( ˜︁Xtn = ˜︁xj | ˜︁Xt1 = ˜︁xi1 , . . . , ˜︁Xtn−1 = ˜︁xin−1) = P( ˜︁Xtn = ˜︁xj | ˜︁Xtn−1 = ˜︁xin−1)

for all ˜︁xj , ˜︁xi1 , . . . , ˜︁xin−1 ∈ S ˜︁X and any time sequence t1 < t2 < . . . < tn. For 0 ≤ s ≤ t, we denote
the transition probability from state ˜︁xi ∈ S ˜︁X at time s to state ˜︁xj ∈ S ˜︁X at time t by pij(s, t) = P( ˜︁Xt =˜︁xj | ˜︁Xs = ˜︁xi). The chain is said to be homogeneous if pij(s, t) = pij(0, t − s) for any i, j, s ≤ t. In that
case, we use pij(t− s) to denote pij(s, t).

Going forward, we assume that ˜︁X is time-homogeneous and S ˜︁X is finite. The family
{Pt := [pij(t)]|S ˜︁X |×|S ˜︁X |}t≥0 of transition probability matrices is referred as the transition semigroup

of the Markov chain.

For an infinitesimal period of length h > 0, it can be shown that there exist constants {qij}1≤i,j≤|S ˜︁X |, also
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called transition rates, such that
pij(h) =

⎧⎨⎩ qijh+ f(h) if i ̸= j

1 + qijh+ f(h) if i = j,
(3.8)

where f is a function satisfying limh→0
f(h)
h = 0. From the above, we can conclude that the transition rates

must satisfy ⎧⎪⎨⎪⎩
qij ≥ 0, if i ̸= j,

qij ≤ 0, if i = j,

(3.9)
and

m∑︂
j=1

qij = 0, i = 1, 2, . . . ,m. (3.10)

The matrix Q := [qij ]|S ˜︁X |×|S ˜︁X | is called the generator of ˜︁X . Under some technical conditions9, it can be
shown that the transition probability matrix Pt has the following matrix exponential representation:

Pt = exp(Qt) =
∞∑︂
k=0

(Qt)k

k!
. (3.11)

Assumption 3.3.1 The fee function defined in (3.2) is time-independent anddenoted by c. That is,C(t, x, y) =

c(x, y) for all 0 ≤ t ≤ T . Moreover, we only consider functions c that are continuous or bounded.

Henceforth, we consider that Assumption 3.3.1 holds. That is, we assume that the fee function is time-
independent so that the fund process is time-homogeneous. For the CTMC approximation of diffusion
processes with time-dependent coefficients, see Ding and Ning (2021).

3.3.1 Approximation of the Variance Process {Vt}t≥0

We construct a CTMC {V (m)
t }t≥0 taking values on a finite state-space S(m)

V := {v1, v2, . . . vm}, with vi ∈
SV andm ∈ N, that converges weakly to {Vt}t≥0 asm→∞. Weak convergence of V (m) to V , is denoted
by V (m) ⇒ V .

Several approaches are available in the literature to construct the finite state-space S(m)
V , from simple

uniform to non-uniform grids (see Tavella and Randall (2000), Mijatović and Pistorius (2013) and Lo and

9 More precisely, the semigroup {Pt}must be standard—that is, pii(t) → 1 and pij(t) → 0 as t ↓ 0—and uniform—supi −qii <

∞, see Grimmet and Stirzaker (2001), Definitions 6.9.4 and 6.10.3, Theorems 6.10.1, 6.10.5 and 6.10.6 for details.
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Skindilias (2014) for examples of non-uniform grids). The specific grid selected for the numerical analysis
performed in this chapter is discussed in more details in Section 3.5.

Once the state-space is chosen, the approximating CTMC {V (m)
t }t≥0 is defined via its generator Q(m) =

[qij ]m×m. This generator is constructed so that the first two moments of the transition density of the vari-
ance process {Vt}t≥0 and of the approximating CTMC {V (m)

t }t≥0 coincide; these are the so-called local

consistency conditions, see Kushner (1990) and Lo and Skindilias (2014). More precisely, the elements qij ,
1 ≤ i, j ≤ m of the generator of V (m) are chosen so that for a small time increment h≪ T ,

Et

[︂
V

(m)
t+h − V

(m)
t

]︂
= Et [Vt+h − Vt] ≃ µV (Vt)h, and

Et

[︃(︂
V

(m)
t+h − V

(m)
t

)︂2]︃
= Et

[︂
(Vt+h − Vt)2

]︂
≃ σ2V (Vt)h,

(3.12)

for all t ≥ 0. To ensure that the local consistency conditions are satisfied, we use the generator proposed
by Lo and Skindilias (2014) and given by10

qij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2
V (vi)−δiµV (vi)

δi−1(δi−1+δi)
, j = i− 1,

−qi,i−1 − qi,i+1, j = i,

σ2
V (vi)+δi−1µV (vi)

δi(δi−1+δi)
, j = i+ 1,

0, j ̸= i, i− 1, i+ 1,

(3.13)

for 2 ≤ i ≤ m− 1 and 1 ≤ j ≤ m and where δi = vi+1 − vi, i = 1, 2, . . . ,m− 1. On the borders, we set
q12 = |µV (v1)|

δ1
, q11 = −q12, qm,m−1 = |µV (vm)|

δm−1
, qm,m = −qm,m−1; and 0 elsewhere. The transition rates

on the boundaries of the state-space are set so that the absolute instantaneous means are maintained
at the endpoints. Other schemes could have also been employed (see Chourdakis (2004), Mijatović and
Pistorius (2013)), but we observed that all of these schemes are equivalent numerically.

To obtain a well-definedQ(m) matrix, the transition rates in (3.13) must also satisfy the conditions in (3.9).
Hence, for 2 ≤ i ≤ m− 1, we must have⎧⎪⎨⎪⎩

δi−1 ≤
σ2
V (vi)

|µV (vi)| , if µV (vi) < 0

δi ≤
σ2
V (vi)

µV (vi)
, if µV (vi) > 0.

(3.14)

If µV (vi) = 0, then no additional condition needs to be added.

10 An advised reader will notice some differences between the transition rates stated above, and the ones that appear in Lo and
Skindilias (2014). However, one can show that the two rate matrices are equivalent with some simple algebra.
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Remark 3.3.1 A sufficient condition for (3.14) to hold is
max

1≤i≤m−1
δi ≤ min

1≤i≤m−1

σ2V (vi)

|µV (vi)|
. (3.15)

3.3.2 Approximation of the Fund Value Process {Ft}0≤t≤T

The CTMC approximating {Ft}t≥0 is constructed by first replacing the variance process appearing in the
drift and diffusion coefficients by their CTMC approximations, and then by further approximating the result-
ing regime-switching diffusion process by another CTMC. The resulting two-dimensional regime-switching
CTMC can then be mapped to a one-dimensional CTMC on an enlarged state-space.

Lemma 3.1 below allows for the removal of the correlation between the Brownian motions in (3.4), which
is necessary to construct the CTMC approximation of {Ft}t≥0.

Lemma 3.1 (Lemma 1 of Cui et al. (2018)) Let F and V be defined as in (3.4). Define γ(x) := ∫︁ x
·

σS(u)
σV (u) du

andXt := ln(Ft)− ργ(Vt), t ∈ [0, T ]. ThenX satisfies

dXt =µX(Xt, Vt) dt+ σX(Vt) dW
∗
t

dVt =µV (Vt) dt+ σV (Vt) dW
(2)
t ,

(3.16)

whereW ∗
t :=

W
(1)
t −ρW

(2)
t√

1−ρ2
is a standard Brownian motion independent ofW (2)

t , σX(y) :=
√︁

1− ρ2σS(y),

µX(x, y) := r − c(ex+ργ(y), y)− σ2
S(y)
2 − ρψ(y) and

ψ(y) := Lvγ(y) = µV (y)γ
′(y) +

1

2
σ2V (y)γ

′′(y)

= µV (y)
σS(y)

σV (y)
+

1

2

[︁
σV (y)σ

′
S(y)− σ′V (y)σS(y)

]︁
,

for x ∈ R, y ∈ SV .

The proof relies on themultidimensional Itô formula (see Lemma 1 of Cui et al. (2018) for details). Given the
CTMC approximation of the process V (m) and its generator Q(m), the diffusion process in (3.16) can now
be approximated by a regime-switching diffusion process {X(m)

t }t≥0:
dX

(m)
t = µX(X

(m)
t , V

(m)
t ) dt+ σX(V

(m)
t ) dW ∗

t , (3.17)
where regimes are determined by the states of the approximated variance process, {v1, v2, . . . , vm}. To
construct a regime-switching CTMC (X(m,N)

t , V
(m)
t ) approximating the regime-switching diffusion (X(m)

t , V
(m)
t ),
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we fix a state for the variance process V (m)
t (or equivalently a regime) and construct a CTMC approxima-

tion for X(m)
t given that V (m)

t is in that state. This is done using the procedure described in Section 3.3.1
for a one-dimensional diffusion process. The procedure is then repeated for each state in S(m)

V , and the
approximating CTMCs are combined with V (m) to obtain the final regime-switching CTMC.

More precisely, letX(m,N)
t be the CTMCapproximation ofX(m)

t taking values on a finite state-spaceS(N)
X =

{x1, x2, . . . , xN},N ∈ N. For each vl ∈ S(m)
V , we define the generatorG(N)

l = [λlij ]N×N ofX(m,N)
t given

that the variance process is in state vl at time t ≥ 0 by

λlij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2
X(vl)−δxi µX(xi,vl)

δxi−1(δ
x
i−1+δxi )

j = i− 1

−λli,i−1 − λli,i+1 j = i

σ2
X(vl)+δxi−1µX(xi,vl)

δxi (δ
x
i−1+δxi )

j = i+ 1

0 j ̸= i, i− 1, i+ 1,

(3.18)

for 2 ≤ i ≤ N − 1 and 1 ≤ j ≤ N , where δxi = xi+1 − xi, i = 1, 2, . . . , N − 1. On the boundaries, we set
λl12 =

|µX(x1,vl)|
δx1

, λl11 = −λl12, λlN,N−1 =
|µX(xN ,vl)|

δxN−1
, λlN,N = −λlN,N−1, and 0 elsewhere.

Using V (m) and the relation presented in Lemma 3.1, the approximated fund process F (m,N), which ap-
proximates F , is defined by

F
(m,N)
t := exp

{︂
X

(m,N)
t + ργ(V

(m)
t )

}︂
, 0 ≤ t ≤ T . (3.19)

Remark 3.3.2 (Convergence of the approximation) Such a construction of the regime-switching CTMC en-

sures that the two-dimensional process (X(m,N)
t , V

(m)
t ) converges weakly to (Xt, Vt) asm,N → ∞. The

main idea is to show that the generator of (X(m,N)
t , V

(m)
t ) is uniformly close to the infinitesimal generator

of (Xt, Vt) asm,N →∞, to then conclude that (X(m,N)
t , V

(m)
t )⇒ (Xt, Vt) using the results of Ethier and

Kurtz (2005) which relies on semi-group theory. Moreover, since the function h : R × SV → R+ defined

by h(x, y) = ex+ργ(y) is continuous, we have that F (m,N) ⇒ F by the continuous mapping Theorem, see

Billingsley (1999) Theorem 2.7. For one-dimensional processes, intuition and detailed explanations of the

proof can be found in Mijatović and Pistorius (2013), Section 5 (or in the unabridged version of the paper

Mijatović and Pistorius (2009), Section 6); for stochastic volatility models, see Cui et al. (2018), Section 2.4.

The last step is to convert the regime-switching CTMC (X
(m,N)
t , V

(m)
t ) into a one-dimensional CTMC pro-

cess Y (m,N)
t on an enlarged state-space S(m,N)

Y := {1, 2, . . . ,mN}. This is done in Theorem 1 of Cai et al.
75



(2019), reproduced below.

Proposition 3.2 (Theorem 1 of Cai et al. (2019)) Consider a regime-switching CTMC (X(m,N), V (m)) taking

values in S(N)
X × S(m)

V where S(N)
X = {x1, x2, . . . , xN} and S(m)

V = {v1, v2, . . . , vm}; and another one-

dimensional CTMC, {Y (m,N)
t }0≤t≤T , taking values in S(m,N)

Y := {1, 2, . . . ,mN} and its transition rate

matrixG(m,N) given by⎛⎜⎜⎜⎜⎜⎜⎝
q11IN +G

(N)
1 q12IN · · · q1mIN

q21IN q22IN +G
(N)
2 · · · q2mIN

...
... . . . ...

qm1IN qm2IN · · · qmmIN +G
(N)
m

⎞⎟⎟⎟⎟⎟⎟⎠ , (3.20)

where IN is the N × N identity matrix, G(N)
l = [λlij ]N×N , l = 1, 2, . . . ,m and Q(m) = [qij ]m×m are

the generators defined in (3.18) and (3.13), respectively. Define the function ψ : S(N)
X × S(m)

V → S(m,N)
Y

by ψ(xn, vl) = (l − 1)N + n and its inverse ψ−1 : S(m,N)
Y ↦→ S(N)

X × S(m)
V by ψ−1(ny) = (xn, vl) for

ny ∈ S(m,N)
Y , where n ≤ N is the unique integer such that ny = (l− 1)N + n for some l ∈ {1, 2, . . . ,m}.

Then, we have

E
[︂
Ψ(X(m,N), V (m))|X(m,N)

0 = xi, V
(m)
0 = vk

]︂
= E

[︂
Ψ(ψ−1(Y (m,N)))|Y0 = (k − 1)N + i

]︂
,

for any path-dependent function Ψ such that the expectation on the left-hand side is finite.

3.4 Variable Annuity Pricing via CTMC Approximation
In this section, we use the CTMC approximation of the fund value process to price variable annuities under
different surrender strategies. We provide a simple way to approximate the optimal surrender surface,
which is the extension in three dimensions of the exercise boundary for two-dimensional processes. The
present section extends to variable annuity pricing the work of Cui et al. (2018) and Cui et al. (2019), in
which a CTMC approximation is used for option pricing.

Recall that (X(m,N), V (m)) is the regime-switching CTMC approximation of (X,V ) (see Lemma 3.1) tak-
ing values in a finite state-space S(N)

X × S(m)
V where S(N)

X = {x1, x2, . . . , xN}, N ∈ N; and S(m)
V =

{v1, v2, . . . , vm},m ∈ N. We have also defined F (m,N) in terms of (X(m,N), V (m)) in (3.19).

Throughout this section, we denote by {eik}N,m
i,k=1 the standard basis in RmN , i.e. eik represents a row

vector of size 1×mN having a value of 1 in the (k − 1)N + i-th entry and 0 elsewhere.
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3.4.1 Variable Annuity without Early Surrenders
Consider an initial premium F0 > 0 and let V0 ∈ SV . The risk-neutral value of a variable annuity contract
assuming no early surrenders can be approximated by

ve(0, F0, V0) = E
[︁
e−rT max(G,FT )|F0, V0

]︁
≈ E

[︂
e−rT max(G,F

(m,N)
T )|X(m,N)

0 = xi, V
(m)
0 = vk

]︂
.

(3.21)

Here, we assume11 that xi ∈ S(N)
X and vk ∈ S(m)

V , with xi = ln(F0)− ργ(V0).

Proposition 3.3 Let F0 > 0 be the initial premium, with X(m,N)
0 = ln(F0) − ργ(V0) = xi ∈ S(N)

X and

V0 = vk ∈ SV . The risk-neutral value at time 0 of a variable annuity contract held until maturity T and

with guaranteed amountG > 0 can be approximated by

v(m,N)
e (0, F0, V0) := E[e−rT max(G,F

(m,N)
T )|F (m,N)

0 = F0, V
(m)
0 = V0]

= e−rTeik exp{TG(m,N)}H, (3.22)
whereG(m,N) is defined in (3.20) andH is a column vector of sizemN × 1 whose (l − 1)N + n-th entry

is given by

h(l−1)N+n = max
(︂
G, exn+ργ(vl)

)︂
, 1 ≤ l ≤ m, 1 ≤ n ≤ N. (3.23)

The proof follows by noticing that (3.22) is the matrix representation of the conditional expectation of a
(function of a) discrete one-dimensional random variable whose conditional probability mass function is
given by the transitional probabilities p(k−1)N+i,j(T ), 1 ≤ j ≤ mN , with P(T ) = [pij(T )]mN×mN =

exp{TG(m,N)} as per (3.11).

Remark 3.4.1 (Convergence of VA prices without early surrenders) From Remark 3.3.2, we know that

F (m,N) ⇒ F , as m,N → ∞. From the continuous mapping theorem, we also have that

φ(T, F
(m,N)
T , V

(m)
T )⇒ φ(T, FT , VT ). For derivatives with a continuous and bounded payoff, convergence

of the prices follows directly from the definition of weak convergence, see for example Billingsley (1995),

Theorem 25.8, (i) and (ii). However, convergence of the prices for derivatives with unbounded payoffs is

11 If X(m,N)
0 and V (m)

0 are not part of their respective grids, then the two points can be added to the grids, or the option price
must be linearly interpolated between grid points, see Remark 3.5.1 for details.
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not as clear. We note that if F (m,N) is aQ-martingale for eachm,N , then {φ(T, F (m,N)
T , V

(m)
T )}∞m,N=1 is

uniformly integrable and the convergence of the prices follows. Showing this property is however out of the

scope of this chapter. In the one-dimensional setting, convergence of the price approximations is discussed in

Zhang and Li (2021). Detailed error and convergence analysis of the two-dimensional CTMC approximation

for European call options is performed in Ma et al. (2022).

3.4.1.1 Fast Algorithm
When considering a typical timehorizon of 10, 15or 20 years as is often the case in VApricing, the probability
that the fund or the volatility processes reaches high (resp. low) value is higher thanwhen shortermaturities
are concerned, and so the grid’s upper (resp. lower) bound must be set to a higher (resp. lower) value.
This complicates the pricing of VAs compared to financial options (generally written for short or medium
time-horizon), since more discretization points m and N are needed in order to capture the distribution
of the variance and the fund value process correctly. Theoretically, this is not a problem; however, several
numerical issues can occur when implementing the pricing formula numerically. First, the generator matrix
G(m,N) can become very large and thus require a large amount of storage space, whichmay causememory
problems. Second, calculating the exponential of a large sparsemN ×mN matrix over a long time horizon
is time-consuming.

Using the tower property of conditional expectations and an approximation based on the assumption that
the variance process remains constant over small time periods (see Proposition 3.4), we propose a new
algorithm that speeds up the pricing of the VA contract without early surrenders (see Algorithm 1).

The approximation used in Algorithm 1 follows from Proposition 3.4 presented below.

Proposition 3.4 Let h > 0 with h ≪ T and 0 ≤ t ≤ T − h. For any function ϕ such that the expectation

on the left-hand side of (3.24) is finite, we have that
E
[︂
ϕ
(︂
t+ h,X

(m,N)
t+h , V

(m)
t+h

)︂
|X(m,N)

t = xi, V
(m)
t = vk

]︂
=

m∑︂
j=1

E
[︂
ϕ(t+ h,X

(m,N)
t+h , V

(m)
t+h )|V

(m)
t = V

(m)
t+h = vj , X

(m,N)
t = xi

]︂
×P
(︂
V

(m)
t+h = vj |V (m)

t = vk

)︂
+f(h),

(3.24)
where f(h) is a function satisfying limh→0

f(h)
h = 0.
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The proof of Proposition 3.4 is reported in Appendix 3.7.1.

The above proposition allows the separation of the matrices {G(N)
j }mj=1 and Q(m), so that the new al-

gorithm now requires m times the calculation of the exponential of N × N matrices and one time the
exponential of am ×m matrix over small time-intervals. Hence, by reducing the size of the matrix in the
matrix exponential and the length of the time interval over which the exponential is calculated leads to a
significant reduction in computation time and to more effective management of the memory space. Note
also that the added cost of computingm+1matrix exponentials (rather than only one) is counterbalanced
by the reduced cost of computing the exponential of smaller matrices over a short time interval h.

The following notation is used in Algorithm 1 below.

1. We useM ∈ N time steps of length∆M = T/M.

2. B = [bjn]
m,N
j,n=1 denotes a matrix of size m × N , containing the value of the VA contract.

More precisely, the matrix B is updated at each time step, so that after the first iteration,
bjn ≈ E

[︂
e−r∆Mφ(T, eX

(m,N)
T +ργ(V

(m)
T ), V

(m)
T )|X(m,N)

T−∆M
= xn, V

(m)
T−∆M

= vj

]︂; after the second iter-
ation, bjn ≈ E

[︂
e−2r∆Mφ(T, eX

(m,N)
T +ργ(V

(m)
T ), V

(m)
T )|X(m,N)

T−2∆M
= xn, V

(m)
T−2∆M

= vj

]︂, and so on.
3. B∗,n = [bjn]

m
j=1 denotes the n-th column ofB, n = 1, 2, . . . , N ,

4. Bj,∗ = [bjn]
N
n=1 denotes the j-th row ofB, j = 1, 2, . . . ,m.

5. The symbol⊤ indicates the matrix (vector) transpose operation.
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Algorithm 1: Variable Annuity without Early Surrenders via CTMC Approximation – Fast Algorithm
Input: InitializeQ(m) as in (3.13) andG

(N)
j for j = 1, 2, . . . ,m, as in (3.18)

M ∈ N, the number of time steps,
∆M ← T/M , the size of a time step

1 SetBj,∗ ←
[︁
φ(T, exn+ργ(vj), vj)

]︁N
n=1

, j = 1, 2, . . . ,m

/* Calculate the transition probability matrices */

2 for j = 1, 2, . . . ,m do

/* Adjusted transition probability matrix of X(m,N) given V (m) = vj over a period of length

∆M */

3 PX
j ← eG

(N)
j ∆M e−r∆M

/* Transition probability matrix of V (m) over a period of length ∆M */

4 PV ← eQ
(m)∆M

/* VA valuation */

5 for z =M − 1, . . . , 0 do

6 for j = 1, 2, . . . ,m do

7 ˜︁H∗,j ← PX
j B⊤

j,∗

8 for n = 1, 2, . . . , N do

9 B∗,n ← PV ˜︁H⊤
n,∗

10 return bki

The computational gain of using Algorithm 1 over the previous algorithm comes at the cost of a loss of
accuracy since the conditional expectations are approximated over small time intervals (refer to Proposition
3.4). Numerical experiments below show that highly accurate results are obtained in seconds when the
time step is small, but the algorithm can perform poorly when the time step is not small enough. This new
algorithm can be easily adapted to a wide range of payoff functions and extends the work of Cui et al. (2018)
by accelerating the calculation time considerably. In particular, it allows for efficient pricing of long-maturity
derivatives.

Remark 3.4.2 Since at each time step, Algorithm 1, or the “Fast Algorithm”, takes advantage of the tower

property of conditional expectations over short time periods of the same length ∆M , the transition proba-

bility matrix can be pre-computed at the beginning of the procedure and stored, accelerating the numerical
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process greatly.

3.4.2 Variable Annuity with Early Surrenders
We approximate the value of the VA contract (including the right to surrender) by its Bermudan counterpart
for a large number ofmonitoring dates. Bermudanoptions canbe exercised early, but only at predetermined
datesR ⊂ [0, T ]. Thus, Bermudan options are similar to American options, but the region of the permitted
exercise times is a subset of [0, T ] containing a finite number of exercise dates, {t0, t1, . . . , tM} with tz ∈
[0, T ], z = 0, 1, 2, . . . ,M for someM ∈ N.

In this chapter, we use the term Bermudan (resp. American) contract to refer to a variable annuity under
which the policyholder has the right to surrender her contract prior to maturity on predetermined dates
(resp. at any time prior to maturity). In the same vein, a variable annuity without surrender rights is also
called a European contract. Note that these terms do not refer to existing contracts, and they are used to
simplify explanations. Naturally, asM → ∞, we expect the price of the Bermudan contract to converge
to the one of a variable annuity with surrender rights as defined in (3.7). The latter is formalized in the
following.

Let ∆M = T/M for some M ∈ N and define the set HM = {t0, t1, . . . , tM} where tz = z∆M ,
z = 0, 1, . . . ,M , so that t0 = 0 and tM = T . The time-t risk-neutral value of the Bermudan contract
with permitted exercise datesHM is defined by

bM (t, x, y) = sup
τ∈T∆M

,τ≥t
Et,x,y[e

−r(τ−t)φ(τ, Fτ , Vτ )] (3.25)
whereT∆M

is the set of stopping times taking values inHM . Proposition 3.5 below shows that bM (t, x, y)→

v(t, x, y) asM →∞.

Proposition 3.5 AsM →∞, the value function of the Bermudan variable annuity contract (3.25) converges
to its American counterpart (3.7), that is,

lim
M→∞

bM (t, x, y) = v(t, x, y).

The proof can be found in Zhao (2017), Proposition 4.6, under the Barndorff-Nielsen Shephard model. Ex-
tending this proof to stochastic volatility models is straightforward. The key idea behind the proof relies on
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the fact that the price of a Bermudian option is always less than or equal to the price of an American option,
and the price of the Bermudian option increases as the number of exercise dates increases. This results in
a sequence of option prices that is both monotone and bounded. The final step is to demonstrate that the
limit of this sequence equals the price of the American option.

Remark 3.4.3 In the practical context of variables annuities, surrenders are often only allowed at specific

times (such as on the policy anniversary dates). In these cases, the Bermudan contract may bemore realistic

than its American counterpart presented in (3.7).

We denote the Bermudan contract value process by B := {Bz := bM (tz, Ftz , Vtz)}0≤z≤M . From the
principle of dynamic programming (see for example Lamberton (1998), Theorem 10.1.3), it is well-known
that the discretized problem admits the following representation:⎧⎨⎩ BM = φ(T, FT , VT )

Bz = max
(︁
φ(tz, Ftz , Vtz), e

−r∆MEtz [Bz+1]
)︁
, 0 ≤ z ≤M − 1.

(3.26)
Using CTMCs, we can define an approximation for the time-t risk-neutral value of the Bermudan contract
by

b
(m,N)
M (t, x, y) = sup

τ∈T∆M
,τ≥t

E
[︂
e−rτφ(τ, F (m,N)

τ , V (m)
τ )|F (m,N)

t = x, V
(m)
t = y

]︂
.

The approximation of the Bermudan contract value process, denoted by
B(m,N) := {B(m,N)

z := b
(m,N)
M (tz, F

(m,N)
tz , V

(m)
tz )}0≤z≤M , is thus given by⎧⎨⎩ B

(m,N)
M = φ

(︂
T, F

(m,N)
T , V

(m)
T

)︂
B

(m,N)
z = max

(︂
φ
(︂
tz, F

(m,N)
tz , V

(m)
tz

)︂
, e−r∆MEtz [B

(m,N)
z+1 ]

)︂
, 0 ≤ z ≤M − 1.

(3.27)

Or equivalently in terms of the process Y (m,N), we have that⎧⎨⎩ B
(m,N)
M = φ(T, ψ−1(Y

(m,N)
T ))

B
(m,N)
z = max

(︂˜︁φ(tz, ψ−1(Y
(m,N)
tz )), e−r∆MEtz [B

(m,N)
z+1 ]

)︂
, 0 ≤ z ≤M − 1,

(3.28)

whereψ−1 is defined in Proposition 3.212. Finally, wehave bM (0, F0, V0) = B0 ≈ B(m,N)
0 = b

(m,N)
M (0, F0, V0).

Based on the above, an approximation for the value of the Bermudan contract can be obtained as described
in the proposition below.

12 Recall that ψ−1(ny) = (xn, vl) for ny ∈ S(m,N)
Y , where n ≤ N is the unique integer such that ny = (l − 1)N + n for some

l ∈ {1, 2, . . . ,m}.
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Proposition 3.6 LetF0 > 0 , V0 ∈ SV andG(m,N) be the generator defined in (3.20). The risk-neutral value
of a variable annuity with maturity T > 0 and guaranteed amountG > 0 can be approximated recursively

by
B

(m,N)
M = H(1),

B
(m,N)
z = max{H(2)

z , e−r∆M exp{∆MG(m,N)}B(m,N)
z+1 } 0 ≤ z ≤M − 1,

(3.29)
for M ∈ N sufficiently large and where the maximum is taken element by element (also known as the

parallelmaxima).H(1) andH(2)
z , z = 0, 1, . . . ,M−1 are column vectors of sizemN×1whose (l−1)N+n-

th entries, h(1)(l−1)N+n and h(2)z,(l−1)N+n, are respectively given by

h
(1)
(l−1)N+n = max(G, exn+ργ(vl)), and

h
(2)
z,(l−1)N+n = g(tz, vl)e

xn+ργ(vl),
(3.30)

1 ≤ l ≤ m and 1 ≤ n ≤ N .

Specifically, given X(m,N)
0 = xi = ln(F0) − ργ(V0) and V (m)

0 = V0 = vk, the approximated value of the

Bermudan contract is given by

b
(m,N)
M (0, F0, V0) = eikB

(m,N)
0 .

Hence, based on the last proposition, Algorithm 2 below provides a CTMC approximation for the value of a
variable annuity contract (including early surrenders).
Algorithm 2: Variable Annuity with Early Surrenders via CTMC Approximation
Input: InitializeG(m,N) as in (3.20),H(1) andH

(2)
z , for z = 0, 1, . . . ,M − 1, as in (3.30)

M ∈ N, the number of time steps,
∆M ← T/M , the size of a time step

1 SetB(m,N)
M ← H(1) andA∆M

← exp{∆MG(m,N)}e−r∆M

2 for z =M − 1,M − 2, . . . , 0 do

3 B
(m,N)
z ← max

{︂
H

(2)
z ,A∆M

B
(m,N)
z+1

}︂
4 b

(m,N)
M (0, F0, V0)← eikB

(m,N)
0

5 return b(m,N)
M (0, F0, V0)

Remark 3.4.4 (Convergence of VA prices with early surrenders) Recall, fromRemark 3.3.2 thatF (m,N) ⇒

F asm,N →∞. The convergence of the price of the Bermudan contract written on F (m,N) to the price of
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the Bermudan contract written on F , that is B(m,N)
0 → B0 asm,N →∞, follows from Song et al. (2013),

Theorem9, and the results of Theorem2.6 in Chapter 2, on the alternative continuous reward representation

of the value function v13. Finally, the convergence of the price of the Bermudan contract to its American

counterpart asM goes to infinity follows from Proposition 3.5.

To our knowledge, detailed error and convergence analysis for the two-layers CTMC approximation of early-

exercise options have not yet been performed in the literature. However, Cui et al. (2018) demonstrate the

accuracy of the approximation numerically in the context of American put option pricing.

3.4.2.1 Fast Algorithm
Similar to the no surrender case, the efficiency of Algorithm 2 can be improved significantly by using an
approximation based on the assumption that the variance process remains constant over small time periods
(see Proposition 3.4).

Let φ(t) := [φ(t, exn+ργ(vj), vj)]
m,N
j,n=1 be am × N matrix representing the payoff at time t for each state

in S(m)
V ×S(N)

X , and φj,∗(t) be the j-th row ofφ(t). We denote the matrix (vector) transpose operation by
⊤.
The Fast Algorithm to value VA with surrender rights is given in Algorithm 3. The Fast Algorithms to price
VA contracts with and without early surrenders are very similar. The only difference is the additional line 11
in Algorithm 3. In fact, at a given time tz (that is, we fix one z in the loop line 6 to 11), we can observe that
at the end of the inner loop (line 9 and 10), the matrixB contains the continuation value of the Bermudan
contract at tz . Since Bermudan contracts can be surrendered at any time inHM , we simply need to calculate
the maximum between the continuation value and the payoff at tz to obtain the value of the Bermudan
contract at that time (line 11). Therefore, the only difference between the Fast Algorithms for VA pricing
with and without early surrenders stems from the fact that the latter contract cannot be surrendered prior
to maturity, and thus, only the continuation value needs to be calculated at each time step (that is, line 11
is not used to price VA contracts without early surrenders).

The computational effort in Algorithms 1 and 3 resides in the calculation of the matrix exponentials (line 3
to line 5). Hence, once they are (pre-)computed, one can price variable annuity contracts with and without

13 Many convergence results, such as the one in Song et al. (2013), require the reward function to be bounded. However, as
mentioned in Mijatović and Pistorius (2013), Remark 5.4 and Cui et al. (2018), Remark 5, the original payoff φ can be replaced by
the truncated payoff φ ∧ L with a constant L sufficiently large without altering the accuracy of the numerical results.
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Algorithm 3: Variable Annuity with Early Surrenders via CTMC Approximation – Fast Algorithm
Input: InitializeQ(m) as in (3.13) andG

(N)
j for j = 1, 2, . . . ,m, as in (3.18)

M ∈ N, the number of time steps,
∆M ← T/M , the size of a time step

1 Set φ(tz)← [φ(tz, e
xn+ργ(vj), vj)]

m,N
j,n=1 for z = 0, 1, . . . ,M

2 SetBj,∗ ← φj,∗(tM ) for j = 1, 2, . . . ,m

/* Calculate the transition probability matrices */

3 for j = 1, 2, . . . ,m do

/* Adjusted transition probability matrix of X(m,N) given V (m) = vj over a period of length

∆M */

4 PX
j ← eG

(N)
j ∆M e−r∆M

/* Transition probability matrix of V (m) over a period of length ∆M */

5 PV ← eQ
(m)∆M

/* VA valuation */

6 for z =M − 1, . . . , 0 do

7 for j = 1, 2, . . . ,m do

8 E∗,j ← PX
j B⊤

j,∗

9 for n = 1, 2, . . . , N do

10 B∗,n ← PV E⊤
n,∗

11 B = max(B,φ(tz))

12 return bki

surrender rights simultaneously at almost no additional cost. This also holds true for any other VA contracts
with different guaranteed amounts, that is, a large variety of contracts with different guarantee structures
and surrender rights can be priced simultaneously for almost the same computational effort as a single
contract. Numerical experiments below demonstrate the efficiency and the accuracy of the Fast Algorithm.

The new algorithm can be easily adapted to a wide range of payoff functions. Thus, it extends the previous
work of Cui et al. (2018), done in the context of option pricing, by significantly decreasing calculation time
and allowing for efficient valuation of long-maturity derivatives.
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3.4.3 Optimal Surrender Surface
In this section, we provide an algorithm to approximate the optimal surrender strategy for variable annuities
with a general fee structure depending on the fund value and the variance process. Policyholder behavior
may significantly impact pricing and hedging of variable annuities, Kling et al. (2014). Thus, analyzing op-
timal surrender behavior is crucial for insurers when developing risk management strategies for variable
annuities, Bauer et al. (2017), Niittuinperä (2022). Optimal surrender strategies have been studied in the
literature in different contexts, see for instance MacKay (2014), Bernard et al. (2014b), Bernard andMacKay
(2015), Shen et al. (2016) and Kang and Ziveyi (2018).
The algorithms provided in this section are based on the CTMC Bermudan approximation and can thus be
easily adapted to a wide range of payoff functions. In the context of American put option pricing, Ma et al.
(2021) use the integral representation of the value function to derive a CTMC approximation for the optimal
exercise surface. However, themethod used byMa et al. (2021) to derive such a representation requires the
value function to be smooth enough, which can be difficult to prove for certain payoff functions and under
general stochastic volatility models, see Lamberton and Terenzi (2019) for instance. The Bermudan approx-
imation of the optimal surrender surface presented in this section does not require any specific regularity
properties on the value function and thus extends the work of Ma et al. (2021) to more general payoffs and
value functions.

The goal of this section is to approximate the (optimal) surrender surface using the CTMC approximation.
To this end, we first introduce additional definitions and notations.

Definition 3.6.1 Let E = [0, T ]× R+ × SV . The continuation region C ⊂ E is defined as

C = {(t, x, y) ∈ E : v(t, x, y) > φ(t, x, y)},

and the surrender regionD ⊆ E, as

D = {(t, x, y) ∈ E : v(t, x, y) = φ(t, x, y)}.

Remark 3.4.5 It follows from Definition 3.6.1 thatE = C ∪D, since v(t, x, y) ≥ φ(t, x, y) for all (t, x, y) ∈

E.

If the value function v is continuous, then C is an open set and D is closed; and the optimal surrender
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surface is the boundary ∂C of C.

Definition 3.6.1 provides a simple way of approximating the optimal surrender surface via CTMC approx-
imation. To do so, denote by fnl the approximated fund process associated to (xn, vl) ∈ S

(N)
X × S(m)

V

such that fnl = exn+ργ(vl) and let S(m,N)
F = {fnl}N,m

n,l=1 be the state-space of F (m,N). We also denote
by S(m,N)

F,l = {fnl}Nn=1 the l-section of S(m,N)
F . Moreover, let ˜︁HM = {t0, t1, . . . , tm−1}, that is ˜︁HM =

HM \ tM , and ˜︁El = ˜︁HM ×S(m,N)
F,l ×{vl}. Using the previous definitions, the l-section, l ∈ {1, 2, . . . ,m},

of the continuation and the surrender regions can be approximated using the CTMC processes via
C(m,N)
l =

{︂
(tz, fnl, vl) ∈ ˜︁El

⃓⃓⃓
b
(m,N)
M (tz, fnl, vl) > g(tz, vl)fnl

}︂
,

and
D(m,N)

l =
{︂
(tz, fnl, vl) ∈ ˜︁El

⃓⃓⃓
b
(m,N)
M (tz, fnl, vl) = g(tz, vl)fnl

}︂
∪ {T} × S(m,N)

F,l × {vl},

respectively. Hence, the approximated continuation and surrender regions are given by
C(m,N) = ∪ml=1C

(m,N)
l , and D(m,N) = ∪ml=1D

(m,N)
l .

We use the notation of Proposition 3.6, with bz,(l−1)N+n denoting the (l − 1)N + n-th entry of B(m,N)
z .

For (tz, fnl, vl), 0 ≤ z ≤M − 1, 1 ≤ n ≤ N and 1 ≤ l ≤ m, we set (tz, fnl, vl) ∈ C(m,N) if bz,(l−1)N+n >

g(tz, vl)fnl, and (tz, fnl, vl) ∈ D(m,N) otherwise. The approximated optimal surrender surface can then
be obtained by analyzing the shape of C(m,N).

We are now interested in studying the shape of the surrender region. To do so, we fix t ∈ [0, T ) and y ∈ SV
and consider the set of points Dt,y ⊆ R+ for which it is optimal to surrender the contract. More precisely,
we defineDt,y by

Dt,y =
{︂
f ∈ R+

⃓⃓⃓
(t, f, y) ∈ D

}︂
.

Suppose that, for all couples (t, y) ∈ [0, T )×SV , the setDt,y is of the form [f⋆(t, y),∞) for some f⋆(t, y) ∈
R+. That is, f⋆(t, y) is the smallest fund value for which it is optimal to surrender the contract at time t for a
volatility level y, and for any fund value greater than f⋆(t, y), it is also optimal to surrender. Mathematically,
this may be expressed by

f⋆(t, y) := inf
{︂
f ∈ R+

⃓⃓⃓
f ∈ Dt,y

}︂
= inf{Dt,y}. (3.31)

Under this assumption, the continuation and the surrender regions can be expressed as
C =

{︂
(t, f, y) ∈ E

⃓⃓⃓
f < f⋆(t, y)

}︂
,
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and
D =

{︂
(t, f, y) ∈ E

⃓⃓⃓
f ≥ f∗(t, y)

}︂
∪ {T} × R+ × SV ,

respectively.

Hence, under this assumption, the optimal surrender surface f∗ splits E in two regions: at or above the
surface is the surrender region, and below, the continuation region. That is, the set Dt,y is connected14. In
this chapter, we say that the surrender region is of “threshold type” if for any (t, y) ∈ [0, T )× SV , the set
Dt,y is connected. There is a financial interpretation for such a form for the surrender region. As explained
in Milevsky and Salisbury (2001), it is optimal for the policyholder to hold on to the contract when the fund
value is low since there is a higher chance that the guarantee will be triggered at maturity.

Remark 3.4.6 The surrender region can take any shape; see for examples MacKay et al. (2017) Figure 4

and Figure 5. However, for specific fee and surrender charge structures, it can be shown that the surrender

region is of threshold type, see for instance MacKay (2014), Appendix 2.A, when the index value process

is modelled by a geometric Brownian motion. Other authors take this form for the surrender region as an

initial assumption, see for example Kang and Ziveyi (2018). In the context of financial derivative pricing,

Jacka (1991), Proposition 2.1, shows that the continuation region of American put options is of threshold

type under the Black-Scholes setting whereas Touzi (1999), Section 2, proves it for some stochastic volatility

models, and De Angelis and Stabile (2019), Proposition 4.1, in a very general setting.

When the surrender region is of threshold type, a simple algorithm can be developed to approximate the
optimal surrender surface. The idea is based on the definition of f⋆(t, y) in (3.31) above: for each tz ∈ HM

and vl ∈ S(m,N)
V , we identify the smallest fund value f (m,N)(tz, vl) for which it is optimal to surrender.

Algorithm 4 returns the approximated optimal surrender surface f (m,N) (under the assumption that the
surrender region is of threshold type) and the approximated value of a variable annuitywith early surrenders
givenX(m,N)

0 = xi = ln(F0)− ργ(V0) and V (m)
0 = V0 = vk.

We note that the derivation of the optimal surrender surface is not mandatory to obtain the value of the
Bermudan contract, as observed from Algorithm 2 or Algorithm 3 in the previous subsection.

Similarly as above, Algorithm 5 is the fast version of Algorithm 4. Recall thatφ(t) := [φ(t, exn+ργ(vj))]m,N
j,n=1

14 A setX is connected if it cannot be divided into two disjoint non-empty open sets.
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Algorithm 4: Optimal Surrender Surface (of threshold type) via CTMC Approximation
Input: InitializeG(m,N) as in (3.20),H(1) andH

(2)
z , for z = 0, 1, . . . ,M − 1, as in (3.30)

M ∈ N, the number of time steps,
∆M ← T/M , the size of a time step

1 SetB(m,N)
M ← H(1) andA∆M

← exp{∆MG(m,N)}e−r∆M

2 for z =M − 1,M − 2, . . . , 0 do

3 B
(m,N)
z ← max

{︂
H

(2)
z ,A∆M

B
(m,N)
z+1

}︂
4 for l = 1, 2 . . . ,m do

5 n← 1

6 while
(︁
bz,(l−1)N+n > g(tz, vl)e

xn+ργ(vl)
)︁
and (n < N) do

7 n← n+ 1

8 f (m,N)(tz, vl)← exn+ργ(vl)

9 b
(m,N)
M (0, F0, V0)← eikB

(m,N)
0

10 return f (m,N) and b(m,N)
M (0, F0, V0)

is am×N matrix representing the payoff at time t for each state in S(m)
V × S(N)

X , and φj,∗(t) (respBj,∗)
is the j-th row of φ(t) (resp. B). We also denote by bjn, the (j, n) entry of the matrixB.

Remark 3.4.7 Algorithms 2 and 3 do not require the specification of any particular form for the surrender

region, which is not the case for many of the numerical procedures presented in the literature (Bernard et al.
(2014b),Shen et al. (2016) and Kang and Ziveyi (2018)). Hence, their scope is more general.

The accuracy of the approximated surrender boundary is demonstrated numerically in Appendix 3.8.

3.4.4 CTMC Approximation of the VIX
In Section 3.5, we analyze numerically the impact of various VIX-linked fee structures on the optimal sur-
render strategy. Since analytical formulas for the VIX are not always known for all models listed in Table 3.1,
we use a CTMC approach to approximate the value of the volatility index. This is the case for the numerical
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Algorithm 5: Optimal Surrender Surface (of threshold type) via CTMC Approximation – Fast Algorithm
Input: InitializeQ(m) as in (3.13) andG

(N)
j for j = 1, 2, . . . ,m, as in (3.18)

M ∈ N, the number of time steps,
∆M ← T/M , the size of a time step

1 Set φ(tz)← [φ(tz, e
xn+ργ(vj), vj)]

m,N
j,n=1 for z = 0, 1, . . . ,M

2 SetBj,∗ ← φj,∗(tM ) for j = 1, 2, . . . ,m

/* Calculate the transition probability matrices */

3 for j = 1, 2, . . . ,m do

/* Ajusted transition probability matrix of X(m,N) given V (m) = vj over a period of length

∆M */

4 PX
j ← eG

(N)
j ∆M e−r∆M

/* Transition probability matrix of V (m) over a period of length ∆M */

5 PV ← eQ
(m)∆M

/* VA valuation */

6 for z =M,M − 1, . . . , 0 do

7 for j = 1, 2, . . . ,m do

8 E∗,j ← PX
j B⊤

j,∗

9 for n = 1, 2, . . . , N do

10 B∗,n ← PV E⊤
n,∗

11 B = max(B,φ(tz))

12 for j = 1, 2 . . . ,m do

13 n← 1

14 while
(︁
bjn > g(tz, vj)e

xn+ργ(vj)
)︁
and (n < N) do

15 n← n+ 1

16 f (m,N)(tz, vj)← exn+ργ(vj)

17 return f (m,N) and bki
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experiments performed under the 3/2 model whose results are available in Appendix 3.815. In this section,
we propose an approximation for the VIX when the variance process is approximated by a CTMC.

Let {︁VIX2
t

}︁
t≥0

be the process representing the square of the VIX, defined by
VIX2

t = Et

[︃
1

τ

∫︂ t+τ

t
σ2S(Vs) ds

]︃
,

with τ = 30/365, see Cui et al. (2021b) Equation (6) for details.

Recall that V (m) is the CTMC approximation of V taking values on a finite state-space
S(m)
V := {v1, v2, . . . , vm}.

When the variance process is a CTMC, an integral expression can be obtained for the value of the volatility
index. The CTMC approximation of the VIX, denoted byVIX(m) = {VIX

(m)
t }t≥0, is given in the proposition

below.

Proposition 3.7 Given V (m)
t = vk, the square of the VIX index at time t can be approximated by(︂
VIX

(m),k
t

)︂2
:= E

[︃
1

τ

∫︂ t+τ

t
σ2S(V

(m)
s ) ds

⃓⃓
V

(m)
t = vk

]︃
=

1

τ

∫︂ τ

0
eke

Q(m)sH ds, (3.32)
where τ = 30/365, Q(m) is the generator of V (m) defined in (3.13), ek is the kth canonical basis vector of
Rm andH is am× 1 vector whose j-th entry hj is given by hj = σ2S(vj), j = 1, 2, . . . ,m.

The proof is a direct consequence of Fubini’s Theorem and the CTMC representation for conditional expec-
tations.

Remark 3.4.8 SinceV (m) is time-homogeneous, the approximation does not depend on t and thus, for each

k ∈ {1, . . . ,m} it needs to be calculated only once for all t ≥ 0.

15 For the 3/2 model, a closed-form expression for the VIX may be found in Carr and Sun (2007), Theorem 4. However, as pointed
out by Drimus (2012), the integral that appears in the analytical formula is difficult to implement and is not suited for fast and
accurate numerical methods. For this reason, the CTMC approximation of the VIX is used in the numerical examples under the 3/2
model.
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The integral part in (3.32) can be approximated via a quadrature rule. In the numerical example section,
this is done by dividing the interval [0, τ ] into n > 0 equidistant sub-intervals for z = 0, 1, 2, . . . , n with

tz := z∆n, ∆n := τ/n.

The approximation then becomes(︂
VIX

(m),k
t

)︂2
≈ ∆n

τ
ek

n∑︂
z=1

eQ
(m)tzH. (3.33)

The approximation in (3.33) can be implemented in a straightforward manner. However, it requires calcu-
lating the exponential of a matrix n times, which can be computationally inefficient. By making use of the
tower property of conditional expectations, Algorithm 6 speeds up the calculation of (3.33).

We remark that other quadrature rules could be used in for the numerical calculation of (3.32). Using
schemes that have a faster rate of convergence may reduce the number of matrix calculations needed.
Algorithm 6: Efficient Algorithm for the calculation of the VIX using CTMC approximation
Input: InitializeQ(m) as in (3.13) andH as in Proposition 3.7
n ∈ N, the number of time steps,
∆n ← τ/n, the size of a time step

1 SetA∆n ← exp{∆nQ
(m)}, S← 0m×1 and E← H

2 for z = n, n− 1, . . . , 1 do

3 E← A∆nE

4 S← S+E

5 VIX
(m),k
t ←

√︂
ekS

∆n
τ

The vector 0m×1 represents the null column vector of size m. Note that Algorithm 6 requires the calcula-
tion of a matrix exponential only once at the beginning of the procedure, which makes the algorithm very
efficient.

Numerical experiments in the next section also demonstrate the accuracy and the efficiency of Algorithm 6
empirically. This new VIX CTMC approximation can also be used for approximating the price of VIX deriva-
tives. This is left as future research.
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3.5 Numerical Analysis
In the constant fee case, themisalignment between the fees and the value of the financial guarantee creates
an incentive for the policyholder to surrender her policy prematurely (seeMilevsky and Salisbury (2001) for
details). Indeed, when the fund value is high, the amount of the fees paid is also high, but the put option
embedded in a GMMB is out-of-the-money and worth very little since the probability for the guarantee to
be triggered at maturity is low. Thus, the policyholder pays high fees for a financial guarantee that has a
low value. This is clearly an incentive for a policyholder to surrender her policy prior to maturity. MacKay
et al. (2017) considered state-dependent fee structures where the fee is paid when the fund value is under a
certain level, and showed that this particular type of fee structure reduces insurers’ exposure to policyholder
behavior under risk-neutral value maximization assumption. Fees that are tied to the S&P volatility index,
the VIX, are also studied in the literature, Cui et al. (2017a) and Kouritzin and MacKay (2018). Since the
volatility is negatively correlated with the stock price (see for instance Rebonato (2004)), we expect VIX-
linked fees to be low when the fund value is high and to be higher when the fund value is low. Cui et al.
(2017a) and Kouritzin and MacKay (2018) showed numerically that linking the fee to the volatility index VIX
may help realign revenues with variable annuity liabilities (for VA without surrender rights). Hence, it is
reasonable to believe that linking the fees to the VIX may help to reduce insurers’ exposure to surrender
risk. This will be explored in greater detail in the numerical experiments conducted below.

This section first discusses the market, the VA, and the CTMC parameters used in all numerical experiments
performed below. Then, we investigate the efficiency of the Fast Algorithms (Algorithms 1 and 3). In the
third subsection, we discuss different structures for the VIX-linked fee, that is, different ways to link the fee
rate to the VIX index. Finally, we analyze the impact of different VIX-linked fee structures on the value of
VAs and their optimal surrender strategy. We restrict our analysis to the classical Heston model. Using our
framework, any model listed in Table 3.1 could have been used.

As supplementary material, we investigate the numerical accuracy of the approximated optimal surrender
surface derived in Algorithm 4 (or equivalently 5), and the CTMC approximation of the VIX (Algorithm 6).
We also analyze numerically the impact of time-dependent risk-free rates on the variable annuity values
and the optimal surrender surface. Finally, we explore numerically the impact of VIX-linked fee structures
under the 3/2model.
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3.5.1 Market, VA and CTMC Parameters
We consider a market under regular conditions: low initial variance v0, low long-term variance θ, moderate
volatility of volatility σ, and moderate speed reversion κ16. The initial value of the variance is set to V0 =

0.03, the correlation to ρ = −0.75 and the risk-free rate to r = 0.03. The selected market parameters are
summarized in Table 3.2 and the model dynamic is given in Table 3.1.

Table 3.2: Market parameters
Parameter V0 κ θ σ ρ r

Value 0.03 2.00 0.04 0.20 −0.75 0.03

The variable annuity parameters are set to F0 = S0 = 100, T = 10 (years), andG = 100. We assume that
the payoff when the contract is surrendered early is given by g(t, Vt)Ft, with

g(t, y) = e−k(T−t), y ∈ SV ,

and k = 0.2%. The choices for the fee function c(x, y) are discussed in greater detail in the next section.

Note that a numerical analysis under the Heston model with G = F0e
˜︁gT , ˜︁g = 2% (rather than G = 100)

is also performed in Appendix 3.8. We also investigate the impact of time-dependent risk-free rates on the
value of variable annuity contracts and the optimal surrender surface in Section, 3.8.5.

For all numerical examples in this chapter, we use the non-uniform grid proposed by Tavella and Randall
(Tavella and Randall (2000), Chapter 5.3). For example, suppose that ˜︁X is a one-dimensional diffusion
process approximated by a continuous-time Markov chain ˜︁X(n) taking values on a finite state-space S ˜︁X =

{˜︁x1, ˜︁x2, . . . , ˜︁xn}, n ∈ N. The state-space of the approximated process can be determined as follows:
˜︁xi = ˜︁X0 + ˜︁α sinh

(︃
c2
i

n
+ c1

[︃
1− i

n

]︃)︃
, i = 2, . . . , n− 1, (3.34)

16 Bloomberg provides historical Heston calibrated parameters to market data on a daily basis via its Option Pricing template
(OVME). These parameters are often used in practice for over-the-counter option pricing. Bloomberg’s Heston calibrated speed
reversion parameter is κ = 3.6881 as of December 31, 2019, κ = 5 as of March 31, 2020 and κ = 1.1397 as of September 30,
2020. The parameter selected for our numerical experiments falls approximately in the middle of those of December 2019 and
September 2020. In the financial literature, Aït-Sahalia and Kimmel (2007) obtain κ = 5.07 whereas Garcia et al. (2011) obtain
κ = 0.173, and again our values fall between these two values.
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where
c1 = sinh−1

(︄˜︁x1 − ˜︁X0˜︁α
)︄
, and c2 = sinh−1

(︄˜︁xn − ˜︁X0˜︁α
)︄
.

Here the constant, ˜︁α ≥ 0, controls the degree of non-uniformity of the grid. The choices for the two
boundary states and the non-uniformity parameter ˜︁αv (resp. ˜︁αX ) for V (m) (resp. X(m,N)) are discussed in
more details below.

Remark 3.5.1 When the initial values of the auxiliary and variance processes are not in the grid, they can be

inserted (see for example Cui et al. (2019), Section 2.3 for details), or the value of the variable annuity must

be interpolated between the appropriate grid points.

Non-uniform schemes have been used frequently in the literature for options pricing via CTMC approxi-
mation methods, see Mijatović and Pistorius (2013), Lo and Skindilias (2014), Cai et al. (2015), Kirkby et al.
(2017), Cui et al. (2018), Cui et al. (2019), Leitao Rodriguez et al. (2021) and Ma et al. (2021), among others.
For a deep analysis of grid designs and how they can affect convergence, the reader is referred to Zhang
and Li (2019).

Unless stated otherwise, all numerical experiments are performed using the CTMC parameters listed in
Table 3.3. Recall that m is the number of grid points for the variance process whereas N represents the
number of grid points of the fund process. ˜︁αv (resp. ˜︁αX ) is the grid non-uniformity parameter of the
variance (resp. the auxiliary) process. The grid’s upper and lower bounds are respectively v1 and vm for the
variance process and x1 and xN for the auxiliary process with X0 = ln(F0) − ργ(V0). The values of V0
andX0 are inserted in their respective grid as per Remark 3.5.1. Finally, we useM = 500× 10 times steps,
which corresponds to a computing frequency of approximately twice daily (since there are approximately
250 trading days per year).

Table 3.3: CTMC parameters
Parameter m N v1 vm ˜︁αv x1 xN ˜︁αX M

Value 50 2, 000 V0/100 7v0 0.6571 X0/10
6 1.95X0 2/100 5, 000

Note that, under the Heston model, good approximations of the transition density of the variance process
can be obtained with a small number of grid points, see for example Cui et al. (2019) Figure 3.
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All the numerical experiments are carried out with Matlab R2015a on a Core i7 desktop with 16GB RAM and
speed 2.40 GHz.

3.5.2 Efficiency of the Fast Algorithms
The valuation of options (or variable annuities) using CTMC requires the calculation of a matrix exponential
to obtain the transition probability matrix. In Algorithm 2, the two-dimensional process is mapped onto
a one-dimensional process resulting in a generator of size mN × mN . Thus, we need to calculate the
exponential of a mN × mN matrix to obtain the transition probability matrix. For large values of mN ,
this procedure might stretch computing resources to unacceptable levels. Algorithms 1 and 3, proposed
in Section 3.4, require m times the calculation of the exponential of a N × N matrix and one time the
exponential of a m × m matrix. As demonstrated below, reducing the size of the matrix in the exponent
allows to significantly increase the efficiency of the procedure.

When the size of the exponent in the matrix exponential is greater than 200 × 200, we observe that the
function fastExpm for Matlab, see Mentink-Vigier (2020)17, which is designed for the fast calculation of
matrix exponentials of large sparse matrices, can further speed up the calculation. Combining the function
fastExpm and the Fast Algorithms can speed up the code by up to 100 times (for European and Bermudan
contracts). For the European contract, the Fast Algorithm can reduce the computation time by up to 12

times whereas the function fastExpm, by up to 7 times. For the Bermudan contract, the computation time
is reduced by up to 4 times with the Fast Algorithm and by up to 40 times with the function fastExpm.
Whenm = 50 and N = 100 the running time is approximately 6 seconds for both the European and the
Bermudan contracts, confirming the high efficiency of the new algorithms.

Figure 3.1 illustrates the computation time in seconds of the “Fast Algorithm”, Algorithm 1 for the European
contract and Algorithm 3 for the Bermudan contract, combined with the function fastExpm of Mentink-
Vigier (2020) (when the size of the generator in the matrix exponential is greater than 200 × 200), and
the computation time of the “Regular Algorithm” for the European contract (3.22) and Algorithm 2 for
the Bermudan one. The run times in Figure 3.1 are recorded using the market, VA, and CTMC param-
eters of Subsection 3.5.1, except for the number of grid points for the auxiliary process X which is set
to N = 100, 200, 300 and 500, respectively. Moreover, we use a constant fee structure, that is we fix

17 The function fastExpm is based on Hogben et al. (2011) and Kuprov (2011).
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c(x, y) = 1.5338% for all (x, y) ∈ R+ × SV .

(a) European contract (b) Bermudan contract
Log of computation time (in seconds) Log of computation time (in seconds)

Figure 3.1: Fast Algorithms: Algorithm 1 for the European contract andAlgorithm3 for theBermudan contract. Regular
Algorithms: Equation (3.22) for the European contract and Algorithm 2 for the Bermudan contract.

We also compare the accuracy of the new algorithms. For comparison, we use the regular algorithms for
the European contract and for the Bermudan contract. The absolute difference in the VA prices between
the regular and the fast algorithms is around 10−3 for both European and Bermudan contracts, whereas
the relative difference is around 10−5, confirming the accuracy of the fast algorithms. See also Appendix
(3.8) for more details.

Remark 3.5.2 When valuing a European contract, the use of the Expokit of Sidje (1998) based on Krylov sub-

space projection methods accelerates the computation time considerably. Moreover, software packages in

Matlab and Fortran can be downloaded for free at https: // www. maths. uq. edu. au/ expokit . When

N = 500, we observe that the function expv in the Expokit can accelerate the running time by up to 7 times

(compared to the fast algorithm).

However, since the function takes advantage of the product of a matrix exponential with a vector, the fast

algorithm ismore efficient when valuing Bermudan contracts. Indeed, when using the fast algorithm,matrix

exponentials are calculated only once at the beginning of the procedure; whereas when using the Expokit,

it needs to be calculated at each time step (since we need to calculate the matrix exponential multiplied by

a vector in order to make use of the procedure) which slows down the execution considerably. Hence, when

valuing a Bermudan contract, Algorithm 3 is up to 9 times faster than the regular algorithm using Expokit

97

https://www.maths.uq.edu.au/expokit


procedures of Sidje (1998).

As mentioned previously, the computational effort in Algorithms 1 and 3 resides in the calculation of the
matrix exponentials at the beginning of the two procedures. Hence, once they are (pre-)computed, one
can obtain the value of variable annuities with and without surrender rights simultaneously at almost no
additional cost. For instance, when N = 500, we simultaneously obtain the prices of variable annuities
with and without surrender rights in 270 seconds; whereas the values of the Bermudan and the European
contracts can be obtained separately in approximately 250 seconds for each. This also holds true for any
other VA contractswith different guaranteed amounts; that is, a variety of contracts can be priced for almost
the same computational effort as a single contract.

3.5.3 Fee Structures and Fair Fee Parameters
First, recall from Subsection 3.4.4 that

VIX2
t = Et

[︃
1

τ

∫︂ t+τ

t
σ2S(Vs) ds

]︃
, with τ = 30/365.

For all the numerical experiments conducted below, we consider three types of VIX-linked fee structures.
As in Cui et al. (2017a), we use an uncappedVIX2-linked fee structure (the “UncappedVIX2” fee structure)
of the form

ct = ˜︁c+ ˜︁mVIX2
t , 0 ≤ t ≤ T,

with ˜︁c, ˜︁m ≥ 0.

When the volatility is high (e.g. financial turmoil), the Uncapped VIX2 fee rate can become excessive (see
Table 3.5 for examples). This motivates our choice of imposing a cap to this type of fee. Thus, for the second
fee structure, we consider cappedVIX2-linked fees (or simply the “CappedVIX2” fee structure or Capped
fee structure) of the form

ct = min(˜︁c+ ˜︁mVIX2
t ,K), 0 ≤ t ≤ T,

where ˜︁c, ˜︁m ≥ 0 andK > 0.

Finally, we look at an uncapped fee structure linked to the VIX (rather than the VIX squared) given by
ct = ˜︁c+ ˜︁mVIXt, 0 ≤ t ≤ T,
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with ˜︁c, ˜︁m ≥ 0, also called the “Uncaped VIX” fee structure. Such a structure can help to keep the fee rates
reasonable during high volatility periods.

Since the volatility process isMarkovian, the volatility index at twill depend only on Vt. Therefore, the three
fee functions are of the form c(y), y ∈ SV .

The fee structure parameters ˜︁c and ˜︁m are set in such a way that the contract is fair at inception. That is,
the initial amount invested by the policyholder, F0, is equal to the expected discounted value of the future
benefit (without early surrenders). Those parameters are called the fair parameters and are henceforth
denoted by a star: (˜︁c∗, ˜︁m∗). We set the fee in this manner to calculate the value added by the right to
surrender. To identify the fair fee vector (˜︁c∗, ˜︁m∗), we first fix a multiplier ˜︁m∗, and then solve for the corre-
sponding fair base fee ˜︁c∗. Note that such a fair base fee ˜︁c∗ does not exist for all values of ˜︁m∗ > 0. When
ct = ˜︁c∗ + ˜︁m∗VIX2, the fair parameters are obtained using the exact formula of Cui et al. (2017a). For
the other fee structures, the fair parameters are calibrated using a CTMC approximation with N = 100

(all other CTMC parameters are the same as in Table 3.3), to reduce the computation time. Note that very
accurate VA prices are obtained extremely fast with N = 100 under the Heston model (see Appendix 3.8
for numerical details). Table 3.4 presents the fair fee vectors (˜︁c∗, ˜︁m∗), and Table 3.5 shows examples of fair
fee rates produced by each fair fee vector at different volatility levels (√Vt).

Table 3.4: Fair fee vectors (˜︁c∗, ˜︁m∗)

ct = ˜︁c∗ + ˜︁m∗VIX2
t˜︁m∗ 0.0000 0.1500 0.3000 0.4345˜︁c∗ 1.5338% 1.0036% 0.4741% 0.000%

ct = min{˜︁c∗ + ˜︁m∗VIX2
t ,K},K = 2%

˜︁m∗ = 0.0000 0.1500 0.3000 0.4927˜︁c∗ = 1.5338% 1.0112% 0.5415% 0.000%

ct = ˜︁c∗ + ˜︁m∗VIXt˜︁m∗ = 0.0000 0.0250 0.0500 0.0836˜︁c∗ = 1.5338% 1.0750% 0.6164% 0.000%

The uncapped VIX2-linked fee rate can get very high as the volatility increases, reaching levels as high as
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Table 3.5: Fair fee rates in %
(a) ct = ˜︁c∗ + ˜︁m∗VIX2

t (%)
√
Vt (%)\ ˜︁m∗ 0.0000 0.1500 0.3000 0.4345

8.702 1.5338 1.1550 0.7770 0.4387

13.882 1.5338 1.3168 1.1007 0.9075

30.434 1.5338 2.3314 3.1299 3.8464

42.772 1.5338 3.5808 5.6285 7.4653

(b) ct = min{˜︁c∗ + ˜︁m∗VIX2
t (%),K},K = 2%

√
Vt (%)\ ˜︁m∗ 0.0000 0.1500 0.3000 0.4927

8.702 1.5338 1.1627 0.8444 0.4975

13.882 1.5338 1.3245 1.1681 1.0291

30.434 1.5338 2.0000 2.0000 2.0000

42.772 1.5338 2.0000 2.0000 2.0000

(c) ct = ˜︁c∗ + ˜︁m∗VIXt

√
y (%)\ ˜︁m∗ 0.0000 0.0250 0.0500 0.0836

8.702 1.5338 1.3262 1.1188 0.8402

13.882 1.5338 1.4363 1.3390 1.2083

30.434 1.5338 1.8188 2.1041 2.4877

42.772 1.5338 2.1113 2.6889 3.4657
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7.4653% when the volatility is 42.772%. During the last COVID-19 financial crisis, volatility reached levels
as high as 80% in March 202018. This motivates the two other fee structures we propose. We note that the
introduction of a cap does not significantly affect the calibrated fair fee parameters. We also observe, from
Table 3.5 that the second and the third fee structures allow to keep the fees at reasonable levels during high
volatility periods compared to the Uncapped VIX2 fee structure.

3.5.4 Effect of VIX-Linked Fees on Surrender Incentives
Recall that under the Heston (1993) model, the price of the risky asset satisfies

dSt = rSt dt+
√
VtSt dW

(1)
t

dVt = κ(θ − Vt) dt+ σ
√
Vt dW

(2)
t ,

(3.35)
with S0 and V0 are deterministic, and whereW = (W (1),W (2))T is a bi-dimensional correlated Brownian
motion under Q and such that [W (1), W (2)]t = ρt with ρ ∈ [−1, 1], the speed of the mean-reversion
κ > 0, the long term variance θ > 0 and the volatility of the variance σ > 0 (also called the volatility of the
volatility).

Moreover, when the market is modeled by (3.35), the VIX has a closed-form expression given by
VIX2

t = B +AVt (3.36)
with A = 1−e−κτ

κτ and B = θ(κτ−1+e−κτ )
κτ , see Zhu and Zhang (2007) for details. The three fee structures

exposed in the Subsection 3.5.3 can thus be obtained explicitly in terms of the current volatility using (3.36)
as follows:

Table 3.6: Fair fee process under the Heston model
Fee Structure ct, 0 ≤ t ≤ T
Uncapped VIX2 ˜︁c∗ + ˜︁m∗(A+BVt)

Capped VIX2 min{K,˜︁c∗ + ˜︁m∗(A+BVt)}

Uncapped VIX ˜︁c∗ + ˜︁m∗√︁(A+BVt)

Now from Lemma 3.1, we find that γ(x) = x/σ. Thus, given a certain fee process ct (listed in Table 3.6), the

18 See VIX historical data at https://www.cboe.com/tradable_products/vix/vix_historical_data/.
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dynamics of the auxiliary process can be derived as
dXt = µX(Xt, Vt) dt+ σX(Vt) dW

∗
t ,

dVt = µV (Vt) dt+ σV (Vt) dW
(2)
t ,

(3.37)
where µX(Xt, Vt) = r − ρκθ

σ − ct + Vt
(︁ρκ

σ −
1
2

)︁, and σX(Vt) =
√︁

(1− ρ2)Vt, 0 ≤ t ≤ T .

Using the CTMC technique outlined in Section 3.3 and the market, VA, and CTMC parameters of subsection
3.5.1, we perform the valuation of a variable annuity with and without early surrenders ( “VA with early
surrender (ES)” and “ VA without ES”, respectively). The results are reported in Table 3.7 below19.

First, we observe that the fair value of the variable annuity without early surrenders is approximately F0 =

100 for all fair fee vectors. This is because fair fee parameters are calibrated such that the value of the VA
without surrender rights at time t = 0 is equal to the initial premium (F0 = 100). Moreover, under the
Uncapped VIX2-linked structure, fair fee parameters are obtained using the exact pricing formula of Cui
et al. (2017a), confirming the accuracy of the approximated model. The absolute error is around 10−4 for
all fee vectors for this fee structure. An accuracy of around 10−3 can be obtained for each value (the value
of the VA with and without surrender rights) with fewer grid points with significantly less computational
effort. Detailed results with N = 100 and N = 1, 000 are given in Appendix 3.8 with their respective
computation time. The value of the surrender right is calculated as the difference between the values of
the variable annuity with and without early surrenders.

As ˜︁m∗ increases, the risk-neutral value of early surrenders remains very close for all fee structures. One
might expect the VIX-linked fee structure to reduce the risk-neutral value of the surrender rights since this
type of fee structure realigns income and liability (Cui et al., 2017a), but this is not what is observed here.
However, VIX-linked fee structures have an impact on optimal surrender strategies, as shown below.

In Figure 3.2, the shape of the approximated optimal surrender surface associated with each of the VIX-
linked fee structures is illustrated for different values of the fair multiplier. We observe that the surrender
region is of threshold type for all ˜︁m∗. We also note that, regardless of the value of ˜︁m∗, the boundary is a
concave function of time. It slowly increases to a maximum and decreases rapidly to the guarantee levelG.
This is consistent with earlier findings of Bernard et al. (2014b) and Kang and Ziveyi (2018).

19 Numerical experiments under the Heston model have been performed using Equation (3.22), and Algorithms 2 and 4. Note
however that similar results are obtained when using the Fast Algorithms, see Appendix 3.8 for details.
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Table 3.7: Variable annuity with and without early surrender (ES).
(a) ct = ˜︁c∗ + ˜︁m∗VIX2

t

˜︁m∗ = 0.0000 0.1500 0.3000 0.4345˜︁c∗ = 1.5338% 1.0036% 0.4741% 0.000%

VA without ES 100.00090 100.00091 100.00092 100.00093

VA with ES 103.01785 103.00823 103.00330 103.00367

Value of ES 3.01695 3.00732 3.00238 3.00274

(b) ct = min{K,˜︁c∗ + ˜︁m∗VIX2
t}, withK = 2%

˜︁m∗ = 0.0000 0.1500 0.3000 0.4927

c∗ = 1.5338% 1.0112% 0.5415% 0.000%

VA without ES 100.00090 100.00075 100.00070 100.00036

VA with ES 103.01785 103.00596 102.99137 102.97560

Value of ES 3.01695 3.00521 2.99067 2.97524

(c) ct = ˜︁c∗ + ˜︁m∗VIXt

˜︁m∗ = 0.0000 0.0250 0.0500 0.0.0836˜︁c∗ = 1.5338% 1.0750% 0.6164% 0.000%

VA without ES 100.00090 100.00099 100.00057 100.000167

VA with ES 103.01785 103.01080 103.00446 102.99853

Value of ES 3.01695 3.00981 3.00389 2.99686
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(a) ct = ˜︁c∗ + ˜︁m∗VIX2
t

(b) ct = min{˜︁c∗ + ˜︁m∗VIX2
t ,K},K = 2%

(c) ct = ˜︁c∗ + ˜︁m∗VIXt

Figure 3.2: Approximated optimal surrender surface of VIX-linked fees VAs for different values of fair multiplier ˜︁m∗

under the Heston model. The x-axis represents the time and the y-axis the variance.

For fixed t ∈ [0, T ], we observe, in Figures 3.2 and 3.3, that the t section of f (m,N), the function y ↦→
f (m,N)(t, y), denoted by f (m,N)

t , is increasing for all ˜︁m∗. Hence, when the volatility is high, variable an-
nuities are surrendered at higher fund values than when the volatility is low. This is in line with the find-
ings of Kang and Ziveyi (2018). However, as ˜︁m∗ increases, the function f (m,N)

t increases at a slower rate
(and particularly for the uncapped structures, panel (a) and (c) of Figures 3.2 and 3.3). For instance, fix˜︁m∗ ∈ {0, 0.15, 0.3, 0.4345}, y ∈ S(m)

V and note, from Figure 3.3 (panel (a) or (c)), that the y section of
f (m,N), the function t ↦→ f (m,N)(t, y), denoted by f (m,N)

y , is pushed upwards as y increases. However,
the difference between the low and the high volatility y section is less significant as ˜︁m∗ grows. This means
that the optimal surrender decision for uncapped VIX-linked fees is less sensitive to volatility fluctuations
when fees are tied to the volatility index. In the case of the capped structure (panel (b) of Figures 3.2 and
3.3), we also note that approximated optimal surrender surfaces are gradually increasing as volatility grows;
however, they now increase at a similar pace for all ˜︁m∗. This can be interpreted from a financial perspective
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as pointed out below.

(a) ct = ˜︁c∗ + ˜︁m∗VIX2
t

(b) ct = min{˜︁c∗ + ˜︁m∗VIX2
t ,K},K = 2%

(c) ct = ˜︁c∗ + ˜︁m∗VIXt

Figure 3.3: The y section of the approximated optimal surrender surface, f (m,N)
y , for different volatility levels √y

and fair multipliers ˜︁m∗.

In Figure 3.4, we fix a volatility level y and we compare the y sections of f (m,N), f (m,N)
y , for different fair

multipliers ˜︁m∗. When the volatility is low (√y = 8.702%), see for instance the first graph of Figure 3.4
(a), f (m,N)

y is pushed upwards as ˜︁m∗ increases. This means that a variable annuity contract with a fully
dependent uncapped VIX2-linked fee structure ( ˜︁m∗ = 0.4345) is surrendered at higher fund values than
the constant fee one ( ˜︁m∗ = 0). Indeed, when the volatility is low, the fee paid under a variable annuity
contract with a VIX2-linked fee structure is also low (see Table 3.5 for examples), making VIX-linked fee
contracts more attractive than the constant fee ones. However, as the volatility rises, VIX2-linked fees
also rise and so, the relation between the optimal surrender decision and ˜︁m∗ reverts. The second graph
of Figure 3.4 (a) shows that variable annuity contracts are surrendered at almost all the same fund value
levels when the volatility equals to 13.882%, regardless ofm∗. The latter may be explained by the fact that
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fee rates are all around the same level when√y = 13.882%, that is±1% as per Table 3.5. However, when
the volatility increases (see for instance the third and the last graphs of Figure 3.4 (a)), VIX2-linked fees
are also high (refer again to Table 3.5 for examples), makingVIX2-linked fee variable annuity contracts less
attractive than the constant fee ones. And so, when volatility is high, we observe that f (m,N)

y is pushed
downward with increasing values of ˜︁m∗. In other words, for high volatility levels, variable annuity contracts
with VIX2-linked fee structures are surrendered at lower fund values than contracts with constant fee
structures. This is financially intuitive, as pointed out by Bernard et al. (2014b) under the Black-Scholes
setting with a constant fee function, since when the fee gets higher, the policyholder has to pay more for
the guarantee, and so, the mismatch between the premium for guarantee and its value is even greater;
resulting in earlier exercise time. The analysis above shows that the findings of Bernard et al. (2014b) also
extend to stochastic fee structures. Similar conclusions can be drawn for the Uncapped VIX-linked fees,
Figure 3.4(c).

(a) ct = ˜︁c∗ + ˜︁m∗VIX2
t (b) ct = min{˜︁c∗ + ˜︁m∗VIX2

t ,K},K = 2%

(c) ct = ˜︁c∗ + ˜︁m∗VIXt

Figure 3.4: The y section of the approximated optimal surrender surface, f (m,N)
y , for different volatility levels √y

and fair multipliers ˜︁m∗.

We observe in Figure 3.4(b) that when the volatility is low, capped VIX2-linked fee VA contracts are sur-
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rendered at lower fund values than constant fee ones, like for the two other fee structures. However, for
high enough volatility levels, the cap is reached, and thus, the fee paid under the capped structure is the
same for allm∗ > 0 (see Table 3.5); cappedVIX2-linked fee VA contracts are thus all surrendered at similar
fund value level (Figure 3.4 (b) graphs 3 and 4 whenm∗ > 0). This illustrates again the relation that exists
between fees and optimal surrender decisions. VA contracts with higher fee rates are surrendered at lower
fund values than contracts with lower fee rates.

Similar conclusions can be drawn under the Heston model when G = F0e
˜︁gT with ˜︁g = 2% or when the

interest rates depend on time; and under the 3/2 stochastic volatility model, see Appendix 3.8 for details.

3.6 Concluding Remarks
In this chapter, we provide a framework based on CTMC approximations to analyze the surrender incen-
tives resulting from VIX-linked fees in variable annuities under general stochastic volatility models. Under
the assumption that the policyholder maximizes the risk-neutral value of her variable annuity, the pricing of
a variable annuity is an optimal stopping problem with a time-discontinuous reward function. Under gen-
eral fee and surrender charge structures, we develop efficient numerical algorithms based on a two-layers
CTMC approximation to price variable annuities with and without early surrenders. We derive a closed-
form analytical formula for the value of a variable annuity without surrender rights and provide a quick
and simple way of determining early surrenders value via a recursive algorithm. We also present an easy
procedure to approximate the optimal surrender surface under the hypothesis that the surrender region is
of threshold type. Finally, we observe numerically that VIX-linked fees do not significantly affect the value
of early surrenders under the selected set of Heston parameters. However, numerical examples also reveal
that the optimal surrender decision is impacted by VIX-linked fee structures. In particular, we observe that
the optimal surrender strategy is more stable with respect to volatility changes when the fees are linked to
the volatility index.
All algorithms and results of this chapter can easily be adapted to incorporate the term structure of interest
rates by modeling the risk-free rate as a deterministic function of time. However, extension to stochas-
tic interest rate models can present some numerical challenges. Indeed, adding a third dimension to the
problem necessitates increasing the size of the generator, which can cause numerical challenges specifi-
cally for the valuation of long-term derivatives such as variable annuities. Algorithms 1 and 3 of this chapter
address the numerical challenge encountered when trying to value long-term derivatives under general
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two-dimensional models. The extension to higher dimension models is not straightforward and is left as
future research. Moreover, short-rate models that allow to reproduce the term structure of interest rates
are time-inhomogeneous, adding to the numerical difficulty of this extension for long-maturity derivatives
since matrix exponential of the time-dependent generator now needs to be calculated at each time step to
obtain the transition probability matrices. Finally, the CTMC approximation of the VIX presented in Section
3.4.4 can also be used to price exotic path-dependent options on the VIX, which is left as future research.

3.7 Appendix - Proofs of Main Results
3.7.1 Proof of Proposition 3.4
First, recall that

P(X(m,N)
t+h = xl, V

(m)
t+h = vj

⃓⃓
X

(m,N)
t = xi, V

(m)
t = vk)

= P(Y (m,N)
t+h = (j − 1)N + l

⃓⃓
Y

(m,N)
t = (k − 1)N + i).

By inspection of the matrixG(m,N) and since h is small, we have by (3.8) that

P(X(m,N)
t+h = xl, V

(m)
t+h = vj

⃓⃓
X

(m,N)
t = xi, V

(m)
t = vk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qkjh+ fkjii (h) if i = l,j ̸= k

λkilh+ fkkil (h) if i ̸= l,j = k

1 + (qkk + λkii)h+ fkkii (h) if i = l,j = k

fkjil (h) if i ̸= l, j ̸= k.

where the functions {fkjil } satisfy limh→0
fkj
il (h)

h = 0 for i, l ∈ {1, 2, . . . , N} and k, j ∈ {1, 2, . . . ,m}.

From the last equality, we observe that the regime-switching CTMC cannot change regime (V (m)) and state
(X(m,N)) simultaneously over small time intervals. It follows that

E
[︂
ϕ
(︂
t+ h,X

(m,N)
t+h , V

(m)
t+h

)︂
|X(m,N)

t = xi, V
(m)
t = vk

]︂
=

m∑︂
j=1
j ̸=k

ϕ(t+ h, xi, vj)(qkjh+ ckjii (h)) +

N∑︂
l=1
l ̸=i

ϕ(t+ h, xl, vk)(λ
k
ilh+ fkkil (h))

+ϕ(t+ h, xi, vk)
(︂
1 + (qkk + λkii)h+ fkkii (h)

)︂
+

m∑︂
j=1
j ̸=k

N∑︂
l=1
l ̸=i

ϕ(t+ h, xl, vj)f
kj
il (h)

= ϕ(t+ h, xi, vk) +
m∑︂
j=1

ϕ(t+ h, xi, vj)qkjh+

N∑︂
l=1

ϕ(t+ h, xl, vk)λ
k
ilh+ fN (h),
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since for i, l ∈ {1, 2, . . . , N} and j, k ∈ {1, 2, . . . ,m}, limh→0
ϕ(t+h,xl,vj)f

kj
il (h)

h = 0.

Also, observe that
E
[︂
ϕ(t+ h,X

(m,N)
t+h , vj)|V (m)

t = V
(m)
t+h = vj , X

(m,N)
t = xi

]︂
=

N∑︂
l=1

ϕ(t+ h, xl, vj)P
(︂
X

(m,N)
t+h = xl|V

(m)
t = V

(m)
t+h = vj , X

(m,N)
t = xi

)︂
=

N∑︂
l=1
l ̸=i

ϕ(t+ h, xl, vj)(λ
j
ilh+ cjil(h)) + ϕ(t+ h, xi, vj)(1 + λjiih+ f jii(h))

= ϕ(t+ h, xi, vj) +
N∑︂
l=1

ϕ(t+ h, xl, vj)(λ
j
ilh+ f jil(h)).

Hence, we have that
m∑︂
j=1

E
[︂
ϕ(t+ h,X

(m,N)
t+h , vj)|V (m)

t = V
(m)
t+h = vj , X

(m,N)
t = xi

]︂
P
(︂
V

(m)
t+h = vj |V (m)

t = vk

)︂

=

m∑︂
j=1

(︄
ϕ(t+ h, xi, vj) +

N∑︂
l=1

ϕ(t+ h, xl, vj)(λ
j
ilh+ f jil(h))

)︄(︁
qkjh+ fkj(h)

)︁
+ϕ(t+ h, xi, vk) +

N∑︂
l=1

ϕ(t+ h, xl, vk)(λ
k
ilh+ fkil(h))

= ϕ(t+ h, xi, vk) +
m∑︂
j=1

ϕ(t+ h, xi, vj)qkjh+

N∑︂
l=1

ϕ(t+ h, xl, vk)λ
k
ilh+ fm(h).

The results follows from setting f(h) = fm(h)− fN (h). □

3.8 Appendix - Supplemental Material
This section provides supplemental material to Chapter 3.

3.8.1 Accuracy of the VA price and the Approximated Optimal Surrender Strategy
The purpose of this subsection is to analyze numerically the accuracy of Algorithm 4 to approximate the
optimal surrender strategy. In the context of American put options under the Black-Scholes setting, Lam-
berton (1993) considers a similar approximation for the exercise boundary when the underlying diffusion
process is approximated by aMarkov chain. In particular, under this setting, Lamberton (1993) proves theo-
retically the convergence of the approximated exercise boundary (also called the critical price) towards the

109



exact exercise boundary in their Theorem 2.1.
In order to analyze the accuracy of our methodology against a known benchmark, we use our algorithms
in a problem that has been done by others. More precisely, we compare the approach of Algorithm 4 (also
called the CTMC Bermudian approximation and denoted below by “CTMC-Berm”) for approximating the
optimal surrender surface and the value of a variable annuity with early surrenders to the ones obtained
using the approach of Bernard et al. (2014b), the “Benchmark”. Themethodology proposed by Bernard et al.
(2014b) is based on the integral equation method of Kim (1990) under the Black-Scholes model, and cannot
be easily extended to more general models. Thus, in order to compare with their method, we assume that
the volatility of the index is constant so that

dSt,= rSt dt+ σSt dWt, t ≥ 0,

where σ > 0 is the volatility. We also suppose that c(x, y) = ˜︁c > 0, for all (x, y) ∈ R+ × SV , and we use
g(t, y) = 1 for all (t, y) ∈ [0, T ]× SV . Hence, the VA account dynamics is given by

dFt,= (r − ˜︁c)Ft dt+ σFt dWt, 0 ≤ t ≤ T.

Weapproximate the logarithmof the fund process ˜︁Xt = lnFt, 0 ≤ t ≤ T by using the CTMCapproximation
method. The CTMC approach for one-dimensional diffusion processes works in the exact same way as the
one described in Subsection 3.3.1 for the approximation of V , see Cui et al. (2019) for details. The number
of state-space grids and time steps are set to N = 5, 000 andM = T × 500, respectively. We use the
grid of Tavella and Randall (2000), as discussed in Section 3.5.1, with a non-uniformity parameter ˜︁α ˜︁X = 5.
The grid upper (˜︁xN ) and lower bounds (˜︁x1) of the approximated process ˜︁X are set about the mean of ˜︁Xt

at t = T/2 as follows: ˜︁xN = µ̄(t) + γσ̄(t) and ˜︁x1 = µ̄(t) − γσ̄(t) where µ̄(t) is the conditional mean
of ˜︁Xt given ˜︁X0 and σ̄(t), the conditional standard deviation. We use γ = 7.2. Now note that, under the
Black-Scholes setting, we have

µ̄(t) = ˜︁X0 +

(︃
r − σ2

2

)︃
t, and σ̄(t) = σ

√
t.

As a benchmark, we use the value of the variable annuity with early surrenders and the optimal surren-
der boundary obtained using the method of Bernard et al. (2014b) with 1500 steps per year. Other pa-
rameters are G = 100, r = 0.03 and T = 15. We tested our method for different volatility levels
σ ∈ {0.1, 0.2, 0.3, 0.4} and initial values of the VA account F0 ∈ {90, 100}. The fair fee ˜︁c∗ is calculated
such that the expected discounted value of thematurity benefit equals the value of the VA account at incep-
tion, that is F0 = E

[︁
e−rT max(G,FT )

]︁. We compare to the benchmark the value of the variable annuity
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Table 3.8: Relative errors of variable annuities with ES andmaximum relative errors of the optimal surrender
boundaries.

σ ˜︁c∗ (%) VA with ES Opt. Surr. Bound.

CTMC-Berm Bernard et al. (2014) Rel. Err. Max Rel. Err.

F0 = 100

0.1 0.1374 100.851600 100.851748 1.47e-6 2.60e-3
0.2 0.9094 104.400379 100.401287 8.70e-6 5.20e-3
0.3 1.9277 108.577366 108.579001 1.51e-5 7.78e-3
0.4 2.9415 112.823616 112.826112 2.21e-5 1.04e-2

F0 = 90

0.1 0.2641 91.28494 91.285171 2.53e-6 2.60e-3
0.2 1.3062 94.989758 94.990712 1.01e-5 5.20e-3
0.3 2.5571 99.012022 99.013806 1.80e-5 7.78e-3
0.4 3.7631 103.022547 103.025197 2.57e-5 1.03e-2

with early surrenders “VA with ES” and the optimal surrender boundary (“Opt. Surr. Bound.”). The results
are reported in Table 3.8. The column “Rel. Err.” documents the relative errors whereas “Max Re. Err” doc-
uments the maximum relative errors20. From Table 3.8, we see that the CTMC Bermudian approximation
achieves a high level of accuracy across all volatility levels and initial value of VA account F0.

3.8.2 Accuracy and Efficiency of the CTMC Approximation for the VIX Index
We assess the accuracy of the CTMC approximation for the volatility index for the 3/2 and Heston models.
Under a Heston-type model, the VIX has a closed-form expression given by

VIX2
t = B +AVt (3.38)

with A = 1−e−κτ

κτ andB = θ(κτ−1+e−κτ )
κτ , see Zhu and Zhang (2007) for details.

For the 3/2 model, a closed-form expression for the VIX may be found in Carr and Sun (2007), Theorem 4.
However, as pointed out by Drimus (2012), the integral that appears in the analytical formula is difficult to
implement and is not suited for fast and accurate numerical approximation. For this reason, benchmark

20Given a benchmark value y and its approximation yapprox, the relative error is defined as |y − yapprox|/|y| for y ̸= 0; whereas
the maximum relative error is the largest relative error over a sample of benchmark values and their approximations.
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results are obtained via Monte Carlo simulation21 under 3/2 model.

The market and CTMC parameters are set to the ones of Subsection 3.5.1 for the Heston model, except that
we setm = 1, 000 (rather thanm = 50). For the 3/2 model, we use the parameters reported in Section
3.8.6.1. The results are presented in Table 3.9. The column “Vt” (resp. 1/Vt) displays the initial value of the
variance at time t ≥ 0 for the Heston model (resp. the 3/2 model), the column “CTMC” shows the result of
the VIX approximation using Algorithm 6 with n = 1, 000 time steps, and the column “Benchmark” reports
the benchmark value calculated either by using the closed-form formula (3.38) (for the Heston model) or
by Monte Carlo simulation (for the 3/2 model). The relative error are documented in column “Rel. err”.

Table 3.9: Accuracy of the CTMC- VIX approximation, Algorithm 6.
(a) Heston model

Vt CTMC Benchmark Rel. err.

0.01 11.1077% 11.1068% 8.10e-05
0.02 14.6829% 14.6824% 3.41e-05
0.04 20.0000% 20.0000% 0.00e+00
0.06 24.1746% 24.1749% 1.24e-05
0.09 29.3433% 29.3439% 2.04e-05

(b) 3/2 model
1/Vt CTMC Benchmark Rel. err.

0.01 11.2202% 11.2203% 8.91e-06
0.02 15.7016% 15.7020% 2.55e-05
0.04 21.4892% 21.4901% 4.19e-05
0.06 25.3096% 25.3112% 6.32e-05
0.09 29.2708% 29.2735%5 9.22e-05

The results of Table 3.9 confirm the high accuracy of the CTMC-VIX approximation for both models. It is
worth mentioning that, when using Algorithm 6, we obtain simultaneously the value of the VIX

(m),k
t for

all vk ∈ S(m)
V within less than a 0.1 second for both models. The value of the CTMC approximation given a

particular value for Vt is then interpolated between the appropriate grid points. This further increases the
efficiency of our algorithm.

3.8.3 VA Prices Accuracy and Computation Time under the Heston Model
Table 3.10 shows the value of a variable annuity with and without surrender rights (“VA with ES” and “VA
without ES”, respectively) under the Heston model with the Uncapped VIX2-linked fees using N = 100,
N = 1, 100 andM = 252× 10; and usingN = 2, 000 andM = 500× 10. All other market, VA and CTMC

21 We simulate 500K paths (plus 500K antithetic variables) using Milstein discretization scheme and we use 5,000-time steps.
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parameters are the same as in Subsection 3.5.1.
Table 3.10: Variable annuity with and without early surrenders using CTMC Approximation with N = 100

and 1, 100, withM = 252× 10; andN = 2, 000 withM = 500× 10.
˜︁m∗ = 0.0000 0.1500 0.3000 0.4345

c∗ = 1.5338% 1.0036% 0.4741% 0.000% Computation Time (sec.)

VA without ES

N = 2, 000 100.00090 100.00091 100.00092 100.00093 2, 500

N = 1, 100 100.00094 100.00095 100.00096 100.00097 400

N = 100 100.00750 100.00769 100.00789 100.00807 0.85

VA with ES

N = 2, 000 103.01785 103.00823 103.00330 103.00367 7, 100

N = 1, 100 103.01743 103.00788 103.00300 103.00341 1, 600

N = 100 103.0162 103.00676 103.00190 103.00228 54

ES value

N = 2, 000 3.01695 3.00732 3.00238 3.00274 N/A
N = 1, 100 3.01649 3.00693 3.00204 3.00243 N/A
N = 100 3.00862 2.99907 2.99401 2.99421 N/A

All the numerical results and computation times in Table 3.10 are performed using Equation 3.22 and Algo-
rithm 2 combine with the Expokit procedures of Sidje (1998), function expv. Since fair fees are calibrated at
inception using the exact pricing formula of Cui et al. (2017a), the benchmark value for the VA without sur-
render rights is F0 = 100. When N = 100, accurate VA prices are obtained extremely fast (within 54 sec.
for the VA with surrender rights and less than a second for the VA without surrender rights). The absolute
error is around 10−3 for both values22.

Similar results are obtained with the Fast Algorithms (1 and 3). The results are reported in Table 3.11. The
values of VAwith andwithout surrender rights are calculated simultaneously, as discussed in Section 3.4.2.1.
So, the computation times in column “Computation Time (sec.)” are for both prices.

By comparing the two tables, we note that the Fast Algorithms provide very accurate results extremely
fast23 compared to the original Algorithms.

22 The benchmark for the VA with early surrenders is the approximated CTMC value obtained using N = 2, 000 andM = 500.
23Recall that the computation times in Table 3.11 for the Fast Algorithms are for the value of the VAs with and without ES simulta-
neously.
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Table 3.11: Variable annuity with and without early surrenders (ES) using CTMC Approximation Fast Algo-
rithms withN = 100 and 1, 100, withM = 252× 10; andN = 2, 000 withM = 500× 10.

˜︁m∗ = 0.0000 0.1500 0.3000 0.4345

c∗ = 1.5338% 1.0036% 0.4741% 0.000% Computation Time (sec.)

VA without ES

N = 2, 000 99.99615 99.99611 99.99607 99.99603 N/A
N = 1, 100 99.99619 99.99615 99.99611 99.99607 N/A
N = 100 100.00276 100.00290 100.00304 100.00317 N/A

VA with ES

N = 2, 000 103.02361 103.01360 103.00815 103.00789 4, 405

N = 1, 100 103.02360 103.01359 103.00814 103.00788 1, 244

N = 100 103.02237 103.01251 103.00715 103.00680 9.60

ES value

N = 2, 000 3.02745 3.01748 3.01208 3.01186 N/A
N = 1, 100 3.02741 3.01744 3.01203 3.01181 N/A
N = 100 3.01961 3.00961 3.00411 3.00363 N/A

3.8.4 Other Numerical Analysis of VIX-linked Fee Incentives in the Heston Model
In this appendix, we show the numerical results obtained under the Heston model for the three fee struc-
tures (Uncapped VIX2, Capped VIX2 and Uncapped VIX), detailed in Subsection 3.5.3, when the guaran-
teed amount is set to G = F0e

˜︁gT with ˜︁g = 2% (rather than G = F0). The conclusions are similar to the
ones detailed in Subsection 3.5.4.

Unless stated otherwise, in this section, all market, VA and CTMC parameters are the same as in Subsection
3.5.1 except forG = F0e

˜︁gT with ˜︁g = 2% andM = T × 252.

Fair fee parameters (˜︁c∗, ˜︁m∗) are presented in Table 3.12, Panel (a), whereas Panel (b) shows the approxi-
mated values of early surrenders. When ct = ˜︁c∗ + ˜︁m∗VIX2

t , the fair parameters are obtained using the
exact formula of Cui et al. (2017a). For the other fee structures, the fair parameters are obtained using
CTMC approximation withN = 100,m = 50, andM = T × 252 to accelerate the computation time.

Figures 3.5, 3.6 and 3.7 display the approximated optimal surrender surfaces under the Heston model for
the three fee structures when G = F0e

˜︁gT with ˜︁g = 2%.
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Table 3.12: Fair fee vectors and approximated early surrender values under Hestonmodel whenG = F0e
˜︁gT ,˜︁g = 2%.

(a) Fair fee vectors (˜︁c∗, ˜︁m∗)

ct = ˜︁c∗ + ˜︁m∗VIX2
t˜︁m∗ 0.0000 0.3000 0.8000 1.1313˜︁c∗ 3.82542% 2.80632% 1.11545% 0.0000%

ct = min{˜︁c∗ + ˜︁m∗VIX2
t ,K},K = 4.5%

˜︁m∗ 0.0000 0.3000 0.8000 1.4144˜︁c∗ 3.82542% 2.83600% 1.45530% 0.0000%

ct = ˜︁c∗ + ˜︁m∗VIXt˜︁m∗ 0.0000 0.0750 0.1250 0.2128˜︁c∗ 3.82542% 2.47570% 1.57660% 0.00000%

(b) Early surrender values (“ES” values).
ct = ˜︁c∗ + ˜︁m∗VIX2

t˜︁m∗ 0.0000 0.3000 0.8000 1.1313

ES Value 5.00216 5.01219 5.03998 5.06681

ct = min{˜︁c∗ + ˜︁m∗VIX2
t ,K},K = 4.5%

˜︁m∗ 0.0000 0.3000 0.8000 1.4144

ES Value 5.00216 5.00415 4.98201 4.95968

ct = ˜︁c∗ + ˜︁m∗VIXt˜︁m∗ 0.0000 0.0750 0.1250 0.2128

ES Value 5.00216 5.00351 5.00569 5.01254

3.8.5 Simple Model Extension to Account for the Term Structure of Interest Rates
In the following, we briefly discuss a simple extension to (3.4) to allow interest rates to be a (deterministic)
function of time ˜︁r : [0, T ]→ [0, 1].

Assuming that the fee function only depends on the VIX (or Vt) and using the new function for the interest
rates, ˜︁r, we can extend (3.4) as follows

dFt = (˜︁r(t)− c(Vt))Ft dt+ σS(Vt)Ft dW
(1)
t ,

dVt = µV (Vt) dt+ σV (Vt) dW
(2)
t .

(3.39)
Such an extension allows the exact replication of the term structure of interest rates. This is an important
feature given the long-term maturity of variable annuity contracts.
However, the CTMC approximation is better suited for time-homogeneous processes. Recently, Ding and
Ning (2021) uses CTMCs to approximate time-inhomogeneous diffusion processes and estimate short-term
maturity European and barrier option prices. Theoretical extension to longer-term derivatives is straight-
forward but can present numerical challenges since matrix exponential of a large matrix now needs to
be calculated several times to obtain transition probability matrices. More precisely, the Fast Algorithms
(Algorithms 1 and 3) take advantage of pre-computing the transition probabilities at the beginning of the
procedure. When the generator is time-dependent, transition probabilities need to be calculated at each
time step, adding to the numerical difficulty of valuing long-term derivatives. In the following, we overcome
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ct = ˜︁c∗ + ˜︁m∗VIX2
t

ct = min{˜︁c∗ + ˜︁m∗VIX2
t ,K},K = 4.5%

ct = ˜︁c∗ + ˜︁m∗VIXt

Figure 3.5: Approximated optimal surrender surfaces for different values of fair multiplier ˜︁m∗ under the Heston
model,G = F0e

˜︁gT with ˜︁g = 2%.

this challenge by working with the discounted fund process {Ft}0≤t≤T defined by
˜︁Ft = Fte

−
∫︁ t
0 ˜︁r(s) ds. (3.40)

Using Itô’s lemma, the dynamics of ˜︁F is then given by
d ˜︁Ft = −c(Vt) ˜︁Ft dt+ σS(Vt) ˜︁Ft dW

(1)
t . (3.41)

Now note that ˜︁F is time-homogeneous and its dynamic is equivalent to (3.4) with r = 0. We can thus apply
the same procedure as the one described in Section 3.3 to approximate ˜︁F by a CTMC.We denote by ˜︁F (m,N)

the CTMC approximation of ˜︁F . Then, we can retrieve the value of the approximated fund process F (m,N)

by using the relation in (3.40). More precisely, we have that
F

(m,N)
t := ˜︁F (m,N)

t e
∫︁ t
0 ˜︁r(s) ds, 0 ≤ t ≤ T. (3.42)

All the results of Section 3.4 can then be adapted with the new definition of the approximated fund process
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ct = ˜︁c∗ + ˜︁m∗VIX2
t

ct = min{˜︁c∗ + ˜︁m∗VIX2
t ,K},K = 4.5%

ct = ˜︁c∗ + ˜︁m∗VIXt

Figure 3.6: The y section of the approximated optimal surrender surface under the Heston model, f (m,N)
y , for

different volatility levels√y and fair multipliers ˜︁m∗,G = F0e
˜︁gT with ˜︁g = 2%.

given in (3.42). Note that D(t, T ) := e−
∫︁ T
t ˜︁r(s) ds corresponds to the discount factor at time t for the ma-

turity T , and since the interest rates are assumed to be deterministic, this quantity is known with certainty
at t. The curve t ↦→ D(0, t) corresponds to the risk-free discount curve and can be retrieved from market
data at time 0. Also, for ti < tj , we have that

D(ti, tj) =
D(0, tj)

D(0, ti)
.

Finally, all the algorithms in Section 3.4 must be adjusted to account for changing interest rates. So, the
cash-flows at time ti + ∆M must be discounted at time ti using the discount factor D(ti, ti + ∆M ). For
example, (3.22) becomes

v(m,N)
e (0, F0, V0) := E[e−

∫︁ T
0 r(s) dsmax(G, ˜︁F (m,N)

T e
∫︁ T
0 r(s) ds| ˜︁F (m,N)

0 = F0, V
(m)
0 = V0]

= D(0, T )eik exp{TG(m,N)}H, (3.43)
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ct = ˜︁c∗ + ˜︁m∗VIX2
t ct = min{˜︁c∗ + ˜︁m∗VIX2

t ,K},K = 4.5%

ct = ˜︁c∗ + ˜︁m∗VIXt

Figure 3.7: The y section of the approximated optimal surrender surface under the Heston model, f (m,N)
y , for

different volatility levels√y and fair multipliers ˜︁m∗,G = F0e
˜︁gT with ˜︁g = 2%.

and (3.27) becomes⎧⎨⎩ B
(m,N)
M = φ

(︂
T, ˜︁F (m,N)

T e
∫︁ T
0 r(s) ds, V

(m)
T

)︂
,

B
(m,N)
z = max

(︂
φ
(︂
tz, ˜︁F (m,N)

tz e
∫︁ tz
0 r(s) ds, V

(m)
tz

)︂
, D(tz, tz+1)Etz

[︂
B

(m,N)
z+1

]︂)︂
,

(3.44)
for 0 ≤ z ≤M − 1. We now analyze the impact of time-dependent risk-free rates on optimal surrender
strategy and the value of variable annuities. To do so, we use the discount curve reported in Table 3.13.

Table 3.13: Discount curve
t 0.20 0.50 0.70 1.00 1.20 1.50 1.70 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

Zero Rate24 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200 0.0210 0.0220 0.0230 0.0250 0.0270 0.0280 0.0290 0.0295 0.0300
D(0, t) 0.9963 0.9930 0.9876 0.9822 0.9741 0.9666 0.9589 0.9361 0.9121 0.8825 0.8504 0.8220 0.7929 0.7668 0.7408 0.7111

In order to measure the impact of time-dependent risk-free rates on surrender incentives, the discount
curve is set in such away that the 10-year zero rate corresponds to the constant risk-free rate used in Section

24The continuously-compounded zero rate, R(0, t), is the interest rate prevailing at time 0 for the maturity t and it is defined by
R(0, t) := −lnD(0, t)/t.
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3.5. This way fair fees are the same under both models, see Table 3.4. Also, to better capture the effect of
interest rates, the short-term zero rates are set to a much lower value than long-term rates. Except for the
constant risk-free rate, all other market and CTMC parameters are the same as in the previous analysis, see
Tables 3.2 and 3.3. All numerical examples below are performed for a variable annuity with the Uncapped
VIX2 fee structure (see Table 3.6). The values of a variable annuity with and without surrender rights are
reported in Table 3.14.
Table 3.14: Variable annuity with and without early surrenders (ES) under Heston model with time-
dependent interest rates and ct = ˜︁c∗ + ˜︁m∗VIX2

t , 0 ≤ t ≤ T .
˜︁m∗ = 0.0000 0.1500 0.3000 0.4345˜︁c∗ = 1.5338% 1.0036% 0.4741% 0.000%

VA without ES 100.00087 100.00088 100.00088 100.00089

VA with ES 103.01783 103.00821 103.00328 103.00365

Value of ES 3.01697 3.00733 3.00239 3.00276

By comparing Table 3.7, Panel (a) and Table 3.14, we note that variable annuity values are almost un-
changed with the incorporation of time-dependent risk-free rates. The small difference is probably due
to the rounding-off effect of the discount factor at maturity when using the time-dependent discount curve
as an input. However, as illustrated below, time-dependent risk-free rates affect the optimal surrender
strategy.

First, we observe from Figures 3.8, 3.9 and 3.10, that the conclusions regarding the effects of VIX link fees
on the optimal surrender strategy remain the same under both assumptions (constant and time-dependent
risk-free rates). However, we also note, from Figure 3.11, that the optimal surrenders occur at lower fund
values when the interest rates are time-dependent. So, incorporating the term structure of interest rates
does not affect the overall value of the variable annuity, but the optimal surrender behavior is impacted by
this new interest rate assumption.

3.8.6 Numerical Analysis under 3/2 Model
In this section, we analyze numerically the impact of VIX-linked fee incentives under the 3/2 model.
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Figure 3.8: Approximated optimal surrender surface of VIX-linked fees VAs for different values of fair multiplier ˜︁m∗

under the Heston model with time-dependent risk-free rates. The x-axis represents the time and the y-axis the vari-
ance.

3.8.6.1 Market, VA and CTMC Parameters
In order for the results under the 3/2model to be comparable to the ones obtained under theHestonmodel,
the market parameters (θ, κ and σ for the 3/2 model) are calibrated to at-the-money call options25 priced
using the Heston model with the market parameters in Table 3.2. The initial value of the variance is set to
V0 = 0.03 for the Heston model and V0 = 1/0.03 for the 3/2 model. The correlation ρ = −0.75 and the
risk-free rate r = 0.03 are assumed to be the same under both models. The resulting market parameters
are presented in Table 3.15 and the model dynamics is given in Table 3.1.

Table 3.15: Market parameters for the 3/2 model
Parameter V0 κ θ σ ρ r

Value 1/0.03 5.7488 46.1326 15.4320 −0.75 0.03

25We consider 4 options with maturity T = 0.5, 2.5, 5 and 10. We used S0 = K = 100 and a dividend yield of 1.5338%.
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Figure 3.9: The y section of the approximated optimal surrender surface under the Heston model with time-
dependent risk-free rates, f (m,N)

y , for different volatility levels√y and fair multipliers ˜︁m∗.

Figure 3.10: The y section of the approximated optimal surrender surface under the Heston model with time-
dependent risk-free rates, f (m,N)

y , for different volatility levels√y and fair multipliers ˜︁m∗.
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Figure 3.11: Comparison of the y section of the approximated optimal surrender surface under the Heston model
with time-dependent risk-free rates and constant risk-free rates at different volatility levels √y and fair multipliers˜︁m∗.

Unless stated otherwise, all numerical experiments in this section are performed using the CTMC param-
eters listed in Table 3.16. Note that for the 3/2 model, the VIX is approximated using Algorithm 6 with
n = 1, 000 time steps, whereas in the Heston model, the volatility index is calculated using a closed-form
formula.

Table 3.16: CTMC parameters for the 3/2 Model
Parameter m N v1 vm ˜︁αv x1 xN ˜︁αX M n
Value 1, 000 1, 000 V0/200 8v0 0.5764 −X0 2X0 2/100 5, 000 1,000

3.8.6.2 Fee Structures and Fair Fee Parameters
As for the Heston model, we consider three fee structures: the Uncapped VIX2, the CappedVIX2 and the
Uncapped VIX, see Section 3.5.3 for details. The fair parameters are calibrated using a CTMC approximation
withN = 100 (all other CTMC parameters are the same as in Table 3.16), to reduce the computation time.
Table 3.17 presents the fair fee vectors (˜︁c∗, ˜︁m∗) obtained under the 3/2 model. Note how close the fair
fee vectors obtained under the 3/2 model (Table 3.17) are from the ones obtained under the Heston model
(Table 3.4).
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ct = ˜︁c∗ + ˜︁m∗VIX2
t˜︁m∗ 0.0000 0.15000 0.3000 0.4235˜︁c∗ 1.5273% 0.9858% 0.4449% 0.0000%

ct = min{˜︁c∗ + ˜︁m∗VIX2
t ,K},K = 2%

˜︁m∗ 0.0000 0.1500 0.3000 0.5791˜︁c∗ 1.5273% 1.0335% 0.6351% 0.0000%

ct = ˜︁c∗ + ˜︁m∗VIXt˜︁m∗ 0.0000 0.0250 0.0500 0.0846˜︁c∗ 1.5273% 1.0757% 0.6241% 0.0000%

Table 3.17: Fair fee vectors (˜︁c∗, ˜︁m∗) under the 3/2 model

3.8.6.3 Effect of VIX-Linked Fees on Surrender Incentives
Recall from Table 3.1 that under the 3/2 model, the dynamics of the index and the variance processes are
given by26

dSt = rSt dt+
1√
Vt
St dW

(1)
t ,

dVt = κ(θ − Vt) dt− σ
√
Vt dW

(2)
t ,

(3.45)

where W = (W (1),W (2))T is a bi-dimensional correlated Brownian motion under Q and such that
[W (1), W (2)]t = ρt with ρ ∈ [−1, 0]27, and κ, θ, σ > 0 with 2κθ > σ2.

Now from Lemma 3.1, we find that γ(x) = − ln(x)
σ . Thus, given a certain fee process {ct}0≤t≤T (see Sub-

section 3.5.3 for examples), the dynamics of the auxiliary process is obtained as follows
dXt = µX(Xt, Yt) dt+ σX(Yt) dW

∗
t ,

dVt = µV (Vt) dt+ σV (Vt) dW
(2)
t ,

(3.46)

where µX(Xt, Vt) = r − ct − ρκ
σ + 1

Vt

(︂
ρκθ
σ −

1
2 −

ρσ
2

)︂, and σX(Vt) =
√︂

1−ρ2

Vt
, 0 ≤ t ≤ T .

26Note that in this formulation of the 3/2 model, the process V represents the inverse of the variance process. It is also common
to see the 3/2 model expressed in terms of its variance, see for instance Drimus (2012).
27 The parameter ρ is assumed to be non-positive for the martingale measure to exist, see Footnote 7 for details.
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When the fee is tied to the VIX, the form of the fee function is not known explicitly at this point under
the 3/2 model, since the VIX does not have a closed-form expression (see footnote 15 for details). However,
as illustrated in (3.17), when the inverse variance process V is replaced by its CTMC approximation V (m),
the auxiliary processX becomes a RS diffusionX(m) with the following dynamics:

dX
(m)
t = r − c(m)

t − ρκ
θ + 1

V
(m)
t

(︂
ρκθ
σ −

1
2 −

ρσ
2

)︂
dt+ σX(V

(m)
t ) dW ∗

t , t ≥ 0, (3.47)
where c(m)

t = c(X
(m)
t , V

(m)
t ) is the CTMC approximation of the fee process.

Recall that VIX(m) is the CTMC approximation of the volatility index; see Proposition 3.7 and Algorithm 6.
The three fee structures exposed in Subsection 3.5.3 can then be approximated using VIX(m) as shown in
Table 3.18.

Table 3.18: CTMC approximation of the VIX-linked fee process
Fee Structure c

(m)
t , 0 ≤ t ≤ T

Uncapped VIX2 ˜︁c+ ˜︁m(VIX
(m)
t )2

Capped VIX2 min{K,˜︁c+ ˜︁m(VIX
(m)
t )2}

Uncapped VIX ˜︁c+ ˜︁mVIX
(m)
t

The second layer CTMC approximation of Subsection 3.3.2 is then applied to the regime-switching diffusion
(3.47) with the approximated fee processes listed in Table 3.18.

Using the CTMC technique outlined in Section 3.3; and the market, the variable annuity, and the CTMC
parameters of Subsection 3.8.6.1, we performed the valuation of a variable annuity with and without early
surrenders. The results are similar to the ones obtained under the Heston model and are summarized
below, confirming again that fees tied to the volatility index do not significantly affect the value of surrender
incentives.

The value of early surrenders (“ES values”) under the 3/2 model are presented in Table 3.19.

The approximated optimal surrender surfaces for the three fee structures under the 3/2model are displayed
in Figures 3.12, 3.13 and 3.14. Note that in order for the Figures under the Heston and 3/2 models to be
comparable, the y-axis under the 3/2 model represents the variance of the fund, that is 1

Vt
, 0 ≤ t ≤ T

124



Table 3.19: Approximated early surrender values (ES values) under the 3/2 model.
ct = ˜︁c∗ + ˜︁m∗VIX2

t˜︁m∗ 0.0000 0.1500 0.3000 0.4235

ES Value 2.91799 2.91126 2.90875 2.91078

ct = min{˜︁c∗ + ˜︁m∗VIX2
t ,K},K = 2%

˜︁m∗ 0.0000 0.1500 0.3000 0.5791

ES Value 2.91799 2.90594 2.89435 2.88076

ct = ˜︁c∗ + ˜︁m∗VIXt˜︁m∗ 0.0000 0.0250 0.0500 0.0846

ES Value 2.9180 2.9120 2.9068 2.9012

(recall that V is the inverse variance in (3.45)). As noted previously, we observe that the optimal surrender
surface is increasing with the volatility. However, when ˜︁m∗ = 0, the surrender surface increases much
faster than under the Heston model. We also note that VIX-linked fees help to neutralize the effect of the
volatility on the optimal surrender decision, confirming again the relation existing between the fees and
the optimal surrender strategies; that is, VA contracts with high fees are surrendered at lower fund values
than VA contracts with low fees.
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ct = ˜︁c∗ + ˜︁m∗VIX2
t

ct = min{˜︁c∗ + ˜︁m∗VIX2
t ,K},K = 2%

ct = ˜︁c∗ + ˜︁m∗VIXt

Figure 3.12: Approximated optimal surrender surface for different values of fair multiplier ˜︁m∗ under the 3/2 model
where x-axis represents the time and the y-axis the variance.
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ct = ˜︁c∗ + ˜︁m∗VIX2
t

ct = min{˜︁c∗ + ˜︁m∗VIX2
t ,K},K = 2%

ct = ˜︁c∗ + ˜︁m∗VIXt

Figure 3.13: The y section of the approximated optimal surrender surface, f (m,N)
y , for different volatility levels √y

and fair multipliers ˜︁m∗.
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ct = ˜︁c∗ + ˜︁m∗VIX2
t ct = min{˜︁c∗ + ˜︁m∗VIX2

t ,K},K = 2%

ct = ˜︁c∗ + ˜︁m∗VIXt

Figure 3.14: The y section of the approximated optimal surrender surface, f (m,N)
y , for different volatility levels √y

and fair multipliers ˜︁m∗.
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CHAPTER 4

A UNIFYING APPROACH FOR THE PRICING OF DEBT SECURITIES

This chapter is based on the paper ”A unifying approach for the pricing of debt securities“, co-authored with
Dr. AnneMacKay, published inQuantitative Finance (see Vachon andMacKay (2024)). It extends the findings
from Chapters 2 and 3 to include time-inhomogeneous diffusion processes for pricing debt securities like
bonds, bond options, callable/putable bonds, and convertible bonds. In particular, efficient algorithms are
developed based on the technique discussed in Chapter 3, which naturally extends to stochastic interest
rate models and time-inhomogeneous processes. Additionally, we show the existence of a trivial stopping
time at the maturity of the contract for American-style CBs under specific conditions, employing reasoning
akin to that presented in Chapter 2.

4.1 Introduction
This chapter proposes a unifying framework based on continuous-time Markov chain (CTMC) approxima-
tions to price debt securities under general time-inhomogenous short-rate models. Over the last few years,
CTMC methods have garnered attention in option pricing literature, see for instance Cui et al. (2018), Ding
and Ning (2021), and Kirkby (2023), among others. In particular, Cui et al. (2018) developed a two-layer
CTMC technique to price European, barrier, Bermudian, Asian, and occupation time derivatives under gen-
eral stochastic volatility models, while Ding and Ning (2021) discussed the extension of the method to time-
inhomogeneous processes for the pricing of European and barrier options. Recently, Kirkby (2023) ap-
proximated time-homogeneous bi-dimensional diffusion processes to model short-rates and equity for the
pricing of hybrid securities such as equity swap and cap via CTMC approximation. The framework outlined
below is an extension to the work of Cui et al. (2018) to time-inhomogeneous processes for the pricing of
debt securities such as bonds, bond options (loan commitments and deposit instruments), callable/putable
bonds, and convertible bonds (CBs).

The advantage of CTMC approximations over other numerical techniques resides in their ability to easily
adapt to various diffusion processes (homogeneous as well as inhomogeneous processes), and their ex-
tension to higher dimension models is also relatively straightforward Cui et al. (2018) (for two-dimension),
Kirkby et al. (2020) (for higher dimension). More importantly, they generally allow for an explicit formula-
tion of expectations (resp. conditional expectations), see, for instance, Cui et al. (2019), which facilitate the

129



pricing of European (resp. American)-type derivatives. In particular, the method allows for a closed-form
matrix expression for the price of zero-coupon bonds regardless of the complexity of the short-rate dynam-
ics selected, simplifying the calibration of the approximatedmodel to the current market-term structure for
a wide range of short-rate models. Calibration to the current market term structure is essential for practi-
tioners since small deviations in the current short rates can result in significant differences in the value of
the derivatives, see Brigo and Mercurio (2006). Moreover, the method generally exhibits a second-order
convergence rate; see, for instance, Li and Zhang (2018) and Zhang and Li (2019) for a one-dimensional set-
ting, and Ma et al. (2022) for a two-dimensional setting. In this chapter, we develop an easy and efficient
algorithm to calibrate the approximated model to the current market term structure of interest rates un-
der general one-dimensional time-inhomogeneous short-rate processes. A closed-form matrix expression
is also obtained for the price of bond options (with coupons).

Debt securities often include embedded options such as call and put options, also known as redeemable
and retractable bonds, respectively. A callable bond grants the issuer the right to pay back the bond at a
predetermined price in the future (the call or the strike price). This type of provision protects the issuer
and reduces the value of the bond. Another type of common embedded option in a bond is a put option. A
putable bond grants the bondholder the right to sell back the bond to the issuer at a predetermined price
(the put or the strike price). These types of options can usually be exercised at any time during a given exer-
cise period (exercise window), which makes them similar to American options with time-dependent strikes.
A bond can have both a call and put options embedded simultaneously. Because of the American style of
the embedded options, the valuation of callable/putable debt does not admit a closed-form expression;
thus, numerical procedures are necessary to price them.

Classical numerical techniques1 for pricing interest rate derivatives include tree methods, numerical solu-
tions to partial differential equations (PDEs), and Monte Carlo simulation, see for instance Brigo and Mer-
curio (2006), Section 3.11. Trees are particularly interesting for valuing American-type derivatives because
the continuation value can be calculated explicitly at each node of the tree. However, building trees for
time-inhomogeneous mean reverting diffusion processes, such as those used for short-rate dynamics, is
not always straightforward, and extension to higher dimensions may be difficult. The construction of the

1 In this chapter, we do not consider advance notices, that is, exercise decisions prior to exercise benefits, which complexify the
problem significantly, see for instance Büttler andWaldvogel (1996), D’Halluin et al. (2001), Ben-Ameur et al. (2007) and Ding et al.
(2012) for numerical techniques in that particular context.
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tree depends on the diffusion model selected (see among others, Ho and Lee (1986), Black et al. (1990),
Black and Karasinski (1991), Hull and White (1994), Hull and White (1996), Mercurio and Moraleda (2001)
and Brigo and Mercurio (2006), Appendix F, for a general formulation), and extra care is required for the
transition probabilities to stay positive. Fitting the approximated model to the current market term struc-
ture can also be tricky Hull and White (1994), Hull and White (1996). Trees can also make options with
path-dependent payoffs, such as Asian options, difficult to value. PDE approaches encounter similar chal-
lenges to trees in terms of flexibility in themodelization of the underlying diffusion process. They alsomake
path-dependent payoff valuation challenging, and techniques are generally less intuitive than trees; see, for
instance, Duffy (2006) for a general review of the approach for derivatives pricing. In contrast, simulation
methods can be implemented for various diffusionmodels and adapt easily to higher dimensions; however,
this type of procedure is usually less efficient computationally than those based on trees or PDEs because
the continuation value cannot be calculated explicitly and needs to be approximated. Different techniques
are proposed in the literature to price American-type derivatives using simulation methods; see, for in-
stance, Fu et al. (2001) for a comparison of these approaches, and Glasserman (2003), Chapter 8, for a
review.

In this chapter, a simple andefficient algorithm for pricing callable/putable debt under general one-dimensional
time-inhomogeneous short-rate processes is developed. Our methodology overcomes several of the draw-
backs of other classical methods. In particular, it is intuitive (similar to tree methods) and adapts to a wide
range of diffusion processes (homogeneous as well as inhomogeneous processes). Moreover, because con-
ditional expectations have closed-formmatrix expressions, the continuation value can be calculated explic-
itly, making the approximation extremely efficient and accurate for the pricing of American-type derivatives.
Using the methodology of Cui et al. (2018), described in Section 4.3.2 of this chapter, the extension of these
procedures to two-factor short rate models, see for instance Brigo and Mercurio (2006), Chapter 4, is also
straightforward.

Next, the pricing of CBs is considered. CBs are hybrid securities that possess features of both debt and
equity. They are similar to bonds except that the investor has the right to convert the bond for a predeter-
mined number of shares, known as the conversion ratio, of the issuing company during a certain exercise
window prior to maturity. At maturity, if conversion is allowed and the bond has not been converted to
shares, the holder has the right to convert the bond or receive its face value. In practice, additional features
such as call and put options are also generally embedded in CBs, so numerical procedures are required to
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value these securities.

Over the last 40 years, CB pricing has been studied extensively in the literature. Under the standard Black–
Scholes setting, Ingersoll Jr. (1977) proposes a structural approach under which the firm value is the un-
derlying state variable. Then follows the work of Brennan and Schwartz (1977), in which finite difference
methods are used to solve a PDE. The structural approach has multiple drawbacks, Batten et al. (2014). In
particular, since the firm value is not a tradable asset, the calibration of themodelmay be challenging. Thus,
McConnell and Schwartz (1986) propose a reduced-form approach under which the issuing company stock
price is the underlying state variable. Working in the Black–Scholes setting with a constant risk-free rate and
volatility, McConnell and Schwartz (1986) compensate for the credit risk by adding a constant (the credit
spread) over the risk-free rate to discount the cash flows. Since then, multiple authors have incorporated
credit risk into the valuation framework adequately. Tsiveriotis and Fernandes (1998) split the bond value
into two components: equity and debt. The equity part (when the debt is converted to stock) is discounted
at a risk-free rate, whereas the debt part is discounted at a risky rate, where the risky rate can be deduced
from the market-observed credit spreads. This approach to model credit risk is still widely used among
practitioners for its simplicity and ability to incorporate the main feature of CBs with limited market infor-
mation, Gushchin and Curien (2008). Following the approach of Jarrow and Turnbull (1995) to model the
credit risk, Hung and Wang (2002) and Chambers and Lu (2007) use a binomial tree method and incorpo-
rate stochastic risk-free rates in the valuationmodel, whereas Ayache et al. (2003) andMilanov et al. (2013)
incorporate default risk by modeling the stock price by a jump-diffusion process in a constant risk-free rate
environment.

Diverse numerical methods have been proposed to value convertible debt, ranging from the classical tree
methods (Hung and Wang (2002),Chambers and Lu (2007), Milanov et al. (2013), among others), to finite-
difference and finite element approaches (Tsiveriotis and Fernandes (1998), Ayache et al. (2003), Barone-
Adesi et al. (2003), among others) and simulation (Ammann et al. (2008), Batten et al. (2018)). Recently, Lu
and Xu (2017) andMa et al. (2020) developed a two-factor willow-tree approach to price CBs under stochas-
tic interest rates and used the approach of Jarrow and Turnbull (1995) as in Hung and Wang (2002) and
Chambers and Lu (2007) to include credit risk. On the other hand, Lin and Zhu (2020) propose a predictor-
corrector scheme to solve a PDE under stochastic volatility or interest rate models, whereas Lin and Zhu
(2022) use an integral approach under the Black–Scholes setting. Both Lin and Zhu (2020) and Lin and
Zhu (2022) ignored credit risk in their valuation framework. This chapter considers the CB pricing problem
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under general bi-dimensional time-inhomogeneous diffusion processes, where equity and risk-free rates
are the two risk factors. Default/credit risk is also included in the valuation model using the approach of
Tsiveriotis and Fernandes (1998). An efficient algorithm to approximate the value of CBs using a two-layer
continuous-timeMarkov chain approximation is developed. When conversion is only permitted at maturity
(European-style or European CBs), a closed-form matrix expression is obtained. Numerical experiments re-
veal that the method is highly efficient and accurate. The advantage of the CTMC approximation over other
classicalmethods resides in its ability to adapt to awide range of time-inhomogeneous bi-dimensionalmod-
els while preserving the simplicity of one-dimensional valuation models. The method is intuitive (similar to
trees), and it is worth reiterating that it allows for the perfect fit of the current market term structure in a
straightforward manner, regardless of the short-rate diffusion process selected.

The CB pricing problem is also studied from a theoretical perspective. In particular, when there is no credit
risk, no dividends and other features such as call and put options are ignored, we show that early conversion
is sub-optimal such that the problem is reduced to the pricing of a European-style CB. This result also holds
for coupon-bearing convertible debt. On the other hand, when credit risk is considered, we show that the
value of American-style CBs2 is bounded from below and above by those of European–style CBs with and
without credit risk, respectively.

Finally, numerical experiments demonstrate the high level of accuracy of CTMC methods across a large
range of model parameters and short-rate models. The efficiency and numerical convergence of the CTMC
methodology in pricing debt securities are also studied empirically, and theoretical convergence is dis-
cussed.

The main contributions of this chapter are as follows:

1. This chapter extends the results of Cui et al. (2018) to a time-inhomogeneous framework for the
pricing of debt securities, such as callable, putable, and convertible bonds.

2. A closed-form matrix expression is obtained to approximate the price of bonds under general time-
inhomogeneous short-rate processes. The availability of a closed-form expression to approximate the
price of zero-coupon bonds, regardless of the complexity of the short-rate dynamics selected, makes

2 The term American-style CB (or just CB) is used to refer to a bond under which the conversion option can be exercised at any
time prior to maturity.
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the method attractive for practitioners since it allows to perfectly calibrate the approximated model
to the current market term structure.

3. A closed-form matrix expression is also obtained for the price of bond (with or without coupons)
options under general time-inhomogeneous short-rate processes, providing an alternative approxi-
mation formula to Kirkby (2023), Proposition 12, which involved an integral to be solved numerically.

4. Efficient procedures are developed to approximate the price of convertible debt under general bi-
dimensional time-inhomogeneous diffusion processes, and a closed-form matrix expression is ob-
tained for the price of European-style CBs.

5. The pricing of convertible bonds is also considered from a theoretical perspective. When there is no
credit risk and no dividend yield, we show that early conversion is sub-optimal. When credit risk is
considered, lower and upper bounds are obtained.

The remainder of the chapter is organized as follows. In Section 4.2, we introduce the market model. A
brief introduction to CTMC approximation methods for two-dimensional time-inhomogeneous diffusion
processes is provided in Section 4.3. In Section 4.4, CTMC methods are used to approximate the price of
bonds, bond options, and debt securities such as callable and putable bonds under general one-dimensional
time-inhomogeneous short-rate processes. Section 4.5 discusses the application of CTMC approximation
to convertible debt valuation under bi-dimensional time-inhomogeneous diffusion processes. Section 4.6
provides numerical results and shows the high efficiency of CTMC methods over other common numerical
techniques. Section 4.7 concludes the chapter.

4.2 Financial Setting
4.2.1 Market Model
We consider a filtered probability space (Ω, F , F,Q), where F denotes a complete and right-continuous
filtration andwhereQ denotes the pricingmeasure for ourmarket. We consider a stochastic short-rate pro-
cessR correlated with the price of a risky asset (or stock) S, which can be described by a two-dimensional
process (S,R) = {(St, Rt)}t≥0 satisfying

dSt = (Rt − qt)St dt+ σS(Rt)St dW
(1)
t ,

dRt = µR(t, Rt) dt+ σR(Rt) dW
(2)
t ,

(4.1)
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with S0 > 0 and R0 ∈ SR, where SR denotes the state-space of R (generally R or R+ depending on
the model, see Tables 4.1 and 4.2 for details), q : R+ → [0, 1] is a continuous function representing a
time-deterministic dividend yield, andW = {(W (1)

t ,W
(2)
t )}t≥0 is a two-dimensional correlated Brownian

motion with cross-variation [W (1),W (2)]t = ρt, with ρ ∈ [−1, 1]. We assume that µR : R+ × SR → R

is continuous and that σR, σS : SR → R+ are continuously differentiable with σR(·), σS(·) > 0 on SR.
Further, we suppose that µR, σR and σS are defined such that (4.1) has a unique-in-law weak solution.

The function σS is often set to a constant σS(·) = σ > 0 ( Lu and Xu (2017), Ma et al. (2020), Kirkby
(2023)), such that the stock price follows a geometric Brownian motion with stochastic interest rate. A list
of common short-rate models is provided in Tables 4.1, 4.2, and 4.3.

Table 4.1: Example of time-homogeneous short-rate models
Time-Homogeneous Models

Model Dynamics Parameters

Vasicek, Vasicek (1977) dRt = κ(θ −Rt) dt+ σ dWt κ, θ, σ > 0,R0 ∈ R

Cox–Ingersoll–Ross (CIR),
dRt = κ(θ −Rt) dt+ σ

√
Rt dWt

κ, θ, σ,R0 > 0,
Cox et al. (1985) with 2κθ > σ2

Dothan, Dothan (1978) dRt = κRt dt+ σRt dWt σ, κ ∈ R,R0 > 0

Exponential Vasicek (EV)
dRt = Rt(η − α lnRt) dt+ σRt dWt η, α, σ,R0 > 0Brigo and Mercurio (2006), Section 3.2.5

The time-homogeneous models listed in Table 4.1 are popular because of their analytical tractability. How-
ever, they are less used by practitioners because they cannot adequately replicate the term structure of
interest rates. Indeed, to be able to capture the discount curve appropriately, models need to have at
least one time-dependent parameter. This important feature of interest rate dynamics gives rise to the
time-inhomogeneous models; see Table 4.2 for examples. In these models, the yield curve is provided ex-
ogenously (as an input to the model). The extended models of Brigo and Mercurio (2006), listed in Table

3 The short rates are positive under some conditions on function θ.
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Table 4.2: Example of time-inhomogeneous short-rate models
Time-Inhomogeneous Models

Model Dynamics Parameters

Ho–Lee (HL), dRt = θ(t) dt+ σ dWt σ > 0,R0 ∈ R

Ho and Lee (1986)

Black–Derman–Toy (BDT),
dRt = θ(t)Rt dt+ σRt dWt σ > 0,R0 > 0Black et al. (1990)

Hull–White (HW),
dRt = (θ(t)− κRt) dt+ σ dWt

κ, σ > 0, and
Hull and White (1990) R0 ∈ R

Black–Karasinski (BK),
dRt = Rt (θ(t)− κ lnRt) dt+ σRt dWt κ, σ,R0 > 0Black and Karasinski (1991)

Mercurio and Moraleda (MM), dRt = Rt

[︂
θ(t)−

(︂
λ− γ

1+γt lnRt

)︂]︂
dt+ σRt dWt λ, γ ∈ R+, and

Mercurio and Moraleda (2001) σ,R0 > 0

Extended CIR (CIR+),
dRt = θ(t)− κRt dt+ σ

√
Rt dWt

κ, σ,R0 > 03
Hull and White (1990)

4.3, allow fitting of the initial term structure and reproduce important stylized facts while preserving the
analytical tractability of the model through the auxiliary homogeneous process Y .

In Tables 4.2 and 4.3, the initial term structure of interest rates is captured through the time deterministic
function θ. When using CTMC approximation, an easy recursive procedure is used to find the function θ
that makes the approximated models fit the initial discount curve perfectly. This will be discussed further
in Section 4.4.4.
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Table 4.3: Extended time-homogeneous models of Brigo and Mercurio (2006), Section 3.8
Time-Inhomogeneous Models

Model Dynamics Parameters

Extended Vasicek, (EV+) dYt = κ(α− Yt) dt+ σ dWt κ, α, σ > 0,
Brigo and Mercurio (2006), Section 3.8.4 Rt = Yt + θ(t) Y0, R0 ∈ R

Extended CIR, (CIR++) dYt = κ(α− Yt) dt+ σ
√
Yt dWt κ, α, σ > 0,

Brigo and Mercurio (2006), Section 3.9 Rt = Yt + θ(t) Y0, R0 > 03

Extended Exponential Vasicek, (EEV+) dYt = Yt(η − α lnYt) dt+ σYt dWt η, α, σ ∈ R,
Brigo and Mercurio (2006), Section 3.8 Rt = Yt + θ(t) Y0, R0 > 03

4.3 Continuous-Time Markov Chain Approximation of Nonhomogeneous Processes
The CTMC framework outlined in this section was first proposed by Cui et al. (2018) for the pricing of ex-
otic equity options under general stochastic local volatility models. Subsequently, the technique has been
extended to time-inhomogeneous processes by Ding and Ning (2021).

4.3.1 Approximation of the Short-Rate Process {Rt}t≥0

Theobjective is to construct a continuous-timeMarkov chain {R(m)
t }t≥0 taking values on a finite state-space

S(m)
R := {r1, r2, . . . rm}, with ri ∈ SR, m ∈ N and a time-dependent generator ˜︁Q(m)(t) = [˜︁qij(t)]m×m

that converges weakly to {Rt}t≥0 asN,m→∞. To denote the weak convergence of R(m) toR, we write
R(m) ⇒ R.

The first step is to approximate the state-space of the short-rate process. Several approaches are available
in the literature to construct the finite state-space S(m)

R ofR(m), from simple uniform to non-uniform grids
(see for instance Tavella and Randall (2000), Mijatović and Pistorius (2013), and Lo and Skindilias (2014)
for examples of non-uniform grids). The specific grid choice for this work is discussed in greater detail in
Section 4.6.
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The next step is to construct the time-dependent generator ˜︁Q(m)(t). For analytical tractability, we suppose
further that ˜︁Q(m)(t) is piecewise constant in time4, that is,

˜︁Q(m)(t) =
N∑︂

n=1

Q(m)
n 1[tn−1,tn)(t). (4.2)

for some time partition 0 = t0 < t1 < . . . < tN = T of [0, T ], with T > 0, tn := n∆N and ∆N = T/N ,
and whereQ(m)

n = [q
(n)
ij ]m×m denotes the generator on the time interval [tn−1, tn), whose elements q(n)ij ,

1 ≤ i, j ≤ m, satisfy q(n)ij ≥ 0 when i ̸= j, and q(n)ij ≤ 0 when i = j, n = 1, 2, . . . N . Under this assump-
tion, the transition probability matrix P(s, t) from time s to t has the following matrix representation

P(s, t) = eQ
(m)
i+1(ti+1−s)eQ

(m)
i+2(ti+2−ti+1) · · · eQ

(m)
j+1(t−tj), ti ≤ s < ti+1, tj ≤ t < tj+1, s < t, (4.3)

where
exp{Q(m)

n t} =
∞∑︂
k=0

(Q
(m)
n t)k

k!
, 0 ≤ t ≤ T, (4.4)

see Rindos et al. (1995), p.123–124 for details.

Following the work of Lo and Skindilias (2014) and Ding and Ning (2021), the generator Q(m)
n = [q

(n)
ij ]m×m

on the time interval [tn−1, tn) is constructed as follows

q
(n)
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2
R(ri)−δiµR(tn−1,ri)

δi−1(δi−1+δi)
, j = i− 1,

−q(n)i,i−1 − q
(n)
i,i+1, j = i,

σ2
R(ri)+δi−1µR(tn−1,ri)

δi(δi−1+δi)
, j = i+ 1,

0, j ̸= i, i− 1, i+ 1,

(4.5)

for n ∈ 1, 2, . . . , N , 2 ≤ i ≤ m− 1, 1 ≤ j ≤ m, and where δi = ri+1 − ri, i = 1, 2, . . . ,m− 1. On the
borders, we set q(n)12 = |µR(tn−1,r1)|

δ1
, q(n)11 = −q(n)12 , q(n)m,m−1 =

|µR(tn−1,rm)|
δm−1

, q(n)m,m = −q(n)m,m−1, and 0 else-
where. At endpoints, other schemes could have also been employed, see Chourdakis (2004) and Mijatović
and Pistorius (2013) for examples. However, we note that these schemes are equivalent numerically.

Remark 4.3.1 (Weak convergence of the approximation) Such a construction ensures that the processR(m)

converges weakly to R asN,m→∞, see Mijatović and Pistorius (2009), Section 4 and Corollary 2 for de-

tails, and Ding and Ning (2021), Section 2.1.

4 This assumption ensures that the transition probability matrix has a simple expression in terms of its generator, see Rindos et al.
(1995) Equation (8.4) for the general formulation.
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4.3.2 Approximation of the Stock Process {St}t≥0

The idea behind the CTMC approximation of two-dimensional processes is similar to the approximation
of one-dimensional processes. The first step is to replace the CTMC approximation of the short-rate pro-
cess R(m) into an auxiliary process (4.6) obtained from a transformation of (4.1). This results in a regime-
switching diffusion process. The regime-switching diffusion process is then approximated by a regime-
switching CTMC. The final step and the key to the approximation consists of mapping the two-dimensional
regime-switching CTMC onto a one-dimensional CTMC defined on an enlarged state-space. Thus, work-
ing with an approximation of two-dimensional processes is similar to working with an approximation of
one-dimensional processes.

The next lemma allows the removal of the correlation between the two Brownian motions in (4.1).

Lemma 4.1 (Cui et al. (2018), Lemma 1) Let (S,R) be defined as in (4.1). Define f(r) := ∫︁ r
·

σS(u)
σR(u) du, and

Xt := ln(St)− ρf(Rt) for t ≥ 0. Then,X satisfies

dXt = µX(t, Rt) dt+ σX(Rt) dW
⋆
t

dRt = µR(t, Rt) dt+ σR(Rt) dW
(2)
t ,

(4.6)

where W ⋆ :=
W

(1)
t −ρW

(2)
t√

1−ρ2
denotes a standard Brownian motion independent of W (2),

σX(r) := σS(r)
√︁

1− ρ2 and µX(t, r) := r − qt −
σ2
S(r)
2 − ρψ(t, r), and

ψ(t, r) := µR(t, r)
σS(r)

σR(r)
+

1

2

[︁
σ′S(r)σR(r)− σS(r)σ′R(r)

]︁
,

for r ∈ SR.

By replacing the short-rate process in (4.6) by its CTMCapproximationR(m), we obtain the following regime-
switching diffusion process {X(m)

t }t≥0 satisfying
dX

(m)
t = µX(t, R

(m)
t ) dt+ σX(R

(m)
t ) dW ⋆

t , (4.7)

where the regimes correspond to the state of the approximated short rate process,
S(m)
R := {r1, r2, . . . , rm}.
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The regime-switching diffusion process (X(m), R(m)) is then approximated by a regime-switching CTMC
(X(m,M), R(m)). This is done by fixing a state for the short-rate processR(m) and then constructing a CTMC
approximation forX(m) given R(m) is in that state. For this step, the same procedure as that described in
Section 4.3.1 can be used. More precisely, let X(m,M) be the CTMC approximation of X(m) taking values
on a finite state-space SX := {x1, x2, . . . , xM},M ∈ N.

For each rk ∈ S(m)
R , we define the time-dependant generator ˜︁Λ(N,M)

k (t) :=
∑︁N

n=1Λ
(n,M)
k 1[tn−1,tn)(t),

whereΛ(n,M)
k = [λ

(n,k)
ij ]M×M and

λ
(n,k)
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2
X(rk)−δXi µX(tn−1,rk)

δXi−1(δ
X
i−1+δXi )

j = i− 1

−λ(n,k)i,i−1 − λ
(n,k)
i,i+1 j = i

σ2
X(rk)+δXi−1µX(tn−1,rk)

δXi (δXi−1+δXi )
j = i+ 1

0 j ̸= i, i− 1, i+ 1,

(4.8)

for 2 ≤ i ≤ M − 1, 1 ≤ j ≤ M , where δXi = xi+1 − xi, i = 1, 2, . . . ,M − 1. On the boundaries, we set
λ
(n,k)
12 = |µX(tn−1,rk)|

δX1
, λ(n,k)11 = −λ(n,k)12 , λ(n,k)M,M−1 =

|µX(tn−1,rk)|
δXM−1

, λ(n,k)M,M = −λ(n,k)M,M−1, and 0 elsewhere.

Using the regime-switching approximation of (X,R) and the relation betweenX andS provided in Lemma
4.1, the CTMC approximation of the stock process S(m,M) is defined by

S
(m,M)
t := exp

{︂
X

(m,M)
t + ρf(R

(m)
t )

}︂
, t ≥ 0. (4.9)

The final step consists in mapping the two-dimensional regime-switching CTMC onto a one-dimensional
CTMC process Z(mM) on an enlarged state-space S(mM)

Z := {1, 2, . . . ,mM}. This is done in Proposition
4.3.1, reproduced from Proposition 2 of Ding and Ning (2021).

Proposition 4.3.1 [Proposition 2 of Ding and Ning (2021)]

Consider a regime-switching CTMC (X(m,M), R(m)) taking values in S(M)
X × S(m)

R , where S(M)
X =

{x1, x2, . . . , xM} and S(m)
R = {r1, r2, . . . , rm}, and another one-dimensional CTMC, {Z(mM)

t }t≥0, tak-

ing values in S(mM)
Z := {1, 2, . . . ,mN} and its time-dependent generator defined by ˜︁G(mM)(t) :=∑︁N

n=1G
(mM)
n 1[tn−1,tn)(t), where
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G(mM)
n :=

⎛⎜⎜⎜⎜⎜⎜⎝
q
(n)
11 IM +Λ

(n,M)
1 q

(n)
12 IM · · · q

(n)
1mIM

q
(n)
21 IM q

(n)
22 IM +Λ

(n,M)
2 · · · q

(n)
2mIM

...
... . . . ...

q
(n)
m1IM q

(n)
m2IM · · · q

(n)
mmIM +Λ

(n,M)
m

⎞⎟⎟⎟⎟⎟⎟⎠ , (4.10)

where IM denotes the M × M identity matrix, Q
(m)
n = [q

(n)
ij ]m×m and Λ

(n,M)
k = [λ

(n,k)
ij ]M×M ,

k = 1, 2, . . . ,m, n = 1, 2, . . . , N denote the generators defined in (4.5) and (4.8), respectively. Define the
function ψ : S(M)

X × S(m)
R → S(mM)

Z by ψ(xl, rk) = (k − 1)M + l and its inverse ψ−1 : S(mM)
Z →

S(M)
X × S(m)

R by ψ−1(nz) = (xl, rk) for nz ∈ S
(mM)
Z , and k = ⌈nz/M⌉, l = nz − (k − 1)M , where ⌈x⌉

denotes the largest integer less than x. Then, we have

E
[︂
Ψ(X(m,N), R(m))

⃓⃓⃓
X

(m,N)
0 = xi, R

(m)
0 = rj

]︂
= E

[︂
Ψ(ψ−1(Z(mN)))

⃓⃓⃓
Z

(mN)
0 = (j − 1)M + i

]︂
,

for any path-dependent function Ψ such that the expectation on the left-hand side is finite.

Remark 4.3.2 (Weak convergence of the approximation) Such a construction ensures that

(X(m,M), R(m))⇒ (X,R) and S(m,M) ⇒ S as N,m,M → ∞, see Ding and Ning (2021), Proposi-

tion 3, for details.

4.4 Application to the Pricing of Interest Rate Securities
This section provides closed-form matrix expressions for the prices of zero-coupon bonds and European
bond options. We also develop an efficient recursive procedure for the pricing of American-type financial
instruments such as callable and putable bonds. Calibration to the current term structure of interest rates
is also discussed.

Let 0 = t0 < t1 < . . . < tN = T be a time partition of [0, T ], where T > 0 denotes the maturity of
the financial instrument, tn = n∆N , n = 0, 1, 2, . . . , N , and ∆N = T/N , N ∈ N. Recall that R(m) is
the CTMC approximation ofR taking values in a finite state-space S(m)

R = {r1, r2, . . . , rm},m ∈ N, and its
time dependent generator, ˜︁Q(m)(t) =

∑︁N
n=1Q

(m)
n 1[tn−1,tn)(t), is defined in (4.5).

Throughout this section, we denote by {ek}mk=1 the standard basis inRm, that is, ek represents a row vector
of size 1×m with a value of 1 in the k-th entry and 0 elsewhere, 1m×1 denotes anm× 1 unit vector, and
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Dm := diag(r) denotes anm×m diagonal matrix with the vector r = (r1, r2, . . . , rm) on its diagonal.

The following results often require Assumption 4.4.1 to hold.

Assumption 4.4.1 There exist a r⋆ ∈ R such thatRt ≥ r⋆ for all t ≥ 0.

This assumption restricts the state-space of the short-rate process for the discount factor to be bounded.
This allows the use of some convergence theorems. Note that Vasicek, Ho–Lee, Hull–White, and EV+ mod-
els, listed in Tables 4.1, 4.2, or 4.3, do not satisfy this condition. However, numerical results in Section 4.6
and Appendix 4.12.2 show that the theoretical results of this section still hold for the Hull–White and Vasicek
models, suggesting that Assumption 4.4.1 can be relaxed under a certain set of parameters. In that case,
theoretical results must be shown on a case-by-case basis for each particular model.

4.4.1 Zero-Coupon Bond
The CTMC approximation of zero-coupon bond prices has been previously examined in the literature for
time-homogeneous short-rate processes; see, for instance, Kirkby (2023), Proposition 3. In this section, we
extend these findings to time-inhomogeneous processes. The first result, presented in Lemma 4.2, con-
cerns the Laplace transform of some additive functions, extending Proposition 8 of Cui et al. (2018) to time-
inhomogeneous processes. This result will be used thereafter to obtain a closed-formmatrix expression for
the price of zero-coupon bonds.

Lemma 4.2 Consider 0 = ˜︁t0 < ˜︁t1 < . . . < ˜︁t ˜︁N = T a partition of [0, T ], with ˜︁N = kN for some k ∈ N,

∆ ˜︁N = T/ ˜︁N and ˜︁tn = n∆ ˜︁N , and let R(m)
ti

= Rti = rj ∈ S(m)
R , for some i ∈ {0, 1, 2, . . . , N}. It holds that

E
[︃
e
−

∑︁ ˜︁N
n=ki+1 R

(m)˜︁tn ∆ ˜︁N ⃓⃓R(m)˜︁tki = rj

]︃
= ej

(︄
N∏︂

n=i+1

(︂
eQ

(m)
n ∆ ˜︁N e−D∆ ˜︁N)︂k)︄1m×1, (4.11)

and

E
[︃
e
−

∑︁ ˜︁N
n=ki R

(m)˜︁tn ∆ ˜︁N ⃓⃓R(m)˜︁tki = rj

]︃
= ej

(︄
N∏︂

n=i+1

(︂
e−Dm∆ ˜︁N eQ(m)

n ∆ ˜︁N)︂k)︄ e−Dm∆ ˜︁N1m×1. (4.12)

The proof provided in Appendix 4.8 is intuitive and follows essentially by noticing that (4.11) and (4.12) are
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matrix representations of the conditional expectation of a function of a discrete one-dimensional random
process whose conditional probabilities are given by (4.3).

Remark 4.4.1 Using arguments similar to those of the proof of Lemma 4.2, we can also find that matrices

eDm and eQ
(m)
n commute under multiplication in (4.12). More precisely, using the notation of Lemma 4.2,

we have that

E
[︃
e
−

∑︁ ˜︁N
n=ki R

(m)˜︁tn ∆ ˜︁N ⃓⃓R(m)˜︁tki = rj

]︃
= ej

(︄
N∏︂

n=i+1

(︂
e−Dm∆ ˜︁N eQ(m)

n ∆ ˜︁N)︂k)︄ e−Dm∆ ˜︁N × 1m×1

= eje
−Dm∆ ˜︁N

(︄
N∏︂

n=i+1

(︂
eQ

(m)
n ∆ ˜︁N e−Dm∆ ˜︁N)︂k)︄× 1m×1.

Proposition 4.4.1 provides a closed-form matrix expression for the price of a zero-coupon bond under gen-
eral time-inhomogeneous CTMCs. The result is a natural extension of Proposition 3 of Kirkby (2023) for
time-inhomogeneous diffusion processes.

Proposition 4.4.1 Let Assumption 4.4.1 hold. Given that R(m)
ti

= Rti = rj ∈ S(m)
R , for some i ∈

{0, 1, 2, . . . , N}, the price at time ti of a zero-coupon bond with maturity T ≥ ti can be approximated

by

P
(m)
j (ti, T ) := E

[︃
e
−

∫︁ T
ti

R
(m)
s ds⃓⃓

R
(m)
ti

= rj

]︃
= ej

(︄
N∏︂

n=i+1

e

(︂
Q

(m)
n −Dm

)︂
∆N

)︄
1m×1. (4.13)

The proof of Proposition 4.4.1, detailed in Appendix 4.8, relies on Lemma 4.2, the dominated convergence
theorem, and the Lie product formula for the limit of matrix exponentials. For time-homogeneous models,
an elegant proof can also be found in Kirkby (2023). The proof presented in this chapter employs straight-
forward and intuitive probabilistic arguments, making it applicable to both time-homogeneous and time-
inhomogeneous models. However, it requires Assumption 4.4.1 to be satisfied for the use of dominated
convergence, which is also necessary to ensure the convergence of the approximated price to the true
price (as in Proposition 3 (iii) of Kirkby (2023)), as discussed in Remark 4.4.2 below.

Remark 4.4.2 (Convergence of zero-coupon bonds) Under the condition of Proposition 4.4.1, the conver-

gence of the approximated bond prices follows from the weak convergence ofR(m) ⇒ R, see Remark 4.3.1.
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Indeed, from there, we have that
∫︁ t
0 R

(m)
s ds⇒

∫︁ t
0 Rs ds from Proposition 4 of Cui et al. (2021a). Then, the

convergence of the expectation follows directly from the Portmanteau theorem and Assumption 4.4.1 since,

for x ≥ r, the function e−x is continuous and bounded.

Detailed error and convergence analysis for CTMC methods applied to option pricing in one-dimensional

settings are discussed in Li and Zhang (2018) and Zhang and Li (2019). Convergence behavior and rates are

discussed further in Appendix 4.12.2.1.

Remark 4.4.3 Assumption 4.4.1 ensures that the dominated convergence and Portmanteau theorems can

be used in the proof Proposition 4.4.1 and Remark 4.4.2, respectively. However, numerical results in Section

4.6 and Appendix 4.12.2 show these results still hold when SR = R under some specific models and set of

parameters.

4.4.2 Bond Option
Proposition 4.4.2 provides an explicit closed-form matrix expression to approximate the prices of call and
put options on zero-coupon bonds under general time-inhomogeneous short-rate models. To the best of
the author’s knowledge, this method of approximating the price of zero-coupon bond options is a novel
contribution to the literature.

Proposition 4.4.2 Let Assumption 4.4.1 hold. Given that R(m)
tn1

= Rtn1
= rj ∈ S(m)

R , for some n1 ∈

{0, 1, 2, . . . , N}, the price at tn1 ≥ 0 of a European call (resp. put) option with maturity tn2 > tn1 on

a zero-coupon bond maturing at time T > tn2 with strikeK > 0 can be approximated by

E
[︃
e
−

∫︁ tn2
tn1

R
(m)
s ds

h
(︂
P (m)(tn2 , T )

)︂ ⃓⃓⃓
R

(m)
tn1

= rj

]︃
= ej

(︄
n2∏︂

n=n1+1

e

(︂
Q

(m)
n −Dm

)︂
∆N

)︄
H, (4.14)

where h(x) = max(x − K, 0) (resp. h(x) = max(K − x, 0)) denotes the payoff function,

P (m)(tn2 , T ) := E
[︃
e
−

∫︁ T
tn2

R
(m)
s ds

⃓⃓⃓
R

(m)
tn2

]︃
denotes the approximated zero-coupon bond price at tn2 , and

H denotes a column vector of size m × 1, whose k-th entry is given by hk = h
(︂
P

(m)
k (tn2 , T )

)︂
, with

P
(m)
k (tn2 , T ) defined in (4.13).

The proof follows using arguments similar to that of the proof of Proposition 4.4.1.
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Remark 4.4.4 (Convergence of zero-coupon bond options) From Remark 4.4.2, we have

that
∫︁ T
t R

(m)
s ds⇒

∫︁ T
t R(m) ds for all t ≤ T , as m,N → ∞, and we conclude that

P
(m)
j (t, T )→ Pj(t, T ) := E

[︂
e−

∫︁ T
t Rs ds|Rt = rj

]︂
for all rj ∈ S(m)

R . However, this is not sufficient

to prove the convergence of zero-coupon bond option prices. Consequently, one first needs to show that

P (m)(t, T ) = E
[︂
e−

∫︁ T
t R

(m)
s ds|R(m)

t

]︂
⇒ P (t, T ) := E

[︂
e−

∫︁ T
t Rs ds|Rt

]︂
, that is, weak convergence of

random variables also implies weak convergence of conditional expectations. This has been studied in the

context of filtering theory by Goggin (1994), Kouritzin and Zeng (2005), and Crimaldi and Pratelli (2005).

However, their results are inapplicable in that particular context since it requires finding a measure under

which processes e−
∫︁ T
t Rs ds and Rt are independent. An alternative way to prove the weak convergence

of conditional expectations is to show that the estimation errors converge; see Goggin (1994), Lemma 2.2.

Showing this property is, however, out of the scope of this chapter. Numerical experiments in the next

section demonstrate the accuracy and efficiency of Proposition 4.4.2 empirically.

Detailed error and convergence analysis for CTMC methods applied to option pricing in one-dimensional

settings are discussed in Li and Zhang (2018) and Zhang and Li (2019). Extensions to zero-bond option pricing

are left for future investigations. Convergence behavior and rates are studied empirically in the next section.

Remark 4.4.5 (Extension to coupon-bearing bonds) The extension of (4.14) to coupon-bearing bonds is straight-
forward. Indeed, suppose that the underlying bond pays a periodic coupon α > 0 at time tn2+z < tn2+2z <

. . . < t
n2+ ˜︁Nz

= T , with z = (N − n2)/ ˜︁N . Then, it suffices to replace P (m)
k (tn2 , T ) in Proposition 4.4.2 by

P
(m)
k (tn2 , T ) +

˜︁N∑︂
n=1

αP
(m)
k (tn2 , tn2+nz),

with P (m)
k (·, ·), defined in (4.13).

4.4.3 Callable/Putable Bond
In the following sections, we develop simple and efficient algorithms for pricing callable and putable debt
under general one-dimensional time-inhomogeneous short-rate processes. To the author’s knowledge, this
type of approximation for callable and putable bond pricing is novel in the literature.

LetKp
t ,K

c
t ≥ 0 be constants representing the put and call prices (or strike prices) at time t ≤ T , respec-

tively, and let F > 0 be the face value of the bond, and T > 0 the maturity of the bond. In the following,
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we assume that there is no coupon. However, adjustment to coupon-bearing bonds is straightforward, and
it is discussed in greater detail below. Furthermore, we denote by Tt,T , the (admissible) set of all stopping
times taking values on the interval [t, T ].

When the put option can be exercised at any time prior tomaturity, the value of a putable debt is equivalent
to solving the following optimal stopping problem

vp(t, r) := sup
τ∈Tt,T

E
[︂
e−

∫︁ τ
t Ru duφp(τ)

⃓⃓⃓
Rt = r

]︂
, (4.15)

where the reward (or payoff) function φp : [0, T ]→ R+ is defined by
φp(t) =

⎧⎨⎩ Kp
t if t < T,

max(F,Kp
T ) if t = T.

(4.16)
On the other hand, the value of callable debt is given by

vc(t, r) := inf
τ∈Tt,T

E
[︂
e−

∫︁ τ
t Ru duφc(τ)

⃓⃓⃓
Rt = r

]︂
, (4.17)

where the reward function φc : [0, T ]→ R+ is defined by
φp(t) =

⎧⎨⎩ Kc
t if t < T,

min(F,Kc
T ) if t = T.

(4.18)

Typically, a bond can have both a call and put options embedded; thus, the two problems in (4.16) and (4.17)
need to be solved simultaneously. We denote by vcp : [0, T ]×SR → R+ the value function of the problem
when (4.16) and (4.17) are solved together. Often, options are only exercisable during a certain period (ex-
ercise period or window). This is discussed further below. Numerical techniques are thus required to solve
the problem. Commonly used techniques, such as trees, are based on the Bermudan5 approximation of vcp
and the dynamic programming principle (see, for instance, Lamberton (1998), Theorem 10.1.3). Proposition
4.4.3 relies on the same ideas.

Proposition 4.4.3 Let Assumption 4.4.1 hold. The value of a callable and putable bond with maturity T > 0

and face value F > 0 can be approximated recursively by⎧⎨⎩ V
(m)
N = max

(︁
min (F,Kc

N ) ,Kp
N

)︁
V

(m)
n = max

(︂
min

(︂
Kc

n, e
(Q

(m)
n+1−Dm)∆NV

(m)
n+1

)︂
,Kp

n

)︂
0 ≤ n ≤ N − 1.

(4.19)

5 The Bermudan contract refers to a contract under which the embedded options can be exercised on a finite number of predeter-
mined dates, whereas an American contract refers to a contract under which the embedded options can be exercised at any time
from the inception to the maturity date. 146



for a sufficiently large N ∈ N, and where Ka
n = Ka

tn1m×1, a ∈ {p, c}, F = F1m×1, and the maximum

(resp. minimum) is taken element by element (also known as the parallel maxima (resp. minima)). Specifi-

cally, given R(m)
0 = R0 = rj , the approximated price of a callable and putable debt is given by

v(m)
cp (0, R0) = ejV

(m)
0 .

The proof of Proposition 4.4.3 follows from the dynamic programming principle and by not-
ing that exp

(︂
Q

(m)
n+1 −Dm)∆N

)︂
V

(m)
n+1 (the continuation value) is the matrix representation of the

conditional expectation of a function of a discrete random variable whose conditional probabil-
ity mass function is given by the transitional probability pij(tn, tn+1), 1 ≤ i, j ≤ m, with
P(tn, tn+1) = [pij(tn, tn+1)]m×m = exp

(︂
Q

(m)
n+1∆N

)︂ as per (4.3). The remainder of the proof follows the
same reasoning used in the proofs of Lemma 4.2 and Proposition 4.4.1, detailed in Appendix 4.8.

The accuracy of (4.19) in pricing callable and putable debt is demonstrated numerically in Section 4.6. To
price a callable only bond, it suffices to set Kp

t = 0, and for a putable only bond, one must let Kc
t → ∞,

0 ≤ t ≤ T . Different exercise windows can also be incorporated using a similar logic.

Remark 4.4.6 (Extension to coupon-bearing bonds) Proposition 4.4.3 is set up for zero-coupon debt. How-

ever, extension to coupon-bearing bonds is straightforward. Indeed, when a coupon α > 0 is paid tn+1, it

just needs to be discounted back at time tnwith the value of the bond at tn+1. More precisely, (4.19) becomes

V
(m)
n = max

(︂
min

(︂
Kc

n, e
(Q

(m)
n+1−Dm)∆N

(︂
V

(m)
n+1 + α1m×1

)︂)︂
,Kp

n

)︂
for n ∈ {1, 2, . . . , N − 1}.

The results of Lemma 4.2, and Propositions 4.4.1, 4.4.2, and 4.4.3 can be simplified when the short-rate
process is time-homogeneous such as for the models listed in Table 4.1, or when it can be expressed as a
sum of an auxiliary time-homogeneous process and a deterministic function of time as for themodels listed
in Table 4.3. This is discussed further in Appendices 4.9 and 4.10.

Extension of these results to two-factor short-rate models can be accomplished using the procedure of
Section 4.3, along with Proposition 4.3.1. This is left as future research.
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4.4.4 Calibration to the Initial Term Structure of Interest Rates
Using the closed-form formula for the price of a zero-coupon bond in (4.13), we can develop an efficient
algorithm such that the zero-bond curve6 of the approximated model fits the market curve.

To do so, we choose a time partition of [0, T ], 0 = t0 < t1 < . . . < tN = T , with N ∈ N, T > 0,
tn = n∆N , n ≤ N and∆N = T/N . We suppose that there is a time deterministic function θ that appears
in the drift of (4.1) such that µR(t, r) = ˜︁µR(θ(t), r), for (t, r) ∈ [0, T ] × SR, as it may often be the case
for time-inhomogeneous short-rate models, see the models listed in Table 4.2 for examples. Moreover, we
assume that θ is piecewise constant in time, such that

θ(t) =
N∑︂

n=1

θn1[tn−1,tn)(t). (4.20)
for some θ = (θ1, θ2, . . . , θN ) ∈ RN .

Let t ↦→ P ⋆(0, t) represent the current market zero-bond curve. The objective is to find the parameters θ
that make the zero-coupon bond prices under the approximated model equal to the market zero-coupon
bond prices. Henceforth, we denote these calibrated parameters by θ⋆. Note that matrix Qn in (4.5) de-
pends on θn via function µR, n = 1, 2, . . . , N . In this subsection, we writeQ(m)

n (θn) forQ(m)
n to make this

relation clearer. By inspecting (4.13), we also note that the zero-coupon bond price at t1 only depends on
Q

(m)
1 (θ1), and the price at t2 depends onQ

(m)
1 (θ1) andQ

(m)
2 (θ2); and so on. Thus, the calibrated param-

eters θ⋆, which make P (m)
j (0, ti) = P ⋆(0, ti), i = 1, 2 . . . , N , can be obtained recursively starting from t1

to tN . Algorithm 7 provides an efficient recursive procedure to find θ⋆. In Algorithm 7, Im×m denotes the
identity matrix of sizem×m.

When the short-rate process can be modeled as a deterministic shift of a homogeneous process, such as
the models listed in Table 4.3, the calibrated parameters θ⋆ have an explicit closed-form expression. This is
discussed further in Appendix 4.10.3.

4.5 Application to the Pricing of Convertible Bonds
In this section, we develop efficient algorithms for pricing CBs using CTMC approximations. When the con-
version feature is only permitted at maturity, a closed-form matrix expression is obtained. In this chapter,

6 The term zero-bond curve refers to the term structure of discount factors (or zero-coupon bonds).
148



Algorithm 7: Calibration of θ to the Current Market Term-Structure
Input: LetQ(m)

n (θn) be defined as in (4.5) and t ↦→ P ⋆(0, t) be the current market zero-bond curve,
n = 1, 2, . . . , N

N ∈ N, the number of time steps
∆N ← T/N , the size of a time step

1 Set tn = n∆N , n = 1, 2, . . . , N

2 SetDm ← diag(r) with r = (r1, r2, . . . , rm), rk ∈ S(m)
R , k = 1, 2, . . . ,m

/* Calibration to the current market zero-bond curve t ↦→ P ⋆(0, t) */

3 A⋆ ← Im×m for n = 1, . . . N do

4 Find θ⋆n such that P ⋆(0, tn)− ejA
⋆ × e(Q

(m)
n (θn)−Dm)∆N1m×1 = 0

5 A⋆ ← A⋆ × e(Q
(m)
n (θ⋆n)−Dm)∆N

6 return {θ⋆n}Nn=1

we use the term European (resp. American)-style CB to refer to a CB under which the investor has the right
to convert the bond at maturity only (resp. at any time prior to maturity). The use of CTMC approximation
for pricing convertible debt is a novel contribution to the literature.

The frameworks outlined below consider two risk factors: equity and risk-free rate. Default/credit risk is
incorporated into themodel using themethodology of Tsiveriotis and Fernandes (1998) (TF). Their approach
consists of splitting the debt into two components: a cash-only and an equity part. The cash-only part

consists of coupons and principal payments, whereas the equity part consists of equity payments (when
the debt is converted to stock). Each part is subject to different credit risks. Indeed, the cash-only part can
be seen as a standard bond and is subject to the issuer default risk. Cash-flows are thus discounted at a
risky rate. The equity part can be interpreted as an equity derivative and must thus be discounted at the
risk-free rate.

In the following, we consider zero-coupon CBs since the extension to coupon-bearing convertible debt is
straightforward. Indeed, when conversion can only occur at maturity (European-style), coupons can be
added to the price. For American-style CBs, the procedure is similar to callable and putable bonds. That
is, when a coupon is paid at time tn+1, then it just needs to be discounted back to time tn with the value
of the cash-only part of the bond at tn+1, 0 ≤ n ≤ N − 1. This is discussed further in Remarks 4.5.1 and
4.5.5. Further, we suppose that the risky rate { ˜︁Rt}0≤t≤T is obtained by adding a time-deterministic credit
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spread, c : [0, T ] → [0, 1], over the risk-free rate, that is, ˜︁Rt = Rt + ct, 0 ≤ t ≤ T . Finally, the face value
of the bonds is denoted by F > 0, and η > 0 represents the conversion ratio.

Recall that 0 = t0 < t1 < . . . < tN = T is a time partition of [0, T ], where T > 0 denotes the maturity
of the financial instrument, tn = n∆N , n = 0, 1, 2, . . . , N , and ∆N = T/N , N ∈ N. (X(m,M), R(m))

denotes the regime-swiching CTMC approximation of (X,R), see Section 4.3.2, taking values of a finite
state-space S(M)

X × S(m)
R with S(M)

X = {x1, x2, . . . , xM} and S(m)
R = {r1, r2, . . . , rm}, m,M ∈ N. We

have also defined S(m,M) in terms of (X(m,M), R(m)) in (4.9), and the generator G(mM)
n is defined in

(4.10), n = 1, 2, . . . , N .

Throughout this section, we denote by {ekl}m,M
k,l=1 the standard basis in RmM , that is, ekl represents a row

vector of size 1×mM with a value of 1 in the (k−1)M+l-th entry and 0 elsewhere.DmM := diag (d) is an
mM×mM diagonalmatrixwith vectord = (d1, d2, . . . , dmM )on its diagonal, where d(k−1)M+l = rk ∈ S

(m)
R ,

k = 1, 2, , . . . ,m, l = 1, 2, , . . . ,M .

4.5.1 European-Style Convertible Bond
Under the approach of Tsiveriotis and Fernandes (1998), the risk-neutral value of a European-style convert-
ible debt, ve : [0, T ]× R⋆

+ × SR → R+, is given by
ve(t, x, r) = E

[︂
e−

∫︁ T
t Ru duηST1{ST≥F/η} + e−

∫︁ T
t Ru+cu duF1{ST<F/η}

⃓⃓
St = x,Rt = r

]︂
. (4.21)

The cash-only vCO
e : [0, T ]× R⋆

+ × SR → R+ and equity vEe : [0, T ]× R⋆
+ × SR → R+ parts of the debt

can then be defined as
vEe (t, x, r) := E

[︂
e−

∫︁ T
t Ru duηST1{ST≥F/η}|St = x,Rt = r

]︂
, (4.22)

and
vCO
e (t, x, r) := E

[︂
e−

∫︁ T
t Ru+cu duF1{ST<F/η}

⃓⃓
St = x,Rt = r

]︂
, (4.23)

respectively.

Under the assumption that the volatility parameter of S in (4.1) is constant, σS(r) = ˜︁σS > 0 for all r ∈ SR,
and the short-rate process is Gaussian; we can find an explicit expression for (4.21). This is the case for the
Vasicek, Ho–Lee, and Hull–White models (see Tables 4.1 and 4.2 for details). This is discussed further in
Appendix 4.12.1.
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Proposition 4.5.1 Let Assumption 4.4.1 hold. Given that S0 > 0, andX(m,M) = ln(S0) − ρf(R0) = xi ∈

S(M)
X , with R0 = rj ∈ S(m)

R , the value of the European-style CB with maturity T > 0, face value F > 0,

and conversion ratio η > 0 can be approximated by

v(m,M)
e (0, S0, R0) := E

[︂
e−

∫︁ T
0 R

(m)
u duηS

(m,M)
T 1{S(m,M)

T ≥F/η}

+ e−
∫︁ T
0 R

(m)
u +cu duF1{S(m,M)

T <F/η}

⃓⃓
S
(m,M)
0 = S0, R

(m)
0 = R0

]︂
= eji

N∏︂
n=1

e

(︂
G

(mM)
n −DmM

)︂
∆NH. (4.24)

whereH denotes a column vector of sizemM × 1 whose (k − 1)M + l-th entry is given by

h(k−1)M+l = ηexl+ρf(rk)1{exl+ρf(rk)≥F/η} + e−
∫︁ T
0 cu duF1{exl+ρf(rk)<F/η}, (4.25)

for k = 1, 2, , . . . ,m, l = 1, 2, , . . . ,M .

The proof follows by noting that (4.24) is the matrix representation of the conditional expectation of a
function of a discrete one-dimensional randomvariablewhose conditional probabilitymass function is given
by the transitional probability pkl(tn, tn+1), 1 ≤ k, l ≤ mM , with P(tn, tn+1) = [pkl(tn, tn+1)]mM×mM

as defined in (4.3), with the generators Q(m)
n replaced byG(mM)

n . The remainder of the proof follows the
same reasoning used in the proofs of Lemma 4.2 and Proposition 4.4.1, detailed in Appendix 4.8.

Remark 4.5.1 (Extension to coupon-bearing European CBs) To extend the valuation to coupon-bearing bonds,

it suffices to add the discounted value of the future coupons to the value obtained in (4.24), similar to

the approach in Remark 4.4.5. More precisely, assume that a periodic coupon, α > 0, is paid at times

tz < t2z < . . . < t ˜︁Nz
= T , with z = N/ ˜︁N . The present value of future coupons is given by

˜︁N∑︂
n=1

αP
(m)
j (0, tnz),

withP (m)
j (·, ·) defined in (4.13). Adding this to the value of the European-style CB without coupons obtained

in (4.24) completes the extension.

Remark 4.5.2 (Convergence of European-style CBs) From Remark 4.3.2, we have that S(m,M) ⇒ S. The

convergence of derivatives with a continuous and bounded payoff function then follows directly from the

Portmanteau theorem, see for instance Billingsley (1999), Theorem 2.1. However, for discontinuous and
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unbounded payoff functions such as that involved in (4.21)7, the convergence of the prices is not as straight-
forward. For a continuous and unbounded payoff function g, Mijatović and Pistorius (2009), Remark 3 and

Cui et al. (2018), Remark 5, suggest replacing the original payoff function by a truncated payoff g ∧ L, with

a constant L > 0 chosen to be sufficiently large such that the numerical results are not altered. Kirkby

(2023), Proposition 6, shows the convergence of the derivative prices for continuous bounded payoffs, such

as equity cap and floor, that is, when the payoff function is bounded from above and below.

Detailed error and convergence analysis in the context of European option pricing under two-dimensional

stochastic local volatility models are discussed in Ma et al. (2022). Extensions to European-style CBs un-

der two-dimensional stochastic interest rate models are left for future research. Numerical experiments in

Section 4.6 demonstrate the accuracy and efficiency of the approximation empirically.

The closed-form matrix expression in (4.24) can be implemented in a straightforward manner. However,
as highlighted in Chapter 3, several numerical issues can be encountered when dealing with medium/long
time-horizon derivatives because of the size of generator G(mM)

n . Hence, based on Propostion 3.4, a new
algorithm that speeds up the pricing of European-style CBs is developed. This fast version of Proposition
4.5.1 is presented in Appendix 4.11.1.

4.5.2 Convertible Bond (American-Style)
When the conversion option can be exercised at any time prior to maturity (and call and put features are
ignored), the valuation of CBs is equivalent to solving the following optimal stopping problem

v(t, x, r) = sup
τ∈Tt,T

E
[︂
e
−

∫︁ τ
t Ru+cu1{τ=T,ST<F/η} du

φ(τ, Sτ )
⃓⃓⃓
St = x,Rt = r

]︂
, (4.26)

where Tt,T denotes the (admissible) set of all stopping times taking values on the interval [t, T ], and the
reward (or gain) function φ : [0, T ]× R⋆

+ → R⋆
+ is defined by

φ(t, x) =

⎧⎨⎩ ηx if t < T,

max(ηx, F ) if t = T.
(4.27)

7 The payoff function exhibits a discontinuity in the state variable because of the difference between the risky and the risk-free
rates.
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Remark 4.5.3 When x < F/η, the reward function is discontinuous at T since

lim
t→T−

φ(t, x) = ηx < F = φ(T, x).

Assuming that an optimal stopping time8 τ⋆t exists, the cash-only part vCO : [0, T ]× R⋆
+ × SR → R+ and

equity part vE : [0, T ]× R⋆
+ × SR → R+ of the CB can be defined by

vCO(t, x, r) = E
[︂
e−

∫︁ T
t Ru+cu duF1A

⃓⃓⃓
St = x,Rt = r

]︂
, and

vE(t, x, r) = E
[︃
e−

∫︁ τ⋆t
t Ru duηSτ⋆t 1Ac

⃓⃓⃓
St = x,Rt = r

]︃
,

respectively, whereA := {τ⋆t = T, ST < F/η}, andAc := {τ⋆t < T} ∪ {τ⋆t = T, ST ≥ F/η} denotes the
complement of A. It follows that v(t, x, r) = vCO(t, x, r) + vE(t, x, r).

When no dividends are paid, and credit risk is assumed to be nil (qt = ct = 0 for all t ∈ [0, T ]), the value of
the CB in (4.26), which can be exercised at any time prior to maturity, is equal to the value of the European-
style CB (4.21), meaning that an optimal stopping time for (4.26) is at thematurity of the bond. On the other
hand, when credit risk is considered, the value of American-style CBs is bounded from below and above by
those of European-style CBs with and without credit risk, respectively. This is formalized in the following.

Proposition 4.5.2 Assume that qt = ct = 0 for all t ∈ [0, T ] and σS(r) = ˜︁σS > 0 for all r ∈ SR. We have

that v(t, x, r) = ve(t, x, r) for all (t, x, r) ∈ [0, T ]× R⋆
+ × SR.

Proof. We first show that the discounted reward process {e−
∫︁ t
0 Ru duφ(t, St)}0≤t≤T is a submartingale. For

0 ≤ s ≤ t < T , we have that

E
[︂
e−

∫︁ t
0 Ru duφ(t, St)

⃓⃓⃓
Fs

]︂
= E

[︂
e−

∫︁ t
0 Ru duηSt|Fs

]︂
= e−

∫︁ s
0 Ru duηSs = e−

∫︁ s
0 Ru duφ(s, Ss),

where the second equality follows from the martingale property of the discounted stock process under the

risk-neutral measure (see Remark 4.5.4). On the other hand, if 0 ≤ s < t = T , we have that

E
[︂
e−

∫︁ T
0 Ru duφ(T, ST )

⃓⃓⃓
Fs

]︂
= E

[︂
e−

∫︁ T
0 Ru dumax(ηST , F )

⃓⃓⃓
Fs

]︂
≥ E

[︂
e−

∫︁ T
0 Ru duηST

⃓⃓⃓
Fs

]︂
= e−

∫︁ s
0 Ru duφ(s, Ss).

8 An admissible stopping time τ⋆t ∈ Tt,T is said to be optimal for (4.26) if
v(t, x, r) = E

[︃
e
−

∫︁ τ⋆
t

t Ru+cu1{τ⋆
t =T,ηST <F} du

φ(τ⋆t , Sτ⋆
t
)
⃓⃓⃓
St = x,Rt = r

]︃
.
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The final assertion follows for well-known results in optimal stopping theory, which states that if the dis-

counted reward process is a submartingale, then the maturity of the contract is an optimal stopping time,

see Björk (2009), Proposition 21.2. □

When periodic coupons are paid, the results of Proposition 4.5.2 still hold. This is demonstrated in Corollary
4.4.

Let ˜︁ve : [0, T ] × R⋆
+ × SR → R+ denote the value function of European-style CBs when ct = 0 for all

t ∈ [0, T ]. Using (4.21), it follows that
˜︁ve(t, x, r) := E

[︂
e−

∫︁ T
t Ru dumax (ηST , F )

⃓⃓
St = x,Rt = r

]︂
= E

[︂
e−

∫︁ T
t Ru duφ(T, ST )

⃓⃓
St = x,Rt = r

]︂
.

(4.28)

Corollary 4.3 Assume that qt = 0 for all t ∈ [0, T ] and σS(r) = ˜︁σS > 0 for all r ∈ SR. We have that

ve(t, x, r) ≤ v(t, x, r) ≤ ˜︁ve(t, x, r) for all (t, x, r) ∈ [0, T ]× R⋆
+ × SR.

Proof. The first inequality follows directly since T ∈ Tt,T . For the second inequality, it suffices to note that

v(t, x, r) = sup
τ∈Tt,T

E
[︂
e−

∫︁ τ
t Ru+cu1{τ=T,§T<F/η} duφ(τ, Sτ )

⃓⃓⃓
St = x,Rt = r

]︂
≤ sup

τ∈Tt,T
E
[︂
e−

∫︁ τ
t Ru duφ(τ, Sτ )

⃓⃓⃓
St = x,Rt = r

]︂
= ˜︁ve(t, x, r)

where the last equality follows from Proposition 4.5.2. □

When periodic coupons are paid, the result of Corollary 4.3 still holds. This is discussed in Corollary 4.8.3.

Remark 4.5.4 Condition σS(r) = ˜︁σS > 0 for all r ∈ SR in Propositions 4.5.2 can be relaxed provided

that the discounted stock process remains a true martingale under the risk-neutral measure. Indeed, when

no additional condition is added, the discounted stock process {e−
∫︁ t
0 Ru duSt}t≥0 is a local martingale. For

{e−
∫︁ t
0 Ru duSt}t≥0 to be a true martingale, some restrictions must be added to the parameters of the short-

rate dynamics. This has been studied in stochastic volatility models for some specific time-homogeneous

diffusion processes; see Sin (1998), Jourdain (2004), and Cui (2013). Conditions under which the discounted

stock process is a true martingale for the particular short-rate models listed in Tables 4.1, 4.2, and 4.3 are

left as future research.
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Note also that the aforementioned results are applicable only to stocks that do not pay dividends, that is qt =

0 for all t ≥ 0. When dividends are distributed, the discounted stock process becomes a supermartingale,

which makes the arguments in the proof of Proposition 4.5.2 invalid.

When the conditions of Proposition 4.5.2 are not satisfied, or the debt includes other specific features such
as call and/or put options, as is often the case in practice, numerical techniques are required to solve the
optimal stopping problem in (4.26). Commonly used methods, such as trees or least-squares Monte Carlo
(see Longstaff and Schwartz (2001)), are based on the Bermudan approximation5 of v and the dynamic
programming principle. The same ideas are used in Proposition 4.5.3.

Consequently, we defineHCO (resp. HE
n , 0 ≤ n ≤ N ) as column vectors of sizemM × 1 representing the

cash-only (resp. equity) part of the reward, whose (k − 1)M + l-entry are respectively given by
hCO
(k−1)M+l = F1{exl+ρf(rk)<F/η}, (4.29)

and
hE(k−1)M+l,n =

⎧⎨⎩ ηexl+ρf(rk), if 0 ≤ n ≤ N − 1,

ηexl+ρf(rk)1{exl+ρf(rk)≥F/η}, if n = N,
(4.30)

for 1 ≤ k ≤ m, 1 ≤ l ≤ M . Furthermore, let BCO
n , BE

n , and Bn, 0 ≤ n ≤ N , be column vectors
of size mM × 1, representing the cash-only part, the equity part, and the total value of the CB at time
tn, respectively. We denote by bk,n the k-th entry of Bn, 1 ≤ k ≤ mM , and define the indicator vector
1{Bn=HE

n }, where the k-th entry of 1{Bn=HE
n }, denoted by 1{Bn=HE

n }(k), is given by 1{Bn=HE
n }(k) =

1{bk,n=hE
k,n}

, for each k ∈ SmN
Z . Finally, 1mM×1 denotes the unit vector of sizemM × 1.

Proposition 4.5.3 Let Assumption 4.4.1 hold. The value of a CB with maturity T > 0, face value F > 0, and
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conversion ratio η > 0, can be approximated recursively by

ˆ︁BCO
n

,
=

{︄
HCO, if n = N,

e−
∫︁ tn+1
tn

cu du exp
{︂(︂

G
(mN)
n+1 −DmM

)︂
∆N

}︂
BCO

n+1, if 0 ≤ n ≤ N − 1,

BCO
n

=

{︄ ˆ︁BCO
N , if n = N,ˆ︁BCO
n

(︂
1mM×1 − 1{Bn=HE

n }

)︂
, if 0 ≤ n ≤ N − 1,

ˆ︁BE
n

=

{︄
HE

N , if n = N,

exp
{︂(︂

G
(mN)
n+1 −DmM

)︂
∆N

}︂
BE

n+1, if 0 ≤ n ≤ N − 1,

BE
n

=

{︄ ˆ︁BE
N , if n = N,

Bn −BCO
n , if 0 ≤ n ≤ N − 1,

Bn =

{︄ ˆ︁BCO
N + ˆ︁BE

N , if n = N,

max
(︂
HE

n ,
ˆ︁BCO
n + ˆ︁BE

n

)︂
if 0 ≤ n ≤ N − 1.

for a sufficiently largeN ∈ N, and where the maximum is taken element by element. Specifically, given that

X
(m,M)
0 = ln(S0)− ρf(R0) = xi ∈ S(M)

X andR(m)
0 = R0 = rj ∈ S(m)

R , the value of an American-style CB

can be approximated by

v(m,M)(0, S0, R0) = ejiB
(mM)
0 .

Proposition 4.5.3 is presented as an algorithm in Appendix 4.11. Similar to the European-style CB, the perfor-
mance of the procedure in Proposition 4.5.3 can be significantly increased using the technique of Chapter
3, Proposition 3.4. This new fast version of the procedure is also reported in Appendix 4.11.

Remark 4.5.5 (Extension to coupon-bearing bonds) Recall that Proposition 4.5.3 is set up for zero-coupon

CBs. However, as mentioned previously, adding coupons to the previous procedure is straightforward. In-

deed, when a coupon is paid at time tn+1, it just needs to be discounted back to time tn with the cash-only

part of the CB. More precisely, when a coupon α > 0 is paid at time tn+1, then the continuation value of

the cash-only part at tn, ˆ︁BCO
n , must be calculated as follow

ˆ︁BCO
n = e−

∫︁ tn+1
tn

cu du exp
{︂(︂

G
(mN)
n+1 −DmM

)︂
∆N

}︂(︁
BCO

n+1 + α1mN×1

)︁
,

for n ∈ {0, 1, . . . , N − 1}.
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Additional features, such as call and put options, can also be added, similarly as in tree methods (see, for
instance, Hung andWang (2002), Exhibit 2), by modifying the value of the convertible debt, the equity part,
and the cash-only part accordingly at each time step.

Remark 4.5.6 (Convergence of convertible bonds (American-style)) When there is no credit risk, the con-

vergence follows as in Remark 3.4.4. Indeed, in that particular case, we can rely on the continuous-reward

representation of Theorem 2.6, and use the results of Song et al. (2013), Theorem 9, to establish the con-

vergence. When credit risk is considered, the convergence is less clear because of the discontinuity in the

discounted reward process created by the difference between the risky and risk-free rates.

Detailed error and convergence analysis for American-style CBs are left for future research. The accuracy

and efficiency of Proposition 4.5.3 in pricing American-style CBs is demonstrated empirically in Section 4.6.

4.6 Numerical Experiments
In this section, numerical experiments are conducted to analyze the performance of the methodology pro-
posed in the previous sections under models listed in Tables 4.2 and 4.3. For the testing, we selected the
Hull–White model, which is widely used in practice, and the extended CIR model (CIR++) for its analytical
tractability. More precisely, we analyze the accuracy and efficiency9 of CTMC approximations in valuing
different debt securities. Numerical convergence is also investigated. Note that Assumption 4.4.1 is not
respected under the Hull–White model.

In Appendix 4.12.2, a similar analysis is performed for the Vasicek and CIR models, two time-homogeneous
short-rate processes of Tables 4.1. The accuracy and efficiency of the CTMCmethods in approximating zero-
bond prices, Proposition 4.4.1, are also investigated, and numerical convergence is analyzed. Additional
examples with Dothan, exponential Vasicek, EV+, and EEV+ models are also available upon request. Results
under these models are similar to those obtained under the Hull–White and CIR++ short-rate processes
documented below.

All the numerical experiments are conducted with Matlab R2015a on a Core i7 desktop with 16GB RAM
and a speed of 2.40 GHz. Matrix exponentials are calculated using the function fastExpm for Matlab, see

9 The term “efficiency” refers to the ratio of the computation time of a procedure to the precision of its numerical result.
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Mentink-Vigier (2020), which is designed to accelerate the calculation of large (sparse and full) matrices.
Column “CTMC” reports the CTMC approximated value calculated using the results of Sections 4.4 or 4.5.
Column “Benchmark” presents the benchmark value, column “Abs. error” documents the absolute error10,
whereas column “Rel. error” provides the relative error. The convergence rate about the number of grid
pointsm is approximated using the following formula:

Rate ≈ log (em2/em1)

log (m1/m2)
,

where em is the absolute error using the number of grid points m. Throughout this chapter, log refers to
the natural logarithm.

In all the following numerical experiments, the model is calibrated to the market risk-free discount curve11
reported in Table 4.4. The calibration to themarket curve is performed using Algorithm 7 for the Hull–White
model and Algorithm 8 for the CIR++ model.

Table 4.4: Market zero-bond curve, t ↦→ P ⋆(0, t).
t 0.26 0.47 0.72 0.97 1.22 1.47 1.72 2 3 4

P⋆(0, t) 0.986944 0.976019 0.964123 0.953152 0.943283 0.934357 0.926202 0.917553 0.888740 0.861950

For the Hull-Whitemodel, the state-space of the approximated short-rate process, S(m)
R = {r1, r2, . . . , rm}

withm ∈ N, is constructed using the non-uniform grid proposed by Tavella and Randall (Tavella and Randall
(2000), Chapter 5.3). That is, we first select the grid lower and upper bounds, r1, rm ∈ SR, and set the
other grid points as follows rk = R0 + ˜︁αR sinh

(︁
c2

k
m + c1

[︁
1− k

m

]︁)︁
, k = 2, . . . , m − 1, where c1 =

sinh−1
(︁
r1−R0˜︁α )︁, c2 = sinh−1

(︁
rm−R0˜︁α )︁

, and ˜︁αR ≥ 0, controls the degree of non-uniformity of the grid.
For the CIR++ models, the same procedure is applied to the auxiliary process Y (m), and we denote by ˜︁αY

the grid non-uniformity parameter. Note that when R0 (or Y0 for the CIR++ model) is not in the grid, it
is inserted (see, for instance, Cui et al. (2019), Section 2.3 for details). Unless stated otherwise, all model
experiments are conducted using the model and the CTMC parameters summarized in Table 4.5.

10 The absolute error is defined as the absolute value of the difference between the CTMC approximated value and the benchmark
value.
11 The market discount curve is obtained from Bloomberg and corresponds to the US Dollar curve 23 as of March 31, 2023, from
the Swap Curve Builder (ICVS) page.
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Table 4.5: Model and CTMC parameters
R0 α κ σ m r1 rm ˜︁αR ∆N

Hull–White 0.04 N/A 1 0.20 160 −30r0 25r0 0.5 1/252
Y0 = R0 α κ σ m y1 ym ˜︁αY ∆N

CIR++ 0.04 0.035 2 0.20 160 y0/100 7y0 0.5 1/252
4.6.1 Approximation of Zero-Coupon Bond Option Prices
In this section, we study the accuracy and efficiency of (4.14), as well as the numerical convergence of
the approximated zero-coupon bond option prices, under the Hull–White and CIR++models12, respectively.
Under these particularmodels, the price of zero-coupon bond options have a closed-formexpression, which
can be found in Brigo and Mercurio (2006), Section 3, and thus, can serve as a benchmark in our analysis.

We test the accuracy of the approximated option prices for different levels of moneyness and volatilities.
The results are summarized in Table 4.6. Column “price-to-strike” shows the price-to-strike ratio, calculated
as the actual zero-coupon bond price over the option strike price K > 0. The price-to-strike ratio is a
measure indicating the degree of moneyness of an option. A ratio above (resp. below) one shows that the
call option is in the money (resp. out of the money), whereas a value of one indicates that the option is at
the money13.

We observe that the twomodels achieve high degrees of accuracy across all parameters and strikes, with ab-
solute errors below 8.11E-06. It is also worth noticing the high precision of the approximation for deep-out-
of-the-money options, indicating good approximations of the left tails of the underlying short-rate process.
Such a high level of accuracy can be difficult to attain when using other numerical techniques, particularly
for out-of-the-money options.

Analogous experiments have been conducted with put options, with similar results for out-of-the-money
put options, indicating good approximations of the right tails of the short-rate diffusion process. The ac-

12 For the CIR++ model, (4.14) can be greatly simplified using the time-homogeneous property of the auxiliary process Y (m), see
(4.43) in Appendix 4.10 for details.
13 The price-to-strike ratios differ between the Hull-White and CIR++ models because the short rate in the CIR++ model cannot
become negative, limiting the zero-bond price to 1.
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Table 4.6: Accuracy of the approximated price of zero-coupon bond call options, Proposition 4.4.2 and Corollary 4.9,
under the Hull–White and CIR++ models, respectively. Benchmark prices are calculated using closed-form analytical
formulas. Except for the number of grid points set to m = 200, model and CTMC parameters are as listed in Table
4.5. Zero-coupon bond call option parameters using the notation of Proposition 4.4.2: tn1 = 0, tn2 = 2, and T = 4.

σ price-to-strike CTMC Benchmark Abs. error

0.1

1.67 0.38741911 0.38741911 4.95E-14
1.25 0.22924215 0.22924215 3.43E-10
1.00 0.07281370 0.07281784 4.14E-06
0.83 0.00130678 0.00130552 1.26E-06
0.71 0.00000021 0.00000023 2.49E-08

σ price-to-strike CTMC Benchmark Abs. error

0.1

1.67 0.38741911 0.38741911 2.46E-11
1.25 0.22924215 0.22924215 2.18E-11
1.00 0.07106519 0.07106519 1.90E-11
0.95 0.03153223 0.03153224 9.24E-09
0.92 0.00150899 0.00150815 8.40E-07

σ price-to-strike CTMC Benchmark Abs. error

0.2

1.67 0.38741912 0.38741912 4.50E-10
1.25 0.22939397 0.22939439 4.21E-07
1.00 0.08510628 0.08509821 8.07E-06
0.83 0.01328299 0.01328294 4.45E-08
0.71 0.00083528 0.00083714 1.86E-06

σ price-to-strike CTMC Benchmark Abs. error

0.2

1.67 0.38741911 0.38741911 3.58E-10
1.25 0.22924215 0.22924215 3.12E-10
1.00 0.07106519 0.07106519 2.86E-10
0.95 0.03153223 0.03153224 9.24E-09
0.92 0.00299047 0.00299063 1.62E-07

σ price-to-strike CTMC Benchmark Abs. error

0.3

1.67 0.38743466 0.38743476 9.94E-08
1.25 0.23168156 0.23168115 4.13E-07
1.00 0.10193411 0.10192793 6.17E-06
0.83 0.03096382 0.03096201 1.81E-06
0.71 0.00681115 0.00681259 1.44E-06

σ price-to-strike CTMC Benchmark Abs. error

0.3

1.67 0.38741912 0.38741911 1.61E-10
1.25 0.22924215 0.22924215 1.39E-10
1.00 0.07106791 0.07106800 8.86E-08
0.95 0.03153223 0.03153224 9.24E-09
0.92 0.00432070 0.00431963 1.07E-06

σ price-to-strike CTMC Benchmark Abs. error

0.4

1.67 0.38776664 0.38776489 1.75E-06
1.25 0.23777915 0.23777104 8.11E-06
1.00 0.12017293 0.12017104 1.89E-06
0.83 0.05053076 0.05052852 2.24E-06
0.71 0.01840799 0.01841005 2.05E-06

(a) Hull–White model

σ price-to-strike CTMC Benchmark Abs. error

0.4

1.67 0.38741912 0.38741911 1.55E-10
1.25 0.22924215 0.22924215 1.23E-10
1.00 0.07110811 0.07111282 4.71E-06
0.95 0.03153223 0.03153224 9.24E-09
0.92 0.00545130 0.00544519 6.11E-06

(b) CIR++ model

curacy of the approximation across different model parameter values has also been tested. The methods
exhibit a high level of precision across all parameters. Results are available upon request.

We compare the efficiency of the CTMC methodology (4.14) to the trinomial tree method (“Tree”) of Hull
and White (1994) and Hull and White (1996), and Monte Carlo simulation (“Sim”) using the procedure of
Ostrovski (2013). For the Monte Carlo simulation, we used an Euler discretization scheme, with a number
of simulations ranging from 10, 000 to 100, 000 and 252-time steps per year. Figure 4.1 shows the results.
The calibration time is not included in the log elapsed time in Figure 4.1, that is, for the tree, the calculation
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Figure 4.1: Efficiency of the CTMC method (4.14) compared to trees and simulation methods in approximating the
price of zero-coupon bond call options under the Hull–White model. Except for the number of grid points m, which
range from 100 to 350, model and CTMC parameters are as listed in Table 4.5. For the tree, we use between 300 and
700 time steps per year. Zero-coupon bond call option parameters using the notation of Proposition 4.4.2: tn1 = 0,
tn2 = 2, T = 4, andK = 0.9.

time does not include the construction of the interest rate tree that perfectly fits the market data, and for
the CTMC approximation, the calculation time does not include the calibration of the model to the market
zero-bond curve using Algorithm 7. Note that the construction of the interest rate tree is generally much
faster than the CTMC calibration process with Algorithm 7. When using 252-time steps per year, the tree is
built in a fraction of a second, whereas the calibration processwith Algorithm 7 takes on average 3.2 seconds
withm = 160. Figure 4.1 shows the high efficiency of CTMC methods compared to other methods. CTMC
approximation clearly outperforms these other techniques in terms of both calculation time and precision.
The speed of the approximation for the extended models of Brigo and Mercurio (2006), such as the CIR++
model, is similar to that obtained for the homogeneous models with an average calculation time of less
than 0.015 seconds (excluding calibration).

The convergence patterns of the value of the call option to the analytical price as the number of grid points
m increases are displayed in Figure 4.2, whereas Table 4.7 shows the convergence rate. We observe that
the approximation achieves superquadratic convergence on average. The CTMC approximation is known
to achieve a theoretical quadratic convergence rate (rate = 2) for barrier and European options in one-
dimensional diffusion models with particular grid designs; see Zhang and Li (2019) for details. We also note
that the two models converge rapidly to their analytical values but exhibit a sawtooth pattern. Such oscil-
latory behavior has also been observed by Zhang and Li (2019) in the context of double barrier knock-out
options pricing within the CTMC approximation framework. In particular, they observe that constructing
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(a) Hull–White (b) CIR++
Figure 4.2: Convergence pattern of the approximated zero-coupon bond call prices under Hull–White and CIR++
models. Except for the number of grid pointsm, model and CTMC parameters are as listed in Table 4.5. Zero-coupon
bond call option parameters using the notation of Proposition 4.4.2: tn1 = 0, tn2 = 2, T = 4, andK = 0.9.

a grid with the strike placed precisely in the middle of two grid points removes oscillations (see Section
4.7 of their paper for details). However, their grid design is not directly applicable to the present context
since, in this chapter, the grid represents the state-space of the short-rate process R(m), and the option
(and the strike) depends on the zero-bond price P (m)(·, T ), whose approximation also depends on the grid
design. In the context of tree methods approximation, a detailed study of the oscillatory behavior of Eu-
ropean vanilla options has been performed in ?, whereas Tavella and Randall (2000), Chapter 5, observes
that convergence oscillation of the finite difference method can be reduced in a non-uniform grid design
when the strike is placed midway between two grid points. Further investigation into how grid design can
improve convergence is left for future research. Finally, since Assumption 4.4.1 is not satisfied under the
Hull-White model, the preceding experiments show that the results of Section 4.4 can hold under less re-
strictive conditions for a specific set of parameters14.

4.6.2 Approximation of Callable/Putable Bond Prices
We now examine the accuracy of Proposition 4.4.3 in approximating callable/putable bonds under the Hull–
White model. Accordingly, we consider a coupon-bearing bond with semi-annual coupons that mature in
4 years, T = 4. The coupon rate, denoted by α, is set to 5% per annum compounded semi-annually. The
notional of the debt is set to F = 100, and we assume that it can be called at any time between the second

14 Some testing has also been performed for the EV+ model, and the results are available upon request. These experiments also
indicate that Assumption 4.4.1 could potentially be relaxed.
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Table 4.7: Approximation of the convergence rate of the price of zero-coupon bond call options, Proposition 4.4.2 and
Corollary 4.9, under the Hull–White and CIR++ models, respectively. Benchmark prices are calculated using closed-
form analytical formulas. Except for the number of grid points, model and CTMC parameters are as listed in Table 4.5.
Zero-coupon bond call option parameters using the notation of Proposition 4.4.2: tn1 = 0, tn2 = 2, and T = 4.

(a) Hull–White model
m Abs. error Rate

60 1.20E-04 -
80 5.36E-05 2.791
100 2.98E-05 2.637
120 2.64E-05 0.661
160 1.07E-05 3.130

(b) CIR++ model
m Abs. error Rate

60 8.19E-08 -
80 4.64E-08 1.977
100 2.45E-08 2.854
120 1.71E-08 1.973
160 8.61E-09 2.387

and fourth year for no additional cost, that is, Kc
t = 100 for 2 ≤ t ≤ T , and we let Kc

t → ∞ when
t < 2 (as exercise is not allowed). Moreover, since there is no put feature, Kp := Kp

t = 0 for 0 ≤ t ≤ T .
Finally, we assume that accrued interest is paid to the bondholder upon redemption15. The results are
summarized in Table 4.8. The column “CTMC” shows the approximated value of the debt using CTMCs with
m = 160 as specified in Table 4.5, whereas the column “Benchmark” shows the CTMC approximated value
withm = 350. The value using the tree method of Hull and White (1994) is reported in the column “Tree”.

Figure 4.3: Convergence pattern of the approximated price of callable bonds, Proposition 4.4.3, as the number of grid
pointsm increases. Benchmark is calculated using CTMC approximation with m = 1, 000. Except for the number of
grid pointsm, model and CTMC parameters are as listed in Table 4.5. Contract specifications are F = 100, α = 0.05,
T = 4,Kc

t = 100, andKp = 0, with the call option exercise window starting from t = 2 to T .

15 This is a standard assumption in practice, meaning that the call priceKc
t is increased by accrued interest upon redemption.
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Table 4.8: Accuracy of Proposition 4.4.3 in approximating the price of callable bonds under the Hull–White model.
Benchmark is calculated using CTMC approximation withm = 350. Model and CTMC parameters are as listed in Table
4.5. For the tree method, we use 252-time steps per year. Contract specifications are F = 100, α = 0.05, T = 4,
Kc

t = 100, andKp = 0, with the call option exercise window starting from t = 2 to T = 4.

κ Benchmark CTMC
Rel. Elapsed

Tree
Rel. Elapsed

Error Time (sec) Error Time (sec)

0.5 91.6418214 91.6426071 8.57E-06 0.0936 91.6070243 3.80E-04 0.0411
1 95.6073132 95.6072144 1.03E-06 0.0897 95.5614168 4.80E-04 0.0301
2 98.5647947 98.5648058 1.13E-07 0.0961 98.5108693 5.47E-04 0.0167
3 99.7010757 99.7004280 6.50E-06 0.0916 99.6443817 5.69E-04 0.0157
σ Benchmark CTMC

Rel. Elapsed
Tree

Rel. Elapsed

Error Time (sec) Error Time (sec)

0.1 98.9838248 98.9818310 2.01E-05 0.0780 98.9454895 3.87E-04 0.0238
0.2 95.6073132 95.6072144 1.03E-06 0.0927 95.5614168 4.80E-04 0.0258
0.3 92.2381361 92.2382928 1.70E-06 0.1011 92.1871120 5.53E-04 0.0244
0.4 88.9338108 88.9340669 2.88E-06 0.1198 88.8822619 5.80E-04 0.0289

We observe that the approximated values from the CTMC and tree methods are close to each other, con-
firming the adequacy of Proposition 4.4.3. Additionally, the relative error of the CTMC approximation is
lower than that of the tree method. However, the tree method is shown to be 2 to 5 times faster than the
CTMC approximation. The efficiency of the two approaches is shown in the context of zero-coupon bond
option pricing in Figure 4.1.

The convergence pattern of the approximated callable price asm grows is displayed in Figure 4.3, whereas
Table 4.9 shows the convergence rates. The absolute error decreases rapidly to 0 but exhibits a sawtooth
pattern. As mentioned in Section 4.6.1, previous work in different contexts has shown that grid design can
improve convergence and that placing the strike midway between two grid points can reduce or remove
oscillatory behavior (see Tavella and Randall (2000) and Zhang and Li (2019) for details). However, the
methodologies proposed in these studies are not directly applicable to the present context. Therefore,
further investigation into how grid design can improve convergence is left for future research.
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Table 4.9: - Approximation of the convergence rate of the price of callable bonds, Proposition 4.4.3, as the number
of grid points m increases. Benchmark is calculated using CTMC approximation with m = 1, 000. Except for the
number of grid pointsm, model and CTMC parameters are as listed in Table 4.5. Contract specifications are F = 100,
α = 0.05, T = 4,Kc

t = 100, andKp = 0, with the call option exercise window starting from t = 2 to T .
m Abs. error Rate

50 3.21E-03 -
80 1.73E-03 1.31
120 5.81E-04 2.70
140 4.75E-04 1.31
175 2.47E-04 2.93

4.6.3 Approximation of Convertible Bond Prices
We now investigate the accuracy and efficiency of Proposition 4.5.3 in approximating CB prices under the
Black–Scholes–Hull–White model, as well as the numerical convergence of the price estimates. That is, we
suppose that the stock price dynamics follow a geometric Brownian motion with stochastic interest rate
satisfying

dSt = (Rt − qt)St dt+ ˜︁σSSt dW (1)
t ,

dRt = (θ(t)− κRt) dt+ ˜︁σR dW
(2)
t ,

(4.31)
with κ, ˜︁σS , ˜︁σR>0, and [W (1),W (2)]t = ρt, ρ ∈ [−1, 1].

From Lemma 4.1, we find that f(r) = ˜︁σS˜︁σR
r. The dynamics of the auxiliary process Xt = ln(St)− ρf(Rt)

can then be derived as
dXt = µX(t, Rt) dt+ σX(Rt) dW

⋆
t

dRt = (θ(t)− κRt) dt+ ˜︁σR dW
(2)
t ,

(4.32)

with µX(t, Rt) = Rt − qt −
˜︁σ2
S
2 − ρ

˜︁σS˜︁σR
(θ(t)− κRt), σX = ˜︁σS√︁1− ρ2, andX0 = ln(S0)− ρf(R0).

Unless stated otherwise, the model parameters for the short-rate process are the same as those used in
previous examples, summarized in Table 4.5. Recall also that function θ is calibrated to themarket zero-bond
curve in Table 4.4 using Algorithm 7, as explained in Section 4.4.4. Unless stated otherwise, we suppose
that ˜︁σS = 0.2, qt = 0.02 for all t ∈ [0, T ], and ρ = −0.2. The model parameters are summarized in Table
4.10.
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Table 4.10: Model parameters
Model R0 qt κ ˜︁σR S0 ˜︁σS ρ

Black–Scholes–Hull–White 0.04 0.02 1 0.20 100 0.2 −0.2

The grid used to approximate the short-rate process, S(m)
R = {r1, r2, . . . , rm}, and the auxiliary process

S(M)
X = {x1, x2, . . . , xM}, are constructed using the methodology of Tavella and Randall (Tavella and Ran-

dall (2000), Chapter 5), as explained at the beginning of this section, with ˜︁αR (resp. ˜︁αX ) representing the
non-uniformity parameter of the grid of R(m) (resp. X(m)). Unless otherwise indicated, all numerical ex-
periments are conducted using the CTMC parameters listed in Table 4.11. Note also that the fast versions of
Propositions 4.5.1 and 4.5.3 reported in Appendix 4.11 have been used in all numerical examples.

Table 4.11: CTMC parameters
Model m M r1 rm ˜︁αR x1 xM ˜︁αX ∆N

Black–Scholes–Hull–White 160 160 −30R0 25R0 0.5 0.64X0 1.42X0 2 1/252

For the testing, we consider a convertible bond that pays semi-annual coupons with an annual rate α =

0.05 and has a notional value F = 100. We suppose that the bond can be converted at any time from
inception to maturity (T = 1) at a conversion rate η = 1. Under this set of parameters and assuming that
both the dividend yield and credit risk are nil (qt = ct = 0 for all t ∈ [0, T ]), the valuation of American-
style CBs simplifies to the valuation of European-style convertible bonds, as stated in Proposition 4.5.2 and
generalized to coupon paying bonds in Proposition 4.4. In that particular case, the results of Proposition
4.12.116 can thus serve as a benchmark in our analysis. When qt, ct > 0 for some t ∈ [0, T ], the benchmark
is calculated using CTMC approximation withM = 300. All other parameters are as stated in Table 4.11. The
results are summarized in Table 4.12. We note that the model achieves a high level of accuracy across all
model parameters, with an average calculation time of less than 10 seconds. When the short-rate process is
time-homogeneous, the matrix exponential can be calculated only once at the beginning of the procedure,
which speeds up the procedure significantly. For instance, under the Black–Scholes–Vasicek model, the
average calculation time for the CTMC approximated prices is less than 1.7 seconds. Numerical results for
that particular model are reported in Appendix 4.12.2.

16 The expected present value of future coupons should be added to the formula obtained in Proposition 4.12.1.
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Table 4.12: Accuracy of the approximation of American-style CB prices, Algorithm 11, under Black–Scholes–Hull–
White model. Model and CTMC parameters are as listed in Tables 4.10 and 4.11, respectively. Contract specifications
are F = 100, T = 1, and η = 1, with an annual coupon rate α = 0.05 paid semi-annually.

(a) qt = ct = 0 for all t ∈ [0, T ]

S0 CTMC Benchmark Rel. error

90 105.15488 105.15732 2.32E-05
95 107.56087 107.57350 1.17E-04
100 110.48565 110.50458 1.71E-04
105 113.87792 113.89940 1.89E-04
110 117.66876 117.68977 1.79E-04

(b) qt = 0.02, ct = 0.05 for all t ∈ [0, T ]

S0 CTMC Benchmark Rel. error

90 101.96277 101.93530 2.69E-04
95 104.84800 104.82384 2.30E-04
100 108.25070 108.21547 3.26E-04
105 112.07490 112.03748 3.34E-04
110 116.24312 116.19981 3.73E-0

σS CTMC Benchmark Rel. error

0.1 107.36113 107.38133 1.88E-04
0.15 108.82431 108.84084 1.52E-04
0.2 110.48565 110.50458 1.71E-04
0.3 114.04675 114.07719 2.67E-04
0.4 117.72017 117.76496 3.80E-04

σS CTMC Benchmark Rel. error

0.1 105.52046 105.48338 3.52E-04
0.15 106.75571 106.71897 3.44E-04
0.2 108.25070 108.21547 3.26E-04
0.3 111.58183 111.55168 2.70E-04
0.4 115.08975 115.06539 2.12E-04

ρ CTMC Benchmark Rel. error

-0.3 110.20950 110.22594 1.49E-04
-0.2 110.48565 110.50458 1.71E-04
0.2 111.50772 111.53335 2.30E-04
0.3 111.74601 111.77262 2.38E-04

ρ CTMC Benchmark Rel. error

-0.3 107.99824 107.96134 3.42E-04
-0.2 108.25070 108.21547 3.26E-04
0.2 109.19534 109.16259 3.00E-04
0.3 109.41008 109.38793 2.03E-04

Figure 4.4 shows the efficiency of the methodology compared to other recently developed numerical ap-
proaches. For this testing, we considered zero-coupon CBs (α = 0), andwe set θ(t) = κR0 for all t ∈ [0, T ],
such that the short-rate process collapses to the Vasicekmodel with a long-termmean level equal toR0. We
compare the CTMC approximated prices to the Willow tree approach (“Willow Tree”) of Lu and Xu (2017),
the quadrinomial tree (“Quad. Tree”) of Battauz and Rotondi (2022), and the LSMC method of Longstaff
and Schwartz (2001). All methodologies listed above have been adapted to incorporate credit risk as in the
work of Tsiveriotis and Fernandes (1998) for a better comparison. When both credit spread and dividend
yield are set to nil, the benchmark is obtained using the closed-form formula derived in Proposition 4.12.1;
otherwise, CTMC approximation is used as a benchmark withM = 1, 000, and all other CTMC parameters
are as listed in Table 4.11. Figure 4.4 clearly shows the high efficiency of the CTMCmethodologies compared
to other methods. CTMC approximation significantly outperforms these other techniques in terms of both
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(a) qt = ct = 0 for all t ∈ [0, T ] (b) qt = 0, ct = 0.05 for all t ∈ [0, T ]

Figure 4.4: Efficiency of the CTMC method in approximating CB prices, Algorithm 11, under the Black—Scholes–
Vasicek model. Except for the number of grid pointsM , ∆N = 1/100 and θ(t) = κR0 for all t ∈ [0, T ], the model
and CTMC parameters are as listed in Tables 4.10 and 4.11, respectively. Contract specifications are F = 100, T = 1,
η = 1, and α = 0.

precision and calculation time.

The convergence pattern of the approximation as M increases is illustrated in Figure 4.5, whereas Table
4.13 shows the convergence rate.

(a) qt = ct = 0 for all t ∈ [0, T ] (b) qt = 0.02, ct = 0.05 for all t ∈ [0, T ]

Figure 4.5: Convergence pattern of the approximated CB prices using CTMC method, Algorihtm 11, under
Black—Scholes–Hull–White model. Except for the number of grid pointsM of the auxiliary process, the model and
CTMC parameters are as listed in Tables 4.10 and 4.11, respectively. Contract specifications are F = 100, T = 1, and
η = 1, with an annual coupon rate α = 0.05 paid semi-annually.
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Table 4.13: Approximation of the convergence rate of the approximated CB prices using CTMCmethod, Algorithm 11,
under Black–Scholes–Hull-White model. Except for the number of grid pointsM of the auxiliary process, the model
and CTMC parameters are as listed in Tables 4.10 and 4.11, respectively. Contract specifications are F = 100, T = 1,
and η = 1, with an annual coupon rate α = 0.05 paid semi-annually.

(a) qt = ct = 0 for all t ∈ [0, T ]

m Rel. error Rate

20 5.50E-03 -
50 5.59E-04 2.494
100 2.21E-04 1.340
150 1.65E-04 0.714
500 1.25E-04 0.231

(b) qt = 0.02, ct = 0.05 for all t ∈ [0, T ]

m Rel. error Rate

20 5.38E-03 -
50 3.43E-04 3.004
100 5.17E-05 2.731
150 1.30E-05 3.396
500 2.45E-06 1.390

We observe that the approximated prices converge rapidly and smoothly to the benchmark prices, and the
approximation achieves superquadratic convergence on average when accounting for both the dividend
yield and credit risk.

Appendix 4.12.2 shows similar results under the Black–Scholes–Vasicek model. Analogous numerical anal-
ysis has also been performed under the Black–Scholes–CIR model with similar results, which are available
upon request. Finally, since Assumption 4.4.1 is not satisfied under the Black-Scholes–Hull–White model,
the preceding experiments demonstrate that the results of Section 4.5 can still be valid under less restrictive
conditions under a certain set of parameters. Theoretical proof is left as future research.

4.7 Conclusion
In this chapter, we provide a general pricing framework based on continuous-time Markov chain approxi-
mations to value debt securities under general time-inhomogenous short-rate models. One advantage of
CTMC methods over other commonly used numerical techniques is that they allow for a closed-form ma-
trix expression for the price of zero-coupon bonds regardless of the complexity of the short-rate dynamics,
making the calibration of the approximated model to the current market-term structure straightforward
for a wide range of models. Closed-form matrix expressions are also obtained for the price of bond op-
tions and European CBs, and simple and efficient algorithms are developed to approximate the values of
callable/putable bonds and CBs (American-style). Numerical results show the high accuracy and great ef-
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ficiency of the methodology. Theoretical convergence is also discussed. The problem of CB pricing is also
studied from a theoretical perspective. When both credit spread and dividend yield are set to nil and under
some conditions on the parameters of the equity process (constant volatility), we show that early conver-
sion is sub-optimal. When default risk is considered, we obtain lower and upper bounds for the value of
American-style CBs.

Alternative approaches to credit risk modeling, such as the one of Hung and Wang (2002) and Chambers
and Lu (2007) or Milanov et al. (2013), can also be explored using CTMCs. The methodologies proposed
by Hung and Wang (2002) and Chambers and Lu (2007) can be easily integrated. However, Milanov et al.
(2013) introduce default risk by incorporating a jump into the equity process. Jump processes in CTMCs
have been studied in a one-dimensional setting by Lo and Skindilias (2014), while Kirkby (2023), Appendix
B, discusses some extensions to two-dimensional processes. Other developments to the present work can
also be considered. For example, building on insights from Brigo and Mercurio (2006), Sections 2.6.1 and
3.3.2., the closed-form expression obtained for the price of bond options in (4.14) and Remark 4.4.5 can be
used to approximate other derivatives like caps, floors, and swaptions. The pricing of these derivatives, as
well as the associated model calibration, should be studied in greater detail.

4.8 Appendix - Proofs
4.8.1 Proof of Lemma 4.2
Without loss of generality, suppose that i = 0 and that ˜︁N = N . Since R(m) is a discrete random
process whose transitional probabilities pk1k2(tn−1, tn), 1 ≤ k1, k2 ≤ m, 1 ≤ n ≤ N are given by
P(tn−1, tn) = exp

{︂
Q

(m)
n ∆N

}︂ as per (4.3), we have that
E
[︂
e−

∑︁N
n=1 R

(m)
tn

∆N
⃓⃓
R

(m)
0 = rj

]︂
=

m∑︂
k1,k2,...,kN=1

e−
∑︁N

l=1 rkl∆Npjk1(t0, t1)pk1k2(t1, t2) . . . pkN−1kN (tN−1, tN )

=

m∑︂
k1,k2,...,kN=1

pjk1(t0, t1)e
−rk1∆Npk1k2(t1, t2)e

−rk2∆N . . . pkN−1kN (tN−1, tN )e−rkN∆N

= ej

(︄
N∏︂

n=1

P(tn−1, tn)e
−Dm∆N

)︄
1m×1

= ej

(︄
N∏︂

n=1

eQ
(m)
n ∆N e−Dm∆N

)︄
1m×1,
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where the fourth line is the matrix representation of the third line. The result follows similarly when ˜︁N =

kN . The proof for (4.12) follows using analogous arguments. □

4.8.2 Proof of Proposition 4.4.1
Using the notation of Lemma 4.2, we have that

E
[︃
e
−

∫︁ T
ti

R
(m)
s ds⃓⃓

R
(m)
ti

= rj

]︃
= E

[︃
lim˜︁N→∞

e
−

∑︁ ˜︁N
n=ki+1 R

(m)˜︁tn ∆ ˜︁N ⃓⃓R(m)˜︁tki = rj

]︃
= lim˜︁N→∞

E
[︃
e
−

∑︁ ˜︁N
n=ki+1 R

(m)˜︁tn ∆ ˜︁N |R(m)˜︁tki = rj

]︃
(by the dominated convergence theorem)

= lim˜︁N→∞
ej

(︄
N∏︂

n=i+1

(︂
eQ

(m)
n ∆ ˜︁N e−D∆ ˜︁N)︂ ˜︁N

N

)︄
1m×1 (by (4.11))

= ej

(︄
N∏︂

n=i+1

e(Q
(m)
n −D)∆N

)︄
1m×1 (by the Lie product formula).

4.8.3 Extension of Proposition 4.5.2 and Corollary 4.3
This section shows that the results of Proposition 4.5.2 and Corollary 4.3 still hold when periodic coupons
are paid. We suppose that ˜︁N > 0 periodic coupons α > 0 are paid at time 0 < tz < t2z < . . . < t

z ˜︁N = T ,
with z = N/ ˜︁N . The time-t risk-neutral value of a European-style CB is given by

vαe (t, x, r) := E
[︂
e−

∫︁ T
t Ru duηST1{ST≥F/η} + e−

∫︁ T
t Ru+cu duF1{ST<F/η}

⃓⃓
St = x,Rt = r

]︂
+ α

˜︁N∑︂
n=1

E
[︂
e−

∫︁ tzn
t Ru+cu du

⃓⃓⃓
St = x,Rt = r

]︂
1{tzn>t}

= ve(t, x, r) + α

˜︁N∑︂
n=1

e−
∫︁ tzn
t cu duPr(t, tzn)1{tzn>t},

(4.33)

where Pr(t, tzn) := E
[︂
e−

∫︁ tzn
t Ru du

⃓⃓
Rt = r

]︂ with P (t, tzn) = 1 whenever tzn ≤ t. Hence, the value of
European-style CBs with coupons is equal to the value of European-style CBs without coupons to which the
present value of future coupons is added. When conversion can occur at any time prior to maturity, the
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time-t risk-neutral value of the CB is given by
vα(t, x, r) := sup

τ∈Tt,T
E

[︄
e−

∫︁ τ
t Ru+cu1{τ=T,ST<F/η} duφ(τ, Sτ )

+ α

˜︁N∑︂
n=1

e−
∫︁ tzn
t Ru+cu du1{t<tzn≤τ}

⃓⃓⃓
St = x,Rt = r

]︄
,

(4.34)

with function φ defined in (4.27).

The next corollary extends Proposition 4.5.2 to coupon-bearing bonds. Under the assumption that no divi-
dend yield is paid out and credit risk is nil, the value of coupon-bearing American-type CBs is equivalent to
the value of coupon-bearing European-type CBs.

Corollary 4.4 Assume qt = ct = 0 for all t ∈ [0, T ] and σS(r) = ˜︁σS > 0 for all r ∈ SR. We have that

vα(t, x, r) = vαe (t, x, r) for all (t, x, r) ∈ [0, T ]× R⋆
+ × SR.

Proof. Define process
{︂ ˜︁Zs := α

∑︁ ˜︁N
n=1 e

−
∫︁ tzn
t Ru du1{t<tzn≤s}

}︂
t≤s≤T

, representing the discounted value of

future coupons, and note that

vα(t, x, r) ≤ sup
τ∈Tt,T

E

[︄
e−

∫︁ τ
t R(u) duφ(τ, Sτ )

⃓⃓⃓
St = x,Rt = r

]︄
+ sup

τ∈Tt,T
E
[︂ ˜︁Zτ

⃓⃓⃓
St = x,Rt = r

]︂
= ve(t, x, r) + E

[︂ ˜︁ZT

⃓⃓⃓
St = x,Rt = r

]︂
= vαe (t, x, r),

where the second equality follows from Proposition 4.5.2 and by noticing that ˜︁Zs ↑ ˜︁ZT . We conclude the

proof by observing that vα(t, x, r) ≥ vαe (t, x, r) for all (t, x, r) ∈ [0, T ]× R⋆
+ × SR, since T ∈ Tt,T . □

Let ˜︁vαe : [0, T ] × R⋆
+ × SR → R+ denote the value of European-style CBs (with periodic coupon α) when

ct = 0 for all t ∈ [0, T ]. Using (4.33), it follows that
˜︁vαe (t, x, r) := E

[︂
e−

∫︁ T
t Ru dumax (ηST , F )

⃓⃓
St = x,Rt = r

]︂
+ α

˜︁N∑︂
n=1

Pr(t, tzn)1{tzn>t}

= ˜︁ve(t, x, r) + α

˜︁N∑︂
n=1

Pr(t, tzn)1{tzn>t},
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where ˜︁ve is defined in (4.28) and represents the value of European-style CBs when no coupons are paid and
when ct = 0 for all t ∈ [0, T ].

The next corollary extends the results of Corollary 4.3 to coupon-bearing bonds. It provides an upper bound
for American-type CBs under the assumption that no dividends are distributed.

Corollary 4.5 Assume qt = 0 for all t ≥ 0 and σS(r) = ˜︁σS > 0 for all r ∈ SR. We have that

vαe (t, x, r) ≤ vα(t, x, r) ≤ ˜︁vαe (t, x, r) for all (t, x, r) ∈ [0, T ]× R⋆
+ × SR.

The proof is akin to that of Corollary 4.3.

4.9 Appendix - Time-Homogeneous Models
When the short-rate process is time-homogeneous (see, for instance, models listed in Table 4.1), the gen-
erator is time-independent, and the results obtained in Section 4.4 can be simplified. The construction of
the generator remains the same as in Section 4.3.1, except that we now have Q(m) := Q

(m)
1 = Q

(m)
2 =

. . . = Q
(m)
N , which follows because the drift and volatility parameters of R are now time-independent.

In this appendix, we summarize the different results obtained previously under the assumption that the
short-rate process is time-homogeneous.

Recall that {ek}mk=1 denotes the standard basis inRm, that is, ek represents a row vector of size 1×mwith
a value of 1 in the k-th entry and 0 elsewhere, 1m×1 denotes anm× 1 unit vector, andDm := diag(r), is
anm×m diagonal matrix with vector r = (r1, r2, . . . , rm) on its diagonal, rk ∈ S(m)

R , k = 1, 2 . . . ,m.

4.9.1 Zero-Coupon Bond
The first result of this section concerns the price of zero-coupon bonds.

Corollary 4.6 Consider a time partition of [0, T ], 0 = ˜︁t0 < ˜︁t1 < . . . < ˜︁t ˜︁N = T , with ˜︁N ∈ N,∆ ˜︁N = T/ ˜︁N
and ˜︁tn = n∆ ˜︁N . Given that R(m)˜︁ti = R˜︁ti = rj ∈ S(m)

R , it holds that

E
[︃
e
−

∑︁ ˜︁N
n=i+1 R

(m)˜︁tn ∆ ˜︁N ⃓⃓R(m)˜︁ti = rj

]︃
= ej

(︂
eQ

(m)∆ ˜︁N e−Dm∆ ˜︁N)︂ ˜︁N−i
× 1m×1, (4.35)
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and

E
[︃
e
−

∑︁ ˜︁N
n=i R

(m)˜︁tn ∆ ˜︁N ⃓⃓R(m)˜︁ti = rj

]︃
= ej

(︂
e−Dm∆ ˜︁N eQ(m)∆ ˜︁N)︂ ˜︁N−i

e−Dm∆ ˜︁N × 1m×1

= eje
−Dm∆ ˜︁N (︂eQ(m)∆ ˜︁N e−Dm∆ ˜︁N)︂ ˜︁N−i

× 1m×1,

(4.36)

Moreover, if Assumption 4.4.1 holds, the price at time t ≥ 0 of a zero-coupon bond with maturity T ≥ t can

be approximated by

P
(m)
j (t, T ) := E

[︂
e−

∫︁ T
t R

(m)
s ds

⃓⃓
R

(m)
t = rj

]︂
= eje

(Q(m)−Dm)(T−t)1m×1, (4.37)
given that R(m)

t = Rt = rj ∈ S(m)
R .

The proof follows by setting ˜︁N = N and Q(m) = Q
(m)
1 = Q

(m)
2 = . . . = Q

(m)
N in Lemma 4.2, Remark

4.4.1, and Proposition 4.4.1. (4.37) was previously obtained by Cui et al. (2018) Proposition 8 (ii) and Kirkby
(2023), Proposition 3, whereas the first equality of (4.36) is provided, in a more general form, in Cui et al.
(2018) Proposition 8 (i). The proof in Appendix 4.8 differs from these previous proofs and provides a simple
and intuitive way of obtaining these results using basic probabilistic arguments.

4.9.2 Zero-Coupon Bond Option
The next result concerns the price of European call and put options on zero-coupon bonds.

Corollary 4.7 Let Assumption 4.4.1 hold. Given that R(m)
tn1

= rj ∈ S(m)
R , the price at tn1 ≥ 0 of a European

call (resp. put) option with maturity tn2 > tn1 on a zero-coupon bond maturing at time T > tn2 with a

strikeK > 0 can be approximated by

E
[︃
e
−

∫︁ tn2
tn1

R
(m)
s ds

h
(︂
P (m)(tn2 , T )

)︂ ⃓⃓⃓
R

(m)
tn1

= rj

]︃
= ej

(︂
e(Q

(m)−Dm)(tn2−tn1 )
)︂
H, (4.38)

where h(x) = max(x − K, 0) (resp. h(x) = max(K − x, 0)) denotes the payoff function,

P (m)(tn2 , T ) := E
[︃
e
−

∫︁ T
tn2

R
(m)
s ds

⃓⃓⃓
R

(m)
tn2

]︃
denotes the approximated zero-coupon bond price at tn2 , and

H denotes a column vector of sizem× 1 whose k-th, hk, entry is given by

hk = h
(︂
P

(m)
k (tn2 , T )

)︂
,

with P (m)
k (tn2 , T ) defined in (4.37).
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4.10 Appendix - Extended Models of Brigo and Mercurio (2006)
In this section, we summarize the results of Section 4.4 under particular time-inhomogeneous short-rate
models, for which the short-rate process is obtained by a time-deterministic shift of a time-homogeneous
auxiliary process. More precisely, we suppose that the short-rate process can be decomposed as

Rt = Yt + θ(t), (4.39)
for t ≥ 0, where θ denotes a continuous deterministic function of time and Y denotes an auxiliary time-
homogeneous diffusion process with the following dynamics:

dYt = µY (Yt) dt+ σY (Yt) dWt, (4.40)
where µY , σY : SY → R are well-behaved functions such that (4.40) has a unique in-law weak solution
with SY the state-space of Y . Examples of such diffusion processes are listed in Table 4.3.

In this section, the auxiliary process Y is approximated by a CTMC. We denote by Y (m) the CTMC approxi-
mation of Y taking values in a finite state-space S(m)

Y = {y1, y2, . . . , ym}. The time-independent generator
of Y (m), denoted by Q(m)

Y , is constructed as in (4.5), with functions µR and σR replaced by functions µY
and σY of (4.40), respectively. Moreover, since the auxiliary process is time-homogenous, the generator of
Y (m) does not depend on time, such thatQ(m)

Y := Q
(m)
1 = Q

(m)
2 = . . . = Q

(m)
N . Using (4.39), the CTMC

approximation of the short-rate process R(m) is given by
R

(m)
t = Y

(m)
t + θ(t),

for t ≥ 0, with θ(0) = 0.

Remark 4.10.1 (Weak convergence of the approximation) Theweak convergence ofY (m) toY follows from

Theorem 5.1 of Mijatović and Pistorius (2013). Then, since R is a continuous transformation of Y , we con-

clude that R(m) ⇒ R by the continuous mapping Theorem.

Recall that {ek}mk=1 denotes the standard basis inRm, that is, ek represents a row vector of size 1×mwith
a value of 1 in the k-th entry and 0 elsewhere, 1m×1 denotes an m × 1 unit vector, and DY := diag(y)
denotes an m × m diagonal matrix with vector y = (y1, y2, . . . , ym) on its diagonal, with yk ∈ S(m)

Y ,
k = 1, 2, . . . ,m.
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4.10.1 Zero-Coupon Bond
The next corollary shows that the price of zero-coupon bonds inherits the analytical tractability of the ho-
mogeneous auxiliary process Y .

Corollary 4.8 Suppose that there exists y⋆ ∈ SY such that Yt ≥ y⋆ for all t ≥ 0. Then, the price at time

t ≥ 0 of a zero-coupon bond with maturity T ≥ t can be approximated by

P
(m)
j (t, T ) := E[e−

∫︁ T
t R

(m)
s ds

⃓⃓
R

(m)
t = yj + θ(t)] = e−

∫︁ T
t θ(s) ds ˜︁P (m)

j (t, T ), (4.41)
with ˜︁P (m)

j (t, T ) := E
[︂
e−

∫︁ T
t Y

(m)
s ds

⃓⃓
Y

(m)
t = yj

]︂
= eje

(︂
Q

(m)
Y −DY

)︂
(T−t)

1m×1, (4.42)
where Yt = Y

(m)
t = yj ∈ S(m)

Y .

The proof follows directly from Corollary 4.6.

4.10.2 Zero-Coupon Bond Option
The next result concerns the price of European call and put options on zero-coupon bonds. Using the ho-
mogeneous property of the auxiliary process, we can obtain a simplified expression for (4.14).

Corollary 4.9 Suppose that there exists y⋆ ∈ SY such that Yt ≥ y⋆ for all t ≥ 0. Given that R(m)
tn1

=

yj + θ(t), with yj ∈ S(m)
Y , the price at tn1 ≥ 0 of a European call (resp. put) option with maturity tn2 > tn1

on a zero-coupon bond maturing at time T > tn2 with a strikeK > 0 can be approximated by

E
[︃
e
−

∫︁ tn2
tn1

R
(m)
s ds

h
(︂
P (m)(tn2 , T )

)︂ ⃓⃓⃓
R

(m)
tn1

= yj + θ(t)

]︃
= eje

−
∫︁ tn2
tn1

θ(s) ds
(︃
e

(︂
Q

(m)
Y −DY

)︂
(tn2−tn1 )

)︃
H, (4.43)

where h(x) = max(x − K, 0) (resp. h(x) = max(k − x, 0)) denotes the payoff function with

P (m)(tn2 , T ) := E
[︃
e
−

∫︁ T
tn2

R
(m)
s ds

⃓⃓⃓
R

(m)
tn2

]︃
andH denotes a column vector of sizem × 1 whose k-th entry,

hk, is given by

hk = h
(︂
P

(m)
k (tn2 , T )

)︂
,

with P (m)
k (tn2 , T ) defined in (4.41).
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4.10.3 Calibration to the Initial Term Structure of Interest Rates
When the short-rate process is of the form Rt = Yt + θ(t), as in Table 4.3, the fitting to the term structure
of interest rates can be greatly simplified, since the function θ now appears explicitly in the zero-coupon
bond formula (4.41).

Proposition 4.10.1 provides an explicit expression for the function θ thatmakes themodel zero-coupon bond
prices equal to the market prices when the short-rate process is of the form (4.39). As in Section 4.4.4, we
assume that the time deterministic function θ is piecewise constant in time, such that

θ(t) =
N∑︂

n=1

θn1[tn−1,tn)(t),

for some θ = (θ1, θ2, . . . , θN ) ∈ RN . The objective is thus to find parameters θ such that P (m)
j (0, tn) =

P ⋆(0, tn) forn = 1, 2, . . . , N , whereP ⋆ represents themarket zero-couponbondprices. Those parameters
are called the calibrated parameters and are denoted by a star θ⋆.

Proposition 4.10.1 Suppose that there exists y⋆ ∈ SY such that Yt ≥ y⋆ for all t ≥ 0. Given R0 = R
(m)
0 =

yj ∈ S(m)
Y , we have that

θ⋆n :=

⎧⎪⎪⎨⎪⎪⎩
− 1

tn
ln

(︃
P ⋆(0,tn)˜︁P (m)
j (0,tn)

)︃
if n = 1

− 1
tn−tn−1

ln

(︃
P ⋆(0,tn)

P ⋆(0,tn−1)

˜︁P (m)
j (0,tn−1)˜︁P (m)
j (0,tn)

)︃
if n = 2, 3, . . . , N,

(4.44)

where ˜︁P (m)
j (0, ·) is defined in (4.42).

The proof is straightforward from Corollary 4.8.

The calibrated parameters in (4.44) can easily be obtained by calculating the zero-coupon bond price at
each time {t1, t2, . . . , tn}. This procedure involves calculating matrix exponentials at each time step, which
can slow down the execution considerably. However, by taking advantage of the homogeneous property
of Y , the matrix exponentials can be calculated only once at the beginning of the procedure, which makes
it highly efficient. This is illustrated in Algorithm 8. In Algorithm 8, ˜︁P(tn) := [ ˜︁P (m)

j (0, tn)]
m
j=1 is a column

vector of sizem× 1, with ˜︁P (m)
j (0, tn) defined in (4.42).
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Algorithm 8: Calibration of θ to the Current Market Term-Structure - Extended Models of Brigo and
Mercurio (2006)
Input: InitializeQ(m)

Y and let t ↦→ P ⋆(0, t) be the current market zero-bond curve
N ∈ N, the number of time steps
∆N ← T/N , the size of a time step

1 Set tn = n∆N , n = 1, 2, . . . , N

2 SetDY ← diag(y) with y = (y1, y2, . . . , ym), yk ∈ S(m)
Y , k = 1, 2, . . . ,m

/* Adjusted transition probability matrix of Y over a period of length ∆N */

3 A∆N
← e(Q

(m)
Y −DY )∆N

/* Calibration to the current market zero-bond curve t ↦→ P ⋆(0, t) */

4 Set ˜︁P(t1)← A∆N
1m×1

5 Set θ⋆1 = − 1
t1
ln
(︂
P ⋆(0,t1)

ej ˜︁P(t1)

)︂
6 for n = 2, . . . , N do

7 ˜︁P(tn)← A∆N
˜︁P(tn−1)

8 θ⋆n = − 1
tn−tn−1

ln
(︂

P ⋆(0,tn)
P ⋆(0,tn−1)

ej ˜︁P(tn−1)

ej ˜︁P(tn)

)︂
9 return {θ⋆n}Nn=1

4.11 Appendix - Algorithms
This section presents the results of Section 4.5 into an algorithm format. More precisely, Proposition 4.5.3
is provided in Algorithm 10. Using the results of Proposition 3.4, a fast version of Proposition 4.5.1 for the
pricing of European-style CBs is also provided in Algorithm 9, whereas the fast-version of Proposition 4.5.3
for the pricing American-style CBs is provided in Algorithm 11.

4.11.1 European-Style Convertible Bond
Using the tower property of conditional expectations and Proposition 3.4 inspired from thework of Chapter
3, we present a new algorithm (Algorithm 9) that speeds up the pricing of European-style CBs. In Chapter
3, we work with stochastic volatility models. However, the reasoning behind the proof is the same for
stochastic interest rate models as in the present context.

The following notation is used in Algorithm 9.
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1. B = [bkl]
m,M
k,l=1 denotes a matrix of sizem×M , containing the value of the CB.

2. B∗,l = [bkl]
m
k=1 denotes the l-th column ofB, l = 1, 2, . . . ,M ,

3. Bk,∗ = [bkl]
M
l=1 denotes the k-th row ofB, k = 1, 2, . . . ,m.

4. The symbol⊤ indicates the matrix (vector) transpose operation.

Algorithm 9: European-style CB – Fast Algorithm
Input: InitializeQ(m)

n as in (4.5), andΛ
(n,M)
k as in (4.8), for k = 1, 2, . . . ,m, n = 1, 2, . . . , N

N ∈ N, the number of time steps,
∆N ← T/N , the size of a time step

1 For each k ∈ {1, 2, . . . ,m}, set
Bk,∗ ←

[︂
ηexl+ρf(rk)1{exl+ρf(rk)≥F/η} + e−

∫︁ T
0 cu duF1{exl+ρf(rk)<F/η}

]︂M
l=1

2 for n = N − 1, . . . , 0 do

3 for k = 1, 2, . . . ,m do

4 PX
n,k ← eΛ

(n+1,M)
k ∆N e−rk∆N

5 E∗,k ← PX
n,kB

⊤
k,∗

6 PR
n ← eQ

(m)
n+1∆N

7 for l = 1, 2, . . . ,M do

8 B∗,l ← PR
nE

⊤
l,∗

9 return bji

Remark 4.11.1 (Extension to coupon-bearing bonds) Algorithm 9 is set up for zero-coupon CBs. However,

extension to coupon-bearing bonds is straightforward. More precisely, when a coupon α > 0 is paid at time

tn+1, then the column vector E∗,k at time tn, line 5 of the algorithm, must be modified as follow

E∗,k ← PX
n,k

(︂
B⊤

k,∗ + α1M×1

)︂
,

for each k ∈ {1, 2, . . . ,m}.

Proposition 3.4 allows the separation of thematricesΛ(n,M)
k andQ(m)

n at each time stepn ∈ {1, 2, . . . , N}.
Hence, the matrix exponential of a large sparse matrixG(mM)

n of sizemM ×mM is replaced bym calcu-
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lations of the exponential of anM ×M matrix and one calculation of the exponential of anm×mmatrix.
Numerical experiments in Section 4.6 show the accuracy and efficiency of the fast algorithm empirically.

4.11.2 Convertible Bond (American-style)
Based on Proposition 4.5.3, Algorithm 10 provides the CTMC approximation for the value of a CB given that
X

(m,M)
0 = ln(S0) − ρf(R0) = xi ∈ S(M)

X and R(m)
0 = R0 = rj ∈ S(m)

R . The algorithm is set up for
zero-coupon CBs with no additional features, such as call and put options. However, such extensions are
straightforward and are discussed further below and in Remark 4.11.2.

Similar to the European-style CB, the performance of Algorithm 10 can be increased by assuming that the
short-rate process is constant over small time periods (Proposition 3.4). Let ˜︁H := [ηexl+ρf(rk)]m,M

k,l=1 be an
m×M matrix representing the conversion value. At each time step, matrices ˜︁BE , ˜︁BCO, and ˜︁B, of sizem×
M , contain the equity part, cash-only part, and the whole value of the CB, respectively. Furthermore, we
denote by˜︁bij (resp˜︁hij), the (i, j)-entry of ˜︁B (resp. ˜︁H), and define thematrix indicator 1{˜︁B= ˜︁H}, where each
element (i, j) of the matrix, denoted 1{˜︁B= ˜︁H}(i, j), is given by 1{˜︁B= ˜︁H}(i, j) = 1{˜︁bij=˜︁hij}, for 1 ≤ i ≤ m,
1 ≤ j ≤M . The fast Algorithm to value CBs is provided in Algorithm 11.
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Algorithm 10: American-style CB
Input: InitializeG(mM)

n as in (4.10) for n = 1, 2, . . . , N ,HCO as in (4.29), andHE
n as in (4.30), for

n = 0, 1, . . . , N

N ∈ N, the number of time steps,
∆N ← T/N , the size of a time step

1 SetDmM ← diag (d) with d = (d1, d2, . . . , dmM ), and d(k−1)M+l = rk ∈ S
(m)
R , k = 1, 2, , . . . ,m,

l = 1, 2, , . . . ,M

2 SetBCO
N ← HCO,BE

N ← HE
N ,BN ← BE

N +BCO
N

3 for n = N − 1, N − 2, . . . , 0 do

4 An+1 ← exp
{︂
∆N

(︂
G

(mM)
n+1 −DmM

)︂}︂,
5 BCO

n ← e−
∫︁ tn+1
tn

cu duAn+1B
CO
n+1,BE

n ← An+1B
E
n+1,

6 Bn ← max
(︁
HE

n ,B
E
n +BCO

n

)︁
7 BCO

n ← BCO
n

(︂
1mM×1 − 1{Bn=HE

n }

)︂,BE
n = Bn −BCO

n

8 v(m,M)(0, S0, R0)← ejiB0

9 return v(m,M)(0, S0, R0)

Remark 4.11.2 The extension of Algorithms 10 and 11 to coupon-bearing bonds is straightforward. When a

coupon α > 0 is paid at time tn+1, the continuation value at time tn of the cash-only part must be adjusted

accordingly. Specifically, line 5 of Algorithm 10 should be updated to

BCO
n ← e−

∫︁ tn+1
tn

cu duAn+1

(︁
BCO

n+1 + α1mM×1

)︁
,

and line 8 of Algorithm 11 should be changed to

ECO
∗,k ← e−

∫︁ tn+1
tn

cu duPX
n,k

(︂
(˜︁BCO

k,∗ )
⊤ + α1M×1

)︂
,

for each k ∈ {1, 2, . . . ,M}.

4.12 Appendix - Supplemental Material
This document provides supplemental material to Chapter 4.
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Algorithm 11: American-style CB – Fast Algorithm
Input: InitializeQ(m)

n as in (4.5) andΛ
(n,M)
k as in (4.8), for k = 1, 2, . . . ,m, n = 1, 2, . . . , N

N ∈ N, the number of time steps,
∆N ← T/N , the size of a time step

1 Set ˜︁H := [ηexl+ρf(rk)]m,M
k,l=1

2 Set ˜︁BE
k,∗ ←

[︂
ηexl+ρf(rk)1{exl+ρf(rk)≥F/η}

]︂M
l=1

, k = 1, 2, . . . ,m

3 Set ˜︁BCO
k,∗ ←

[︂
F1{exl+ρf(rk)<F/η}

]︂M
l=1

, k = 1, 2, . . . ,m

4 ˜︁B← ˜︁BE + ˜︁BCO

5 for n = N − 1, . . . , 0 do

6 for k = 1, 2, . . . ,m do

7 PX
n,k ← eΛ

(n+1,M)
k ∆N e−rk∆N

8 ECO
∗,k ← e−

∫︁ tn+1
tn

cu duPX
n,k(

˜︁BCO
k,∗ )

⊤, EE
∗,k ← PX

n,k(
˜︁BE
k,∗)

⊤

9 PR
n ← eQ

(m)
n+1∆N

10 for l = 1, 2, . . . ,M do

11 ˜︁BCO
∗,l ← PR

n (E
CO
l,∗ )⊤, ˜︁BE

∗,l ← PR
n (E

E
l,∗)

⊤, ˜︁B← max
(︂˜︁H, ˜︁BE + ˜︁BCO

)︂
12 ˜︁BCO ← ˜︁BCO

(︂
1m×M − 1{˜︁B= ˜︁H}

)︂, ˜︁BE = ˜︁B− ˜︁BCO

13 return bji

4.12.1 Closed-Form Expression for European-style Convertible Bonds under TF approach
In the following, we derive a closed-form analytical formula for European-style CBs (or when the conversion
option can only be exercised at maturity). We suppose that credit risk is incorporated into the model using
the approach of Tsiveriotis and Fernandes (1998).

Accordingly, we make some simplifying assumptions. We suppose that the dynamics of the stock process
are given by

dSt = (Rt − qt)St dt+ ˜︁σSSt (︂ρ d˜︂W (2)
t +

√︁
1− ρ2 d˜︂W (1)

t

)︂
,

dRt = (θ(t)− κRt) dt+ ˜︁σR d˜︂W (2)
t ,

(4.45)

with ˜︁σS , ˜︁σR > 0, ρ ∈ [−1, 1] and˜︂W = {(˜︂W (1)
t ,˜︂W (2)

t )}t≥0 is a standard bi-dimensional Brownianmotion17.

17 The formulation in (4.45) in terms of independent Brownian motion is equivalent to that in (4.1) in terms of correlated Brownian
motion. Indeed, defineZt = ρ˜︂W (2)

t +
√︁

1− ρ2˜︂W (1)
t , t ≥ 0. From Cholesky decomposition, the process (Z,˜︂W (2)) is a correlated
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Under this assumption, the short-rate process corresponds to the Hull–White model in Table 4.2. When
function θ(·) is constant over time, then the short-rate dynamics collapsed to the Vasicek model18, whereas
when κ = 0, the Ho–Lee model is obtained. Under these three models, the short-rate process is Gaussian,
and the price of the zero-coupon bond can be obtained explicitly by

P (t, T ) = eA(t,T )−B(t,T )Rt , (4.46)
for some time-deterministic functionsA andB given in Table 4.14, see Björk (2009), Section 24.4 for details.
Finally, note that when σR(·) = κ = θ(·) = 0, then the short-rate process is constant to R0 and (4.45)
collapsed to the Black–Scholes model.

Table 4.14: Definition of A(t, T ) andB(t, T ) for different models of Tables 4.1 and 4.2.
Model A(t, T ) B(t, T )

Vasicek (︂
θ − ˜︁σ2

R
2κ2

)︂
[B(t, T )− (T − t)]− ˜︁σ2

R
4κB

2(t, T ) 1
κ [1− e

−κ(T−t)]

Ho–Lee ∫︁ T
t θ(s)(s− T ) ds+ ˜︁σ2

R
2

(T−t)3

3 T − t

Hull–White ∫︁ T
t

1
2˜︁σ2RB(s, T )− θ(s)B(s, T ) ds 1

κ [1− e
−κ(T−t)]

The following proposition provides a closed-form pricing formula for European-style CBs under general
stochastic short-rate models (4.45). The pricing of European call options under stochastic interest rate are
discussed in Geman et al. (1995) (Theorem 2 and Section 3.2), Björk (2009) (Section 26.5), and Brigo and
Mercurio (2006) (Appendix B), among others. The general proof uses the change of numéraire techniques
developed by Geman et al. (1995). An alternative derivation is also provided in Abudy and Izhakian (2013)
when the short-rate dynamics is given by the Ornstein–Uhlenbeck process (or, equivalently, the Vasicek
model).

Proposition 4.12.1 Given St = x > 0 and Rt = r ∈ R, the price at time t of a European-style CB with

maturity T > 0, face value F > 0, and conversion ratio η > 0 is given by

ve(t, r, x) = ηxe−
∫︁ T
t qs dsΦ(d1) + e−

∫︁ T
t cu duP (t, T )FΦ(d2) (4.47)

Brownian motion with cross-variation [Z,˜︂W (2)]t = ρt.
18 It suffices to set θ(t) = ˜︁θκ, for 0 ≤ t ≤ T , for some constant ˜︁θ > 0 to obtain the Vasicek model with a long-term mean
parameter equal to ˜︁θ.
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where Φ(·) denotes the cumulative distribution of a standard normal distribution,

d1 =
ln
(︂

ηx
FP (t,T )

)︂
−
∫︁ T
t qs ds+

1
2
V (t,T )√

V (t,T )
, and d2 =

√︁
V (t, T )− d1, with

V (t, T ) =

⎧⎪⎨⎪⎩
˜︁σ2S(T − t) + 2ρ˜︁σS˜︁σR

κ [(T − t)−B(t, T )] +
˜︁σ2
R
κ2

[︁
(T − t)− κ

2B
2(t, T )−B(t, T )

]︁
if κ ̸= 0

˜︁σ2S(T − t) + ρ˜︁σS˜︁σR(T − t)2 + ˜︁σ2
R
3 (T − t)3 if κ = 0,

and P (t, T ) = eA(t,T )+B(t,T )r, where functions A andB are defined in Table 4.14.

Proof. First, assume first that qt = 0 for all t ≥ 0 and recall from (4.21) that
ve(t, x, r) = E

[︂
e−

∫︁ T
t Ru duηST1{ST≥F/η} + e−

∫︁ T
t Ru+cu duF1{ST<F/η}

⃓⃓
St = x,Rt = r

]︂
. (4.48)

To solve this problem and avoid working with the joint density of (
∫︁ T
t Ru du, ST ), we use the change of

numéraire technique discussed in Geman et al. (1995), Theorem 2 and Section 3.2 (a). Consequently, we

introduce the T -forward measure, denoted by QT , which has the zero-coupon bond price process P =

{P (t, T )}0≤t≤T as numéraire. We also introduce the measure QS under which the risky asset S is the

chosen numéraire. Following Geman et al. (1995), Theorem 2, we have that

ve(t, x, r) = P (t, T )EQT [︁
ηST1{ST≥F/η}

⃓⃓
St = x,Rt = r

]︁
+ e−

∫︁ T
t cu duP (t, T )FQT

(︁
ST < F/η

⃓⃓
St = x,Rt = r

)︁
= ηxQS

(︁
ST ≥ F/η

⃓⃓
St = x,Rt = r

)︁
+ e−

∫︁ T
t cu duP (t, T )FQT

(︁
ST < F/η

⃓⃓
St = x,Rt = r

)︁
,

(4.49)

where the first term of the second equality follows from Corollary 2 of Geman et al. (1995), and EQT
[·]

denotes the expectation under the T -forward measure. To solve (4.49), we need to find the distribution of
ST under measuresQT andQS , respectively. This is what we do in the following.

The first step to obtain the dynamics of S under QT consists of finding the dynamics of the zero-coupon

bond price process P underQ. Accordingly, recall from (4.46) that
P (t, T ) = eA(t,T )−B(t,T )Rt ,

for some time-deterministic functions A andB defined in Table 4.14, and note that

At(t, T ) :=
∂A

∂t
(t, T ) = θ(t)B(t, T )− 1

2
˜︁σ2RB2(t, T ), and Bt(t, T ) :=

∂B

∂t
(t, T ) = κB(t, T )− 1,
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see Björk (2009), Section 24.4. Hence, applying Ito’s formula to lnP (t, T ), we obtain that

d lnP (t, T ) = (At(t, T )−Bt(t, T )Rt) dt−B(t, T ) dRt

=

[︃
θ(t)B(t, T )− 1

2
˜︁σ2RB2(t, T )−Bt(t, T )Rt −B(t, T ) (θ(t)− κRt)

]︃
dt− ˜︁σRB(t, T ) d˜︂W (2)

t

=

[︃
Rt −

1

2
˜︁σ2RB2(t, T )

]︃
dt− ˜︁σRB(t, T ) d˜︂W (2)

t , (4.50)
so that,

dP (t, T ) = RtP (t, T ) dt− ˜︁σRB(t, T )P (t, T ) d˜︂W (2)
t . (4.51)

Now, observe that

QT
(︁
ST < F/η

⃓⃓
St = x,Rt = r

)︁
= QT

(︃
ST

P (T, T )
< F/η

⃓⃓
St = x,Rt = r

)︃
. (4.52)

From Theorem 1 (i) of Geman et al. (1995), we know that process f = {ft := St
P (t,T )}0≤t≤T is a QT -local

martingale (thus, it as no drift). Moreover, since a change of measures only affects the drift of a process, we

can deduce the dynamics of process f underQT from its dynamics under Q by setting the drift term to nil,

which we do next. Using (4.45) , (4.51) and Itô’s formula, we find that

dft =
1

P (t, T )
dSt −

St
P 2(t, T )

dP (t, T )− 1

P 2(t, T )
d⟨St, P (t, T )⟩+

St
P 3(t, T )

d⟨P (t, T )⟩

=
(︁
ρ˜︁σS˜︁σRB(t, T ) + ˜︁σ2RB2(t, T )

)︁
ft dt+ ˜︁σS√︁1− ρ2ft d˜︂W (1)

t + [ρ˜︁σs + ˜︁σRB(t, T )] ft d˜︂W (2)
t .

(4.53)
Because f must be a localmartingale underQT , we deduce fromGirsanov theorem that process (ˆ︂W (1),ˆ︂W (2)),

defined by

dˆ︂W (1)
t = d˜︂W (1)

t ,

dˆ︂W (2)
t = d˜︂W (2)

t + ˜︁σRB(t, T ) dt,
(4.54)

for 0 ≤ t ≤ T , is a standard bi-dimensional Brownian motion under QT , which implies that

dft = ˜︁σS√︁1− ρ2ft dˆ︂W (1)
t + [ρ˜︁σs + ˜︁σRB(t, T )] ft dˆ︂W (2)

t . (4.55)
Hence, ln fT given ln ft is normally distributed with a mean ˆ︁µ := ln ft − 1

2V (t, T ) (see for instance, Björk

(2009), Lemma 4.15), and variance ˆ︁σ2 := V (t, T ), where

V (t, T ) =

∫︂ T

t
˜︁σ2S(1− ρ2) + [ρ˜︁σS + ˜︁σRB(s, T )]2 ds

= ˜︁σ2S(T − t) + 2ρ˜︁σS˜︁σR ∫︂ T

t
B(s, T ) ds+ ˜︁σ2R ∫︂ T

t
B2(s, T ) ds. (4.56)
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The probability (4.52) can thus be calculated explicitly using the property of the normal distribution, and we

obtain that,

QT
(︁
fT < F/η

⃓⃓
ft = x/P (t, T )

)︁
= Φ

⎛⎝ ln
(︂
FP (t,T )

ηx

)︂
+ 1

2V (t, T )√︁
V (t, T )

⎞⎠ = Φ(d2). (4.57)

This completes the proof for the second term of (4.49).

The challenge now consists of finding an expression for the first term of (4.49). We thus need the distribution

of ST underQS . To this end, we observe that

QS

(︁
ST ≥ F/η

⃓⃓
St = x,Rt = r

)︁
= QS

(︁
1/ST ≤ η/F

⃓⃓
St = x,Rt = r

)︁
= QS

(︁
P (T, T )/ST ≤ η/F

⃓⃓
St = x,Rt = r

)︁
= QS

(︁
1/fT ≤ η/F

⃓⃓
ft = x/P (t, T )

)︁ (4.58)

Similarly, as above, we use the results of Theorem 1 of Geman et al. (1995) to conclude that process

Y = {Yt := P (t, T )/St = 1/ft}0≤t≤T is a local martingale under QS . Thus, it has no drift, and because a

change of measures only affects the drift of a process, we can deduce the dynamics of process Y underQS

from its dynamics under QT , by setting the drift term to nil. This what we do in the following. Using (4.55)
and Itô’s formula, we find that

dYt = −
1

f2t
dft +

1

f3t
d⟨ft⟩

=
[︁˜︁σ2S(1− ρ2) + (ρ˜︁σS + ˜︁σRB(t, T ))2

]︁
Yt dt

− ˜︁σS√︁1− ρ2Yt dˆ︂W (1)
t − [ρ˜︁σs + ˜︁σRB(t, T )]Yt dˆ︂W (2)

t .

From the local martingale property of Y under QS , we deduce from the Girsanov theorem that process

(W̄
(1)
, W̄

(2)
), defined by

dW̄
(1)
t = dˆ︂W (1)

t − ˜︁σS√︁1− ρ2 dt,

dW̄
(2)
t = dˆ︂W (2)

t − ρ˜︁σS + ˜︁σRB(t, T ) dt,
(4.59)

for 0 ≤ t ≤ T , is a standard bi-dimensional Brownian motion underQS . Thus, the dynamics of Y under the

new measure are given by

dYt = −˜︁σS√︁1− ρ2Yt dW̄ (1)
t − [ρ˜︁σs + ˜︁σRB(t, T )]Yt dW̄

(2)
t .

186



From there, we conclude that lnYT given lnYt (or ln ft, since lnYt = ln 1/ft) is normally distributed with

mean µ̄ := − ln ft − 1
2V (t, T ) and variance σ̄2 := ˆ︁σ2 = V (t, T ), and the probability (4.58) can be calcu-

lated explicitly as

QS

(︁
1/fT ≤ η/F

⃓⃓
ft = x/P (t, T )

)︁
= Φ

⎛⎝ ln
(︂

ηx
FP (t,T )

)︂
+ 1

2V (t, T )√︁
V (t, T )

⎞⎠ = Φ(d1). (4.60)

The final assertion then follows from (4.49),(4.56), (4.57), (4.60), and the expression for functionB in Table

4.14.

When qt > 0 for some t ≥ 0, the results can be derived using the relationship St = ˜︁Ste− ∫︁ t
0 qs ds, t ≥ 0,

where ˜︁S = {˜︁St}t≥0 represents the stock price process when the dividend is assumed to be nil19. □

Remark 4.12.1 When σR = κ = θ(t) = 0 for all t ∈ [0, T ], the short-rate is constant to R0 over time and

the model in (4.45) collapsed to the Black–Scholes model. In that case, A(t, T ) = 0,B(t, T ) = T − t, such

that P (t, T ) = e−(T−t)R0 , and V (t, T ) = σ2S(T − t). The general formula (4.47) then becomes

ve(t, r, x) = ηxe−
∫︁ T
t qs dsΦ(d1) + e−(T−t)R0e−

∫︁ T
t cu duFΦ(d2), (4.61)

with d1 =
ln( ηx

F )+
(︂
r−

∫︁ T
t qs ds+

1
2
σ2
S

)︂
(T−t)

σS

√
T−t

, and d2 = σS
√
T − t− d1.

4.12.2 Additional Numerical Experiments
We now investigate the accuracy, convergence, and efficiency of the CTMCmethod to approximate various
debt securities in the Vasicek, CIR, and Dothan models. Note that Assumption 4.4.1 is not respected under
the Vasicek model.

Unless stated otherwise, we use the following model and CTMC parameters in all numerical experiments,
summarized in Table 4.15.

To construct the state-space of the CTMC, S(m)
R = {r1, r2, . . . , rm} withm ∈ N, we use the non-uniform

grid proposed by Tavella and Randall (Tavella and Randall (2000), Chapter 5.3), as in Section 4.6.

19 The value of ˜︁S can also be interpreted as the value of the stock price when dividends are continuously reinvested in the stock.
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Table 4.15: Model and CTMC parameters
r0 κ θ σ m r1 rm ˜︁α ∆N

Vasicek 0.04 1 0.04 0.20 160 −30R0 25R0 0.5 1/252
CIR 0.04 2 0.035 0.20 160 R0/100 7R0 0.5 1/252

Dothan 0.02 0 N/A 0.15 160 R0/100 7R0 0.5 1/252

4.12.2.1 Approximation of Zero-Coupon Bond Prices
We now examine the accuracy of the CTMC methods in calculating zero-coupon bond prices, Corollary 4.6.
Under the Vasicek and CIRmodels, the price of zero-coupon bonds has a closed-from expression, which can
be found, for instance, in Brigo and Mercurio (2006), Section 3.2. The analytical value of the zero-coupon
bond price can thus be used as a benchmark in our experiment. We test the accuracy of the approximated
prices across different values of model parameters. The results are summarized in Table 4.16. Column
“CTMC” reports the CTMC approximated value using the results of Corollary 4.6.

Figure 4.6: Efficiency of the CTMC method in approximating zero-coupon bond prices under the Dothan model.
Except for the number of grid pointsm, which range from 100 to 1000, model and CTMC parameters are as listed in
Table 4.15. Zero-coupon bond price parameters are t = 0 and T = 4.
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Table 4.16: Accuracy of the zero-coupon bond price approximation (4.37) under Vasicek and CIR models. Model and
CTMC parameters are as listed in Table 4.15, and zero-coupon bond parameters are t = 0 and T = 4.

(a) Vasicek model
κ CTMC Benchmark Abs. error

0.5 0.9625591 0.9625609 1.77E-06
1 0.8964870 0.8964877 7.12E-07
2 0.8661056 0.8661057 9.47E-08
3 0.8587974 0.8587974 2.27E-08
4 0.8560138 0.8560138 7.77E-09

(b) CIR model
κ CTMC Benchmark Abs. error

0.5 0.8656670 0.8656663 7.09E-07
1 0.8676884 0.8676884 1.11E-08
2 0.8676884 0.8676884 1.11E-08
3 0.8681491 0.8681491 3.96E-10
4 0.8684110 0.8684110 1.98E-11

R0 CTMC Benchmark Abs. error

0.02 0.9142555 0.9142630 7.43E-06
0.03 0.9053312 0.9053317 5.12E-07
0.04 0.8964870 0.8964877 7.12E-07
0.05 0.8877292 0.8877301 8.23E-07

R0 CTMC Benchmark Abs. error

0.02 0.8763624 0.8763627 2.82E-07
0.03 0.8720147 0.8720147 2.21E-09
0.04 0.8676884 0.8676884 1.11E-08
0.05 0.8633835 0.8633835 2.90E-08

θ CTMC Benchmark Abs. error

0.01 0.9814527 0.9814529 1.93E-07
0.02 0.9522718 0.9522722 3.77E-07
0.03 0.9239585 0.9239590 5.50E-07
0.04 0.8964870 0.8964877 7.12E-07

θ CTMC Benchmark Abs. error

0.015 0.9303530 0.9303518 1.20E-06
0.025 0.8984741 0.8984740 1.82E-07
0.035 0.8676884 0.8676884 1.11E-08
0.045 0.8379576 0.8379576 5.63E-10

σ CTMC Benchmark Abs. error

0.1 0.8630196 0.8630198 1.70E-07
0.2 0.8964870 0.8964877 7.12E-07
0.3 0.9551747 0.9551765 1.77E-06
0.4 1.0438353 1.0438513 1.60E-05

σ CTMC Benchmark Abs. error

0.1 0.8673140 0.8673140 1.93E-10
0.2 0.8676884 0.8676884 1.11E-08
0.3 0.8683033 0.8683025 7.69E-07
0.4 0.8691384 0.8691428 4.36E-06
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(a) Vasicek (b) CIR
Figure 4.7: Convergence pattern of the approximated zero-coupon bond prices. Except for the number of grid points
m, model and CTMC parameters are as listed in Table 4.15. Zero-coupon bond price parameters are t = 0 and T = 4.

Table 4.17: Approximation of the convergence rate of the zero-coupon bond prices. Except for the number of grid
pointsm, model and CTMC parameters are as listed in Table 4.15. Zero-coupon bond price parameters are t = 0 and
T = 4.

(a) Vasicek
m Abs. error Rate

50 7.24E-06 -
100 1.82E-06 1.99
200 4.56E-07 2.00
300 2.03E-07 2.00
900 2.19E-08 2.03

(b) CIR
m Abs. error Rate

50 4.57E-07 -
100 3.90E-08 3.55
200 4.63E-09 3.08
300 1.55E-09 2.70
900 9.18E-10 0.48

We observe that the approximation achieves a high level of precision across all parameters, with an average
calculation time of 0.009 seconds, illustrating the speed of the methodology.

Figures 4.6 demonstrate the efficiency of CTMCmethodology in valuing zero-coupon bond prices when the
short-rate process follows a geometric Brownian motion (the Dothan model). Thus, alternative methods
such as binomial trees (“Tree”) or Monte Carlo simulation (“Sim”) can be easily implemented. We compare
the performance of the CTMC approximation to the Cox–Ross–Rubinstein binomial tree (Cox et al. (1979))
and to Monte Carlo simulation. For Monte Carlo simulation, we use an exact scheme with a number of
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simulations ranging from 10,000 to 200,000 with the same number of antithetic variables and 500-time
steps per year. The benchmark is calculated using the CTMC method with m = 5, 000. Figure 4.6 shows
the high efficiency of the CTMC method compared to these other numerical techniques. Indeed, CTMC
approximation clearly outperforms other methods in terms of both calculation time and precision.

Finally, Figure 4.7 shows the convergence pattern of the approximated zero-coupon bond prices as the
number of grid pointsm increases, whereas Table 4.17 shows the convergence rate. For the Vasicek (resp.
CIR) model, we note that the approximations achieve quadratic (resp. superquadratic) convergence on
average. We also observe that the two models converge smoothly and rapidly to their analytical values.
Moreover, since Assumption 4.4.1 is not satisfied under the Vacisekmodel, the results show that theoretical
convergence is possible under less restrictive conditions for a certain set of parameters. Theoretical proof
is left as future research.

4.12.2.2 Approximation of the Zero-Coupon Bond Option Prices
In this section, we study the accuracy and the numerical convergence of the zero-coupon bond option prices
provided in (4.38), under the Vasicek and CIR models. Under these two models, the price of zero-coupon
bond options has a closed-form expression, which can be found in Brigo and Mercurio (2006) Section 3.2.,
and thus, can serve as a benchmark in our example. We test the accuracy of the approximated option prices
for different levels of moneyness and volatilities. The results are summarized in Table 4.18. Column “price-
to-strike” shows the price-to-strike ratio, calculated as the actual zero-coupon bond price over the option
strike priceK > 0.

We observe that the approximation achieves a high level of accuracy across all volatilities and strikes. The
convergence of the approximated call prices to the analytical formulas is illustrated in Figure 4.8 for the two
models, whereas the approximated convergence rates are shown in Table 4.19.

We note that the approximated call prices converge rapidly to their analytical values but exhibit a sawtooth
pattern. As mentioned in Section 4.6.1, such oscillatory behavior has been observed in other research (see,
for instance, Zhang and Li (2019)). However, the technique proposed by the authors to remove oscillation
and improve convergence is not directly applicable in the present context. Further investigation into how
grid design can improve convergence is left for future research.
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Table 4.18: Accuracy of the zero-coupon bond call option approximation (4.38) under Vasicek and CIRmodels. Bench-
mark is calculated using closed-form analytical formulas. Except for the number of grid points set to m = 1, 000,
model and CTMC parameters are as listed in Table 4.15. Zero-coupon bond call option parameters using the notation
of Corollary 4.7: tn1 = 0, tn2 = 2, and T = 4.

(a) Vasicek model
σ price-to-strike CTMC Benchmark Abs. error

0.1

1.67 0.38319569 0.38319569 4.29E-09
1.25 0.22325433 0.22325433 4.25E-09
1.00 0.06581737 0.06581712 2.56E-07
0.83 0.01014165 0.01014179 1.40E-07
0.71 0.00000011 0.00000011 6.79E-10

(b) CIR model
σ price-to-strike CTMC Benchmark Abs. error

0.1

1.67 0.38326833 0.38326833 5.81E-10
1.25 0.22191975 0.22191976 5.04E-10
1.00 0.06057118 0.06057118 4.27E-10
0.95 0.02020450 0.02020450 3.55E-09
0.92 0.00000000 0.00000000 1.22E-11

σ price-to-strike CTMC Benchmark Abs. error

0.2

1.67 0.39232996 0.39232997 1.76E-08
1.25 0.22455160 0.22455166 5.84E-08
1.00 0.07590525 0.07590491 3.39E-07
0.83 0.01014165 0.01014179 1.40E-07
0.71 0.00053736 0.00053749 1.33E-07

σ price-to-strike CTMC Benchmark Abs. error

0.2

1.67 0.38334989 0.38334989 3.29E-09
1.25 0.22190374 0.22190374 2.86E-09
1.00 0.06045761 0.06045761 2.43E-09
0.95 0.02020450 0.02020450 3.55E-09
0.92 0.00000690 0.00000690 5.39E-09

σ price-to-strike CTMC Benchmark Abs. error

0.3

1.67 0.40772961 0.40772968 7.30E-08
1.25 0.22983971 0.22983969 1.39E-08
1.00 0.09108337 0.09108360 2.27E-07
0.83 0.01014165 0.01014179 1.40E-07
0.71 0.00465377 0.00465387 1.06E-07

σ price-to-strike CTMC Benchmark Abs. error

0.3

1.67 0.38348301 0.38348311 1.01E-07
1.25 0.22187654 0.22187663 9.48E-08
1.00 0.06027987 0.06028002 1.53E-07
0.95 0.02020450 0.02020450 3.55E-09
0.92 0.00006003 0.00006008 5.13E-08

σ price-to-strike CTMC Benchmark Abs. error

0.4

1.67 0.43035317 0.43036293 9.76E-06
1.25 0.24315058 0.24315678 6.20E-06
1.00 0.10988334 0.10988798 4.64E-06
0.83 0.01014165 0.01014179 1.40E-07
0.71 0.01314694 0.01315072 3.77E-06

σ price-to-strike CTMC Benchmark Abs. error

0.4

1.67 0.38366164 0.38366831 6.68E-06
1.25 0.22183726 0.22184350 6.23E-06
1.00 0.06011562 0.06012477 9.15E-06
0.95 0.02020450 0.02020450 3.55E-09
0.92 0.00011258 0.00011395 1.37E-06
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(a) Vasicek (b) CIR
Figure 4.8: Convergence pattern of the approximated zero-coupon bond call option prices as the number of grid
points m increases. Benchmark is calculated using closed-form analytical formulas. Except for the number of grid
pointsm, model and CTMC parameters are as listed in Table 4.15. Zero-coupon bond call option parameters using the
notation of Corollary 4.7: tn1 = 0, tn2 = 2, T = 4,K = 0.9.

Table 4.19: Approximation of the convergence rate of the zero-coupon bond option prices. Benchmark is calculated
using closed-form analytical formulas. Except for the number of grid points m, model and CTMC parameters are as
listed in Table 4.15. Zero-coupon bond call option parameters using the notation of Corollary 4.7: tn1 = 0, tn2 = 2,
T = 4,K = 0.9.

(a) Vasicek
m Abs. error Rate

100 3.77E-05 -
250 4.05E-06 2.43
400 1.49E-06 2.12
550 1.07E-06 1.06
800 5.90E-07 1.58

(b) CIR
m Abs. error Rate

100 6.97E-08 -
250 1.25E-08 1.88
400 4.09E-09 2.37
550 4.00E-09 0.07
800 1.12E-09 3.40
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4.12.2.3 Approximation of Callable/Putable Bond Prices
We now examine the accuracy and the convergence of Proposition 4.4.3 in approximating callable/putable
bonds under theVasicekmodel. Accordingly, we consider a coupon-bearing bondwith semi-annual coupons
that mature in 4 years T = 4. The coupon rate, denoted below by α, is set to 4% per annum compounded
semi-annually. The notional of the debt is set to F = 100, and we assume that it can be called at any time
between the second and the fourth year for no additional cost, that is,Kc

t = 100 for 2 ≤ t ≤ T and we let
Kc

t →∞ when t < 2 (since exercise is not allowed). Moreover, as there is no put feature,Kp := Kp
t = 0

for 0 ≤ t ≤ T . Finally, we assume that accrued interest is paid to the bondholder upon redemption. The
contract specifications are summarized in Table 4.20.

Table 4.20: Callable bond contract specifications20
F α T Kc

t Kp

100 0.04 4 100 0

Proposition 4.4.3 is also used to calculate the value of the straight bond (i.e., the value of the coupon-bearing
bond with no optionality, when Kc

t → ∞ and Kp
t = 0 for all t ∈ [0, T ]). The results are summarized in

Table 4.21a, whereas those for the callable bond are outlined in Table 4.21b. The value of the optionality is
obtained from the difference between the value of the callable and the straight bonds. The call option has
a negative value because it is in favor of the issuer and, thus, reduces the value of the bond. For the straight
debt, a benchmark can be obtained using a closed-form analytical formula since it can be decomposed in
a series of zero-coupon bonds (see Remark 4.4.5). For the callable debt, the benchmark is calculated using
CTMC approximation withm = 2, 000.

20Kc
t =100 for 2 ≤ t ≤ T andKc

t is set to a large constant when t < 2.
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Table 4.21: Accuracy of Proposition 4.4.3 to approximate the values of straight and callable bonds under Vasicek
model. Model and CTMC parameters are as listed in Table 4.15. Contract specifications are as listed in Table 4.20, with
the call option exercise window starting from t = 2 to maturity.

(a) Straight bond
κ CTMC Benchmark Rel. error

0.5 111.5779419 111.5781246 1.64E-06
1 104.6007798 104.6008544 7.13E-07
2 101.3606496 101.3606597 9.94E-08
3 100.5741608 100.5741632 2.42E-08
4 100.2732264 100.2732272 8.40E-09

(b) Callable bond
κ CTMC Benchmark Rel. error

0.5 94.4289102 94.4293068 4.20E-06
1 95.5617290 95.5616095 1.25E-06
2 96.9174873 96.9173130 1.80E-06
3 97.6890278 97.6890198 8.14E-08
4 98.1735503 98.1735203 3.06E-07

R0 CTMC Benchmark Rel. error

0.02 106.6205602 106.6213440 7.35E-06
0.03 105.6061649 105.6062188 5.11E-07
0.04 104.6007798 104.6008544 7.13E-07
0.05 103.6050710 103.6051563 8.23E-07

R0 CTMC Benchmark Rel. error

0.02 97.3030355 97.3030555 2.05E-07
0.03 96.4287924 96.4287773 1.57E-07
0.04 95.5617290 95.5616095 1.25E-06
0.05 94.7018444 94.7020397 2.06E-06

θ CTMC Benchmark Rel. error

0.01 113.7506391 113.7506574 1.61E-07
0.02 110.6102083 110.6102465 3.46E-07
0.03 107.5611515 107.5612085 5.30E-07
0.04 104.6007798 104.6008544 7.13E-07

θ CTMC Benchmark Rel. error

0.01 100.5832613 100.5844116 1.14E-05
0.02 98.9373817 98.9375213 1.41E-06
0.03 97.2623005 97.2631690 8.93E-06
0.04 95.5617290 95.5616095 1.25E-06

σ CTMC Benchmark Rel. error

0.1 101.0176528 101.0176706 1.76E-07
0.2 104.6007798 104.6008544 7.13E-07
0.3 110.8775749 110.8777598 1.67E-06
0.4 120.3458095 120.3474922 1.40E-05

σ CTMC Benchmark Rel. error

0.1 97.0423712 97.0419581 4.26E-06
0.2 95.5617290 95.5616095 1.25E-06
0.3 95.3070805 95.3073647 2.98E-06
0.4 96.1965169 96.1965745 6.00E-07
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(a) Straight bond (b) Callable bond
Figure 4.9: Convergence pattern of the approximated prices of straight and callable bonds as the number of grid
pointsm increases under the Vasicek model. Except for the number of grid points m, model and CTMC parameters
are as listed in Table 4.15. Contract specifications are as listed in Table 4.20, with the call option exercise window
starting from t = 2 to maturity.

Table 4.22: Approximation of the convergence rate of straight and callable bond prices under Vasicek model. Except
for the number of grid pointsm, model and CTMC parameters are as listed in Table 4.15. Contract specifications are
as listed in Table 4.20, with the call option exercise window starting from t = 2 to maturity.

(a) Straight bond
m Abs. error Rate

100 1.91E-04 -
125 1.22E-04 2.02
150 8.47E-05 1.99
175 6.23E-05 1.99
200 4.78E-05 1.99

(b) Callable bond
m Abs. error Rate

100 1.10E-03 -
125 5.25E-04 3.29
150 2.49E-04 4.09
175 7.96E-05 7.41
200 3.57E-05 6.00

Again, we note that the approximation achieves a high level of accuracy in a fraction of a second across all
model parameters. The average calculation time is 0.02 seconds.

The convergence pattern of straight and callable bonds is displayed in Figure 4.9, and the approximated
convergence rates are shown in Table 4.22. For the straight bond (resp. callable bond), we note that the
approximations achieve quadratic (resp. superquadratic) convergence on average. We also observe that the
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straight bond converges smoothly to the analytical price. However, the callable debt exhibits a sawtooth
pattern. For the two securities, the absolute error decreases rapidly to 0.

4.12.2.4 Approximation of Convertible Bond Prices
We now investigate the accuracy of Algorithm 11 in approximating CB prices under the Black–Scholes–
Vasicek model, along with the numerical convergence of the price estimates.

That is, we suppose that the stock price process follows a geometric Brownian motion with stochastic in-
terest rates satisfying

dSt = (Rt − qt)St dt+ ˜︁σSSt dW (1)
t ,

dRt = κ(θ −Rt) dt+ ˜︁σR dW
(2)
t ,

(4.62)

with κ, θ, ˜︁σS , ˜︁σR>0, and [W (1),W (2)]t = ρt, ρ ∈ [−1, 1].

From Lemma 4.1, we find that f(r) = ˜︁σS˜︁σR
r. The dynamics of the auxiliary process Xt = ln(St)− ρf(Rt)

can then be derived as
dXt = µX(t, Rt) dt+ σX(Rt) dW

⋆
t

dRt = κ(θ −Rt) dt+ ˜︁σR dW
(2)
t ,

(4.63)

with µX(t, Rt) = Rt − qt −
˜︁σ2
S
2 − ρ

˜︁σS˜︁σR
κ(θ −Rt), σX = ˜︁σS√︁1− ρ2, andX0 = ln(S0)− ρf(R0).

Unless stated otherwise, the model parameters for the short-rate process are the same as those used in
previous examples, reported in Table 4.15 under Vasicek model. We suppose further that ˜︁σS = 0.2, qt =
0.02 for all t ∈ [0, T ], and ρ = −0.2. The model parameters are summarized in Table 4.23.

Table 4.23: Model parameters
Model R0 κ θ ˜︁σR S0 qt ˜︁σS ρ

Black–Scholes–Vasicek 0.04 1 0.04 0.20 100 0.02 0.2 −0.2

The grid used to approximate the short-rate process, S(m)
R = {r1, r2, . . . , rm}, and the auxiliary process

S(M)
X = {x1, x2, . . . , xM}, are constructed using the methodology of Tavella and Randall (Tavella and Ran-

dall (2000), Chapter 5), as explained in Section 4.6, with ˜︁αR (resp. ˜︁αX ) representing the non-uniformity
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parameter of the grid for R(m) (resp. X(m)). Unless otherwise indicated, all numerical experiments are
conducted using the CTMC parameters listed in Table 4.24.

Table 4.24: CTMC parameters
m M r1 rm ˜︁αR x1 xM ˜︁αX ∆N

Black–Scholes–Vasicek 160 100 −30R0 25R0 0.5 0.64X0 1.42X0 2 1/100

Table 4.25: CB contract specifications
F α T η

100 0.05 1 1

The contract specifications are summarized in Table 4.25. We consider a convertible bond that pays semi-
annual coupons at an annual rate of α = 0.05 with a notional F = 100. We suppose that the bond can be
converted at any time from inception to maturity (T = 1) at a conversion rate η = 1.

Under this set of parameters and when both dividend yield and credit spread are assumed to be nil (qt =
ct = 0 for all t ∈ [0, T ]), the valuation of American-style CBs is simplified to that of European-style CBs,
see Corollary 4.4. The results of Proposition 4.12.121 can thus serve as a benchmark in our analysis. When
qt, ct > 0 for some t ∈ [0, T ], the benchmark is calculated using CTMC approximation withM = 160 and
∆N = 1/252, all other CTMC parameters are as listed in Table 4.24. The results are summarized in Table
4.26.

We note that the model achieves a high level of accuracy across all model parameters. The average calcu-
lation time for the CTMC approximated prices is less than 1.70 seconds.

21 The expected present value of future coupons should be added to the formula obtained in Proposition 4.12.1.
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Table 4.26: Accuracy of the CB price approximations, Algorithm 11, under Black–Scholes–Vasicek model. Model,
CTMC, and contract parameters are as listed in Tables 4.23 and 4.24 and 4.25, respectively.

(a) qt = ct = 0 for all t ∈ [0, T ]

S0 CTMC Benchmark Rel. error

90 105.99171 105.99224 4.97E-06
95 108.28100 108.28568 4.33E-05
100 111.08883 111.09580 6.27E-05
105 114.37154 114.37855 6.12E-05
110 118.06513 118.07046 4.51E-05

(b) qt = 0.02, ct = 0.05 for all t ∈ [0, T ]

S0 CTMC Benchmark Rel. error

90 101.80110 101.80830 7.07E-05
95 104.31639 104.32189 5.27E-05
100 107.35768 107.35983 2.00E-05
105 110.84269 110.84438 1.53E-05
110 114.70970 114.70773 1.71E-05

σS CTMC Benchmark Rel. error

0.10 107.85312 107.88135 2.62E-04
0.15 109.38108 109.39318 1.11E-04
0.20 111.08883 111.09580 6.27E-05
0.30 114.71935 114.72313 3.30E-05
0.40 118.44863 118.45114 2.12E-05

σS CTMC Benchmark Rel. error

0.10 104.28246 104.29241 9.54E-05
0.15 105.72587 105.73050 4.38E-05
0.20 107.35768 107.35983 2.00E-05
0.30 110.84483 110.84572 7.97E-06
0.40 114.43689 114.43768 6.86E-06

ρ CTMC Benchmark Rel. error

-0.3 110.80352 110.81156 7.25E-05
-0.2 111.08883 111.09580 6.27E-05
0.2 112.14557 112.14307 2.22E-05
0.3 112.39226 112.38624 5.36E-05

ρ CTMC Benchmark Rel. error

-0.3 107.08461 107.08698 2.22E-05
-0.2 107.35768 107.35983 2.00E-05
0.2 108.37107 108.36868 2.21E-05
-.3 108.60805 108.59625 1.09E-04
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(a) qt = ct = 0 for all t ∈ [0, T ] (b) qt = 0.02, ct = 0.05 for all t ∈ [0, T ]

Figure 4.10: Convergence pattern of the CB price approximations, Algorithm 11, under Black–Scholes–Vasicek model.
Except for the number of grid pointsM of the auxiliary process, the model, CTMC, and contract parameters are as
listed in Tables 4.23, 4.24, and 4.25, respectively.

Table 4.27: Approximation of the convergence rate of CB prices, Algorithm 11, under Black–Scholes–Vasicek model.
Except for the number of grid pointsM of the auxiliary process, the model, CTMC, and contract parameters are as
listed in Tables 4.23, 4.24, and 4.25, respectively.

(a) qt = ct = 0 for all t ∈ [0, T ]

m Rel. error Rate

20 5.44E-03 -
50 4.11E-04 2.819
100 6.27E-05 2.711
120 3.12E-05 3.838
150 5.39E-06 7.861

(b) qt = 0.02, ct = 0.05 for all t ∈ [0, T ]

m Rel. error Rate

20 5.16E-03 -
50 3.36E-04 2.982
100 3.56E-05 3.240
120 1.46E-05 4.895
150 8.16E-06 2.598

The convergence patterns of the approximation asM increases are illustrated in Figure 4.10, whereas the
approximated convergence rates are shown in Table 4.27. When both credit spread and dividend yield are
set to nil (qt = ct = 0 for all t ∈ [0, T ]), the benchmark is calculated using the exact pricing formula of
Proposition 4.12.1. When credit risk and dividend yield are considered (qt, ct > 0 for some t ∈ [0, T ]),
the benchmark is obtained using CTMC approximation withM = 1, 000 and∆N = 1/252, all other CTMC
parameters from table 4.24. Figure 4.10 shows that the approximated prices converge rapidly and smoothly
to the benchmark prices.
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