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RESUME

Dans cette thése, nous étudions I'existence de nouvelles métriques de Kahler a courbure scalaire constante
(cscK pour faire court) sur une résolution d’une singularité orbifold. Nous considérons (X, wx ), un orb-
ifold complexe compact avec un groupe discret d’automorphismes (en particulier, il n'y a pas de champs
de vecteurs holomorphes non triviaux sur X). On suppose que X a des singularités de type Z le long d'un
sous-ensemble Y ayant une codimension k supérieure a 2. Le sous-ensemble Y lui-méme est une variété
complexe lisse, mais l'inclusion Y — X dans X est singuliére, c’est-a-dire que le fibré normal de Y dans

X ades fibres de la forme CF /T" avec I un sous-groupe discret fini de U (k) de type Z de forme (—wp, w).

Nous utilisons une résolution X de X obtenue en éclatant Y dans X en utilisant I'espace projectif pondéré
non-compact introduit par Apostolov et Rollin, et une technique de recollement inspirée par les travaux
de Seyyedali et Székelyhidi et de Conlon, Degeratu et Rochon pour démontrer qu’il existe une famille de
métriques &, sur X proches d'étre cscK pour ¢ suffisamment petit. Nous établissons alors I'existence d'une
fonction potentielle lisse ¢. sur X telle que W, = U, + /—100¢, soit cscK sur X en résolvant une équa-
tion aux dérivées partielles non-linéaire. En tant qu’application du théoréme principal, nous fournissons un

nouvel exemple d’un espace projectif pondéré qui admet une métrique cscK sur une résolution de celui-ci.

La résolution X — X est typiquement encore singuliére, mais par définition des singularités de type Z, on
peut toujours trouver une suite

)?l—>)?l_1—>...—>)?1—>X

de telles résolutions avec X7 = X et X lisse, et notre résultat principal s’applique successivement a cha-

cune de ces résolutions pour montrer que la résolution lisse X; admet une métrique cscK.

Mots-clés: Métriques de Kihler a courbure scalaire constante, Orbifold, Résolution, Eclatement, Structures

de Lie a I'infini, Espace projectif pondéré, Singularités de type 7.



ABSTRACT

In this thesis, we study the existence of new constant scalar curvature Kihler (cscK for short) metrics on
a resolution of an orbifold singularity. We consider (X, wy ), a compact complex orbifold with a discrete
group of automorphisms (in particular, there are no non-trivial holomorphic vector fields on X). We as-
sume that X has singularities of type Z along a subset Y with codimension k greater than 2. The subset
Y itself is a smooth complex manifold, but the inclusion Y — X in X is singular, i.e., the normal bundle

of Y in X has fibers of the form C* /T" with I a discrete finite subgroup of U (k) of type Z of form (—wq, w) .

We use a resolution X of X, obtained by blowing-up Y in X using the non-compact weighted projective
space introduced by Apostolov and Rollin, and a gluing technique inspired by the work of Seyyedali and
Székelyhidi and of Conlon, Degeratu, and Rochon, to demonstrate that there is a family of metrics &, on X
close to being cscK for small enough . Ultimately, through nonlinear analysis, we establish the existence
of a smooth potential function ¢. on X such that We = We +/—100¢, is cscK on X. Asan application of
the main theorem, we provide a new example of a weighted projective space that admits a cscK metric on

a resolution of it.

The resolution X — X is typically not singular, but by definition of a singularity of type Z, we can always
find a sequence

)?l—>)?l_1—>...—>)?1—>X

of such resolutions with )Afl — X and )?l smooth. Our main result can be applied successively to each

resolution to show that the smooth resolution )?l admits a cscK metric.

Keywords: Constant scalar curvature Kahler metrics, Orbifold, Resolution, Blow-up, Lie structures at infinity,

Weighted projective space, Singularities of type 7.



INTRODUCTION

0.1 Motivation

In the 1950s, Eugenio Calabi in [13, 12] proposed a natural notion of canonical Kdhler metrics, namely ex-

tremal metrics. This involves fixing a Kahler class £2 and minimizing the Calabi functional:

Cal(w) = /M S(w)w™,

where S(w) is the scalar curvature, within the space of Kahler metrics whose Kahler form w belongs to
(). Constant scalar curvature Kihler (cscK) metrics are examples of extremal metrics, and Kahler-Einstein

metrics are examples of cscK metrics.

The existence of Kdhler-Einstein metrics for compact Kdhler manifolds depends on the sign of the first Chern
class of the Kdhler manifold. When the first Chern class is negative, there is always a Kdhler-Einstein metric,
as independently proved by Thierry Aubin [8] and Shing-Tung Yau [64, 63]. When the first Chern class is zero,
there is always a Kahler-Einstein metric, as was shown by Shing-Tung Yau in [64, 63]. However, when the
first Chern class is positive (also called Fano), the existence of Kdhler-Einstein metric remained a well-known
open problem for many years. In 2012, Xiuxiong Chen, Simon Donaldson, and Song Sun [18, 19, 20], as well
as independently Gang Tian [59], proved that for the Fano case, an algebraic-geometric criterion called K-
stability implies the existence of a Kdhler-Einstein metric. Additionally, the converse was proved by Robert

Berman [9].

Sixty years after it was proposed, Calabi’s program continues to represent the forefront of most active cur-
rent research in complex geometry, yielding spectacular results. Yau-Tian-Donaldson [26] conjectured more
generally that there is an equivalence between the existence of a cscK metric on a polarized projective
manifold and the K-polystability of that polarized manifold. Beyond the Kahler-Einstein Fano case, the con-
jecture was established for toric Kdhler surfaces by Donaldson [26] and for general toric varieties by Chen
Cheng. This conjecture was recently proven in 2021 by Chen-Cheng [16, 17, 15] in the toric case. In fact, it
provides a necessary and sufficient condition, expressed in terms of the corresponding Delzant polytope,

for a compact smooth toric manifold to admit a compatible Riemannian metric of constant scalar curvature.

In this thesis, we focus on constant scalar curvature Kahler (cscK) metrics. In 2006, Arezzo and Pacard

[5] proved that if a compact manifold or compact orbifold M with isolated singularities and no non-trivial



holomorphic vector fields vanishing somewhere, admits a cscK metric, then the blow-up of M at finitely
many points also adimt a cscK metric. In 2009 [6], they generalized the statement to situations where
there are non-trivial holomorphic vector fields with zeros. In 2011, Arezzo, Pacard, and Singer [7] proved
the existence of an extremal metric on the blow-ups of a manifold at certain points, subject to assumptions
on the position of the points, such as balancing and genericity conditions. Recently, in 2020, Seyyedali and
Székelyhidi [53] extended the results of Arezzo and Pacard to obtain a cscK metric on blow-ups of a manifold
along a submanifold. When the extremal metric is cscK and the automorphisms group is trivial, their result

can be formulated as follows.

Theorem A ([53]). Let (X, wx ) be a compact cscK complex manifold with discrete group of automorphisms
(in particular, there are no non-trivial holomorphic vector fields on X) and Y C X be a submanifold of
codimension k greater than 2. Then Bl;s admits a cscK metric in the class [wx] — £2[E] for sufficiently small

€ > 0, where E is the exceptional divisor of the blow-up.

0.2 Main Results

In this thesis, we generalize Arezzo-Pacard-Singer and Seyyedali-Székelyhidi results by constructing cscK

metrics on the resolution of a certain orbifolds as follows.

Theorem B (Theorem 6.8). Suppose that (X,wx) is a compact cscK orbifold with no holomorphic vector
fields, and such that the set of singular points Y of X is of complex co-dimension > 2. Suppose, furthermore,
that any point p € Y has a local orbifold uniformization chart of the form C"~* x (C* /T') where T'is a
finite linear group of type Z of the form (—wg, w). If 7 : X — X is the partial resolution of X obtained by
a (—wo, w)-weighted blow-up of X along Y, then the class [wx] — £2[E] admits a cscK metric for ¢ > 0

sufficiently small, where E = 7~1(Y) is the exceptional divisor of the resolution = : X > X.

Unless the singularity is of type Z and of the form (—r, 1, ..., 1), the resolution X is not smooth. However,

there is a possibly non-unique sequence of resolutions
Xi—->X_4—-..2X1—X

obtained by a sequence of weighted blow-ups with )A(l. For such a sequence of resolutions, we show that

Theorem B can be applied iteratively to each )A(l yielding the following result.

Corollary C. For (X,wx) as in Theorem B, let )?l — Xl—l — ... )?1 — X be a sequence of resolutions



obtained through a sequence of weighted blow-ups with )A(l smooth. Then )A(l admits a cscK metric in a

suitable Kdhler class.

Our strategy to prove this result consists in adapting the approach of [53] to the singular setting, using a

coordinate-free description involving manifolds with corners.

0.3 Structure of the thesis

In chapter 1, we describe the basics notions in Kdhler geometry. Additionally, we revisit concepts such as
Kahler orbifolds, blow-up in complex geometry, weighted projective spaces and their singularities. We finish
chapter 1 with the definition of singularities of type Z and resolutions of type Z, introduced by Apostolov
and Rollin about ten years ago. If we require that Y has codimension at least 2, then the Lie algebra of
holomorphic vector fields on the resolution X is identified as a subalgebra of that on X, tangent to Y
(Proposition 1.148). This first property will later be used to construct an example (Theorem 3.26) to which

the theorem applies.

In chapter 2, we describe the analytical tools. We begin by defining manifolds with corners and blow-ups in
the Melrose sense. We then define the Lie structure at infinity and Riemannian metrics from them. Finally
we introduce asymptotically Euclidean (AE), asymptotically locally Euclidean (ALE), asymptotically conical
(AC), scattering (SC), quasi-asymptotically locally Euclidean (QALE), and quasi-asymptotically conical (QAC)

metrics within a unified framework.

In chapter 3, we focus on constant scalar curvature Kahler (cscK) metrics. An important example is the
notion of constant scalar curvature Kdhler metrics is the Kahler-Einstein (KE) metric, which has been the
primary focus of Kahler geometry since the inception of the celebrated Calabi conjecture on Kahler-Einstein
metrics. We begin this chapter by defining extremal metrics. Then, we briefly study Kahler-Einstein metrics.
Following that, we discuss classic results by Matsushima-Lichnerowicz and Arezzo-Pacard for cscK metrics.
We finish this chapter by constructing new examples of cscK orbifolds with singularities of type Z and having

discete automorphism group (Theorem 3.26).

In chapter 4, we construct a family of Kdhler metrics &, by gluing tehcnique utilizing the Serre-Swan theo-
rem. Starting from the orbifold X, we consider a cornered orbifold X obtained by blowing-up X X [0, co)

along Y x {0}. The hypersurface H; in X resulting from the blow-up of Y x {0} can be seen as the ra-



dial compactification of the normal bundle Nx (Y') of Y. During the transition to the resolution )A(, H;
becomes fll and there is a bundle map ¢ : fll — Y that lifts a map ¢1 : Nx(Y) — Y. Theorem 4.2
ensures that there exists a smooth closed (1, 1)-form wg, on ﬁl whose restriction to the fibers of ¢ is a
Kahler form of an asymptotically locally Euclidean (ALE) metric, derived from the combined works of Burns,
Eguchi-Hanson, LeBrun, Pedersen-Poon, Simanca and Apostolov-Rollin. There is a rather fine understand-
ing of the global behavior of wz, . By examining a level set of X associated with the deformation parameter

(denoted by ¢) in the real blow-up of Melrose, we construct a smooth Kihler metric &, such that on ﬁl,

~

*
P1wWs,
82

)

We
Zlm =wa +

while for the Melrose blow-up of X along Y, denoted by Hs, which is a manifold with corners, we have on
H,

QE}E@ = WX‘HQ’
the cscK metric on the orbifold X. The next goal is to perturb the metric w, to obtain a true cscK metric on

the resolution X.

In Chapter 5, we focus on linear analysis through the linearization of constant scalar curvature, which re-
quires considering the Lichnerowicz operator on weighted Holder spaces using techniques introduced by
Mazzeo in his study of conical metrics. The triviality of the kernel of the Lichnerowicz operator is due to the
assumption on holomorphic vector fields on X (Lemma 5.7). Based on techniques developed by Seyyedali
and Székelyhidi, we proved that the twisted Lichnerowicz operator fs is indeed boundedly invertible for

sufficiently small £ (Proposition 5.8).

In Chapter 6, we use nonlinear analysis to find a potential u for obtaining a cscK metric @, = &, ++v/—1 006,
on the resolution. We begin by expressing the first Chern class of the resolution X in terms of that of X
(Proposition 6.1). This allows for the explicit calculation of the topological constant in the cscK equation
on the resolution that we aim to solve (Proposition 6.2). The final step is to apply Banach’s fixed-point
theorem by carefully controlling the error term across four different regions, which depend on the distance

to Y, following a strategy implemented in Székelyhidi’s book [57].
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CHAPTER 1
KAHLER GEOMETRY

In this chapter, we introduce the fundamental principles of Kdhler geometry that constitute the framework
of this thesis. For further details, we refer to [60, 54] for the differential Geometry, for the topology [48, 44]

and [31, 34, 62, 38, 57] for the complex geometry. Basic knowledge of smooth manifolds is assumed.

1.1 Complex Manifolds

Kahler geometry is an important field of mathematics at the intersection of Riemannian and complex ge-
ometry introduced by Erich Kahler in 1933. It provides a way to study the geometry of complex manifolds
that have a Riemannian structure compatible with the complex structure. Let us recall the definition of a

complex manifold.

Definition 1.1 (Complex manifold). A complex manifold of complex dimension n is a Hausdorff topological

space M together with the following data:

1. Atlas of Charts: For every point p in M, there exists an open neighborhood U of p and a homeomor-

phism ¢ : U — V where V is an open subset of C".

2. Transition Functions: The overlaps between charts are required to be holomorphic functions. More
precisely, if o1 : Uy — Vi and ¢o : Us — V5 are two charts with non-empty intersection Uy N Us,

then the map ¢5 o gzbfl : 01 (U1 NU2) — ¢2(Uy N Us) is holomorphic.

These transition functions ensure that the complex structure of the manifold is well-behaved and consistent

across different charts, inducing a global complex structures on it.

The concept of a complex manifold generalizes the notion of complex curves and surfaces to higher dimen-
sions. Complex manifolds provide a framework for studying complex geometry, and they have applications

in various mathematical fields, including algebraic geometry, differential geometry and topology.
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Example 1.2. Here are a few examples of complex manifolds:

1. Complex Euclidean Space: C™ is the simplest example of a complex manifold. Each point in C™ has a

natural complex coordinate representation, and the entire space is covered by a single chart.

2. Complex Projective Space: CP" is the space of complex lines through the origin in C™+1. It can be de-
fined as a quotient space of C" 1\ {0} by the rescaling action, i.e., (Zo, Z1, ..., Zn) ~ (24, Z}, ..., Z})
if and only if there exists A € C such that

(Zoy 21y Zn) = N2, 20, ... Z)).

We denote by [Z : ... : Z,] the point of CP"™ corresponding to (Zy, Z1, ..., Z,) € C*T1\ {0}. The

complex projective space CPP" can be covered by:

Ui:{[Zoi...:Zn] G(C]P)nZZZ'#O},
Z 7 Zy
with coordinates U; > [Zy : ... : Zy| — (21 = 79, SR AR 7) € C"™. The complex pro-

jective space CIP" is a compact n-dimensional complex manifold. May also regard CP" as a quotient

of the unit sphere S in C"*! under the action of U (1):
CP" = S /U (1),
since every line in C" 1 intersects the unit sphere in a circle.

3. Complex Torus: The complex torus C™ /A, where A is a lattice of rank 2n in C", is an example of a

compact complex manifold. It is a higher-dimensional generalization of the notion of elliptic curve.

4. Riemann Surfaces: One-dimensional complex manifolds (complex curves) are called Riemann sur-
faces. The uniformization theorem says that every simply connected Riemann surface is conformally
equivalent to one of the following three Riemann surfaces: the open unit disk D, the complex plane

C, or the Riemann sphere C=CP! =2

Remark 1.3. Not every even-dimensional manifold has a compatible complex structure. In fact, there are
certain topological restrictions that must be satisfied for a manifold to admit a complex structure. The
existence of a compatible complex structure is related to the concept of orientability. A complex structure
on a smooth manifold M of real dimension 2n implies that M is orientable. However, not all orientable

manifolds of even dimension admit a complex structure. The sphere S™ does not admit a complex structure
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when n # 2. However, the Riemann sphere S? does admit a complex structure. In fact, every orientable
closed 2-manifold has a complex structure as a Riemann surface. As for S, it is still unknown whether it

admits a complex structure.

Definition 1.4 (Holomorphic function). Let X be a complex manifold of complex dimension n. A function
f : X — Cis called holomorphic, if for all local chart (U, $) on X, f o ¢ : U C C™ — C is holomorphic.

The space of holomorphic function from X to C is denoted by O(X).

Definition 1.5 (Meromorphic function). Let X be a complex manifold of complex dimension n, and €) is
an open and dense subset of X. A function f : Q — C is called meromorphic if, for any xo € €, there
exists an open neighborhood U and non-zero holomorphic functions g and h : U — C such that for every

zeUnNQ\ {zo},
fla) = 43,

Definition 1.6 (Almost complex structure). Let M be a smooth manifold of real dimension 2n. An almost
complex structure on M is a smooth bundle endomorphism J : T'M — T'M such that at each pointp € M,

J? = —Idg, a1, where 1d is the identity operator.

Proposition 1.7. Any complex manifold M admits a natural almost complex structure.

On a complex manifold M, the holomorphic charts induce a natural almost complex structure on T'M via
multiplication by v/—1. We say in this case that the almost complex structure is integrable (or that is a
complex structure). Not all almost complex structures are integrable. The Newlander-Nirenberg theorem
provides a necessary and sufficient condition for determining whether an almost complex structure .J is

integrable in terms of its Nijenhuis tensor N 7, which is defined by
Ny(V,W) = [V.W]+ J([JV, W]+ [V, JW]) = [JV, JW],
for V, W vector fields on M.

Theorem 1.8 (Newlander-Nirenberg). Let M be a smooth manifold and J an almost complex structure on

M. Then J is integrable if and only if the Nijenhuis tensor associated with J vanishes.

Definition 1.9 (Holomorphic vector field). On any almost complex manifold (M, J), a (real) vector field X
is said to be (real) holomorphic if

LxJ =0,

where L x denotes the Lie derivative along X.
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Definition 1.10 (Holomorphic map). Let (M, Jyr), (N, Jn) be two complex manifolds and f : M — N
smooth map. We say that f is a holomorphic map if Jy o df = df o Jys. Furthermore, f is called biholo-

morphic, if f is a diffeomorphism and its inverse is also a holomorphic map.

Definition 1.11 (Automorphism group). Let M be a complex manifold. An automorphism of (M, J) is a
biholomorphic map ¢ : M — M. The automorphisms of M form a group Aut(M, J) or simply Aut(M) if
J is understood, called the automorphism group of M. We denote by Auty(M, J) its connected component

to the identity.

Example 1.12. The automorphism group of the complex projective space CP" is the projective linear group

PGL(n + 1, C) consisting of all invertible (n 4+ 1) x (n + 1) complex matrices up to a scalar factor, i.e,
Aut(CP") = PGL(n + 1,C) := GL(n + 1,C) /C*.

Remark 1.13. The automorphism group Aut(M ) has a structure of complex Lie group. Its Lie Algebra iden-
tified with the real smooth vector fields on M whose flow preserves J, i.e, real holomorphic vector fields

and will be discussed in Example 1.37 on page 15.

Definition 1.14 (Complex submanifold). Let X be a complex manifold of dimension n, and Y C X. We
call Y a complex submanifold of X of codimension k, for 0 < k < n, if for each y € Y there exist local
holomorphic coordinates (z1, ..., z,) on X such that Y is locally of the form z, ;11 = zp_gyo = ... =
z, = 0. i.e, there exist a chart (U, $) on X withy € ¢(U) such that Y N ¢(U) = ¢(C"* N U), where
C"* = {(z1,...,2n1,0,...,0)}. A complex submanifold Y of codimension k is naturally a complex

(n — k)-manifold.

Definition 1.15 (Analytic subvariety). Let X be a complex manifold of dimension n, and Y C X a closed
subset. We call Y an analytic subvariety of X, if for each x € X there exists an open neighbourhood
x € U C X such that Y N U is the zero set of finitely many holomorphic functions fi,..., fr € O(U).
An analytic subvariety is not necessarily smooth. A point x € Y is a smooth or regular point of Y if the
functions f1, ..., fi can be chosen such that ¢(x) € ¢(U) is a regular point of the holomorphic map f :=
(fiod™t, ..., frogp™t): ¢(U) — CF i.e, its Jacobian has rank k. Here, (U, ¢) is a local chart around X. A
point x € Y is singular if it is not regular. The set of regular points Y;eg = Y\ Ysing is a non-empty complex
submanifold of X. An analytic subvariety in a neighbourhood of a regular point is a complex submanifold.
An analytic subvariety Y is irreducible if it cannot be written as the union Y = Y; U Y5 of two proper
analytic subvarieties Y; C Y. The dimension of an irreducible analytic subvariety Y C X is by definition

dim(Y) = dim(Yeg)-
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Example 1.16 (Hypersurface). Let X be a complex manifold. An analytic subvariety Y of X of codimension
1 is called an analytic hypersurface, i.e, for each y € X there exist an open neighborhood U C X and non-
zero holomorphic function f : U — Csuchthat U NY = {u € U : f(u) = 0}. This analytic hypersurface
is smooth on U N'Y if df does not vanishes on U N'Y. Every analytic hypersurface is a locally finite union of

irreducible analytic hypersurfaces. If X is compact this union is finite.

Definition 1.17 (Projective Variety and Projective Complex Manifold). A projective variety is a subset X of

CIP" which is defined by the vanishing of finitely many homogeneous polynomials P, ... P, i.e,
X ={lz0,21,.--,2n] € CP" : P1(20,21,---y2n) = ... = Pi(z0,21,...,2n) = 0}.

Projective varieties are closed in CP", and so compact. A projective variety is called a projective complex
manifold if it is also a complex submanifold of CIP". A complex manifold is called algebraic if it is a projective

complex manifold

Theorem 1.18 (Chow). A compact complex submanifold of CP" is algebraic.

There are complex manifolds that are not algebraic; these are studied in Transcendental Geometry. A nat-
ural question arises: when a compact complex manifold is algebraic? According to the Kodaira Embedding
Theorem, if a compact complex manifold admits an ample line bundle, then it is algebraic. We will demon-
strate that any projective complex manifold is Kihler, so by using homogeneous polynomials, we can con-
struct many Kahler manifolds. Furthermore, under some conditions on cohomology, Kdhler manifolds are

algebraic, allowing us to employ complex algebraic geometry to classify them.

1.2 Calculus on Complex Manifolds

Let M be a complex manifold of complex dimension n. Then M is a smooth manifold of real dimension 2n.
Let {z* = 2" + V/—1y'}i=1...n be complex coordinates around p € M such that {z%,y'},—; _, are the
corresponding real coordinates. In these local coordinates the tangent space is given by

g 0
.M =R - —
P {8$z’ayz }i—l n,

=l,..

and the cotangent space is generated by the dual of this basis, i.e,

TrM =R {dz’, dyi}i:17.._7n :
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0 0 0
Each T, M admits a natural almost complex structure J : T),M — T, M that maps — to — and ——
oxr' oyt oyt
0 . . . .
to ek Its dual J* : T;M — T;M maps dx* to —dy* and dy* to dz*. The complexified tangent space
x
TEM = T,M ®p C is generated by

a 0
Car —
TPM_C{Gxivayi}i1 n.

EARE)

Also we can write

0 0
TEM = L —
P ¢ {822’ 0zt }i—l,...,n’
where 5 = ;(68331 - ‘/_1531) and 8?? = ;(8?0’ + ‘/_1383/1;)' The condition Jg = —id means

that J, : T,M — T,,M has the minimal polynomial A2 4+ 1 =0foranyp € M, so it has two eigenvalues
++/—1. The eigenspace corresponding to the eigenvalue v/—1 is called the holomorphic tangent space to

M at p and is denoted by TI}’OM. The eigenspace corresponding to the eigenvalue —/—1 is called the
. . . o 0
antiholomorphic tangent space to M at p and is denoted by T,?’IM. In terms of {W’ F}’
z z

0
THOM =C : ,
P 0z i=1,..n

0
0,1 _
Tp M_C{azi}i—l n.

=1,...,

So the complexified tangent bundle 7€M = TM ®g C decomposes as a direct sum of complex vector
bundles
TM = T7°M & 7O M,

such that 740\ = |_| TyOM, TO M = |_| T)"' M and the complex linear extension of .J satisfies
pEM pEM

J‘Tl,OM = _1idT1v0M7 J‘To,lM =V _1idT0,1M .

Notice that 729 is naturally isomorphic to TM as a real vector bundle. For this reason, we say that
T1YOM is the complex tanget bundle of M and we will often denote 79/ simply by 7'M hoping that
will lead to no confusion. Similarly, the complexified cotangent bundle (TCM)* = T*M ®g C admits an
analogous decomposition

(T(CM)* — (Tl’OM)* ® (To’lM)*,

locally trivialized by the dual basis {dz* = da’ + v/—1dy'} and {dz* = dx' — /—1dy'} respectively. We
say that (T'1"0M)* is the complex cotanget bundle of M.
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Remark 1.19. Let (M, Jys), (N, Jn) be two almost complex manifolds and f : M — N be a smooth map.
This map induces R-linear map

f*p : TpM — Tf(p) N,

and C-linear map
. C C
fop 1 Ty M — Tf(p) N.
Note that under f.,, the tangent space Tpl’OM does not necessarily map to T}Eg) N. In fact f*p(Tpl’OM ) C

T;&N if and only if f is a holomorphic map.

Definition 1.20 (Differential forms). Let M be complex manifold.

1. Real valued k-forms are smooth sections of the real vector bundle A*T™* M. The space of real valued

k-forms on M is denoted by A* (M, R).

2. Complex valued k-forms are differential forms of the form w = o + +/—15 where o and (3 are real

valued k-forms. The space of complex valued k-forms on M is denoted by AF (M,C).

3. Complex valued (p, q)-forms are complex valued differential forms which in local complex coordinates

are of the form

w= Z f[JdZI VAN d,?],
[I|=p,|7|=q

where fr; : M — C are smooth functions. The space of (p, q)-forms on M is denoted by AP*?(M, C).

Remark 1.21. The space of complex valued k-forms naturally decomposes in term of complex valued (p, q)-
forms, i.e,

AM(M,C) = @ AP(M,C).

p+q=k

The real exterior derivative is d : A¥(M,R) — A*"1(M,R) and complexifies as d : A*(M,C) —
AFFL(M, C) with d(a + v/—183) = da + /—1dB. On AP4(M, C), two differential operators

d: APY(M,C) — APT1(M, C)
d: AP4(M,C) — AP (M, C),
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are defined by

o( Z frodz" AdzT) = Z Z ég;]dzl Adzt A dz7,

[I|=p,|J|=¢ |I|=p,|J|=¢q I=1

o > fuddadzl)y= N Zaaf;dzlAdzl/\dzJ.

[I|=p,|J|=¢ [1|=p,|J|=¢ I=1

The opertaor 0 is called Dolbeault or Cauchy-Riemann operator. The exterior differential
d: AP9(M,C) — APTLI(M,C) @ AP (M, C),
decomposes in terms of these operators d = 0 + 0. The operators
d¢: APY(M,C) — APTHU(M, C) & AT M, C),
is defined by d® = —/—1(9 — 0). So we could write 9 = %(d +v/—1d°) and 0 = %(d —/—1d°).

Proposition 1.22. Let M be a complex manifold, o € AP4(M,C) and 5 € A™*(M, C). Then the following

Leibniz rules hold:

AN B) = (0a) A B+ (—1)PHa A (9B),
AaAB)=(da)AB+ (=1)PTaA(95),
d(a A B) = (da) A B + (—=1)Pa A (dB).
Remark 1.23. Direct computations show that d> = 0, 8% = 0, 9> = 0 and d°% = 0. So we get 99 = —dd,

dd® = —d°d and
dd® = 2v/—100.

Remark 1.24. One can check that dw = dw and d°w = d°®, so d and d¢ are real operators, meaning that

they take real forms to real forms. Also dw = 0w and 0w = diw, so & and O are complex conjugate.

Remark 1.25. For a smooth function f : M — C defined on a complex manifold M, the Cauchy-Riemann

equations are equivalent to O f = 0. Therefore, f is a holomorphic function if and only if 0f = 0.

Definition 1.26 (Holomorphic p-forms). On a complex manifold M, a (p, 0)-form w is called holomorphic, if

Ow = 0. The space of holomorphic (p, 0)-forms is denoted by QP (M).

' Some references use d° = —%(8 — 0) and so dd°® = /—100.
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The fact that d> = 0 implies that Im(d : A*~1(M,C) — A*(M,C)) C ker(d : A*(M,C) — A*+1(M,C)),
so we can define the complexified de Rham cohomology

ker(d : A¥(M,C) — AFT1(M,C))

HclfR(Mv C) = Im(d : A*=1(M,C) — A*(M,C))"

Note that HY; (M, C) = HA; (M, R) ®@g C where H, (M, R) is the real de Rham cohomology. So the
complex version of de Rham cohomology does not carry more topological information than the real one. For
a compact manifold M, the de Rham cohomology groups H§R(M, C) are finite-dimensional vector spaces,

and their dimensions are called Betti numbers and denoted by by (M ). We recall the Poincaré lemma.

Theorem 1.27 (d-Poincaré lemma). Let U be an open disk in R™. If o € Ak(U, C) is closed, i.e da = 0, then

ais exact, i.e, a = df3 for some 3 € A*~1(U, C). In terms of the de Rham cohomology,
HY%(U) =0,k > 1.

Definition 1.28 (Dolbeault cohomology). The property d* = 0implies Im(0 : AP4(M,C) — AP9H1(M,C)) C
ker(0 : AP4~1(M) — AP4(M, C)), so we can define the (p, q)-Dolbeault cohomology group by

ker(d : AP4(M, C) — AP4T1(M, C))
Tm(d : APa-1(M,C) — AP4(M,C))’

HYI(M,C) =

For a compact manifold M, the Dolbeault cohomology groups Hg’q(M, C) are finite-dimensional vector

spaces, and their complex dimensions are called Hodge numbers and denoted by h?4(M).

Remark 1.29. Note that Dolbeault cohomology is defined for complex manifolds and not for almost complex

manifolds.

Theorem 1.30 (O-Poincaré lemma). Let U be an open polydisk in C". If « € AP4(U,C) is O-close, i.e

da = 0, then v is D-exact, i.e, o« = 93 for some 3 € AP4~1(U, C). In terms of the Dolbeault cohomology,

H2(U,C) = 0,q > 1.

Here we recall the local 99-lemma.

Theorem 1.31 (Local 90-lemma). Let U be an open polydisk in C". If a € AP4(U, C) is d-closed, i.e [a] €
HEL(U, C), then o is 0-exact, i.e, o = 9O for some B € AP~L4~1(U, C).

Theorem 1.32 (Dolbeault Theorem). On a compact complex manifold M, Hg’q (M, C) is a finite-dimensional

vector space, and the dimension of it is called the (p, q)-Hodge number, denoted by hP-1.
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Proposition 1.33. There is a natural isomorphism H;(M) = HI(M,QP(M)). Here H9(M,QP(M)) is
the sheaf cohomology of the complex manifold M with coefficient in the sheaf of holomorphic p-forms.
In particular Hg’q(M ) = HY(M,Op), where Oy is the sheaf of holomorphic functions on M. Sheaf

cohomology is typically defined using Cech cohomology, but in this thesis, we will not provides further details.

1.3 Vector Bundles

Definition 1.34. Let M be a complex manifold. A holomorphic (respectively smooth) complex vector bundle

FE of rank r over M consists of the following data:

1. A complex (respectively smooth) manifold E called the total space of the bundle.
2. A holomorphic (respectively smooth) surjective map © : E — M called the projection map.
3. For each point p € M, the fiber £, = 7~ 1(p) over p is a r-dimensional complex vector space.

4. For each point p € M, there exists a neighborhood U of p and a biholomorphism (respectively dif-

feomorphism) ¢ : 7=1(U) — U x C" such that (b\p : B, — C" is linear and the following diagram

commutes:
WUy L Uuxcr
lm 1 Pry
U — U,
idy

where Pr; is the projection onto the first factor in the product space U x C", and idy; is the identity

mapon U.

The map ¢ is called a holomorphic (respectively smooth) trivialization of the vector bundle E over U, and the
pair (U, ¢) is called a holomorphic (respectively smooth) chart for the bundle. The local transition functions
between overlapping holomorphic (respectively smooth) charts must be holomorphic (respectively smooth)
maps from an open set in C" to the general linear group of the vector space, i.e, if (U;, ¢;) and (U;, ¢;) are

two charts the induced transition functions

ij(z) := (piop; ') (x) : C" = C

are C-linear for all x € U; N Uj.
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Definition 1.35. Let E be a holomorphic vector bundle over complex manifold M. A holomorphic (respec-
tively smooth) function s : M — E is called a holomorphic (respectively smooth) section of E, if mos = id .
The space of holomorphic (respectively smooth) sections of the vector bundle E is denoted by H O(M ,E)
(respectively I'(E)). A function s : M — E defined on an open and dense subset of M to E is called
a meromorphic section of E if m o s = id and for any x € M, there exists an open neighborhood U, a
holomorphic sectiont : U — M, and a meromorphic function f : U — C such that, together, they are

. . t
non-zero near x and in the domain of s, s = —.

f
Example 1.36 (The trivial vector bundle). Let M be a complex manifold. The product space E = M x C"

with the projection onto the first coordinates has the structure of a holomorphic vector bundle of rank r
over M. This bundle is called the trivial line bundle. For the trivial vector bundle H°(M, E) = C*(M,C")
and I'(E) =2 C>(M,C").

Example 1.37 (The holomorphic tangent bundle). The holomorphic tangent bundle of a complex manifold
M, TYOM, is a holomorphic vector bundle. Its smooth sections are holomorphic vector fields. They forms
a vector space denoted by h(M). The space of holomorphic vector fields on a compact complex manifold is

the Lie algebra of the automorphism group Aut(M ).

Definition 1.38 (Picard group). Holomorphic vector bundles of rank one are called holomorphic line bundles.
The Picard group Pic(M) of a complex manifold M is defined as the set of classes of holomorphic line
bundles on M. The group operation is given by the tensor product of line bundles, and the identity element

is the class of the trivial line bundle.

Corollary 1.39. There is a natural isomorphism Pic(M) = H'(M, O%,). Here H'(M,O%,) is the sheaf

cohomology of the complex manifold M with coefficient in the sheaf of non-zero holomorphic functions.

See Corollary 2.2.10 in [34] for a proof.

Since a line bundle £ — M is locally trivial, holomorphic sections of £ are locally holomorphic functions
f: M — C, but globally they can be quite different. If M is compact and connected then O(M) = C, i.e.,
holomorphic functions are constant functions. However, a holomorphic line bundle may have many non-
zero holomorphic sections. Therefore, holomorphic sections offer an alternative perspective for studying

complex manifolds and vector bundles.

Example 1.40 (Line bundles over CP"). Line bundles over CP" play a central role in algebraic geometry.

They encode geometric and topological information about complex projective spaces. An important exam-
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ple is the tautological line bundle, denoted by Ocpn(—1). For the tautological line bundle, fibers are lines
passing through the origin and so the total space of Ocpr(—1) consists of the disjoint union of all lines

passing through the origin, i.e, the submanifold of C"* x CIP" given by
O(cpn(—l) = {(Z, Z) € (CnJrl x CP™ : ZiZj = ZjZi,V’i,j},

where Z = [Zy, ..., Z,] € CP". In terms of bundle, Ocpr (—1) is a line bundle over CP" and its fiber over
apoint [Zy; . ..; Zy] is the line in C"*! spanned by (Zy, . .., Z,) and the projection map 7 : Ocpn(—1) —
CP" assigns to each line its point in CP". The dual of the tautological line bundle O¢pn (—1) is called the
hyperplane bundle and denoted by Ocp~(1). More generally, for any r € Z, the line bundle Ocpn (1) is
defined as Ocpn (1)®7 for r > 0 and Ocpr (—1)2(=7) for r < 0. In a local trivialization over an open set
U =A{[Zy:...: Zy,) € CP" | Z; # 0}, where [Zy : ... : Z,] are the homogeneous coordinates of
CP", Ocpr () can be represented as U; x C, and the transition function ¢;; on the intersection U; N U; is
a holomorphic function defined by:
Zi\"
¢ij U;NU; = C, ¢i([Zo:...: 7)) = <ZZ> ,

for some r € Z. In fact, for the complex projective space CPP", the Picard group is identified with Z via the

isomorphism Z > r — Ocpr(r) € Pic(X).

On CP!, there is also a simple classification of holomorphic vector bundles.

Theorem 1.41 (Grothendieck Classification Theorem for Vector Bundles on CP!). Let E be a complex vector
bundle on CP". Then, there exist unique integers r1,...,T such that E is isomorphic to a direct sum of line
bundles:

See [32] for a proof.

Proposition 1.42. The behavior of the space of holomorphic sections of Ocpr (r) depends on the sign of r

as follows.

1. When r > 0, the space of global holomorphic sections of O¢pr (1) is non-trivial and consists of ho-

mogeneous polynomials of degree r in n + 1 complex variables (Z, . .., Z,).
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2. Whenr =0, Ocpr (0) is the trivial line bundle and its space of sections identified with C, correspond

to the constant functions.

3. When r < 0, the space of global holomorphic sections of Ocpn (1) is trivial, meaning it only contains

the zero section, i.e., there are no non-zero global holomorphic functions in Ocp (7).

Now we define the canonical line bundle of a complex manifold M. It will be important in understanding
the Ricci curvature of Kahler manifolds. For example, a simply connected Kahler manifold admits a Ricci flat

Kahler metric if and only if its canonical bundle is trivial.

Definition 1.43 (Canonical line bundle). Given a complex manifold M, its canonical bundle K, is the line

bundle corresponding to the top exterior power of the complex cotangent bundle of M.

Example 1.44 (The canonical bundle of CP"). LetU; = {[Zo, ..., Zy] € CP" | Z; # 0}, where [Zy, . .., Z,)

are the homogeneous coordinates of CIP". Define a meromorphic n-form on Uy by

dz dz
=2 A n2
Z1 Zn
where [1,z1,...,2n] ~ [Zo, Z1, ..., Zy). This form is non-zero on Uy and has poles along the hyperplanes

Z1=0,25=0, ..., Z, = 0. Now consider new coordinates on U; defined by
Wo, oo Wi, L, Wiga, ... Wy ~ [Zo, 21, ..., Zy).

In these coordinates

Wi Wi L Wim W
WO""7WO’WO7WO""7WO

]

[1,21, . aZj—l,ZjaZj+la .. .,Zn] ~ [1,

So we can write

dWwy,  dW, dWi_1  dWy dWy dw,  dWy
=(— — —2)A... A — A (——) . A -
o (W1 Wo) (Wj_1 o ( Wo) (Wn Wo)
AW, aw; AW,
= (—1)/ Avoi—L AL

this means that « has a single pole along the hyperplane Z, = 0 as well. As a consequence
Kezn = [(0)] = [~(n +1)Ogpn (1)] = Ocpn (—n — 1),

Definition 1.45 (Divisor). For any complex manifold M, the group of divisors, Div(M ) is the additive free

abelian group whose generators are the connected, irreducible analytic hypersurface of M. A non-zero
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k
element of D is then a formal sum D = Z m;D;, where each D; is a connected, irreducible, analytic
i=1

k
hypersurfaces of M and the coefficients m; are integers. A divisor D = Z m;D; is called effective if

i=1
m; > 0 forall 1.

Suppose that M is a compact complex manifold, and f : M — Cis a meromorphic function. Then one can

associate a unique divisor
k
D =div(f) =) _ mVi,
i=1
such that f has zeroes of order m; on V; when m; > 0, and poles of order m; on V; when m; < 0. i.e, each
x € X has an open neighbourhood U in X such that

k
f(@) = gla) [J (i)™,

=1
where f; : U — C is a holomorphic function with U N V; = {x € U : f;(x) = 0} and f; vanishes to order
10n the smooth partof U NV, ,and g : U — C \ {0} is holomorphic.

Definition 1.46 (Principal divisor). A divisor D is called principal if D = div(f) for some meromorphic
function f. The subset of principal divisors in Div(M) is a subgroup, since div(f) + div(g) = div(fg)
and —div(f) = div(f~!). Two divisors Dy and Dy are called linearly equivalent, written D1 ~ Ds, if
Dy — Dy = div(f) for some meromorphic f. The quotient group Div(M) /~ of equivalence classes of [D]

is an abelian group as well.

Lemma 1.47. Let M be a compact complex manifold having a holomorphic line bundle which admits a
meromorphic section s. Then the class [div(s)] in Div(M) is independent of the choice of meromorphic

section.

Conversely, given any divisor D on M, one can construct a holomorphic line bundle £ and a meromorphic
section s with div(s) = D, and (L, s) are unique up to isomorphism. Thus the class [£] € Pic(M) depends
only on the equivalence class [D] of D. If D is a smooth analytic hypersurface Y, the corresponding line

bundle is denoted by [Y] or Ly

If M is acompact complex manifold, there is a natural injective morphism [D] € Div(M) /~— Pic(M) > [£],

where L is a holomorphic line bundle with a meromorphic section s with div(s) = D. If D is effective then
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s is holomorphic. The image of this map is the set of [£] for which £ admits a meromorphic section. One
can show that if X is projective then every £ admits meromorphic sections, so the above map is an isomor-

phism.

Definition 1.48 (Normal Bundle). Let Y be a submanifold of a smooth manifold X. By considering the

canonical embedding i : Y — X, we get a short exact sequence of vector bundles over Y:
0=>TY -i"TX - i"TX /TY — 0. (1)

The quotient bundle i*T'X /TY s called the normal bundle of Y in X and denoted by Nx (Y'). In fact it

represents the directions transversal to the submanifold Y within the ambient manifold X.

Definition 1.49 (Tubular neighborhood). Let Y be a submanifold of a smooth manifold X. A tubular neigh-
borhood of Y in X is a pair (7 : Nx(Y) =Y, f: Nx(Y) — X) wherenw : Nx(Y') — Y is vector bundle
projectionand f : Nx(Y) — X is a smooth diffeomorphism onto its image called tubular map such that

the zero section O (y) makes the following diagram cummutative,

Nx(Y)

0NX<Y)T \

ye_—* o
Remark 1.50. Let Y be a complex submanifold of a complex manifold X, then Nx(Y) — Y is naturally a

holomorpbic vector bundle.

Remark 1.51. Except from very special cases, it is typically not possible to choose the smooth map
f : Nx(Y) — X to be holomorphic. However, by the tubular neighborhood theorem, a smooth map

f satisfying the above conditions always exits.

Let Y be a complex submanifold of complex codiminsion k of a smooth manifold X of complex dimension

n. The dual of the short exact sequence 1.1 on page 19 is:
0— Nx(Y)— (TX|,)" = T*Y - 0.

So we get

/\"((TX}Y)*) >~ NN(NE(Y) @ AV HTY) = N3 (Y) @ Ky.
On the other hand, A"((T'X|,.)*) = Kx|,, so this gives the adjunction formula.

Theorem 1.52 (Adjunction Formula). Let Y be a submanifold of a complex manifold X .
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1. If Y is a smooth analytic hypersurface of X, then
where [Y'] is the corresponding line bundle to divisor Y.

2. we have

Kx‘y =Ky @Nx(Y)=Ky ® [_YHY‘

Look at the page 146 of [31] for a proof.

Example 1.53. Let X = CP" and Y be a an analytic hypersurface of degree k in X, i.e, Y = s~1(0) for
s € H°(CP™, Ocpn(k)). The corresponding line bundle to Y is Ly = Ocpr (k) and the canonical line

bundle of X is Kx = Oc¢pr(—n — 1). By the adjunction formula we get
Ky = (Kx ® Ly)|, = (Ocpr(—n — 1) ® Ocpr (k)| = Ocpn (k —n — 1) |,

There are three possible cases

1. Ifk =n+1, then Ky = Ocpn(0) ]Y is the trivial line bundle and so Y is Calabi-Yau.

As a consequence:
e K3surfaces? (a smooth quartic in CIP3) are a Calabi-Yau.
2. If k < n+ 1, then Ky is a negative line bundle (Y is a Fano manifold).

3. Ifk > n + 1, then Ky is a positive line bundle (Y is of general type).

1.4 Hermitian and K3hler Metrics

Definition 1.54 (Hermitian metric on a complex vector bundle). A Hermitian metric on a complex vector
bundle E over a smooth manifold M is a smoothly varying positive-definite Hermitian form on each fiber,
i.e, a smooth global section h of the vector bundle (E ® E)* such that for every point p in X and any two

element ¢, n in the fiber E,

and for all nonzero ( in E,,

2 The term "K3" is in honor of Kummer, Kihler, Kodaira, and the beautiful K2 mountain in Kashmir.
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Definition 1.55 (Hermitian metric on a complex manifold). A Hermitian manifold is a complex manifold with
a Hermitian metric on its holomorphic tangent bundle. On a Hermitian manifold the metric can be written

in local holomorphic coordinates (z') as
h=h;dz' ® dz,
where hg are the components of a positive-definite Hermitian matrix.
Definition 1.56. Let h be a Hermitian metric on complex manifold M, the real part of h, i.e,
Lo i o d5 4 d  dy
g :=Re(h) = §(h +h) = h;(dz" ® dz7 +dZ7 @ d2"),

defines a Riemannian metric on the underlying smooth manifold which is J-invariant. The imaginary part

of h, i.e,
Im(h) = —‘/?(h —h) =

e

—?hijdzi AdZ,

defines a symplectic form of type (1, 1). The associate Hermitian form of h is defined by

e

w:=—Im(h) = Thﬁdzi AdZE.

Definition 1.57 (Kahler metric). Let M be a complex manifold endowed with a Hermitian metric h. The
metric g is called a Kdhler metric if the associated Hermitian form w is closed, i.e, dw = 0. In this case, w is

called the Kahler form and (M, k) a Kdhler manifold.

Definition 1.58 (Kahler potential). Let (M, g) be a Kdhler manifold. A smooth real-valued function p is called

Ve

1 _
a Kdhler potential for the Kéhler form w, if w = T()@p.

Here is an important differential-geometric property.

Proposition 1.59. Let (M, g) be a Kdhler manifold, with Kdhler form w, and let V be the Levi-Civita connec-
tion of g. Then
Vg=VJ=Vw=0.

So, g, J, and w are constant tensors on ()M, g). Thisimplies that the holonomy group (), g) of g is contained
in U(n). Kahler metrics are defined by the condition dw = 0, which is relatively weak and easy to satisfy,
resulting in many closed forms. Because of this, there are numerous Kahler manifolds, and examples are

readily found. However, dw = 0 implies the apparently much stronger conditions VJ = 0 and Vw = 0.
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Remark 1.60. Let M be a complex manifold that admits Kdhler form w. Then by the equation dw = 0, the
Kéhler class of w is the cohomology class [w] of w in H3z (M,R) N H 5,1 (M). When M is compact, [w] # 0
and

W™ [M] = / W = nl Vol (M) > 0,
M
where [M] € Hy, (M, Z) is the top integral homology class of M.
Example 1.61 (The Euclidean metric on C"™). The Euclidean space C™ with the Kdhler metric
9Euc = dz' ® dzia

has a Kahler form

=1 . /=1
dz' NdZt = ——
2 2
n
is a manifold with Kéhler potential pg,. = ||z||> = Z ||, where (21, .., 2") are the standard coordi-
i=1
nates of C™. The Euclidean metric is invariant under unitary transformations, reflecting the isometries of

00|12,

WEuc =

the complex structure.

Example 1.62 (The Fubini-Study metric on CP"). Let U C CP" be an open subset. Consider a lift U to
C™*t1\ {0}, i.e, a holomorphicmap Z : U — C"1\ {0} such that go Z = idy where g : C"*1\ {0} — CP"

is the canonical projection and define the Fubini-Study form wgg by
V=1 _
WFs = ?8810g||ZH2.

Note that this (1, 1)-form is globally well-defined, since for any other lift Z', Z' = fZ for a non-zero holo-
morphic function f on U, and we obtain 00 log || Z'||*> = 00 log||Z||>. The unitary group U(n + 1) acts
transitively on CIP", so wrg is invariant under this action. Therefore, it's enough to check that wgg is positive

Z.
at one point. For Zy # 0, we can write Z = (1, w1, . .., wy) where w; = 71 and thus, we get
0

V-1 _-
WFs = ?ﬁﬁlogHZHZ

1 _
=——00 log(l + wiwi)
27
\/—1 widwi
= o —)
2w 1+ w;w;
_ v—=1 dw; A\ dw; B (ﬂ;idwi) VAN (wjdfuj))
27 1+ ww; (1 + wiwi)2
W/ —1 (Sif 77; . . .
= ( L — ww]22)dwz®dw].
2r 14 fwl* (1A [Jw][?)
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At thepoint[1:0:...:0],

v/ —1 . .

Thus wrg defines a Hermitian metric on the complex projective space CIP™ which is called the Fubini-Study
metric. By construction the Fubini-Study metric is a Kdhler metric. In the coordinates above,

0ij Wi

_ di d—j
T wl? ~ (@ )™ © 20

grs = (

with Kahler potential ppg = — log(1 + ||w||?). The Fubini-Study metric is invariant under the unitary group

action, making it a symmetric space.

Remark 1.63. By direct calculation one can check that the canonical Riemannian volume form of the Kdhler
manifold (M, wys) of dimension n in local holomorphic coordinates is given by

n N
Vol(wny) = / Wi _ / (o)™ detlga)dt Adzt A A d2" 2"
M

If S C M is a complex submanifold of dimension d, then, by the consequence of Wirtinger’s inequality we

get
d

w
Vol(wg) = / M
g d!
Remark 1.64. Not all complex manifolds are Kahler. For example, let 0 < \ < 1 and I'y be the infinite cyclic

group generated by \1d,,. Consider the action of I'y = Z on C" \ {0} given by
m.(z1,...y2n) = AN"21,..., A" 2),Vm € Z.
The quotient manifold
CHY = C™\ {0} /Ty,

is a compact complex manifold that does not admit any Kdhler metric when n > 2, since b1 (CHY) = 1 for
n > 2. As we will see in Corollary 1.85, for a compact Kihler manifold M, the first Betti number by (M ) must
be an even number. This manifold is called the complex Hopf manifold. As a differentiable manifold, any

CHY is diffeomorphic to S**~! x S,

Lemma 1.65. Every complex projective manifold admits a Kéhler metric.

Proof. Given a complex projective manifold X, there exists an inclusion map 7 : X < CP" for some
N € N. The pullback metric i*wrs, where wgs is the Fubini-Study metric on CPY, is a Kshler metric on X.

This is because the pullback preserves the closedness of the symplectic form, i.e.,

d(i*wFs) = i*(dwFs) == ’L*(O) =0.
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O

Definition 1.66 (Kahler cone). Let M be a complex manifold. The Kdhler cone, denoted by Ky, is the set of
all de Rham classes [w], where w is the Kahler form of a Kdhler metric g on M. One can check that KCpy is a

convex cone and it is open in Hap (M, R) N Hé’l(M).

The following proposition could be obtained by the Kodaira Embedding Theorem, which we will not discuss

in this thesis.

Proposition 1.67. Let M be a compact complex manifold admitting Kéhler metrics. Then X is projective if
and only if
H?*(M,Q)N Ky # 0.

See Corollary 5.3.3 in [34] for a proof.

Corollary 1.68. Let M be a compact complex manifold admitting Kdhler metrics. If Hg’O(M) =0, then M

is projective.

This Corollary shows that, under some conditions, the inverse of Lemma 1.65 is true, i.e, compact Kahler

manifolds are projective, and can be studied using complex algebraic geometry.

On a compact Kahler manifold it is never possible to describe a Kahler form globally using a single Kahler
potential, but it is possible to describe the difference of two Kahler forms this way, provided they are in the

same de Rham cohomology class. This is a consequence of the golbal 99-lemma.

Theorem 1.69 (Global 9-lemma). Let M be a compact Kahler manifold. If a € AP4(M) is d-closed, i.e
[a] € HEEY(M), then v is 0-exact, i.e, o = 9O for some 3 € AP~H4~1(M).

See page 149 of [31] for a proof.

Remark 1.70. There are examples of compact complex manifolds for which the global 99-lemma does not

hold.

Definition 1.71 (Isometry group). The isometry group Iso(M, g, J) of a Kdhler manifold M equipped with

its Kdhler metric g consists of all biholomorphic isometries, which are diffeomorphisms ¢ : M — M that
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preserve both the complex structure and the Kahler metric i.e, for all tangent vector fields X,Y on M,

9(9+(X), 0. (Y)) = 9(X,Y),

and for any tangent vector X on M,

Px (JX) = J (s X).

Example 1.72. The isometry group of the complex projective space CP™ with the Fubini-Study metric is the

projective unitary group PU(n + 1) = U(n+ 1) /U(1).

Definition 1.73 (Curvature of a metric). Consider a Kahler manifold X equipped with its Hermitian metric
9= 9 dz' ® dz? and let w be the corresponding Kdhler form. The Riemann curvature, Ricci curvature,

and scalar curvature of g can be described as follows in local coordinates:

Ry = kle‘ij = —0;0; logw" = —0,0; log det(gyyg)

S(w) = gﬁRZj = —g’;@i@j log det(gpg) = —Aglogdet(gpg)-
The Ricci form is defined by Ric(w) = vV—=1R;; dz' AdZ’.

Remark 1.74. The Ricci form Ric(w) is a closed 2-form. Moreover if w is another Kdhler form (not necessarily

in the same Kdhler class), then

Ric(w) — Ric(@) = v~109 log jj‘zgzpqi’
Pq

~n

w . .~
= and so [Ric(w)] = [Ric(w)].
Remark 1.75. Note that in the Kdhler case, the Ricci form Ric(w) satisfies J* Ric(w) = Ric(w).
Definition 1.76 (Kahler-Einstein metric). A Kdhler-Einstein metric w on a complex manifold M is a Rieman-
nian metric that is both a Kahler metric, i.e, dw = 0 and an Einstein metric, i.e, Ric(w) = Aw for some
constant A\. A manifold is said to be Kahler-Einstein if it admits a Kahler-Einstein metric. The most impor-

tant special case of these are the Calabi-Yau manifolds, which are Kdahler and Ricci-flat. The existence of a
Kdhler-Einstein metric will be discussed in Chapter 3.
Example 1.77. The Ricci form of the Euclidian metric (gEuC)l-j = 6i5 in example 1.610n page 22 is given by

Ric(wgue) = —V—100log det(gruc) = —v—1001og1 = 0,

so the Euclidean space C™ with the standard metric is Ricci flat and Kéhler-Einstein as well.
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51.1 Zys
. . o . . o j 1 ] .
Example 1.78. The Ricci form of the Fubini-Study metric (gps)zj =1 BE — 1+ [2[2)? in Example 1.62

is given by

Ric(wrs) = —/~100 log det((gFS)ij)
_ 1
VO
s

=2(n + 1)(76310g(1 +112)1%)) = 2(n + 1)wrs,

so the complex projective space CPP™ with the Fubini-Study metric is Kahler-Einstein.

Kahler manifolds have some nice topological properties. We will finish this section by introducing Hodge

theory.

Definition 1.79 (Complex Hodge star operator). Let (M, g) be a Kahler manifold of complex dimension n.

The complex Hodge star operator * : AP4(M) — A""P"=9( M) is defined by
*(a+V=108) = xga — V=1 %R 3,

where xg : A¥(M,R) — A?"=k(M,R) is the real Hodge star operator corresponding to the Riemannian

metric g, i.e, the Hodge dual of a k-form 3, denoted as xg 3, as the unique (n — k)-form satisfying

aA*rf = g(ao, B) Volg,

for every k-form o, where g(«, 3) is a real-valued function on M, and the volume form Vol is induced by

the Riemannian metric.

Definition 1.80 (The Hodge Laplacian). Let (M, g) be a Hermitian manifold of complex dimension n. The
Hodge Laplacian, also known as the Laplace-de Rham operator, is the second order linear differential op-

erator A : AF(M) — AF(M) defined by
A = (d+d*)? = dd* + d*d,

where d* = — % dx : A¥(M) — AF¥~1(M) is the codifferential operator with respect to the metric g. A
k—form w is called harmonic, if Aw = 0. The space of harmonic k—forms on M with respect to the g is
denoted by #*(M). Similarly one can define Ay = 00* + 0*0 and Az = 90" + "0 where 9* = — x O
and 8" = — x dx. The space of d-harmonic (p, q)—forms on M with respect to the g is denoted by HEU(M)
and the space of 0-harmonic (p, q)—forms is denoted by HZ(M).
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Theorem 1.81. Let (M, g) be a compact Hermitian manifold. Then there exist two orthogonal decomposi-

tions

APIO) = In(By-0)  H M) © T3 1)

APA(M) = Im(gp,q_ﬂ SP) H%q(M) ® Im(ﬁ;,qﬂ)'

Furthermore, 13 (M) and 2 (M) are finite dimensional for all p and g.

See Theorem 3.2.8 in [34] for a proof.

Theorem 1.82 (Hodge Decomposition). Let M be a compact Kiahler manifold. Then we have the direct sum
decomposition

Hir(M,C)= € HEY(M,C).
pt+q=k

and the Betti numbers and Hodge numbers of M are related by

br(M) = B*O(M) + W*=DH (M) + . BVEH (M) + RO (M).

See Corollary 3.2.12 in [34] for a proof.

1
Proposition 1.83. For a Kahler manifold (M, g), Ay = Ag = iA and so Hy (M) = HE (M).

Theorem 1.84 (Hodge). Let M be a compact Kédhler manifold. Then we have

HY(M) 2= H2I(M).

Furthermore, HY* (M) = H2P (M), thus h?4(M) = h9P(M).

Corollary 1.85. Let M be a compact Kdhler manifold. Then the even Betti numbers boy (M) are nonzero,

and the odd Betti numbers boy1 (M) are even for k = 0,1, .. ..

Look at the page 117 of [31] for a proof.

Let M be a compact Kahler Ricci-flat manifold. Then b;(M) = 0. For a compact Kahler manifold with
negative Ricci curvature, the first Betti number can vary, and the fundamental group can be large. However,

for a compact Kahler manifold with positive Ricci curvature, the following obstructions hold.
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Theorem 1.86 (Bochner, Bonnet-Myers). Let M be a compact Kdhler manifold with positive Ricci curvature,

then by (M) = 0 and 7, (M) is finite.

See Theorem 4.5.3 and Corollary 6.3.1in [35] or Theorem 2.4.2 in [28] for a proof.

1.5 Connections and Curvature

In the Definition 1.20 on page 11 the space of complex valued k-forms are defined by
A*(M,C) = T(AN(TEM)"),
i.e, complex valued k-forms are locally k-linear alternating function of this form:
Wp (T;,C]W)*IC — C.

For a vector bundle £ — M, the idea of E-valued k-form, is a generalization of the above definition to a

k-linear alternating function of the form:
wp : (Ty M)** — E,,
where E,, is the fiber over p € M. Let us to defined E-valued k-forms.

Definition 1.87 (Forms with values in a vector bundle). If E is a vector bundle on a complex manifold M,

the space of smooth E-valued k-forms on M is defined by
A¥(M,E) :=T(A\*T*M) @ E).
In particular, E-valued 0-forms are just smooth section, i.e, A°(M, E) := I'(E).

Definition 1.88 (Linear connection). A linear connection on a holomorphic vector bundle E is a first-order

linear differential operator V : A°(M, E) — A'(M, E), which satisfies the following Leibniz identity:
V(fs)=df © s+ [ Vs,

for any smooth section s of EZ and any smooth function f. In fact an arbitrary connection could be written

asV = VY + O where VV is a fixed connection and © is an E-valued 1-formes.

Any vector field X € X(M) could be considered as a contraction X : A'(M, E) — I'(E) and the covariant
derivative with respect to the vector field X, Vx : I'(E) — I'(E) is then defined by the composition of
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V : I(E) — AY(M, E) with the contraction X : AY(M,E) — T(E). Using (T*M)* = T*M ®
C = (TY'M)* @ (T*'M)* a linear connection V could be decomposes as V = V10 + V01 where
V0 AM,E) - AYO(M,E)and V9! . A%(M, E) — A% (M, E). The (1,0) and the (0, 1)-parts are
defined by

VP = LW - VEIV3). 95 = L9+ VIV,

Definition 1.89 (Cauchy-Riemann (Dolbeault) operators). Let E be a vector bundle on a complex manifold
M. A Cauchy-Riemann (Dolbeault) operator O on E is defined as a first order C-linear differential operator

Op : T(E) — A%Y(M, E) satisfying the following Leibniz-like identity
gE(fS) = gf ® s+ féES,

where 0 is the usual Cauchy-Riemann operator acting on smooth functions.

Any Cauchy-Riemann operator 0 : I'(E) — A%!(M, E) could be extended to an operator
ol APUM, E) — APTTH(M, E),

using the Leibniz rule dp(w ® s) = Ow ® s for w € AP4(M, E) and a local holomorphic section 5. A

Cauchy-Riemann operator 0 is said to be integrable if 05 0 0 = 0.

Example 1.90. Let E be a horlomorphic vector bundle on a complex manifold M, then the usual O is an
example of Cauchy-Riemann operator acting on complex valued k-forms. In fact on any holomorphic vector
bundle E, there exist a unique integrable canonical Cauchy-Riemann operator 0 : I'(E) — A% (M, E),

such that a smooth section s € T'(E) is holomorphic, if and only if Ops = 0.

Here, we define vector bundle cohomology not in the usual way through sheaf cohomology but rather from

a differential geometric point of view.

Definition 1.91 (Vector bundle cohomology). By using 3’]’3’“1 o é%q = 0 we can define a generalized Dol-

beault cohomology for a holomorphic vector bundle by

P, (2,5F)) < KX@E s AP, B) = AP (M, B)
o Im(0%? : APa—1(M, E) — AP4(M, E))

Similar to Proposition 1.33 on page 14, we can express this cohomology as a sheaf cohomology.
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Proposition 1.92. There is a natural isomorphism HP4(M, E) = HY(M,QP (M, E)). Here H1(M,QP (M, E))
is the sheaf cohomology of the complex manifold M with coefficient in the sheaf of E-valued holomorphic

p-forms.

Like the Levi-Civita connection in Riemannian geometry, there is a natural choice of connection on a Her-

mitian holomorphic vector bundle.

Proposition 1.93 (Chern connection). Let (F, h) be a holomorphic hermitian vector bundle on a complex
manifold M. Then there is a unique connection D on E compatible with both the metric and the complex

structure, i.e, D% = dg and for any two smooth sections s and t of E,
d<8, t>h = <DS, t>h + <S, Dt)h.

It is called the Chern connection. In fact, we can decompose the Chern connection into D = D0 4+ D01,
where the part D! depends on the holomorphic structure and is analytic, while the D0 part depends on
the Hermitian metric and is geometric. In particular, if the base manifold is Kéhler and the vector bundle
is its tangent bundle, then the Chern connection coincides with the Levi-Civita connection of the associated

Riemannian metric.

See Proposition 4.2.14 in [34] for a proof.
Any linear connection V extends into an exterior differentials dV acting on E-valued exterior forms. The
exterior differentials ¢V acting on E-valued exterior forms, corresponds to a linear connection V is the
operator dV : A¥(M, E) — A*1(M, E), defined by

AV (w®s)=dw®s+ (—1)Fw A Vs,
for any k-form w and any smooth section s of E.

Example 1.94. Let M be a smooth manifold, E = M x R be the trivial bundle, and V° be the trivial
connection. Take k = 0and s = f € C°°(M). Then, dV° f = df and dV° o dV° = 0.

Note that in general, one needs not have d¥ o dY = 0. In fact, this happens if and only if the connection V

is flat. Basically dV o dV corresponds to the curvature of the connection V.

Definition 1.95 (Curvature homomorphism). The curvature RY of a linear connection ¥V on a complex vector

bundle FE is defined by the composition

RY :=dVod" : A°(M,E) — A*(M,E).
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Remark 1.96. By decomposing the curvature form into RV = R%° + RL1 + R%2, we can conclude that for
the Chern connection on a holomorphic vector bundle, R*? = 0, and the metric-preserving property implies

that R0 = R02 =0, so RY = RbL.

Proposition 1.97 (Curvature form). The curvature homomorphism RY : A°(M, E) — A%(M, E) is linear,

so can be considered as an element of A%(M, End(E)). Moreover RY satisfies:
RYys=(VxVy = VyVx — Vixy))s.

Proposition 1.98. Let (E, h) be a Hermitian holomorphic vector bundle. Then the curvature form of the
Chern connection is given locally by

Ry == —0dlog sl

where s is a local non-vanishing holomorphic section of E.

See Proposition 4.3.8 in [34] for a proof.

Proposition 1.99 (Cartan’s Structural Equation). In local coordinates, if A is the End(E)-valued 1-form such

that the connection is given by V = d 4+ ©, then the curvature form V can be expressed as:
RV =dO+6A6.

In particular for the trivial conncection V = d and so RY = 0, i.e, the trivial connection is flat.

Proof. By definition
RY(s) = (d+©) o (d+©)(s)
= d?*(s) + d(©s) + Ods + O(Os)
=0+ dO(s) — Ods + Ods + (0 A ©)(s)
= (dO® + O A O)(s).

1.6 Chern Classes

Let A be an r x r matrix and let P;(A) be the homogeneous polynomial with deg(Py) = k corresponding

to the coefficient of t* in the characteristic polynomial

det(I +tA) =) Pu(A)t".
k=0
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Definition 1.100 (Chern forms). Let (E, h) be a complex vector bundle on a smooth manifold M and V is a

linear connection on E. The Chern forms of E with respect to the connection V is defined by

(B, V) = Pk(\/QfRV) € A% (M, End(E)).

v—1
Lemma 1.101 (Chern classes). The cohomology class [Pk(TRV)] in H*(M,C) is independent of the
™

choice of connection and it is called kth Chern class of E and denoted by cj,(E)g.

See Lemma 18.2 in [44] for a proof.

The above definition is the standard notion of the Chern classes in complex geometry (Chern-Weil theory).
In topology, Chern classes can be defined with integer coefficients, i.e., as elementsin c;.(E) € H**(M,Z).
In this setting, Definition 1.100 corresponds to the torsion free part of the classes defined in H*(M,Z). An

immediate consequence of the definition is following properties of Chern classes.

Proposition 1.102. On a smooth manifold M:

1. Whitney sum formula: for any two complex vector bundles FE and E5 on M,

ck(E1® Eo)r = ) ci(E1)rci—i(E2)R.

M-

Il
o

)

In particular, ¢1(E1 ® Eo)r = c1(F1)r + c1(E2)g.

2. For the dual bundle E* of a complex vector bundles E on M,
Ck(E*)R = (—1)k0k(E)R.
3. Let N be a smooth manifold, f : M — N a smooth map and E a complex vector bundle on N, then

e (f*E)r = fren(E)r.

Definition 1.103. For a complex manifold M, the kth Chern class of M is defined by the kth Chern class of

its holomorphic tangent bundle T M.

Remark 1.104. For a complex manifold X, the first Chern class of X is the same as the first Chern class of

the anti-canonical line bundle K%, i.e.,

c1(X)r = a1 (Kx)r = —c1(Kx)r.
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Remark 1.105. If (X, g) is a Kahler manifold, the first Chern class of X is given by

VT _p /T

2T

RY)) = [

c1(X)r = [Pi(

w(RP)] = o [Ric(g)] € Hin (X, R) 1 H'(X)

In particular, the cohomology class [Ric(g)] is independent of the choice of Kihler metric.

Complex line bundles over a complex manifold X are classified topologically by their integral first Chern
class, which is an element of the cohomology group H?(X,Z). Each line bundle is topologically but not
holomorphically uniquely determined by its integral first Chern class. Here is the alternative definition of

the first Chern class of a line bundle.
Remark 1.106. The exponential short exact sequence on a complex manifold M,
0—=>2Z— Oy — Oy —0,

gives a connecting cohomology map Pic(M) = H' (M, O%,) — H?(M,Z). For a holomorphic line bundle
L € Pic(M), the image of £ under above map is c1(L)g € H*(M, 7).

The next remark show that for a compact Kahler manifold, the integral of the scalar curvature is a topological

invariant depending to the first Chern class of the manifold.

Lemma 1.107. Let M be a compact Kdhler manifold of dimension n with Kahler class €. For any w € €,

/ S(w)w™ = 2nmwey (M) U [w]" 1,
M

so if S(w) is constant, then it equals

Proof. By direct calculation
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Example 1.108. First Chern Class of C™:
n 1 :
c1(C")r = ?[Rlc(gEuc)] =0.
T
Example 1.109. First Chern Class of CIP"":

¢1(CP")g = %[Ric(ng)] _ %[Q(n F 1)wps] = (14 1)[wps].

In particular, the complex projective space CIP™ has a nontrivial first Chern class, since
=1 -
wrs] = [¥5—091og(1 + [|2][2)]

is the generator of the cohomology group H 2(CIP’”, Z). Also, for any integer r we get

c1(Ocpn (1))r = [ - wrs] = 7]wrs].

Let X be a compact Kahler manifold. The first Chern class ¢ gives a map from holomorphic line bundles
to HdQR(X). By Hodge theory, one can check that the image of ¢; lies in Hél’l(X). Lefschetz theorem says
that the map to H?(X,Z) N Hg’l(X) is surjective.

Theorem 1.110 (Lefschetz theorem on (1, 1)-classes). Let X be a compact Kahler manifold. Then the map

c1: Pie(X) = H*(X,Z) N Hy'(X) is surjective.

See page 163 in [31] for a proof.

Theorem 1.111 (Lefschetz). Let X be an arbitrary Kdhler complex manifold. Suppose w is a smooth, closed
real (1,1)-form on X such that w represents an integral cohomology class in H dZR(X ,R). Then there exists
s

1
a Hermitian line bundle (L, h) over X such that or RE , = w, where RE ,, is the curvature form of the
7T bl bl

Hermitian metric on L.

See page 148 in [31] and [24] for a proof.

Theorem 1.112 (Calabi-Yau). Let (X, w) be a compact Kihler manifold, and let o be a real (1, 1)-form repre-

senting c1 (X )r. Then there exists a unique Kdhler metric n on X with [] = [w] such that Ric(n) = 27a.

In particular if ¢; (X)r = 0, then every Kahler class contains a unique Ricci flat metric. Ricci flat metrics are

called Calabi-Yau as well.
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1.7 Orbifolds in Complex Geometry

In this section, we briefly discuss orbifolds. An orbifold (short for 'orbit-manifold’) is a generalization of a
manifold. Roughly speaking, an orbifold is a topological space that is locally a finite group quotient of a

Euclidean space.

The definition of an orbifold has been provided by Ichiré Satake in the context of automorphic forms in
the 1950s under the name "V-manifold” [52], and by William Thurston in the context of the geometry of
3-manifolds in the 1970s [58] when he coined the term "orbifold” following a vote by his students. Formally,

an orbifold is defined as follows:

Definition 1.113 (Orbifold). An orbifold of dimension n is a Hausdorff topological space X, called the under-
lying space, a covering by a collection of open sets {U; } closed under finite intersections and a finite group

I'; associated to each U; together with the following data:

1. Atlas of Charts: For each U; there is a homeomorphism ¢; : U; — ﬁl /T, called an orbifold chart,

where (71» is an open subset of R™, invariant under a faithful action of a finite group I';.

2. Gluing maps: Whenever U; C Uj, there is an injective homomorphism f;; : I'; — I';j and a smooth
I';-equivariant® gluing map 57;]‘ : (7}- S U ;j such that the gluing maps are compatible with the charts,
ie. ¢jo 51-]- = ¢; and the gluing maps are unique up to composition with group elements, i.e. any
other possible gluing map from (7} toU ; has the form - - (;/ij for a unique v in T';. In fact the diagram

below commutes. _
@ij ~
—

U; U;
\: \J
Ui /Ti — [7]- /T
1 \J
U; C U;j
Remark 1.114. We regard @-j as being defined only up to composition with elements of I'j, and f;; as being

defined up to conjugation by elements of I';. It is not generally true that 511@ = gjkogij whenU; C U; C Uy,

but there should exist an element ~ € T'j, such that 'ygik = @k o gij and~ - fik(g) - vt = fir o fij(g)-

Example 1.115. A closed manifold is orbifold, where each group T'; is the trivial group, so that ﬁi =U,.

3 i.e., fOf"V ey, %z’j (’ya:) = fij('}/)a;ij (m) forallx € ﬁz
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Example 1.116. A manifold M with a boundary can be given an orbifold structure. In which its boundary
becomes a 'mirror’. Any point on the boundary has a neighborhood modelled on R™ /Zs, where Zy acts by

reflection in a hyperplane.

When n = 2m, we say the orbifold is complex of dimension m if each ﬁl is seen as a subset of C'™, the

gluing maps ;51»]» are holomorphic and the group I'; acts on ﬁi by biholomorphisms.

Proposition 1.117 (Quotient Orbifolds). If M is a manifold and I" is a group acting properly discontinuously
on M, then M /T has the structure of an orbifold.

See Proposition 13.2.1. [58] for a proof.

Note that each point p in an orbifold X is associated with a group I, well-defined up to isomorphism.
In a local coordinate system U = [7/1“, I',, is the isotropy group of any point in U corresponding to p.
Alternatively, I'), may be defined as the smallest group corresponding to some coordinate system containing
p. In other words, it is the group of transformations that preserve the local geometry of the orbifold at that
particular point. This group characterizes the singular behavior around the singularity point and determines

the type of singularity at that point.

Remark 1.118. Given an isomorphism class I, we can consider the subset ¥1 = {p € X : [I',] = I}. This

induces a stratification of X, X = |_| S., Where S, is a connected component of some X,. The regular

(0%
stratum X,eg = Y(14 contains all the nonsingular points. The set Xgjng = X \ Xreg = {p € X : [[')] # Id}
is the singular locus of X, and p € Xjng is called an "orbifold point”. Clearly, X is a manifold if and only if

Xsing = @
Example 1.119 (Kummer surface). Consider the following action of Zs on T*:
(6’it1 , eitz ’ eitg 7 eit4) — — (eit1 ’ eitQ 7 eitg 7 eit4 )7

The quotient T* /Zsy is an example of a compact orbifold with sixteen isolated singular points. This orbifold
is known as the Kummer surface, and it is a singular K 3-surface. Notice that the flat metric on T* descends

to a flat metric on T* / Zs.

Example 1.120. The hyperbolic plane H? being acted upon by the projective group PSL(2, Z), which consists

of 2 x 2 matrices with integer entries and determinant 1 taking into account the projective equivalence of



CHAPTER 1. KAHLER GEOMETRY 37

Figure 1.1: Kummer surface (Photo Credit: Claudio Rocchini)

matrices. This group acts on the upper half-plane in a discontinuous manner via fractional linear transfor-
mations. The quotient space H? /PSL(2,Z) givesrise to the modular orbifold, which captures the geometry

of the modular group’s action on the hyperbolic plane.

Definition 1.121. An orbifold X is of depth one if, for each connected component 3 of Xjng, the isotropy

groups of the points of X are all isomorphic.

Remark 1.122. Since orbifolds have only quotient singularities, any smooth object on a manifold has a natural
generalization to orbifolds. For instance, a function f : X — R on an orbifold is smooth if, in any orbifold
chart (U, ¢, U , ), its lift to U is smooth and T-invariant. Similarly, if X is a complex orbifold, a function
f : X — Cis holomorphic if, for any orbifold chart (U, ¢, U , 1), its lift to Uis holomorphic and I'-invariant.
We can similarly define smooth forms and tensor fields on an orbifold. This leads to a notion of a Riemannian
metric on an orbifold, namely, it is a smooth symmetric 2-tensor that, for each orbifold chart (U, ¢, U , 1),
lifts to a T-invariant Riemannian metric on U. Correspondingly, on a complex orbifold, there is a notion of

a Kahler metric.

Definition 1.123 (Good Riemannian orbifold). A good Riemannian orbifold is a triple (M, g,T") where (M, g)
is a Riemannian manifold and T is a (proper) discontinuous group of isometries Iso(M, g) acting effectively
on M. The underlying space of the orbifold is M /T". A bad Riemannian orbifold is a Riemannian orbifold

that does not arise as a global quotient.

Definition 1.124 (Resolution). Let X be a singular complex orbifold. A resolution of X is a pair ()A(, ) such
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that X isa complex manifold, the map = : X 5 Xis surjective and

W‘)?\ﬂ'*l(Xsing) : X \ ﬂ-_l(Xsing) — X \ Xsing,

is a biholomorphism. The preimage E = 7! (Xsing) is called the exceptional set of the resolution. Thus, in
a resolution we resolve the singularities by replacing each singular point by a submanifold, or more general
subvariety. One way to construct resolutions is to use a technique called blowing-up, which we will define

in the next section.

Example 1.125. Consider the complex orbifold C? /Z2 where the group Zs acts by reflecting across the co-
ordinate axes. The quotient space C? /Zs has a singular point at the origin. The line bundle Op1(—2) isa

resolution of C? /Zs, with the exceptional set E = 7—1(0) = CP.

1.8 Blow-up in Complex Geometry

Blowing-up is a process in algebraic and differential geometry that can be used to obtain newer manifolds
from known ones and resolve singularities. The blow-up replaces the singular point with a smooth mani-
fold, making it easier to study. Blow-ups play a crucial role in intersection theory, which is a fundamental
concept in algebraic and complex geometry. In some cases, blow-ups provide a geometric construction that
simplifies the analysis of a complex manifold. They introduce exceptional divisors that can carry valuable
geometric and topological information. Before formally defining the blow-up of a complex manifold X at a

point p € X, let us consider the blow-up of C" at the origin.

Example 1.126 (Blowing-up origin in C™). Consider the n-dimensional complex Euclidean space C", equipped
with coordinates (z1, z2, . . ., 2z, ). The blow-up of C™ at the origin, denoted as BIS", is constructed by re-
placing the origin with complex projective space P(C") = CP"L. In the Cartesian product C* x CP" 1,
consider the tautological subset C@:) consisting of pairs (z,1) such that z € [. This tautological subset
is infact the total space of the tautological line bundle Oypn-1(—1) because if Z = [Z1;...; Z,] are the

homogeneous coordinates on CP"~! we can write

P

CP D = {(2,2) € C" x CP* ' : 2,7, = 2,7} = Oppn—i (—1).

So we get

BIS" = Ogpn-1(—1)——=CP" ! x C" —C" (1.2)

\ l

cprt
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Projection on first component, Pry : Blgn — CP™ ! is onto. Projection on second component Pry :
Blgn — C™ induces a diffeomorphism except over the zero vector of C™; the preimage of the zero vector is
CP" . The map 8 :=Pry: Blgn — C" is the blow-down map and the exceptional divisor of the blow-up,
E = ﬁ_l(O) is a copy of CP"~. The map B collapses the exceptional divisor to the origin. Topologically,
BlyC"\ E = Ogpn-1(—1) \ CP"! = C"\ {0} means that blowing-up consist in gluing CP"~! instead of

the origin to C™ \ {0}. Geometrically, CP("~") comprises all one-dimensional linear subspaces of C", but

now distinct subspaces have distinct zero vectors.

Figure 1.2: Blowing-up origin in C? (Photo Credit: Yanki Lekili)

This construction easily generalizes to the blow-up of a point p in a complex manifold X:

1. Choose a holomorphic chart (U, ¢) around p on X, such that ¢(U) is ball B in C" centred as 0 and ¢

maps p to 0.

2. Replace U by Pr;*(B) where Pry : Ogpn-1(—1) — C™ is the projection on second factor in (1.11)
on page 48; more precisely, U \ {p} appears as an open set in U as well asin X \ {p} and we glue

together Pr, !(B) and X \ {p} along U \ {p}.

The resulting object is denoted by Blff and is described by

Bl = (X\ {p}) L Pry ! (B).

U\{p}=Pr; ' (B)\Pr; ' (0)
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This can be easily made into a n-dimensional complex manifold and comes equipped with a natural holo-
morphic blow-down map S : Blff — X. The exceptional divisor £ := B_l(p) isisomorphic to the complex

projective space P(7),X).
Example 1.127 (Blowing-up C" along C"~* for n — k > 2). With the same process we can define

BIG, . == C" % x Ogpr-1(—1).

More generally, as explained in [31] on pages 603-604, this local picture can be used unambiguously to
define the blow-up Blf/( of X along a complex submanifold Y by replacing Y by £ = P(Nx(Y')), where
Nx (Y') is the normal bundle of Y in X. The blow-down £ : Bl{f — X is the proper holomorphic map such
that 3 : Bl{f \E — X \ Y is the identity map. Here we recall some topological and geometric properties

of manifolds obtained by blowing-up a complex manifold.

Proposition 1.128. Let X be a complex manifold, and Y a closed, embedded complex submanifold in X.
Then
71 (BEY) = m(X).

See Lemma 2.2.8 [61] for a proof.

Proposition 1.129. Let X be a complex n-manifold, and Y a closed, embedded complex (n — k)-submanifold

in X. Then o
bi(BIs) = bi(X) + Y bigj(Y).
j=1

See Corollary 2.2.10 [61] for a proof.

Proposition 1.130. If X is an algebraic variety and p € X, then Blff is algebraic.

See page 192 [31] for a proof.

Proposition 1.131. Suppose that X is a complex manifold of complex dimension n, Y a closed complex
submanifold in X with of complex dimension k, Bl{f the blow-up of X along Y with exceptional divisor
FE and L g the holomorphic line bundle on Blff associated to E. A calculation similar to the adjunction
formula shows that

Kpix = Kx ® Ly
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In particular, the first Chern classes of Blff and X are related by

c1(BY) = f*c1(X) = (n— k — 1)1 (Lp).

See Proposition 6.4.2 [29] for a proof.

1.9 Weighted Projective Space

In this section, we discuss the concept of weighted projective space introduced by David Mumford in 1965.

Definition 1.132 (Compact weighted projective space). Let wy € Nand w = (wi,...,w,) € N™ The

compact weighted projective space correponding to the weight vector W= (wo, w) is the quotient
CP% = (C"*1\ {0}) /C*,
with C*-action on C"*1 js given by
t.(20, 215« oy 2n) = (t020,t" 21, ..., t""2,), Vit € C*.

Definition 1.133 (Non-compact weighted projective space). Let wy € Nand w = (wy,...,w,) € N". The

non-compact weighted projective space correponding to the weight vector W = (—wg, w) is the quotient
CP% = (Cx C"\ C x {0}) /C~,
with C*-action given by
t.(20y 215« oy 2n) = (7020, t" 21, ..., t¥" 2y,), VE € C.

Remark1.134. The weighted projective space CP%; (compact or non-compact) has the structure of a complex
orbifold, since the C*-action is holomorphic, faithful and orientation preserving.
Example 1.135. The weighted projective space C}P’?l 1,.1) is the usual complex projective space CP".

n

Example 1.136. Let r € N, the non-compact weighted projective space (C]P’(_T 1,.1) is the total space of the
line bundle O¢pn—1(—T).
1.10 Singularities of the Weighted Projective Space

To describe singularities of the weighted projective space, we begin with the following observation. Assume

that wp > 1,and let p = (1,0,...,0) € C*"1\ {0}. Under the action of t € C*, (1,0,...,0) is taken to
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t.p = (t*°,0,...,0). So the stablizer of p is given by
Stab(p) = {t € C* : t“° = 1} = Zy,.
With the same idea we can see that for a point p = [0, 21, ..., 2,] € CIP’?wO w)? if we set

d=ged{w; : z; # 0,0 <i < n},

then we get two cases:

1. Case 1: If d = 1, then pis a non-singular point.

2. Case 2: If d # 1, then pis a singular point. Near the point p, the weighted projective space is locally
like CF=1 x (C"=*+1 /7Z;) where k = card{i : z; # 0,0 < i < n} and Z, acts on C*~*+1 by

27

e d '(§i17£i2""7§infk+l) = (6 d wbléiue d wzzgiga'- e wln7k+1fin,k+l>7

and {i1,...,in—k1+1} = {i: z; = 0}. See pages 133-134 [38] for more details.

For the non-compact weighted projective space (CIP’?_wO w)’ the singular points correspond to the
singular points of (CIP’Q*1 in (CIP)?_wO w) given by
(CIPZ_l ={lz0,21,-..,%n] € (CIP”("LwO’w) 120 =0} C CIP)ELwO’w).

Remark 1.137. The above discussion shows that

(a) The compact weighted projective space (C]P’?wo w) is smooth if and only if wy = 1 and w =
(1,...,1), i.e, itis the usual weighted projective space CP".
(b) The non-compact weighted projective space (C]P’ZLwO w) is smooth if and only if w = (1,...,1)

Gnd C]P)?—’wo,l,...,l) = O(C]Pm’71 (—wo).

Remark 1.138. A non-compact weighted projective space C]P”([wo w) has only isolated singularities, if
and only if
ged(ws, wj) = 1,Vi # j € {0,...,n}. (1.3)

In this case, the number of singularities is equal to the number of values w; that are not equal to 1
fori € 1,...,n. If w; # 1, the singularity corresponding to the point [0 : ... : 0 :1:...:0] €
(C]P)?_wo w) and is modeled by the orbifolds C" /Z,,, obtained by the action of the cyclic group of w;-th

roots of unity given by

27 27

ewl '(§O7§i17"'7§in—1> = (e Wi 0507611)z Zlgil?"'7ewi 1n_1§in—1)7

with {i1,...,in1}={je{l,...,n}:2z; # i}
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Example 1.139. Let L wo,w) be the cyclic group of wq-roots unity defined by

T (g = (diag(€™, ..., £")) = Ly,

27
where § = e o . Consider the action of I'(_,,, .,y on C" given by

(215 vy2zn) = (%21, ..., €9 2p).

The group I'(_,, . is a finite subgroup of U(n), so X = C" /F(_wmw) has the structure of an

orbifold. It has an isolated singularity at the origin if and only if
ged(wg, w;) =1,Vi € {1,...,n}. (1.4)

Definition 1.140. Assume that the complex orbifold X = C" / ['(_wo,w) has anisolated singularity at

7

the origin. A blow-up of the origin is given by the non-compact weighted projective space CP(_wO w)

with the blow-down map 3 : (CIP’?wa’w) —C" /F(—wo,w) given by

w1 Wn

[20, 215« -« 2n) (z?zl,...,za”o Zn)-

The above map is well defined because for any t € C*,

w1 Wn

B[t 020, t" 21, ..., t"2y]) = ((t_wozo)%twlzl, cee (t_wozo)%ltw"zn) =(2°21,..., z[;TOzn)
The exceptional divisor E = 31 (0) of this weighted blow-up is naturally identified with the compact
weighted projective space E = CIP’Z‘I.
Remark 1.141. Note that C"/T'(_; ;. 1) = C", so

Blgn = (C]P)?—l,l,..‘,l) = O(CPnfl(—l)a
and thus we obtain that this blow-up is consistent with Example 1.126 in the page 38.

?fﬂ)O:w)

Definition 1.140 shows that for any wg € N, the non compact weighted projective space CP

. T . . . 1
is a holomorphic line bundle over the compact weighted projective space CP;; .

Definition 1.142. For w € N", the tautological line bundle of the compact weighted projective space
CP"~1 is defined by
Ocpr—1(—1) := CP(_y ),

Similarly for wy € N we define

Ogpn-1(~wo) := (Ogpn-1(~1))*"* = CP{

(_w()vw) )
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Similar properties, as Proposition 1.42, remain valid for the weighted projective space as follows.

Proposition 1.143. For any wy € N and w € N, the holomorphic line bundle Ogpn-1(—wy) has no

non-trivial global holomorphic section.

Proof. Let s € HO(CP ™, Ogpn1(—wp)) be a global holomorphic section. Then the composition

with the blow-down map S o s : cp{;*l - C" /F( is a holomorphic function defined on the

—wop,w)
. . . -1 - _ .
compact weighted projective space CP}, ", soit is a constant 5o s = c. Clearly, this can only happen

if s = 0 as an element of HO(CP;, ™", Ogpn—1(—wp)). O

1.1 Singularities of Type 7

In this section, we introduce the notion of singularities of type Z. Singularities of type Z were intro-
duced by Vestislav Apostolov and Yann Rollin in 2016 in [4]. Consider the congruence relation ~ on

N"*1 defined by
(ao,al, R ,an) ~ (bo,bl, . ,bn) < ag = bg,a; =b; mod ayg.
We can check that if (ag, a) ~ (bo, b) then C" /T _y o) = C" /Ty, 1) -

Example 1.144. Consider (C3/F(_5,372,1), and blow-up the origin by replacing C3/F(_573’271) with
(C]P’?_5 3,2,1)" By remark 1.138, this new space is still singular with the isolated singularities at two
points [0 : 1:0:0]and [0: 0 : 1 : 0]. These singularities are locally of the forms C* /T"(_3 1 5 1) and
C?’/F(_Q’&Ll) so we can still blow them up by replacing these by CP:(S73,1,2,1) and CP:(iZl,Ll)' Since
9, L) ~ {4 1, 1, 1), _ iIs smooth. However, . still has a singularity locally
2,3,1,1 2,1,1,1), CP{ 5, 4y h. H CP} 3, 51 still h ingularity locall
in the form of (C3/F(271,171). By blowing it up and replacing it with CIP"?_Z1 11y, We finally obtain a

smooth complex manifold. There is a corresponding tree of singularities for C3/ I 5321

(5,3,2,1)

N

(3121  (2,31)~(211)

(2,11
Now we define singularities of type 7.

Definition 1.145 (Singularities of type 7). A singularity of an orbifold C”/F(_wojw) with (—wg, w) as

in the (1.3) on page 42 is a singularity of type Z if either
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(G) (wOa U}) ~ (wo, ]-a R 1)

or

(b) (wo,w) ~ (ao,a) such that CP} has only isolated singularities of the forms C" / Lo )

(_a‘ova)

of type Z. That is, after finitely many weighted blow-up we can end with a smooth manifold.

For singularities of type Z, we can represent a tree of singularities as follows. Start with (ag, a1, ..., ay),
and inductively construct each branch corresponding to a; # 1. At each step, a new singularity is ob-

tained by:
(ao,al, ey Ap—1, A5, Q415 - - .,an) — (ai,al, ey A1, Ty Aj41y - - .,an),

where = € Nis such that z = —ag (mod a;). According to the definition of singularities of type
Z, each branch is considered complete when it end up to (wy, 1, ..., 1) with corresponding smooth

weighted blow-up.

Example 1.146. The singularity of the orbifold C3/F(_573,271) in Example 1.144 is a singularity of type

7 because we end with (2,1, 1, 1) in each branch.

Example 1.147. Let (wo,w) = (p,q, 1,...,1), where p and q are two positive coprime integers such
that p > q. Then, (p,q,1,...,1) is of type Z. A similar inductive procedure shows that by starting
with (po, qo0) = (p, q) and blowing-up at the stage k, by performing the Euclidean algorithm, we get
Pk = Qx—1 < Pk—1and 0 < qi < pg—1 such that gy = —pr—1 (mod qx_1). Clearly, in each stage, py,
and q;, are coprime, so we have an isolated singularity. Since q.. < qj,_1, we will eventually obtain a

weight vector of the form (py,1,1,...,1).

(p’ q; ]-v ey 1)
(plvqu 17 seey 1)
(pN, ]'1 1, ey 1)

Definition 1.139 shows that locally we can glue non-compact weighted projective spaces to resolve

partially the isolated singularities of (C”/F(_wo’w). The fact that the singularity is of type Z means
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that this type of partial resolution can be iterated finitely many times to obtain a smooth manifold.
Globally, a complex orbifold with isolated singularities of type Z admits a resolution (which is not
necessarily unique) denoted as X of type Z. More generally, let X be a compact complex orbifold of
depth 1 with singularities of type 7 along a connected subset Y with codimension k greater than 2.
We can define a type 7 resolution of X along Y as follows. Since X has singularities of type 7 along
Y of codimension k, the normal bundle of Y in X is a fiber bundle over Y with fibers of the form
Ck /F(—wo,w) , where I' _,,,, ., is a discrete finite subgroup of U (k) as in Definition 1.145. Now, in a
local chart

¢:U — Vi x Va CC"F 5 (CF /T Ly ),

with ¢(U NY) = V1 x {0}, we can consider the resolution V; x 172 with 172 = B71(V4), where

B CP? ) c* /F(_w()vw)’

—wo,w

is the natural blow-down map of Definition 1.142. That is, we can consider the resolution 3 : U— U,

inducing a commutative diagram

U Vi x V3
Bu J{Id X3
U V1 X Vg,

with $ a biholomorphism. This resolution does not depend on the choice of coordinates. Indeed,
if f: V1 x Vo — Vi x Vyis abiholomorphism sending V; x {0} onto V; x {0}, then it lifts to a
F( y-equivariant biholomorphism f: Vi x ‘72 — Vi x 172 with 172 the lift of V4 to C* under the

—wo,w

quotient map ¢ : CF — CF /T'(_ 0 ) -

The differential of fvin the 172 factor induces, when restricted to V; x {0}, a biholomorphism
dfs: Vi x CF = Vi x CF,

which is linear in the C* factor and I -equivariant. In paticular, it has a weighted projectiviza-

—wp,w)
tion

Po(dfa) : Vi x Pyu(CF) = V1 x Py, (CF).
One can then easily check that the biholomorphism f : Vi3 x Vo — V; x V5 cab be lifted to a

biholomorphism

FiVix Vo= Vi x Va,
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given by P, (df2) on Vi x P, (CF) and by f on Vi x (Va \ Pu(CF)) = V4 x (Vs \ {0}).

Clearly, this biholomorphism induces the commutative diagram

Vi x Vy Vi x Vy
lldxﬂ J/Idx,@
Vi x Vs / Vi x Vo,

confirming that the resolution U does not depend on the choice of coordinates. This means that we
can consider a partial resolution 7 : X = X along Y in which an open set U as described above
corresponds to the local resolution 3 : U— U, and away from Y is simply the identity map.

We say that the partial resolution X is the (—wp, w)-weighted blow-up of X along Y. We denote
by F = w‘l(Y) the exceptional divisor of this weighted blow-up. Notice that 7 : £ — Y is a fiber
bundle with fibers CPX~L. In fact, there is a rank k complex vector bundle W — Y and a fiberwise
L' (_wo,wy-actionon Wsuchthat Nx (V) = W /T (—wow) @and E = Py, (W) is the fiberwise weighted
projectivization of V. In general, X is not smooth and has orbifold singularities of depth one along
suborbifolds corresponding to the isolated singularities of the fibers of £ — Y. In particular, these
suborbifolds are covers of Y. Assuming the initial singularity along Y is of type Z, we can perform
weighted blow-ups along these suborbifolds. These weighted blow-ups can still have suborbifold
singularities of depth one, but by performing additional weighted blow-ups, we can eventually obtain
a smooth resolution after finitely many steps.

In other words, when the singularity along Y is of type Z, we can find a finite sequence of weighted
blow-ups

)A(l—>)?l_1—>...—>)?1—>X

with )?1 — X and )A(l smooth.

Proposition 1.148. Let X is a compact complex orbifold of complex dimension n. Suppose that X has
only depth one singularities of type Z and we denote by Y the singular part of X. Assume that the
complex codimension k of Y is greater than 2. For any resolution X of X of type Z, h()? ) is naturally

realized as the Lie subalgebra of h(X) consisting of holomorphic vector fields on X tangent to Y.

Proof. We proceed with a proof similar to Proposition 6.4.1in [29]. Firstly, we demonstrate that any
(real) holomorphic vector field, denoted as KA/ on X descends to a (real) holomorphic vector field,

denoted as V, on X which is tangent to Y. Indeed, since 7 : X \ E — X \ Y is a biholomorphism,
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1% naturally descends to a holomorphic vector field on X \ Y. Via the short exact sequence of vector
bundles
0 TE TX TX /TE —0,

|

E,

the restriction V/ B determines a holomorphic section of the normal bundle
TX /TE = Ng¢(E).
On the other hand, on E, the restriction of 7 induces a fiber bundle

E

I

Py (W)

|

Y,

where W is such that Nx (Y') = W /T'(_y ) for a Ty, ) of type Z and P, (W) is the weighted
fiberwise projectivization of W. Thus, each fiber of Nx (Y") corresponds to (CPfjfl with the restric-
tion of N¢(E) corresponding to (’)(C]P,fufl (—wp). Using Proposition 1.143, it has no non-trivial global
holomorphic section. Consequently, IA/‘E is tangentto £/. Nowviam, : TE — n*TY, IA/‘E induces
a section 71*(‘7}]5) € HY(E,7*TY). On each fiber of 7, 7*TY is trivial, so its only holomorphic
sections are constant sections. This implies that V' = w*(lA/) is a well-defined continuous vector field

on X, which is tangent to Y and holomorphic on X \ Y. By Hartogs’ theorem, V' is holomorphic

everywhere on X, hence it belongs to the Lie subalgebra,
by (X) = {¢ € h(X) : €|, € H'(YV, THY)}.

Furthermore, the resulting map from b()?) to hy (X) is a Lie algebra morphism. This map is clearly

injective, and we shall now show that it is surjective, establishing that it is a Lie algebra isomorphism.

Indeed, any element V' of by (X) lifts to a (real) holomorphic vector field, say ‘7 on X \ E, via the
isomorphism 7 : X \ E — X \ Y. We need to check that V extends to all of X as an element of

h()?) Since V is holomorphic on X \ E, we only have to worry about the behavior of V near points
k

p of the exceptional divisor E. Since p has a neighborhood in X isomorphic to C" % x (C]P(fwO w)?

we can use local holomorphic coordinates

(y17 s 7yn—kazla .. 7Zk) € (Cn_k X Ck /F(—wo,w)a
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near y = m(p). Relative to these coordinates, since V‘Y is tangent to Y, V' will be here conveniently

regarded as a holomorphic (complex) vector field of type (1,0) in the form of:

n—k
V=) d ayl + Z b”Z](97

i=1 ij=1

where the a’ and % are holomorphic functions of 1, ..., Yn_k, Z1,- .., Z;. Now, since this is an

orbifold chart, V- mustbe I _,,,, ,,)-invariant as well, which means that b = Ofori # jwithw; # w;j

and b* does not depend on (Z1,...,Zx) whenever w; # 1. Correspondingly, near p we can use
coordinates (y1, ..., Yn—k, 21, - - - , 2 ) SUch that

wy wy w
W(yh L 7yn—k7zlu R ,Zk) - (y17 e )yn—kazlwo 721110227 v 721100 Zk) - (y17 ER a?/n—k7Z17 RN Zk))

where we assume without loss of generality that z; £ 0 for the weighted projective class correspond-

ing to p. Then
wo 0 i Wy 0
z,a—Z@ 1 >1
and 7*(Z 0 9 fori # j # 1 with w; = w; = 1. Moreover, if w; = 1, then for i # 1 with

97, = Faz;

0
i =L 1 (Zig—-
w ™( 97,

k
w; 0
) = woz1%i=—— — E —jzjzZ . This demonstrates that V is well-defined on
0z w1 8,2]

the whole of X as an element of h(X). O
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CHAPTER 2
MANIFOLDS WITH CORNERS AND LIE STRUCTURES AT INFINITY

Many problems in differential geometry and partial differential equations often involve manifolds
with boundaries, such as boundary value problems. The category of smooth manifolds alone presents
challenges, and even the category of manifolds with boundaries is not sufficiently convenient, as the
product of two manifolds with boundaries does not yield a manifold with a boundary. This complex-
ity prompts the introduction of the category of manifolds with corners. Manifolds with corners arise
in various ways, as will be shown later. Constructions leading to manifolds with corners include the
desingularization of singular varieties (blow-up) and the compactification of non-compact spaces.
Melrose calculus, also known as pseudodifferential operator calculus or boundary value calculus, is a
framework that extends the theory of pseudodifferential operators to manifolds with boundaries and
corners. Developed by Richard Melrose in the 1980s, it has found applications in microlocal analysis,
geometric analysis, etc. The key idea in Melrose calculus is to study operators that behave like pseu-
dodifferential operators near the boundary or corners of a manifold. Pseudodifferential operators
are a class of linear operators with symbols that have asymptotic expansions, playing a fundamental
role in harmonic analysis and partial differential equations. In Melrose calculus, these operators are
generalized to handle boundary value problems and singularities.

We begin this chapter with a brief introduction to manifolds with corners and blow-ups in the sense
of Melrose. The definition of manifolds with corners is not universally agreed upon. In this chapter,
we follow the approach outlined by Richard Melrose in his book 'Differential Analysis on Manifolds
with Corners’ [47]. In the second part of this chapter, we introduce Lie structures at infinity based on

the series of papers by Ammann-Lauter-Nistor in [2].

2.1 Manifolds with Corners

The definition of a manifold with corners below is based on the model spaces
n=0,00)f x R"* = {z e R"|z; > 0,1 <i <k},

which are products of half-lines and lines. The topology on R} is inherited from R™. In particular, a
subset (2 C R} is open if there exists an open set {}g C R" such that 2 = Qy NR}. If 2 C R} is an

open subset, we define C°°(£2) as the set of functions u : 2 — C such that u is smooth in 2° with all
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derivatives bounded on K N Q° for all subsets K & 2. Here, Q° = Q Nint(R}) and K & {2 means
that the closure of K is a compact subset of €. Similarly, smooth structures, diffeomorphisms, and

partitions of unity are defined in a natural way on R}..

Definition 2.1 (Smooth structure with corners). Let X be a Hausdorff topological space. A chart with
cornerson X isamap ¢ : U — R7, which is a homeomorphism from an open set U C X onto an
open subset of R, for some k. Two charts (¢1,U;) and (¢2, Uz) are said to be compatible if either
Ui NU;=0,o0r¢go d)fl : 01 (U1 NUz) — ¢2(Uy N Uy) is a diffeomorphism between open subsets
of R and R . An atlas on X is a system of charts {(¢a,U,)} for a € A, which are compatible in

pairs and cover X, i.e., X = U U,. A smooth structure with corners on X is a maximal atlas, i.e.,

acA
an atlas that contains any chart compatible with each element of the atlas.

Definition 2.2 (t-manifold). A t-manifold is a paracompact Hausdorff space X endowed with some

smooth structure with corners on it.

Definition 2.3 (Submanifold). If X is a t-manifold, then a submanifold Y C X is a connected subset
with the property that for each y € Y, there exists a coordinate system (¢, U) around y, a linear

transformation G € GL(n, R), and an open neighborhood €' C R™ of 0 in terms of which
$l, Y NU = G.(Ry x {0}) N €,
for some integers n' and k' = k/(y).

Definition 2.4 (p-submanifold). A submanifold Y in a t-manifold X is called a p-submanifold if, for

each y € Y, there exist local coordinates ¢ at y within a coordinate neighborhood ) C X, such that
p(QNY) = LN¢(Q),

where

L={xeR} :2p_jr1=...=a1=0,0441 = ... = Ty, = 0},

and j + r is the codimension of the submanifold. This implies that X and Y have a common local

product decomposition. The p’ in p-submanifold stands for ‘product’.

Example 2.5. The S! ' := {z € R} : ||z|| = 1} = S"~! N R} is a p-submanifold of the manifold

with corners IR7.

We now study the notion of the boundary 0.X for ¢-manifolds.
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Definition 2.6 (Boundary hypersurface). For a general t-manifold set
0, X = {p € X : there s a chart ¢ near p with $(p) € R} },

where

ORE = {z € R} : & = 0 for exactly [ of the first k indices}.

Then X° = 09X . More generally, we shall set

X =0X=Jo.x.
r>1
Thus 9,.X consists precisely of the points in the boundary of X laying in the interior of a corner of
codimension [, while 8' X consists of the points at which the boundary has codimension at least . We

also use the notation 0X = 0'X, so X° = X \ 0X. A boundary hypersurface of a t-manifold X is

the closure of a component of 01 X ; the collection of boundary hypersurfaces will be denoted M, (X).

Definition 2.7 (Manifold with corners). A manifold with corners is a Hausdorff space with a C'*° struc-
ture with corners (a t-manifold) such that each boundary hypersurface is a submanifold in the sense

of Definition 2.3.
Definition 2.8. The cotangent space of a manifold with corners X at p € X is defined by
Ty X = I,X/(L,X)?,
where I, X is the ideal of smooth functions on X vanishing at p:
X = {f € C¥(X) : f(p) = 0}.
Therefore, the tangent space at p is defined by the dual of the cotangent bundle, i.e.,
T,X = (I,X/(1,X)?)",

where

k
(LX) ={feC®X): Ik eN,gi,h,....g0hx € L,X st f=)_ ghi}.
=1

Example 2.9. Examples and non-examples of manifolds with corners

(a) The tetrahedron is a 3-manifold with corners but the square pyramid is not.
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Figure 2.1: The teardrop

(b) The teardrop T = {(x,y) € R? | = > 0,32 < 22 — 2*} is not a 2-manifold with corners,

because its unique boundary hypersurface is not a submanifold.

Lemma 2.10. In a manifold with corners, each boundary hypersurface H has a global defining func-
tion in the sense that there exists pyy € C*(X) such that pyy > 0, H = p};*(0) is the boundary
hypersurface and the differential dpg is nowhere zero on H. Near each point of H, there are local

coordinates with py as the first element.

Example 2.11. Consider a square in R? defined by [0,1] x [0,1]. This is a manifold with corners.
Let us denote its boundary hypersurfaces as Hy, Ho, H3, Hy, corresponding to the left, right, bot-

tom, and top sides of the square, respectively. The boundary defining functions can be denoted as

PH,» PHo»> PHss PH,- SPecifically:

I
8
S
=
=

These functions are C'*° and considered as defining functions for the respective boundary hypersur-

faces.

Definition 2.12. Let U C IR} be open. For each u = (uy, . .., u,) in U, define the boundary depth of
win U denoted by depthy; (u) as the number of uy, . . ., uj which are zero. In other words, depth;; (u)

is the number of boundary hypersurfaces of U containing u.

Definition 2.13 (Boundary depth). Let X be an n-manifold with corners. For p € X, choose a local
chart (U, ¢) around p on the manifold X with ¢(p) = u for u € U C R7, and define the depth
depthy (z) of x in X as depth (x) = depthy;(u). This is independent of the choice of (U, ¢).
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Example 2.14. Let X be a manifold with boundary and p € X. If p € int(X), then the boundary
depth of p is equal to O and if p € 0X, then the boundary depth of p is equal to 1.

Now, let us define the concept of stratified spaces. These spaces are generalization of manifolds with

corners.

Definition 2.15 (Stratified space). A stratified space of dimension n is a pair (X, S), where X is a
locally compact, separable, metrizable space and S is a stratification, that is, S = {S; }.c1 is a locally

finite collection of disjoint locally closed subsets of X and I is a poset such that:

(a) | Jsi=x.
iel
(b) S; N 57 is nonempty if and only if S; C §J , and this happens if and only if i = jori < j.

(c) Each S; is a locally closed smooth submanifold of R™.

The pieces S; are called strata. The set of strata is itself a poset, with the relation induced from

inclusion.

Definition 2.16 (Depth of a stratified space). The depth of a stratified space (X, S) is the largest k

such that one can find k + 1 different strata with S < So < ... < Si < Sk41.
Example 2.17. Any algebraic variety is naturally a stratified space.

Example 2.18. Consider the closed unit disk D? in R? and its boundary OD?, which is the unit circle.
We can stratify this space as two stratas. The top stratum is the interior of the disk D?. It is an open
subset of R? and has dimension 2. And the bottom stratum is the boundary of the disk 92, which
is the unit circle. It is a closed subset of R? and has dimension 1. This example illustrates a simple
case of a stratified space where each stratum is a subset of the whole space, and they have different

dimensions.

Example 2.19. Any manifold with corners X of dimension n is a stratified space. For each k =

0,...,n, define the k-th depth stratum of X to be:
Sp(X) ={z € X : depthy(z) = k} = O X.

Definition 2.20 (Manifold with fibered corners). We say that (M, ¢) is a manifold with fibered corners

if there is a partial order on the boundary hypersurfaces such that:
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(a) Any subset I of boundary hypersurfaces such that ﬂ H; # () is totally ordered.
iel
(b) If H; < H; ,then H; N H; # 0, qﬁi]HmHj : H; " H; — S; is a surjective submersion and
Sji = ¢j(H; N Hj) is one of the boundary hypersurfaces of the manifold with corners S; .

Moreover, there is a surjective submersion ¢;; : Sj; — S; such that ¢;; o ¢; = ¢; on H; N H;.

(c) The boundary hypersurfaces of S; are given by the Sj; for H; < Hj .

Example 2.21. As explained in Remark 1.118, an orbifold is naturally a stratified space. In fact, it is not
hard to see that an orbifold is naturally a smoothly stratified space, with the corresponding manifold
with fibered corners obtained by blowing-up the strata in an order compatible with the partial order.
Notice, in particular, that in terms of Definition 1.121, an orbifold is of depth 1if and only if it is of depth

1as a smoothly stratified space.

211 Blow-up in Melrose Sense

Why consider blow-up at all? If we work on category of smooth manifolds, there isn’t a compelling
rationale for initiating any form of blow-up. Nonetheless, there are three interconnected scenarios
where the process of blow-up can prove highly beneficial. These instances involve attempting to

'resolve’ the following:

(a) Asingular function, e.g., f(z,y,2) = V2% + y? + 22.
(b) Asingular space, e.g., C = {(t,z,y) | t? = 2> +y%,t > 0}.
. o |
(c) Degenerate vector fields, e.g., the span of zia—, i=1,2,3,onR3.
Zi
In Melrose blow-up (real blow-up) as introduced in [33], the idea is simply to work in polar coordinates

around the singular point. That is, we lift everything up to a manifold with a boundary by using the

polar map. Before defining the Melrose blow-up, we need to recall the definition of sphere bundle.

Definition 2.22 (Sphere bundle). Let E — X be a smooth vector bundle. The sphere bundle of E,
denoted by S(E) is a fiber bundle whose fiber is an n-sphere and is defined as the set of (positive)
rays in the bundle E, that is,

S(E)=(E\X)/R".

If we fix a smooth metric on E, then the fiber of S(E) over a point p is the set of all unit vectors in
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E,, the fiber over p in E£. When the vector bundle is the tangent bundle T X, the unit sphere bundle

is known as the unit tangent bundle.

Blowing-up the origin in R? simply amounts to the introduction of polar coordinates. We define R?
blown up at {0} to be
[R2,{0}] = S! x [0, 00),,

together with the associated blow-down map 3 : S' x [0, >0),, — R? defined by 8(w, ) = rw. Thisis
a diffeomorphism from [R?, {0}] onto R?\ {0} and has rank 1 at the boundary 9[R?, {0}] = S! x {0},
which projects to {0}.

Figure 2.2: Blowing-up the origin in R?

We can generalize the above idea and get that

[R",{0}] =8"! x [0, 00),

(€™, {0}] = S ! x [0, 00).
Another example is blowing-up the originin R x [0, co). Again, by using polar coordinates, we define
[R x [0,00); {0}] = S} x [0, 00),,

where S = {(xo, ..., x,) € S" : x, > 0} with the blow-downmap 3 : S x [0, 00), = Rx[0, o0).

defined by f(w,r) = rw.
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Figure 2.3: Blowing-up the origin in R x [0, 00).

We can generalize the above idea and get that
[R™ x [0,00),{0}] =S x [0,00),

and even more

(R, {0}] = Sp 7" x [0, 00).

Remark 2.23. One can check that the action of GL(n) on R" lifts to a smooth action of GL(n) on
[R™, {0}]. This means that the Lie algebra, gl(n), lifts to [R™,{0}]. Since the exponentials of linear
vector fields are linear transformations, this implies that for each i and j, there are smooth vector
fields V;; on [R™, {0}] such that

BsVij = x;0y,.

This shows that any smooth vector field on R™ which vanishes at 0 lifts to a smooth vector field on
[R", {0}]:
B Haig(2)2:i0s,) = aij(rf)Vig.

In general, for a vector space V, the blow-up of V' at 0 is defined as a set by

[V {0} = (V\ {01)/R+) |_|(V\ {0}).

Thus, the blow-up of V" at {0} is the disjoint union of the projective sphere in V and the complement
of {0}. The choice of a basis in V' gives a linear isomorphism V' — R", which allows us to identify
[V,{0}] and [R™; {0}]. To show that the smooth structure, as a manifold with boundary, of [V, {0}]
is well-defined, we therefore need to check that the action of GL(n) on R" lifts to a smooth action of

GL(n) on [R™, {0}].
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If E is a vector bundle over a manifold with corners Y, then we identify Y as the zero section of E

and define E blown up along X to be

[E,Y] = U [E:w {031,

yey

with the blow-down map 3 : [E, Y] — V that is, we simply blow-up the origin of each fiber. The
blow-up [E, Y] has a natural C*° structure as a manifold with corners. Now we can define the blow-

up in Melrose sense formally.

Definition 2.24 (Blow-up in Melrose sense along a submanifold). Let X be a smooth manifold with
corners and Y C X be a closed p-submanifold. The blow-up of X along Y, denoted [X,Y], is a

manifold with corners, given as a point set by
[X,Y] = S(Nx (V)| (X \ V),

where S(Nx (Y')) represents the inward-pointing part of the spherical normal bundle Nx (Y), i.e,

the inward-pointing normal space Nx ,(Y') at a pointy € Y is defined as the quotient
Nxy(Y)=T,X /T,Y,
and the spherical normal bundle is then given by
S(Nx(Y)) = (Nx,(Y)\ {0}) /R

The blow-up [ X, Y| has a natural C*° structure as a manifold with corners. There is a unique smooth

map [X,Y] — X extending the identity on X \ Y called the blow-down map.
Example 2.25. Blowing-up R™ along R"¥ in Melrose sense:
[R™, R"*] = [R"* x R*¥, R"7* x {0}]
=R""" x [R¥, {0}]
= R xS (N (R"H)) || (®5\ {0})
= SF1 x [0, 00), x R"X.
By C™ =2 R?™ we get that
[C", C"F] = §?*71 x [0, 00), x C"7F.
We also have that
[R™ x [0,00)c, R" % x {0}] = Si x [0, 00), x Rk,

[C™ x [0,00)e, C" % x {0}] = S?F x [0, 00), x C"7*,



CHAPTER 2. MANIFOLDS WITH CORNERS AND LIE STRUCTURES AT INFINITY 59

Definition 2.26 (Lifting submanifolds). If Z C X is a closed subset of a manifold with corners, and
Y C X is a closed p-submanifold, we shall define the lift of Z to [X, Y] under the blow-down map
B : [X,Y] — X in two distinct cases. First, if Z C Y, then

Secondly, if Z = Z \ 'Y, then

2.2 Lie Structures at Infinity

In this section, we introduce the concept of structural Lie algebras of vector fields, which is then
employed to define manifolds with a Lie structure at infinity. However, before delving into this, we
need to revisit the concept of finitely generated projective C'°°(M)-modules and the Serre-Swan
theorem. This theorem serves as a bridge between the geometric notion of vector bundles and the
algebraic concept of finitely generated projective C'°°(M )-modules. This equivalence allows us to
study and comprehend both vector bundles and finitely generated projective C°° (M )-modules using

a unified framework.

Definition 2.27 (Geometric fiber). Let M be a manifold with corners and let V be a C'*°( M )-module
with module structure C*>°(M) x V' 3 (f,v) — fv € V. For p € M, the ideal of smooth functions
on M vanishing at p, i.e,

LM ={feC*(M): f(p) =0},

is a complex subspace of V and V /((I,M)V') is called the geometric fiber of V at p. In general,
P p

geometric fibers are vector spaces with different dimensions.

Recall from algebra that S C V is called a basis for a C°°(M)-module V, if any v € V could be

written uniquely as v = Zfss such that f; € C*°(M)and {s € S : fs # 0} is a finite set.

sES
A module is called free, if it has a basis. For free modules, geometric fibers have same dimension

and this dimension is equal to the cardinality of the basis. A C°°(M)-module V is called finitely
generated projective, if there exist a C°°(M)-module W such that V' & W is free with finite basis.

This is equivalent with the concept of locally free C'°° (M )-modules.
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Theorem 2.28 (Serre-Swan). Let V' be a finitely generated projective C°°(M )-module. Then there

exists a natural smooth vector bundle, EE — M, and a natural map . : E — V such that
V =ul'(M,E),

and with the fiber of E above p € M canonically identified with V' /((I,M)V'). Conversely, for
any finite rank smooth vector bundle E — M, I'(M, E) is a finitely generated projective C*°(M)-

module.

We refer to [39] for more details about the Serre-Swan theorem.

Definition 2.29 (Structural Lie algebra of vector fields). A structural Lie algebra of vector fields on a
manifold M (possibly with corners) is a subspace, V C X (M), of the real vector space of vector fields

on M with the following properties:

(a) V is closed under Lie brackets.
(b) V is a finitely generated projective C*>° (M )-module.

(c) the vector fields in V are tangent to all faces in M.

Example 2.30 (Lie algebra of b-vector fields). Let M be a manifold with corners, and

Vo(M) ={X € X(M) : X is tangent to all faces of M}

= {X S :{(M) : XpH = agpPH,AH € COO(X),VH € 8M},

where py is a boundary defining function of the hypersurface H. Then V,(M) is a structural Lie
algebra of vector fields. This is the fundamental object in the theory of Melrose’s b-calculus. A vector
field X € V(M) is called a b-vector field X. In local coordinates near a point p € 0X any b-vector

field X is of the form
n—=k

X = Zai(x,y)xiaxi + Z bi(z,y)0y,,

i=1 =1
where x4, ...,z are boundary defining functions, y € R"* a; and b; are smooth functions. This
shows that the Lie algebra of b-vector fields is generated in a neighborhood U of p by a:jé)xj and ayj

as a C*>°(M)-module. Any structural Lie algebra of vector fields on M is contained in V},(M ).

Example 2.31 (Lie algebra of scattering vector fields). Let M be a compact manifold with boundary,

and let x : M — R, be a boundary defining function. Then the Lie algebra Vsc(M) := xVy(M)
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does not depend on the choice of x, and the vector fields in Vs (M) are called scattering vector fields.

In a local coordinate (x, y1, . .., yn—1) Near a point p any scattering vector field X is of the form

n—1

X = a(z,y)z?0, + Z zb;(x,y)0y,,
i=1

where a and b; are smooth functions. In fact the Lie algebra of scattering vector fields is generated in

a neighborhood U of p by 220, and 29, as a C*°(M)-module.

Example 2.32 (Lie algebra of edge vector fields). Let M be a manifold with boundary OM, which is
the total space of a fibration = : OM — B of smooth manifolds. We let

Ve(M) ={X € X(M) : X is tangent to all fibers of 7 at the boundary}

be the space of edge vector fields. Clearly, V(M) is closed under the Lie bracket. This is the funda-
mental object in the theory of Mazzeo's edge calculus. If (x,y, z) are coordinates in a local product
decomposition near the boundary, where x corresponds to the boundary-defining function, y corre-
sponds to a set of variables on the base B lifted to OM through 7, and z is a set of variables in the
fibers of m, then edge vector fields are generated by x0,,, x0,, and 0. In other words, any X € V(M)
can be expressed locally as

b f
X =a(x,y, z)x0; + Z bi(z,y, 2)xdy, + Z cj(z,y, 2)0,,
i—1 i=1

where a, b;, ¢j € COO(M>
Example 2.33. As a particular case of edge vector fields, the fibration id : OM — 0M for a manifold
with boundary M vyields the Lie algebra of 0—vector fields in the 0-calculus of Mazzeo-Melrose in [46],
i.e,

Vo(M) ={X € X(M) : X‘aM =0} =X (M),

where x is a boundary-defining function.

Proposition 2.34. If V is a structural Lie algebra of vector fields, then V is a finitely generated projec-
tive C°°(M)-module. So there exists a vector bundle E such that V = I'(M, E) and a natural vector
bundle map oy : E — T M such that the induced map or : V — X(M) identifies with the inclusion

map.

See Proposition 2.12 in [2] for a proof.
Now, let us recall the definition of a Lie algebroid. In a general sense, a Lie algebroid can be viewed

as the multi-object version of a Lie algebra.
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Definition 2.35 (Lie algebroid). A Lie algebroid A over a manifold M is a vector bundle A over M,
together with a Lie algebra structure on the space I'(A) of smooth sections of A and a bundle map
0: A — TM, extended to a map or : I'(A) — T'(T'M) between sections of these bundles, such

that the right Leibniz rule is also satisfied
(X, fY] = fIX,Y]+ (er(X) /)Y, VXY €I'(4), feC™(M).
The map or is called the anchor of A.

Remark 2.36. By the antisymmetry of the bracket, the left Leibniz rule is also satisfied:

Remark 2.37. By direct calculation as Proposition 1.21in [3] one can check that the anchor map is a

morphism of Lie algebras. In other words,
or([X,Y]) = [or(X),or(Y)], VX,Y €T'(4),

where on the left, we have the Lie algebroid bracket, and on the right, we have the Lie algebra bracket

of vector fields.

Example 2.38. Examples of Lie algebroid

(a) All Lie algebras are Lie algebroids. In fact, a Lie algebroid over a one-point set, with the zero

anchor, is a Lie algebra.
(b) Any bundle of Lie algebras is a Lie algebroid with zero anchor and Lie bracket defined pointwise.

(c) Thetangentbundle T M of a manifold M, with as bracket the Lie bracket of vector fields and with

as anchor the identity of T' M, is a Lie algebroid over M which is called tangent Lie algebroid.

(d) Given the action of a Lie algebra g on a manifold M that is, a homomorphism of Lie algebras
p: g — X(M), the action algebroid is the trivial vector bundle g x M — M, with the anchor
given by the Lie algebra action and brackets uniquely determined by the bracket of g on constant

sections M — g and by the Leibniz identity.

Definition 2.39 (Lie structure at infinity). A Lie structure at infinity on a manifold M is a pair (M, V),
where M is a compact manifold with corners and V is a structural Lie algebra of vector fields on M

such that its anchor oy, : YT M — TM is an isomorphism on M?°, i.e,VTM‘TMO >~ TMe.
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Remark 2.40. If M° is compact without boundary, then it follows from the Definition 2.39 that M =
M° and YT M = TM, so a Lie structure at infinity on M° gives no additional information on M®.

The interesting cases are thus the ones when M ° is noncompact.

Definition 2.41 (Riemannian manifold with a Lie structure at infinity). Let (M, V) be a Lie structure
at infinity for a manifold with corners M. Let oy, : YT'M — TM be the associated anchor and g
a Riemannian metric on YT M, that is, a smooth positive definite symmetric 2-tensor gon VTM. In

this case, (M°, (Q]jl)*(g{Mo )) is called a Riemannian manifold with a Lie structure at infinity.

Riemannian manifold with a Lie structure at infinity have some nice geometric property, for instance
the following proposition shows that the volume of any noncompact Riemannian manifold with a Lie

structure at infinity is infinite.

Proposition 2.42. Let M° be a Riemannian manifold with Lie structure (M, V), g) at infinity. Let f > 0

be a smooth function on M. If f dvol, < oo, then f vanishes on each boundary hyperface of
MO
M. In particular, the volume of any honcompact Riemannian manifold with a Lie structure at infinity

is infinite.

See Proposition 4.1.in [2] for a proof.

Proposition 2.43. Let M° be a Riemannian manifold with a Lie structure (M, V), g) at infinity. Then

M?® is complete in the induced metric g.

See Corollary 4.9. in [2] for a proof.

Proposition 2.44. Let M° be a connected Riemannian manifold with a Lie structure (M,V, g) at

infinity. Then (M°, g) is of bounded geometry.

See Corollary 4.3 in [2] and Theorem 5.2. in [11] for a proof.

Definition 2.45 (Melrose b-metric). Let M be a compact Riemannian manifold with boundary, equipped

with a Lie structure at infinity (M, Vs, gp,). The Riemannian metric g, is referred to as the b-metric.

Example 2.46 (Manifold with asymptotically cylindrical end). A manifold with cylindrical ends is a Rie-

mannian manifold (M, g) for which there exists a compact subset K (topologic part) such that outside
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K, M resembles a cylinder with the product metric. This can be expressed through the identification:
M\ K =N x (0,00),
where N is a closed manifold with dim N = dim M — 1 and a cylindrical metricon N x (0, c0),, i.e,

g‘]\/f\K = Geyl = gN +d7‘27

where g is a metricon N and r € (0,00) is a coordinate for (0,00). Let (M,V,) be a compact
Riemannian manifold with boundary M, equipped with a Lie structure at infinity. By using a tubular

neighborhood of N = OM in M to make
M°\ K = 0M x (0,00);.
So, we have the cylindrical end with the cylindrical metric

g}M\K = gons + dr?.

By attaching OM at infinity, we obtain a compactification M := M° U OM, which is a compact
manifold with boundary. Introducing the change of variable x = e~" where r is the coordinate for
(0, 00),, yields a defining function for M, so we can write this cylindrical metric as

da’ 2 (brp

which is compatible with the Lie structure at infinity V), i.e, it is a b—metric.
2

d
More generally, we say (M, g) has asymptotically cylindrical end if g — ganr + % when z — 0in
Xz
the follwoing sense: there exist v > 0 such that
d',rQ o0 * o0 *
g (gorr + ) € 2 (M, S2 (T M)) = 27 C (M) @cme ary D(S2 (T M),
where

CJ(M°) = {f € C(M°) : ¥k € No, {Vi, ..., Vi} C Vi(M), sup[Vi ... Vie| < oo},

and

f

STCRE(M) = {f € C(M%):

€ Cp°(M°)}.
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< 0 0 O
Q

Figure 2.4: A manifold with a cylindrical end

Definition 2.47 (Melrose SC-metric). A Riemannian metric compatible with a Lie structure at infinity
(M, Vsc), where M is a compact manifold with boundary, is called scattering metric (SC-metric for

short).

Example 2.48. Let M be a compact manifold with boundary. A metric of the form

gsc — gom  dz?
sc="3 t 1

)

close to the boundary 0 M, is an example of SC-metric, where x: is a defining function for the boundary,
and gg s is the Riemannian metric g restricted to the boundary. Notice that a SC-metric is always of

the form gsc = g—g for some b-metric.
x

Example 2.49. A simple example in the Euclidean case is the radial compactification of R™ with the
boundary being the sphere S*~!. This compactification is given by the stereographic projection SP
defined by
SP:R" = S} := {2 = (20,..., 20) € S": 29 > 0},
1

SP(r) = ————== (1,21, ..., Zn)
(€)= s ()

where S} is a compact manifold with boundary. SP identifies R™ with the interior of the upper half-

sphere S} . The Euclidean metric is a scattering metric on R™ given by

dz? n—
gin = dr® 4 r2ggu 1 = o 4 92
T

Y

1
where r = |z| and x = = is a defining function for the boundary i.e. S = S"~! = {z = 0}.
r

Example 2.50 (Manifold with asymptotically conical end). A manifold with conical ends is a Rieman-

nian manifold (M, g) for which there exists a compact subset K (topologic part) such that outside K,
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(M, g) is a cone. This can be expressed through the identification:
M\ K=N x (R,),, forsomeR >0,
where N is a closed manifold with dim N = dim M — 1 and a concic metricon N x (R, c0),, i.e,

g‘M\K = Yeone = TQQN + d7'277" > R,

where g is a metricon N and r € (0, 00) is a coordinate for (0, c0). If M is a compact manifold

with boundary, by using a tubular neighborhood of N = OM in M, we can find an identification
M°\ K =2 0M x (R,0),

so that a conical metric g on M° with g’MO\K = 1r2gonr + dr? is a SC-metric. Indeed, attaching this

cone to OM at infinity, we obtain a compactification M := M° U dM, which is a compact manifold
1

with boundary. Introducing the change of variable x = — where r is the coordinate for (0, 00),., yields

r
a defining function for O M, so we can write this conical metric as

_ YoM da? 2 /SC
g\M\K—?—i—FGF(S( TM)),

which is compatible with the Lie structure at infinity Vs, i.e, it is a SC —metric.

Figure 2.5: A manifold with a conical end

Definition 2.51 (Asymptotically Conical Metric). Let (L, g) be a compact Riemannian manifold. On

C = (0,00) x L, consider the conic metric

YGcone = dT‘2 + 7”297
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where 7 is the coordinate on (0, c0). A Riemannian manifold (M, g) is called asymptotically conical
(AC for short), asymptotic to gcone, if there exists a diffeomorphism = : M \ K — (R, o) x L, for

some R > 0and K C M compact, there is a positive constants c and u such that for any k > 0,

A C
|v (7'['*(9) - gcone)‘gmne S W

Here, V denotes the Levi-Civita connection of gcone.

Now, we define asymptotically locally Euclidean metrics, which are important examples of asymptot-
ically conical metrics. In fact when gcone is a quotient of the euclidean flat space by a finite subgroup
of the orthogonal matrices which acts freely on the unit sphere, the corresponding AC metrics are

called asymptotically locally euclidean or ALE for short.

Definition 2.52 (Asymptotically Locally Euclidean metric). Let I be a finite subgroup of U(n) acting
freely on C" \ 0, so C™/T" has an isolated quotient singularity at 0, and the Euclidean metric is I"-
invariant. Thus, (C"/T", ggyc) is a Riemannian cone. Let M be a non-compact complex manifold
with end asymptotic to the cone C™ /T at infinity (e.g. a resolution of C"/T"), i.e., there is a compact
subset K C M andamap m : M \ K — C"/T that is a diffeomorphism between M \ K and
{z € C"/I" : dguc(z,0) > R} for a fixed positive constant R. A Riemannian (Kdhler ) metric g on M
is called asymptotically locally Euclidean (ALE-for short) if 7.(g) is asymptotic to ggyc at infinity, i.e.,

there is a positive constant ¢ such that for any k > 0,

k C
|V (77*(9) - gEuC)’ < ma

where V is the Levi-Civita connection of gg,. on C"/T.

Example 2.53 (Burns and Simanca ALE scalar-flat Kahler metrics on Oppm-1(—1)). In 1991Burns (case
m = 2) and Simanca [55] (case m > 1) constructed a cscK metric on Opm-1(—1). They showed that
the Kdhler potential of this scalar flat Kéhler metric on Ogpm-1(—1) is radially symmetric and of the
form

Hgs = || Z|* +~(IZI)1og | ZI* + 1ZII*7*™ + v (11 Z]),
where v : R — R is the cut-off function such that v(t) = 1 fort < 1, ~(t) = 0 fort > 2 and

Cc
VROl < s

for all k > 0. Here V is the Levi-Civita connection of grg on Ogpm-1(—1).
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More generally, for any natural number r, as discussed in section 2 of [4], the line bundle Opm—1 (—r)

admits an ALE scalar-flat Kdhler metric as follows.

Example 2.54 (ALE scalar-flat Kahler metric on Ocpm-1 (—r)). The Burns-Simanca metric is general-
ized by Eguchi-Hanson [27] (m = 2, r = 2), LeBrun [40] (m = 2, r > 2), Pedersen-Poon [49] and
Rollin-Singer [51] (m > 2, r > 2). In summary, the Burns-Eguchi-Hanson-LeBrun-Pedersen-Poon-

Simanca metric on O¢pm-1(—1) has Kahler potential:
1
H =S|I ZII* + A 2|2 + O(|2]*~*™),
when m > 3 and
1 _
H = J||2]* + Alog || Z|| + O(| 2] ),
when m = 2, where A is some constant. Recall that T = O(t®) if |T'| < ct® for some ¢ > 0.

Remark 2.55. There is a generalization of asymptotically locally Euclidean metrics (ALE-metrics for
short) to quasi asymptotically locally Euclidean metrics (QALE-metrics for short) by D. Joyce in [36]

when the action of T is not necessarily free on C™ \ {0}.

Remark 2.56. There is a generalization of AC-metrics and QALE-metrics to quasi-asymptotically con-
ical metrics (QAC-metrics for short) by Degeratu and Mazzeo [23] that we will discuss and use in

Chapter 4 for our main construction.

As a summary, we have these relations between these special metrics

AEC ALE C AC CSC
N N
QALE C QAC

We finish this chapter by defining the edge-metric in Mazzeo’s sense.
Definition 2.57 (Mazzeo edge metric). A Riemannian metric compatible with a Lie structure at infinity

(M, V,), where M is a compact manifold with fibered boundary is called and edge metric. An edge

metrics g. close to the boundary OM is an element of SQ(QT*M ) which locally generated by

dz? dy? dr®dy; , 5 dr®dzj dy; @dzj
2 2 ) de ) ) }7
X

{a; x2’ x

in terms of the local coordinates of example 2.32.
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Example 2.58 (0—metrics). An interesting class of a edge metrics is the class of 0-metrics, i.e., metrics
corresponding to the Lie structure at infinity (M, V) as discussed in Example 2.33. A O-metric g, close
to the boundary OM is of the form

de?  dy?
go = +

22 a2
In fact, if (M, g) is a compact Riemann manifold with boundary, and x is a defining function for the

boundary, then the metric in the interior of M,

is complete and is an example of 0—metric. In particular, the hyperbolic space is of this type. The
sectional curvature of go approaches — |dx]§ at the boundary, so go has negative curvature outside a

compact set. For more information, see Lemma 2.5 in [46].
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CHAPTER 3
CONSTANT SCALAR CURVATURE KAHLER METRICS

In this chapter we focus on constant scalar curvature Kahler (cscK) metrics. A special case of a constant
scalar curvature Kahler metric is a Kahler-Einstein (KE) metric, which has been the main focus of Kahler
geometry since the inception of the celebrated Calabi conjecture on the existence of canonical Kahler
metrics in the 1950s: In every Kahler Class of every compact Kahler manifolds, there must exists one
best, canonical Kahler metrics.

In fact, Calabi proposed the following conjectures for an compact Kahler manifold (X, wx):
Conjecture 1: If Aut(X) = 1, then there exists a unique cscK metric on X in [wx].

Conjecture 2: There exists an extremal Kahler metric on X in [wx], unique up to Aut(X).

Calabi’s vision, now six decades later, has been the inspiration for fundamental work in Kahler ge-
ometry up to the present day. From Yau’s celebrated theorem [64], based on Calabi’s C* estimate
for the Monge-Ampére equation in 1958 [13], for which he received the Fields Medal in 1976, to the
conjecture of Yau-Tian-Donaldson in the Kahler-Einstein Fano case that was finally solved in 2012 by
Chen, Donaldson, and Sun [18, 19, 20] and Tian [59].

We begin this chapter with the scalar curvature function and the definition of extremal metrics. Then,
we briefly look at Kahler-Einstein metrics and Conjecture 1. Following that, we study cscK metrics and
discuss classic results by Matsushima-Lichnerowicz and Arezzo-Pacard. Finally, we wrap up this chap-

ter by constructing new examples of cscK orbifolds with singularities of type 7.

3.1 Scalar Curvature Function

Lemma 3.1. Let (M, g) be a Kdhler manifold and D denote its Levi-Civita connection. For a real 1-form

« if we denote by D~ « the J-anti-invariant part of the covariant derivative D, then we have

D a-= —%g(J(EanJ)o,o) _ _%W(J(cau)., 0.

See Lemma 1.22.2. [29] for a proof.

Definition 3.2 (Lichnerowicz operator). Let (M, g) be a Kahler manifold and D the Levi-Civita con-
nection. If we set D = D~d and denote by D* = (D~d)* its formal adjoint, then the fourth-order
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operator D*D : C*(M,C) — C>(M,C) is called the Lichnerowicz operator. The Lichnerowicz
operator D*D is a formally self-adjoint, semipositive differential operator acting on (real) functions.

For instance for complex-valued functions ¢, 1> defined on compact Kdhler manifold (M, g) we have

/ (D*D)Yw™ = | ¢D*Dypw™.
M

M
Lemma 3.3 (Lichnerowicz operator). Suppose that (M, g) is a Kdhler manifold and w is a smooth

complex-valued function defined on M. Then
* _ 1A2 . 2 1
D*Du = FAgu+ Ricy .V7u + EVS(w).Vu

1 - 1 -
= §A3u + R”VN;U + §ngz'5(w).V3u

See Lemma 1.22.5. [29] for a proof.

Lemma 3.4. Let M be a Kdhler manifold with Kdhler metric g and corresponding Kahler form w. As-
sume that w + /—180u is a small perturbation of w by a function u € C*(M) with ||ul|ca(ar) < ¢,
for a sufficiently small ¢ > 0. Then we can linearize the scalar curvature operator in the following

way:

S(w 4+ v—100u) = Z dtk’t 0S(w 4 tvV/—=180u) = S(w) + Le(u) + Qu(Vu),
where L, (u) = %L«:OS(@ + tv/—100u) is the linear part and

+oo Lk
d _
Qu(V3u) = kz_z =08 (w + tV/—100u),
is a second-order non-linear differential operator that collects all the non-linear terms. Moreover, the
linearization of the scalar curvature operator L, (u) can be expressed as:
1 . - 1 = 1
L, (u) = —(iAgu + (Ricg, V—190u) ) = —iAzu — R'9:05u = 5VS(w).Vu - D*Du.
Also, the non-linear part ()., could decomposes with finite sums as follows:

= Z B2 (Viu, V2u)Cya0(V2u)
+ 3 Byss(Viu, V3u)Cyy35(V2u)

+121 > Bysa(Viu, V2u)Cys2(Vu)
q

+ 3 Byaa(Vu, V2u)Cy2a(V?u),

q
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where B's are bilinear forms and C's are smooth functions.

See Lemma 2.158 [10], Equation (31) in [5], Lemma 1.2 and Lemma 1.3 in [41] for a proof.

Lemma 3.5. Let M be a Kahler manifold of real dimension n with Kahler metric g and corresponding

Kdhler form w. The scalar curvature of a conformally changed metric w' = e¢2fw can be computed by:

S(W') = e (S(w) +2(n = DALS = (n = 1)(n = 2)[|VFII2)-

See Section 1J in [10] for a proof.

3.2 Extremal Metrics

Extremal metrics were defined by Calabi [14] in 1982 as follows:

Definition 3.6 (Extremal Metrics). Suppose that M is a compact Kdhler manifold. An extremal Kahler

metric on M in the class Q2 € H C%R(M ,R) is a critical point of the functional

Cal(w) = /M S(w)?w™,

for w € Q, where S(w) is the scalar curvature of w. This functional is called the Calabi energy func-

tional.

Theorem 3.7. A Kdhler metric w on compact Kdhler manifolds M is extremal if and only if S(w) is a

Killing potential, i.e, one of the following equivalent conditions holds:

(@) V1S (w) is a holomorphic vector field.

(b) D*DS(w) = 0. (Here, D*D is the Lichnerowicz operator defined in Definition 3.2 on page 70.)

See Lemma 1.23.2 in [29] or Theorem 4.2. in [57] for a proof.

Example 3.8. The most important examples of extremal metrics are cscK metrics. In particular Kahler-

Einstein metrics have constant scalar curvature, so they are examples of extremal metrics, i.e,

KE C c¢scK C  Extremal.



CHAPTER 3. CONSTANT SCALAR CURVATURE KAHLER METRICS 73

Remark 3.9. Suppose that M is a compact Kdhler manifold.

(a) If (M) = 0, i.e, M admits no non-trivial holomorphic vector fields, then every extremal Kdhler
metric must have constant scalar curvature.

(b) If the Kdhler class €2 is proportional to ¢, (M), then any constant scalar curvature metric in §2 is

Kdhler-Einstein.

See Lemma 2.2.3 in [28] for a proof.
Now we discuss the Conjecture 1. The existence of Kdhler-Einstein metrics for compact Kahler man-

ifolds depends on the sign of the first Chern class of the Kahler manifold.

Theorem 3.10 (Yau). Let M be a compact Kihler manifold with c¢i(M) = 0. Then, every Kihler
class contains a unique Ricci flat metric. These types of manifolds are called Calabi-Yau. Calabi-Yau

manifolds are complex manifolds that generalize K3 surfaces to higher dimensions.

This is just a special case of the theorem 1.112 on page 34. The case when the first Chern class is

negative is proved independently in 1978 by Thierry Aubin [8] and Shing-Tung Yau [64] as follows:

Theorem 3.1 (Aubin-Yau). Let M be a compact Kahler manifold with c¢; (M) < 0. Then, there is a

unique Kahler metric w € —2mcq (M) such that Ric(w) = —w.

When the first Chern class is positive, existence of Kahler-Einstein metrics remained a well-known
open problem for many years. In this case, there are a non-trivial obstructions to existence. In 2012,
Xiuxiong Chen, Simon Donaldson, and Song Sun [18],[19], [20] as well as Tian [59] proved that in this

case existence is equivalent to an algebro-geometric property called K-stability.

3.3 Constant Scalar Curvature Kahler Metrics

Now we state Matsushima - Lichnerowicz theorem. This classical theorem gives us obstructions to

the existence of cscK metric based on the structure of the Lie algebra of holomorphic vector fields.

Theorem 3.12 (Matsushima - Lichnerowicz). Let (M, J, g) be a cscK manifold. Then, the Lie algebra

h(M) of holomorphic vector fields decomposes as a direct sum:

(M) = bo(M) & a(M),
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where a(M) C h(M) is the abelian subalgebra of parallel holomorphic vector fields and bo(M) is
the subalgebra of holomorphic vector fields with zeros. Furthermore, to(M) is the complexification

of the killing fields with zeros, i.e,
bo(M) = (8(M, g) /a(M)) ®r C,

where £(M, g) denotes the Lie algebra of real Killing vector fields on (M, g). In particular, h(M) is a

reductive Lie algebra, i.e, it is the direct sum of an abelian and a semisimple Lie algebra.

See [43] and [45] for a proof.

Corollary 3.13. Let (M, J, g) be a cscK manifold. Then the identity component of Iso(M, g, J) is the

maximal compact subgroup of the identity component Aut(M, J).

Corollary 3.14. The theorem of Lichnerowicz and Matsushima implies that a compact Kédhler manifold
(M, J) whose identity component Autq (M, J) of the automorphism group is not reductive does not

admit any cscK metric.

Example 3.15. Letn > 1, then the projective space CIP™ blown-up at one or two points does not admit

any cscK metric. See [10] page 331 for more details.

Remark 3.16. There is a general version of the Matsushima-Lichnerowicz theorem for extremal met-
rics proved by Calabi (Theorem 2.3.6 in [28]). In particular, a compact complex manifold (M, .J) for
which the connected group of automorphisms is non-trivial but has no connected compact subgroup
apart from {Id} cannot have any extremal Kihler metric. Examples of Kdhler compact complex sur-
faces satisfying these hypotheses, hence admitting no extremal Kéhler metric, were first given by M.
Levine [42]. As a consequence, the answer of Conjecture 2 is negative in general. A Kdhler manifold
is called a Calabi dream manifold if every Kéhler class on it admits an extremal metric. All compact
Riemann surfaces, complex projective spaces CP", Hirzebruch surfaces Fy, = P(O @ O(k)), and all

compact Calabi-Yau manifolds [64] are Calabi dream manifolds.

Proposition 3.17 (Calabi). Let g be an extremal Kdhler metric on a compact complex manifold (M, J).
Let Isog (M, g) denote the identity component of the isometry group of (M, g), and let Auto(M, J)
denote the identity component of the biholomorphism group of (M, .J). Then Isoy(M, g) isa maximal
compact subgroup of Auty(M, J).

See Theorem 3.5.1[29] for a proof.
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Proposition 3.18. Let (M, g) be a compact cscK manifold and let L,,(u) = —D*Du be the lineariza-

tion of the scalar curvature operator in Lemma 3.4, then
dimp (ker(L,)) = dimc(ho(M)) + 1.

In particular, when the identity component of the biholomorphism group Aut(M, J) is discrete, ker(Ly,)

consists only of constant functions.

See Proposition 1in [41] for a proof.

Now, we recall some notable results of Arezzo-Pacard [5] and [6] that provide a vast collection of cscK

manifolds.

Theorem 3.19 (Arezzo-Pacard). Let (M,w) be a constant scalar curvature compact Kahler manifold
or Kdhler orbifold of complex dimension m with isolated singularities. Assume that there is no nonzero
holomorphic vector field vanishing somewhere on M. Then, given finitely many smooth pointspy, . . ., pn
in M and positive numbers a1, ...,a, > 0, there exists ¢5 > 0 such that the blow-up of M at

1, ..., Py carries constant scalar curvature Kahler forms

1 1
we € T [w] — €2 (a{”l [Er]+...+aq™! [En]> ,

where | E;] are the Poincaré duals of the (2m — 2)-homology classes of the exceptional divisors of the
blow-up at p;, and € € (0,&0). Moreover, as ¢ tends to 0, the sequence of metrics (g. ). converges to

g (in smooth topology) on compact subsets away from the exceptional divisors.

See Theorem 1.1in [5] for a proof.

Theorem 3.20 (Arezzo-Pacard). Assume that (M, J, g,w) is a constant scalar curvature compact Kéih-

ler manifold. There exists n, > 1 such that for all n > ng, there exists a nonempty open subset

Vo C MR :={(p1,...,pn) € M"™ | po, # py for all a # b},

such that for all (p1, . ..,pn) € Vi, the blow-up of M at p1, ..., py, carries a family of constant scalar
curvature Kahler metrics (g.). converging to g (in smooth topology) on compact subsets away from

the exceptional divisors, as the parameter ¢ tends to 0.

See Theorem 1.2 in [6] for a proof.



CHAPTER 3. CONSTANT SCALAR CURVATURE KAHLER METRICS 76

Theorem 3.21 (Arezzo-Pacard). Assume that (M, J, g,w) is a compact Kdhler manifold of complex

dimension m with constant scalar curvature and that (p1, ..., p,) € M} are chosen so that:

(a) £&(p1),--.,&(pn) sSpan b*, where b, the space of Killing vector fields with zeros.

n
(b) thereexist ai,...,a, > 0 such that Zaig(pi) =0eh".
i=1

Then, there exist ¢ > 0, g9 > 0, and for all ¢ € (0, ¢g), there exists on the blow-up of M atpy,...,p,

a constant scalar curvature Kdhler metric g. which is associated to the Kahler form

1 1
we € [w] — €2 <a1"fsl[E1] +.. Fan:t [En}) ,

where the [E;] are the Poincaré duals of the (2m — 2)-homology classes of the exceptional divisors of
the blow-up at p; and where

2
la; e — a;| < ce?m+t,

Finally, the sequence of metrics (g. ). converges to g (in smooth topology) on compact subsets, away

from the exceptional divisors.

See Theorem 1.3 in [6] for a proof.

Theorem 3.22 (Kronheimer-Joyce). Let (M, w) be a nondegenerate compact m-dimensional constant
scalar curvature Kahler orbifold with m = 2 or 3 and isolated singularities. Let p1, . .., p, € M be any
set of points with a neighborhood biholomorphic to a neighborhood of the origin in C™ /T";, where T';
is a finite subgroup of SU(m). Let further N; be a Kdhler crepant resolution of C"™ /T"; (which always
exists). Then there exists g > 0 such that, for all € € (0, (), there exists a constant scalar curvature

Kahler form w,. on M |_| N |_| |_| N,,.

p1,€ p2,€ Pn,€

See Corollary 8.2 in [5] for a proof.

Theorem 3.23 (Apostolov-Rollin). For any k > 2, the orbifold (CIPk_wovw) admits a scalar-flat Kahler
ALE metric ga1,g with quotient singularity at infinity CR/F(—wo,w) and a Kdhler potential H for the

Kahler form wa g written as

1 _ _
H = 2| ZI” + Al Z|*" + 011 2]>~*), (31)
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when k > 3 and

1 _
H = 2| 2]* + Alog || Z|| + O(| 2] ),

when k = 2, where A is a real constant and || Z||? is the square norm function on C*. Furthermore,

the constant A = 0 iff the metric g1 g is Ricci-flat.

See Proposition 17 in [4] for a proof.

Theorem 3.24 (Arezzo-Pacard). Any compact complex surface of general type admits cscK metrics.

We finish this chapter with a concrete example that we construct. We will demonstrate how to find

a constant scalar curvature Kahler metric on it using our theorem at the end of the thesis.

3.4 An example of orbifold with singularities of type 7
Let r be a natural number and consider the cyclic subgroup of U(1) < U(k) given by

L pa,. 1) = ({1dp) = Zy,
where £ = ey is the primitive r-th rooth of unity. Then for [ > 2,

[ = (diag(Id;,v) : v € T(p1,..1)) CU) x U(k) CU(l + k),

seey

is a finite subgroup of the group of isometry Iso(CP!*#~!, gpg) 2 U(1+ k) /U(1) acting on CP!*+~1

via the standard action on C"**, where gy is the Fubini-Study mertic.

Lemma 3.25. The orbifold M = CP‘tF—1 /T has two disjoint singular strata of type Z at

Si={[z0:...:2-1:0:...:00 € CP* /D [29:...: 1] € CP1Y = CPYT,
So={[0:...:0:2:...: z145-1] € CPHE=1r ! (210 .. z14k-1] € CP* 1} = CP*1)T.
Also,

Ny (S1) = (Ocplﬂ(l) ®...0P C’)szfl(l))/l“

k— times

and

NM(SQ) = (O(Cpkfl(l) b...8 Ocpk71(1))/r.

-~

[— times




CHAPTER 3. CONSTANT SCALAR CURVATURE KAHLER METRICS 78

Proof. The set of points of CP“t*~1 fixed by the action of I are [20 0 ...t 214k-1] € CP'**=1 such
that

diag(Idl,fs Idk>[2’0 M ZlJrk,ﬂ = [Zo M Zl+k71]70 <s <,
so this action fixes the two disjoint submanifolds

Si={lz0:...:2z-1:0:...:0 € CPT* D [25:...: 4] € CP1Y = P

So={[0:...:0:2:...: z4p_1] € CPHF*1T [z .. : 2 py] € CPF1) = (C]P’kil/f‘(_r’lw’l).

To identify the normal bundles note that S| could be considered as the intesection of k£ hyperplanes

DiN...N Dy, sothat
NM(Sl) = (NM(D1)|51 D...D NM(Dk)‘Sl)/F = (OCPl_l(l) D...D Ocpz_l(l))/l“. (3.2)

Similarly, for Sa, we can write it as the intesection of [ hyperplanes D) N D, n...N D{, so we have

that
Nur(S2) = (Nag(D})]s, @ ... ® Nar(Dp)]s,)/T = (Oppr1(1) @ ... & O 1 (1)/T. (3.3)

O]

A|B
Note that Aut(CP**~1) = PGL(I + &, C). ForU = € My, 1(C)andy = (Id;, £91dy) €
C|D

U = 4]¢'8 and yU = 4 b ,50 Uy = U and €7 # 1 imply that B = 0 and
C | ¢D &1C | €1D

C = 0, sothe orbifold M = CP!**~! /T has group of automorphism P(GL(l, C) x GL(k, C)), which
is still quite large. To obtain an example with discrete automorphism group, we will use Theorem 1.4 in
[6] by blowing-up CP!**~1 at a sufficient number of points {p1, pa, . .., pn}. Leth = Lie(PGL(I+k))
be the Lie algebra of killing vector fields with zeros on CP!**~1 and denote by hT the Lie subalgebra
of h consisting of I'-invariant vector fields. Also denote the corresponding momentum maps by x :
CPHF=1 s p*and pb : CPTF=1 — pT* 1f o - hT < b is the inclusion map and .* : h* — hI'* the
dual map, notice that uI' = 1* o pu.

Using Lemma 6.3 in [6], there exists ny, > dimbh = (I + k — 1)2 — 1 such that for all n. > ng, there
exists a nonempty open set Vi, C {(p1,pa,...,pn) € (CPHR=1)" -5, £ py Va # b} such that, for
all (p1,p2,--.,0n) € Vo, {u(p1),- .., 1(pn)} spans h* and there exist a;, as, ..., a, > 0 such that

n

Z a;p1(p;) = 0 € b*. In particular, since ' = 1* o p, this means that:
i=1
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(a) Theset {u' (p1),...,u" (pn)} spans b,

(b) There exist positive integers a1, as, ..., a, with a; = a; if p; = o(pj;) for some o € T and
n
> aip(p) =0ep.
i=1

Without loss of generality we can choose p1, s, . . ., pn, € CPHF1 \ (S1US2), since V,, is open and
Cpitk-1 \ (S1U.S2) is open and dense. Note that if we add a point p,,+1, conditions (1) and (2) remain
valid because of Lemma 6.2 in [6]. Thus, by adding points if necessary, we can assume that the set
{p1,...,pn}isT-invariant. Using Theorem 1.4 in [6] shows that there exist ¢ > 0, ey > 0 such that for

alle € (0,¢p), there exists a I'-invariant constant scalar curvature Kahler metrich'E on Bl({cl[];'pl+ Pl This

(C]P’“r
{Pl

1.122. Consider the quotient map ¢ : CP!**~1 — CP**~1 /T and choose Q1. qm € CPHE~1 5o

metric induces a constant scalar curvature Kdhler metric g. on Bl } /T in the sense of Remark

that q({p1,...,pn}) = {q1, .., qm} wherem = " The natural identification,

Tl

CPl+k 1 CPl+k71/F’
{pl’ ,pn} /F Bl{Qlw-va}

+
then gives us a constant scalar curvature Kahler metric on the orbifold X = Bl({CP " /}F in the sense

of Remark 1.122.

BANS

Using the Proposition 1.148 on page 47 the Lie algebra of holomorphic vector fields of Bl{ qm}

realized as
{v € Lie(P(GL(l) x GL(k))) : v(q1) = ... = v(gm) = 0},

“br oy .
Y ) is the subgroup of

elements of P(GL(!) x GL(k)) which fix {q1, . . ., gm }. Now, a fixed point of f € P(GL(l) x GL(k))

l+k
so the identity component of the automorphism group of Aut( Bl({ci

is the same as an eigenvector of a choice of representative f € GL(l) x GL(k), so f(q) = ¢ means

f(p) = \p for a representative p.

Suppose that we pick n > [ + k and the first [ 4 k points py, ..., pi1x in CP'*~1 represented by
points Py, ..., Dy x € CH** forming a basis of C'** and with ¢(p;) # q(p;) fori # jwithi,j < 1+k,
where ¢ : CP!tF-1 5 Ccpithk-1 /T is the quotient map. Then with respect to this basis, the lift

f € GL(I) x GL(k) of an element f € P(GL(I) x GL(k)) such that f(p;) = psfori € {1,...,k+1}
I+k

will be diagonal. Then if we take p; 1 such that its representative is p;, ;.. 1 = Zﬁi, we see that
i=1

the only element f € P(GL(1) x GL(k)) fixing p1, . . ., pi+x+1 is the identity (i.e, f is a multiple of the
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identity). Perturbing the representatives py, ..., ;. if necessary, we can assume that q(p;x+1) ¢

S1 U S5. We have proven the following theorem:

Theorem 3.26. Let r be a natural number and consider the cyclic subgroup of U(1) < U (k) given by

L, 1) = (E1dy) = Zy,
where £ = e’7" is the primitive r-th rooth of unity. Then for [ > 2,

[ := (diag(Ids,v) : v € T'(—p1,..1)) C U+ k),

PHR=1 grg) acting on CP! T+~ via the standard

is a finite subgroup of the group of isometry Iso(C
action on C'**, where grg is the Fubini-Study mertic. Then the orbifold M = CP**~1 /T has two

disjoint singularities of type T at

Si={lz0:...:z-1:0:...:00 € CPT* 1 [z5: ... 1 2] € CPY = CPY

Soy={[0:...:0:2 ... zp_1] €CPHRL [0 20 1] € CPPL) = CPk_l/F(_mw’l).

Also, we can choose p1,ps, ..., py, € CPHE=L\ (S U Sy) withm > 1 + k + 1 such that there

qm}

mark 1.122) where q1, . . . , ¢ € CPYE=L /T are such that q({p1, ..., pr,,}) = {1, - - ., qm} Where

l+k
exists a constant scalar curvature Kdhler metric on the orbifold X = Blgi (in the sense of Re-

q: CP!HF-1 5 cpith-1 /T is the quotient map. Furthermore, the identity component of the auto-

C]})H—k’—l/r

morphism group of Aut (Bl (g}

) is trivial.
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CHAPTER 4
GLUING TECHNIQUE

Let X be an orbifold of depth one in the sense of Definition 1.121, with singularities of type Z along
a connected suborbifold Y of complex codimension k i.e., we can find a finite subgroup I"_,,, .,y of
U (k) acting freely on C* \ {0} such that any point p € Y has a local orbifold uniformization chart of
the form C" =% x (C*/T'(_yyu)) and T, ) is of type Z in the sense of Definition 1.145. Suppose
that X admits a cscK metric in the sense of Remark 1122 Let 7 : X — X be a partial resolution of

X by performing a (—wyp, w)-weighted blow-up along Y as described on page 47.

The goal of this section will be to construct a Kdhler metric on the resolution X which is close to the
cscK metric wx on X. To do so, we will follow the approch of [21] and introduce an auxiliary space

on which this construction will take place. We follow the following steps:

(a) Step 1: Consider first the orbifold with boundary X x [0, c0). and blow-up the submanifold
Y x {0} in the sense of Melrose to obtain the orbifold with corners X' := [X x [0, 00)., Y x {0}]
where ¢ is the parameter of deformation. Let 3 : X — X X [0, 00). be the corresponding blow-

down map.
[0, +00)s

Y X
Figure 4.1: Orbifold with corner X x [0, c0).
Inlocal coordinates near Y x {0}, this means that we replace C" % x C* /T" x [0, 00) by C"~* x

S% /T x [0, +00), where S2¥ is the half sphere S?* = {(z,£) € C* x [0,00) : |2|? + €2 = 1}

and the local blow-down map

CF x S%f /F x [0, 400) = C"F x C* /T x [0, 00),
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is given by (w, (z,¢),7) — (w,rz,re).

Let H; be the boundary hypersurface of X’ obtained by the blow-up of Y x {0} and let H, be
the boundary hypersurface correponding to the lift of X x {0} in X x [0, 00).. In our metric
model H; = Nx(Y) = Nx(Y) U S(Nx(Y)) is the radial compactification of the normal
bundle Nx(Y) of Y and Hy = [X,Y]. Also note that H; N Hy = 0H; = 0Hs = S(Nx(Y))
and

HY = Op vy (—wp), (4.1)

where E = P,,(W) is the weighted projectivization of some vector bundle W — Y of rank k&

such that Nx(Y) =W /F(fwo,w) .

[0, +00)

Hy X = [X x [0, 4+00).,Y x {0}] Hy

Figure 4.2: Blowing-up the orbifold X x [0, c0). along Y x {0}
(b) Step 2: The partial resolution 7 : X=X naturally induces a partial resolution
X5 X=X x[0,00):Y x {0}] 2 X x [0, 00)..

As an orbifold, X is automatically a stratified space with two strata 3; = Y and ¥o = X \ Y.
The orbiofld X" has corners with boundary hypersurfaces H; = Nx(Y) and Hy = [X,Y]
coresponding to the stratas 1 and X5. The boundary hypersurfaces are naturally equiped with

a fiber bundle structure

leNx(Y), VQZ{pt} HQZ[X,Y},

i% J/902=id

S =Y Se = [X,Y]

Vi=Ck/T
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where V] and V5 are the fibers.

This is a particular case of Lemma 4.3 in [21], namely the orbifold X is in fact an orbifold with
fibered corners (X, ) where ¢ : H; = Nx(Y) — Y and o = id : Hy = [X,Y] — H> are
the fiber bundle maps. Indeed, the partial order in this case is just the order H; < H>5 onthe set
{H\, Ho} of boundary hypersurfaces and Hy N Hy = OH1 = Hz = d(Nx (Y)), @1,
Hy, N Hy — S is clearly a surjective submersion, So1 := wo(H1 N Hy) = Hy N Hy = OHs is

the boundary of Ho = S5 and 91 := (’Dl‘HlﬂHg is such that w21 0 o = 1 0id = 1.

Now we consider the Lie algebra of of b-vector fields in the sense of Example 2.30 and Remark 1.122
on the orbifold with fibered corners X, that is, smooth vector fields on X which are tangent to all

boundary hypersurfaces:

V(X)) : ={¢ € X(X) : { tangent to H; and Hy}

={£ e X(X):&x1 € 11C™(X) and Exg € 22C (X))},

where =1 and z5 are boundary defining functions for H, and Hs, i.e, z; > 0, xi_l(O) = H; and

dx; # 0on H;. Choose x1 and x5 so that e = 1.z is the corresponding total boundary function. In

the local coordinates (1, x2, u;), vector fields in V;,(X') are of the form

0

8’U,i ’

0 0
g = al'laixl + bxza—mz + ;cmz

where a, b, ¢; are smooth functions.
Also we consider the Lie subalgebra VQAC(X) of quasi asymptotically conical vector fields or QAC-
vector fields on X originally introduced by Conlon, Degeratu and Rochon in [21]. By definition (see

Definitions 1.11 and 1.14 in [21]), these are the b-vector fields £ € V,(X) such that:

(a) QACTI: §‘H, is tangent to the fibers of ; : H; — S; for all ¢,

(b) QAC2: &e € 2C™(X).

The Lie algebra VQAC(X) is a finitely generated projective C*°(X’)-module, so by the Serre-Swan
theorem (Theorem 2.28), there exists a natural smooth vector bundle, YTX — X, and a natural

map ¢, : ¥T'X — T X such that

Vaac(X) = (1) I'(X, 9T X).
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The above vector bundle #T'X, originally introduced in [21] is called the QA C-tangent bundle over
X. The QAC-cotangent bundle Y T*X over X is the vector bundle dual to ?T'X.

Using the function e = 5* pr, € C*°(X'), we can define the Lie subalgebra of Vo (X'), correspond-
ing to QA C-vector fields tangent to the level sets of ¢:

VQAC,@(X) = {f S VQAc(X) : §€ = 0}.

Again by the Serre-Swan theorem (Theorem 2.28 above), there exist a natural vector bundle £ — X

and a natural map ¢, : £ — T'X such that there is a canonical identification

VQAC,E(X) = (Ls)*F(Xﬂ 5)'

In fact, £ is naturally a vector subbundle of ¥T'X’, which induces a natural map ¢ : YT"X — &£*.
This means that a smooth QAC-metric (i.e. a bundle metric for T'X’) naturally restricts to define
an element of I'( X', £* ® £*). Now we look at the pull-back of the orbifold cscK-metric gx on X to
gx = B8%pri] gx on X, where pr; : X x [0,400) — X is the projection on the first factor.

Lemma 4.1. The pull-back g. := 5" pr] gx is such that g—; el(X,&*®E&").
€

Proof. Thisis aspecial case of Lemma 4.5 in [21] but we will provide a direct proof for the convenience

of the reader. It is sufficient to show that 5* prj s € I'(X, 9T*X) for s € I'(X, T* X). Let us choose

(y,2) as a local coordinate of X, where y is a coordinate of Y C X and z = (21,...,2;) € C* /T’

isnormalto Y, i.e, Y = {z = 0}. Write z = (r,w) € RT x S2—1 in the spherical coordinates.
€

The boundary defining function of H; and H> can be choosentobe 1 = V72 +c2and 29 = — =
T

€ de dzy dy dw
—————. The bundle ¥T*X over X is then generated by { —-, ——-, —, — }, while £* is generated
V12 + 2 g Y{52 3 € xg} &
dze dy d d d
by {%, —y, —w}. We need to check that - and ~_ are sections of #T"* Y. Now
x5 € T3 € €
rdw ro Vri4eldw r dw
e Vri4e? € VrZ+e2as’
. - r 7 . . . rdw .
Since the coefficient ——— = /1 — x5 is a smooth function on X, this shows that — is a

NEE= e
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smooth section of £*. On the other hand:

dr
- - ( r] —¢€?)
1 x2
=2d il S
€ (e g2 )
1 1
= —d — 1
€ (e 3 )
d 1 1
€ 5 € x5
i 1 d172
m% :):%\/1—:1:%.
1 /1 —x5d d
Slnce — —% 1 x2 &€ = x1y/1— x%g—s is a smooth section of ¥T*X over X and

dr
———— is a section of £* over X, this shows that — is a smooth section of ¥T™*X.

\/1—372 e

O]

Now, we describe the restrictions of g—; to Hy and H>. First describe the restriction of £ to H; and
€

Ho.

On Hji, restricting the boundary defining function of X’ to H; gives us a Lie algebra of QAC-vector
fields and a corresponding QA C-tangent bundle YT'(H; /S1) in the fibers of ¢; : H; — Sj. Since
these fibers are manifolds with boundary, this is in each fiber, the Lie algebra of scattering vector field

in the Melrose sense. So there is a natural map 8|H1 — SCT(Hy /S1) and a short exact sequence
0— N& — S}Hl — SCT(H, /S1) = 0

where ng = ker(S‘Hl — SCT(Hl /Sl)) .
Since there is a natural inclusion SCT(Hl /51) C 5‘1{1 , the above short exact sequence splits. There

is another natural short exact sequence involving SCT'(H; /S1),
0— SCT(H1 /Sl) — SCTH1 — Z'QSOT(TSl) — 0
where T'S; is the tangent bundle of S = Y, so

220 (TSy) = S°TH, / SCT(H, /81).(4.2)
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Multiplication by the boundary defining function x; induces the identification
SCrH, /SCT(H1 / S1) =ker (€|, — SCT(H, /51)).(4.3)
In particular, we see from (4.2) and (4.3) that there is a natural identification
ker (S‘H1 — SCT(H, /S1)) = el (TS)).
Hence, we have a canonical decomposition
Ely, = epi(TS1) @ 5T (Hy /Sh).

By [21], the family of metric g—; splits accordingly
€

ge, _ P198
? ‘Hl - 82 + 915
SOTgsl . ge . . .
where g, and 2 are the metrics induced by 2 in the fiber of 1 : H; — S7 and the bundle

N €.

On the resolution 2? the boundary hypersurface H is replaced by a boundary hypersurface ﬁl that

is a resolution of Hy, and the fiber bundle

Hy=Nx(Y),

|

S1=Y

Vi=Ck/T

is replaced by

o — o —

Z, =CkF/T Hy = Nx(Y),

K

~

S =Y

where Z; is a resolution of ;. The function € on X naturally extends to a smooth function on AA,’ also
denoted by . Similarly, the boundary defining functions x; can be chosen to lift to a smooth boundary

defining function on X, yielding a natural Lie algebra VQAC(Q?). We can define a Lie subalgebra by

Vaac.(X) = {€ € Vgac(X) : £ = 0}.
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There is a corresponding vector bundle & — X and a natural map ¢ : E-TX yielding a canonical
identification

-~

Vaac,e(X) = (1) L'(X,E).
The following theorem constructs a family of Kahler metrics on X which are approximately cscK.

Theorem 4.2. Let (X,wx) be a compact cscK complex orbifold with singularities of type Z along a
subset Y, i.e, the normal bundle of Y in X has fibers of the form W /T" where W is a vector bundle of
rank k on X and T is a finite subgroup of U (k) of type Z. Then, there exists a smooth closed (1, 1)-form

wgzp on H 1 restricting on each fiber of ¢ to the Kadhler form of a scalar flat ALE-metric asymptotic

*
P1Ws,
g2’

. s oo W
to w,,. Moreover, for ;1 > 0 small, there is &o. € I'(X,E* A £*) such that g—g‘ﬁl = wgy +

AR Hy = WX ‘HQ and which yields a positive definite closed (1, 1)—form on

Xe={peX:c(p)=c} =X,

foreach 0 < ¢ < p.

Proof. LetT' = (v). Since the unitary matrix -y is diagonalizable, the eigenspaces of -y in each fiber of
W — Y induce an wx-orthogonal decomposition

! !
W:@m, where dim W, = k;, Zk‘i:k.

i=1 i=1

l
Now we can consider the action of )X U(k;) on W. Lete = (e, ..., ex) be an orthonormal basis for

i=1
smooth sections of W on an open set U C Y, compatible with the decomposition of W. This gives
us a trivialization Wy = CF x U, and in this trivialization, ~ acts diagonally on C* by

w1y W

v = diag(e ™o ,...,e™0 ).

~

Let Wy = Ck x V be another such trivialization for an open subset V' C Y with orthonormal
l
basis ¢’ = (e},...,€}). Then e = fe for a smooth function f : U NV — X U(k;). Note that
i=1

ﬁl = Nx(Y) and f[f is the total space of a vector bundle with fibers isomorphic to CP* =

(_w07w)

Ocpr-1 (—wp). We get a natural line bundle:

w : ﬁf — E, where E =TP,(W) isthe weighted fiberwise projectivization of V.
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k

As discussed in Theorem 3.23 on page 76, there exists a scalar-flat Kdhler metric gay,r on (CIP’(fwo w)

modelled on C* /F(,wO’w) at infinity with a Kahler potential H for the Kahler form w1, written as
1 _ _
H = §IIZH2+AIIZII4 Ero(z)* ), (4.4)

when k£ > 3 and

1 _
H = 5| Z|I* + Alog || Z]| + O(|| 2] %),

when k = 2, where A is a constant. Since the metric garr and the potential H are invariant under
l

the action of )X U (k;), we can use the above trivialization to obtain a well-defined fiberwise potential
i=1

HN : Nx(Y) —>R,

corresponding to H in each fibers of Nx (Y") for any choice of trivialization as described above. Set
wz; = 2v/—100(Hy) on Nx(Y) \ Y = ﬁf \ E. On each fiber of ﬁf — Y, this closed (1, 1)-form
extends to an ALE scalar flat metric. Globally, this extends to a smooth (1, 1)-form on flf that we
will also denoted by wg;. Since wg; is closed on the complement of E, it is closed everywhere by

continuity. Hence, wg; is the desired closed (1, 1)-form. Finally we define

d..d

2 = wx + V100 ( D))

re
where 1 : R — R is a cut-off function such that v1(t) = 1fort < 1and v1(t) = Ofort > 2,
d = dg, oPrioform: X — [0, +00), where dg, is the distance from Y on X with respect to
the cscK metric gx (we can use d = r in terms of the coordinates used in the proof of Lemma 4.1),
Te = 5% and

f=AlZ|**F +0(12)P7%),
is a function defined on the complement of the exceptional divisor such that
W = Wy, + V—100f.

By construction, we obtain three different regions on X as follows:

N d
(a) Near the exceptional divisor, on ; = {z € X : d(z) < r.} we have 7;(—) = 1 so we get
Te

Be = wx + 62\/—188f(g).
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(b) On the intermediate region 2y = {z € X : r. < d(z) < 2r.} we get

d

Te

2 = wx + <2100 () ()

> d
(c) Far from the exceptional divisor, Q3 = {x € X : 2r. < d(z)} we have y;(—) = 0, so we get
Te

We = WX
[0, 4+00)-
O 0
QQ QQ
H,y
Qg Q3
Hoy Ho

Figure 4.3: Three different regions on X

Far from the exceptional divisor, @, is well-defined on the complement of the exceptional divisor.

w ~ ~
Moreover, by construction, —5 extends to a metric on the bundle £ for small . In fact on H; we get
€

~ *

wE Qolwsl
2 ‘H =W T 5

g2 iy €

= - Wx . W, . - 5 & .
and on Hy we get same restriction as —5- Since —; is positive definite on both S\Hl and 5\H2, sois
€ €

~

w—g near ﬁl and ﬁQ. Consequently, it remains positive definite for small £ > 0, which yields a positive

€

definite closed (1, 1)—form on the level sets X, = {p € X : e(p) = ¢} = X as claimed. O
k

Remark 4.3. Since the cohomology in degree 2 of CP is generated by the divisor [C}P’fv_l],

(_w07w)

notice that by reparametrizing ¢, if necessary, we can assume without loss of generality in Theorem

4.2 that [©.] = [wx] — *[E].
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CHAPTER 5
LINEAR ANALYSIS

The Kahler metrics &, provided by Theorem 4.2 are not necessarily cscK, but since their asymptotic
models on fh and Hs are, they will be almost cscK for small . We can therefore hope to solve the
nonlinear equation

S(@: +v—190u) = R,
perturbatively, for some well-chosen constant R.
To do this, the purpose of this section is to first study the linearization of the scalar curvature of the

metric w, perturbed by a potential u:
S(De + vV—100u) = S(@.) + Lg. (u) + Qz. (V*u), (5.1)
where L;_is linear part and ()5, is nonlinear part. By the Proposition 3.4 we get,
Ls. (u) = —(%A%E + Ricg, .V%s)u.
In terms of Lichnerowicz operator D*D, we can write
Lo (u) = %VS(@E).Vu _D*Du.
Let us define L. : C°(X)g x R — COO()A() by

L.(u,R) = Lg_(u) — R, (5.2)

where COO()A()O is the space of smooth functions u that have zero integral with respect to the metric

~

Ge-

Definition 5.1 (Holder space). Let (M, g) is a smooth Riemannian manifold, k € Ny and « € (0, 1].
Then the Hélder space CZ,g "“(M) consists of functions f : M — R such that

1fllgga = 17l + (V4 Floa < oo,

k
where || fllgr = Z sup ||V f(p)|ly with || - ||, the pointwise norm induced by the metric g and
i—0 peEM

[V £15.a is the Holder semi norm defined by

{HP’Y(ka(’Y(O))) - VAF(y(1)llg
U(y)>

[ka]g,a =
7(0)#~(1)

and P, is parallel transport along .

: v a smooth curve on M},
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Definition 5.2 (Weighted Holder space). Let (M, g) is a smooth Riemannian manifold, k € Ny and
a € (0,1]. The weighted Hélder space pCi™ (M) for a weight function p € C>(M,R™) consists of
functions f : M — R such that

f

||f||pC§,a = ||;||C§,a < 00.

Remark 5.3. (a) If p = v/ d? + &2 is a boundary defining function for ﬁl in X , then the restriction
of g- to f[l induces a family of fiberwise b-metric in the fibers of o1 : f[l — §1.

o~

(b) The restriction % Hy = ‘%{ |, = % is an edge metric in the sense of Mazzeo.

On afiber Z; of ¢ : ﬁl — §1, the metric g—; induced by restriction is a scalar flat Kdhler ALE metric
€
gg,- It is convenient to study the mapping properties of its operator Lg_ in terms of the weighted

Holder space induced by the b-metric g5, , obtained by restriction of g—z to Z;.
' P

Lemma5.4. If § < 0 and k > 2, then the linear operator

L., :(8)664@ (Zl)%(g)é—élco,a (Z1>,

@1 e’ 91 9211

has trivial kernel, where Z; is the interior of Z;.

Proof. We will proceed as the proof of Proposition 8.9 in [57]. Since the scalar curvature of 9g, is
zero,

Ly (u) = =D*Du.

Also by Proposition 17 of [4], the Kahler potential of wg, as || Z| — oc'is
1
SIZ1° + AlZ|[ = + o 2P,

where Z denotes the Euclidean coordinates on (C* /T'(_,, ,») \ {0} identified with complement

of the exceptional divisor in Z;. Suppose u € (8)56’;1;301‘ , (Z1) and D*Du = 0. Consider a smooth
€ ,

cutoff function «y such that it vanishes on 7=1(B1(0)) and is 1 outside 7—1(B2(0)), where B,.(0) is

the ball with radius r centred origin in C* /F( , S0 yu is a smooth function on C* /F(

—wo,w) —wp,w) *

Now we try to compare the Lichnerowicz operator D*D with Euclidean operator A?Euc, note that

1
DD = 5 A%, but

Euc?

1 - 1
D*D(u) = §A3¢1 (u) + R 9;0,u + 5 VS(ware) - Vu,
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1
so D*D — §A%uc isin O(|| Z||?>~2*) as a scattering operator as || Z|| — oo.

) p . P\§—2-2k A0,
Since u € (2)563:;1‘71)(21), this means that A% _(yu) € (g)‘s 272k ((CF N\ {0}) /T (Cagw)) -
Applying Theorem 8.3 in [57] on the orbifold cover C* of C* /F(_wmw) , we conclude that there exist

afunctionv € (§)5+2_2k(}4’°‘ ((CM\{0}) /T (—iy ) Suchthat A% (v) = A% (yu). Hence v—vu

957 ,b
is a biharmonic function that decays at infinity. Since there is no indicial roots in (4 — 2k, 0) we have
Pra—2k 4, T Pra—2k 4,
v—yu € (g)4 %Cg;:’b((ck \ B2(0)) /T (—ug)) and this implies that yu € (g)4 2"36%01‘75((((3’“ \
B(0)) /T (—wou)) SO u € (5)4_2’“635’;1‘&(21). Since we assume k > 2, this decay allows us to
integrate by parts
/ | Du)? dwg, :/ uD*Dudwg, = 0,
A

Z1
—_—

and then Du = 0, so VY is a holomorphic vector field on Z; = C* /I'(_,,, ;). The resolution

71 Zy — CF JT(_yyy ) implies a biholomorphism Z1 \ 7=(0) 2 (C*\ {0}) /T (_yq.u)» SO We can
k
represent the holomorphic vector field vl’oulzl\w—l(o) as Z ai? where a; are F(,wo’w)—invariant
i=1

Zi
functionon (Ck\{O}. By applying the Hartogs theorem, for e;ch a; there exist a holomorphe extension
@; on C*. Because of the boundedness of @;, Liouville’s theorem implies that @; is a constant function,
hence its decay at infinity implies that a; = 0. So V% = 0 on Z; \ 7~1(0). Now notice that
Z1\71(0) is adense subset of Z1, so by continuity V1% = 0 on Z;. Finally, Vu = V1044 V%1y =

V10u+ V10y = 0, so wis a constant function on Z; that decays at infinity, implying that w = 0. O
Lemma 5.5. If § < 0 and Lo(u) = 0 foru € (3)60‘;;&(21 x C"%), then u = 0. Here L denotes
€ %5

P
the Lichnerowicz operator on the product space.

Proof. It suffices to replace Blgk by (C]P”(“_w0 w) in Lemma 11 of [53] and use Lemma 5.4 instead of
Proposition 8.9 in [57] in the proof of Lemma 11in [53]. O

d2
Lemma5.6. If4—2k < § < 0and A}, .u = Oforu € (1+>)

N[

Cot (((CF /T () \ {0}) x TP,

02

then v = 0.

Proof. It suffices to pull-back to (C* \ {0}) x C"~* and use Lemma 12 in [53]. O

Lemma 5.7. Suppose that X has no non trivial holomorphic vector fields. If 4 — 2k < § < 0, then the
linear operator

Ly : pécfég(Hz)o x R — p*~4CYS (Hy),
P

o2
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defined by Ewo (u, R) = Ly, (u) — R where wy = wx and pécgg(Hg)o is the subspace of functions
P
in péc‘;g (Hy) that are L?-orthogonal to the constant functions, has trivial kernel.
p2

Proof. On Ho,

~ 1
Ly, (u, R) = §VS(OJ0).VU —D*Du— R=—-D"Du— R.
Letu € pécé;)?(HQ)o and R € R such that L,,_(u, R) = 0, so D*Du + R = 0. Both D*Du and u
o2
belongs to p5_4C2;f‘(H2) and 0 — 4 > —2k, so they are integrable on X. This ensures that for a test
p72

function ¢ € C*°(X),

/@D*Dudwx—/(D*Dgo)ude,
X X

thatis, D*Du + R = 0 in the sense of distribution on X. Elliptic regularity implies that u is a smooth

function in the orbifold sense on X. Hence, on X,

ID*DulZ. =

so D*Du = 0and so R = 0. Since the kernel of D*D on X consists of constant functions (we assume

X has no non trivial holomorphic vector fields), this shows that u = 0.

O

Proposition 5.8. Assume X has no non trivial holomorphic vector fields. For 4 — 2k < § < 0 and

€ > 0 small enough, the operator (5.2)

L, : p5C

[Q) JJ;

)

“(X)o x R — p 402 (X),

2

hS)
[

P

£

where p° C%’Eo‘ (X)g is the subspace of functions in p° C%’a (X) that are L?-orthogonal to the constant
2 2

P _ P
functions, is invertible and its inverse P. := L;l is bounded by constant independent of ¢.

Proof. We will closely follow the proof proposition 9 in [53]. By the Schauder estimates’, there is a

' Schauder interior estimates theorem: Consider the elliptic second order partial differential equation

Lu(z) = a’ (z) Diju(zx) + b (2) Dyu(x) + c(z)u(x) = f(x), (5.3)
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uniform constant C independent of ¢, such that

lull st +1BI < Clllullseg +1R]+ [[Le(, B j5-ap00)- (5.4)
o2 % o2

We want to show that there exists a uniform constant C' such that

ull e + IRl < CllLe(u, R)|| ypa oo (5.5)

To prove (5.5), for a contradiction suppose that there is a sequence ¢; — 0 with u; and R; such that

HuingC%a_ +|Ri| > i|| L, (ui, Ry)|| P10 for each i. In particular, by (5.4),

p? p2

il Le; (uis Ri)| - 1090 < il probe + [Ril < Cluill peo + [Ril + [|Le, (ui, Ri)ll ps-ac0 ),

= 9eq
p2 pz p 02

so that
i -
(& = DINEe, (i Rl oo < il s + IR

P2 0?2

Without loss of generality, by multiplying u; and R; by a constant )\;, we can suppose that || u; ”p‘sC%S_ +

2

- 1 -
|R;| =1, s0 HLE(ui,Ri)Hpg%Cgﬁ < T This shows that ||L5(ui,Ri)||p5,4C%€a — 0asi — oo.
S Cn o

Moreover, the Schauder estimates (5.4) show that w; : X \' Y — R is uniformly bounded and
uniformly equicontinuous in p5 4095 , so by the Arzela-Ascoli theorem?? there exists a convergent
p

subsequence {u;, } converging a function u € p’Cg (X \ Y) with convergence in p°C%, (K) on

p
each compact subset K C X \ Y.* Also, {R;} is a bounded numerical sequence, so by the Bolzano-

on the domain €2, where the source term satisfies f € C*(Q). If there exists a constant A > 0 such that the a; ; are strictly
elliptic, a™’ (z)€:6; > M¢|? forall z € ©,& € R™ and the relevant norms coefficients are all bounded by another constant A
Then the weighted C*** norm of a bounded solution v € CQ’Q(Q) is controlled by the supremum of  and the Holder norm of f,

i.e, there exist a constant C' = (), o.x.A < o0 such that

2O A,

5 2
3,00 < Cllulloe + IFI52.0)-

See Theorem 5.5 in section 8.5 in [30] for a proof.

2 Arzela-Ascoli Theorem: Every bounded equicontinuous sequence of functions in C’O([a, b, R) has a uniformly convergent sub-

sequence. See Theorem 14 on page 224 [50] for a proof.

3 Classically, Arzela-Ascoli theorem could apply for compact sets, here we can cover X\Y by compact sets and inductively choosing

subsequences.

* In general, if {u;} C C** and |Ju; — ul|cr — 0, thenu € C*2.
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Weierstrass theorem, we can assume that the subsequence { R;, } converges to some R, so that

Luy(u,R) = lim Ly, (us;,R;,)=0.

j—00 i)

Lemma 5.4 implies that u = 0 and R = 0, so R;; — 0. Since VS(w:) — VS(wx) = Owhene — 0

and
~ 1
HLE(UZJ7R”L])HP674C(()],ED: = ”Lweij (uz]) - §V5(w51])vuz] - RZ]Hp574C%,Sa 5
we see that
]1l>ngo ”Lwaij (uij)||p5—4og$‘ = 0.
5
ug; () U, ui; ()

On the other hand, sup |——| < [[—[lco. < 1,50 — is bounded by 1 on the compact

wex P°(@) po Ty p(z)

’ Ui (C]j)
r°(g;)

— lasj — oo, since Rij — 0asj — oo. On any compact subset of X \ Y,

<

manifold X for each J. In particular, it achieves a maximum, say at ¢; € X.In particular

ui; (g5)
r(4;)
u;;(q;) — 0, so we must have p(q;) — 0. Taking a subsequence if needed, we can therefore assume

1 and

thatqg; — ¢ € ﬁl. There are two possibilities, either ¢ € ﬁl \ (ﬁl N f[z), orelseq € f[l N ﬁQ. If

5\ (F B ui, () ui; ()
qc Hl\(HlﬂHg),then J J — 0,
r°(q5) r°(q5)

— 1. Otherwise, if g € fIl N flg, then converges to a function that

converges to a function that satisfies Lemma 5.5, so

Ug; (l’)
P°(q5)

— 0, again yielding to a contradiction with

r°(q;)
i, (q5) ui; (4))
p°(4;) £°(q5)
the inequality (5.5) holds. The inequality (5.5) shows that the kernel of L. is trivial and since it has

in contradiction

satisfies Lemma 5.6, — 1. Consequently

index zero, it is invertible. Also EE is bijective bounded linear operator from one Banach space to

another, so Zg has bounded inverse. O
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CHAPTER 6
NONLINEAR ANALYSIS AND THE MAIN THEOREM

If a perturbed metric @. = @. + v/—109du has a constant scalar curvature S(@.) = R. for all ¢, then

R can be determined from the Kahler class [(. ]| of &.. We try to find an approximate for R.

Proposition 6.1. Let X be a compact complex orbifold with singularities of type I along a subset Y
with codimension k greater than 2, i.e., the normal bundle of Y in X has fibers of the form C* /F(_wmw)

for some weight w. Then the first Chern class of the (—wy, w)—weighted blow-up X of X alongY is

~

k
e1(X) = 1 er(X) — (Ufo S wi - 1)[E][s,
i=1

where [E] is the Poincaré class of the exceptional divisor.

Proof. Away from Y, we have the canonical identification of canonical bundles K; = Kx. Let

N (FE) be the normal bundle of E in X. By the adjunction formula

b'e
K)?’E = Kg ®N;%(E) =Kg® [—E”E
On the other hand, if V' = ker(|g.) is the vertical tangent bundle of 7|r : E — Y, then
T"E=V*®r*TY. (6.1)

Since 7 : E — Y is a projective bundle with fiber (CIP’ﬁfl, E =P, (W) is the weighted projectiviza-
tion of some vector bundle W — Y of rank k such that Nx(Y') = W /F(_wmw) . Now the canonical

bundle of the weighted projective space is given by
k

Kepr-1 = Ogpr-1(— Z w;),

i=1
see, for instance, [25] or 6.7.2 in [38]. Keeping in mind the decomposition of 1 in the proof of Theo-

rem 4.2, and using equation (6.1), this means that
Kg =AYV @ n*(Ky)

k

= 1 (Ky) @ 7 (N (W) @ Op v (= Y w;)
i=1

k
= 7T*(Kx>‘E X OE/y(—Z’u}i).
=1
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Finally, we have that

Kglp = Kp® NG (E)
k

= (Kx)|p © Oy (=Y wi) © Op sy (w)
=1

1 F

k wfzwi—l
=7 (Kx)|p ® OE/Y(—Zwi +wo) = 7 (Kx)|g @ (Ng(E)) 0 =1 _
i=1

Globally on X, Ng¢(E) = [E] s trivial on X \ E, hence
1k

- Z w; — 1
* wo “—

K)?:ﬂ (Kx)@)(N)A((E)) i=1 .

Since ¢1(X) = —c1(Kx) and ¢1(X) = —¢1 (K ¢), we finally obtain

~

k
(%) = 7 (X) = (- > wi - DB,
=1
O

Proposition 6.2. Let &, be the family of Kdhler metric of Theorem 4.2. Assume the singularity of type
TisCF / [ (Zwo,w) - If there is a constant scalar curvature metric &, in the Kéhler class [&¢], the scalar

curvature of W, can be represented by
S(@.) = S(wx) + A2 + R,

where |R.| < c£2k for some constant ¢ > 0 independent of € and \ is a topological constant depend-

ing on the Kéhler class [&.] and first Chern class of X.

Proof. In this sense,
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so that
4n7r/ 1 (X) U [we]
- < 4mn S e
S(@) = —HE - Joa@ U
VOI@E(X) /A [wg]n X
X

n n

We set C, = and C = as well, then by Remark 4.3,

since we must have thati—1 > k — 1 for the second integral to be non-zero. Indeed, the only vertical
contribution of [E]*[wx]"~* with respect to the fiber bundle 7 : E — Y is coming from [E]".

Hence

C. = = = +0(%%) = C+ 0(e?).

k
s 1
From the Lemma 6.1, ¢1(X) = 7*c1(X) — (— E w; — 1)[E] and by the Remark 4.3 again, [0;] =
wp “
=1

[wx] — €2[E], so
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1 k
S(we) = Ce /)?(W*Cl(X) - sz’ ~ DIED U ([wx] - 2[E])"

=C. [ (@)U

i=1
n—1 1 k ] n—1 i % s "
—C. ;(U)O;wl_l)( i )(—1) € /X[WX] U[E]

n—1
= S(wx) + C: Z (” - 1) (—1)%e¥ /E e (X) U [wx]" U B

n—1 k
+C: Z(J Z w; — 1) (n Z 1) (—1)%® /E[wx]”“ U [E]" 4+ O(e?F).

Since 7*c1(X) and 7*[wx]|"~*~! are basic with respect to the bundle map 7 : E — Y, in the first
sum, we must have that : — 1 > k — 1 for the integral to be non-zero, while in the second sum,

i > k — 1 for the integral to be non-zero. Hence we see that S(@.) = S(wx) + Ae?*~2 4+ R. with
n—1

k
1
constant coefficient A = C(— i—1
(wo ; Wi ) <k‘ -1

>(—1)k_1/[wX]”_kU[E]k_landREascIaimed.
E
O

Now we can find a better approximation of u by looking at solution of D*DI" = Aon X \ Y for A

defined in Proposition 6.2. To do so, we will consider the function

Amzlp@ww

where G(z, y) is the Green function of the Lichnerowicz operator D*D. The operator G is associated

to the Green function of D*D and by definition

D*DG =1d - P,
where P is the projection on constant functions, i.e, P(f) = / /) . In terms of Schwartz
kernels,
* 1
D;D.G(z,y) =6(z —y) — Vol(X)' onX.
In the distributional sense, we thus have that
Vol(Y
D:D,A =y — ol(Y) onX,

Vol(X)’
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where Jy is the current of integration along Y. Let us consider the function

[(z) = —Y/ii)y(; AA(z).

To determine the asymptotic behaviour of A(z) and I'(z) near Y, notice that in local coordinates

nearY,
G(z,y) = F Hoa((D*D) ) (z — y) + O(|x — y[>>")
e (@ = y) + O(le — y[P*)

1 A
— e [ g + O —

C _
= [z — g7t + O(lz — y>7?M),

where ¢ is some positive constant and F~! denotes the inverse Fourier transform on R”. Let
be the projection of x on Y and d = |z — x| be the distance to Y in local coordinates. Then

|z — y|> = d® + |y — x4|%, so setting ys = y — x5, we get that

/ dy1 ... dy2n—2k :/ dys, - - - dYsy, o
y |z —yrt y (d?+ |ys?)n2

In polar coordinates in a ball of radius 1, this yields

2n 2k—1

/ dy51 i dySQn 2k / / 5T drdw
B1(0) (d? + [ys[?)n—2 §2n—2k—1 (d? 4 r2)n—2
2n 2k—1

—VlSzn 2k— 1/ d
ol( ) y (@122

ot k 1 2n—2k—1
= / dr
ICin—k) Jy (d?+r2)n—2

By substituting r = Rd, we get

1 2n—2k—1 1 2n—2k—1 1 2n—2k—1
Rd d 1 R
/ 2 A" = /d (2 ) gt = g /d sz 4l

o (d®+r2)n o (d?>+ (Rd)?)™ d o (1+ R?)n

L pon-2k-1

Note that the intregral s
& /0 (1+ R2)n—2
2(n—2)—(2n—2k—1) = 2k—3 > 1since k > 2. Moreover the integral can be computed explicitly

d R converges when d — 0 by the Riemann criterion because

+o00 R2n—2k—1 z
| mat= [t 0o 000, posing 1 = tans
0

3
= / (sin? 0)" %=1 (cos? 6)* 2 sin 6 cos Hd
0

L ki, k3, L —E)T(k—2)
_ /Ot (1= 0t = S

2
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27" F | T'(n—k)[(k—2) 1)2k74+0((%)2’“*5) = c’(1)2k74+0((1)2k75)7 (6.2)

A~ =) Ty G d d

for ¢’ another constant.

2k
Recalling that . = £2k+1, we can use the function I' to define a new metric

~ ,\ =, op_ d
Be i= Qe + V—=190(e* 245 (—)T),

Te
where 7, : R — R is a cutoff function such that vo(¢) = 0 for ¢ < 1 and v2(t) = 1 for t > 2. On the

d 1 1
support of fyg(r—), p < Cd for some constant and d > r, so pQ(g)Qk_4 < CQ(E)%‘6 < 252k,

3

Hence if we denote Q = {z € X : . < d(z)}, then using (6.2),

d
2k—2 2k—2
— o <
lle ’72(r€)r||pzcl§;(x) > HFszolE’g(Q)
p p
< o2k—2,6-2k
= €
5(2k)—2
< ek

, 4Ck)+2k-2 ' 4
<cde AT < e since k> 2,

- ~ - d . . ~
which tends to zero as ¢ — 0. S0 @. = @. + /—190(e?*~245(—)I") is a small perturbation of @.
T

3
and so Lg_ is a small perturbation of Lg_ for sufficiently small e. Now we would like to solve the

non-linear equation
S(we + V—100u) = R, (6.3)

with v and R of the form

d
U = €2k*2’yg(—)F + v,

Te

R = S(wx) + A2+ R,
So the goal is to find v. By replacing u in the left side of (6.3), we get from (5.1) page 90 that

S(@. + V—100u) = S(@.) + Lo, (u) + Q. (V?u)
= 5(20) + H L (a()T) + Lo, (0) + @z (V).

so solving (6.3) means to solve

Lo, (6) = Re = S(wx) = S@:) + 227 — 2L (3o(D)T) — Qs (V7).

£
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Now we define F. : p?C2%(X)o x R — p*~4C2*(X) x R by
»” o~
d
Fe(v, R) i= S(wx) = 8(@:) + 272 = e 2L (72(-)T) = Qa (V2u).

£

Remark 6.3. Note that the function F. does not depends on R, but to use Banach fixed point theorem,

we consider F; as a function of v and R.

Lemma 6.4. Suppose & > 0. Then there exists constants cy, ¢ > 0 such that if H(pHpa chogy < Cos
9ge
2

P

then

1Qa. (V20 -s00 (%) < ellell st ()19l 2ot 2

2 2 2

P P p

Proof. From Lemma 3.4 we have the following decomposition with finite sums:

Qs.(V20) = Byaa(Vip, V) Cyaa(V30)
q

+) " By3a(Vie, V29)Cqs3(Ve)
q

+ |2| Z Bq,372(v3% V290)Cq73,2(v2g0)
q

+ Z Bq72,2(v2(707 VZSO)C(LQ,Q(VQQO),
q

where B's are bilinear forms and C"s are smooth functions. Each term of the above decomposition

is controlled by the H<p||pécg(;() ||goHp204§(;(), for example

p? p?

||Bq,3,3(V3907 VB‘P) ”,;674(;(;7;()?) < ||p4753q73,3(V390, VSSO) HC%Q()?)
<5 ge

P p2

-4
< ”Bq,3,3Hop”P3 V3<p||0%a()?)HpV‘gcpHC%,a()?)

2 2

P P

= B VS _ NewEs VS _ ,o
IBraallopl Vel s-scom sy V6000 5

2 2

p p

S CH(‘OHP‘SC%;:(X)HSO”PQCZ;:()?)

2 2

P p

S CH@Hp&c‘gj(}?)HQDHPQC%,:()?),
% %

using the fact that the embedding p?Cip* — pé/CZ;/’a/ is compact for k' + o' < k+ aandd’ < ¢

and aISO that, ‘|vlpr(gC§,a S CHpr5+iC§+i,a- D
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Proposition 6.5. For 4 — 2k < § < 0 very close to 4 — 2k, there is a constant c independent of ¢ such
that

-4
HFE(Oyo)Hp574C%:()?) S CT? .

o2

Proof. We consider four possible regions:

5 d
(@) OnQy = {zx € X : d(x) < €} we have 72(7) = 0 so we get

£

FL(0,0) = S(ewx) — S(@) + A2 — 22 (35(yr) - Qo (VA 92(2)T)

Te €

= S(wx) — S(@.) + Ae?*2,
(6.4)

Furthermore, in this region,

p= Ve £ d2 < /e +e2 = /2.
By Lemma 3.5, the scalar curvature of the conformally changed metric w’ = e2/w is equal to
S(w') = e (S(w) +2(2n — DALS — (2n —1)(2n — 2|V f]I2).

Using this formula for w’ = £ 2@, and f = —Ine constant, we get S(¢72%.) = 25(&.) or
S(@:) = e729(e72%.). Since e~2@. tends to a scalar flat ALE metric in the fibers of 7 :

H, — Y, by Theorem 4.2 on page 87, S(&.) = e 20(¢) = O(c~1). Hence

| F2(0,0)l]s-sgozy = 1S(wx) = S@2) + A2 s_scom 5
p 7 (X) p 7 (X)

2 2

P

= ||P476(S(WX) - S(We) + AE%iZ)H@%“(}?)

2

P

P

< (ﬁ€)476(”S(WX)”C%a()2) + HS(GE)HC%Q(?{) + ")‘521672”0%‘1()?))

P2 P2 132
_5 - —2~ k—
< (VB (I8l g )+ €258 oz, + D™ lcnn )
< (V2e)*0(e1 + e 2epe + %7 2e)

< ¢(V2e)37°,

where ¢y, ¢g, ¢3 and ¢ are constants independent of ¢.
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> d
(b) ONQy ={z € X : e <d(x) < r.} we have vg(r—) =0,

€

e<p=Ve+d< Vel +r2 < \/r2 472 =2r,

and (6.4) still holds. The terms S(wx ) and Ae?*~2 can be estimated as in (a). By (4.4) on page

88 and the fact that A is scalar flat, we have that

S(=222) = O(=(D) 2",

This means that

6—4
~ p B

2 2

P p

for some constant C.

(c) On Q3 = {z € X : . < d(x) < 2r.} we have

FL(0,0) = S(ewx) - 8(@0) + A2 = 2L (o)D) - Qo (V20 )
= §(ux) + A2 = (S(@0) + g, (2(D)T) + Q. (VA1)

= S(wy) + A2 — S(@,).

S(WX)Hpé—ALCOAﬂ()’{) < er=9 and ||)\52k—2||p6740%()?) < 39, s0
15 Ye

As in the previous case,

p? p?
we just need to control ||.S(w;) ||p5_4cg,a(93). To check this, let us write w, as
9ge

2

We = Whue + V—100H,

where wiye = v/—109(]z|? 4 |w|?) and

d ~
H:(bl(z’w)+A€2k72|2’472k(1+¢2(Z7w))472k_}_821672,}/2(17)1—1+O(€2k71|2|372k)

€
:A€2k72|z|472k+H’

where ¢ and ¢, are smooth functions and A is a constant. Note that

V2H = O(r. 4 8720272 4 2022k — O(e272p272F) 5 ase — 0. (6.5)
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Now

||S(‘:’€)||p6—4c%:(93) < [|S(@e) — Loge (H)||p5—4c%:(93) + HLwEuc (H)|’p6—4c%;a(93)
o2 o2 o2
= ||QwEuc (V2H)||p6—4c%:(g3) + ”A2EucH”p6—4C%:(Qs)»
0?2 o2
and with the same procedure in the Proposition 13 in [53], we will show that each term is

O(r§_5). From (6.5) on page 104 we get

1Qusue (VPH)I| a0 ) = | Y Boa2(VH, V2H)Cya2(VH)
02 q
+3 " Byss(VPH, V3 H)Cy35(V2H) lpp-scoe @)
a ]

-
< Clr? HV4HHC%Q(QB) ||v2H||C$(Q2)

2 2

p p

-0
ez IV H| oo o, IV H o
e 9e
p? p2
< 617';176 (€2k72r;2k> (5216727,372]6)

—|—627”::175 (€2k727,5}72k) (8216727,;72]6)

< C€4k_47‘g_4k_6 < CT'?_(;.

For the L, . (H) note that Lg,. = —AZ _and A2 (|Z]*72k) =0, s0

2 _ 2 2k—2 4—2k 7
||AEucHHp5—4C%:‘(QS) - HAEuC(‘AE |Z| + H) ”p5—4c%:(93)
P2 P

9 =
= H AEuCHHpé—ﬁlc%*: (Q3)

P2

< C'rg_‘s(l + 5%_27“;_%)

~ d
(d) OnQy ={z € X : 2r. < d(z)} we have yo(—) =1, 0. = wx, Lg_(I') = Aand
T

Fa(ov O) = S(WX) — S(WX) + )\€2k72 — 82k72L@E (F) — Qae (V2 (52k72r))

= —Qa, (29D),

By the approximation of I' and the assumption 4 — 2k < § < 0 we get ||F|\péc4A,a(Q4) <
9e
P2
p~0diF < (v/2)70rd72%+0 because p < V/2ec and d > 2r.. Similarly HF”p2c‘ba(Q4) <
ge

)
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2—2k—1L
—27,;1—214; < 5—2T21—2k < %

p since p > €.
Therefore Lemma 6.4 implies that
k—
10, 0)ll5-sc0 ) = | = Qo (* V2Dl - sgne
p2 p2

< C€4k_4||FHpsc‘£(Q4 1Tl P20 ()
, o=

< k=4 4—2k—5 4—%—2—%

6 4k— 6—7
§C€4k 4

[0, +00).

Q
Q3

Qy

Hy

Figure 6.1: Four different regions on X

Finally, to prove existence of a solution for the non-linear equation
S(@: +v—190u) = R

for € > 0 small enough, we show that there exist v, € p‘SC’%;a()A()O such that
2

F.(ve, R.) = L, (ve) — Re.

106

p
P.:=L71: po 400 X)) = C;Q(X)O x IR is as Proposition 5.8 on page 93. If we show that

p2 p2
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M is acontraction, then by the Banach fixed point theorem, there exist unique (v., R), such that
N:(ve, R) = (ve, R) or equivalently F. (v, R) = L.(ve, R). Since L.(v., R) = Lg_(v:) — R,
then F(v:) + R = L,,_(v:). Now we are going to show that A is a contraction on a suitable

domain. By Proposition 6.2, we must have that R = R,.

Lemma 6.6. There exist constants cg, g > 0 such that for ¢ < g,

1
Nz (v1, Ry) _Na(v2aR2)Hp5—4C%€a(}?) < §II’U1 — UQHP(SC%:()?),
2 E
for (v;, R) such that HvinzC%,:()?) < ¢p.
;Z
Proof. The proofis essentially the same asLemma 23in [56]. Since P, is bounded independently

of ¢, we just need to control

[ F=(v1, RBa) — Fe(ve, R2)Hpé—4c%»:()?) = | - Qa. (VQUI) + Qa. (v2u2>||pa—4c%:()?)-
2 o

By the mean value theorem there exist ¢ € [0, 1] such that for X = (1 — t)u; + tus,
S(@e + V—100u1) — S(@: + V—100us) = L+ y=100x (U1 — u2).
Hence, this means that
Q. (V?u1) = Qa. (Vu2) = (Lg 1 /=ropx — La.)(u1 — u2).
The linear operator Lg_ is bounded independently of ¢, so

(L. v100x = La) (w1 — w2l poscoo(gy < Clllunll poso(gy + luall posag)liur — vzl sota )
P2 p2 P2 p2
<2JCuy —u o
>~ || 1 2Hp604§7€ (X)

o2

/
< 2dC|lvy — 'UQHP(;C%;%&(X),
p

where the constant ¢’ can be chosen as small as we want, provided ¢y and ¢ are sufficiently

d
small, since u; = £2#7245(—)I" + v; and when ¢ — 0

Te
ok—2_ 0 € \2k—2
”5 VQ(E)FHPQC’;:(X) < C(’IZ) = 0(1)
el
By Properties 5.8, the result follows. O

Now we define open set

4o\ . —
U. = {v e péc% (K)o ol pese gy < 1+ 2c)Cr3°%},
P p%

where C'is the independent bound of P. and c is the constant in Properties 6.5.
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Proposition 6.7. Suppose § < 0 is sufficiently close to 4 — 2k. Then for ¢ > 0 sufficiently small,

the map N : U. — U_ is a contraction and therefore has a fixed point v..
Proof. Note that if (v, R) € U., then we have

o— o— -0
HvH/ﬂC%’:()?) <eg 2||’UHP§C%’,€&(X) < (1 + QC)CE 27‘? < ¢p,
2 2

for sufficiently small €, so Lemma 6.6 applies to U.. It remains to check that N (U.) C U.. To

do this, for any v € U,, Proposition 6.5 and Lemma 6.6 implies that:

N, Bl gt 2y, < INE0: B) = N0, 0) sy, + VOOl st ),

o2 o2 o2

IN

1
5”(% R)Hp5c‘§:(f()g + C||F= (0, 0)||p6—4c%:()?)0
a5 e

p p?

%((1 +26)Cr3 ) 4 Ce(rd ) < (14 20)Cr.

IN

The above proposition completes the proof of our main theorem.

Theorem 6.8. Suppose that X is a compact cscK orbifold with no holomorphic vector fields,
and such that the set of singular points Y of X is of complex co-dimension > 2. Suppose, fur-
thermore, that any point p € Y has a local orbifold uniformization chart of the form Crk x
(CF /T (—wo,w)) WhereL'(_y, .,y is afinite linear group of type Z. Then on the (—wyo, w)-weighted
blow-up X of X along Y, the class [wx] —£2[E] admits a cscK metric for £ > 0 sufficiently small,

where E = n~1(Y') is the exceptional divisor of the partial resolution T : X = X.

Unless the singularity of type Z is of the form (—r,1,...,1) for some r € N, X also has a
singularity of type Z along a suborbifold of complex codimension k. However, as described on

page 47, since the singularity is of type Z, we can find a sequence of weighted blow-ups
)A(l—>)A(l_1—>...—>)A(1—>X7

with )?1 = X and )?l smooth. Thanks to Proposition 1.148, we can apply Theorem 6.8 iteratively

to each )AQ to obtain on )/fl a cscK metric, which establishes Corollary C in the introduction.
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