
UNIVERSITÉ DU QUÉBEC À MONTRÉAL

MÉTRIQUES KÄHLÉRIENNES À COURBURE SCALAIRE CONSTANTE SUR DES RÉSOLUTION D’ORBIVARIÉTÉS

DE PROFONDEUR 1

THÈSE

PRÉSENTÉE

COMME EXIGENCE PARTIELLE

DU DOCTORAT EN MATHÉMATIQUES

PAR

MEHRDAD NAJAFPOUR GHAZVINI FARDSHAD

NOVEMBRE 2024



UNIVERSITÉ DU QUÉBEC À MONTRÉAL

CONSTANT SCALAR CURVATURE KÄHLER METRICS ON RESOLUTIONS OF AN ORBIFOLD SINGULARITY OF

DEPTH 1

THESIS

PRESENTED

AS PARTIAL REQUIREMENT

TO THE DOCTORATE IN MATHEMATICS

BY

MEHRDAD NAJAFPOUR GHAZVINI FARDSHAD

NOVEMBER 2024



 
 
 
 

UNIVERSITÉ DU QUÉBEC À MONTRÉAL 
Service des bibliothèques 

 
 
 
 
 
 
 
 
 
 

Avertissement 
 
 
 
 
La diffusion de cette thèse se fait dans le respect des droits de son auteur, qui a signé le 
formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles 
supérieurs (SDU-522 – Rév.12-2023).  Cette autorisation stipule que «conformément à 
l’article 11 du Règlement no 8 des études de cycles supérieurs, [l’auteur] concède à 
l’Université du Québec à Montréal une licence non exclusive d’utilisation et de 
publication de la totalité ou d’une partie importante de [son] travail de recherche pour 
des fins pédagogiques et non commerciales.  Plus précisément, [l’auteur] autorise 
l’Université du Québec à Montréal à reproduire, diffuser, prêter, distribuer ou vendre des 
copies de [son] travail de recherche à des fins non commerciales sur quelque support 
que ce soit, y compris l’Internet.  Cette licence et cette autorisation n’entraînent pas une 
renonciation de [la] part [de l’auteur] à [ses] droits moraux ni à [ses] droits de propriété 
intellectuelle.  Sauf entente contraire, [l’auteur] conserve la liberté de diffuser et de 
commercialiser ou non ce travail dont [il] possède un exemplaire.» 
 
 
 
 
 



iv

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to Professors Vestislav Apostolov and Frédéric Rochon, my

thesis directors, who supervised this work with great vision and rigor. They led my thesis with patience

and dedicated a lot of time to my work, always being very available. Their patience, generosity with their

time, and work ethic have deeply impacted me. I sincerely thank them for their directive advice, which

was provided to me throughout my thesis and allowed me to acquire valuable skills and know-how. I am

extremely grateful for all they have taught me.

I am also grateful to my Ph.D. examiners for accepting the invitation to take part in this process.

I would also like to thank the members of the Department of Mathematics and Statistics at the University

of Quebec in Montreal and McGill University, especially Steven Lu, Julien Keller, Olivier Collin, Steven Boyer,

and Jacques Hurtubise, for the high quality of the courses I took with them, as well as for their support and

advice.

Finally, I am deeply indebted to my parents, Mojgan and Mohammad, and my brother, Mahan. Without

them, there would be no solid foundation for me to have come this far. I dedicate this thesis to them, as

they have always been there to encourage me throughout these years of thesis writing.

Montréal, Québec Mehrdad Najafpour



v

CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

0.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

0.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

CHAPTER 1 KÄHLER GEOMETRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Complex Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Calculus on Complex Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Vector Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Hermitian and Kähler Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Connections and Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.6 Chern Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.7 Orbifolds in Complex Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.8 Blow-up in Complex Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.9 Weighted Projective Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.10 Singularities of the Weighted Projective Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.11 Singularities of Type I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

CHAPTER 2 MANIFOLDS WITH CORNERS AND LIE STRUCTURES AT INFINITY . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.1 Manifolds with Corners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.1.1 Blow-up in Melrose Sense. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2 Lie Structures at Infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

CHAPTER 3 CONSTANT SCALAR CURVATURE KÄHLER METRICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1 Scalar Curvature Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



3.2 Extremal Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Constant Scalar Curvature Kähler Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4 An example of orbifold with singularities of type I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

CHAPTER 4 GLUING TECHNIQUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

CHAPTER 5 LINEAR ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

CHAPTER 6 NONLINEAR ANALYSIS AND THE MAIN THEOREM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

vi



LIST OF FIGURES

Figure 1.1 Kummer surface (Photo Credit: Claudio Rocchini) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 1.2 Blowing-up origin in C2 (Photo Credit: Yankı Lekili) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 2.1 The teardrop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 2.2 Blowing-up the origin in R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 2.3 Blowing-up the origin in R× [0,∞)ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 2.4 A manifold with a cylindrical end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 2.5 A manifold with a conical end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 4.1 Orbifold with corner X × [0,∞)ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 4.2 Blowing-up the orbifold X × [0,∞)ε along Y × {0} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 4.3 Three different regions on X̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 6.1 Four different regions on X̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

vii



RÉSUMÉ

Dans cette thèse, nous étudions l’existence de nouvelles métriques de Kähler à courbure scalaire constante

(cscK pour faire court) sur une résolution d’une singularité orbifold. Nous considérons (X,ωX), un orb-

ifold complexe compact avec un groupe discret d’automorphismes (en particulier, il n’y a pas de champs

de vecteurs holomorphes non triviaux sur X). On suppose que X a des singularités de type I le long d’un

sous-ensemble Y ayant une codimension k supérieure à 2. Le sous-ensemble Y lui-même est une variété

complexe lisse, mais l’inclusion Y ↪−→ X dans X est singulière, c’est-à-dire que le fibré normal de Y dans

X a des fibres de la forme Ck /Γ avec Γ un sous-groupe discret fini de U(k) de type I de forme (−w0, w).

Nous utilisons une résolution X̂ deX obtenue en éclatant Y dansX en utilisant l’espace projectif pondéré

non-compact introduit par Apostolov et Rollin, et une technique de recollement inspirée par les travaux

de Seyyedali et Székelyhidi et de Conlon, Degeratu et Rochon pour démontrer qu’il existe une famille de

métriques ω̂ε sur X̂ proches d’être cscK pour ε suffisamment petit. Nous établissons alors l’existence d’une

fonction potentielle lisse φε sur X̂ telle que ω̃ε = ω̂ε +
√
−1∂∂̄φε soit cscK sur X̂ en résolvant une équa-

tion aux dérivées partielles non-linéaire. En tant qu’application du théorème principal, nous fournissons un

nouvel exemple d’un espace projectif pondéré qui admet une métrique cscK sur une résolution de celui-ci.

La résolution X̂ → X est typiquement encore singulière, mais par définition des singularités de type I, on

peut toujours trouver une suite

X̂l → X̂l−1 → . . .→ X̂1 → X

de telles résolutions avec X̂1 = X̂ et X̂l lisse, et notre résultat principal s’applique successivement à cha-

cune de ces résolutions pour montrer que la résolution lisse X̂l admet une métrique cscK.

Mots-clés: Métriques de Kähler à courbure scalaire constante, Orbifold, Résolution, Éclatement, Structures

de Lie à l’infini, Espace projectif pondéré, Singularités de type I.

--



ABSTRACT

In this thesis, we study the existence of new constant scalar curvature Kähler (cscK for short) metrics on

a resolution of an orbifold singularity. We consider (X,ωX), a compact complex orbifold with a discrete

group of automorphisms (in particular, there are no non-trivial holomorphic vector fields on X). We as-

sume that X has singularities of type I along a subset Y with codimension k greater than 2. The subset

Y itself is a smooth complex manifold, but the inclusion Y ↪−→ X in X is singular, i.e., the normal bundle

ofY inX has fibers of the formCk /Γ withΓ a discrete finite subgroup ofU(k) of type I of form (−w0, w) .

We use a resolution X̂ of X , obtained by blowing-up Y in X using the non-compact weighted projective

space introduced by Apostolov and Rollin, and a gluing technique inspired by the work of Seyyedali and

Székelyhidi and of Conlon, Degeratu, and Rochon, to demonstrate that there is a family of metrics ω̂ε on X̂

close to being cscK for small enough ε. Ultimately, through nonlinear analysis, we establish the existence

of a smooth potential function φε on X̂ such that ω̃ε = ω̂ε +
√
−1∂∂̄φε is cscK on X̂ . As an application of

the main theorem, we provide a new example of a weighted projective space that admits a cscK metric on

a resolution of it.

The resolution X̂ → X is typically not singular, but by definition of a singularity of type I, we can always

find a sequence

X̂l → X̂l−1 → . . .→ X̂1 → X

of such resolutions with X̂1 = X̂ and X̂l smooth. Our main result can be applied successively to each

resolution to show that the smooth resolution X̂l admits a cscK metric.

Keywords: Constant scalar curvature Kähler metrics, Orbifold, Resolution, Blow-up, Lie structures at infinity,

Weighted projective space, Singularities of type I.



INTRODUCTION

0.1 Motivation

In the 1950s, Eugenio Calabi in [13, 12] proposed a natural notion of canonical Kähler metrics, namely ex-

tremal metrics. This involves fixing a Kähler class Ω and minimizing the Calabi functional:

Cal(ω) =
∫
M
S(ω)2ωn,

where S(ω) is the scalar curvature, within the space of Kähler metrics whose Kähler form ω belongs to

Ω. Constant scalar curvature Kähler (cscK) metrics are examples of extremal metrics, and Kähler–Einstein

metrics are examples of cscK metrics.

The existence of Kähler–Einstein metrics for compact Kähler manifolds depends on the sign of the first Chern

class of the Kähler manifold. When the first Chern class is negative, there is always a Kähler–Einstein metric,

as independently proved by Thierry Aubin [8] and Shing-Tung Yau [64, 63]. When the first Chern class is zero,

there is always a Kähler–Einstein metric, as was shown by Shing-Tung Yau in [64, 63]. However, when the

first Chern class is positive (also called Fano), the existence of Kähler–Einstein metric remained a well-known

open problem for many years. In 2012, Xiuxiong Chen, Simon Donaldson, and Song Sun [18, 19, 20], as well

as independently Gang Tian [59], proved that for the Fano case, an algebraic-geometric criterion called K-

stability implies the existence of a Kähler–Einstein metric. Additionally, the converse was proved by Robert

Berman [9].

Sixty years after it was proposed, Calabi’s program continues to represent the forefront of most active cur-

rent research in complex geometry, yielding spectacular results. Yau-Tian-Donaldson [26] conjectured more

generally that there is an equivalence between the existence of a cscK metric on a polarized projective

manifold and the K-polystability of that polarized manifold. Beyond the Kähler–Einstein Fano case, the con-

jecture was established for toric Kähler surfaces by Donaldson [26] and for general toric varieties by Chen

Cheng. This conjecture was recently proven in 2021 by Chen-Cheng [16, 17, 15] in the toric case. In fact, it

provides a necessary and sufficient condition, expressed in terms of the corresponding Delzant polytope,

for a compact smooth toric manifold to admit a compatible Riemannian metric of constant scalar curvature.

In this thesis, we focus on constant scalar curvature Kähler (cscK) metrics. In 2006, Arezzo and Pacard

[5] proved that if a compact manifold or compact orbifold M with isolated singularities and no non-trivial



holomorphic vector fields vanishing somewhere, admits a cscK metric, then the blow-up of M at finitely

many points also adimt a cscK metric. In 2009 [6], they generalized the statement to situations where

there are non-trivial holomorphic vector fields with zeros. In 2011, Arezzo, Pacard, and Singer [7] proved

the existence of an extremal metric on the blow-ups of a manifold at certain points, subject to assumptions

on the position of the points, such as balancing and genericity conditions. Recently, in 2020, Seyyedali and

Székelyhidi [53] extended the results of Arezzo and Pacard to obtain a cscK metric on blow-ups of a manifold

along a submanifold. When the extremal metric is cscK and the automorphisms group is trivial, their result

can be formulated as follows.

Theorem A ([53]). Let (X,ωX) be a compact cscK complex manifold with discrete group of automorphisms

(in particular, there are no non-trivial holomorphic vector fields on X) and Y ⊂ X be a submanifold of

codimension k greater than 2. Then BlXY admits a cscK metric in the class [ωX ]− ε2[E] for sufficiently small

ε > 0, where E is the exceptional divisor of the blow-up.

0.2 Main Results

In this thesis, we generalize Arezzo-Pacard-Singer and Seyyedali-Székelyhidi results by constructing cscK

metrics on the resolution of a certain orbifolds as follows.

Theorem B (Theorem 6.8). Suppose that (X,ωX) is a compact cscK orbifold with no holomorphic vector

fields, and such that the set of singular pointsY ofX is of complex co-dimension> 2. Suppose, furthermore,

that any point p ∈ Y has a local orbifold uniformization chart of the form Cn−k × (Ck /Γ) where Γ is a

finite linear group of type I of the form (−w0, w). If π : X̂ → X is the partial resolution of X obtained by

a (−w0, w)-weighted blow-up of X along Y , then the class [ωX ] − ε2[E] admits a cscK metric for ε > 0

sufficiently small, where E = π−1(Y ) is the exceptional divisor of the resolution π : X̂ → X .

Unless the singularity is of type I and of the form (−r, 1, . . . , 1), the resolution X̂ is not smooth. However,

there is a possibly non-unique sequence of resolutions

X̂l → X̂l−1 → . . .→ X̂1 → X

obtained by a sequence of weighted blow-ups with X̂l. For such a sequence of resolutions, we show that

Theorem B can be applied iteratively to each X̂i, yielding the following result.

Corollary C. For (X,ωX) as in Theorem B, let X̂l → X̂l−1 → . . .→ X̂1 → X be a sequence of resolutions



obtained through a sequence of weighted blow-ups with X̂l smooth. Then X̂l admits a cscK metric in a

suitable Kähler class.

Our strategy to prove this result consists in adapting the approach of [53] to the singular setting, using a

coordinate-free description involving manifolds with corners.

0.3 Structure of the thesis

In chapter 1, we describe the basics notions in Kähler geometry. Additionally, we revisit concepts such as

Kähler orbifolds, blow-up in complex geometry, weighted projective spaces and their singularities. We finish

chapter 1 with the definition of singularities of type I and resolutions of type I, introduced by Apostolov

and Rollin about ten years ago. If we require that Y has codimension at least 2, then the Lie algebra of

holomorphic vector fields on the resolution X̂ is identified as a subalgebra of that on X , tangent to Y

(Proposition 1.148). This first property will later be used to construct an example (Theorem 3.26) to which

the theorem applies.

In chapter 2, we describe the analytical tools. We begin by defining manifolds with corners and blow-ups in

the Melrose sense. We then define the Lie structure at infinity and Riemannian metrics from them. Finally

we introduce asymptotically Euclidean (AE), asymptotically locally Euclidean (ALE), asymptotically conical

(AC), scattering (SC), quasi-asymptotically locally Euclidean (QALE), and quasi-asymptotically conical (QAC)

metrics within a unified framework.

In chapter 3, we focus on constant scalar curvature Kähler (cscK) metrics. An important example is the

notion of constant scalar curvature Kähler metrics is the Kähler-Einstein (KE) metric, which has been the

primary focus of Kähler geometry since the inception of the celebrated Calabi conjecture on Kähler-Einstein

metrics. We begin this chapter by defining extremal metrics. Then, we briefly study Kähler-Einstein metrics.

Following that, we discuss classic results by Matsushima-Lichnerowicz and Arezzo-Pacard for cscK metrics.

We finish this chapter by constructing new examples of cscK orbifolds with singularities of type I and having

discete automorphism group (Theorem 3.26).

In chapter 4, we construct a family of Kähler metrics ω̂ε by gluing tehcnique utilizing the Serre-Swan theo-

rem. Starting from the orbifold X , we consider a cornered orbifold X obtained by blowing-up X × [0,∞)

along Y × {0}. The hypersurface H1 in X resulting from the blow-up of Y × {0} can be seen as the ra-



dial compactification of the normal bundle NX(Y ) of Y . During the transition to the resolution X̂ , H1

becomes Ĥ1 and there is a bundle map ϕ̂1 : Ĥ1 → Ŷ that lifts a map ϕ1 : NX(Y ) → Y . Theorem 4.2

ensures that there exists a smooth closed (1, 1)-form ωφ̂1
on Ĥ1 whose restriction to the fibers of ϕ̂1 is a

Kähler form of an asymptotically locally Euclidean (ALE) metric, derived from the combined works of Burns,

Eguchi-Hanson, LeBrun, Pedersen-Poon, Simanca and Apostolov-Rollin. There is a rather fine understand-

ing of the global behavior of ωφ̂1
. By examining a level set ofX associated with the deformation parameter

(denoted by ε) in the real blow-up of Melrose, we construct a smooth Kähler metric ω̂ε such that on Ĥ1,

ω̂ε

ε2
∣∣
Ĥ1

= ωφ̂1
+
ϕ∗
1ωΣ1

ε2
,

while for the Melrose blow-up ofX along Y , denoted byH2, which is a manifold with corners, we have on

Ĥ2,

ω̂ε

∣∣
Ĥ2

= ωX

∣∣
H2
,

the cscK metric on the orbifoldX . The next goal is to perturb the metric ωε to obtain a true cscK metric on

the resolution X̂ .

In Chapter 5, we focus on linear analysis through the linearization of constant scalar curvature, which re-

quires considering the Lichnerowicz operator on weighted Hölder spaces using techniques introduced by

Mazzeo in his study of conical metrics. The triviality of the kernel of the Lichnerowicz operator is due to the

assumption on holomorphic vector fields on X (Lemma 5.7). Based on techniques developed by Seyyedali

and Székelyhidi, we proved that the twisted Lichnerowicz operator L̃ε is indeed boundedly invertible for

sufficiently small ε (Proposition 5.8).

In Chapter 6, we use nonlinear analysis to find a potentialu for obtaining a cscK metric ω̃ε = ω̂ε+
√
−1 ∂∂̄φε

on the resolution. We begin by expressing the first Chern class of the resolution X̂ in terms of that of X

(Proposition 6.1). This allows for the explicit calculation of the topological constant in the cscK equation

on the resolution that we aim to solve (Proposition 6.2). The final step is to apply Banach’s fixed-point

theorem by carefully controlling the error term across four different regions, which depend on the distance

to Y , following a strategy implemented in Székelyhidi’s book [57].
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CHAPTER 1

KÄHLER GEOMETRY

In this chapter, we introduce the fundamental principles of Kähler geometry that constitute the framework

of this thesis. For further details, we refer to [60, 54] for the differential Geometry, for the topology [48, 44]

and [31, 34, 62, 38, 57] for the complex geometry. Basic knowledge of smooth manifolds is assumed.

1.1 Complex Manifolds

Kähler geometry is an important field of mathematics at the intersection of Riemannian and complex ge-

ometry introduced by Erich Kähler in 1933. It provides a way to study the geometry of complex manifolds

that have a Riemannian structure compatible with the complex structure. Let us recall the definition of a

complex manifold.

Definition 1.1 (Complex manifold). A complex manifold of complex dimension n is a Hausdorff topological

space M together with the following data:

1. Atlas of Charts: For every point p in M , there exists an open neighborhood U of p and a homeomor-

phism φ : U → V where V is an open subset of Cn.

2. Transition Functions: The overlaps between charts are required to be holomorphic functions. More

precisely, if φ1 : U1 → V1 and φ2 : U2 → V2 are two charts with non-empty intersection U1 ∩ U2 ,

then the map φ2 ◦ φ−1
1 : φ1(U1 ∩ U2) → φ2(U1 ∩ U2) is holomorphic.

These transition functions ensure that the complex structure of the manifold is well-behaved and consistent

across different charts, inducing a global complex structures on it.

The concept of a complex manifold generalizes the notion of complex curves and surfaces to higher dimen-

sions. Complex manifolds provide a framework for studying complex geometry, and they have applications

in various mathematical fields, including algebraic geometry, differential geometry and topology.
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Example 1.2. Here are a few examples of complex manifolds:

1. Complex Euclidean Space: Cn is the simplest example of a complex manifold. Each point in Cn has a

natural complex coordinate representation, and the entire space is covered by a single chart.

2. Complex Projective Space: CPn is the space of complex lines through the origin in Cn+1. It can be de-

fined as a quotient space ofCn+1\{0}by the rescaling action, i.e., (Z0, Z1, . . . , Zn) ∼ (Z ′
0, Z

′
1, . . . , Z

′
n)

if and only if there exists λ ∈ C such that

(Z0, Z1, . . . , Zn) = λ(Z ′
0, Z

′
1, . . . , Z

′
n).

We denote by [Z0 : . . . : Zn] the point of CPn corresponding to (Z0, Z1, . . . , Zn) ∈ Cn+1 \ {0}. The

complex projective space CPn can be covered by:

Ui = {[Z0 : . . . : Zn] ∈ CPn : Zi 6= 0},

with coordinates Ui 3 [Z0 : . . . : Zn] 7→ (z1 =
Z0

Zi
, . . . ,

Ẑi

Zi
, . . . , zn =

Zn

Zi
) ∈ Cn. The complex pro-

jective space CPn is a compact n-dimensional complex manifold. May also regard CPn as a quotient

of the unit sphere S2n+1 in Cn+1 under the action of U(1):

CPn = S2n+1 /U(1),

since every line in Cn+1 intersects the unit sphere in a circle.

3. Complex Torus: The complex torus Cn /Λ , where Λ is a lattice of rank 2n in Cn, is an example of a

compact complex manifold. It is a higher-dimensional generalization of the notion of elliptic curve.

4. Riemann Surfaces: One-dimensional complex manifolds (complex curves) are called Riemann sur-

faces. The uniformization theorem says that every simply connected Riemann surface is conformally

equivalent to one of the following three Riemann surfaces: the open unit disk D, the complex plane

C, or the Riemann sphere Ĉ = CP1 = S2.

Remark 1.3. Not every even-dimensional manifold has a compatible complex structure. In fact, there are

certain topological restrictions that must be satisfied for a manifold to admit a complex structure. The

existence of a compatible complex structure is related to the concept of orientability. A complex structure

on a smooth manifold M of real dimension 2n implies that M is orientable. However, not all orientable

manifolds of even dimension admit a complex structure. The sphere Sn does not admit a complex structure
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when n 6= 2. However, the Riemann sphere S2 does admit a complex structure. In fact, every orientable

closed 2-manifold has a complex structure as a Riemann surface. As for S6, it is still unknown whether it

admits a complex structure.

Definition 1.4 (Holomorphic function). Let X be a complex manifold of complex dimension n. A function

f : X → C is called holomorphic, if for all local chart (U, φ) on X , f ◦ φ : U ⊂ Cn → C is holomorphic.

The space of holomorphic function from X to C is denoted by O(X).

Definition 1.5 (Meromorphic function). Let X be a complex manifold of complex dimension n, and Ω is

an open and dense subset of X . A function f : Ω → Ĉ is called meromorphic if, for any x0 ∈ Ω, there

exists an open neighborhood U and non-zero holomorphic functions g and h : U → C such that for every

x ∈ U ∩ Ω \ {x0},

f(x) =
g(x)

h(x)
.

Definition 1.6 (Almost complex structure). Let M be a smooth manifold of real dimension 2n. An almost

complex structure onM is a smooth bundle endomorphism J : TM → TM such that at each point p ∈M ,

J2
p = − IdTpM , where Id is the identity operator.

Proposition 1.7. Any complex manifold M admits a natural almost complex structure.

On a complex manifold M , the holomorphic charts induce a natural almost complex structure on TM via

multiplication by
√
−1. We say in this case that the almost complex structure is integrable (or that is a

complex structure). Not all almost complex structures are integrable. The Newlander-Nirenberg theorem

provides a necessary and sufficient condition for determining whether an almost complex structure J is

integrable in terms of its Nijenhuis tensor NJ , which is defined by

NJ(V,W ) = [V,W ] + J([JV,W ] + [V, JW ])− [JV, JW ],

for V,W vector fields on M .

Theorem 1.8 (Newlander-Nirenberg). Let M be a smooth manifold and J an almost complex structure on

M . Then J is integrable if and only if the Nijenhuis tensor associated with J vanishes.

Definition 1.9 (Holomorphic vector field). On any almost complex manifold (M,J), a (real) vector field X

is said to be (real) holomorphic if

LXJ = 0,

where LX denotes the Lie derivative along X .
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Definition 1.10 (Holomorphic map). Let (M,JM ), (N, JN ) be two complex manifolds and f : M → N

smooth map. We say that f is a holomorphic map if JN ◦ df = df ◦ JM . Furthermore, f is called biholo-

morphic, if f is a diffeomorphism and its inverse is also a holomorphic map.

Definition 1.11 (Automorphism group). Let M be a complex manifold. An automorphism of (M,J) is a

biholomorphic map φ :M →M . The automorphisms of M form a group Aut(M,J) or simply Aut(M) if

J is understood, called the automorphism group ofM . We denote by Aut0(M,J) its connected component

to the identity.

Example 1.12. The automorphism group of the complex projective space CPn is the projective linear group

PGL(n+ 1,C) consisting of all invertible (n+ 1)× (n+ 1) complex matrices up to a scalar factor, i.e,

Aut(CPn) = PGL(n+ 1,C) := GL(n+ 1,C) /C∗.

Remark 1.13. The automorphism group Aut(M) has a structure of complex Lie group. Its Lie Algebra iden-

tified with the real smooth vector fields on M whose flow preserves J , i.e, real holomorphic vector fields

and will be discussed in Example 1.37 on page 15.

Definition 1.14 (Complex submanifold). Let X be a complex manifold of dimension n, and Y ⊆ X . We

call Y a complex submanifold of X of codimension k, for 0 ≤ k ≤ n, if for each y ∈ Y there exist local

holomorphic coordinates (z1, . . . , zn) on X such that Y is locally of the form zn−k+1 = zn−k+2 = . . . =

zn = 0. i.e, there exist a chart (U, φ) on X with y ∈ φ(U) such that Y ∩ φ(U) = φ(Cn−k ∩ U), where

Cn−k = {(z1, . . . , zn−k, 0, . . . , 0)}. A complex submanifold Y of codimension k is naturally a complex

(n− k)-manifold.

Definition 1.15 (Analytic subvariety). Let X be a complex manifold of dimension n, and Y ⊆ X a closed

subset. We call Y an analytic subvariety of X , if for each x ∈ X there exists an open neighbourhood

x ∈ U ⊂ X such that Y ∩ U is the zero set of finitely many holomorphic functions f1, . . . , fk ∈ O(U).

An analytic subvariety is not necessarily smooth. A point x ∈ Y is a smooth or regular point of Y if the

functions f1, . . . , fk can be chosen such that φ(x) ∈ φ(U) is a regular point of the holomorphic map f :=

(f1 ◦φ−1, . . . , fk ◦φ−1) : φ(U) → Ck i.e, its Jacobian has rank k. Here, (U, φ) is a local chart aroundX . A

point x ∈ Y is singular if it is not regular. The set of regular points Yreg = Y \ Ysing is a non-empty complex

submanifold of X . An analytic subvariety in a neighbourhood of a regular point is a complex submanifold.

An analytic subvariety Y is irreducible if it cannot be written as the union Y = Y1 ∪ Y2 of two proper

analytic subvarieties Yi ⊂ Y . The dimension of an irreducible analytic subvariety Y ⊂ X is by definition

dim(Y ) = dim(Yreg).
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Example 1.16 (Hypersurface). Let X be a complex manifold. An analytic subvariety Y of X of codimension

1 is called an analytic hypersurface, i.e, for each y ∈ X there exist an open neighborhood U ⊂ X and non-

zero holomorphic function f : U → C such that U ∩ Y = {u ∈ U : f(u) = 0}. This analytic hypersurface

is smooth on U ∩Y if df does not vanishes on U ∩Y . Every analytic hypersurface is a locally finite union of

irreducible analytic hypersurfaces. If X is compact this union is finite.

Definition 1.17 (Projective Variety and Projective Complex Manifold). A projective variety is a subset X of

CPn which is defined by the vanishing of finitely many homogeneous polynomials P1, . . . Pk, i.e,

X = {[z0, z1, . . . , zn] ∈ CPn : P1(z0, z1, . . . , zn) = . . . = Pk(z0, z1, . . . , zn) = 0}.

Projective varieties are closed in CPn, and so compact. A projective variety is called a projective complex

manifold if it is also a complex submanifold ofCPn. A complex manifold is called algebraic if it is a projective

complex manifold

Theorem 1.18 (Chow). A compact complex submanifold of CPn is algebraic.

There are complex manifolds that are not algebraic; these are studied in Transcendental Geometry. A nat-

ural question arises: when a compact complex manifold is algebraic? According to the Kodaira Embedding

Theorem, if a compact complex manifold admits an ample line bundle, then it is algebraic. We will demon-

strate that any projective complex manifold is Kähler, so by using homogeneous polynomials, we can con-

struct many Kähler manifolds. Furthermore, under some conditions on cohomology, Kähler manifolds are

algebraic, allowing us to employ complex algebraic geometry to classify them.

1.2 Calculus on Complex Manifolds

LetM be a complex manifold of complex dimension n. ThenM is a smooth manifold of real dimension 2n.

Let {zi = xi +
√
−1yi}i=1,...,n be complex coordinates around p ∈ M such that {xi, yi}i=1,...,n are the

corresponding real coordinates. In these local coordinates the tangent space is given by

TpM = R
{
∂

∂xi
,
∂

∂yi

}
i=1,...,n

,

and the cotangent space is generated by the dual of this basis, i.e,

T ∗
pM = R

{
dxi, dyi

}
i=1,...,n

.
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Each TpM admits a natural almost complex structure J : TpM → TpM that maps
∂

∂xi
to

∂

∂yi
and

∂

∂yi

to − ∂

∂xi
. Its dual J∗ : T ∗

pM → T ∗
pM maps dxi to −dyi and dyi to dxi. The complexified tangent space

TC
p M = TpM ⊗R C is generated by

TC
p M = C

{
∂

∂xi
,
∂

∂yi

}
i=1,...,n

.

Also we can write

TC
p M = C

{
∂

∂zi
,
∂

∂z̄i

}
i=1,...,n

,

where
∂

∂zi
:=

1

2
(
∂

∂xi
−

√
−1

∂

∂yi
) and

∂

∂z̄i
:=

1

2
(
∂

∂xi
+

√
−1

∂

∂yi
). The condition J2

p = − id means

that Jp : TpM → TpM has the minimal polynomial λ2 + 1 = 0 for any p ∈ M , so it has two eigenvalues

±
√
−1. The eigenspace corresponding to the eigenvalue

√
−1 is called the holomorphic tangent space to

M at p and is denoted by T 1,0
p M . The eigenspace corresponding to the eigenvalue −

√
−1 is called the

antiholomorphic tangent space to M at p and is denoted by T 0,1
p M . In terms of { ∂

∂zi
,
∂

∂z̄i
},

T 1,0
p M = C

{
∂

∂zi

}
i=1,...,n

,

T 0,1
p M = C

{
∂

∂z̄i

}
i=1,...,n

.

So the complexified tangent bundle TCM = TM ⊗R C decomposes as a direct sum of complex vector

bundles

TCM = T 1,0M ⊕ T 0,1M,

such that T 1,0M =
⊔
p∈M

T 1,0
p M , T 0,1M =

⊔
p∈M

T 0,1
p M and the complex linear extension of J satisfies

J
∣∣
T 1,0M

=
√
−1 idT 1,0M , J

∣∣
T 0,1M

= −
√
−1 idT 0,1M .

Notice that T 1,0M is naturally isomorphic to TM as a real vector bundle. For this reason, we say that

T 1,0M is the complex tanget bundle of M and we will often denote T 1,0M simply by TM hoping that

will lead to no confusion. Similarly, the complexified cotangent bundle (TCM)∗ = T ∗M ⊗R C admits an

analogous decomposition

(TCM)∗ = (T 1,0M)∗ ⊕ (T 0,1M)∗,

locally trivialized by the dual basis {dzi = dxi +
√
−1dyi} and {dz̄i = dxi −

√
−1dyi} respectively. We

say that (T 1,0M)∗ is the complex cotanget bundle of M .
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Remark 1.19. Let (M,JM ), (N, JN ) be two almost complex manifolds and f :M → N be a smooth map.

This map induces R-linear map

f∗p : TpM → Tf(p)N,

and C-linear map

f∗p : T
C
p M → TC

f(p)N.

Note that under f∗p, the tangent space T 1,0
p M does not necessarily map to T 1,0

f(p)N . In fact f∗p(T 1,0
p M) ⊆

T 1,0
f(p)N if and only if f is a holomorphic map.

Definition 1.20 (Differential forms). Let M be complex manifold.

1. Real valued k-forms are smooth sections of the real vector bundle ∧kT ∗M . The space of real valued

k-forms on M is denoted by Ak(M,R).

2. Complex valued k-forms are differential forms of the form ω = α +
√
−1β where α and β are real

valued k-forms. The space of complex valued k-forms on M is denoted by Ak(M,C).

3. Complex valued (p, q)-forms are complex valued differential forms which in local complex coordinates

are of the form

ω =
∑

|I|=p,|J |=q

fIJdz
I ∧ dz̄J ,

where fIJ :M → C are smooth functions. The space of (p, q)-forms onM is denoted byAp,q(M,C).

Remark 1.21. The space of complex valued k-forms naturally decomposes in term of complex valued (p, q)-

forms, i.e,

Ak(M,C) =
⊕

p+q=k

Ap,q(M,C).

The real exterior derivative is d : Ak(M,R) → Ak+1(M,R) and complexifies as d : Ak(M,C) →

Ak+1(M,C) with d(α+
√
−1β) = dα+

√
−1dβ. On Ap,q(M,C), two differential operators

∂ : Ap,q(M,C) → Ap+1,q(M,C)

∂̄ : Ap,q(M,C) → Ap,q+1(M,C),
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are defined by

∂(
∑

|I|=p,|J |=q

fIJdz
I ∧ dz̄J) =

∑
|I|=p,|J |=q

n∑
l=1

∂fIJ
∂zl

dzl ∧ dzI ∧ dz̄J ,

∂̄(
∑

|I|=p,|J |=q

fIJdz
I ∧ dz̄J) =

∑
|I|=p,|J |=q

n∑
l=1

∂fIJ
∂z̄l

dz̄l ∧ dzI ∧ dz̄J .

The opertaor ∂̄ is called Dolbeault or Cauchy-Riemann operator. The exterior differential

d : Ap,q(M,C) → Ap+1,q(M,C)⊕Ap,q+1(M,C),

decomposes in terms of these operators d = ∂ + ∂̄. The operators

dc : Ap,q(M,C) → Ap+1,q(M,C)⊕Ap,q+1(M,C),

is defined by dc = −
√
−1(∂ − ∂̄). So we could write ∂ =

1

2
(d+

√
−1dc) and ∂̄ =

1

2
(d−

√
−1dc).

Proposition 1.22. Let M be a complex manifold, α ∈ Ap,q(M,C) and β ∈ Ar,s(M,C). Then the following

Leibniz rules hold:

∂(α ∧ β) = (∂α) ∧ β + (−1)p+qα ∧ (∂β),

∂̄(α ∧ β) = (∂̄α) ∧ β + (−1)p+qα ∧ (∂̄β),

d(α ∧ β) = (dα) ∧ β + (−1)p+qα ∧ (dβ).

Remark 1.23. Direct computations show that d2 = 0, ∂2 = 0, ∂̄2 = 0 and dc2 = 0. So we get ∂∂̄ = −∂̄∂,

ddc = −dcd and

ddc = 2
√
−1∂∂̄.1

Remark 1.24. One can check that dω̄ = dω̄ and dcω̄ = dcω̄, so d and dc are real operators, meaning that

they take real forms to real forms. Also ∂ω = ∂̄ω̄ and ∂̄ω = ∂ω̄, so ∂ and ∂̄ are complex conjugate.

Remark 1.25. For a smooth function f : M → C defined on a complex manifold M , the Cauchy-Riemann

equations are equivalent to ∂̄f = 0. Therefore, f is a holomorphic function if and only if ∂̄f = 0.

Definition 1.26 (Holomorphic p-forms). On a complex manifoldM , a (p, 0)-form ω is called holomorphic, if

∂̄ω = 0. The space of holomorphic (p, 0)-forms is denoted by Ωp,0(M).

1 Some references use dc = −
√
−1

2
(∂ − ∂̄) and so ddc =

√
−1∂∂̄.
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The fact thatd2 = 0 implies that Im(d : Ak−1(M,C) → Ak(M,C)) ⊆ ker(d : Ak(M,C) → Ak+1(M,C)),

so we can define the complexified de Rham cohomology

Hk
dR(M,C) =

ker(d : Ak(M,C) → Ak+1(M,C))
Im(d : Ak−1(M,C) → Ak(M,C))

.

Note that Hk
dR(M,C) = Hk

dR(M,R) ⊗R C where Hk
dR(M,R) is the real de Rham cohomology. So the

complex version of de Rham cohomology does not carry more topological information than the real one. For

a compact manifoldM , the de Rham cohomology groupsHk
dR(M,C) are finite-dimensional vector spaces,

and their dimensions are called Betti numbers and denoted by bk(M). We recall the Poincaré lemma.

Theorem 1.27 (d-Poincaré lemma). LetU be an open disk in Rn. If α ∈ Ak(U,C) is closed, i.e dα = 0, then

α is exact, i.e, α = dβ for some β ∈ Ak−1(U,C). In terms of the de Rham cohomology,

Hk
dR(U) = 0, k ≥ 1.

Definition 1.28 (Dolbeault cohomology). The property ∂̄2 = 0 implies Im(∂̄ : Ap,q(M,C) → Ap,q+1(M,C)) ⊆

ker(∂̄ : Ap,q−1(M) → Ap,q(M,C)), so we can define the (p, q)-Dolbeault cohomology group by

Hp,q

∂̄
(M,C) =

ker(∂̄ : Ap,q(M,C) → Ap,q+1(M,C))
Im(∂̄ : Ap,q−1(M,C) → Ap,q(M,C))

.

For a compact manifold M , the Dolbeault cohomology groups Hp,q

∂̄
(M,C) are finite-dimensional vector

spaces, and their complex dimensions are called Hodge numbers and denoted by hp,q(M).

Remark 1.29. Note that Dolbeault cohomology is defined for complex manifolds and not for almost complex

manifolds.

Theorem 1.30 (∂̄-Poincaré lemma). Let U be an open polydisk in Cn. If α ∈ Ap,q(U,C) is ∂̄-close, i.e

∂̄α = 0, then α is ∂̄-exact, i.e, α = ∂̄β for some β ∈ Ap,q−1(U,C). In terms of the Dolbeault cohomology,

Hp,q

∂̄
(U,C) = 0, q ≥ 1.

Here we recall the local ∂∂̄-lemma.

Theorem 1.31 (Local ∂∂̄-lemma). Let U be an open polydisk in Cn. If α ∈ Ap,q(U,C) is d-closed, i.e [α] ∈

Hp+q
dR (U,C), then α is ∂∂̄-exact, i.e, α = ∂∂̄β for some β ∈ Ap−1,q−1(U,C).

Theorem 1.32 (Dolbeault Theorem). On a compact complex manifoldM ,Hp,q

∂̄
(M,C) is a finite-dimensional

vector space, and the dimension of it is called the (p, q)-Hodge number, denoted by hp,q.
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Proposition 1.33. There is a natural isomorphism Hp,q

∂̄
(M) ∼= Hq(M,Ωp(M)). Here Hq(M,Ωp(M)) is

the sheaf cohomology of the complex manifold M with coefficient in the sheaf of holomorphic p-forms.

In particular H0,q

∂̄
(M) ∼= Hq(M,OM ), where OM is the sheaf of holomorphic functions on M . Sheaf

cohomology is typically defined using Čech cohomology, but in this thesis, we will not provides further details.

1.3 Vector Bundles

Definition 1.34. LetM be a complex manifold. A holomorphic (respectively smooth) complex vector bundle

E of rank r over M consists of the following data:

1. A complex (respectively smooth) manifold E called the total space of the bundle.

2. A holomorphic (respectively smooth) surjective map π : E →M called the projection map.

3. For each point p ∈M , the fiber Ep = π−1(p) over p is a r-dimensional complex vector space.

4. For each point p ∈ M , there exists a neighborhood U of p and a biholomorphism (respectively dif-

feomorphism) φ : π−1(U) → U × Cr such that φ
∣∣
p
: Ep → Cr is linear and the following diagram

commutes:
π−1(U)

ϕ−→ U × Cr

↓ π ↓ Pr1
U −→

idU

U,

where Pr1 is the projection onto the first factor in the product space U × Cr, and idU is the identity

map on U .

The mapφ is called a holomorphic (respectively smooth) trivialization of the vector bundleE overU , and the

pair (U, φ) is called a holomorphic (respectively smooth) chart for the bundle. The local transition functions

between overlapping holomorphic (respectively smooth) charts must be holomorphic (respectively smooth)

maps from an open set in Cn to the general linear group of the vector space, i.e, if (Ui, φi) and (Uj , φj) are

two charts the induced transition functions

φij(x) := (φi ◦ φ−1
j )(x) : Cr → Cr

are C-linear for all x ∈ Ui ∩ Uj .
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Definition 1.35. Let E be a holomorphic vector bundle over complex manifold M . A holomorphic (respec-

tively smooth) function s :M → E is called a holomorphic (respectively smooth) section ofE, ifπ◦s = idM .

The space of holomorphic (respectively smooth) sections of the vector bundle E is denoted by H0(M,E)

(respectively Γ(E)). A function s : M → E defined on an open and dense subset of M to E is called

a meromorphic section of E if π ◦ s = id and for any x ∈ M , there exists an open neighborhood U , a

holomorphic section t : U → M , and a meromorphic function f : U → C such that, together, they are

non-zero near x and in the domain of s, s =
t

f
.

Example 1.36 (The trivial vector bundle). Let M be a complex manifold. The product space E = M × Cr

with the projection onto the first coordinates has the structure of a holomorphic vector bundle of rank r

over M . This bundle is called the trivial line bundle. For the trivial vector bundle H0(M,E) ∼= Cω(M,Cr)

and Γ(E) ∼= C∞(M,Cr).

Example 1.37 (The holomorphic tangent bundle). The holomorphic tangent bundle of a complex manifold

M , T 1,0M , is a holomorphic vector bundle. Its smooth sections are holomorphic vector fields. They forms

a vector space denoted by h(M). The space of holomorphic vector fields on a compact complex manifold is

the Lie algebra of the automorphism group Aut(M).

Definition 1.38 (Picard group). Holomorphic vector bundles of rank one are called holomorphic line bundles.

The Picard group Pic(M) of a complex manifold M is defined as the set of classes of holomorphic line

bundles onM . The group operation is given by the tensor product of line bundles, and the identity element

is the class of the trivial line bundle.

Corollary 1.39. There is a natural isomorphism Pic(M) ∼= H1(M,O∗
M ). Here H1(M,O∗

M ) is the sheaf

cohomology of the complex manifold M with coefficient in the sheaf of non-zero holomorphic functions.

See Corollary 2.2.10 in [34] for a proof.

Since a line bundle L → M is locally trivial, holomorphic sections of L are locally holomorphic functions

f :M → C, but globally they can be quite different. IfM is compact and connected then O(M) ∼= C, i.e.,

holomorphic functions are constant functions. However, a holomorphic line bundle may have many non-

zero holomorphic sections. Therefore, holomorphic sections offer an alternative perspective for studying

complex manifolds and vector bundles.

Example 1.40 (Line bundles over CPn). Line bundles over CPn play a central role in algebraic geometry.

They encode geometric and topological information about complex projective spaces. An important exam-
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ple is the tautological line bundle, denoted by OCPn(−1). For the tautological line bundle, fibers are lines

passing through the origin and so the total space of OCPn(−1) consists of the disjoint union of all lines

passing through the origin, i.e, the submanifold of Cn × CPn given by

OCPn(−1) = {(z, Z) ∈ Cn+1 × CPn : ziZj = zjZi, ∀i, j},

where Z = [Z0, . . . , Zn] ∈ CPn. In terms of bundle, OCPn(−1) is a line bundle over CPn and its fiber over

a point [Z0; . . . ;Zn] is the line in Cn+1 spanned by (Z0, . . . , Zn) and the projection map π : OCPn(−1) →

CPn assigns to each line its point in CPn. The dual of the tautological line bundle OCPn(−1) is called the

hyperplane bundle and denoted by OCPn(1). More generally, for any r ∈ Z, the line bundle OCPn(r) is

defined as OCPn(1)⊗r for r > 0 and OCPn(−1)⊗(−r) for r < 0. In a local trivialization over an open set

Ui = {[Z0 : . . . : Zn] ∈ CPn | Zi 6= 0}, where [Z0 : . . . : Zn] are the homogeneous coordinates of

CPn, OCPn(r) can be represented as Ui × C, and the transition function φij on the intersection Ui ∩ Uj is

a holomorphic function defined by:

φij : Ui ∩ Uj → C, φij([Z0 : . . . : Zn]) =

(
Zj

Zi

)r

,

for some r ∈ Z. In fact, for the complex projective space CPn, the Picard group is identified with Z via the

isomorphism Z 3 r 7→ OCPn(r) ∈ Pic(X).

On CP1, there is also a simple classification of holomorphic vector bundles.

Theorem 1.41 (Grothendieck Classification Theorem for Vector Bundles on CP1). LetE be a complex vector

bundle on CP1. Then, there exist unique integers r1, . . . , rk such thatE is isomorphic to a direct sum of line

bundles:

E ∼= OCP1(r1)⊕OCP1(r2)⊕ . . .⊕OCP1(rk).

See [32] for a proof.

Proposition 1.42. The behavior of the space of holomorphic sections of OCPn(r) depends on the sign of r

as follows.

1. When r > 0, the space of global holomorphic sections of OCPn(r) is non-trivial and consists of ho-

mogeneous polynomials of degree r in n+ 1 complex variables (Z0, . . . , Zn).
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2. When r = 0, OCPn(0) is the trivial line bundle and its space of sections identified with C, correspond

to the constant functions.

3. When r < 0, the space of global holomorphic sections of OCPn(r) is trivial, meaning it only contains

the zero section, i.e., there are no non-zero global holomorphic functions in OCPn(r).

Now we define the canonical line bundle of a complex manifold M . It will be important in understanding

the Ricci curvature of Kähler manifolds. For example, a simply connected Kähler manifold admits a Ricci flat

Kähler metric if and only if its canonical bundle is trivial.

Definition 1.43 (Canonical line bundle). Given a complex manifold M , its canonical bundle KM is the line

bundle corresponding to the top exterior power of the complex cotangent bundle of M .

Example 1.44 (The canonical bundle ofCPn). LetUi = {[Z0, . . . , Zn] ∈ CPn | Zi 6= 0}, where [Z0, . . . , Zn]

are the homogeneous coordinates of CPn. Define a meromorphic n-form on U0 by

α =
dz1
z1

∧ . . . ∧ dzn
zn

,

where [1, z1, . . . , zn] ∼ [Z0, Z1, . . . , Zn]. This form is non-zero on U0 and has poles along the hyperplanes

Z1 = 0, Z2 = 0, ..., Zn = 0. Now consider new coordinates on Uj defined by

[W0, . . . ,Wj−1, 1,Wj+1, . . . ,Wn] ∼ [Z0, Z1, . . . , Zn].

In these coordinates

[1, z1, . . . , zj−1, zj , zj+1, . . . , zn] ∼ [1,
W1

W0
, . . . ,

Wj−1

W0
,
1

W0
,
Wj+1

W0
, . . . ,

Wn

W0
].

So we can write

α = (
dW1

W1
− dW0

W0
) ∧ . . . ∧ (

dWj−1

Wj−1
− dW0

W0
) ∧ (−dW0

W0
) . . . ∧ (

dWn

Wn
− dW0

W0
)

= (−1)j
dW0

W0
∧ . . . d̂Wj

Wj
∧ . . . dWn

Wn
,

this means that α has a single pole along the hyperplane Z0 = 0 as well. As a consequence

KCPn = [(α)] = [−(n+ 1)OCPn(1)] = OCPn(−n− 1).

Definition 1.45 (Divisor). For any complex manifold M , the group of divisors, Div(M) is the additive free

abelian group whose generators are the connected, irreducible analytic hypersurface of M . A non-zero
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element of D is then a formal sum D =
k∑

i=1

miDi, where each Di is a connected, irreducible, analytic

hypersurfaces of M and the coefficients mi are integers. A divisor D =
k∑

i=1

miDi is called effective if

mi ≥ 0 for all i.

Suppose thatM is a compact complex manifold, and f :M → C is a meromorphic function. Then one can

associate a unique divisor

D = div(f) =
k∑

i=1

miVi,

such that f has zeroes of ordermi on Vi whenmi > 0, and poles of ordermi on Vi whenmi < 0. i.e, each

x ∈ X has an open neighbourhood U in X such that

f(x) = g(x)
k∏

i=1

(fi(x))
mi ,

where fi : U → C is a holomorphic function with U ∩ Vi = {x ∈ U : fi(x) = 0} and fi vanishes to order

1 on the smooth part of U ∩ Vi , and g : U → C \ {0} is holomorphic.

Definition 1.46 (Principal divisor). A divisor D is called principal if D = div(f) for some meromorphic

function f . The subset of principal divisors in Div(M) is a subgroup, since div(f) + div(g) = div(fg)

and − div(f) = div(f−1). Two divisors D1 and D2 are called linearly equivalent, written D1 ∼ D2, if

D1 −D2 = div(f) for some meromorphic f . The quotient group Div(M) /∼ of equivalence classes of [D]

is an abelian group as well.

Lemma 1.47. Let M be a compact complex manifold having a holomorphic line bundle which admits a

meromorphic section s. Then the class [div(s)] in Div(M) is independent of the choice of meromorphic

section.

Conversely, given any divisor D on M, one can construct a holomorphic line bundle L and a meromorphic

section swith div(s) = D, and (L, s) are unique up to isomorphism. Thus the class [L] ∈ Pic(M) depends

only on the equivalence class [D] of D. If D is a smooth analytic hypersurface Y , the corresponding line

bundle is denoted by [Y ] or LY .

IfM is a compact complex manifold, there is a natural injective morphism [D] ∈ Div(M) /∼→ Pic(M) 3 [L] ,

where L is a holomorphic line bundle with a meromorphic section swith div(s) = D. IfD is effective then
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s is holomorphic. The image of this map is the set of [L] for which L admits a meromorphic section. One

can show that ifX is projective then every L admits meromorphic sections, so the above map is an isomor-

phism.

Definition 1.48 (Normal Bundle). Let Y be a submanifold of a smooth manifold X . By considering the

canonical embedding i : Y → X , we get a short exact sequence of vector bundles over Y :

0 → TY → i∗TX → i∗TX /TY → 0. (1.1)

The quotient bundle i∗TX /TY is called the normal bundle of Y in X and denoted by NX(Y ). In fact it

represents the directions transversal to the submanifold Y within the ambient manifold X .

Definition 1.49 (Tubular neighborhood). Let Y be a submanifold of a smooth manifoldX . A tubular neigh-

borhood of Y in X is a pair (π : NX(Y ) → Y, f : NX(Y ) → X) where π : NX(Y ) → Y is vector bundle

projection and f : NX(Y ) → X is a smooth diffeomorphism onto its image called tubular map such that

the zero section 0NX(Y ) makes the following diagram cummutative,

NX(Y )
f

##G
GG

GG
GG

GG

Y

0NX (Y )

OO

� � i // X

Remark 1.50. Let Y be a complex submanifold of a complex manifold X , then NX(Y ) → Y is naturally a

holomorpbic vector bundle.

Remark 1.51. Except from very special cases, it is typically not possible to choose the smooth map

f : NX(Y ) → X to be holomorphic. However, by the tubular neighborhood theorem, a smooth map

f satisfying the above conditions always exits.

Let Y be a complex submanifold of complex codiminsion k of a smooth manifold X of complex dimension

n. The dual of the short exact sequence 1.1 on page 19 is:

0 → N∗
X(Y ) → (TX

∣∣
Y
)∗ → T ∗Y → 0.

So we get

∧n((TX
∣∣
Y
)∗) ∼= ∧k(N∗

X(Y ))⊗ ∧n−k(T ∗Y ) ∼= N∗
X(Y )⊗KY .

On the other hand, ∧n((TX
∣∣
Y
)∗) = KX

∣∣
Y

so this gives the adjunction formula.

Theorem 1.52 (Adjunction Formula). Let Y be a submanifold of a complex manifold X .
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1. If Y is a smooth analytic hypersurface of X , then

N∗
X(Y ) ∼= [−Y ]

∣∣
Y
,

where [Y ] is the corresponding line bundle to divisor Y .

2. we have

KX

∣∣
Y
= KY ⊗N∗

X(Y ) = KY ⊗ [−Y ]
∣∣
Y
.

Look at the page 146 of [31] for a proof.

Example 1.53. Let X = CPn and Y be a an analytic hypersurface of degree k in X , i.e, Y = s−1(0) for

s ∈ H0(CPn,OCPn(k)). The corresponding line bundle to Y is LY = OCPn(k) and the canonical line

bundle of X is KX = OCPn(−n− 1). By the adjunction formula we get

KY
∼= (KX ⊗ LY )

∣∣
Y
∼= (OCPn(−n− 1)⊗OCPn(k))

∣∣
Y
∼= OCPn(k − n− 1)

∣∣
Y
.

There are three possible cases

1. If k = n+ 1, then KY
∼= OCPn(0)

∣∣
Y

is the trivial line bundle and so Y is Calabi–Yau.

As a consequence:

• K3 surfaces2 (a smooth quartic in CP3) are a Calabi–Yau.

2. If k < n+ 1, then KY is a negative line bundle (Y is a Fano manifold).

3. If k > n+ 1, then KY is a positive line bundle (Y is of general type).

1.4 Hermitian and Kähler Metrics

Definition 1.54 (Hermitian metric on a complex vector bundle). A Hermitian metric on a complex vector

bundle E over a smooth manifold M is a smoothly varying positive-definite Hermitian form on each fiber,

i.e, a smooth global section h of the vector bundle (E ⊗ Ē)∗ such that for every point p in X and any two

element ζ, η in the fiber Ep

hp(η, ζ̄) = hp(ζ, η̄),

and for all nonzero ζ in Ep,

hp(ζ, ζ̄) > 0.

2 The term ”K3” is in honor of Kummer, Kähler, Kodaira, and the beautiful K2 mountain in Kashmir.
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Definition 1.55 (Hermitian metric on a complex manifold). A Hermitian manifold is a complex manifold with

a Hermitian metric on its holomorphic tangent bundle. On a Hermitian manifold the metric can be written

in local holomorphic coordinates (zi) as 

h = hij̄dz
i ⊗ dz̄j ,

 where hij̄ are the components of a positive-definite Hermitian matrix.

Definition 1.56. Let h be a Hermitian metric on complex manifold M , the real part of h, i.e,

g := Re(h) = 1

2
(h+ h̄) = hij̄(dz

i ⊗ dz̄j + dz̄j ⊗ dzi),

defines a Riemannian metric on the underlying smooth manifold which is J -invariant. The imaginary part

of h, i.e,

Im(h) = −
√
−1

2
(h− h̄) = −

√
−1

2
hij̄dz

i ∧ dz̄j ,

defines a symplectic form of type (1, 1). The associate Hermitian form of h is defined by

ω := − Im(h) =

√
−1

2
hij̄dz

i ∧ dz̄j .

Definition 1.57 (Kähler metric). Let M be a complex manifold endowed with a Hermitian metric h. The

metric g is called a Kähler metric if the associated Hermitian form ω is closed, i.e, dω = 0. In this case, ω is

called the Kähler form and (M,h) a Kähler manifold.

Definition 1.58 (Kähler potential). Let (M, g) be a Kähler manifold. A  smooth real-valued function ρ is called

a Kähler potential for the Kähler form ω, if  ω =

√
−1

2
∂∂̄ρ.

Here is an important differential-geometric property.

Proposition 1.59. Let (M, g) be a Kähler manifold, with Kähler form ω, and let ∇ be the Levi-Civita connec-

tion of g. Then

∇g = ∇J = ∇ω = 0.

So, g, J , andω are constant tensors on (M, g). This implies that the holonomy group (M, g)of g is contained

in U(n). Kähler metrics are defined by the condition dω = 0, which is relatively weak and easy to satisfy,

resulting in many closed forms. Because of this, there are numerous Kähler manifolds, and examples are

readily found. However, dω = 0 implies the apparently much stronger conditions ∇J = 0 and ∇ω = 0.
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Remark 1.60. Let M be a complex manifold that admits Kähler form ω. Then by the equation dω = 0, the

Kähler class of ω is the cohomology class [ω] of ω in H2
dR(M,R) ∩H1,1

∂̄
(M). When M is compact, [ω] 6= 0

and

[ω]n.[M ] =

∫
M
ωn = n!Volω(M) > 0,

where [M ] ∈ H2n(M,Z) is the top integral homology class of M .

Example 1.61 (The Euclidean metric on Cn). The Euclidean space Cn with the Kähler metric

gEuc = dzi ⊗ dz̄i,

has a Kähler form

ωEuc =

√
−1

2
dzi ∧ dz̄i =

√
−1

2
∂∂̄‖z‖2,

is a manifold with Kähler potential ρEuc = ‖z‖2 =
n∑

i=1

|zi|2, where (z1, . . . , zn) are the standard coordi-

nates of Cn. The Euclidean metric is invariant under unitary transformations, reflecting the isometries of

the complex structure.

Example 1.62 (The Fubini-Study metric on CPn). Let U ⊂ CPn be an open subset. Consider a lift U to

Cn+1\{0}, i.e, a holomorphic mapZ : U → Cn+1\{0} such that q◦Z = idU where q : Cn+1\{0} → CPn

is the canonical projection and define the Fubini-Study form ωFS by

ωFS =

√
−1

2π
∂∂̄ log ‖Z‖2.

Note that this (1, 1)-form is globally well-defined, since for any other lift Z ′, Z ′ = fZ for a non-zero holo-

morphic function f on U , and we obtain ∂∂̄ log ‖Z ′‖2 = ∂∂̄ log ‖Z‖2. The unitary group U(n + 1) acts

transitively on CPn, soωFS is invariant under this action. Therefore, it’s enough to check thatωFS is positive

at one point. For Z0 6= 0, we can write Z = (1, w1, . . . , wn) where wi =
Zi

Z0
, and thus, we get

ωFS =

√
−1

2π
∂∂̄ log ‖Z‖2

=

√
−1

2π
∂∂̄ log(1 + wiwī)

=

√
−1

2π
∂(

widwi

1 + wiwī
)

=

√
−1

2π
(
dwi ∧ dw̄i

1 + wiwī
− (w̄idwi) ∧ (wjdw̄j)

(1 + wiwī)2
)

=

√
−1

2π
(

δij̄
1 + ‖w‖2

− w̄iwj

(1 + ‖w‖2)2
)dwi ⊗ dw̄j .
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At the point [1 : 0 : . . . : 0],

ωFS =

√
−1

2π
dwi ⊗ dw̄i > 0.

Thus ωFS defines a Hermitian metric on the complex projective space CPn which is called the Fubini-Study

metric. By construction the Fubini-Study metric is a Kähler metric. In the coordinates above,

gFS = (
δij̄

1 + ‖w‖2
− w̄iwj

(1 + ‖w‖2)2
)dwi ⊗ dw̄j ,

with Kähler potential ρFS = − log(1 + ‖w‖2). The Fubini-Study metric is invariant under the unitary group

action, making it a symmetric space.

Remark 1.63. By direct calculation one can check that the canonical Riemannian volume form of the Kähler

manifold (M,ωM ) of dimension n in local holomorphic coordinates is given by

Vol(ωM ) =

∫
M

ωn
M

n!
=

∫
M
(

√
−1

2
)n det(gαβ̄)dz1 ∧ dz̄1 ∧ . . . ∧ dzn ∧ dz̄n.

If S ⊂ M is a complex submanifold of dimension d, then, by the consequence of Wirtinger’s inequality we

get

Vol(ωS) =

∫
S

ωd
M

d!
.

Remark 1.64. Not all complex manifolds are Kähler. For example, let 0 < λ < 1 and Γλ be the infinite cyclic

group generated by λ Idn. Consider the action of Γλ
∼= Z on Cn \ {0} given by

m.(z1, . . . , zn) = (λmz1, . . . , λ
mzn), ∀m ∈ Z.

The quotient manifold

CHn
λ = Cn \ {0} /Γλ,

is a compact complex manifold that does not admit any Kähler metric when n ≥ 2, since b1(CHn
λ) = 1 for

n ≥ 2. As we will see in Corollary 1.85, for a compact Kähler manifoldM , the first Betti number b1(M) must

be an even number. This manifold is called the complex Hopf manifold. As a differentiable manifold, any

CHn
λ is diffeomorphic to S2n−1 × S1.

Lemma 1.65. Every complex projective manifold admits a Kähler metric.

Proof. Given a complex projective manifold X , there exists an inclusion map i : X ↪→ CPN for some

N ∈ N. The pullback metric i∗ωFS, where ωFS is the Fubini-Study metric on CPN , is a Kähler metric on X .

This is because the pullback preserves the closedness of the symplectic form, i.e.,

d(i∗ωFS) = i∗(dωFS) = i∗(0) = 0.
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Definition 1.66 (Kähler cone). LetM be a complex manifold. The Kähler cone, denoted by KM , is the set of

all de Rham classes [ω], where ω is the Kähler form of a Kähler metric g on M . One can check that KM is a

convex cone and it is open in H2
dR(M,R) ∩H1,1

∂̄
(M).

The following proposition could be obtained by the Kodaira Embedding Theorem, which we will not discuss

in this thesis.

Proposition 1.67. Let M be a compact complex manifold admitting Kähler metrics. Then X is projective if

and only if

H2(M,Q) ∩ KM 6= ∅.

See Corollary 5.3.3 in [34] for a proof.

Corollary 1.68. Let M be a compact complex manifold admitting Kähler metrics. If H2,0

∂̄
(M) = 0, then M

is projective.

This Corollary shows that, under some conditions, the inverse of Lemma 1.65 is true, i.e, compact Kähler

manifolds are projective, and can be studied using complex algebraic geometry.

On a compact Kähler manifold it is never possible to describe a Kähler form globally using a single Kähler

potential, but it is possible to describe the difference of two Kähler forms this way, provided they are in the

same de Rham cohomology class. This is a consequence of the golbal ∂∂̄-lemma.

Theorem 1.69 (Global ∂∂̄-lemma). Let M be a compact Kähler manifold. If α ∈ Ap,q(M) is d-closed, i.e

[α] ∈ Hp+q
dR (M), then α is ∂∂̄-exact, i.e, α = ∂∂̄β for some β ∈ Ap−1,q−1(M).

See page 149 of [31] for a proof.

Remark 1.70. There are examples of compact complex manifolds for which the global ∂∂̄-lemma does not

hold.

Definition 1.71 (Isometry group). The isometry group Iso(M, g, J) of a Kähler manifold M equipped with

its Kähler metric g consists of all biholomorphic isometries, which are diffeomorphisms φ : M → M that
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preserve both the complex structure and the Kähler metric i.e, for all tangent vector fields X,Y on M ,

g(φ∗(X), φ∗(Y )) = g(X,Y ),

and for any tangent vector X on M ,

φ∗ (JX) = J(φ∗ X).

Example 1.72. The isometry group of the complex projective space CPn with the Fubini-Study metric is the

projective unitary group PU(n+ 1) = U(n+ 1) /U(1) .

Definition 1.73 (Curvature of a metric). Consider a Kähler manifold X equipped with its Hermitian metric

g =  gij̄  dzi ⊗ dzj̄ and let ω be the corresponding Kähler form. The Riemann curvature, Ricci curvature,

and scalar curvature of g can be described as follows in local coordinates:

Rij̄kl̄ = −∂k∂l̄gij̄ + gpq̄(∂kgiq̄)(∂l̄gpj̄)

Rij̄ = gkl̄Rij̄kl̄ = −∂i∂j̄ logωn = −∂i∂j̄ log det(gpq̄)

S(ω) = gij̄Rij̄ = −gij̄∂i∂j̄ log det(gpq̄) = −∆g log det(gpq̄).

The Ricci form is defined by Ric(ω) =
√
−1Rij̄  dzi ∧ dz̄j .

Remark 1.74. The Ricci form Ric(ω) is a closed 2-form. Moreover if ω̃ is another Kähler form (not necessarily

in the same Kähler class), then

Ric(ω)− Ric(ω̃) =
√
−1∂∂̄ log det(g̃pq̄)

det(gpq̄)
,

and then
det(g̃pq̄)
det(gpq̄)

=
ω̃n

ωn
and so [Ric(ω)] = [Ric(ω̃)].

Remark 1.75. Note that in the Kähler case, the Ricci form Ric(ω) satisfies J∗ Ric(ω) = Ric(ω).

Definition 1.76 (Kähler–Einstein metric). A Kähler–Einstein metric ω on a complex manifoldM is a Rieman-

nian metric that is both a Kähler metric, i.e, dω = 0 and an Einstein metric, i.e, Ric(ω) = λω for some

constant λ. A manifold is said to be Kähler–Einstein if it admits a Kähler–Einstein metric. The most impor-

tant special case of these are the Calabi–Yau manifolds, which are Kähler and Ricci-flat. The existence of a

Kähler–Einstein metric will be discussed in Chapter 3.

Example 1.77. The Ricci form of the Euclidian metric (gEuc)ij̄ = δij̄ in example 1.61 on page 22 is given by

Ric(ωEuc) = −
√
−1∂∂̄ log det(gEuc) = −

√
−1∂∂̄ log 1 = 0,

so the Euclidean space Cn with the standard metric is Ricci flat and Kähler–Einstein as well.
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Example 1.78. The Ricci form of the Fubini-Study metric (gFS)ij̄ =
δij̄

1 + ‖z‖2
− z̄izj

(1 + ‖z‖2)2
in Example 1.62

is given by

Ric(ωFS) = −
√
−1∂∂̄ log det((gFS)ij̄)

= −
√
−1∂∂̄ log 1

(1 + ‖z‖2)n+1

= 2(n+ 1)(

√
−1

2
∂∂̄ log(1 + ‖z‖2)) = 2(n+ 1)ωFS,

so the complex projective space CPn with the Fubini-Study metric is Kähler–Einstein.

Kähler manifolds have some nice topological properties. We will finish this section by introducing Hodge

theory.

Definition 1.79 (Complex Hodge star operator). Let (M, g) be a Kähler manifold of complex dimension n.

The complex Hodge star operator ? : Ap,q(M) → An−p,n−q(M) is defined by

?(α+
√
−1β) = ?Rα−

√
−1 ?R β,

where ?R : Ak(M,R) → A2n−k(M,R) is the real Hodge star operator corresponding to the Riemannian

metric g, i.e, the Hodge dual of a k-form β, denoted as ?Rβ, as the unique (n− k)-form satisfying

α ∧ ?Rβ = g(α, β)Volg,

for every k-form α, where g(α, β) is a real-valued function on M , and the volume form Volg is induced by

the Riemannian metric.

Definition 1.80 (The Hodge Laplacian). Let (M, g) be a Hermitian manifold of complex dimension n. The

Hodge Laplacian, also known as the Laplace–de Rham operator, is the second order linear differential op-

erator ∆ : Ak(M) → Ak(M) defined by

∆ = (d+ d⋆)2 = dd⋆ + d⋆d,

where d⋆ = − ? d? : Ak(M) → Ak−1(M) is the codifferential operator with respect to the metric g. A

k−form ω is called harmonic, if ∆ω = 0. The space of harmonic k−forms on M with respect to the g is

denoted by Hk(M). Similarly one can define ∆∂ = ∂∂⋆ + ∂⋆∂ and ∆∂ = ∂∂
⋆
+ ∂

⋆
∂ where ∂⋆ = − ? ∂?

and ∂⋆ = −?∂?. The space of ∂-harmonic (p, q)−forms onM with respect to the g is denoted by Hp,q
∂ (M)

and the space of ∂-harmonic (p, q)−forms is denoted by Hp,q

∂
(M).
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Theorem 1.81. Let (M, g) be a compact Hermitian manifold. Then there exist two orthogonal decomposi-

tions

Ap,q(M) = Im(∂p,q−1)⊕Hp,q
∂ (M)⊕ Im(∂⋆p,q+1)

Ap,q(M) = Im(∂p,q−1)⊕Hp,q

∂
(M)⊕ Im(∂

⋆
p,q+1).

Furthermore, Hp,q
∂ (M) and Hp,q

∂
(M) are finite dimensional for all p and q.

See Theorem 3.2.8 in [34] for a proof.

Theorem 1.82 (Hodge Decomposition). LetM be a compact Kähler manifold. Then we have the direct sum

decomposition

Hk
dR(M,C) =

⊕
p+q=k

Hp,q

∂̄
(M,C).

and the Betti numbers and Hodge numbers of M are related by

bk(M) = hk,0(M) + hk−1,1(M) + . . .+ h1,k−1(M) + h0,k(M).

See Corollary 3.2.12 in [34] for a proof.

Proposition 1.83. For a Kähler manifold (M, g), ∆∂ = ∆∂ =
1

2
∆ and so Hp,q

∂ (M) = Hp,q

∂
(M).

Theorem 1.84 (Hodge). Let M be a compact Kähler manifold. Then we have

Hp,q

∂̄
(M) ∼= Hp,q

∂
(M).

Furthermore, Hp,q

∂̄
(M) = Hq,p

∂̄
(M), thus hp,q(M) = hq,p(M).

Corollary 1.85. Let M be a compact Kähler manifold. Then the even Betti numbers b2k(M) are nonzero,

and the odd Betti numbers b2k+1(M) are even for k = 0, 1, . . ..

Look at the page 117 of [31] for a proof.

Let M be a compact Kähler Ricci-flat manifold. Then b1(M) = 0. For a compact Kähler manifold with

negative Ricci curvature, the first Betti number can vary, and the fundamental group can be large. However,

for a compact Kähler manifold with positive Ricci curvature, the following obstructions hold.
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Theorem 1.86 (Bochner, Bonnet–Myers). LetM be a compact Kähler manifold with positive Ricci curvature,

then b1(M) = 0 and π1(M) is finite.

See Theorem 4.5.3 and Corollary 6.3.1 in [35] or Theorem 2.4.2 in [28] for a proof.

1.5 Connections and Curvature

In the Definition 1.20 on page 11 the space of complex valued k-forms are defined by

Ak(M,C) = Γ(∧k(TCM)∗),

i.e, complex valued k-forms are locally k-linear alternating function of this form:

ωp : (T
C
p M)∗k → C.

For a vector bundle E → M , the idea of E-valued k-form, is a generalization of the above definition to a

k-linear alternating function of the form:

ωp : (T
C
p M)∗k → Ep,

where Ep is the fiber over p ∈M . Let us to defined E-valued k-forms.

Definition 1.87 (Forms with values in a vector bundle). If E is a vector bundle on a complex manifold M ,

the space of smooth E-valued k-forms on M is defined by

Ak(M,E) := Γ((∧kT ∗M)⊗ E).

In particular, E-valued 0-forms are just smooth section, i.e, A0(M,E) := Γ(E).

Definition 1.88 (Linear connection). A linear connection on a holomorphic vector bundle E is a first-order

linear differential operator ∇ : A0(M,E) → A1(M,E), which satisfies the following Leibniz identity:

∇(fs) = df ⊗ s+ f∇s,

for any smooth section s of E and any smooth function f . In fact an arbitrary connection could be written

as ∇ = ∇0 +Θ where ∇0 is a fixed connection and Θ is an E-valued 1-forms.

Any vector fieldX ∈ X(M) could be considered as a contractionX : A1(M,E) → Γ(E) and the covariant

derivative with respect to the vector field X , ∇X : Γ(E) → Γ(E) is then defined by the composition of
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∇ : Γ(E) → A1(M,E) with the contraction X : A1(M,E) → Γ(E). Using (TCM)∗ = T ∗M ⊗

C = (T 1,0M)∗ ⊕ (T 0,1M)∗ a linear connection ∇ could be decomposes as ∇ = ∇1,0 + ∇0,1 where

∇1,0 : A0(M,E) → A1,0(M,E) and ∇0,1 : A0(M,E) → A0,1(M,E). The (1, 0) and the (0, 1)-parts are

defined by

∇1,0
X

s =
1

2
(∇s

X −
√
−1∇s

JX),∇0,1
X

s =
1

2
(∇s

X +
√
−1∇s

JX).

Definition 1.89 (Cauchy-Riemann (Dolbeault) operators). Let E be a vector bundle on a complex manifold

M . A Cauchy-Riemann (Dolbeault) operator ∂̄E onE is defined as a first orderC-linear differential operator

∂̄E : Γ(E) → A0,1(M,E) satisfying the following Leibniz-like identity

∂̄E(fs) = ∂̄f ⊗ s+ f∂̄Es,

where ∂̄ is the usual Cauchy-Riemann operator acting on smooth functions.

Any Cauchy-Riemann operator ∂̄E : Γ(E) → A0,1(M,E) could be extended to an operator

∂̄
p,q
E : Ap,q(M,E) → Ap,q+1(M,E),

using the Leibniz rule ∂̄E(ω ⊗ s) = ∂̄ω ⊗ s for ω ∈ Ap,q(M,E) and a local holomorphic section s. A

Cauchy-Riemann operator ∂̄E is said to be integrable if ∂̄E ◦ ∂̄E = 0.

Example 1.90. Let E be a horlomorphic vector bundle on a complex manifold M , then the usual ∂̄ is an

example of Cauchy-Riemann operator acting on complex valued k-forms. In fact on any holomorphic vector

bundle E, there exist a unique integrable canonical Cauchy-Riemann operator ∂̄E : Γ(E) → A0,1(M,E),

such that a smooth section s ∈ Γ(E) is holomorphic, if and only if ∂̄Es = 0.

Here, we define vector bundle cohomology not in the usual way through sheaf cohomology but rather from

a differential geometric point of view.

Definition 1.91 (Vector bundle cohomology). By using ∂̄p,q+1
E ◦ ∂̄p,qE = 0 we can define a generalized Dol-

beault cohomology for a holomorphic vector bundle by

Hp,q(M, (E, ∂̄
E
)) =

ker(∂̄p,q+1
E : Ap,q(M,E) → Ap,q+1(M,E))

Im(∂̄
p,q
E : Ap,q−1(M,E) → Ap,q(M,E))

.

Similar to Proposition 1.33 on page 14, we can express this cohomology as a sheaf cohomology.



CHAPTER 1. KÄHLER GEOMETRY 30

Proposition 1.92. There is a natural isomorphismHp,q(M,E) ∼= Hq(M,Ωp(M,E)). HereHq(M,Ωp(M,E))

is the sheaf cohomology of the complex manifold M with coefficient in the sheaf of E-valued holomorphic

p-forms.

Like the Levi-Civita connection in Riemannian geometry, there is a natural choice of connection on a Her-

mitian holomorphic vector bundle.

Proposition 1.93 (Chern connection). Let (E, h) be a holomorphic hermitian vector bundle on a complex

manifold M . Then there is a unique connection D on E compatible with both the metric and the complex

structure, i.e, D0,1 = ∂̄E and for any two smooth sections s and t of E,

d〈s, t〉h = 〈Ds, t〉h + 〈s,Dt〉h.

It is called the Chern connection. In fact, we can decompose the Chern connection into D = D1,0 +D0,1,

where the part D0,1 depends on the holomorphic structure and is analytic, while the D1,0 part depends on

the Hermitian metric and is geometric. In particular, if the base manifold is Kähler and the vector bundle

is its tangent bundle, then the Chern connection coincides with the Levi-Civita connection of the associated

Riemannian metric.

See Proposition 4.2.14 in [34] for a proof.

Any linear connection ∇ extends into an exterior differentials d∇ acting on E-valued exterior forms. The

exterior differentials d∇ acting on E-valued exterior forms, corresponds to a linear connection ∇ is the

operator d∇ : Ak(M,E) → Ak+1(M,E), defined by

d∇(ω ⊗ s) = dω ⊗ s+ (−1)kω ∧∇s,

for any k-form ω and any smooth section s of E.

Example 1.94. Let M be a smooth manifold, E = M × R be the trivial bundle, and ∇0 be the trivial

connection. Take k = 0 and s = f ∈ C∞(M). Then, d∇0f = df and d∇0 ◦ d∇0 = 0.

Note that in general, one needs not have d∇ ◦ d∇ = 0. In fact, this happens if and only if the connection ∇

is flat. Basically d∇ ◦ d∇ corresponds to the curvature of the connection ∇.

Definition 1.95 (Curvature homomorphism). The curvatureR∇ of a linear connection∇ on a complex vector

bundle E is defined by the composition

R∇ := d∇ ◦ d∇ : A0(M,E) → A2(M,E).
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Remark 1.96. By decomposing the curvature form intoR∇ = R2,0 +R1,1 +R0,2, we can conclude that for

the Chern connection on a holomorphic vector bundle,R0,2 = 0, and the metric-preserving property implies

that R2,0 = R0,2 = 0, so R∇ = R1,1.

Proposition 1.97 (Curvature form). The curvature homomorphism R∇ : A0(M,E) → A2(M,E) is linear,

so can be considered as an element of A2(M, End(E)). Moreover R∇ satisfies:

R∇
X,Y s = (∇X∇Y −∇Y ∇X −∇[X,Y ])s.

Proposition 1.98. Let (E, h) be a Hermitian holomorphic vector bundle. Then the curvature form of the

Chern connection is given locally by

RD
h := −∂∂̄ log ‖s‖2h,

where s is a local non-vanishing holomorphic section of E.

See Proposition 4.3.8 in [34] for a proof.

Proposition 1.99 (Cartan’s Structural Equation). In local coordinates, if A is the End(E)-valued 1-form such

that the connection is given by ∇ = d+Θ, then the curvature form ∇ can be expressed as:

R∇ = dΘ+Θ ∧Θ.

In particular for the trivial conncection ∇ = d and so R∇ = 0, i.e, the trivial connection is flat.

Proof. By definition

R∇(s) = (d+Θ) ◦ (d+Θ)(s)

= d2(s) + d(Θs) + Θds+Θ(Θs)

= 0 + dΘ(s)−Θds+Θds+ (Θ ∧Θ)(s)

= (dΘ+Θ ∧Θ)(s).

1.6 Chern Classes

Let A be an r × r matrix and let Pk(A) be the homogeneous polynomial with deg(Pk) = k corresponding

to the coefficient of tk in the characteristic polynomial

det(I + tA) =

r∑
k=0

Pk(A)t
k.
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Definition 1.100 (Chern forms). Let (E, h) be a complex vector bundle on a smooth manifoldM and ∇ is a

linear connection on E. The Chern forms of E with respect to the connection ∇ is defined by

ck(E,∇) = Pk(

√
−1

2π
R∇) ∈ A2k(M, End(E)).

Lemma 1.101 (Chern classes). The cohomology class [Pk(

√
−1

2π
R∇)] in H∗(M,C) is independent of the

choice of connection and it is called kth Chern class of E and denoted by ck(E)R.

See Lemma 18.2 in [44] for a proof.

The above definition is the standard notion of the Chern classes in complex geometry (Chern-Weil theory).

In topology, Chern classes can be defined with integer coefficients, i.e., as elements in ck(E) ∈ H2k(M,Z).

In this setting, Definition 1.100 corresponds to the torsion free part of the classes defined in H∗(M,Z). An

immediate consequence of the definition is following properties of Chern classes.

Proposition 1.102. On a smooth manifold M :

1. Whitney sum formula: for any two complex vector bundles E1 and E2 on M ,

ck(E1 ⊕ E2)R =
k∑

i=0

ci(E1)Rck−i(E2)R.

In particular, c1(E1 ⊕ E2)R = c1(E1)R + c1(E2)R.

2. For the dual bundle E∗ of a complex vector bundles E on M ,

ck(E
∗)R = (−1)kck(E)R.

3. Let N be a smooth manifold, f :M → N a smooth map and E a complex vector bundle on N , then

ck(f
∗E)R = f∗ck(E)R.

Definition 1.103. For a complex manifold M , the kth Chern class of M is defined by the kth Chern class of

its holomorphic tangent bundle TM .

Remark 1.104. For a complex manifold X , the first Chern class of X is the same as the first Chern class of

the anti-canonical line bundle K∗
X , i.e.,

c1(X)R = c1(K
∗
X)R = −c1(KX)R.
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Remark 1.105. If (X, g) is a Kähler manifold, the first Chern class of X is given by

c1(X)R = [P1(

√
−1

2π
RD)] = [

√
−1

2π
tr(RD)] =

1

2π
[Ric(g)] ∈ H2

dR(X,R) ∩H
1,1

∂̄
(X).

In particular, the cohomology class [Ric(g)] is independent of the choice of Kähler metric.

Complex line bundles over a complex manifold X are classified topologically by their integral first Chern

class, which is an element of the cohomology group H2(X,Z). Each line bundle is topologically but not

holomorphically uniquely determined by its integral first Chern class. Here is the alternative definition of

the first Chern class of a line bundle.

Remark 1.106. The exponential short exact sequence on a complex manifold M ,

0 → Z → OM → O∗
M → 0,

gives a connecting cohomology map Pic(M) ∼= H1(M,O∗
M ) → H2(M,Z). For a holomorphic line bundle

L ∈ Pic(M), the image of L under above map is c1(L)R ∈ H2(M,Z).

The next remark show that for a compact Kähler manifold, the integral of the scalar curvature is a topological

invariant depending to the first Chern class of the manifold.

Lemma 1.107. Let M be a compact Kähler manifold of dimension n with Kähler class Ω. For any ω ∈ Ω,∫
M
S(ω)ωn = 2nπc1(M)R ∪ [ω]n−1,

so if S(ω) is constant, then it equals

S(ω) =
2nπc1(M)R ∪ [ω]n−1

[ω]n
.

Proof. By direct calculation ∫
M
S(ω)ωn =

∫
M

trω(Ric(ω))ωn

=

∫
M
nRic(ω)ωn−1

= n[Ric(ω)] ∪ [ω]n−1

= 2nπc1(M)R ∪ [ω]n−1.
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Example 1.108. First Chern Class of Cn:

c1(Cn)R =
1

2π
[Ric(gEuc)] = 0.

Example 1.109. First Chern Class of CPn:

c1(CPn)R =
1

2π
[Ric(gFS)] =

1

2π
[2(n+ 1)ωFS] = (n+ 1)[ωFS].

In particular, the complex projective space CPn has a nontrivial first Chern class, since

[ωFS] = [

√
−1

2π
∂∂̄ log(1 + ‖z‖2)],

is the generator of the cohomology group H2(CPn,Z). Also, for any integer r we get

c1(OCPn(r))R = [r · ωFS] = r[ωFS].

Let X be a compact Kähler manifold. The first Chern class c1 gives a map from holomorphic line bundles

to H2
dR(X). By Hodge theory, one can check that the image of c1 lies in H1,1

∂̄
(X). Lefschetz theorem says

that the map to H2(X,Z) ∩H1,1

∂̄
(X) is surjective.

Theorem 1.110 (Lefschetz theorem on (1, 1)-classes). Let X be a compact Kähler manifold. Then the map

c1 : Pic(X) → H2(X,Z) ∩H1,1

∂̄
(X) is surjective.

See page 163 in [31] for a proof.

Theorem 1.111 (Lefschetz). Let X be an arbitrary Kähler complex manifold. Suppose ω is a smooth, closed

real (1,1)-form on X such that ω represents an integral cohomology class in H2
dR(X,R). Then there exists

a Hermitian line bundle (L, h) over X such that
√
−1

2π
RD

L,h = ω, where RD
L,h is the curvature form of the

Hermitian metric on L.

See page 148 in [31] and [24] for a proof.

Theorem 1.112 (Calabi-Yau). Let (X,ω) be a compact Kähler manifold, and let α be a real (1, 1)-form repre-

senting c1(X)R. Then there exists a unique Kähler metric η on X with [η] = [ω] such that Ric(η) = 2πα.

In particular if c1(X)R = 0, then every Kähler class contains a unique Ricci flat metric. Ricci flat metrics are

called Calabi-Yau as well.
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1.7 Orbifolds in Complex Geometry

In this section, we briefly discuss orbifolds. An orbifold (short for ’orbit-manifold’) is a generalization of a

manifold. Roughly speaking, an orbifold is a topological space that is locally a finite group quotient of a

Euclidean space.

The definition of an orbifold has been provided by Ichirô Satake in the context of automorphic forms in

the 1950s under the name ”V-manifold” [52], and by William Thurston in the context of the geometry of

3-manifolds in the 1970s [58] when he coined the term ”orbifold” following a vote by his students. Formally,

an orbifold is defined as follows:

Definition 1.113 (Orbifold). An orbifold of dimension n is a Hausdorff topological spaceX , called the under-

lying space, a covering by a collection of open sets {Ui} closed under finite intersections and a finite group

Γi associated to each Ui together with the following data:

1. Atlas of Charts: For each Ui there is a homeomorphism φi : Ui → Ũi/Γi, called an orbifold chart,

where Ũi is an open subset of Rn, invariant under a faithful action of a finite group Γi.

2. Gluing maps: Whenever Ui ⊆ Uj , there is an injective homomorphism fij : Γi → Γj and a smooth

Γi-equivariant3 gluing map φ̃ij : Ũi → Ũj such that the gluing maps are compatible with the charts,

i.e. φj ◦ φ̃ij = φi and the gluing maps are unique up to composition with group elements, i.e. any

other possible gluing map from Ũi to Ũj has the form γ · φ̃ij for a unique γ in Γj . In fact the diagram

below commutes.

Ũi
ϕ̃ij−→ Ũj

↓ ↓

Ũi /Γi −→ Ũj/Γj

↓ ↓

Ui ⊂ Uj

Remark 1.114. We regard φ̃ij as being defined only up to composition with elements of Γj , and fij as being

defined up to conjugation by elements ofΓj . It is not generally true that φ̃ik = φ̃jk◦φ̃ij whenUi ⊂ Uj ⊂ Uk,

but there should exist an element γ ∈ Γk such that γφ̃ik = φ̃jk ◦ φ̃ij and γ · fik(g) · γ−1 = fjk ◦ fij(g).

Example 1.115. A closed manifold is orbifold, where each group Γi is the trivial group, so that Ũi = Ui.

3 i.e., for γ ∈ Γi, ϕ̃ij(γx) = fij(γ)ϕ̃ij(x) for all x ∈ Ũi.
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Example 1.116. A manifold M with a boundary can be given an orbifold structure. In which its boundary

becomes a ’mirror’. Any point on the boundary has a neighborhood modelled on Rn /Z2 , where Z2 acts by

reflection in a hyperplane.

When n = 2m, we say the orbifold is complex of dimension m if each Ũi is seen as a subset of Cm, the

gluing maps φ̃ij are holomorphic and the group Γi acts on Ũi by biholomorphisms.

Proposition 1.117 (Quotient Orbifolds). If M is a manifold and Γ is a group acting properly discontinuously

on M , then M /Γ has the structure of an orbifold.

See Proposition 13.2.1. [58] for a proof.

Note that each point p in an orbifold X is associated with a group Γp, well-defined up to isomorphism.

In a local coordinate system U = Ũ/Γ, Γp is the isotropy group of any point in Ũ corresponding to p.

Alternatively, Γp may be defined as the smallest group corresponding to some coordinate system containing

p. In other words, it is the group of transformations that preserve the local geometry of the orbifold at that

particular point. This group characterizes the singular behavior around the singularity point and determines

the type of singularity at that point.

Remark 1.118. Given an isomorphism class I, we can consider the subset ΣI = {p ∈ X : [Γp] = I}. This

induces a stratification of X , X =
⊔
α

Sα, where Sα is a connected component of some Σα. The regular

stratumXreg = Σ{Id} contains all the nonsingular points. The setXsing = X \Xreg = {p ∈ X : [Γp] 6= Id}

is the singular locus of X , and p ∈ Xsing is called an ”orbifold point”. Clearly, X is a manifold if and only if

Xsing = ∅.

Example 1.119 (Kummer surface). Consider the following action of Z2 on T4:

(eit1 , eit2 , eit3 , eit4) 7→ −(eit1 , eit2 , eit3 , eit4),

The quotient T4/Z2 is an example of a compact orbifold with sixteen isolated singular points. This orbifold

is known as the Kummer surface, and it is a singularK3-surface. Notice that the flat metric on T4 descends

to a flat metric on T4/Z2.

Example 1.120. The hyperbolic planeH2 being acted upon by the projective groupPSL(2,Z), which consists

of 2 × 2 matrices with integer entries and determinant 1 taking into account the projective equivalence of
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Figure 1.1: Kummer surface (Photo Credit: Claudio Rocchini)

matrices. This group acts on the upper half-plane in a discontinuous manner via fractional linear transfor-

mations. The quotient spaceH2 /PSL(2,Z) gives rise to the modular orbifold, which captures the geometry

of the modular group’s action on the hyperbolic plane.

Definition 1.121. An orbifold X is of depth one if, for each connected component Σ of Xsing, the isotropy

groups of the points of Σ are all isomorphic.

Remark 1.122. Since orbifolds have only quotient singularities, any smooth object on a manifold has a natural

generalization to orbifolds. For instance, a function f : X → R on an orbifold is smooth if, in any orbifold

chart (U, φ, Ũ ,Γ), its lift to Ũ is smooth and Γ-invariant. Similarly, if X is a complex orbifold, a function

f : X → C is holomorphic if, for any orbifold chart (U, φ, Ũ ,Γ), its lift to Ũ is holomorphic and Γ-invariant.

We can similarly define smooth forms and tensor fields on an orbifold. This leads to a notion of a Riemannian

metric on an orbifold, namely, it is a smooth symmetric 2-tensor that, for each orbifold chart (U, φ, Ũ ,Γ),

lifts to a Γ-invariant Riemannian metric on Ũ . Correspondingly, on a complex orbifold, there is a notion of

a Kähler metric.

Definition 1.123 (Good Riemannian orbifold). A good Riemannian orbifold is a triple (M, g,Γ) where (M, g)

is a Riemannian manifold and Γ is a (proper) discontinuous group of isometries Iso(M, g) acting effectively

on M . The underlying space of the orbifold is M/Γ. A bad Riemannian orbifold is a Riemannian orbifold

that does not arise as a global quotient.

Definition 1.124 (Resolution). Let X be a singular complex orbifold. A resolution of X is a pair (X̂, π) such
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that X̂ is a complex manifold, the map π : X̂ → X is surjective and

π
∣∣
X̂\π−1(Xsing)

: X̂ \ π−1(Xsing) → X \Xsing,

is a biholomorphism. The preimageE := π−1(Xsing) is called the exceptional set of the resolution. Thus, in

a resolution we resolve the singularities by replacing each singular point by a submanifold, or more general

subvariety. One way to construct resolutions is to use a technique called blowing-up, which we will define

in the next section.

Example 1.125. Consider the complex orbifold C2/Z2 where the group Z2 acts by reflecting across the co-

ordinate axes. The quotient space C2/Z2 has a singular point at the origin. The line bundle OCP1(−2) is a

resolution of C2/Z2, with the exceptional set E = π−1(0) = CP1.

1.8 Blow-up in Complex Geometry

Blowing-up is a process in algebraic and differential geometry that can be used to obtain newer manifolds

from known ones and resolve singularities. The blow-up replaces the singular point with a smooth mani-

fold, making it easier to study. Blow-ups play a crucial role in intersection theory, which is a fundamental

concept in algebraic and complex geometry. In some cases, blow-ups provide a geometric construction that

simplifies the analysis of a complex manifold. They introduce exceptional divisors that can carry valuable

geometric and topological information. Before formally defining the blow-up of a complex manifold X at a

point p ∈ X , let us consider the blow-up of Cn at the origin.

Example 1.126 (Blowing-up origin inCn). Consider then-dimensional complex Euclidean spaceCn, equipped

with coordinates (z1, z2, . . . , zn). The blow-up of Cn at the origin, denoted as BlCn

0 , is constructed by re-

placing the origin with complex projective space P(Cn) = CPn−1. In the Cartesian product Cn × CPn−1,

consider the tautological subset C̃P(n−1) consisting of pairs (z, l) such that z ∈ l. This tautological subset

is infact the total space of the tautological line bundle OCPn−1(−1) because if Z = [Z1; . . . ;Zn] are the

homogeneous coordinates on CPn−1 we can write

C̃P(n−1) = {(z, Z) ∈ Cn × CPn−1 : ziZj = zjZi} = OCPn−1(−1).

So we get

BlCn

0 = OCPn−1(−1) �
� //

))SSS
SSS

SSS
SSS

SS
CPn−1 × Cn

��

// Cn

CPn−1

(1.2)
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Projection on first component, Pr1 : BlCn

0 → CPn−1 is onto. Projection on second component Pr2 :

BlCn

0 → Cn induces a diffeomorphism except over the zero vector of Cn; the preimage of the zero vector is

CPn−1. The map β := Pr2 : BlCn

0 → Cn is the blow-down map and the exceptional divisor of the blow-up,

E := β−1(0) is a copy of CPn−1. The map β collapses the exceptional divisor to the origin. Topologically,

Bl0Cn \E = OCPn−1(−1) \CPn−1 ∼= Cn \ {0} means that blowing-up consist in gluing CPn−1 instead of

the origin to Cn \ {0}. Geometrically, C̃P(n−1) comprises all one-dimensional linear subspaces of Cn, but

now distinct subspaces have distinct zero vectors.

Figure 1.2: Blowing-up origin in C2 (Photo Credit: Yankı Lekili)

This construction easily generalizes to the blow-up of a point p in a complex manifold X:

1. Choose a holomorphic chart (U, φ) around p onX , such that φ(U) is ball B in Cn centred as 0 and φ

maps p to 0.

2. Replace U by Pr−1
2 (B) where Pr2 : OCPn−1(−1) → Cn is the projection on second factor in (1.11)

on page 48; more precisely, U \ {p} appears as an open set in U as well as in X \ {p} and we glue

together Pr−1
2 (B) and X \ {p} along U \ {p}.

The resulting object is denoted by BlXp and is described by

BlXp = (X \ {p})
⊔

U\{p}=Pr−1
2 (B)\Pr−1

2 (0)

Pr−1
2 (B).
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This can be easily made into a n-dimensional complex manifold and comes equipped with a natural holo-

morphic blow-down map β : BlXp → X . The exceptional divisorE := β−1(p) is isomorphic to the complex

projective space P(TpX).

Example 1.127 (Blowing-up Cn along Cn−k for n− k ≥ 2). With the same process we can define

BlCn

Cn−k := Cn−k ×OCPk−1(−1).

More generally, as explained in [31] on pages 603-604, this local picture can be used unambiguously to

define the blow-up BlXY of X along a complex submanifold Y by replacing Y by E = P(NX(Y )), where

NX(Y ) is the normal bundle of Y inX . The blow-down β : BlXY → X is the proper holomorphic map such

that β : BlXY \E → X \ Y is the identity map. Here we recall some topological and geometric properties

of manifolds obtained by blowing-up a complex manifold.

Proposition 1.128. Let X be a complex manifold, and Y a closed, embedded complex submanifold in X .

Then

π1(BlXY ) = π1(X).

See Lemma 2.2.8 [61] for a proof.

Proposition 1.129. LetX be a complexn-manifold, and Y a closed, embedded complex (n−k)-submanifold

in X . Then

bi(BlXY ) = bi(X) +
k−1∑
j=1

bi−2j(Y ).

See Corollary 2.2.10 [61] for a proof.

Proposition 1.130. If X is an algebraic variety and p ∈ X , then BlXp is algebraic.

See page 192 [31] for a proof.

Proposition 1.131. Suppose that X is a complex manifold of complex dimension n, Y a closed complex

submanifold in X with of complex dimension k, BlXY the blow-up of X along Y with exceptional divisor

E and LE the holomorphic line bundle on BlXY associated to E. A calculation similar to the adjunction

formula shows that

KBlXY
= β∗KX ⊗ Ln−k−1

E .
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In particular, the first Chern classes of BlXp and X are related by

c1(BlXY ) = β∗c1(X)− (n− k − 1)c1(LE).

See Proposition 6.4.2 [29] for a proof.

1.9 Weighted Projective Space

In this section, we discuss the concept of weighted projective space introduced by David Mumford in 1965.

Definition 1.132 (Compact weighted projective space). Let w0 ∈ N and w = (w1, . . . , wn) ∈ Nn. The

compact weighted projective space correponding to the weight vector −→w = (w0, w) is the quotient

CPn−→w = (Cn+1 \ {0}) /C∗,

with C∗-action on Cn+1 is given by

t.(z0, z1, . . . , zn) = (tw0z0, t
w1z1, . . . , t

wnzn), ∀t ∈ C∗.

Definition 1.133 (Non-compact weighted projective space). Let w0 ∈ N and w = (w1, . . . , wn) ∈ Nn. The

non-compact weighted projective space correponding to the weight vector −→w = (−w0, w) is the quotient

CPn−→w = (C× Cn \ C× {0}) /C∗,

with C∗-action given by

t.(z0, z1, . . . , zn) = (t−w0z0, t
w1z1, . . . , t

wnzn), ∀t ∈ C∗.

Remark 1.134. The weighted projective spaceCPn−→w (compact or non-compact) has the structure of a complex

orbifold, since the C∗-action is holomorphic, faithful and orientation preserving.

Example 1.135. The weighted projective space CPn
(1,1,...,1) is the usual complex projective space CPn.

Example 1.136. Let r ∈ N, the non-compact weighted projective space CPn
(−r,1,...,1) is the total space of the

line bundle OCPn−1(−r).

1.10 Singularities of the Weighted Projective Space

To describe singularities of the weighted projective space, we begin with the following observation. Assume

that w0 > 1, and let p = (1, 0, . . . , 0) ∈ Cn+1 \ {0}. Under the action of t ∈ C∗, (1, 0, . . . , 0) is taken to
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t.p = (tw0 , 0, . . . , 0). So the stablizer of p is given by

Stab(p) = {t ∈ C∗ : tw0 = 1} ∼= Zw0 .

With the same idea we can see that for a point p = [z0, z1, . . . , zn] ∈ CPn
(w0,w), if we set

d = gcd{wi : zi 6= 0, 0 ≤ i ≤ n},

then we get two cases:

1. Case 1: If d = 1, then p is a non-singular point.

2. Case 2: If d 6= 1, then p is a singular point. Near the point p, the weighted projective space is locally

like Ck−1 × (Cn−k+1 /Zd) where k = card{i : zi 6= 0, 0 ≤ i ≤ n} and Zd acts on Cn−k+1 by

e
2πi
d .(ξi1 , ξi2 , . . . , ξin−k+1

) = (e
2πi
d

wi1 ξi1 , e
2πi
d

wi2 ξi2 , . . . , e
2πi
d

win−k+1 ξin−k+1
),

and {i1, . . . , in−k+1} = {i : zi = 0}. See pages 133-134 [38] for more details.

For the non-compact weighted projective space CPn
(−w0,w), the singular points correspond to the

singular points of CPn−1
w in CPn

(−w0,w) given by

CPn−1
w = {[z0, z1, . . . , zn] ∈ CPn

(−w0,w) : z0 = 0} ⊂ CPn
(−w0,w).

Remark 1.137. The above discussion shows that

(a) The compact weighted projective space CPn
(w0,w) is smooth if and only if w0 = 1 and w =

(1, . . . , 1), i.e, it is the usual weighted projective space CPn.

(b) The non-compact weighted projective space CPn
(−w0,w) is smooth if and only if w = (1, . . . , 1)

and CPn
(−w0,1,...,1)

∼= OCPn−1(−w0).

Remark 1.138. A non-compact weighted projective space CPn
(−w0,w) has only isolated singularities, if

and only if

gcd(wi, wj) = 1, ∀i 6= j ∈ {0, . . . , n}. (1.3)

In this case, the number of singularities is equal to the number of values wi that are not equal to 1

for i ∈ 1, . . . , n. If wi 6= 1, the singularity corresponding to the point [0 : . . . : 0 : 1 : . . . : 0] ∈

CPn
(−w0,w) and is modeled by the orbifolds Cn/Zwi obtained by the action of the cyclic group ofwi-th

roots of unity given by

e
2πi
wi .(ξ0, ξi1 , . . . , ξin−1) = (e

− 2πi
wi

w0ξ0, e
2πi
wi

wi1 ξi1 , . . . , e
2πi
wi

win−1 ξin−1),

with {i1, . . . , in−1} = {j ∈ {1, . . . , n} : zj 6= i}.
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Example 1.139. Let Γ(−w0,w) be the cyclic group of w0-roots unity defined by

Γ(−w0,w) = 〈diag(ξw1 , . . . , ξwn)〉 ∼= Zw0 ,

where ξ = e
2πi
w0 . Consider the action of Γ(−w0,w) on Cn given by

(z1, . . . , zn) 7→ (ξw1z1, . . . , ξ
wnzn).

The group Γ(−w0,w) is a finite subgroup of U(n), so X = Cn
/
Γ(−w0,w) has the structure of an

orbifold. It has an isolated singularity at the origin if and only if

gcd(w0, wi) = 1, ∀i ∈ {1, . . . , n}. (1.4)

Definition 1.140. Assume that the complex orbifoldX = Cn
/
Γ(−w0,w) has an isolated singularity at

the origin. A blow-up of the origin is given by the non-compact weighted projective space CPn
(−w0,w)

with the blow-down map β : CPn
(−w0,w) → Cn

/
Γ(−w0,w) given by

[z0, z1, . . . , zn] 7→ (z
w1
w0
0 z1, . . . , z

wn
w0
0 zn).

The above map is well defined because for any t ∈ C∗,

β([t−w0z0, t
w1z1, . . . , t

wnzn]) = ((t−w0z0)
w1
w0 tw1z1, . . . , (t

−w0z0)
wn
w0 twnzn) = (z

w1
w0
0 z1, . . . , z

wn
w0
0 zn).

The exceptional divisorE = β−1(0) of this weighted blow-up is naturally identified with the compact

weighted projective space E = CPn−1
w .

Remark 1.141. Note that Cn/Γ(−1,1,...,1) = Cn, so

BlCn

0 = CPn
(−1,1,...,1) = OCPn−1(−1),

and thus we obtain that this blow-up is consistent with Example 1.126 in the page 38.

Definition 1.140 shows that for any w0 ∈ N, the non compact weighted projective space CPn
(−w0,w)

is a holomorphic line bundle over the compact weighted projective space CPn−1
w .

Definition 1.142. For w ∈ Nn, the tautological line bundle of the compact weighted projective space

CPn−1
w is defined by

OCPn−1
w

(−1) := CPn
(−1,w),

Similarly for w0 ∈ N we define

OCPn−1
w

(−w0) := (OCPn−1
w

(−1))⊗w0 = CPn
(−w0,w).
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Similar properties, as Proposition 1.42, remain valid for the weighted projective space as follows.

Proposition 1.143. For any w0 ∈ N and w ∈ Nn, the holomorphic line bundle OCPn−1
w

(−w0) has no

non-trivial global holomorphic section.

Proof. Let s ∈ H0(CPn−1
w ,OCPn−1

w
(−w0)) be a global holomorphic section. Then the composition

with the blow-down map β ◦ s : CPn−1
w → Cn

/
Γ(−w0,w) is a holomorphic function defined on the

compact weighted projective space CPn−1
w , so it is a constant β ◦ s ≡ c. Clearly, this can only happen

if s = 0 as an element of H0(CPn−1
w ,OCPn−1

w
(−w0)).

1.11 Singularities of Type I
In this section, we introduce the notion of singularities of type I. Singularities of type I were intro-

duced by Vestislav Apostolov and Yann Rollin in 2016 in [4]. Consider the congruence relation ∼ on

Nn+1 defined by

(a0, a1, . . . , an) ∼ (b0, b1, . . . , bn) ⇐⇒ a0 = b0, ai ≡ bi mod a0.

We can check that if (a0, a) ∼ (b0, b) then Cn
/
Γ(−a0,a)

∼= Cn
/
Γ(−b0,b) .

Example 1.144. Consider C3/Γ(−5,3,2,1), and blow-up the origin by replacing C3/Γ(−5,3,2,1) with

CP3
(−5,3,2,1). By remark 1.138, this new space is still singular with the isolated singularities at two

points [0 : 1 : 0 : 0] and [0 : 0 : 1 : 0]. These singularities are locally of the forms C3/Γ(−3,1,2,1) and

C3/Γ(−2,3,1,1) so we can still blow them up by replacing these by CP3
(−3,1,2,1) and CP3

(−2,1,1,1). Since

(2, 3, 1, 1) ∼ (2, 1, 1, 1), CP3
(−2,1,1,1) is smooth. However, CP3

(−3,1,2,1) still has a singularity locally

in the form of C3/Γ(2,1,1,1). By blowing it up and replacing it with CP3
(−2,1,1,1), we finally obtain a

smooth complex manifold. There is a corresponding tree of singularities for C3/Γ(−5,3,2,1):

(5,3,2,1)

(3,1,2,1)

(2,1,1,1)

(2,3,1,1)∼(2,1,1,1)

Now we define singularities of type I.

Definition 1.145 (Singularities of type I). A singularity of an orbifold Cn/Γ(−w0,w) with (−w0, w) as

in the (1.3) on page 42 is a singularity of type I if either
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(a) (w0, w) ∼ (w0, 1, . . . , 1).

or

(b) (w0, w) ∼ (a0, a) such that CPn
(−a0,a)

has only isolated singularities of the forms Cn
/
Γ(−b0,b)

of type I. That is, after finitely many weighted blow-up we can end with a smooth manifold.

For singularities of typeI, we can represent a tree of singularities as follows. Start with (a0, a1, . . . , an),

and inductively construct each branch corresponding to ai 6= 1. At each step, a new singularity is ob-

tained by:

(a0, a1, . . . , ai−1, ai, ai+1, . . . , an) → (ai, a1, . . . , ai−1, x, ai+1, . . . , an),

where x ∈ N is such that x ≡ −a0 (mod ai). According to the definition of singularities of type

I, each branch is considered complete when it end up to (w0, 1, . . . , 1) with corresponding smooth

weighted blow-up.

Example 1.146. The singularity of the orbifold C3/Γ(−5,3,2,1) in Example 1.144 is a singularity of type

I because we end with (2, 1, 1, 1) in each branch.

Example 1.147. Let (w0, w) = (p, q, 1, . . . , 1), where p and q are two positive coprime integers such

that p > q. Then, (p, q, 1, . . . , 1) is of type I. A similar inductive procedure shows that by starting

with (p0, q0) = (p, q) and blowing-up at the stage k, by performing the Euclidean algorithm, we get

pk = qk−1 < pk−1 and 0 < qk < pk−1 such that qk ≡ −pk−1 (mod qk−1). Clearly, in each stage, pk

and qk are coprime, so we have an isolated singularity. Since qk < qk−1, we will eventually obtain a

weight vector of the form (pN , 1, 1, . . . , 1).

(p, q, 1, …, 1)

(p1,q1, 1, …, 1)

…

(pN , 1, 1, …, 1)

Definition 1.139 shows that locally we can glue non-compact weighted projective spaces to resolve

partially the isolated singularities of Cn/Γ(−w0,w). The fact that the singularity is of type I means
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that this type of partial resolution can be iterated finitely many times to obtain a smooth manifold.

Globally, a complex orbifold with isolated singularities of type I admits a resolution (which is not

necessarily unique) denoted as X̂ of type I. More generally, letX be a compact complex orbifold of

depth 1 with singularities of type I along a connected subset Y with codimension k greater than 2.

We can define a type I resolution of X along Y as follows. Since X has singularities of type I along

Y of codimension k, the normal bundle of Y in X is a fiber bundle over Y with fibers of the form

Ck
/
Γ(−w0,w) , where Γ(−w0,w) is a discrete finite subgroup of U(k) as in Definition 1.145. Now, in a

local chart

φ : U → V1 × V2 ⊂ Cn−k × (Ck
/
Γ(−w0,w)),

with φ(U ∩ Y ) = V1 × {0}, we can consider the resolution V1 × V̂2 with V̂2 = β−1(V2), where

β : CPk
(−w0,w) → Ck

/
Γ(−w0,w),

is the natural blow-down map of Definition 1.142. That is, we can consider the resolutionβU : Û → U ,

inducing a commutative diagram

Û
ϕ̂ //

βU

��

V1 × V̂2

Id×β

��
U

ϕ // V1 × V2,

with φ̂ a biholomorphism. This resolution does not depend on the choice of coordinates. Indeed,

if f : V1 × V2 → V1 × V2 is a biholomorphism sending V1 × {0} onto V1 × {0}, then it lifts to a

Γ(−w0,w)-equivariant biholomorphism f̃ : V1 × Ṽ2 → V1 × Ṽ2 with Ṽ2 the lift of V2 to Ck under the

quotient map q : Ck → Ck
/
Γ(−w0,w) .

The differential of f̃ in the Ṽ2 factor induces, when restricted to V1 × {0}, a biholomorphism

df̃2 : V1 × Ck → V1 × Ck,

which is linear in the Ck factor and Γ(−w0,w)-equivariant. In paticular, it has a weighted projectiviza-

tion

Pw(df̃2) : V1 × Pw(Ck) → V1 × Pw(Ck).

One can then easily check that the biholomorphism f : V1 × V2 → V1 × V2 cab be lifted to a

biholomorphism

f̂ : V1 × V̂2 → V1 × V̂2,
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given by Pw(df̃2) on V1 × Pw(Ck) and by f on V1 × (V̂2 \ Pw(Ck)) = V1 × (V2 \ {0}).

Clearly, this biholomorphism induces the commutative diagram

V1 × V̂2
f̂ //

Id×β

��

V1 × V̂2

Id×β

��
V1 × V2

f // V1 × V2,

confirming that the resolution Û does not depend on the choice of coordinates. This means that we

can consider a partial resolution π : X̂ → X along Y in which an open set U as described above

corresponds to the local resolution βU : Û → U , and away from Y is simply the identity map.

We say that the partial resolution X̂ is the (−w0, w)-weighted blow-up of X along Y . We denote

by E = π−1(Y ) the exceptional divisor of this weighted blow-up. Notice that π : E → Y is a fiber

bundle with fibers CPk−1
w . In fact, there is a rank k complex vector bundle W → Y and a fiberwise

Γ(−w0,w)-action onW such thatNX(Y ) =W
/
Γ(−w0,w) andE = Pw(W ) is the fiberwise weighted

projectivization of W . In general, X̂ is not smooth and has orbifold singularities of depth one along

suborbifolds corresponding to the isolated singularities of the fibers of E → Y . In particular, these

suborbifolds are covers of Y . Assuming the initial singularity along Y is of type I, we can perform

weighted blow-ups along these suborbifolds. These weighted blow-ups can still have suborbifold

singularities of depth one, but by performing additional weighted blow-ups, we can eventually obtain

a smooth resolution after finitely many steps.

In other words, when the singularity along Y is of type I, we can find a finite sequence of weighted

blow-ups

X̂l → X̂l−1 → . . .→ X̂1 → X

with X̂1 = X̂ and X̂l smooth.

Proposition 1.148. LetX is a compact complex orbifold of complex dimension n. Suppose thatX has

only depth one singularities of type I and we  denote by Y the singular part of X . Assume that the

complex codimension k of Y is greater than 2. For any resolution X̂ ofX of type I, h(X̂) is naturally

realized as the Lie subalgebra of h(X) consisting of holomorphic vector fields on X tangent to Y .

Proof. We proceed with a proof similar to Proposition 6.4.1 in [29]. Firstly, we demonstrate that any

(real) holomorphic vector field, denoted as V̂ , on X̂ descends to a (real) holomorphic vector field,

denoted as V , on X which is tangent to Y . Indeed, since π : X̂ \ E → X \ Y is a biholomorphism,
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V̂ naturally descends to a holomorphic vector field onX \Y . Via the short exact sequence of vector

bundles

0 // TE // TX̂

��

// TX̂ /TE // 0,

E,

the restriction V̂
∣∣
E

determines a holomorphic section of the normal bundle

TX̂
/
TE ∼= N

X̂
(E).

On the other hand, on E, the restriction of π induces a fiber bundle

E ∼= Pw(W )

��
Y,

where W is such that NX(Y ) = W
/
Γ(−w0,w) for a Γ(−w0,w) of type I and Pw(W ) is the weighted

fiberwise projectivization of W . Thus, each fiber of NX(Y ) corresponds to CPk−1
w with the restric-

tion of N
X̂
(E) corresponding to OCPk−1

w
(−w0). Using Proposition 1.143, it has no non-trivial global

holomorphic section. Consequently, V̂
∣∣
E

is tangent to E. Now via π∗ : TE → π∗TY , V̂
∣∣
E

induces

a section π∗(V̂
∣∣
E
) ∈ H0(E, π∗TY ). On each fiber of π, π∗TY is trivial, so its only holomorphic

sections are constant sections. This implies that V = π∗(V̂ ) is a well-defined continuous vector field

on X , which is tangent to Y and holomorphic on X \ Y . By Hartogs’ theorem, V is holomorphic

everywhere on X , hence it belongs to the Lie subalgebra,

hY (X) = {ξ ∈ h(X) : ξ
∣∣
Y
∈ H0(Y, T 1,0Y )}.

Furthermore, the resulting map from h(X̂) to hY (X) is a Lie algebra morphism. This map is clearly

injective, and we shall now show that it is surjective, establishing that it is a Lie algebra isomorphism.

Indeed, any element V of hY (X) lifts to a (real) holomorphic vector field, say V̂ , on X̂ \ E, via the

isomorphism π : X̂ \ E → X \ Y . We need to check that V̂ extends to all of X̂ as an element of

h(X̂). Since V̂ is holomorphic on X̂ \E, we only have to worry about the behavior of V̂ near points

p of the exceptional divisor E. Since p has a neighborhood in X̂ isomorphic to Cn−k × CPk
(−w0,w),

we can use local holomorphic coordinates

(y1, . . . , yn−k, Z1, . . . , Zk) ∈ Cn−k × Ck
/
Γ(−w0,w),
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near y = π(p). Relative to these coordinates, since V
∣∣
Y

is tangent to Y , V will be here conveniently

regarded as a holomorphic (complex) vector field of type (1, 0) in the form of:

V =
n−k∑
i=1

ai
∂

∂yi
+

k∑
i,j=1

bijZj
∂

∂Zi
,

where the ai and bij are holomorphic functions of y1, . . . , yn−k, Z1, . . . , Zk. Now, since this is an

orbifold chart, V must beΓ(−w0,w)-invariant as well, which means that bij = 0 for i 6= j withwi 6= wj

and bii does not depend on (Z1, . . . , Zk) whenever wi 6= 1. Correspondingly, near p we can use

coordinates (y1, . . . , yn−k, z1, . . . , zk) such that

π(y1, . . . , yn−k, z1, . . . , zk) = (y1, . . . , yn−k, z
w1
w0
1 , z

w2
w0
1 z2, . . . , z

wk
w0
1 zk) = (y1, . . . , yn−k, Z1, . . . , Zk),

where we assume without loss of generality that z1 6= 0 for the weighted projective class correspond-

ing to p. Then

π∗(Zi
∂

∂Zi
) =


w0

w1
z1

∂

∂z1
−

k∑
i=2

wi

w1
zi
∂

∂zi
: i = 1

zi
∂

∂zi
: i > 1

and π∗(Zi
∂

∂Zj
) = zi

∂

∂zj
for i 6= j 6= 1 with wi = wj = 1. Moreover, if w1 = 1, then for i 6= 1 with

wi = 1, π∗(Zi
∂

∂Z1
) = w0z1zi

∂

∂z1
−

k∑
j=2

wj

w1
zjzi

∂

∂zj
. This demonstrates that V̂ is well-defined on

the whole of X̂ as an element of h(X̂).
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CHAPTER 2

MANIFOLDS WITH CORNERS AND LIE STRUCTURES AT INFINITY

Many problems in differential geometry and partial differential equations often involve manifolds

with boundaries, such as boundary value problems. The category of smooth manifolds alone presents

challenges, and even the category of manifolds with boundaries is not sufficiently convenient, as the

product of two manifolds with boundaries does not yield a manifold with a boundary. This complex-

ity prompts the introduction of the category of manifolds with corners. Manifolds with corners arise

in various ways, as will be shown later. Constructions leading to manifolds with corners include the

desingularization of singular varieties (blow-up) and the compactification of non-compact spaces.

Melrose calculus, also known as pseudodifferential operator calculus or boundary value calculus, is a

framework that extends the theory of pseudodifferential operators to manifolds with boundaries and

corners. Developed by Richard Melrose in the 1980s, it has found applications in microlocal analysis,

geometric analysis, etc. The key idea in Melrose calculus is to study operators that behave like pseu-

dodifferential operators near the boundary or corners of a manifold. Pseudodifferential operators

are a class of linear operators with symbols that have asymptotic expansions, playing a fundamental

role in harmonic analysis and partial differential equations. In Melrose calculus, these operators are

generalized to handle boundary value problems and singularities.

We begin this chapter with a brief introduction to manifolds with corners and blow-ups in the sense

of Melrose. The definition of manifolds with corners is not universally agreed upon. In this chapter,

we follow the approach outlined by Richard Melrose in his book ’Differential Analysis on Manifolds

with Corners’ [47]. In the second part of this chapter, we introduce Lie structures at infinity based on

the series of papers by Ammann-Lauter-Nistor in [2].

2.1 Manifolds with Corners

The definition of a manifold with corners below is based on the model spaces

Rn
k = [0,∞)k × Rn−k = {x ∈ Rn |xi ≥ 0, 1 ≤ i ≤ k},

which are products of half-lines and lines. The topology on Rn
k is inherited from Rn. In particular, a

subset Ω ⊂ Rn
k is open if there exists an open set Ω0 ⊂ Rn such that Ω = Ω0 ∩ Rn

k . If Ω ⊂ Rn
k is an

open subset, we defineC∞(Ω) as the set of functions u : Ω → C such that u is smooth in Ω◦ with all
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derivatives bounded on K ∩ Ω◦ for all subsets K ⋐ Ω. Here, Ω◦ = Ω ∩ int(Rn
k) and K ⋐ Ω means

that the closure of K is a compact subset of Ω. Similarly, smooth structures, diffeomorphisms, and

partitions of unity are defined in a natural way on Rn
k .

Definition 2.1 (Smooth structure with corners). LetX be a Hausdorff topological space. A chart with

corners on X is a map φ : U → Rn
k , which is a homeomorphism from an open set U ⊆ X onto an

open subset of Rn
k , for some k. Two charts (φ1, U1) and (φ2, U2) are said to be compatible if either

U1 ∩ U2 = ∅, or φ2 ◦ φ−1
1 : φ1(U1 ∩ U2) → φ2(U1 ∩ U2) is a diffeomorphism between open subsets

of Rn
k1

and Rn
k2

. An atlas on X is a system of charts {(φa, Ua)} for a ∈ A, which are compatible in

pairs and cover X , i.e., X =
⋃
a∈A

Ua. A smooth structure with corners on X is a maximal atlas, i.e.,

an atlas that contains any chart compatible with each element of the atlas.

Definition 2.2 (t-manifold). A t-manifold is a paracompact Hausdorff space X endowed with some

smooth structure with corners on it.

Definition 2.3 (Submanifold). If X is a t-manifold, then a submanifold Y ⊆ X is a connected subset

with the property that for each y ∈ Y , there exists a coordinate system (φ,U) around y, a linear

transformation G ∈ GL(n,R), and an open neighborhood Ω′ ⊂ Rn of 0 in terms of which

φ
∣∣
U
: Y ∩ U → G.(Rn′

k′ × {0}) ∩ Ω′,

for some integers n′ and k′ = k′(y).

Definition 2.4 (p-submanifold). A submanifold Y in a t-manifold X is called a p-submanifold if, for

each y ∈ Y , there exist local coordinates φ at y within a coordinate neighborhood Ω ⊂ X , such that

φ(Ω ∩ Y ) = L ∩ φ(Ω),

where

L = {x ∈ Rn
k : xk−j+1 = . . . = xk = 0, xk+1 = . . . = xk+r = 0},

and j + r is the codimension of the submanifold. This implies that X and Y have a common local

product decomposition. The ’p’ in p-submanifold stands for ’product’.

Example 2.5. The Sn−1
k := {x ∈ Rn

k : ‖x‖ = 1} = Sn−1 ∩ Rn
k is a p-submanifold of the manifold

with corners Rn
k .

We now study the notion of the boundary ∂X for t-manifolds.
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Definition 2.6 (Boundary hypersurface). For a general t-manifold set

∂lX = {p ∈ X : there is a chart φ near p with φ(p) ∈ ∂lRn
k},

where

∂lRn
k = {x ∈ Rn

k : xi = 0 for exactly l of the first k indices}.

Then X◦ = ∂0X . More generally, we shall set

∂lX = ∂lX =
⋃
r≥l

∂rX.

Thus ∂lX consists precisely of the points in the boundary of X laying in the interior of a corner of

codimension l, while ∂lX consists of the points at which the boundary has codimension at least l. We

also use the notation ∂X = ∂1X , so X◦ = X \ ∂X . A boundary hypersurface of a t-manifold X is

the closure of a component of ∂1X; the collection of boundary hypersurfaces will be denotedM1(X).

Definition 2.7 (Manifold with corners). A manifold with corners is a Hausdorff space with aC∞ struc-

ture with corners (a t-manifold) such that each boundary hypersurface is a submanifold in the sense

of Definition 2.3.

Definition 2.8. The cotangent space of a manifold with corners X at p ∈ X is defined by

T ∗
pX = IpX/(IpX)2,

where IpX is the ideal of smooth functions on X vanishing at p:

IpX = {f ∈ C∞(X) : f(p) = 0}.

Therefore, the tangent space at p is defined by the dual of the cotangent bundle, i.e.,

TpX = (IpX/(IpX)2)∗,

where

(IpX)2 = {f ∈ C∞(X) : ∃k ∈ N, g1, h1, . . . , gk, hk ∈ IpX s.t. f =
k∑

i=1

gihi}.

Example 2.9. Examples and non-examples of manifolds with corners

(a) The tetrahedron is a 3-manifold with corners but the square pyramid is not.
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Figure 2.1: The teardrop

(b) The teardrop T = {(x, y) ∈ R2 | x > 0, y2 ≤ x2 − x4} is not a 2-manifold with corners,

because its unique boundary hypersurface is not a submanifold.

Lemma 2.10. In a manifold with corners, each boundary hypersurface H has a global defining func-

tion in the sense that there exists ρH ∈ C∞(X) such that ρH ≥ 0, H = ρ−1
H (0) is the boundary

hypersurface and the differential dρH is nowhere zero on H . Near each point of H , there are local

coordinates with ρH as the first element.

Example 2.11. Consider a square in R2 defined by [0, 1] × [0, 1]. This is a manifold with corners.

Let us denote its boundary hypersurfaces as H1,H2,H3,H4, corresponding to the left, right, bot-

tom, and top sides of the square, respectively. The boundary defining functions can be denoted as

ρH1 , ρH2 , ρH3 , ρH4 . Specifically:

ρH1(x, y) = x for H1,

ρH2(x, y) = 1− x for H2,

ρH3(x, y) = y for H3,

ρH4(x, y) = 1− y for H4.

These functions are C∞ and considered as defining functions for the respective boundary hypersur-

faces.

Definition 2.12. Let U ⊆ Rn
k be open. For each u = (u1, . . . , un) in U , define the boundary depth of

u inU denoted by depthU (u) as the number of u1, . . . , uk which are zero. In other words, depthU (u)

is the number of boundary hypersurfaces of U containing u.

Definition 2.13 (Boundary depth). Let X be an n-manifold with corners. For p ∈ X , choose a local

chart (U, φ) around p on the manifold X with φ(p) = u for u ∈ U ⊆ Rn
k , and define the depth

depthX(x) of x in X as depthX(x) = depthU (u). This is independent of the choice of (U, φ).
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Example 2.14. Let X be a manifold with boundary and p ∈ X . If p ∈ int(X), then the boundary

depth of p is equal to 0 and if p ∈ ∂X , then the boundary depth of p is equal to 1.

Now, let us define the concept of stratified spaces. These spaces are generalization of manifolds with

corners.

Definition 2.15 (Stratified space). A stratified space of dimension n is a pair (X,S), where X is a

locally compact, separable, metrizable space and S is a stratification, that is, S = {Si}i∈I is a locally

finite collection of disjoint locally closed subsets of X and I is a poset such that:

(a)
⋃
i∈I

Si = X .

(b) Si ∩ Sj is nonempty if and only if Si ⊂ Sj , and this happens if and only if i = j or i < j.

(c) Each Si is a locally closed smooth submanifold of Rn.

The pieces Si are called strata. The set of strata is itself a poset, with the relation induced from

inclusion.

Definition 2.16 (Depth of a stratified space). The depth of a stratified space (X,S) is the largest k

such that one can find k + 1 different strata with S1 < S2 < . . . < Sk < Sk+1.

Example 2.17. Any algebraic variety is naturally a stratified space.

Example 2.18. Consider the closed unit disk D2 in R2 and its boundary ∂D2, which is the unit circle.

We can stratify this space as two stratas. The top stratum is the interior of the disk D2. It is an open

subset of R2 and has dimension 2. And the bottom stratum is the boundary of the disk ∂D2, which

is the unit circle. It is a closed subset of R2 and has dimension 1. This example illustrates a simple

case of a stratified space where each stratum is a subset of the whole space, and they have different

dimensions.

Example 2.19. Any manifold with corners X of dimension n is a stratified space. For each k =

0, . . . , n, define the k-th depth stratum of X to be:

Sk(X) = {x ∈ X : depthX(x) = k} = ∂kX.

Definition 2.20 (Manifold with fibered corners). We say that (M,φ) is a manifold with fibered corners

if there is a partial order on the boundary hypersurfaces such that:
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(a) Any subset I of boundary hypersurfaces such that
⋂
i∈I

Hi 6= ∅ is totally ordered.

(b) If Hi < Hj , then Hi ∩ Hj 6= ∅, φi|Hi∩Hj : Hi ∩ Hj → Si is a surjective submersion and

Sji := φj(Hi ∩ Hj) is one of the boundary hypersurfaces of the manifold with corners Sj .

Moreover, there is a surjective submersion φji : Sji → Si such that φji ◦ φj = φi on Hi ∩Hj .

(c) The boundary hypersurfaces of Sj are given by the Sji for Hi < Hj .

Example 2.21. As explained in Remark 1.118, an orbifold is naturally a stratified space. In fact, it is not

hard to see that an orbifold is naturally a smoothly stratified space, with the corresponding manifold

with fibered corners obtained by blowing-up the strata in an order compatible with the partial order.

Notice, in particular, that in terms of Definition 1.121, an orbifold is of depth 1 if and only if it is of depth

1 as a smoothly stratified space.

2.1.1 Blow-up in Melrose Sense

Why consider blow-up at all? If we work on category of smooth manifolds, there isn’t a compelling

rationale for initiating any form of blow-up. Nonetheless, there are three interconnected scenarios

where the process of blow-up can prove highly beneficial. These instances involve attempting to

’resolve’ the following:

(a) A singular function, e.g., f(x, y, z) =
√
x2 + y2 + z2.

(b) A singular space, e.g., C = {(t, x, y) | t2 = x2 + y2, t ≥ 0}.

(c) Degenerate vector fields, e.g., the span of zi
∂

∂zi
, i = 1, 2, 3, on R3.

In Melrose blow-up (real blow-up) as introduced in [33], the idea is simply to work in polar coordinates

around the singular point. That is, we lift everything up to a manifold with a boundary by using the

polar map. Before defining the Melrose blow-up, we need to recall the definition of sphere bundle.

Definition 2.22 (Sphere bundle). Let E → X be a smooth vector bundle. The sphere bundle of E,

denoted by S(E) is a fiber bundle whose fiber is an n-sphere and is defined as the set of (positive)

rays in the bundle E, that is,

S(E) = (E \X)
/
R+.

If we fix a smooth metric on E, then the fiber of S(E) over a point p is the set of all unit vectors in
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Ep, the fiber over p in E. When the vector bundle is the tangent bundle TX , the unit sphere bundle

is known as the unit tangent bundle.

Blowing-up the origin in R2 simply amounts to the introduction of polar coordinates. We define R2

blown up at {0} to be

[R2, {0}] = S1 × [0,∞)r,

together with the associated blow-down map β : S1×[0,∞)r → R2 defined by β(ω, r) = rω. This is

a diffeomorphism from [R2, {0}] ontoR2\{0} and has rank 1 at the boundary ∂[R2, {0}] = S1×{0},

which projects to {0}.

Figure 2.2: Blowing-up the origin in R2

We can generalize the above idea and get that

[Rn, {0}] = Sn−1 × [0,∞),

[Cn, {0}] = S2n−1 × [0,∞).

Another example is blowing-up the origin in R×[0,∞)ε. Again, by using polar coordinates, we define

[R× [0,∞)ε; {0}] = S1+ × [0,∞)r,

whereSn+ = {(x0, . . . , xn) ∈ Sn : xn ≥ 0}with the blow-down mapβ : S1+×[0,∞)r → R×[0,∞)ε

defined by β(ω, r) = rω.
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Figure 2.3: Blowing-up the origin in R× [0,∞)ε

We can generalize the above idea and get that

[Rn × [0,∞), {0}] = Sn+ × [0,∞),

and even more

[Rn
k , {0}] = Sn−1

k × [0,∞).

Remark 2.23. One can check that the action of GL(n) on Rn lifts to a smooth action of GL(n) on

[Rn, {0}]. This means that the Lie algebra, gl(n), lifts to [Rn, {0}]. Since the exponentials of linear

vector fields are linear transformations, this implies that for each i and j, there are smooth vector

fields Vij on [Rn, {0}] such that

β∗Vij = xi∂xi .

This shows that any smooth vector field on Rn which vanishes at 0 lifts to a smooth vector field on

[Rn, {0}]:

β−1
∗ (aij(x)xi∂xi) = aij(rθ)Vij .

In general, for a vector space V , the blow-up of V at 0 is defined as a set by

[V, {0}] = ((V \ {0})/R+)
⊔

(V \ {0}).

Thus, the blow-up of V at {0} is the disjoint union of the projective sphere in V and the complement

of {0}. The choice of a basis in V gives a linear isomorphism V → Rn, which allows us to identify

[V, {0}] and [Rn; {0}]. To show that the smooth structure, as a manifold with boundary, of [V, {0}]

is well-defined, we therefore need to check that the action of GL(n) on Rn lifts to a smooth action of

GL(n) on [Rn, {0}].
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If E is a vector bundle over a manifold with corners Y , then we identify Y as the zero section of E

and define E blown up along X to be

[E, Y ] =
⋃
y∈Y

[Ey, {0}],

with the blow-down map β : [E, Y ] → V that is, we simply blow-up the origin of each fiber. The

blow-up [E, Y ] has a naturalC∞ structure as a manifold with corners. Now we can define the blow-

up in Melrose sense formally.

Definition 2.24 (Blow-up in Melrose sense along a submanifold). Let X be a smooth manifold with

corners and Y ⊂ X be a closed p-submanifold. The blow-up of X along Y , denoted [X,Y ], is a

manifold with corners, given as a point set by

[X,Y ] = S(NX(Y ))
⊔

(X \ Y ),

where S(NX(Y )) represents the inward-pointing part of the spherical normal bundle NX(Y ), i.e,

the inward-pointing normal space NX,y(Y ) at a point y ∈ Y is defined as the quotient

NX,y(Y ) = TyX /TyY,

and the spherical normal bundle is then given by

S(NX(Y )) = (NX,y(Y ) \ {0})
/
R+.

The blow-up [X,Y ] has a naturalC∞ structure as a manifold with corners. There is a unique smooth

map [X,Y ] → X extending the identity on X \ Y called the blow-down map.

Example 2.25. Blowing-up Rn along Rn−k in Melrose sense:

[Rn,Rn−k] = [Rn−k × Rk,Rn−k × {0}]

= Rn−k × [Rk, {0}]

= Rn−k × S+(NRn(Rn−k))
⊔

(Rk \ {0})

= Sk−1 × [0,∞)r × Rn−k.

By Cn ∼= R2n we get that

[Cn,Cn−k] = S2k−1 × [0,∞)r × Cn−k.

We also have that

[Rn × [0,∞)ε,Rn−k × {0}] = Sk+ × [0,∞)r × Rn−k,

[Cn × [0,∞)ε,Cn−k × {0}] = S2k+ × [0,∞)r × Cn−k.
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Definition 2.26 (Lifting submanifolds). If Z ⊂ X is a closed subset of a manifold with corners, and

Y ⊂ X is a closed p-submanifold, we shall define the lift of Z to [X,Y ] under the blow-down map

β : [X,Y ] → X in two distinct cases. First, if Z ⊂ Y , then

β(Z) = β−1(Z).

Secondly, if Z = Z \ Y , then

β(Z) = β−1(Z \ Y ).

2.2 Lie Structures at Infinity

In this section, we introduce the concept of structural Lie algebras of vector fields, which is then

employed to define manifolds with a Lie structure at infinity. However, before delving into this, we

need to revisit the concept of finitely generated projective C∞(M)-modules and the Serre-Swan

theorem. This theorem serves as a bridge between the geometric notion of vector bundles and the

algebraic concept of finitely generated projective C∞(M)-modules. This equivalence allows us to

study and comprehend both vector bundles and finitely generated projectiveC∞(M)-modules using

a unified framework.

Definition 2.27 (Geometric fiber). LetM be a manifold with corners and let V be a C∞(M)-module

with module structure C∞(M) × V 3 (f, v) → fv ∈ V . For p ∈ M , the ideal of smooth functions

on M vanishing at p, i.e,

IpM = {f ∈ C∞(M) : f(p) = 0},

is a complex subspace of V and V /((IpM)V ) is called the geometric fiber of V at p. In general,

geometric fibers are vector spaces with different dimensions.

Recall from algebra that S ⊂ V is called a basis for a C∞(M)-module V , if any v ∈ V could be

written uniquely as v =
∑
s∈S

fss such that fs ∈ C∞(M) and {s ∈ S : fs 6= 0} is a finite set.

A module is called free, if it has a basis. For free modules, geometric fibers have same dimension

and this dimension is equal to the cardinality of the basis. A C∞(M)-module V is called finitely

generated projective, if there exist a C∞(M)-module W such that V ⊕W is free with finite basis.

This is equivalent with the concept of locally free C∞(M)-modules.
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Theorem 2.28 (Serre-Swan). Let V be a finitely generated projective C∞(M)-module. Then there

exists a natural smooth vector bundle, E →M , and a natural map ι : E → V such that

V = ι∗Γ(M,E),

and with the fiber of E above p ∈ M canonically identified with V /((IpM)V ) . Conversely, for

any finite rank smooth vector bundle E → M , Γ(M,E) is a finitely generated projective C∞(M)-

module.

We refer to [39] for more details about the Serre-Swan theorem.

Definition 2.29 (Structural Lie algebra of vector fields). A structural Lie algebra of vector fields on a

manifoldM (possibly with corners) is a subspace, V ⊂ X(M), of the real vector space of vector fields

on M with the following properties:

(a) V is closed under Lie brackets.

(b) V is a finitely generated projective C∞(M)-module.

(c) the vector fields in V are tangent to all faces in M .

Example 2.30 (Lie algebra of b-vector fields). Let M be a manifold with corners, and

Vb(M) = {X ∈ X(M) : X is tangent to all faces of M}

= {X ∈ X(M) : XρH = aHρH , aH ∈ C∞(X), ∀H ∈ ∂M},

where ρH is a boundary defining function of the hypersurface H . Then Vb(M) is a structural Lie

algebra of vector fields. This is the fundamental object in the theory of Melrose’s b-calculus. A vector

field X ∈ Vb(M) is called a b-vector field X . In local coordinates near a point p ∈ ∂X any b-vector

field X is of the form

X =
k∑

i=1

ai(x, y)xi∂xi +
n−k∑
i=1

bi(x, y)∂yi ,

where x1, . . . , xk are boundary defining functions, y ∈ Rn−k, ai and bi are smooth functions. This

shows that the Lie algebra of b-vector fields is generated in a neighborhood U of p by xj∂xj and ∂yj

as a C∞(M)-module. Any structural Lie algebra of vector fields on M is contained in Vb(M).

Example 2.31 (Lie algebra of scattering vector fields). Let M be a compact manifold with boundary,

and let x : M → R+ be a boundary defining function. Then the Lie algebra VSC(M) := xVb(M)
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does not depend on the choice of x, and the vector fields inVSC(M) are called scattering vector fields.

In a local coordinate (x, y1, . . . , yn−1) near a point p any scattering vector field X is of the form

X = a(x, y)x2∂x +
n−1∑
i=1

xbi(x, y)∂yi ,

where a and bi are smooth functions. In fact the Lie algebra of scattering vector fields is generated in

a neighborhood U of p by x2∂x and x∂yi as a C∞(M)-module.

Example 2.32 (Lie algebra of edge vector fields). Let M be a manifold with boundary ∂M , which is

the total space of a fibration π : ∂M → B of smooth manifolds. We let

Ve(M) = {X ∈ X(M) : X is tangent to all fibers of π at the boundary}

be the space of edge vector fields. Clearly, Ve(M) is closed under the Lie bracket. This is the funda-

mental object in the theory of Mazzeo’s edge calculus. If (x, y, z) are coordinates in a local product

decomposition near the boundary, where x corresponds to the boundary-defining function, y corre-

sponds to a set of variables on the base B lifted to ∂M through π, and z is a set of variables in the

fibers ofπ, then edge vector fields are generated byx∂x, x∂y, and ∂z . In other words, anyX ∈ Ve(M)

can be expressed locally as

X = a(x, y, z)x∂x +
b∑

i=1

bi(x, y, z)x∂yi +

f∑
i=1

cj(x, y, z)∂zi ,

where a, bi, cj ∈ C∞(M).

Example 2.33. As a particular case of edge vector fields, the fibration id : ∂M → ∂M for a manifold

with boundaryM yields the Lie algebra of 0−vector fields in the 0-calculus of Mazzeo-Melrose in [46],

i.e,

V0(M) = {X ∈ X(M) : X
∣∣
∂M

= 0} = xX(M),

where x is a boundary-defining function.

Proposition 2.34. If V is a structural Lie algebra of vector fields, then V is a finitely generated projec-

tiveC∞(M)-module. So there exists a vector bundleE such that V = Γ(M,E) and a natural vector

bundle map %V : E → TM such that the induced map %Γ : V → X(M) identifies with the inclusion

map.

See Proposition 2.12 in [2] for a proof.

Now, let us recall the definition of a Lie algebroid. In a general sense, a Lie algebroid can be viewed

as the multi-object version of a Lie algebra.



CHAPTER 2. MANIFOLDS WITH CORNERS AND LIE STRUCTURES AT INFINITY 62

Definition 2.35 (Lie algebroid). A Lie algebroid A over a manifold M is a vector bundle A over M ,

together with a Lie algebra structure on the space Γ(A) of smooth sections of A and a bundle map

% : A → TM , extended to a map %Γ : Γ(A) → Γ(TM) between sections of these bundles, such

that the right Leibniz rule is also satisfied

[X, fY ] = f [X,Y ] + (%Γ(X)f)Y, ∀X,Y ∈ Γ(A), f ∈ C∞(M).

The map %Γ is called the anchor of A.

Remark 2.36. By the antisymmetry of the bracket, the left Leibniz rule is also satisfied:

[fX, Y ] = f [X,Y ]− (%Γ(X)f)Y, ∀X,Y ∈ Γ(A), f ∈ C∞(M).

Remark 2.37. By direct calculation as Proposition 1.21 in [3] one can check that the anchor map is a

morphism of Lie algebras. In other words,

%Γ([X,Y ]) = [%Γ(X), %Γ(Y )], ∀X,Y ∈ Γ(A),

where on the left, we have the Lie algebroid bracket, and on the right, we have the Lie algebra bracket

of vector fields.

Example 2.38. Examples of Lie algebroid

(a) All Lie algebras are Lie algebroids. In fact, a Lie algebroid over a one-point set, with the zero

anchor, is a Lie algebra.

(b) Any bundle of Lie algebras is a Lie algebroid with zero anchor and Lie bracket defined pointwise.

(c) The tangent bundleTM of a manifoldM , with as bracket the Lie bracket of vector fields and with

as anchor the identity of TM , is a Lie algebroid over M which is called tangent Lie algebroid.

(d) Given the action of a Lie algebra g on a manifold M that is, a homomorphism of Lie algebras

ρ : g → X(M), the action algebroid is the trivial vector bundle g ×M → M , with the anchor

given by the Lie algebra action and brackets uniquely determined by the bracket of g on constant

sections M → g and by the Leibniz identity.

Definition 2.39 (Lie structure at infinity). A Lie structure at infinity on a manifoldM is a pair (M,V),

where M is a compact manifold with corners and V is a structural Lie algebra of vector fields on M

such that its anchor %V : VTM → TM is an isomorphism on M◦, i.e,VTM
∣∣
TM◦

∼= TM◦.
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Remark 2.40. IfM◦ is compact without boundary, then it follows from the Definition 2.39 thatM =

M◦ and VTM = TM , so a Lie structure at infinity on M◦ gives no additional information on M◦.

The interesting cases are thus the ones when M◦ is noncompact.

Definition 2.41 (Riemannian manifold with a Lie structure at infinity). Let (M,V) be a Lie structure

at infinity for a manifold with corners M . Let %V : VTM → TM be the associated anchor and g

a Riemannian metric on VTM , that is, a smooth positive definite symmetric 2-tensor g on VTM . In

this case, (M◦, (%−1
V )∗(g

∣∣
M◦)) is called a Riemannian manifold with a Lie structure at infinity.

Riemannian manifold with a Lie structure at infinity have some nice geometric property, for instance

the following proposition shows that the volume of any noncompact Riemannian manifold with a Lie

structure at infinity is infinite.

Proposition 2.42. LetM◦ be a Riemannian manifold with Lie structure (M,V, g) at infinity. Let f ≥ 0

be a smooth function on M . If
∫
M◦

f dvolg < ∞, then f vanishes on each boundary hyperface of

M . In particular, the volume of any noncompact Riemannian manifold with a Lie structure at infinity

is infinite.

See Proposition 4.1.in [2] for a proof.

Proposition 2.43. Let M◦ be a Riemannian manifold with a Lie structure (M,V, g) at infinity. Then

M◦ is complete in the induced metric g.

See Corollary 4.9. in [2] for a proof.

Proposition 2.44. Let M◦ be a connected Riemannian manifold with a Lie structure (M,V, g) at

infinity. Then (M◦, g) is of bounded geometry.

See Corollary 4.3 in [2] and Theorem 5.2. in [11] for a proof.

Definition2.45 (Melrose b-metric). LetM be a compact Riemannian manifold with boundary, equipped

with a Lie structure at infinity (M,Vb, gb). The Riemannian metric gb is referred to as the b-metric.

Example 2.46 (Manifold with asymptotically cylindrical end). A manifold with cylindrical ends is a Rie-

mannian manifold (M, g) for which there exists a compact subsetK (topologic part) such that outside
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K,M resembles a cylinder with the product metric. This can be expressed through the identification:

M \K ∼= N × (0,∞)r,

whereN is a closed manifold with dimN = dimM − 1 and a cylindrical metric onN × (0,∞)r, i.e,

g
∣∣
M\K = gcyl = gN + dr2,

where gN is a metric on N and r ∈ (0,∞) is a coordinate for (0,∞). Let (M,Vb) be a compact

Riemannian manifold with boundary M , equipped with a Lie structure at infinity. By using a tubular

neighborhood of N = ∂M in M to make

M◦ \K ∼= ∂M × (0,∞)r.

So, we have the cylindrical end with the cylindrical metric

g
∣∣
M\K = g∂M + dr2.

By attaching ∂M at infinity, we obtain a compactification M := M◦ ∪ ∂M , which is a compact

manifold with boundary. Introducing the change of variable x = e−r where r is the coordinate for

(0,∞)r, yields a defining function for ∂M , so we can write this cylindrical metric as

g
∣∣
M\K = g∂M +

dx2

x2
∈ Γ(S2(bT ∗M)),

which is compatible with the Lie structure at infinity Vb, i.e, it is a b−metric.

More generally, we say (M, g) has asymptotically cylindrical end if g → g∂M +
dx2

x2
when x → 0 in

the follwoing sense: there exist γ > 0 such that

g − (g∂M +
dx2

x2
) ∈ xγC∞

b (M,S2(bT ∗M)) = xγC∞
b (M)⊗C∞(M) Γ(S

2(bT ∗M)),

where

C∞
b (M◦) = {f ∈ C∞(M◦) : ∀k ∈ N0, {V1, . . . , Vk} ⊂ Vb(M), sup

M◦
|V1 . . . Vkf | <∞},

and

xγC∞
b (M◦) = {f ∈ C∞(M◦) :

f

xγ
∈ C∞

b (M◦)}.
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Figure 2.4: A manifold with a cylindrical end

Definition 2.47 (Melrose SC-metric). A Riemannian metric compatible with a Lie structure at infinity

(M,VSC), where M is a compact manifold with boundary, is called scattering metric (SC-metric for

short).

Example 2.48. Let M be a compact manifold with boundary. A metric of the form

gSC =
g∂M
x2

+
dx2

x4
,

close to the boundary∂M , is an example of SC-metric, wherex is a defining function for the boundary,

and g∂M is the Riemannian metric g restricted to the boundary. Notice that a SC-metric is always of

the form gSC =
gb
x2

for some b-metric.

Example 2.49. A simple example in the Euclidean case is the radial compactification of Rn with the

boundary being the sphere Sn−1. This compactification is given by the stereographic projection SP

defined by

SP : Rn → Sn+ := {z = (z0, ..., zn) ∈ Sn : z0 ≥ 0} ,

SP(x) = 1√
1 + |z|2

(1, z1, ..., zn) ,

where Sn+ is a compact manifold with boundary. SP identifies Rn with the interior of the upper half-

sphere Sn+. The Euclidean metric is a scattering metric on Rn given by

gRn = dr2 + r2gSn−1 =
dx2

x4
+
gSn−1

x2
,

where r = |z| and x =
1

r
is a defining function for the boundary i.e. ∂Sn+ = Sn−1 = {x = 0}.

Example 2.50 (Manifold with asymptotically conical end). A manifold with conical ends is a Rieman-

nian manifold (M, g) for which there exists a compact subsetK (topologic part) such that outsideK,
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(M, g) is a cone. This can be expressed through the identification:

M \K ∼= N × (R,∞)r, for some R > 0,

where N is a closed manifold with dimN = dimM − 1 and a concic metric on N × (R,∞)r, i.e,

g
∣∣
M\K = gcone = r2gN + dr2, r ≥ R,

where gN is a metric on N and r ∈ (0,∞) is a coordinate for (0,∞). If M is a compact manifold

with boundary, by using a tubular neighborhood of N = ∂M in M , we can find an identification

M◦ \K ∼= ∂M × (R,∞)r,

so that a conical metric g on M◦ with g
∣∣
M◦\K = r2g∂M + dr2 is a SC-metric. Indeed, attaching this

cone to ∂M at infinity, we obtain a compactification M := M◦ ∪ ∂M , which is a compact manifold

with boundary. Introducing the change of variable x =
1

r
where r is the coordinate for (0,∞)r, yields

a defining function for ∂M , so we can write this conical metric as

g
∣∣
M\K =

g∂M
x2

+
dx2

x4
∈ Γ(S2(SCT ∗M)),

which is compatible with the Lie structure at infinity VSC, i.e, it is a SC−metric.

Figure 2.5: A manifold with a conical end

Definition 2.51 (Asymptotically Conical Metric). Let (L, g) be a compact Riemannian manifold. On

C = (0,∞)× L, consider the conic metric

gcone = dr2 + r2g,
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where r is the coordinate on (0,∞). A Riemannian manifold (M, g) is called asymptotically conical

(AC for short), asymptotic to gcone, if there exists a diffeomorphism π : M \ K → (R,∞) × L, for

some R > 0 and K ⊂M compact, there is a positive constants c and µ such that for any k ≥ 0,

|∇k(π∗(g)− gcone)|gcone ≤
c

rµ+k
.

Here, ∇ denotes the Levi-Civita connection of gcone.

Now, we define asymptotically locally Euclidean metrics, which are important examples of asymptot-

ically conical metrics. In fact when gcone is a quotient of the euclidean flat space by a finite subgroup

of the orthogonal matrices which acts freely on the unit sphere, the corresponding AC metrics are

called asymptotically locally euclidean or ALE for short.

Definition 2.52 (Asymptotically Locally Euclidean metric). Let Γ be a finite subgroup of U(n) acting

freely on Cn \ 0, so Cn/Γ has an isolated quotient singularity at 0, and the Euclidean metric is Γ-

invariant. Thus, (Cn/Γ, gEuc) is a Riemannian cone. Let M be a non-compact complex manifold

with end asymptotic to the cone Cn/Γ at infinity (e.g. a resolution of Cn/Γ), i.e., there is a compact

subset K ⊂ M and a map π : M \ K → Cn/Γ that is a diffeomorphism between M \ K and

{z ∈ Cn/Γ : dEuc(z, 0) > R} for a fixed positive constant R. A Riemannian (Kähler ) metric g on M

is called asymptotically locally Euclidean (ALE-for short) if π∗(g) is asymptotic to gEuc at infinity, i.e.,

there is a positive constant c such that for any k ≥ 0,

|∇k(π∗(g)− gEuc)| ≤
c

rn+k
,

where ∇ is the Levi-Civita connection of gEuc on Cn/Γ.

Example 2.53 (Burns and Simanca ALE scalar-flat Kähler metrics onOCPm−1(−1)). In 1991 Burns (case

m = 2) and Simanca [55] (casem > 1) constructed a cscK metric on OCPm−1(−1). They showed that

the Kähler potential of this scalar flat Kähler metric on OCPm−1(−1) is radially symmetric and of the

form

HBS = ‖Z‖2 + γ(‖Z‖) log ‖Z‖2 + ‖Z‖4−2m + ψ(‖Z‖2),

where γ : R → R is the cut-off function such that γ(t) = 1 for t < 1, γ(t) = 0 for t > 2 and

|∇kψ(t)| ≤ c

tm+k−2
,

for all k ≥ 0. Here ∇ is the Levi-Civita connection of gFS on OCPm−1(−1).
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More generally, for any natural number r, as discussed in section 2 of [4], the line bundleOCPm−1(−r)

admits an ALE scalar-flat Kähler metric as follows.

Example 2.54 (ALE scalar-flat Kähler metric on OCPm−1(−r)). The Burns-Simanca metric is general-

ized by Eguchi-Hanson [27] (m = 2, r = 2), LeBrun [40] (m = 2, r > 2), Pedersen-Poon [49] and

Rollin-Singer [51] (m > 2, r > 2) . In summary, the Burns-Eguchi-Hanson-LeBrun-Pedersen-Poon-

Simanca metric on OCPm−1(−r) has Kähler potential:

H =
1

2
‖Z‖2 +A‖Z‖4−2m +O(‖Z‖3−2m),

when m ≥ 3 and

H =
1

2
‖Z‖2 +A log ‖Z‖+O(‖Z‖−2),

when m = 2, where A is some constant. Recall that T = O(ts) if |T | ≤ cts for some c > 0.

Remark 2.55. There is a generalization of asymptotically locally Euclidean metrics (ALE-metrics for

short) to quasi asymptotically locally Euclidean metrics (QALE-metrics for short) by D. Joyce in [36]

when the action of Γ is not necessarily free on Cn \ {0}.

Remark 2.56. There is a generalization of AC-metrics and QALE-metrics to quasi-asymptotically con-

ical metrics (QAC-metrics for short) by Degeratu and Mazzeo [23] that we will discuss and use in

Chapter 4 for our main construction.

As a summary, we have these relations between these special metrics

AE ⊂ ALE ⊂ AC ⊂ SC

∩ ∩

QALE ⊂ QAC

We finish this chapter by defining the edge-metric in Mazzeo’s sense.

Definition 2.57 (Mazzeo edge metric). A Riemannian metric compatible with a Lie structure at infinity

(M,Ve), where M is a compact manifold with fibered boundary is called and edge metric. An edge

metrics ge close to the boundary ∂M is an element of S2(eT ∗M) which locally generated by

{dx
2

x2
,
dy2i
x2

,
dx⊗ dyi

x2
, dz2j ,

dx⊗ dzj
x

,
dyi ⊗ dzj

x
},

in terms of the local coordinates of example 2.32.
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Example 2.58 (0−metrics). An interesting class of a edge metrics is the class of 0-metrics, i.e., metrics

corresponding to the Lie structure at infinity (M,V0) as discussed in Example 2.33. A 0-metric g0 close

to the boundary ∂M is of the form

g0 =
dx2

x2
+
dy2i
x2

.

In fact, if (M, g) is a compact Riemann manifold with boundary, and x is a defining function for the

boundary, then the metric in the interior of M ,

g0 =
g

x2
,

is complete and is an example of 0−metric. In particular, the hyperbolic space is of this type. The

sectional curvature of g0 approaches −|dx|2g at the boundary, so g0 has negative curvature outside a

compact set. For more information, see Lemma 2.5 in [46].
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CHAPTER 3

CONSTANT SCALAR CURVATURE KÄHLER METRICS

In this chapter we focus on constant scalar curvature Kähler (cscK) metrics. A special case of a constant

scalar curvature Kähler metric is a Kähler-Einstein (KE) metric, which has been the main focus of Kähler

geometry since the inception of the celebrated Calabi conjecture on the existence of canonical Kähler

metrics in the 1950s: In every Kähler Class of every compact Kähler manifolds, there must exists one

best, canonical Kähler metrics.

In fact, Calabi proposed the following conjectures for an compact Kähler manifold (X,ωX):

Conjecture 1: If Aut(X) = 1, then there exists a unique cscK metric on X in [ωX ].

Conjecture 2: There exists an extremal Kähler metric on X in [ωX ], unique up to Aut(X).

Calabi’s vision, now six decades later, has been the inspiration for fundamental work in Kähler ge-

ometry up to the present day. From Yau’s celebrated theorem [64], based on Calabi’s C3 estimate

for the Monge-Ampère equation in 1958 [13], for which he received the Fields Medal in 1976, to the

conjecture of Yau-Tian-Donaldson in the Kähler-Einstein Fano case that was finally solved in 2012 by

Chen, Donaldson, and Sun [18, 19, 20] and Tian [59].

We begin this chapter with the scalar curvature function and the definition of extremal metrics. Then,

we briefly look at Kähler-Einstein metrics and Conjecture 1. Following that, we study cscK metrics and

discuss classic results by Matsushima-Lichnerowicz and Arezzo-Pacard. Finally, we wrap up this chap-

ter by constructing new examples of cscK orbifolds with singularities of type I.

3.1 Scalar Curvature Function

Lemma 3.1. Let (M, g) be a Kähler manifold andD denote its Levi-Civita connection. For a real 1-form

α if we denote by D−α the J-anti-invariant part of the covariant derivative Dα, then we have

D−α = −1

2
g(J(Lα♯J)•, •) = −1

2
ω(J(Lα♯J)•, •).

See Lemma 1.22.2. [29] for a proof.

Definition 3.2 (Lichnerowicz operator). Let (M, g) be a Kähler manifold and D the Levi-Civita con-

nection. If we set D = D−d and denote by D∗ = (D−d)∗ its formal adjoint, then the fourth-order
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operator D∗D : C∞(M,C) → C∞(M,C) is called the Lichnerowicz operator. The Lichnerowicz

operator D∗D is a formally self-adjoint, semipositive differential operator acting on (real) functions.

For instance for complex-valued functions φ, ψ defined on compact Kähler manifold (M, g) we have∫
M
(D∗Dφ)ψωn =

∫
M
φD∗Dψωn.

Lemma 3.3 (Lichnerowicz operator). Suppose that (M, g) is a Kähler manifold and u is a smooth

complex-valued function defined on M . Then

D∗Du =
1

2
∆2

gu+ Ricg .∇2u+
1

2
∇S(ω).∇u

=
1

2
∆2

gu+Rj̄i∇i∇j̄u+
1

2
gij̄∇iS(ω).∇j̄u.

See Lemma 1.22.5. [29] for a proof.

Lemma 3.4. Let M be a Kähler manifold with Kähler metric g and corresponding Kähler form ω. As-

sume that ω +
√
−1∂∂̄u is a small perturbation of ω by a function u ∈ C4(M) with ‖u‖C4(M) < c,

for a sufficiently small c > 0. Then we can linearize the scalar curvature operator in the following

way:

S(ω +
√
−1∂∂̄u) =

+∞∑
k=0

dk

dtk
|t=0S(ω + t

√
−1∂∂̄u) = S(ω) + Lω(u) +Qω(∇2u),

where Lω(u) =
d

dt
|t=0S(ω + t

√
−1∂∂̄u) is the linear part and

Qω(∇2u) =
+∞∑
k=2

dk

dtk
|t=0S(ω + t

√
−1∂∂̄u),

is a second-order non-linear differential operator that collects all the non-linear terms. Moreover, the

linearization of the scalar curvature operator Lω(u) can be expressed as:

Lω(u) = −(
1

2
∆2

gu+ 〈Ricg,
√
−1∂∂̄u〉g) = −1

2
∆2

gu−Rj̄i∂i∂j̄u =
1

2
∇S(ω).∇u−D∗Du.

Also, the non-linear part Qω could decomposes with finite sums as follows:

Qω(∇2u) =
∑
q

Bq,4,2(∇4u,∇2u)Cq,4,2(∇2u)

+
∑
q

Bq,3,3(∇3u,∇3u)Cq,3,3(∇2u)

+ |z|
∑
q

Bq,3,2(∇3u,∇2u)Cq,3,2(∇2u)

+
∑
q

Bq,2,2(∇2u,∇2u)Cq,2,2(∇2u),
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where Bis are bilinear forms and Cis are smooth functions.

See Lemma 2.158 [10], Equation (31) in [5], Lemma 1.2 and Lemma 1.3 in [41] for a proof.

Lemma 3.5. LetM be a Kähler manifold of real dimension n with Kähler metric g and corresponding

Kähler form ω. The scalar curvature of a conformally changed metric ω′ = e2fω can be computed by:

S(ω′) = e−2f (S(ω) + 2(n− 1)∆ωf − (n− 1)(n− 2)‖∇f‖2ω).

See Section 1J in [10] for a proof.

3.2 Extremal Metrics

Extremal metrics were defined by Calabi [14] in 1982 as follows:

Definition 3.6 (Extremal Metrics). Suppose thatM is a compact Kähler manifold. An extremal Kähler

metric on M in the class Ω ∈ H2
dR(M,R) is a critical point of the functional

Cal(ω) =
∫
M
S(ω)2ωn,

for ω ∈ Ω, where S(ω) is the scalar curvature of ω. This functional is called the Calabi energy func-

tional.

Theorem 3.7. A Kähler metric ω on compact Kähler manifolds M is extremal if and only if S(ω) is a

Killing potential, i.e, one of the following equivalent conditions holds:

(a) ∇1,0S(ω) is a holomorphic vector field.

(b) D∗DS(ω) = 0. (Here, D∗D is the Lichnerowicz operator defined in Definition 3.2 on page 70.)

See Lemma 1.23.2 in [29] or Theorem 4.2. in [57] for a proof.

Example 3.8. The most important examples of extremal metrics are cscK metrics. In particular Kähler-

Einstein metrics have constant scalar curvature, so they are examples of extremal metrics, i.e,

KE ⊂ cscK ⊂ Extremal.
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Remark 3.9. Suppose that M is a compact Kähler manifold.

(a) If h(M) = 0, i.e,M admits no non-trivial holomorphic vector fields, then every extremal Kähler

metric must have constant scalar curvature.

(b) If the Kähler class Ω is proportional to c1(M), then any constant scalar curvature metric in Ω is

Kähler-Einstein.

See Lemma 2.2.3 in [28] for a proof.

Now we discuss the Conjecture 1. The existence of Kähler–Einstein metrics for compact Kähler man-

ifolds depends on the sign of the first Chern class of the Kähler manifold.

Theorem 3.10 (Yau). Let M be a compact Kähler manifold with c1(M) = 0. Then, every Kähler

class contains a unique Ricci flat metric. These types of manifolds are called Calabi-Yau. Calabi–Yau

manifolds are complex manifolds that generalize K3 surfaces to higher dimensions.

This is just a special case of the theorem 1.112 on page 34. The case when the first Chern class is

negative is proved independently in 1978 by Thierry Aubin [8] and Shing-Tung Yau [64] as follows:

Theorem 3.11 (Aubin-Yau). Let M be a compact Kähler manifold with c1(M) < 0. Then, there is a

unique Kahler metric ω ∈ −2πc1(M) such that Ric(ω) = −ω.

When the first Chern class is positive, existence of Kähler-Einstein metrics remained a well-known

open problem for many years. In this case, there are a non-trivial obstructions to existence. In 2012,

Xiuxiong Chen, Simon Donaldson, and Song Sun [18],[19], [20] as well as Tian [59] proved that in this

case existence is equivalent to an algebro-geometric property called K-stability.

3.3 Constant Scalar Curvature Kähler Metrics

Now we state Matsushima - Lichnerowicz theorem. This classical theorem gives us obstructions to

the existence of cscK metric based on the structure of the Lie algebra of holomorphic vector fields.

Theorem 3.12 (Matsushima - Lichnerowicz). Let (M,J, g) be a cscK manifold. Then, the Lie algebra

h(M) of holomorphic vector fields decomposes as a direct sum:

h(M) = h0(M)⊕ a(M),
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where a(M) ⊂ h(M) is the abelian subalgebra of parallel holomorphic vector fields and h0(M) is

the subalgebra of holomorphic vector fields with zeros. Furthermore, h0(M) is the complexification

of the killing fields with zeros, i.e,

h0(M) = (k(M, g) /a(M))⊗R C,

where k(M, g) denotes the Lie algebra of real Killing vector fields on (M, g). In particular, h(M) is a

reductive Lie algebra, i.e, it is the direct sum of an abelian and a semisimple Lie algebra.

See [43] and [45] for a proof.

Corollary 3.13. Let (M,J, g) be a cscK manifold. Then the identity component of Iso(M, g, J) is the

maximal compact subgroup of the identity component Aut(M,J).

Corollary 3.14. The theorem of Lichnerowicz and Matsushima implies that a compact Kähler manifold

(M,J) whose identity component Aut0(M,J) of the automorphism group is not reductive does not

admit any cscK metric.

Example 3.15. Letn > 1, then the projective spaceCPn blown-up at one or two points does not admit

any cscK metric. See [10] page 331 for more details.

Remark 3.16. There is a general version of the Matsushima-Lichnerowicz theorem for extremal met-

rics proved by Calabi (Theorem 2.3.6 in [28]). In particular, a compact complex manifold (M,J) for

which the connected group of automorphisms is non-trivial but has no connected compact subgroup

apart from {Id} cannot have any extremal Kähler metric. Examples of Kähler compact complex sur-

faces satisfying these hypotheses, hence admitting no extremal Kähler metric, were first given by M.

Levine [42]. As a consequence, the answer of Conjecture 2 is negative in general. A Kähler manifold

is called a Calabi dream manifold if every Kähler class on it admits an extremal metric. All compact

Riemann surfaces, complex projective spaces CPn, Hirzebruch surfaces Fk
∼= P(O ⊕ O(k)), and all

compact Calabi-Yau manifolds [64] are Calabi dream manifolds.

Proposition 3.17 (Calabi). Let g be an extremal Kähler metric on a compact complex manifold (M,J).

Let Iso0(M, g) denote the identity component of the isometry group of (M, g), and let Aut0(M,J)

denote the identity component of the biholomorphism group of (M,J). Then Iso0(M, g) is a maximal

compact subgroup of Aut0(M,J).

See Theorem 3.5.1 [29] for a proof.
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Proposition 3.18. Let (M, g) be a compact cscK manifold and let Lω(u) = −D∗Du be the lineariza-

tion of the scalar curvature operator in Lemma 3.4, then

dimR(ker(Lω)) = dimC(h0(M)) + 1.

In particular, when the identity component of the biholomorphism group Aut(M,J) is discrete, ker(Lω)

consists only of constant functions.

See Proposition 1 in [41] for a proof.

Now, we recall some notable results of Arezzo-Pacard [5] and [6] that provide a vast collection of cscK

manifolds.

Theorem 3.19 (Arezzo-Pacard). Let (M,ω) be a constant scalar curvature compact Kähler manifold

or Kähler orbifold of complex dimensionmwith isolated singularities. Assume that there is no nonzero

holomorphic vector field vanishing somewhere onM . Then, given finitely many smooth points p1, . . . , pn

in M and positive numbers a1, . . . , an > 0, there exists ε0 > 0 such that the blow-up of M at

p1, . . . , pn carries constant scalar curvature Kähler forms

ωε ∈ π∗[ω]− ε2
(
a

1
m−1

1 [E1] + . . .+ a
1

m−1
n [En]

)
,

where [Ei] are the Poincaré duals of the (2m− 2)-homology classes of the exceptional divisors of the

blow-up at pi, and ε ∈ (0, ε0). Moreover, as ε tends to 0, the sequence of metrics (gε)ε converges to

g (in smooth topology) on compact subsets away from the exceptional divisors.

See Theorem 1.1 in [5] for a proof.

Theorem 3.20 (Arezzo-Pacard). Assume that (M,J, g, ω) is a constant scalar curvature compact Käh-

ler manifold. There exists ng ≥ 1 such that for all n ≥ ng, there exists a nonempty open subset

Vn ⊂Mn
∆ := {(p1, . . . , pn) ∈Mn | pa 6= pb for all a 6= b},

such that for all (p1, . . . , pn) ∈ Vn, the blow-up ofM at p1, . . . , pn carries a family of constant scalar

curvature Kähler metrics (gε)ε converging to g (in smooth topology) on compact subsets away from

the exceptional divisors, as the parameter ε tends to 0.

See Theorem 1.2 in [6] for a proof.
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Theorem 3.21 (Arezzo-Pacard). Assume that (M,J, g, ω) is a compact Kähler manifold of complex

dimension m with constant scalar curvature and that (p1, . . . , pn) ∈Mn
∆ are chosen so that:

(a) ξ(p1), . . . , ξ(pn) span h∗, where h, the space of Killing vector fields with zeros.

(b) there exist a1, . . . , an > 0 such that
n∑

i=1

aiξ(pi) = 0 ∈ h∗.

Then, there exist c > 0, ε0 > 0, and for all ε ∈ (0, ε0), there exists on the blow-up ofM at p1, . . . , pn

a constant scalar curvature Kähler metric gε which is associated to the Kähler form

ωε ∈ [ω]− ε2
(
a

1
m−1

1,ε [E1] + . . .+ a
1

m−1
n,ε [En]

)
,

where the [Ei] are the Poincaré duals of the (2m− 2)-homology classes of the exceptional divisors of

the blow-up at pi and where

|ai,ε − ai| ≤ cε
2

2m+1 .

Finally, the sequence of metrics (gε)ε converges to g (in smooth topology) on compact subsets, away

from the exceptional divisors.

See Theorem 1.3 in [6] for a proof.

Theorem 3.22 (Kronheimer-Joyce). Let (M,ω) be a nondegenerate compactm-dimensional constant

scalar curvature Kähler orbifold withm = 2 or 3 and isolated singularities. Let p1, . . . , pn ∈M be any

set of points with a neighborhood biholomorphic to a neighborhood of the origin in Cm/Γi, where Γi

is a finite subgroup of SU(m). Let furtherNi be a Kähler crepant resolution of Cm/Γi (which always

exists). Then there exists ε0 > 0 such that, for all ε ∈ (0, ε0), there exists a constant scalar curvature

Kähler form ωε on M
⊔
p1,ε

N1

⊔
p2,ε

· · ·
⊔
pn,ε

Nn.

See Corollary 8.2 in [5] for a proof.

Theorem 3.23 (Apostolov-Rollin). For any k ≥ 2, the orbifold CPk
(−w0,w) admits a scalar-flat Kähler

ALE metric gALE with quotient singularity at infinity Cn/Γ(−w0,w) and a Kähler potential H for the

Kähler form ωALE written as

H =
1

2
‖Z‖2 +A‖Z‖4−2k +O(‖Z‖3−2k), (3.1)
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when k ≥ 3 and

H =
1

2
‖Z‖2 +A log ‖Z‖+O(‖Z‖−2),

when k = 2, where A is a real constant and ‖Z‖2 is the square norm function on Ck. Furthermore,

the constant A = 0 iff the metric gALE is Ricci-flat.

See Proposition 17 in [4] for a proof.

Theorem 3.24 (Arezzo-Pacard). Any compact complex surface of general type admits cscK metrics.

We finish this chapter with a concrete example that we construct. We will demonstrate how to find

a constant scalar curvature Kähler metric on it using our theorem at the end of the thesis.

3.4 An example of orbifold with singularities of type I

Let r be a natural number and consider the cyclic subgroup of U(1) ≤ U(k) given by

Γ(−r,1,...,1) = 〈ξ Idk〉 ∼= Zr,

where ξ = e
2πi
r is the primitive r-th rooth of unity. Then for l ≥ 2,

Γ := 〈diag(Idl, γ) : γ ∈ Γ(−r,1,...,1)〉 ⊂ U(l)× U(k) ⊂ U(l + k),

is a finite subgroup of the group of isometry Iso(CPl+k−1, gFS) ∼= U(l+k)/U(1) acting on CPl+k−1

via the standard action on Cl+k, where gFS is the Fubini-Study mertic.

Lemma 3.25. The orbifold M = CPl+k−1 /Γ has two disjoint singular strata of type I at

S1 = {[z0 : . . . : zl−1 : 0 : . . . : 0] ∈ CPl+k−1/Γ : [z0 : . . . : zl−1] ∈ CPl−1} ∼= CPl−1/Γ,

S2 = {[0 : . . . : 0 : zl : . . . : zl+k−1] ∈ CPl+k−1/Γ : [zl : . . . : zl+k−1] ∈ CPk−1} ∼= CPk−1/Γ.

Also,

NM (S1) = (OCPl−1(1)⊕ . . .⊕OCPl−1(1)︸ ︷︷ ︸
k− times

)/Γ

and

NM (S2) = (OCPk−1(1)⊕ . . .⊕OCPk−1(1)︸ ︷︷ ︸
l− times

)/Γ.
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Proof. The set of points of CPl+k−1 fixed by the action of Γ are [z0 : . . . : zl+k−1] ∈ CPl+k−1 such

that

diag(Idl, ξ
s Idk)[z0 : . . . : zl+k−1] = [z0 : . . . : zl+k−1], 0 ≤ s < r,

so this action fixes the two disjoint submanifolds

S1 = {[z0 : . . . : zl−1 : 0 : . . . : 0] ∈ CPl+k−1/Γ : [z0 : . . . : zl−1] ∈ CPl−1} ∼= CPl−1,

S2 = {[0 : . . . : 0 : zl : . . . : zl+k−1] ∈ CPl+k−1/Γ : [zl : . . . : zl+k−1] ∈ CPk−1} ∼= CPk−1/Γ(−r,1,...,1).

To identify the normal bundles note that S1 could be considered as the intesection of k hyperplanes

D1 ∩ . . . ∩Dk, so that

NM (S1) = (NM (D1)|S1 ⊕ . . .⊕NM (Dk)|S1)/Γ = (OCPl−1(1)⊕ . . .⊕OCPl−1(1))/Γ. (3.2)

Similarly, for S2, we can write it as the intesection of l hyperplanes D′
1 ∩D′

2 ∩ . . . ∩D′
l, so we have

that

NM (S2) = (NM (D′
1)|S2 ⊕ . . .⊕NM (D′

l)|S2)/Γ = (OCPk−1(1)⊕ . . .⊕OCPk−1(1))/Γ. (3.3)

Note that Aut(CPl+k−1) = PGL(l+k,C). ForU =

A B

C D

 ∈Ml+k(C) and γ = (Idl, ξ
q Idk) ∈

Γ, Uγ =

A ξqB

C ξqD

 and γU =

 A B

ξqC ξqD

, so Uγ = γU and ξq 6= 1 imply that B = 0 and

C = 0, so the orbifoldM = CPl+k−1 /Γ has group of automorphismP(GL(l,C)×GL(k,C)), which

is still quite large. To obtain an example with discrete automorphism group, we will use Theorem 1.4 in

[6] by blowing-upCPl+k−1 at a sufficient number of points {p1, p2, . . . , pn}. Let h = Lie(PGL(l+k))

be the Lie algebra of killing vector fields with zeros on CPl+k−1 and denote by hΓ the Lie subalgebra

of h consisting of Γ-invariant vector fields. Also denote the corresponding momentum maps by µ :

CPl+k−1 → h∗ and µΓ : CPl+k−1 → hΓ∗. If ι : hΓ ↪−→ h is the inclusion map and ι∗ : h∗ → hΓ∗ the

dual map, notice that µΓ = ι∗ ◦ µ.

Using Lemma 6.3 in [6], there exists ng ≥ dim h = (l + k − 1)2 − 1 such that for all n ≥ ng, there

exists a nonempty open set Vn ⊂ {(p1, p2, . . . , pn) ∈ (CPl+k−1)n : pa 6= pb ∀a 6= b} such that, for

all (p1, p2, . . . , pn) ∈ Vn, {µ(p1), . . . , µ(pn)} spans h∗ and there exist a1, a2, . . . , an > 0 such that
n∑

i=1

aiµ(pi) = 0 ∈ h∗. In particular, since µΓ = ι∗ ◦ µ, this means that:
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(a) The set {µΓ(p1), . . . , µΓ(pn)} spans hΓ∗.

(b) There exist positive integers a1, a2, . . . , an with ai = aj if pj = σ(pj′) for some σ ∈ Γ and
n∑

i=1

aiµ
Γ(pi) = 0 ∈ hΓ∗.

Without loss of generality we can choose p1, p2, . . . , pn ∈ CPl+k−1 \ (S1 ∪S2), since Vn is open and

CPl+k−1\(S1∪S2) is open and dense. Note that if we add a point pn+1, conditions (1) and (2) remain

valid because of Lemma 6.2 in [6]. Thus, by adding points if necessary, we can assume that the set

{p1, . . . , pn} isΓ-invariant. Using Theorem 1.4 in [6] shows that there exist c > 0, ε0 > 0 such that for

all ε ∈ (0, ε0), there exists aΓ-invariant constant scalar curvature Kähler metric g̃ε on BlCPl+k−1

{p1,...,pn}. This

metric induces a constant scalar curvature Kähler metric gε on BlCPl+k−1

{p1,...,pn} /Γ in the sense of Remark

1.122. Consider the quotient map q : CPl+k−1 → CPl+k−1 /Γ and choose q1, . . . , qm ∈ CPl+k−1 so

that q({p1, . . . , pn}) = {q1, . . . , qm} where m =
n

|Γ|
. The natural identification,

BlCPl+k−1

{p1,...,pn}

/
Γ ∼= BlCP

l+k−1/Γ,

{q1,...,qm}

then gives us a constant scalar curvature Kähler metric on the orbifoldX = BlCP
l+k−1/Γ

{q1,...,qm} in the sense

of Remark 1.122.

Using the Proposition 1.148 on page 47 the Lie algebra of holomorphic vector fields of BlCP
l+k−1/Γ

{q1,...,qm} is

realized as

{v ∈ Lie(P(GL(l)× GL(k))) : v(q1) = . . . = v(qm) = 0},

so the identity component of the automorphism group of Aut( BlCP
l+k−1/Γ

{q1,...,qm} ) is the subgroup of

elements of P(GL(l)×GL(k)) which fix {q1, . . . , qm}. Now, a fixed point of f ∈ P(GL(l)×GL(k))

is the same as an eigenvector of a choice of representative f̃ ∈ GL(l)× GL(k), so f(q) = q means

f̃(p) = λp for a representative p.

Suppose that we pick n > l + k and the first l + k points p1, . . . , pl+k in CPl+k−1 represented by

points p̃1, . . . , p̃l+k ∈ Cl+k forming a basis of Cl+k and with q(pi) 6= q(pj) for i 6= j with i, j ≤ l+k,

where q : CPl+k−1 → CPl+k−1 /Γ is the quotient map. Then with respect to this basis, the lift

f̃ ∈ GL(l)×GL(k) of an element f ∈ P(GL(l)×GL(k)) such that f(pi) = pi for i ∈ {1, . . . , k+ l}

will be diagonal. Then if we take pl+k+1 such that its representative is p̃l+k+1 =
l+k∑
i=1

p̃i, we see that

the only element f ∈ P(GL(l)×GL(k)) fixing p1, . . . , pl+k+1 is the identity (i.e, f̃ is a multiple of the
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identity). Perturbing the representatives p̃1, . . . , p̃l+k if necessary, we can assume that q(pl+k+1) /∈

S1 ∪ S2. We have proven the following theorem:

Theorem 3.26. Let r be a natural number and consider the cyclic subgroup of U(1) ≤ U(k) given by

Γ(−r,1,...,1) = 〈ξ Idk〉 ∼= Zr,

where ξ = e
2πi
r is the primitive r-th rooth of unity. Then for l ≥ 2,

Γ := 〈diag(Idl, γ) : γ ∈ Γ(−r,1,...,1)〉 ⊂ U(l + k),

is a finite subgroup of the group of isometry Iso(CPl+k−1, gFS) acting on CPl+k−1 via the standard

action on Cl+k, where gFS is the Fubini-Study mertic. Then the orbifold M = CPl+k−1 /Γ has two

disjoint singularities of type I at

S1 = {[z0 : . . . : zl−1 : 0 : . . . : 0] ∈ CPl+k−1 : [z0 : . . . : zl−1] ∈ CPl−1} ∼= CPl−1,

S2 = {[0 : . . . : 0 : zl : . . . : zl+k−1] ∈ CPl+k−1 : [zl :: zl+k−1] ∈ CPk−1} ∼= CPk−1/Γ(−r,1,...,1).

Also, we can choose p1, p2, . . . , prm ∈ CPl+k−1 \ (S1 ∪ S2) with m ≥ l + k + 1 such that there

exists a constant scalar curvature Kähler metric on the orbifoldX = BlCP
l+k−1/Γ

{q1,...,qm} ( in the sense of Re-

mark 1.122) where q1, . . . , qm ∈ CPl+k−1 /Γ are such that q({p1, . . . , prm}) = {q1, . . . , qm} where

q : CPl+k−1 → CPl+k−1 /Γ is the quotient map. Furthermore, the identity component of the auto-

morphism group of Aut(BlCP
l+k−1/Γ

{q1,...,qm} ) is trivial.
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CHAPTER 4

GLUING TECHNIQUE

Let X be an orbifold of depth one in the sense of Definition 1.121, with singularities of type I along

a connected suborbifold Y of complex codimension k i.e., we can find a finite subgroup Γ(−w0,w) of

U(k) acting freely on Ck \ {0} such that any point p ∈ Y has a local orbifold uniformization chart of

the form Cn−k × (Ck/Γ(−w0,w)) and Γ(−w0,w) is of type I in the sense of Definition 1.145. Suppose

that X admits a cscK metric in the sense of Remark 1.122. Let π : X̂ → X be a partial resolution of

X by performing a (−w0, w)-weighted blow-up along Y as described on page 47.

The goal of this section will be to construct a Kähler metric on the resolution X̂ which is close to the

cscK metric ωX on X . To do so, we will follow the approch of [21] and introduce an auxiliary space

on which this construction will take place. We follow the following steps:

(a) Step 1: Consider first the orbifold with boundary X × [0,∞)ε and blow-up the submanifold

Y ×{0} in the sense of Melrose to obtain the orbifold with cornersX := [X×[0,∞)ε, Y ×{0}]

where ε is the parameter of deformation. Let β : X → X× [0,∞)ε be the corresponding blow-

down map.    

[0,+∞)ε

XY

Figure 4.1: Orbifold with corner X × [0,∞)ε

In local coordinates nearY ×{0}, this means that we replaceCn−k×Ck /Γ× [0,∞) byCn−k×

S2k+ /Γ× [0,+∞) , where S2k+ is the half sphere S2k+ = {(z, ε) ∈ Ck × [0,∞) : |z|2 + ε2 = 1}

and the local blow-down map

Cn−k × S2k+
/
Γ× [0,+∞) → Cn−k × Ck /Γ× [0,∞),
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is given by (w, (z, ε), r) 7→ (w, rz, rε).

Let H1 be the boundary hypersurface of X obtained by the blow-up of Y × {0} and let H2 be

the boundary hypersurface correponding to the lift of X × {0} in X × [0,∞)ε. In our metric

model H1 = NX(Y ) = NX(Y ) t S(NX(Y )) is the radial compactification of the normal

bundle NX(Y ) of Y and H2 = [X,Y ]. Also note that H1 ∩H2 = ∂H1 = ∂H2 = S(NX(Y ))

and

Ĥ◦
1
∼= OE�Y (−w0), (4.1)

where E = Pw(W ) is the weighted projectivization of some vector bundle W → Y of rank k

such that NX(Y ) =W
/
Γ(−w0,w) .

   

H1

H2X = [X × [0,+∞)ε, Y × {0}]

[0,+∞)ε

H2

Figure 4.2: Blowing-up the orbifold X × [0,∞)ε along Y × {0}

(b) Step 2: The partial resolution π : X̂ → X naturally induces a partial resolution

X̂ π−→ X = [X × [0,∞)ε;Y × {0}] β−→ X × [0,∞)ε.

As an orbifold, X is automatically a stratified space with two strata Σ1 = Y and Σ2 = X \ Y .

The orbiofld X has corners with boundary hypersurfaces H1 = NX(Y ) and H2 = [X,Y ]

coresponding to the stratas Σ1 and Σ2. The boundary hypersurfaces are naturally equiped with

a fiber bundle structure

V1 = Ck /Γ // H1 = NX(Y )

φ1

��
S1 = Y

, V2 = {pt} // H2 = [X,Y ]

φ2=id
��

S2 = [X,Y ]

,
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where V1 and V2 are the fibers.

This is a particular case of Lemma 4.3 in [21], namely the orbifold X is in fact an orbifold with

fibered corners (X , ϕ) where ϕ1 : H1 = NX(Y ) → Y and ϕ2 = id : H2 = [X,Y ] → H2 are

the fiber bundle maps. Indeed, the partial order in this case is just the orderH1 < H2 on the set

{H1,H2} of boundary hypersurfaces and H1 ∩H2 = ∂H1 = ∂H2 = ∂(NX(Y )), ϕ1

∣∣
H1∩H2

:

H1 ∩H2 → S1 is clearly a surjective submersion, S21 := ϕ2(H1 ∩H2) = H1 ∩H2 = ∂H2 is

the boundary of H2 = S2 and ϕ21 := ϕ1

∣∣
H1∩H2

is such that ϕ21 ◦ ϕ2 = ϕ1 ◦ id = ϕ1.

Now we consider the Lie algebra of of b-vector fields in the sense of Example 2.30 and Remark 1.122

on the orbifold with fibered corners X , that is, smooth vector fields on X which are tangent to all

boundary hypersurfaces:

Vb(X ) : = {ξ ∈ X(X ) : ξ tangent to H1 and H2}

= {ξ ∈ X(X ) : ξx1 ∈ x1C∞(X ) and ξx2 ∈ x2C∞(X )},

where x1 and x2 are boundary defining functions for H1 and H2, i.e, xi ≥ 0, x−1
i (0) = Hi and

dxi 6= 0 onHi. Choose x1 and x2 so that ε = x1.x2 is the corresponding total boundary function. In

the local coordinates (x1, x2, ui), vector fields in Vb(X ) are of the form

ξ = ax1
∂

∂x1
+ bx2

∂

∂x2
+

∑
i

ciui
∂

∂ui
,

where a, b, ci are smooth functions.

Also we consider the Lie subalgebra VQAC(X ) of quasi asymptotically conical vector fields or QAC-

vector fields on X originally introduced by Conlon, Degeratu and Rochon in [21]. By definition (see

Definitions 1.11 and 1.14 in [21]), these are the b-vector fields ξ ∈ Vb(X ) such that:

(a) QAC 1: ξ
∣∣
Hi

is tangent to the fibers of ϕi : Hi → Si for all i,

(b) QAC 2: ξε ∈ ε2C∞(X ).

The Lie algebra VQAC(X ) is a finitely generated projective C∞(X )-module, so by the Serre-Swan

theorem (Theorem 2.28), there exists a natural smooth vector bundle, φTX → X , and a natural

map ιφ : φTX → TX such that

VQAC(X ) = (ιφ)∗Γ(X , φTX ).
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The above vector bundle φTX , originally introduced in [21] is called the QAC-tangent bundle over

X . The QAC-cotangent bundle φT ∗X over X is the vector bundle dual to φTX .

Using the function ε = β∗ pr2 ∈ C∞(X ), we can define the Lie subalgebra of VQAC(X ), correspond-

ing to QAC-vector fields tangent to the level sets of ε:

VQAC,ε(X ) := {ξ ∈ VQAC(X ) : ξε ≡ 0}.

Again by the Serre-Swan theorem (Theorem 2.28 above), there exist a natural vector bundle E → X

and a natural map ιε : E → TX such that there is a canonical identification

VQAC,ε(X ) = (ιε)∗Γ(X , E).

In fact, E is naturally a vector subbundle of φTX , which induces a natural map ι∗ε : φT ∗X → E∗.

This means that a smooth QAC-metric (i.e. a bundle metric for φTX ) naturally restricts to define

an element of Γ(X , E∗ ⊗ E∗). Now we look at the pull-back of the orbifold cscK-metric gX on X to

gX := β∗ pr∗1 gX on X , where pr1 : X × [0,+∞) → X is the projection on the first factor.

Lemma 4.1. The pull-back gε := ι∗εβ
∗ pr∗1 gX is such that

gε
ε2

∈ Γ(X , E∗ ⊗ E∗).

Proof. This is a special case of Lemma 4.5 in [21] but we will provide a direct proof for the convenience

of the reader. It is sufficient to show that β∗ pr∗1 s ∈ Γ(X , φT ∗X ) for s ∈ Γ(X,T ∗X). Let us choose

(y, z) as a local coordinate of X , where y is a coordinate of Y ⊆ X and z = (z1, . . . , zk) ∈ Ck /Γ

is normal to Y , i.e, Y = {z = 0}. Write z = (r, ω) ∈ R+ × S2k−1 in the spherical coordinates.

The boundary defining function of H1 and H2 can be choosen to be x1 =
√
r2 + ε2 and x2 =

ε

x1
=

ε√
r2 + ε2

. The bundle φT ∗X overX is then generated by {dε
ε2
,
dx2
x22

,
dy
ε
,
dω
x2

}, while E∗ is generated

by {dx2
x22

,
dy
ε
,
dω

x2
}. We need to check that

rdω
ε

and
dr
ε

are sections of φT ∗X . Now

rdω
ε

=
r√

r2 + ε2

√
r2 + ε2dω

ε
=

r√
r2 + ε2

dω
x2
.

Since the coefficient
r√

r2 + ε2
=

√
1− x22 is a smooth function on X , this shows that

rdω
ε

is a
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smooth section of E∗. On the other hand:

dr
ε

=
1

ε
d(
√
x21 − ε2)

=
1

ε
d(ε

√
x21
ε2

− 1)

=
1

ε
d(ε

√
1

x22
− 1)

=
dε
ε

√
1

x22
− 1 +

ε

ε
d(
√

1

x22
− 1)

=
dε
ε

√
1

x22
− 1− dx2

x22
√

1− x22
.

Since
dε
ε

√
1

x22
− 1 =

√
1− x22
x2

dε
ε

= x1
√

1− x22
dε
ε2

is a smooth section of φT ∗X over X and

dx2
x22

√
1− x22

is a section of E∗ over X , this shows that
dr
ε

is a smooth section of φT ∗X .

Now, we describe the restrictions of
gε
ε2

to H1 and H2. First describe the restriction of E to H1 and

H2.

On H1, restricting the boundary defining function of X to H1 gives us a Lie algebra of QAC-vector

fields and a corresponding QAC-tangent bundle φT (H1 /S1) in the fibers of ϕ1 : H1 → S1. Since

these fibers are manifolds with boundary, this is in each fiber, the Lie algebra of scattering vector field

in the Melrose sense. So there is a natural map E
∣∣
H1

→ SCT (H1 /S1) and a short exact sequence

0 → N1E → E
∣∣
H1

→ SCT (H1 /S1) → 0,

where N1E := ker(E
∣∣
H1

→ SCT (H1 /S1)) .

Since there is a natural inclusion SCT (H1

/
S1) ⊂ E

∣∣
H1

, the above short exact sequence splits. There

is another natural short exact sequence involving SCT (H1 /S1) ,

0 → SCT (H1

/
S1) → SCTH1 → x2ϕ

∗
1(TS1) → 0,

where TS1 is the tangent bundle of S1 = Y , so

x2ϕ
∗
1(TS1) =

SCTH1

/
SCT (H1 /S1).(4.2)
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Multiplication by the boundary defining function x1 induces the identification

SCTH1

/
SCT (H1

/
S1) = ker (E

∣∣
H1

→ SCT (H1 /S1)).(4.3)

In particular, we see from (4.2) and (4.3) that there is a natural identification

ker (E
∣∣
H1

→ SCT (H1 /S1)) ∼= εϕ∗
1(TS1).

Hence, we have a canonical decomposition

E
∣∣
H1

= εϕ∗
1(TS1)⊕ SCT (H1 /S1).

By [21], the family of metric
gε
ε2

splits accordingly

gε
ε2

∣∣
H1

=
ϕ∗
1gS1

ε2
+ gφ1 ,

where gφ1 and
ϕ∗
1gS1

ε2
are the metrics induced by

gε
ε2

in the fiber of ϕ1 : H1 → S1 and the bundle

N1E .

On the resolution X̂ , the boundary hypersurfaceH1 is replaced by a boundary hypersurface Ĥ1 that

is a resolution of H1, and the fiber bundle

V1 = Ck /Γ // H1 = NX(Y )

φ1

��
S1 = Y

,

is replaced by

Z1 = Ĉk /Γ // Ĥ1 = N̂X(Y )

φ̂1

��

Ŝ1 = Ŷ

,

whereZ1 is a resolution of V1. The function ε on X naturally extends to a smooth function on X̂ , also

denoted by ε. Similarly, the boundary defining functionsx1 can be chosen to lift to a smooth boundary

defining function on X̂ , yielding a natural Lie algebra VQAC(X̂ ). We can define a Lie subalgebra by

VQAC,ε(X̂ ) := {ξ ∈ VQAC(X̂ ) : ξε ≡ 0}.
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There is a corresponding vector bundle Ê → X̂ and a natural map ιε : Ê → T X̂ yielding a canonical

identification

VQAC,ε(X ) = (ιε)∗Γ(X̂ , Ê).

The following theorem constructs a family of Kähler metrics on X̂ which are approximately cscK.

Theorem 4.2. Let (X,ωX) be a compact cscK complex orbifold with singularities of type I along a

subset Y , i.e, the normal bundle of Y inX has fibers of the formW /Γ whereW is a vector bundle of

rankk onX andΓ is a finite subgroup ofU(k) of typeI. Then, there exists a smooth closed (1, 1)-form

ωφ̂1
on Ĥ1 restricting on each fiber of ϕ̂1 to the Kähler form of a scalar flat ALE-metric asymptotic

to ωφ1 . Moreover, for µ > 0 small, there is ω̂ε ∈ Γ(X̂, Ê∗ ∧ Ê∗) such that
ω̂ε

ε2
∣∣
Ĥ1

= ωφ̂1
+
ϕ∗
1ωS1

ε2
,

ω̂ε

∣∣
H2

= ωX

∣∣
H2

and which yields a positive definite closed (1, 1)−form on

X̂c = {p ∈ X̂ : ε(p) = c} ∼= X̂,

for each 0 < c < µ.

Proof. Let Γ = 〈γ〉. Since the unitary matrix γ is diagonalizable, the eigenspaces of γ in each fiber of

W → Y induce an ωX -orthogonal decomposition

W =
l⊕

i=1

Wi, where dimWi = ki,
l∑

i=1

ki = k.

Now we can consider the action of
l

×
i=1

U(ki) onW . Let e = (e1, . . . , ek) be an orthonormal basis for

smooth sections of W on an open set U ⊂ Y , compatible with the decomposition of W . This gives

us a trivialization W |U ∼= Ck × U , and in this trivialization, γ acts diagonally on Ck by

γ = diag(e
iw1
w0 , . . . , e

iwk
w0 ).

Let W |V ∼= Ck × V be another such trivialization for an open subset V ⊂ Y with orthonormal

basis e′ = (e′1, . . . , e
′
k). Then e′ = fe for a smooth function f : U ∩ V →

l

×
i=1

U(ki). Note that

Ĥ1 = N̂X(Y ) and Ĥ◦
1 is the total space of a vector bundle with fibers isomorphic to CPk

(−w0,w) =

OCPk−1
w

(−w0). We get a natural line bundle:

$ : Ĥ◦
1 → E, where E = Pw(W ) is the weighted fiberwise projectivization of W.
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As discussed in Theorem 3.23 on page 76, there exists a scalar-flat Kähler metric gALE on CPk
(−w0,w)

modelled on Ck
/
Γ(−w0,w) at infinity with a Kähler potential H for the Kähler form ωALE written as

H =
1

2
‖Z‖2 +A‖Z‖4−2k +O(‖Z‖3−2k), (4.4)

when k ≥ 3 and

H =
1

2
‖Z‖2 +A log ‖Z‖+O(‖Z‖−2),

when k = 2, where A is a constant. Since the metric gALE and the potential H are invariant under

the action of
l

×
i=1

U(ki), we can use the above trivialization to obtain a well-defined fiberwise potential

HN : NX(Y ) → R,

corresponding to H in each fibers of NX(Y ) for any choice of trivialization as described above. Set

ωφ̂1
= 2

√
−1∂∂̄(HN ) on NX(Y ) \ Y ∼= Ĥ◦

1 \ E. On each fiber of Ĥ◦
1 → Y , this closed (1, 1)-form

extends to an ALE scalar flat metric. Globally, this extends to a smooth (1, 1)-form on Ĥ◦
1 that we

will also denoted by ωφ̂1
. Since ωφ̂1

is closed on the complement of E, it is closed everywhere by

continuity. Hence, ωφ̂1
is the desired closed (1, 1)-form. Finally we define

ω̂ε = ωX + ε2
√
−1∂∂̄[γ1(

d

rε
)f(

d

ε
)],

where γ1 : R → R is a cut-off function such that γ1(t) = 1 for t < 1 and γ1(t) = 0 for t > 2,

d = dgX ◦ Pr1 ◦β ◦ π : X̂ → [0,+∞), where dgX is the distance from Y on X with respect to

the cscK metric gX (we can use d = r in terms of the coordinates used in the proof of Lemma 4.1),

rε = ε
2k

2k+1 and

f = A‖Z‖4−2k +O(‖Z‖3−2k),

is a function defined on the complement of the exceptional divisor such that

ωφ̂1
= ωφ1 +

√
−1∂∂̄f.

By construction, we obtain three different regions on X̂ as follows:

(a) Near the exceptional divisor, on Ω1 = {x ∈ X̂ : d(x) < rε} we have γ1(
d

rε
) = 1 so we get

ω̂ε = ωX + ε2
√
−1∂∂̄f(

d

ε
).
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(b) On the intermediate region Ω2 = {x ∈ X̂ : rε < d(x) < 2rε} we get

ω̂ε = ωX + ε2
√
−1∂∂̄[γ1(

d

rε
)f(

d

ε
)].

(c) Far from the exceptional divisor, Ω3 = {x ∈ X̂ : 2rε < d(x)} we have   γ1(
d

rε
) = 0, so we get

ω̂ε = ωX .

   

H1

H2

[0,+∞)ε

H2

Ω1

Ω2

Ω3 Ω3

Ω1

Ω2

Figure 4.3: Three different regions on X̂

Far from the exceptional divisor, ω̂ε is well-defined on the complement of the exceptional divisor.

Moreover, by construction,
ω̂ε

ε2
extends to a metric on the bundle Ê for small ε. In fact on Ĥ1 we get

ω̂ε

ε2
∣∣
H1

= ωφ̂1
+
ϕ∗
1ωS1

ε2
,

and on Ĥ2 we get same restriction as
ωX

ε2
. Since

ω̂ε

ε2
is positive definite on both Ê

∣∣
H1

and Ê
∣∣
H2

, so is
ω̂ε

ε2
near Ĥ1 and Ĥ2. Consequently, it remains positive definite for small ε > 0, which yields a positive

definite closed (1, 1)−form on the level sets X̂c = {p ∈ X̂ : ε(p) = c} ∼= X̂ as claimed.

Remark 4.3. Since the cohomology in degree 2 of CPk
(−w0,w) is generated by the divisor [CPk−1

w ],

notice that by reparametrizing ε, if necessary, we can assume without loss of generality in Theorem

4.2 that [ω̂ε] = [ωX ]− ε2[E].
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CHAPTER 5

LINEAR ANALYSIS

The Kähler metrics ω̂ε provided by Theorem 4.2 are not necessarily cscK, but since their asymptotic

models on Ĥ1 and H2 are, they will be almost cscK for small ε. We can therefore hope to solve the

nonlinear equation

S(ω̂ε +
√
−1∂∂̄u) = R,

perturbatively, for some well-chosen constant R.

To do this, the purpose of this section is to first study the linearization of the scalar curvature of the

metric ω̂ε perturbed by a potential u:

S(ω̂ε +
√
−1∂∂̄u) = S(ω̂ε) + Lω̂ε

(u) +Qω̂ε
(∇2u), (5.1)

where Lω̂ε
is linear part and Qω̂ε

is nonlinear part. By the Proposition 3.4 we get,

Lω̂ε
(u) = −(

1

2
∆2

ĝε
+ Ricĝε .∇2

ĝε
)u.

In terms of Lichnerowicz operator D∗D, we can write

Lω̂ε
(u) =

1

2
∇S(ω̂ε).∇u−D∗Du.

Let us define L̃ε : C
∞(X̂)0 × R → C∞(X̂) by

L̃ε(u,R) = Lω̂ε
(u)−R, (5.2)

whereC∞(X̂)0 is the space of smooth functions u that have zero integral with respect to the metric

ĝε.

Definition 5.1 (Hölder space). Let (M, g) is a smooth Riemannian manifold, k ∈ N0 and α ∈ (0, 1].

Then the Hölder space Ck,α
g (M) consists of functions f :M → R such that

‖f‖Ck,α
g

:= ‖f‖g,k + [∇kf ]g,α <∞,

where ‖f‖g,k =

k∑
i=0

sup
p∈M

‖∇if(p)‖g with ‖ · ‖g the pointwise norm induced by the metric g and

[∇kf ]g,α is the Hölder semi norm defined by

[∇kf ]g,α = sup
γ(0) ̸=γ(1)

{‖Pγ(∇kf(γ(0)))−∇kf(γ(1))‖g
l(γ)α

: γ a smooth curve on M},

and Pγ is parallel transport along γ.



CHAPTER 5. LINEAR ANALYSIS 91

Definition 5.2 (Weighted Hölder space). Let (M, g) is a smooth Riemannian manifold, k ∈ N0 and

α ∈ (0, 1]. The weighted Hölder space ρCk,α
g (M) for a weight function ρ ∈ C∞(M,R+) consists of

functions f :M → R such that

‖f‖
ρCk,α

g
:= ‖f

ρ
‖Ck,α

g
<∞.

Remark 5.3. (a) If ρ =
√
d2 + ε2 is a boundary defining function for Ĥ1 in X̂ , then the restriction

of ĝε to Ĥ1 induces a family of fiberwise b-metric in the fibers of ϕ1 : Ĥ1 → Ŝ1.

(b) The restriction
ĝε
ρ2

|H2 =
gX
ρ2

|H2 =
gX
d2

is an edge metric in the sense of Mazzeo.

On a fiber Z1 of ϕ̂1 : Ĥ1 → Ŝ1, the metric
ĝε
ε2

induced by restriction is a scalar flat Kähler ALE metric

gφ̂1
. It is convenient to study the mapping properties of its operator Lω̂ε

in terms of the weighted

Hölder space induced by the b-metric gφ̂1,b
obtained by restriction of

ĝε
ρ2

to Z1.

Lemma 5.4. If δ < 0 and k > 2, then the linear operator

Lωφ̂1
: (
ρ

ε
)δC4,α

gφ̂1,b
(Z1) → (

ρ

ε
)δ−4C0,α

gφ̂1,b
(Z1),

has trivial kernel, where Z1 is the interior of Z1.

Proof. We will proceed as the proof of Proposition 8.9 in [57]. Since the scalar curvature of gφ̂1
is

zero,

Lωφ̂1
(u) = −D∗Du.

Also by Proposition 17 of [4], the Kähler potential of ωφ̂1
as ‖Z‖ → ∞ is

1

2
‖Z‖2 +A‖Z‖4−2k +O(‖Z‖3−2k),

where Z denotes the Euclidean coordinates on (Ck
/
Γ(−w0,w)) \ {0} identified with complement

of the exceptional divisor in Z1. Suppose u ∈ (
ρ

ε
)δC4,α

gφ̂1,b
(Z1) and D∗Du = 0. Consider a smooth

cutoff function γ such that it vanishes on π−1(B1(0)) and is 1 outside π−1(B2(0)), where Br(0) is

the ball with radius r centred origin in Ck
/
Γ(−w0,w) , so γu is a smooth function on Ck

/
Γ(−w0,w) .

Now we try to compare the Lichnerowicz operator D∗D with Euclidean operator ∆2
Euc, note that

D∗
EucDEuc =

1

2
∆2

Euc, but

D∗D(u) =
1

2
∆2

gφ̂1
(u) +Rk̄j∂j∂ku+

1

2
∇S(ωALE) · ∇u,
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so D∗D − 1

2
∆2

Euc is in O(‖Z‖2−2k) as a scattering operator as ‖Z‖ → ∞.

Since u ∈ (
ρ

ε
)δC4,α

gφ̂1,b
(Z1), this means that ∆2

Euc(γu) ∈ (
ρ

ε
)δ−2−2kC0,α

gH1
((Ck \ {0})

/
Γ(−w0,w)) .

Applying Theorem 8.3 in [57] on the orbifold cover Ck of Ck
/
Γ(−w0,w) , we conclude that there exist

a function v ∈ (
ρ

ε
)δ+2−2kC4,α

gφ̂1,b
((Ck\{0})

/
Γ(−w0,w)) such that∆2

Euc(v) = ∆2
Euc(γu). Hence v−γu

is a biharmonic function that decays at infinity. Since there is no indicial roots in (4− 2k, 0) we have

v − γu ∈ (
ρ

ε
)4−2kC4,α

gφ̂1,b
((Ck \ B2(0))

/
Γ(−w0,w)) and this implies that γu ∈ (

ρ

ε
)4−2kC4,α

gφ̂1,b
((Ck \

B2(0))
/
Γ(−w0,w)) so u ∈ (

ρ

ε
)4−2kC4,α

gφ̂1,b
(Z1). Since we assume k > 2, this decay allows us to

integrate by parts ∫
Z1

‖Du‖2 dωφ̂1
=

∫
Z1

uD∗Dudωφ̂1
= 0,

and then Du = 0, so ∇1,0u is a holomorphic vector field on Z1 = ̂Ck
/
Γ(−w0,w) . The resolution

π : Z1 → Ck
/
Γ(−w0,w) implies a biholomorphism Z1 \ π−1(0) ∼= (Ck \ {0})

/
Γ(−w0,w) , so we can

represent the holomorphic vector field ∇1,0u|Z1\π−1(0) as
k∑

i=1

ai
∂

∂zi
where ai are Γ(−w0,w)-invariant

function onCk\{0}. By applying the Hartogs theorem, for eachai there exist a holomorphe extension

ãi onCk. Because of the boundedness of ãi, Liouville’s theorem implies that ãi is a constant function,

hence its decay at infinity implies that ãi = 0. So ∇1,0u ≡ 0 on Z1 \ π−1(0). Now notice that

Z1\π−1(0) is a dense subset ofZ1, so by continuity∇1,0u ≡ 0 onZ1. Finally,∇u = ∇1,0u+∇0,1u =

∇1,0u+∇1,0u = 0, so u is a constant function onZ1 that decays at infinity, implying that u = 0.

Lemma 5.5. If δ < 0 and L0(u) = 0 for u ∈ (
ρ

ε
)δC4,α

ĝε
ρ2

(Z1 × Cn−k), then u = 0. Here L0 denotes

the Lichnerowicz operator on the product space.

Proof. It suffices to replace BlCk

0 by CPk
(−w0,w) in Lemma 11 of [53] and use Lemma 5.4 instead of

Proposition 8.9 in [57] in the proof of Lemma 11 in [53].

Lemma5.6. If 4−2k < δ < 0and∆2
Eucu = 0 foru ∈ (1+

d2

ε2
)
δ
2C4,α

gX
ρ2

(((Ck
/
Γ(−w0,w)) \ {0})× Cn−k) ,

then u = 0.

Proof. It suffices to pull-back to (Ck \ {0})× Cn−k and use Lemma 12 in [53].

Lemma 5.7. Suppose thatX has no non trivial holomorphic vector fields. If 4− 2k < δ < 0, then the

linear operator

L̃ω0 : ρδC4,α
gX
ρ2

(H2)0 × R → ρδ−4C0,α
gX
ρ2

(H2),
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defined by L̃ω0(u,R) = Lω0(u) − R where ω0 = ωX and ρδC4,α
gX
ρ2

(H2)0 is the subspace of functions

in ρδC4,α
gX
ρ2

(H2) that are L2-orthogonal to the constant functions, has trivial kernel.

Proof. On H2,

L̃ω0(u,R) =
1

2
∇S(ω0).∇u−D∗Du−R = −D∗Du−R.

Let u ∈ ρδC4,α
gX
ρ2

(H2)0 and R ∈ R such that L̃ωε(u,R) = 0, so D∗Du + R = 0. Both D∗Du and u

belongs to ρδ−4C0,α
gX
ρ2

(H2) and δ − 4 > −2k, so they are integrable on X . This ensures that for a test

function ϕ ∈ C∞(X), ∫
X
ϕD∗DudωX =

∫
X
(D∗Dϕ)udωX ,

that is, D∗Du+R = 0 in the sense of distribution onX . Elliptic regularity implies that u is a smooth

function in the orbifold sense on X . Hence, on X ,

‖D∗Du‖2L2 = 〈D∗Du,D∗Du〉L2

= 〈−R,D∗Du〉L2

= 〈−DR,Du〉L2

= 〈0,Du〉L2 = 0,

soD∗Du = 0 and soR = 0. Since the kernel ofD∗D onX consists of constant functions (we assume

X has no non trivial holomorphic vector fields), this shows that u = 0.

Proposition 5.8. Assume X has no non trivial holomorphic vector fields. For 4 − 2k < δ < 0 and

ε > 0 small enough, the operator (5.2)

L̃ε : ρ
δC4,α

ĝε
ρ2

(X̂)0 × R → ρδ−4C0,α
ĝε
ρ2

(X̂),

where ρδC4,α
ĝε
ρ2

(X̂)0 is the subspace of functions in ρδC4,α
ĝε
ρ2

(X̂) that areL2-orthogonal to the constant

functions, is invertible and its inverse Pε := L̃−1
ε is bounded by constant independent of ε.

Proof. We will closely follow the proof proposition 9 in [53]. By the Schauder estimates1, there is a

1 Schauder interior estimates theorem: Consider the elliptic second order partial differential equation

Lu(x) = ai,j(x)D2
iju(x) + bi(x)Diu(x) + c(x)u(x) = f(x), (5.3)
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uniform constant C independent of ε, such that

‖u‖
ρδC4,α

ĝε
ρ2

+ |R| ≤ C(‖u‖ρδC0
ĝε
ρ2

+ |R|+ ‖L̃ε(u,R)‖ρδ−4C0,α
ĝε
ρ2

). (5.4)

We want to show that there exists a uniform constant C̃ such that

‖u‖
ρδC4,α

ĝε
ρ2

+ |R| ≤ C̃‖L̃ε(u,R)‖ρδ−4C0,α
ĝε
ρ2

. (5.5)

To prove (5.5), for a contradiction suppose that there is a sequence εi → 0 with ui and Ri such that

‖ui‖ρδC4,α
ĝεi
ρ2

+ |Ri| > i‖L̃εi(ui, Ri)‖ρδ−4C0,α
ĝεi
ρ2

for each i. In particular, by (5.4),

i‖L̃εi(ui, Ri)‖ρδ−4C0,α
ĝεi
ρ2

< ‖ui‖ρδC4,α
ĝεi
ρ2

+ |Ri| ≤ C(‖ui‖ρδC0
ĝεi
ρ2

+ |Ri|+ ‖L̃εi(ui, Ri)‖ρδ−4C0,α
ĝεi
ρ2

),

so that

(
i

C
− 1)‖L̃εi(ui, Ri)‖ρδ−4C0,α

ĝεi
ρ2

< ‖ui‖ρδC0,α
ĝεi
ρ2

+ |Ri|.

Without loss of generality, by multiplyingui andRi by a constantλi, we can suppose that ‖ui‖ρδC0
gεi
ρ2

+

|Ri| = 1, so ‖L̃ε(ui, Ri)‖ρδ−4C0,α
gεi
ρ2

<
1

i
C − 1

. This shows that ‖L̃ε(ui, Ri)‖ρδ−4C0,α
gε
ρ2

→ 0 as i → ∞.

Moreover, the Schauder estimates (5.4) show that ui : X \ Y → R is uniformly bounded and

uniformly equicontinuous in ρδ−4C4,α
gε
ρ2

, so by the Arzelà-Ascoli theorem23 there exists a convergent

subsequence {uij} converging a function u ∈ ρδC4,α
gX
ρ2

(X \ Y ) with convergence in ρδC4
gX
ρ2

(K) on

each compact subsetK ⊂ X \ Y .4 Also, {Ri} is a bounded numerical sequence, so by the Bolzano-

on the domain Ω, where the source term satisfies f ∈ Cα(Ω). If there exists a constant λ > 0 such that the ai,j are strictly

elliptic, ai,j(x)ξiξj ≥ λ|ξ|2 for all x ∈ Ω, ξ ∈ Rn and the relevant norms coefficients are all bounded by another constant Λ

Then the weighted C2,α norm of a bounded solution u ∈ C2,α(Ω) is controlled by the supremum of u and the Holder norm of f ,

i.e, there exist a constant C = Cn,α,λ,Λ < ∞ such that

∥u∥∗2,α;Ω ≤ C(∥u∥0;Ω + ∥f∥(2)0,α;Ω).

See Theorem 5.5 in section 8.5 in [30] for a proof.

2 Arzelà-Ascoli Theorem: Every bounded equicontinuous sequence of functions in C0([a, b],R) has a uniformly convergent sub-

sequence. See Theorem 14 on page 224 [50] for a proof.

3 Classically, Arzelà-Ascoli theorem could apply for compact sets, here we can coverX\Y by compact sets and inductively choosing

subsequences.

4 In general, if {ui} ⊂ Ck,α and ∥ui − u∥Ck → 0, then u ∈ Ck,α.



CHAPTER 5. LINEAR ANALYSIS 95

Weierstrass theorem, we can assume that the subsequence {Rij} converges to some R, so that

L̃ωX (u,R) = lim
j→∞

L̃ωεij
(uij , Rij ) = 0.

Lemma 5.4 implies that u = 0 and R = 0, so Rij → 0. Since ∇S(ωε) → ∇S(ωX) = 0 when ε → 0

and

‖L̃ε(uij , Rij )‖ρδ−4C0,α
gεij

ρ2

= ‖Lωεij
(uij )−

1

2
∇S(ωεij

).∇uij −Rij‖ρδ−4C0,α
gεij

ρ2

,

we see that

lim
j→∞

‖Lωεij
(uij )‖ρδ−4C0,α

gεij

ρ2

= 0.

On the other hand, sup
x∈X̂

|
uij (x)

ρδ(x)
| ≤ ‖

uij
ρδ

‖C0
gεij

ρ2

≤ 1, so
uij (x)

ρδ(x)
is bounded by 1 on the compact

manifold X̂ for each j. In particular, it achieves a maximum, say at qj ∈ X̂ . In particular
uij (qj)

ρδ(qj)
≤

1 and
uij (qj)

ρδ(qj)
→ 1 as j → ∞, since Rij → 0 as j → ∞. On any compact subset of X \ Y ,

uij (qj) → 0, so we must have ρ(qj) → 0. Taking a subsequence if needed, we can therefore assume

that qj → q ∈ Ĥ1. There are two possibilities, either q ∈ Ĥ1 \ (Ĥ1 ∩ Ĥ2), or else q ∈ Ĥ1 ∩ Ĥ2. If

q ∈ Ĥ1 \ (Ĥ1 ∩ Ĥ2), then
uij (x)

ρδ(qj)
converges to a function that satisfies Lemma 5.5, so

uij (x)

ρδ(qj)
→ 0,

in contradiction
uij (qj)

ρδ(qj)
→ 1. Otherwise, if q ∈ Ĥ1 ∩ Ĥ2, then

uij (x)

ρδ(qj)
converges to a function that

satisfies Lemma 5.6,
uij (qj)

ρδ(qj)
→ 0, again yielding to a contradiction with

uij (qj)

ρδ(qj)
→ 1. Consequently

the inequality (5.5) holds. The inequality (5.5) shows that the kernel of L̃ε is trivial and since it has

index zero, it is invertible. Also L̃ε is bijective bounded linear operator from one Banach space to

another, so L̃ε has bounded inverse.
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CHAPTER 6

NONLINEAR ANALYSIS AND THE MAIN THEOREM

If a perturbed metric ω̃ε = ω̂ε +
√
−1∂∂̄u has a constant scalar curvature S(ω̃ε) = Rε for all ε, then

Rε can be determined from the Kähler class [ω̂ε] of ω̂ε. We try to find an approximate for R.

Proposition 6.1. Let X be a compact complex orbifold with singularities of type I along a subset Y

with codimensionk greater than 2, i.e., the normal bundle ofY inX has fibers of the formCk
/
Γ(−w0,w)

for some weightw. Then the first Chern class of the (−w0, w)−weighted blow-up X̂ ofX along Y is

c1(X̂) = π∗c1(X)− (
1

w0

k∑
i=1

wi − 1)[E]|E ,

where [E] is the Poincaré class of the exceptional divisor.

Proof. Away from Y , we have the canonical identification of canonical bundles K
X̂

= KX . Let

N
X̂
(E) be the normal bundle of E in X̂ . By the adjunction formula

K
X̂
|E = KE ⊗N∗

X̂
(E) = KE ⊗ [−E]|E .

On the other hand, if V = ker(π|E∗) is the vertical tangent bundle of π|E : E → Y , then

T ∗E ∼= V ∗ ⊕ π∗TY. (6.1)

Since π : E → Y is a projective bundle with fiber CPk−1
w , E = Pw(W ) is the weighted projectiviza-

tion of some vector bundleW → Y of rank k such thatNX(Y ) =W
/
Γ(−w0,w) . Now the canonical

bundle of the weighted projective space is given by

KCPk−1
w

= OCPk−1
w

(−
k∑

i=1

wi),

see, for instance, [25] or 6.7.2 in [38]. Keeping in mind the decomposition ofW in the proof of Theo-

rem 4.2, and using equation (6.1), this means that

KE = ∧k−1(V ∗)⊗ π∗(KY )

= π∗(KY )⊗ π∗(∧k(W ∗))⊗OE�Y (−
k∑

i=1

wi)

= π∗(KX)|E ⊗OE�Y (−
k∑

i=1

wi).
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Finally, we have that

K
X̂
|E = KE ⊗N∗

X̂
(E)

= π∗(KX)|E ⊗OE�Y (−
k∑

i=1

wi)⊗OE�Y (w0)

= π∗(KX)|E ⊗OE�Y (−
k∑

i=1

wi + w0) = π∗(KX)|E ⊗ (N
X̂
(E))

1

w0

k∑
i=1

wi − 1

.

Globally on X̂ , N
X̂
(E) = [E] is trivial on X̂ \ E, hence

K
X̂

= π∗(KX)⊗ (N
X̂
(E))

1

w0

k∑
i=1

wi − 1

.

Since c1(X) = −c1(KX) and c1(X̂) = −c1(KX̂
), we finally obtain

c1(X̂) = π∗c1(X)− (
1

w0

k∑
i=1

wi − 1)[E]|E .

Proposition 6.2. Let ω̂ε be the family of Kähler metric of Theorem 4.2. Assume the singularity of type

I is Ck
/
Γ(−w0,w) . If there is a constant scalar curvature metric ω̃ε in the Kähler class [ω̂ε], the scalar

curvature of ω̃ε can be represented by

S(ω̃ε) = S(ωX) + λε2k−2 +Rε,

where |Rε| ≤ cε2k for some constant c > 0 independent of ε and λ is a topological constant depend-

ing on the Kähler class [ω̂ε] and first Chern class of X̂ .

Proof. In this sense,

S(ω̃ε)Volω̂ε
(X̂) =

∫
X̂
S(ω̃ε)ω̃

n
ε

=

∫
X̂
(S(ω̃ε)ω̃ε) ∧ ω̃n−1

ε

=

∫
X̂
2nρ ∧ ω̃n−1

ε

=

∫
X̂
2n(2πc1(X̂)) ∧ ω̃n−1

ε

= 4nπ

∫
X̂
c1(X̂) ∪ [ω̃ε]

n−1

= 4nπ

∫
X̂
c1(X̂) ∪ [ωε]

n−1,
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so that

S(ω̃ε) =

4nπ

∫
X̂
c1(X̂) ∪ [ωε]

n−1

Volω̂ε
(X̂)

=
4πn∫
X̂
[ωε]

n

∫
X̂
c1(X̂) ∪ [ωε]

n−1.

We set Cε =
4πn∫
X̂
[ω̂ε]

n
and C =

4πn∫
X̂
[ωX ]n

as well, then by Remark 4.3,

∫
X̂
[ω̂ε]

n =

∫
X
([ωX ]− ε2[E])n

=

∫
X
[ωX ]n +

∫
X

n∑
i=1

(
n

i

)
(−ε2[E])i[ωX ]n−i

=

∫
X
[ωX ]n +

n∑
i=1

(
n

i

)
(−ε2)i

∫
E
[E]i−1[ωX ]n−i

=

∫
X
[ωX ]n +

n∑
i=k

(
n

i

)
(−ε2)i

∫
E
[E]i−1[ωX ]n−i

=

∫
X
[ωX ]n +O(ε2k),

since we must have that i−1 ≥ k−1 for the second integral to be non-zero. Indeed, the only vertical

contribution of [E]i[ωX ]n−i with respect to the fiber bundle π : E → Y is coming from [E]i.

Hence

Cε =
4πn∫
X̂
[ω̂ε]

n
=

4πn∫
X̂
[ωX ]n +O(ε2k)

=
4πn∫

X̂
[ωX ]n

+O(ε2k) = C +O(ε2k).

From the Lemma 6.1, c1(X̂) = π∗c1(X)− (
1

w0

k∑
i=1

wi − 1)[E] and by the Remark 4.3 again, [ω̂ε] =

[ωX ]− ε2[E], so
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S(ω̃ε) = Cε

∫
X̂
(π∗c1(X)− (

1

w0

k∑
i=1

wi − 1)[E]) ∪ ([ωX ]− ε2[E])n−1

= Cε

∫
X
c1(X) ∪ [ωX ]n−1

+Cε

n−1∑
i=1

(
n− 1

i

)
(−1)iε2i

∫
X̂
π∗c1(X) ∪ [ωX ]n−1−i ∪ [E]i

−Cε

n−1∑
i=0

(
1

w0

k∑
i=1

wi − 1)

(
n− 1

i

)
(−1)iε2i

∫
X
[ωX ]n−1−i ∪ [E]i+1

= S(ωX) + Cε

n−1∑
i=1

(
n− 1

i

)
(−1)iε2i

∫
E
π∗c1(X) ∪ [ωX ]n−1−i ∪ [E]i−1

+Cε

n−1∑
i=0

(
1

w0

k∑
i=1

wi − 1)

(
n− 1

i

)
(−1)iε2i

∫
E
[ωX ]n−1−i ∪ [E]i +O(ε2k).

Since π∗c1(X) and π∗[ωX ]n−i−1 are basic with respect to the bundle map π : E → Y , in the first

sum, we must have that i − 1 ≥ k − 1 for the integral to be non-zero, while in the second sum,

i ≥ k − 1 for the integral to be non-zero. Hence we see that S(ω̃ε) = S(ωX) + λε2k−2 + Rε with

constant coefficientλ = C(
1

w0

k∑
i=1

wi−1)

(
n− 1

k − 1

)
(−1)k−1

∫
E
[ωX ]n−k∪[E]k−1 andRε as claimed.

Now we can find a better approximation of u by looking at solution of D∗DΓ = λ on X \ Y for λ

defined in Proposition 6.2. To do so, we will consider the function

Λ(x) =

∫
Y
G(x, y)dy,

whereG(x, y) is the Green function of the Lichnerowicz operator D∗D. The operatorG is associated

to the Green function of D∗D and by definition

D∗DG = Id − P,

where P is the projection on constant functions, i.e, P(f) =

∫
X

f(y)

Vol(X)
. In terms of Schwartz

kernels,

D∗
xDxG(x, y) = δ(x− y)− 1

Vol(X)
, on X.

In the distributional sense, we thus have that

D∗
xDxΛ = δY − Vol(Y )

Vol(X)
, on X,
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where δY is the current of integration along Y . Let us consider the function

Γ(x) = −Vol(X)

Vol(Y )
λΛ(x).

To determine the asymptotic behaviour of Λ(x) and Γ(x) near Y , notice that in local coordinates

near Y ,

G(x, y) = F−1(σ4((D∗D)−1))(x− y) +O(|x− y|5−2n)

= F−1(|ξ|−4)(x− y) +O(|x− y|5−2n)

=
1

(2π)n

∫
Rn

ei(x−y).ξ|ξ|−4dξ +O(|x− y|5−2n)

=
c

|x− y|2n−4
+O(|x− y|5−2n),

where c is some positive constant and F−1 denotes the inverse Fourier transform on Rn. Let xs

be the projection of x on Y and d = |x − xs| be the distance to Y in local coordinates. Then

|x− y|2 = d2 + |y − xs|2, so setting ys = y − xs, we get that∫
Y

dy1 . . . dy2n−2k

|x− y|2n−4
=

∫
Y

dys1 . . . dys2n−2k

(d2 + |ys|2)n−2
.

In polar coordinates in a ball of radius 1, this yields∫
B1(0)

dys1 . . . dys2n−2k

(d2 + |ys|2)n−2
=

∫
S2n−2k−1

∫ 1

0

r2n−2k−1

(d2 + r2)n−2
drdω

= Vol(S2n−2k−1)

∫ 1

0

r2n−2k−1

(d2 + r2)n−2
dr

=
2πn−k

Γ(n− k)

∫ 1

0

r2n−2k−1

(d2 + r2)n−2
dr.

By substituting r = Rd, we get∫ 1

0

r2n−2k−1

(d2 + r2)n−2
dr =

∫ 1
d

0

(Rd)2n−2k−1d

(d2 + (Rd)2)n−2
dR =

1

d2k−4

∫ 1
d

0

R2n−2k−1

(1 +R2)n−2
dR.

Note that the intregral
∫ 1

d

0

R2n−2k−1

(1 +R2)n−2
dR converges whend→ 0by the Riemann criterion because

2(n−2)−(2n−2k−1) = 2k−3 > 1 since k > 2. Moreover the integral can be computed explicitly∫ +∞

0

R2n−2k−1

(1 +R2)n−2
dR =

∫ π
2

0
sin2n−2k−1 θ cos2k−5 θdθ, posing R = tan θ

=

∫ π
2

0
(sin2 θ)n−k−1(cos2 θ)k−2 sin θ cos θdθ

=
1

2

∫ 1

0
tn−k−1(1− t)k−3dt = Γ(n− k)Γ(k − 2)

2Γ(n− 2)
.
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Hence,

Λ(x) ≈ c(
2πn−k

Γ(n− k)
)(
Γ(n− k)Γ(k − 2)

2Γ(n− 2)
)(
1

d
)2k−4+O((

1

d
)2k−5) = c′(

1

d
)2k−4+O((

1

d
)2k−5), (6.2)

for c′ another constant.

Recalling that rε = ε
2k

2k+1 , we can use the function Γ to define a new metric

ω̃ε := ω̂ε +
√
−1∂∂̄(ε2k−2γ2(

d

rε
)Γ),

where γ2 : R → R is a cutoff function such that γ2(t) = 0 for t < 1 and γ2(t) = 1 for t > 2. On the

support of γ2(
d

rε
), ρ ≤ Cd for some constant and d ≥ rε, so ρ2(

1

d
)2k−4 ≤ C2(

1

d
)2k−6 ≤ C2r6−2k

ε .

Hence if we denote Ω = {x ∈ X̂ : rε ≤ d(x)}, then using (6.2),

‖ε2k−2γ2(
d

rε
)Γ‖

ρ2Cl,α
ĝε
ρ2

(X̂)
≤ cε2k−2‖Γ‖

ρ2Cl,α
ĝε
ρ2

(Ω)

≤ c′ε2k−2r6−2k
ε

≤ c′ε
5(2k)−2
2k+1

≤ c′ε
4(2k)+2k−2

2k+1 ≤ c′ε4, since k > 2,

which tends to zero as ε → 0. So ω̃ε = ω̂ε +
√
−1∂∂̄(ε2k−2γ2(

d

rε
)Γ) is a small perturbation of ω̂ε

and so Lω̃ε
is a small perturbation of Lω̂ε

for sufficiently small ε. Now we would like to solve the

non-linear equation

S(ω̂ε +
√
−1∂∂̄u) = R, (6.3)

with u and R of the form

u = ε2k−2γ2(
d

rε
)Γ + v,

R = S(ωX) + λε2k−2 +Rε.

So the goal is to find v. By replacing u in the left side of (6.3), we get from (5.1) page 90 that

S(ω̂ε +
√
−1∂∂̄u) = S(ω̂ε) + Lω̂ε

(u) +Qω̂ε
(∇2u)

= S(ω̂ε) + ε2k−2Lω̂ε
(γ2(

d

rε
)Γ) + Lω̂ε

(v) +Qω̂ε
(∇2u),

so solving (6.3) means to solve

Lω̂ε
(v)−Rε = S(ωX)− S(ω̂ε) + λε2k−2 − ε2k−2Lω̂ε

(γ2(
d

rε
)Γ)−Qω̂ε

(∇2u).
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Now we define Fε : ρ
δC4,α

ĝε
ρ2

(X̂)0 × R → ρδ−4C0,α
ĝε
ρ2

(X̂)× R by

Fε(v,R) := S(ωX)− S(ω̂ε) + λε2k−2 − ε2k−2Lω̂ε
(γ2(

d

rε
)Γ)−Qω̂ε

(∇2u).

Remark 6.3. Note that the functionFε does not depends onR, but to use Banach fixed point theorem,

we consider Fε as a function of v and R.

Lemma 6.4. Suppose δ > 0. Then there exists constants c0, c > 0 such that if ‖ϕ‖
ρδC4,α

gε
ρ2

(X̂)
< c0,

then

‖Qω̂ε
(∇2ϕ)‖

ρδ−4C0,α
ĝε
ρ2

(X̂)
≤ c‖ϕ‖

ρδC4,α
ĝε
ρ2

(X̂)
‖ϕ‖

ρ2C4,α
ĝε
ρ2

(X̂)
.

Proof. From Lemma 3.4 we have the following decomposition with finite sums:

Qω̂ε
(∇2ϕ) =

∑
q

Bq,4,2(∇4ϕ,∇2ϕ)Cq,4,2(∇2ϕ)

+
∑
q

Bq,3,3(∇3ϕ,∇3ϕ)Cq,3,3(∇2ϕ)

+ |z|
∑
q

Bq,3,2(∇3ϕ,∇2ϕ)Cq,3,2(∇2ϕ)

+
∑
q

Bq,2,2(∇2ϕ,∇2ϕ)Cq,2,2(∇2ϕ),

where Bis are bilinear forms and Cis are smooth functions. Each term of the above decomposition

is controlled by the ‖ϕ‖
ρδC4,α

ĝε
ρ2

(X̂)
‖ϕ‖

ρ2C4,α
ĝε
ρ2

(X̂)
, for example

‖Bq,3,3(∇3ϕ,∇3ϕ)‖
ρδ−4C0,α

gε
ρ2

(X̂)
≤ ‖ρ4−δBq,3,3(∇3ϕ,∇3ϕ)‖

C0,α
ĝε
ρ2

(X̂)

≤ ‖Bq,3,3‖op‖ρ3−δ∇3ϕ‖
C0,α

ĝε
ρ2

(X̂)
‖ρ∇3ϕ‖

C0,α
ĝε
ρ2

(X̂)

= ‖Bq,3,3‖op‖∇3ϕ‖
ρδ−3C0,α

ĝε
ρ2

(X̂)
‖∇3ϕ‖

ρ−1C0,α
ĝε
ρ2

(X̂)

≤ c‖ϕ‖
ρδC3,α

ĝε
ρ2

(X̂)
‖ϕ‖

ρ2C3,α
ĝε
ρ2

(X̂)

≤ c‖ϕ‖
ρδC4,α

ĝε
ρ2

(X̂)
‖ϕ‖

ρ2C4,α
ĝε
ρ2

(X̂)
,

using the fact that the embedding ρδCk,α
g → ρδ

′
Ck′,α′
g is compact for k′ + α′ < k + α and δ′ < δ

and also that, ‖∇if‖
ρδCk,α

g
≤ c‖f‖

ρδ+iCk+i,α
g

.
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Proposition 6.5. For 4− 2k < δ < 0 very close to 4− 2k, there is a constant c independent of ε such

that

‖Fε(0, 0)‖ρδ−4C0,α
ĝε
ρ2

(X̂)
≤ cr3−δ

ε .

Proof. We consider four possible regions:

(a) On Ω1 = {x ∈ X̂ : d(x) < ε} we have γ2(
d

rε
) = 0 so we get

Fε(0, 0) = S(ωX)− S(ω̂ε) + λε2k−2 − ε2k−2Lω̂ε
(γ2(

d

rε
)Γ)−Qω̂ε

(∇2(ε2k−2γ2(
d

rε
)Γ))

= S(ωX)− S(ω̂ε) + λε2k−2.

(6.4)

Furthermore, in this region,

ρ =
√
ε2 + d2 ≤

√
ε2 + ε2 =

√
2ε.

By Lemma 3.5, the scalar curvature of the conformally changed metric ω′ = e2fω is equal to

S(ω′) = e−2f (S(ω) + 2(2n− 1)∆ωf − (2n− 1)(2n− 2)‖∇f‖2ω).

Using this formula for ω′ = ε−2ω̂ε and f = − ln ε constant, we get S(ε−2ω̂ε) = ε2S(ω̂ε) or

S(ω̂ε) = ε−2S(ε−2ω̂ε). Since ε−2ω̂ε tends to a scalar flat ALE metric in the fibers of ϕ̂1 :

Ĥ1 → Y , by Theorem 4.2 on page 87, S(ω̂ε) = ε−2O(ε) = O(ε−1). Hence   

 ‖ Fε(0, 0)‖ρδ−4C0,α
ĝε
ρ2

(X̂)
= ‖S(ωX)− S(ω̂ε) + λε2k−2‖

ρδ−4C0,α
ĝε
ρ2

(X̂)

 = ‖ρ4−δ(S(ωX)− S(ω̂ε) + λε2k−2)‖
C0,α

ĝε
ρ2

(X̂)

 ≤ (
√
2ε)4−δ(‖S(ωX)‖

C0,α
ĝε
ρ2

(X̂)
+ ‖S(ω̂ε)‖C0,α

ĝε
ρ2

(X̂)
+ ‖λε2k−2‖

C0,α
ĝε
ρ2

(X̂)
)

 ≤ (
√
2ε)4−δ(‖S(ωX)‖

C0,α
ĝε
ρ2

(X̂)
+ ‖ε−2S(ε−2ω̂ε)‖C0,α

ĝε
ρ2

(X̂)
+ ‖λε2k−2‖

C0,α
ĝε
ρ2

(X̂)
)

≤ (
√
2ε)4−δ(c1 + ε−2c2ε + ε2k−2c3)

≤ c(
√
2ε)3−δ,

 where c1, c2, c3 and c are constants independent of ε.
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(b) On Ω2 = {x ∈ X̂ : ε < d(x) < rε} we have γ2(
d

rε
) = 0,

ε ≤ ρ =
√
ε2 + d2 ≤

√
ε2 + r2ε ≤

√
r2ε + r2ε =

√
2rε,

and (6.4) still holds. The terms S(ωX) and λε2k−2 can be estimated as in (a). By (4.4) on page

88 and the fact that ωφ̂1
is scalar flat, we have that

S(ε−2ω̂ε) = O(ε(
d

ε
)−2k),

S(ω̂ε) = ε−2S(ε−2ω̂ε) = O(ε−1(
d

ε
)−2k) = O(

1

d
).

This means that

‖S(ω̂ε)‖ρδ−4C0,α
ĝε
ρ2

(X̂)
≤ C‖ρ

δ−4

d
‖
C0,α

ĝε
ρ2

(X̂)
≤ C(

√
2rε)

3−δ,

for some constant C.

    

(c) On Ω3 = {x ∈ X̂ : rε < d(x) < 2rε} we have

Fε(0, 0) = S(ωX)− S(ω̂ε) + λε2k−2 − ε2k−2Lω̂ε
(γ2(

d

rε
)Γ)−Qω̂ε

(∇2(ε2k−2γ2(
d

rε
)Γ))

= S(ωX) + λε2k−2 − (S(ω̂ε) + ε2k−2Lω̂ε
(γ2(

d

rε
)Γ) +Qω̂ε

(∇2(ε2k−2γ2(
d

rε
)Γ)))

= S(ωX) + λε2k−2 − S(ω̃ε).

As in the previous case, ‖S(ωX)‖
ρδ−4C0,α

ĝε
ρ2

(X̂)
≤ cr3−δ

ε and ‖λε2k−2‖
ρδ−4C0,α

ĝε
ρ2

(X̂)
≤ cr3−δ

ε , so

we just need to control ‖S(ω̃ε)‖ρδ−4C0,α
ĝε
ρ2

(Ω3)
. To check this, let us write ω̃ε as

ω̃ε = ωEuc +
√
−1∂∂̄H,

where ωEuc =
√
−1∂∂̄(|z|2 + |w|2) and

H = φ1(z, w) +Aε2k−2|z|4−2k(1 + φ2(z, w))
4−2k + ε2k−2γ2(

d

rε
)Γ̃ +O(ε2k−1|z|3−2k)

= Aε2k−2|z|4−2k + H̃,

where φ1 and φ2 are smooth functions and A is a constant. Note that

∇2H = O(rε + ε2k−2r2−2k
ε + ε2kr−2k

ε ) = O(ε2k−2r2−2k
ε ) → 0 as ε→ 0. (6.5)
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Now

‖S(ω̃ε)‖ρδ−4C0,α
ĝε
ρ2

(Ω3)
≤ ‖S(ω̃ε)− LωEuc(H)‖

ρδ−4C0,α
ĝε
ρ2

(Ω3)
+ ‖LωEuc(H)‖

ρδ−4C0,α
ĝε
ρ2

(Ω3)

= ‖QωEuc(∇
2H)‖

ρδ−4C0,α
ĝε
ρ2

(Ω3)
+ ‖∆2

EucH‖
ρδ−4C0,α

ĝε
ρ2

(Ω3)
,

and with the same procedure in the Proposition 13 in [53], we will show that each term is

O(r3−δ
ε ). From (6.5) on page 104 we get

‖QωEuc(∇
2H)‖

ρδ−4C0,α
ĝε
ρ2

(Ω3)
= ‖

∑
q

Bq,4,2(∇4H,∇2H)Cq,4,2(∇2H)

+
∑
q

Bq,3,3(∇3H,∇3H)Cq,3,3(∇2H)‖
ρδ−4C0,α

ĝε
ρ2

(Ω3)

≤ c1r
4−δ
ε ‖∇4H‖

C0,α
ĝε
ρ2

(Ω3)
‖∇2H‖

C0,α
ĝε
ρ2

(Ω2)

+c2r
4−δ
ε ‖∇3H‖

C0,α
ĝε
ρ2

(Ω3)
‖∇3H‖

C0,α
ĝε
ρ2

(Ω3)

≤ c1r
4−δ
ε (ε2k−2r−2k

ε )(ε2k−2r2−2k
ε )

+c2r
4−δ
ε (ε2k−2r1−2k

ε )(ε2k−2r1−2k
ε )

≤ cε4k−4r6−4k−δ
ε ≤ cr3−δ

ε .

For the LωEuc(H) note that LEuc = −∆2
Euc and ∆2

Euc(|Z|4−2k) = 0, so

‖∆2
EucH‖

ρδ−4C0,α
ĝε
ρ2

(Ω3)
= ‖∆2

Euc(Aε
2k−2|Z|4−2k + H̃)‖

ρδ−4C0,α
ĝε
ρ2

(Ω3)

= ‖∆2
EucH̃‖

ρδ−4C0,α
ĝε
ρ2

(Ω3)

≤ Cr4−δ
ε (1 + ε2k−2r1−2k

ε )

≤ cr3−δ
ε .

(d) On Ω4 = {x ∈ X̂ : 2rε < d(x)} we have   γ2(
d

rε
) = 1, ω̂ε = ωX , Lω̂ε

(Γ) = λ and

  Fε(0, 0) = S(ωX)− S(ωX) + λε2k−2 − ε2k−2Lω̂ε
(Γ)−Qω̂ε

(∇2(ε2k−2Γ))

= −Qω̂ε
(ε2k−2∇2Γ).

By the approximation of Γ and the assumption 4 − 2k < δ < 0 we get ‖Γ‖
ρδC4,α

ĝε
ρ2

(Ω4)
≤

ρ−δd4−2k ≤ (
√
2)−δr4−2k−δ

ε , because ρ ≤
√
2ε and d ≥ 2rε. Similarly ‖Γ‖

ρ2C4,α
ĝε
ρ2

(Ω4)
≤
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ρ−2r4−2k
ε ≤ ε−2r4−2k

ε ≤ r
2−2k− 1

k
ε since ρ ≥ ε.

Therefore Lemma 6.4 implies that

 ‖Fε(0, 0)‖ρδ−4C0,α
ĝε
ρ2

(Ω4)
= ‖ −Qω̂ε

(ε2k−2∇2Γ)‖
ρδ−4C0,α

ĝε
ρ2

(Ω4)

≤ cε4k−4‖Γ‖
ρδC4,α

gε
ρ2

(Ω4)
‖Γ‖

ρ2C4,α
ĝε
ρ2

(Ω3)

≤ c′ε4k−4r4−2k−δ
ε r

4−2k−2− 1
k

ε

≤ c′ε4k−4r
6−4k−δ− 1

k
ε

≤ c′(r
1+ 1

2k
ε )4k−4r

6−4k−δ− 1
k

ε

≤ c′r
2−δ+2− 3

k
ε

≤ c′r3−δ
ε .   

 

   

Ω1 Ω1

Ω2 Ω2

Ω3 Ω3

Ω4 Ω4

H1

H2 H2

[0,+∞)ε

Figure 6.1: Four different regions on X̂

Finally, to prove existence of a solution for the non-linear equation

S(ω̂ε +
√
−1∂∂̄u) = R,

for ε > 0 small enough, we show that there exist vε ∈ ρδC4,α
ĝε
ρ2

(X̂)0 such that

Fε(vε, Rε) = Lω̂ε
(vε)−Rε.

Define Nε : ρδC4,α
ĝε
ρ2

(X̂)0 × R → ρδC4,α
ĝε
ρ2

(X̂)0 × R by Nε(v,R) = PεFε(v,R), where

Pε := L̃−1
ε : ρδ−4C0,α

ĝε
ρ2

(X̂) → ρδC4,α
ĝε
ρ2

(X̂)0×R is as Proposition 5.8 on page 93. If we show that
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Nε is a contraction, then by the Banach fixed point theorem, there exist unique (vε, R), such that

Nε(vε, R) = (vε, R) or equivalently Fε(vε, R) = L̃ε(vε, R). Since L̃ε(vε, R) = Lω̂ε
(vε) − R,

then F (vε) + R = Lωε(vε). Now we are going to show that Nε is a contraction on a suitable

domain. By Proposition 6.2, we must have that R = Rε.

Lemma 6.6. There exist constants c0, ε0 > 0 such that for ε < ε0,

‖Nε(v1, R1)−Nε(v2, R2)‖ρδ−4C0,α
ĝε
ρ2

(X̂)
≤ 1

2
‖v1 − v2‖ρδC0,α

ĝε
ρ2

(X̂)
,

for (vi, R) such that ‖vi‖ρ2C0,α
ĝε
ρ2

(X̂)
< c0.

Proof. The proof is essentially the same as Lemma 23 in [56]. SincePε is bounded independently

of ε, we just need to control

‖Fε(v1, R1)− Fε(v2, R2)‖ρδ−4C0,α
ĝε
ρ2

(X̂)
= ‖ −Qω̂ε

(∇2u1) +Qω̂ε
(∇2u2)‖ρδ−4C0,α

ĝε
ρ2

(X̂)
.

By the mean value theorem there exist t ∈ [0, 1] such that for X = (1− t)u1 + tu2,

S(ω̂ε +
√
−1∂∂̄u1)− S(ω̂ε +

√
−1∂∂̄u2) = Lω̂ε+

√
−1∂∂̄X(u1 − u2).

Hence, this means that

Qω̂ε
(∇2u1)−Qω̂ε

(∇2u2) = (Lω̂ε+
√
−1∂∂̄X − Lω̂ε

)(u1 − u2).

The linear operator Lω̂ε
is bounded independently of ε, so

‖(Lω̂ε+
√
−1∂∂̄X − Lω̂ε

)(u1 − u2)‖ρδ−4C0,α
ĝε
ρ2

(X̂)
≤ C(‖u1‖ρ2C4,α

ĝε
ρ2

(X̂)
+ ‖u2‖ρ2C4,α

ĝε
ρ2

(X̂)
)‖u1 − u2‖ρδC4,α

ĝε
ρ2

(X̂)

≤ 2c′C‖u1 − u2‖ρδC4,α
ĝε
ρ2

(X̂)

≤ 2c′C‖v1 − v2‖ρδC4,α
ĝε
ρ2

(X̂)
,

where the constant c′ can be chosen as small as we want, provided c0 and ε are sufficiently

small, since ui = ε2k−2γ2(
d

rε
)Γ + vi and when ε→ 0

‖ε2k−2γ2(
d

rε
)Γ‖

ρ2Ck,α
ĝε
ρ2

(X̂)
≤ c(

ε

rε
)2k−2 = o(1).

By Properties 5.8, the result follows.

Now we define open set

Uε = {v ∈ ρδC4,α
ĝε
ρ2

(X̂)0 : ‖v‖ρδC4,α
ĝε
ρ2

(X̂)
≤ (1 + 2c)Cr3−δ

ε },

where C is the independent bound of Pε and c is the constant in Properties 6.5.
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Proposition 6.7. Suppose δ < 0 is sufficiently close to 4− 2k. Then for ε > 0 sufficiently small,

the map Nε : Uε → Uε is a contraction and therefore has a fixed point vε.

Proof. Note that if (v,R) ∈ Uε, then we have

‖v‖
ρ2C4,α

ĝε
ρ2

(X̂)
≤ εδ−2‖v‖

ρδC4,α
ĝε
ρ2

(X̂)
≤ (1 + 2c)Cεδ−2r3−δ

ε ≤ c0,

for sufficiently small ε, so Lemma 6.6 applies to Uε. It remains to check that Nε(Uε) ⊆ Uε. To

do this, for any v ∈ Uε, Proposition 6.5 and Lemma 6.6 implies that:

‖Nε(v,R)‖ρδC4,α
ĝε
ρ2

(X̂)0
≤ ‖Nε(v,R)−Nε(0, 0)‖ρδC4,α

ĝε
ρ2

(X̂)0
+ ‖Nε(0, 0)‖ρδC4,α

ĝε
ρ2

(X̂)0

≤ 1

2
‖(v,R)‖

ρδC4,α
ĝε
ρ2

(X̂)0
+ C‖Fε(0, 0)‖ρδ−4C0,α

ĝε
ρ2

(X̂)0

≤ 1

2
((1 + 2c)Cr3−δ

ε ) + Cc(r3−δ
ε ) ≤ (1 + 2c)Cr3−δ

ε .

The above proposition completes the proof of our main theorem.

Theorem 6.8. Suppose that X is a compact cscK orbifold with no holomorphic vector fields,

and such that the set of singular points Y of X is of complex co-dimension > 2. Suppose, fur-

thermore, that any point p ∈ Y has a local orbifold uniformization chart of the form Cn−k ×

(Ck
/
Γ(−w0,w)) whereΓ(−w0,w) is a finite linear group of typeI. Then on the (−w0, w)-weighted

blow-up X̂ ofX along Y , the class [ωX ]−ε2[E] admits a cscK metric for ε > 0 sufficiently small,

where E = π−1(Y ) is the exceptional divisor of the partial resolution π : X̂ → X .

Unless the singularity of type I is of the form (−r, 1, . . . , 1) for some r ∈ N, X̂ also has a

singularity of type I along a suborbifold of complex codimension k. However, as described on

page 47, since the singularity is of type I, we can find a sequence of weighted blow-ups

X̂l → X̂l−1 → . . .→ X̂1 → X,

with X̂1 = X̂ and X̂l smooth. Thanks to Proposition 1.148, we can apply Theorem 6.8 iteratively

to each X̂i to obtain on X̂l a cscK metric, which establishes Corollary C in the introduction.
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